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1. INTRODUCTION

Basic references for dynamics are [KH, R] and for uniform hyperbolicity [Bow, Sh, Y].
For a presentation of the dynamics beyond uniform hyperbolicity and generic behavior,
see [BDV, Cr2]. Historical references for partial hyperbolicity are [BP, HPS]. More recent
surveys on partial hyperbolicity are [BuPSW1, HPe, RHRHU1, Pe, Wi2].

1.1. Hyperbolic dynamics. The dynamics of uniformly hyperbolic systems has been dee-
ply described since the 60’s and the richness of its behavior is now well understood. We
summarize in this section some of their main properties.

1.1.1. What is a hyperbolic system? Let f be a diffeomorphism on a compact manifold M .

Definition 1.1. A hyperbolic set for f is a compact f -invariant set K whose tangent bun-
dle admits a splitting into two continuous vector subbundles TK M = E s ⊕E u which sat-
isfy:

– E s ,E u are invariant: ∀x ∈ K , Dx f (E s
x ) = E s

f (x) and Dx f (E u
x ) = E u

f (x).

– E s is uniformly contracted and E u is uniformly expanded: there exist c > 0 and
λ ∈ (0,1) such that for any x ∈ K , u ∈ E s

x , and v ∈ E u
x ,

∀n ≥ 0, ‖Dx f nu‖ ≤ cλn‖u‖ and ‖Dx f n v‖ ≥ c−1λ−n‖v‖.

The spaces E s
x and E u

x at x are called the stable and unstable spaces.

The definition of a hyperbolic diffeomorphism is less universal. In general, one only
requires hyperbolicity on a set which satisfies some recurrence. In the late 60’s, the atten-
tion was focused on the non-wandering set and led Smale to introduce Axiom A diffeo-
morphisms ([Sm]). This class is in general not open and the non-wandering dynamics is
not always stable under perturbation (some Ω-explosions may occur).

It seems to us that a (bit stronger) class of systems, involving chain-recurrence, is more
natural: once one knows the notion of filtration, this second class is easier to define. It
may be equivalently defined as the collection of systems that satisfy the Axiom A and the
“no cycle condition”. These are these diffeomorphisms that we propose to call hyperbolic
diffeomorphisms.

1.1.2. Chain-recurrence and filtrations. For decomposing the dynamics one introduces
the following notion.

Definition 1.2. A filtration for f is a finite family of open sets U0 =;⊂U1 ⊂ ·· · ⊂Um = M
such that f (Ui ) ⊂Ui for each i .

The dynamics may then be studied independently in each level of a filtration, that is in
restriction to each maximal invariant set in Un \Un−1.

For each trapping region U , i.e. any open set which satisfies f (U ) ⊂U , the dynamics of
points in U \ f (U ) is very simple. The collection of points x ∈ M which do not belong to
any such domain is an invariant compact set R( f ), called the chain-recurrent set. Each
filtration induces a partition of the chain-recurrent set. Considering different filtrations
allows to split more. The chain-recurrence classes are the maximal invariant compact sub-
sets of R( f ) that can not be decomposed by a filtration.

There is another way to define R( f ) and its decomposition into chain-recurrence classes.
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Definition 1.3. Given two points x, y ∈ X we say that there exists an ε-pseudo orbit from
x to y if and only if there exists points z0 = x, . . . , zk = y such that k ≥ 1 and

d( f (zi ), zi+1) ≤ ε for any 0 ≤ i ≤ k −1.

We use the notation x a y to express that for every ε > 0 there exists an ε-pseudo orbit
from x to y . We also use x ày to mean x a y and y a x.

Exercise 1. Prove that x ày for any x, y if and only for any trapping region U , the set {x, y}
is either included in U or in M \U .

Exercise 2. The chain-recurrent set of f coincides with:

R( f ) = {x ∈ X : x àx}

The chain-recurrence classes are the equivalence classes for the relation x ày on R( f ).

A chain transitive set is an f -invariant set K such that f|R( f ) is chain-transitive: for every
x, y ∈ K and for any ε > 0, there exists a ε-pseudo-orbit z0 = x, . . . , zn = ycontained in K
such that n ≥ 1.

1.1.3. Examples of hyperbolic diffeomorphisms. One can now define.

Definition 1.4. The diffeomorphism f is hyperbolic if there exists a filtration U0 ⊂ ·· · ⊂
Um for f such that for each i = 1, . . . ,m, the maximal invariant compact set

⋂
n∈Z f n(Ui \

Ui−1) is hyperbolic.

Exercise 3. Equivalently, a diffeomorphism is hyperbolic if each of its chain-recurrence
classes is a hyperbolic set.

Example 1: the whole manifold. The whole manifold may be a hyperbolic set, in which
case, one say that f is Anosov. This is the case for the dynamics induced on T2 by the

matrix A =
(
2 1
1 1

)
. More examples will be discussed in section 3.

Example 2: a finite set. The chain-recurrence set may be reduced to a finite collection of
hyperbolic orbits. (Up to a technical assumption), this corresponds to the class of Morse-
Smale diffeomorphisms.

FIGURE 1. Morse-Smale on the circle.
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Example 3: a Cantor set. Let R be a rectangle diffeomorphic to [0,1]2, divided in three
horizontals subrectangles Ri = [0,1]× [(i −1)/3, i /3], i = 1,2,3. Let f be a diffeomorphism
which

– coincides with the map (x, y) 7→ (x/3,3y) on R1,
– coincides with the map (x, y) 7→ (1−x/3,3−3y) on R3,
– sends R2 outside R.

The vertical and horizontal directions are preserved, the first is expanded, the second
contracted. Hence the maximal invariant set K inside R is a hyperbolic set, homeomor-
phic to a Cantor set, and called the horseshoe.

R1

R2

f (R)

E u

E s
R3

FIGURE 2. The horseshoe.

Example 4: an attractor. We introduce four rectangles R1,R2,R3,R4, diffeomorphic to [0,1]2,
glued along their “vertical" edges. The diffeomorphism f sends the union ∆=⋃

i Ri into
its interior as on figure 3 and preserves and contracts the vertical foliation.

R1

R2

R3
R4

f (R3)f (R4)

f (R2)f (R1)

FIGURE 3. Construction of the Plykin attractor.

In this case the hyperbolic set is an attractor which is a union of curves tangent to the
unstable direction. A repeller is an attractor for f −1.

Exercise 4. The horseshoe is topologically conjugated to the shift on {0,1}Z.

1.1.4. Properties of hyperbolic diffeomorphisms. Hyperbolicity has many consequences:
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FIGURE 4. The Plykin attractor.

a. Shadowing lemma. Consider some hyperbolic set K for f . For any δ > 0, there exists
ε> 0 such that for any ε-pseudo orbit (xi )i∈Z contained in K , there exists a unique point y
which satisfies d(xi , f i (y)) < δ for any i ∈Z.

Consider a hyperbolic diffeomorphism f . The shadowing lemma allows to:

– Code the dynamics (via Markov partition): the dynamics on R( f ) is Hölder-semi-
conjugated to a subshift of finite type.

– Prove its stability: for any δ > 0, if g is a diffeomorphism C 1-close to f , the dy-
namics (R( f ), f ) and (R(g ), g ) are topologically conjugated.

– Get a spectral decomposition: the number of chain-recurrence classes is finite and
each of them is transitive, i.e. contains a dense forward orbit.

Exercise 5. For a hyperbolic diffeomorphism, prove the spectral decomposition and that
periodic points are dense in R( f ).

b. Stable manifold theorem. For any diffeomorphism f and any point x in a hyperbolic
set, the stable set W s(x) := {y,d( f n(x), f n(y)) −→+∞ 0} is an immersed submanifold. (The

same holds for the past dynamics and the unstable set W u(x) := {y,d( f n(x), f n(y)) −→−∞ 0}.)

This is a key property for studying the geometrical properties of hyperbolic systems. It
allows for instance to define the homoclinic class of a hyperbolic periodic orbit.

c. Statistical description. For any hyperbolic C 2-diffeomorphism f , each chain-recurrence
class which is an attractor supports a physical ergodic measure µ: the set

B(µ) :=
{

y,
1

n
(δy +·· ·+δ f n−1(y)) −→+∞ µ

}
has positive Lebesgue volume. Moreover, the union of the basins of the physical measures
of all the attractors has total volume.

These physical measures satisfy many strong properties: they are Bernoulli, have expo-
nential decay of correlations,... These descriptions apply in particular to Anosov diffeo-
morphisms which preserve a volume: when the manifold is connected, the volume is the
unique physical measure (in particular, it is ergodic , etc).
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d. Classification. Hyperbolic dynamics exist on any manifold. (For instance Shub and
Smale have shown that any diffeomorphism can be approximated in the C 0-topology by
a hyperbolic one whose non-wandering set is totally disconnected, see [Fr3, Appendix
B].) However hyperbolicity may be constrained. For instance:

Theorem (Franks-Newhouse [Fr1, Ne]). On a connected manifold, any Anosov diffeomor-
phism with one-dimensional unstable spaces is conjugated to a linear automorphism of
Td .

On surface, any hyperbolic chain-recurrence class is described by one of the examples
of section 1.1.3. The general classification of Anosov systems or of higher-dimensional
hyperbolic chain-recurrence class is still unknown.

1.2. Partially hyperbolic dynamics. Partial hyperbolicity is a relaxed form of uniform
hyperbolicity which intends to address larger families of dynamics. A main goal of their
study consists in understanding how the properties of uniformly hyperbolic systems ex-
tends.

Definition 1.5. A partially hyperbolic set for f is a compact f -invariant set K whose tan-
gent bundle admits a splitting into three continuous vector subbundles TK M = E s ⊕E c ⊕
E u which satisfy:

– the splitting is dominated,
– E s is uniformly contracted, E u is uniformly expanded, one of them is non-trivial.

A splitting TK M = E1⊕E2⊕·· ·⊕Ek is dominated if each bundle is invariant and there exist
c > 0, λ ∈ (0,1) such that for any x ∈ K and any unit vectors u ∈ Ei , and v ∈ Ei+1,

∀n ≥ 0, ‖Dx f nu‖ ≤ cλn‖Dx f n v‖.

In analogy with the hyperbolic case, we will say that a diffeomorphism f is partially
hyperbolic if it admits a filtration U0 ⊂ U1 ⊂ ·· · ⊂ Um such that the maximal invariant
compact set in each set Ui \Ui−1 is partially hyperbolic. Notice that this allows the pres-
ence of sinks and sources, but only finitely many of them.

We now list some of the main problems and/or reasons for studying partially hyper-
bolic diffeomorphisms.

1.2.1. Partial hyperbolicity and homoclinic tangencies. Systems which do not admit any
dominated splitting or having an invariant tangent sub bundle which is neither con-
tracted, nor expanded become very delicate to be handled. Typically this occurs for dy-
namics near systems exhibiting homoclinic tangencies, i.e. having a hyperbolic periodic
point p such that W s(p) and W u(p) have a non-transverse intersection.

p

FIGURE 5. An homoclinic tangency.
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Exercise 6. Consider a diffeomorphism and chain-recurrence class C which contains a
hyperbolic periodic point exhibiting a homoclinic tangency. Prove that C is not hyper-
bolic and that TC M has no dominated splitting E ⊕F such that dim(Ep ) = dim(E s

p ).

For instance Newhouse has shown that near any surface diffeomorphism exhibiting an
homoclinic tangency, there exists an open set U of non-hyperbolic C 2-diffeomorphisms
and the systems in a dense subset of U have infinitely many sinks: it shows that ho-
moclinic tangencies generates dynamics with infinitely many chain-hyperbolic classes.
From the works initiated by Newhouse, Benedicks-Carleson,... one knows that the dy-
namics which occurs close to systems exhibiting some types of homoclinic tangencies
become much harder to describe.

Homoclinic tangencies do not appear near a system whose chain-recurrence classes
are partially hyperbolic and whose center bundle has a dominated splitting into one-
dimensional sub bundles. One may expect that these partially hyperbolic diffeomor-
phisms represent the natural world of systems that could be described by generalizing
technics developed for hyperbolic systems. For instance, as a major problem, one won-
ders if this partial hyperbolicity ensures (for typical systems) the finiteness of the chain-
recurrence classes (see [Bon, Conjecture 11] and Section 6 below).

The following result from [CSY, CPuS] shows that these two kinds of dynamics cover
the whole systems and settles partial hyperbolicity as a natural boundary for the space of
systems with low complexity.

Theorem 1.6 (Crovisier-Pujals-Sambarino-D. Yang). Any diffeomorphism may be approx-
imated in Diff1(M)(M) by one which:

– either is partially hyperbolic;
moreover there are at most finitely many sinks and sources and any other chain-
recurrence class has a partially hyperbolic dominated splitting TK M = E s ⊕E c

1 ⊕
·· ·⊕E c

k ⊕E u , where E s ,E u are non-trivial and the bundles E c
i are one-dimensional;

– or exhibits a homoclinic tangency.

In [Cr1] a technique to study the dynamics of partially hyperbolic sets with center bun-
dles of dimension one was introduced. The idea is to study the dynamics along the
center-direction as a skew product over the initial dynamics and profit from the one-
dimensionality to control the possible behavior; the technique is called centrer models.

In some cases, the study of centrer models allows to mimic the ideas in the proof of the
spectral decomposition in hyperbolic dynamics. However, there are some cases where
even with this understanding of the dynamics along the center is not enough to decide if
chain transitive sets which accumulate must be in the same chain-recurrence class and
more detailed study is needed. Unfortunately, we have not presented in this notes the
study of centrer models (although we hope to do it some day), but we can refer the reader
to [Cr2, Chapitre 9] for a presentation of this technique.

In section 6 we give a glimpse on some new techniques which allow in some cases to
obtain results in the direction of a spectral decomposition for partially hyperbolic quasi-
attractors.

1.2.2. Robust transitivity. It has been known since the work of Franks and Mañe ([Fr2,
Ma2]) that absence of a dominated splitting allows one to make a C 1-small perturbation
in order to change the index of the periodic points. An important application of this fact
describes C 1-robustly transitive diffeomorphism, i.e. diffeomorphisms such that any sys-
tem C 1-close has a dense orbit.
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Mañe ([Ma1, Ma2]) first devised that a C 1-robustly transitive diffeomorphism of a closed
surface has to be Anosov. Generalizations of this result to higher dimensions were then
found ([DPU, BDP, We, ABC]). Let us state a general version of this line of research.

Theorem 1.7 ([ABC]). There exists a Gδ-dense subset GV H of Diff1(M) such that if f ∈GV H

and C is a chain-recurrence class which is not a periodic sink, then the following dichotomy
holds:

• either C is accumulated by infinitely many periodic sinks, or,
• the tangent space TC M admits a dominated splitting of the form TC M = E ⊕ F

where the bundle F is volume-expanded.

Exercise 7. Show that if f is C 1-robustly transitive then it cannot be perturbed in order to
have periodic sinks or sources. Deduce that if f belongs to some dense Gδ set of diffeo-
morphisms and is C 1-robustly transitive diffeomorphism of M then f is volume partially
hyperbolic (i.e. it admits a dominated splitting T M = E v s ⊕E c ⊕E vu such that D f |E v s con-
tracts volume uniformly and D f |E vu expands volume uniformly). Show that in dimensión
3 this implies that f is partially hyperbolic.

In the conservative setting, an analogous statement has been proved in [BFP]: if f be-
longs to some dense Gδ subset of the space of C 1-diffeomorphisms and if the volume is
C 1-stably ergodic, then f is non-uniformly Anosov, i.e. there exists a dominated splitting
T M = E ⊕F such that for Lebesgue-almost every point x, any vector in E is exponentially
contracted in the future and any vector in F is exponentially contracted in the past. Pre-
cise definitions on this type of domination will appear in section 2. In any case, Theorem
1.7 highlights the importance of understanding partial hyperbolicity in order to under-
stand robust dynamical behavior.

1.2.3. Stable ergodicity. A major source of questions and problems in partially hyperbolic
dynamics comes from the study of stable ergodicity. The problem goes back to the semi-
nal works of Brin,Pesin, Pugh and Shub (see [BP, PSh2] and references therein). This has
been enhanced by the conjectures of Pugh and Shub suggesting that stable ergodicity is
open and dense among partially hyperbolic diffeomorphisms (see [PSh2]). This conjec-
ture is divided in two important subconjectures:

• accessibility is dense among partially hyperbolic diffeomorphisms (this will be
partially discussed in section 5),

• accessible partially hyperbolic diffeomorphisms are ergodic (the state of the art
on this problem is [BuW2]).

We remark here that recently, the full conjecture was established in the C 1-topology
[ACW]. We refer the reader to [BuPSW1, PSh2, RHRHU1, Wi2] for more detailed account
on the problem of stable ergodicity.

1.2.4. Natural examples. An important reason for studying partially hyperbolic diffeo-
morphisms is that they are quite ubiquitous and related to several different fields inside
and outside math. An incomplete, yet rather comprehensive presentation of examples
can be found in section 3 of this notes.

Let us nonetheless give a few natural examples in this introduction without entering
into details:

• Algebraic examples appear naturally when studying geometry, number theory,
etc. If one studies a structure preserving diffeomorphism of a homogeneous space,
then one expects that the derivative at each point behaves essentially the same.



10 S. CROVISIER AND R. POTRIE

Therefore, whenever there is one eigenvalues of modulus different from one, a
partially hyperbolic example will arise.

• The study of the geometry of negatively or non-positively curved spaces is quite
an active topic of research. Understanding the properties of the geodesic flow or
the frame flow might be important to understand the underlying geometry. Just
to cite a (quite surprising) example, recently the exponential mixing of the frame
flow on hyperbolic 3-manifolds was used to prove a long standing conjecture re-
garding the existence of surface groups as subgroups of the fundamental group of
a hyperbolic 3-manifold ([KM]).

• Skew-products appear “everywhere”. It is quite common to encounter situations
where the dynamics which models a given system is coupled and the “base dy-
namics” is hyperbolic. Partially hyperbolic systems sometimes serve as good mod-
els for fast-slow systems ([dSL])...

1.3. Objectives of the notes. Many works have been devoted to partially hyperbolic sys-
tems and we can only address few aspects of this subject. These notes mainly discuss
results towards a generalization of the spectral decomposition, i.e. the finiteness and the
robustness of the decomposition.

Complementary presentations may be found in [BDV, BuPSW1, CRHRHU, Cr3, HPe,
HPS, Pe, PSh2, RHRHU3, Wi2] were classifications, SRB/Gibbs states and stable ergodicity
are discussed.
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2. DEFINITIONS AND FIRST PROPERTIES

We consider M a closed connected d-dimensional Riemannian manifold and let T M
its tangent bundle. We also consider f in the space Diffr (M) of C r -diffeomorphisms en-
dowed with the C r -topology, r ≥ 1.

Notations. We denote by D f : T M → T M the derivative of f and by Dx f : Tx M → T f (x)M
the derivative at a point x.

For K ⊂ M one denotes TK M =⋃
x∈K Tx M ⊂ T M with the topology induced by the inclu-

sion. If Ex ⊂ Tx M is a subbundle of Tx M one denotes D f |Ex to the linear map D f |Ex :
Ex → Dx f (Ex ) which is the restriction of Dx f to Ex .

For a linear map L : V → W between normed vector spaces V , W , one defines ‖L‖ =
max{ ‖Lv‖

‖v‖ : v 6= 0} and m(L) = min{ ‖Lv‖
‖v‖ : v 6= 0}.

2.1. Dominated splittings. For K ⊂ M , a splitting of TK M = E1 ⊕ . . .⊕E` is a linear de-
composition Tx M = E1(x)⊕ . . .⊕E`(x) at each x ∈ K such that dimEi (x) does not depend
on x for any 1 ≤ i ≤ `.

If K ⊂ M is an f -invariant set (i.e. f (K ) = K ) then we say that a splitting TK M = E1 ⊕
. . .⊕E` is a dominated splitting iff:

• Invariance: The bundles are D f -invariant. This means that for every x ∈ K and
1 ≤ i ≤ ` one has Dx f (Ei (x)) = Ei ( f (x)).

• Domination: There exists constants c > 0 and λ ∈ (0,1) such that, for every 1 ≤ i ≤
`−1, for every x ∈ K and vectors u ∈ Ei (x) \ {0} and v ∈ Ei+1(x) \ {0} one has:

‖Dx f nu‖
‖u‖ ≤ cλn ‖Dx f n v‖

‖v‖ , ∀n ≥ 0 (2.1.1)

Domination can be also expressed by saying that for any x ∈ K and 1 ≤ i ≤ `−1 one has
that ‖D f n |Ei (x)‖ ≤ cλnm(D f n |Ei+1(x)).

Remark 2.1. (a) If `= 1 we say that the splitting is trivial. Sometimes, when one says
that an f -invariant subset admits a dominated splitting one implicitly assumes
that it is not trivial.

(b) One can replace condition (2.1.1) by asking for the existence of N > 0 such that
for any x ∈ K and vectors u ∈ Ei (x) \ {0} and v ∈ Ei+1(x) \ {0} one has:

‖Dx f N u‖
‖u‖ ≤ 1

2

‖Dx f N v‖
‖v‖ . (2.1.2)

In any case, in such a situation one says that Ei+1 dominates Ei and one someone
denotes this as E1 ⊕< . . .⊕< E` to emphasize the order of the domination.

(c) If one replaces the bundles Ei ,Ei+1 by their direct sum Ei ⊕Ei+1 the splitting re-
mains dominated.

Exercise 8. • Show that the definition of dominated splitting is independent of the
Riemannian metric in M (the constants may change with the change of the met-
ric).

• Show properties (b) and (c) of Remark 2.1.

If one fixes the dimensions of the bundles, then a dominated splitting must be unique.

Proposition 2.2 (Uniqueness). For f ∈ Diffr (M), if K ⊂ M is f -invariant and admits two
dominated splittings TK M = E ⊕F and TK M = G ⊕ H and dim(E(x)) ≤ dim(G(x)), then
E(x) ⊂G(x) for every x ∈ K . In particular, the splitting TK M = E⊕(F ∩G)⊕H is dominated.
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PROOF. For a vector u ∈ E(x) one decomposes u = uG +uH in a unique way where uG ∈
G(x) and uH ∈ H(x). Similarly, one can decompose uH = u′

E +u′
F with u′

E ∈ E(x) and
u′

F ∈ F (x). Notice that both u′
F must be zero since by domination one would get that

‖Dx f nu‖ would grow at the same speed as ‖Dx f nu′
F‖ which is impossible since u ∈ E(x).

Therefore, one deduces that uH ∈ E(x)∩H(x) and then uG ∈ E(x)∩G(x). Symmetrically
one deduces that if v ∈ G(x) is decomposed as v = vE + vF with vE ∈ E(x) and vF ∈ F (x)
one has vE ∈ E(x)∩G(x) and vF ∈ F (x)∩G(x).

Assume by contradiction that E(x) is not contained in G(x). One can choose u ∈ E(x)
such that uH 6= 0 is contained in (E(x)∩H(x))\{0}. Since dimE(x) ≤ dimG(x) and E(x),G(x)
do not coincide, one gets a non zero vector v ∈ F (x)∩G(x) by the same argument. Us-
ing the fact that H dominates G one deduces that ‖Dx f nu‖ grows faster than ‖Dx f n v‖
contradicting the fact that F dominates E .

�

Corollary 2.3. For any n 6= 0, a splitting TK M = E1⊕ . . .⊕E` is dominated for f if and only
if it is dominated for f n (with the order of the bundles reversed if n < 0).

PROOF. The only thing one must show is that if the splitting is dominated for f n (n > 1)
then it is invariant under D f . To see this, notice that the image of the splitting by D f is
still dominated for f n and therefore using uniqueness one gets the result.

�

Corollary 2.4 (Finest Dominated Splitting). For f ∈ Diffr (M) and K ⊂ M an f -invariant
subset, there exists a finest dominated splitting TK M = E1 ⊕ . . .⊕E` (with possibly ` = 1
when the splitting is trivial) such that every dominated splitting on K is obtained by con-
sidering the sum of some consecutive subbundles of this finest dominated splitting.

Exercise 9. Prove Corollary 2.4.

The following property is very useful since it allows one to check the domination prop-
erty considering a dense subset of the desired space. Indeed, dominated splitting allows
sometimes to extend the information one has on hyperbolic periodic points to its closure.

Proposition 2.5 (Continuity and extension to the closure). Let f ∈ Diffr (M) and K ⊂ M
an f -invariant set with a dominated splitting TK M = E1 ⊕ . . .⊕E`. Then, the bundles Ei

vary continuously with the point x ∈ K and the closure K of K admits a dominated splitting
which coincides with E1 ⊕ . . .⊕E` in K .

Continuity in this context means that when considering local coordinates so that the
tangent bundle becomes trivial, the bundles depend on the point continuously as sub-
spaces of Rd . Equivalently, the continuity can also be expressed by seeing the bundles as
sections of some Grassmanian bundle.

PROOF. It is enough to prove it for dominated splitting into 2 sub-bundles since any other
dominated splitting is obtained from this case by intersection.

Let TK M = E ⊕F be a dominated splitting. Let us consider a sequence (xn) in K con-
verging to x ∈ K and any limits E ′

x ,F ′
x of the spaces E(xn),F (xn).

By continuity of D f , for any u ∈ E ′
x \ {0} and v ∈ F ′

x \ {0}, the property (2.1.2) still holds,
proving that Tx M still decomposes as E ′

x ⊕F ′
x .

One may build an invariant splitting by replacing (or defining if x ∉ K ) each E( f n(x))
by Dx f n(E ′

x ) and the limit argument proves that it is still dominated. The uniqueness
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given by Proposition 2.2 implies that E ′
x = E(x). Hence E is continuous. Similarly, F is

continuous.

�

2.2. Cone-criterion. We adopt the convention that if V is a vector space, a cone C in V is
a subset such that there exists non-degenerate quadratic form QC such that

C = {v ∈V : QC (v) ≥ 0}

The interior of a cone is intC = {v ∈V : QC (v) > 0}∪ {0}.

A cone-field C on K ⊂ M is then a choice of a cone C (x) ⊂ Tx M for each point in M
such that in local charts the quadratic forms can be chosen in a continuous way and have
the same signature (d+,d−).

Equivalently, a cone-field C in K is given by:

• a (not necessarily invariant) splitting TK M = Ê ⊕ F̂ into continuous subbundles
wose fibers have dimension d− and d+ respectively,

• a continuous family of Riemannian norms ‖.‖ defined on TK M (not necessarily
the ones given by the underlying Riemannian metric).

In this setting, for x ∈ K , one associates

• the cone Cx = {v = vÊ + vF̂ ∈ Tx M , ‖vF̂‖ ≥ ‖vÊ‖},
• the dual cone C ∗

x = {v = vÊ + vF̂ ∈ Tx M , ‖vÊ‖ ≥ ‖vF̂‖},

The dimension dimC of the cone-field C is the dimension d+ of the bundle F̂ .

We say that a cone-field C defined in K is D f -contracted if there exists N > 0 such that
for every x ∈ K ∩·· ·∩ f −N (K ) one has that

Dx f N (Cx ) ⊂ intC f N (x)

(Equivalently, the dual cone field C ∗ is D f −1-contracted.)

Recall that the Perron-Frobenius Theorem1 in linear algebra states that if a linear map
A : V →V sends a cone C in its interior, then there is an invariant splitting V = E ⊕F with
dim(F ) = dim(C ) and the eigenvalues of A along F are larger than those along E . The
following result can be thought of as a fibered version of Perron-Frobenius Theorem.

Theorem 2.6 (Cone-field criterion). Let f ∈ Diffr (M), let K be an invariant compact set
and fix d+ ≥ 1. Then K is endowed with a D f -contracted cone-field C with dimension d+
if and only if there exists a dominated splitting TK M = E ⊕< F with d+ = dim(F ).

PROOF. One direction is easy: let us assume that TK = E ⊕ F is dominated. By Propo-
sition 2.5, the bundles E ,F are continuous. Equation 2.1.2 implies that the cone-field
defined by

Cx := {v = vE + vF ; ‖vF‖ ≥ ‖vE‖}

is D f -contracted. Obviously it has the same dimension as the fibers of F .

Let us now assume that C is a D f -contracted cone field on K . There exists N > 0 such
that Dx f N (Cx ) ⊂ intC f N (x) for any x ∈ K . Thanks to Corollary 2.3, we know that finding a

1Usually, Perron-Frobenius Theorem is stated for one-dimensional cones. However, by considering exte-
rior powers one can always reduce the general case to the one-dimensional one.
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dominated splitting for f N gives the same for f . In particular, we can assume that N = 1
without loss of generality.

Now, we consider the following subset of Tx M for any given x ∈ K .

V +
x = ⋂

n≥1
D f −n (x) f n(C f −n (x)) ⊂Cx

which defines a non-trivial subset of Tx M because it is a decreasing intersection of non-
trivial compact subsets (in the projective space). This set is cone-like in the sense that if
v ∈ V +

x then λv ∈ V +
x for every λ ∈ R. If follows from their definition that the subsets V +

x

are invariant in the sense that:

Dx f (V +
x ) =V +

f (x).

One defines symmetrically the subset V −
x using the dual cone-field and D f −1. One has,

for every x ∈ K that V +
x ∩V −

x = {0} and Tx M =V −
x +V +

x .

Claim. The sets V +
x and V −

x are transverse subspaces with dimensions d+ and d−.

Proof. We shall make use of the well known cross ratio (sometimes called the Hilbert met-
ric) and follow the proof given in [BG]. Given a two-dimensional vector space V with a
basis {e1,e2} there is a map Γe1,e2 :P(V ) →R∪ {∞} given by

Γe1,e2 (P(ae1 +be2)) = b

a

For a,b,c,d ∈R∪ {∞} one defines the cross ratio as:

[a,b,c,d ] = c −a

b −a

d −b

d − c

Let A be a linear transformation A : V →W where V and W are vector spaces with bases
{b1,b2} and {b′

1,b′
2} respectively. We still denote by A the induced action on the projective

spaces(A :P(V ) →P(W )). Therefore one gets a map Â :R∪ {∞} →R∪ {∞} defined by

Â(x) = Γb′
1,b′

2
AΓ−1

b1,b2
(x) = α22x +α21

α12x +α11

Where αi j are the coefficients of the matrix A in the aforementioned basis. A simple
computation (see Exercise 10) shows that Â preserves the cross ratio: if a,b,c,d ∈R∪ {∞}
then [a,b,c,d ] = [Â(a), Â(b), Â(c), Â(d)]. Consequently the cross ratio is defined on lines
of V independently from the choice of a basis. Below, we will sometimes denote [a,b,c,d ]
and [A(a), A(b), A(c), A(d)] when a,b,c,d ∈V \{0} instead of R∪{∞} by abuse of notation.

Exercise 10. Show that linear maps preserve the cross ratio. (Hint: Decompose the trans-
formation as one does with Möbius transformations and see that each part of the decom-
position preserves the cross ratio.)

Let us suppose then that V +
x is not a subspace. This means that there exists a plane

V ∈ Tx M whose intersection with ∂Cx is not a linear space: in the projective space, it is a
closed interval bounded by two lines generated by some vectors v, w ∈V \ {0}.

By definition of V +
x this implies that there are vectors vn → v and wn → w in V such

that vn ∈ D f n(∂C f −n (x)) and wn ∈ D f n(∂C f −n (x)).

One deduces that [vn , vn+1, wn , wn+1] →∞ and therefore
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[D f −n vn ,D f −n vn+1,D f −n wn ,D f −n wn+1] →∞
Notice that vectors D f −n vn and D f −n wn belong to ∂C f −n (x) while the vectors D f −n vn+1

and D f −n wn+1 belong to D f (C f −n−1(x)). Since K is compact and D f (C ) ⊂ intC , we know
that the angle between ∂C f −n (x) and D f (C f −n−1(x)) is uniformly bounded independently
of n. This implies that the cross-ratio cannot diverge and gives a contradiction. Hence
V +

x (and similarly V −
x ) is a subspace.

Taking limits of subspaces contained in D f n(C f −n (x)) one know that dim(V +
x ) ≥ dimC =

d+ and similarly dim(V −
x ) ≥ dimC ∗ = d−. Since V +

x ∩V −
x = {0}, one deduces Tx M =

V −
x ⊕V +

x . �

Now, to show that domination is verified in this invariant splitting, it is enough to check
condition (2.1.2). By compactness, for a vector outside a small cone field around V −

x , the
number of iterates needed to belong to C is uniformly bounded (see exercise 11). Let us
consider two unit vectors u ∈ V −

x , and v ∈ V +
x . The sum u + v does not belong to a small

cone around V −
x . Hence, there exists a uniform m ≥ 1 such that D f m(x).(u + v) belongs

to a small cone around V +
f m (x): This implies that ‖D f m(x).v‖ is larger than 1

2‖D f m(x).u‖
as required.

�

For proving a consequence of the cone-file criterion, we shall need the following result
from differential geometry.

Proposition 2.7. Any continuous linear bundle E ⊂ TK M over a compact set K ⊂ M admits
a continuous extension to a neighborhood of K .

PROOF. Let us denote d = dim(M) and k the dimension of the spaces E(x). For each point
x ∈ K , one can choose a chartψ : U →Rd defined on a neighborhood of x such thatψ∗(E)
is transverse to {0}×Rd−k .

One can thus find a continuous family of linear maps Lz : Rk →Rd−k for z ∈ K ∩U such
that ψ∗(Ez ) is the graph of Lz for each z. One can extend continuously Lz to U (up to
reduce U if necessary) by extending each of its coordinate.

Let us choose a finite number of charts ψi : Ui → Rd and of compact sets Ki ⊂ Ui ∩K
whose union cover K and of continuous maps Li : Ui → L(Rk ,Rd−k ) whose graphs extend
the bundle E on K ∩Ui . We will prove inductively that one can extend E on a neigh-
borhood of K1 ∪ ·· · ∪Kn . On U1, neighborhood of K1, we already have extended E . Let
us assume that E has been extended on a neighborhood V of K1 ∪ ·· · ∪Kn as a bundle
E ′. Reducing V if necessary, the space ψn+1 ∗E ′

x for x ∈ V ∩Un+1 is the graph of a linear
map L′

x ∈ L(Rk ,Rd−k ). Let us consider a continuous function ϕV : [0,1] which equals 1 on
a neighborhood of K1 ∪ ·· ·∪Kn and 0 near the boundary of V , and another continuous
functionϕn+1 : [0,1] which equals 1 on Kn+1 and 0 near the boundary of Un+1, We extend
E on Un+1 as E ′′ such that E ′′

x for x ∈Un+1 is the graph of

(ϕn+1(x)+ϕV (x))−1 × (ϕn+1(x)Lx +ϕV (x)L′
x ).

It is continuous, coincides with E at points of K ∩Vn+1, We define E ′′ = E ′ on a neighbor-
hood of K1 ∪ ·· · ∪Kn \Un+1. By construction E ′′ is continuous. We have thus extended
continuously E on a neighborhood of K1 ∪·· ·∪Kn+1 as required.

�

Now we prove the robustness of the domination.



16 S. CROVISIER AND R. POTRIE

Corollary 2.8. Let K be a compact set invariant by a diffeomorphism f with a dominated
splitting TK M = E1⊕·· ·⊕E`. Then, there exists a neighborhood U of K and a neighborhood
U of f in Diff1(M) such that any invariant compact set K ′ ⊂ U for any diffeomorphism
g ∈U has also a dominated splitting TK M = E ′

1 ⊕·· ·⊕E ′
`

, with dim(E ′
i ) = dim(Ei ).

Moreover the splitting at a point x for a diffeomorphism g depends continuously on
(x, g ).

PROOF. It is enough to prove it for two bundles: TK M = E ⊕F . By Proposition 2.5, these
bundles are continuous. Let us consider a (non-invariant) continuous extension Ê ⊕ F̂ of
the splitting E ⊕F to a neighborhood Û of K , as given by Proposition 2.7. Considers N > 0
as in equation 2.1.2: by continuity, this condition still holds for the extended bundles.
This implies that the cone-field defined by

Cx := {v = vÊ + vF̂ ; ‖vF̂‖ ≥ ‖vÊ‖}

is Dg -contracted in a possibly smaller neighborhood U of K for any diffeomorphism g
that is C 1-close to f .

The cone field criterion is thus satisfied by g and g -invariant compact sets contained
in U has a dominated splitting with the same dimensions as E ⊕F .

To obtain continuity, notice that given ε> 0 there exists N > 0 such that for every point
x ∈ ⋂N

i=−N f i (U ) one can consider the cone-field D f N (C ) which is as narrow as one de-
sires and contains F . Choosing g sufficiently C 1-close to f the same property holds, the
cone-field is still D f -contracted and therefore the bundle F for g must also be contained
in D f N (C ).

�

Exercise 11. Let us assume thatλ := maxx∈K
{‖D f |E(x)‖ / m(D f |F (x))

}
is smaller than one.

Prove that spaces in Tx M close to F (x) get closer by iterations.

If F1,F2 are close to Fx , they are graphs of linear maps L1,L2 : Fx → Ex and their distance
may be defined as d(F1,F2) := ‖L2 −L2‖. Prove that d(D f (F1),D f (F2)) <λd(F1,F2).

2.3. Uniform bundles. A D f -invariant sub-bundle E ⊂ TK M on K is uniformly contracted
by D f if and only if there exist c > 0 and λ ∈ (0,1) such that for any x ∈ K and u ∈ E(x),

∀n ≥ 0, ‖Dx f nu‖ ≤ cλn‖u‖ (2.3.1)

Similarly, the bundle is uniformly expanded if there exist c > 0 and λ ∈ (0,1) such that
for any x ∈ K and u ∈ E(x),

∀n < 0, ‖Dx f nu‖ ≤ cλn‖u‖ (2.3.2)

As in the dominated case, one has equivalent definitions.

Exercise 12. A bundle E is uniformly contracted (resp. uniformly expanded) if there exists
N ≥ 1 (resp. N ≤−1) such that for x ∈ K , u ∈ E(x),

‖Dx f nu‖ ≤ 1

2
‖u‖

Exercise 13. Show that the definition of uniformly contracted bundle is independent of
the Riemannian metric. Show that there always exists an adapted norm, i.e. such that one
has condition (2.3.1) with c = 1.
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2.4. Adapted metrics. In some situations it is comfortable to work with metrics on which
one can see the domination in only one iterate. In some occasions, it is enough to work
with an iterate, but sometimes it is better if one can do this for the diffeomorphism itself.

Definition 2.9. A Riemannian metric is adapted to a dominated splitting TK M = E1⊕·· ·⊕
E` if one can choose c = 1 in equation (2.1.1).

A Riemannian metric is adapted to a D f -uniformly contracted sub-bundle E ⊂ TK M if if
one can choose c = 1 in equation (2.3.1).

Theorem 2.10 (Gourmelon [Gou1]). For any f -invariant compact set endowed with a
dominated splitting TK M = E1⊕·· ·⊕E`, there exists a smooth Riemannian metric ‖.‖which
is adapted to the dominated splitting and to any D f -uniformly contracted sub bundle and
to any D f −1-uniformly contracted sub bundle.

PROOF. Let us consider a dominated splitting TK M = E ⊕F . These bundles can be ex-
tended continuously to a small neighborhood U of K (but they are not invariant, see
Proposition 2.7). We choose N ≥ 1 large enough (and U small enough) so that

‖D f N |E(x)‖ < 1

2
m(D f N |F (x))

This allows us to construct a function r : U →R such that for every x ∈U :

‖D f N |E(x)‖1/N < r (x) < m(D f N |F (x))
1/N

Denote Rn(x) = ∏n−1
i=0 r ( f i (x)). Note that ‖D f n |E(x)‖

Rn (x) as well as Rn (x)
m(D f n |F (x))

converge expo-
nentially to 0 as n →+∞ for every x ∈ K (see Lemma 2.12 below).

Therefore, for each u ∈ E(x) \ {0} one can set

‖u‖2
E =

+∞∑
n=0

‖Dx f nu‖2

Rn(x)2

which is well defined. One can then compute:

‖Dx f u‖2
E = r (x)2 (‖u‖2

E −‖u‖2)< r (x)2‖u‖2
E

A symmetric argument provides a metric ‖ ·‖F in F (x) such that for v ∈ F (x) \ {0}:

‖Dx f v‖F > r (x)‖v‖F .

Let ‖.‖′ be the (continuous) metric which coincides with ‖.‖E on E and with ‖.‖F on F
and which makes the bundles E and F orthogonal. This gives

‖Dx f v‖′
‖v‖′ > r (x) > ‖Dx f u‖′

‖u‖′
and by compactness, there exists λ ∈ (0,1) such that the desired condition holds:

‖Dx f u‖′
‖u‖′ ≤λ‖Dx f v‖′

‖v‖′ .

The metrics ‖.‖ and ‖.‖′ can be glued together outside a neighborhood of K (as a barycen-
ter). Any smooth metric close to the obtained metric is adapted to the splitting.

Finally, let us notice that if, for instance, the bundle E admits a finer splitting E = E1 ⊕
E2 and if the initial metric ‖.‖ was adapted to this splitting, then the new metric is still
adapted to this splitting (since it is obtained by averaging the iterates of the initial metric).
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Similarly if E1 is uniformly contracted and ‖.‖ is adapted to this bundle, then the new
metric is also adapted to the contraction of E1.

Let us now consider a dominated splitting TK M = E ⊕F such that E is uniformly con-
tracted (the case F is uniformly expanded is similar).

If the bundle E is contracted, one chooses N large enough such that ‖D f N |E(x)‖ < 1
2 .

One deduces that ‖Dx f u‖′ ≤ 2−1/N‖u‖′, hence the new metric is adapted to the con-
tracted bundle E . Similarly it is adapted to F if D f −1 contracts F .

One can thus obtain a metric adapted to the finest dominated splitting by applying
inductively the process above to the different decompositions into two bundles.

�

Remark 2.11. Instead of constructing a unique function r one could have constructed
functions r1,r2 such that r1 < 1

2 r2:

‖D f N |E(x)‖1/N < r1(x) < r2(x) < m(D f N |F (x))
1/N .

This allows one to estimate the value of λ in about 2−1/N .

We end this section by proving the following lemma which we used in the proof of the
previous theorem.

Lemma 2.12. With the notations of the proof of Theorem 2.10 one has that ‖D f n |E(x)‖
Rn (x) as

well as Rn (x)
m(D f n |F (x))

converge exponentially to 0 as n →+∞ for every x ∈ K .

PROOF. We prove ‖D f n |E(x)‖
Rn (x) → 0 exponentially as the other result is analogous. One chooses

q ≥ 0 such that for any 0 ≤ i ≤ N−1 one can write n = i+qN+`with 0 ≤ `≤ 2N−1. Hence:

‖D f n |E(x)‖ ≤ ‖D f `|E( f qN+i (x))‖
(

q−1∏
j=0

‖D f N |E( f j N+i (x))‖
)
‖D f i |E(x)‖.

By compactness one knows that there is c > 0 such that ‖D f j |E(y)‖ ≤ c and r (y)c > 1 for
any 0 ≤ j ≤ N −1 and y ∈ K . Therefore, for every 0 ≤ i ≤ N −1 one gets

‖D f n |E(x)‖ ≤ c2

(
q−1∏
j=0

‖D f N |E( f j N+i (x))‖
)

. (2.4.1)

Notice that by the definition of r and compactness of K there exists λ ∈ (0,1) such that
r (y)N ≥λ‖D f N |E(y)‖ so:

N−1∏
i=0

(
q−1∏
j=0

‖D f N |E( f j N+i (x))‖
)
≤λqN RqN (x)N ≤ (c/λ)2NλnRn(x)N . (2.4.2)

Putting equations (2.4.1) and (2.4.2) together one obtains:

‖D f n |E(x)‖
Rn(x)

≤ c4

λ2λ
n/N

as desired.

�
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2.5. Partial hyperbolicity. We shall define the notion of partial hyperbolicity which is
the center of these notes.

Definition 2.13. A splitting TK M = E1 ⊕ ·· ·⊕E` is partially hyperbolic if it is dominated
and either E1 is uniformly contracted by D f or E` is uniformly contracted by D f −1. An

invariant set K is partially hyperbolic if it admits a partially hyperbolic splitting.

In a similar way as for dominated splittings, the following properties are verified:

Exercise 14. Show that:

(a) The definition is independent of the metric.
(b) A set K is partially hyperbolic for f if and only if it is partially hyperbolic for f n ,

n 6= 0.
(c) The partial hyperbolicity is robust: it is satisfied for the invariant sets in a neigh-

borhood of K for the diffeomorphisms C 1-close to f .

Notation and terminology. To emphasize the uniform contraction we will denote the
dominated splitting as

T M = E s ⊕E c
1 ⊕·· ·⊕E c

`⊕E u .

The bundles E s and E u are the stable and unstable bundles. The bundles E c
i are the center

bundles. Since the dominated splitting is not unique in general, there may exist different
partially hyperbolic splittings. The bundles E s and E u are also sometimes called strong
stable and strong unstable bundles and denoted E ss and E uu (or E su) to distinguish them
from stable/unstable bundles with larger dimensions.

Remark 2.14. a) When the center bundles are degenerate the set K is hyperbolic.

b) Variants: Sometimes one may ask for both extremal bundles to be uniform. We shall
call that notion strong partial hyperbolicity.

Sometimes an even stronger form of partial hyperbolicity is considered (called absolute
partial hyperbolicity). It requires the existence of constants λ1 < µ1 < ·· · < λ` < µ` such
that for each x ∈ K and each vectors ui ∈ Ei ,x , one has λi‖ui‖ < ‖Dx f ui‖ ≤µi‖ui‖.

c) Volume partial hyperbolicity: Under some robust dynamical conditions, the follow-
ing variant appears naturally as the first obstruction to the coexistence of infinitely many
sinks or sources. We say that a set K is volume partially hyperbolic if its finest dominated
splitting TK M = E1 ⊕ . . .⊕E` verifies that E1 is volume contracting and E` is volume ex-
panding. Volume contraction (resp. expansion) means that the jacobian Jac(Dx f n |E1 ) of
Dx f n along E1 is uniformly contracted (resp. expanded): there exist c > 0 and λ ∈ (0,1)
such that |Jac(Dx f n |E1 )| < cλn (resp. > cλ−n).

One then defines:

Definition 2.15. A diffeomorphism f is globally partially hyperbolic if the whole manifold
M admits a partially hyperbolic splitting for f . Similarly, f is globally strongly partially
hyperbolic if the whole manifold is a strongly partially hyperbolic set.

Remark 2.16. As in the introduction, any diffeomorphism admitting a filtration U0 ⊂ ·· · ⊂
Um such that for each i = 1, . . . ,m, the maximal invariant compact set

⋂
n∈Z f n(Ui \Ui−1)

is partially hyperbolic will be called partially hyperbolic.

Exercise 15. (1) Show that if a partially hyperbolic set K has a splitting TK M = E s ⊕
E c ⊕E u but E c and E u are {0} then K is a finite union of periodic sinks.
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(2) Show that if f is a partially hyperbolic diffeomorphism (with the definition given
in Remark 2.16) then it has finitely many sinks and sources.

2.6. Appendix: Dominated splitting and non-uniform hyperbolicity. Another way to
relax the uniform hyperbolicity is to introduce a measurable notion (called non-uniform
hyperbolicity). At the end of this section we describe some interactions between domi-
nated splitting and non-uniform hyperbolicity.

Invariant ergodic measures can be thought of as a generalization of periodic orbits.

Theorem 2.17 (Oseledets). Let f : M → M be a C 1-diffeomorphism and µ an ergodic mea-
sure. Then, there exists k ∈ Z+, real numbers χ1 < χ2 < . . . < χk and for x in a f -invariant
full measure set Rµ( f ) a splitting Tx M = E1(x)⊕ . . .⊕Ek (x) with the following properties:

• (Measurability) The functions x 7→ Ei (x) are measurable.
• (Invariance) Dx f (Ei (x)) = Ei ( f (x)) for every x ∈ Rµ( f ).
• (Lyapunov exponents) For every x ∈ Rµ( f ) and v ∈ Ei (x) \ {0} one has

lim
n→±∞

1

n
log‖Dx f n v‖ =χi

• (Subexponential angles) For every x ∈ Rµ( f ) and vectors vi ∈ Ei (x) and v j ∈ E j (x)
one has that:

lim
n→±∞

1

n
logsin]

(
Dx f n vi

‖Dx f n vi‖
,

Dx f n v j

‖Dx f n v j‖
)
= 0

Some explainations are in order:

Lyapunov exponents. The numbers χi appearing in the statement of Theorem 2.17 are
usually called Lyapunov exponents of µ.

In general, for any diffeomorphism f a point x ∈ M is called regular (or Lyapunov regu-
lar) if there exists a splitting Tx M = E1(x)⊕. . .⊕Ek(x)(x) and numbers χ1(x) <χ2(x) < . . . <
χk(x)(x) such that for any vector v ∈ Ei \ {0} one has

lim
n→±∞

1

n
log‖Dx f n v‖ =χi (x).

Exercise 16. Show that if x ∈ M is a regular point and v ∈⊕i
j=1 E j (x) \

⊕i−1
j=1 E j (x) then

lim
n→+∞

1

n
log‖Dx f n v‖ =χi (x).

In particular, every regular point verifies that every vector has a well defined Lyapunov
exponent for the future (and the past). The bundles Ei are the sets on which both coin-
cide.

The set of regular points R( f ) is f -invariant and Oseledets theorem implies that it has
measure 1 for every f -invariant probability measure. It also holds that all the involved
functions are measurable on R( f ) which is a measurable set.

Notice that every periodic point has positive measure for an invariant measure (namely
the one that gives equal weight to each point in the orbit) and therefore must be regular.
Of course, one does not need Oseledets theorem to prove this. Notice that if f n(p) = p,
then the Lyapunov exponents of p are the logarithms of the modulus of the eigenvalues
of Dp f n divided by n.
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The non-uniformly hyperbolic set of f is the set of regular points for which all Lyapunov
exponents are different from 0, that is, the set of points x ∈ R( f ) such that χi (x) 6= 0 for
all 1 ≤ i ≤ k(x). A measure µ is called (non-uniformly) hyperbolic if all its Lyapunov ex-
ponents are non-zero. One should be careful with this name, the non applies to the uni-
formity and not to the hyperbolicity and it should be understood as “not necessarily uni-
formly hyperbolic but still with a non-uniform form of hyperbolicity”.

Consider an ergodic (non-uniformly) hyperbolic measure µ for which one has Lya-
punov exponents χ1 < . . . < χi < 0 < χi+1 < . . . < χk one can group the bundles depending
on the sign of the Lyapunov exponent. In this case, we denote E s(x) = E1(x)⊕ . . .⊕Ei (x)
and E u(x) = Ei+1(x)⊕ . . .⊕Ek (x). Note that if v s ∈ E s(x) \ {0} and vu ∈ E u(x) then:

lim
n→∞

1

n
log‖Dx f n v s‖ < 0 < lim

n→∞
1

n
log‖Dx f n vu‖

So that vectors in E s(x) are the ones which are exponentially contracted in the future
by D f and vectors in E u are exponentially contracted in the past by D f .

Angles and measurability. We remark that, differently from the case of periodic orbits, the
concept of norm and angle are essential in this setting as they provide a way to compare
vectors which do not belong to the same vector space. However:

Exercise 17. The values of the Lyapunov exponents are independent of the choice of the
Riemannian metric in T M .

The Riemannian metric also provides a way to compute angles between vectors and
this is the sense one has to give to the last part of the statement of Theorem 2.17. It is
possible to show that this last part is a consequence of the rest, but it is so important that
it merits to appear explicitly in the statement.

Another relevant comment is about the notion of measurability of the functions x 7→
Ei (x). This should be understood in the following way: the arrow defines a function from
M to the space of subspaces of T M . This can be thought of as a fiber bundle over M in
the following way, for a given j ≤ d = dim M one considers G j (M) to be the fiber bundle
over M such that the fiber in each point is the Grasmannian space of Tx M of subspaces
of dimension j . This is well known to have a manifold structure and provide a fiber bun-
dle structure over M(2). This gives a sense to measurable maps from M to some of these
Grasmannian bundles, and since one does not a priori require that the bundles have con-
stant dimension one can think of the function Ei to be a function from M to the union
of all these bundles and then the measurability of the function makes sense as both the
domain and the target of the function are topological spaces.

Non-ergodic measures. There is a statement for non-ergodic measures which is very much
like the one we stated but for which the constants k andχi become functions of the points
and some other parts become more tedious. Look [KH, Supplement] or [Ma4, Chapter
IV.10] for more information and proofs of this result.

Relationship with dominations. We propose the following:

Exercise 18. Let f : M → M be a C 1-diffeomorphism, K ⊂ M a compact invariant set and
TK M = E ⊕F a continuous D f -invariant splitting.

(a) Show that if µ is an ergodic measure which has simple spectrum (i.e. all Lyapunov
exponents have multiplicity one), then the Oseledet’s splitting respects E ⊕F (i.e.
every bundle is contained either on E or F ).

2For example, if j = 1 this is the projective bundle over M .
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(b) Show that E is uniformly contracted if and only if for every ergodic measure µ
supported on K , the largest Lyapunov exponent of µ along E is negative.

(c) Show that E ⊕F is dominated if and only if for every ergodic µ supported on K ,
the smallest Lyapunov exponent of µ along F is strictly larger than the largest Lya-
punov exponent of µ along E .

(d) Show that E is uniformly volume contracted if and only if for every ergodic µ sup-
ported on K , the sum of the Lyapunov exponents of µ along E is negative.



INTRODUCTION TO PARTIALLY HYPERBOLIC DYNAMICS 23

3. EXAMPLES

This section will present several examples of partially hyperbolic dynamics. It also
serves as a way to show how partially hyperbolic dynamics arise in different areas of
mathematics.

We recall that we are adopting the weak notion of partial hyperbolicity by assuming that
there exists a filtration and such that every set of the filtration admits a partially hyper-
bolic splitting. However, many of the examples we shall present posses the much stronger
property of being globally partially hyperbolic. We will also present local examples, by
this we mean compact invariant sets admitting a partially hyperbolic splitting (without
checking if it is possible to extend this to a filtration in a manifold).

Global partial hyperbolicity imposes (or at least one expects to impose) strong restric-
tions on the topology of the manifold and isotopy class in which one works. Local con-
structions can usually be embedded in every isotopy class of any manifold. The under-
standing of this mechanisms is not well understood, even for hyperbolic dynamics, and
we therefore do not attempt here to present this kind of problems in detail (see [Fr3] for
the study of topological restrictions of hyperbolic dynamics).

Before we start giving a partial list of examples, let us mention that, being a robust
property, all C 1-perturbations of our examples will also be examples of partially hyper-
bolic dynamics. In contrast with the hyperbolic setting, where perturbations are, up to
topological change or coordinates, the same examples, in the partially hyperbolic setting,
small perturbations might provide examples with quite different dynamical properties
(even if the amount of hyperbolicity required for partial hyperbolicity will allow us to
show later that some properties do persist after perturbation).

3.1. Algebraic examples. By algebraic example we mean an example which arises via
an algebraic construction. Typically, one looks for diffeomorphisms of Lie groups which
preserve some algebraic structure and such that they descend to some compact quotient.

There are at least two kind of algebraic examples. Those arising from automorphisms
of the group, and those arising from translations. Combining them, one obtains what it
is sometimes called affine examples. We first explain the philosophy behind this type of
construction and then present some concrete examples.

Let us first consider those examples arising from automorphisms of a Lie group. Con-
sider a Lie group G (with associated Lie algebra g ' TeG) which admits a compact quo-
tient G/Γ by a closed subgroup Γ < G (typically a cocompact lattice) and an automor-
phism ϕ : G →G with the following two properties:

• It preserves Γ, i.e. ϕ(Γ) ⊂ Γ and ϕ−1(Γ) ⊂ Γ.
• Its induced tangent map Φ := Deϕ (which can be seen as a Lie algebra automor-

phism Φ : g→ g) is a partially hyperbolic linear map (i.e. it has at least one eigen-
value larger than 1 not contained in the Lie algebra3 of Γ).

Notice that in many situations one can choose an invariant volume form which will be
preserved by ϕ.

Now we present the candidate translations for examples of partially hyperbolic diffeo-
morphisms.

A typical Lie group G admits a one-sided invariant metric. We shall chose a right in-
variant one obtained by choosing a metric 〈·, ·〉 on g = TeG and transporting it by right

3In the most relevant case where Γ is discrete, its Lie algebra is trivial.
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translations. In general, this metric will not be invariant under left translations, but there
are many situations where one knows that the volume form defined by the metric is in-
variant4 under left translations (these are called unipotent Lie groups). All the examples
below have this property. The fact that the metric is not necessarily invariant under left
translations is a good thing in our search for partially hyperbolic examples since it means
that a left translation is a candidate for a partially hyperbolic element (if left translations
were isometries there would be no hope that this happens).

Choose again a closed subgroup Γ<G such that G/Γ is compact and an element g ∈G .
The map Lg : G →G defined as x 7→ g · x is a diffeomorphism and preserves co-classes of
Γ, this is, Lg (xΓ) = g · xΓ= g xΓ and thus induces a diffeomorphism `g of G/Γ.

To see if it is partially hyperbolic, one can look at the derivative of Lg , but for doing this
it is natural to look at the action in the Lie algebra. So, using the fact that right translations
are isometries, one can look at the linear map in the tangent space of the identity given by
v 7→ Dg Rg−1 ◦De Lg v (which is a linear automorphism of g), sometimes called the adjoint

map5 and denoted as Ad(g ) : g→ g.

It follows that if Ad(g ) is partially hyperbolic then Lg defines a partially hyperbolic dif-
feomorphism on G/Γ. Indeed, if g1 ⊕g2 is an invariant splitting under Ad(g ) where the
eigenvalues of Ad(g ) along g1 are strictly smaller than those of Ad(g ) along g2 then one
can transport the subspaces gi by right translations to all points in G/Γ and this will be
an invariant splitting for DLg . Moreover, since the right translations are isometries of the
chosen metric, the contractions and expansions seen by Ad(g ) will be seen in every point
in the same way.

Both examples can be included in a more general family, that of affine maps. This are
diffeomorphisms f : G/Γ → G/Γ whose lift f̃ to G is of the form f̃ = Lg ◦ϕ where ϕ is an
automorphism and Lg is a left translation. The condition is now that Ad(g )◦Φ is partially
hyperbolic.

Notice that in general, if Ψ : g→ g is a Lie algebra automorphism, its eigenspaces need
not be Lie subalgebras. However:

Exercise 19. Show that the subspace corresponding to eigenvalues of modulus larger
than one (resp. smaller than one, one, larger or equal to one, smaller or equal to one)
form a subalgebra of g. Show that the smallest subalgebra containing the eigenspaces
corresponding to eigenvalues of modulus different from one forms an ideal6 of g.

It is also interesting to remark that algebraic examples constructed this way are always
absolutely partially hyperbolic.

In this subsection we shall produce some instances of this method to show both that
several interesting examples appear this way, but also that verifying both conditions (par-
tial hyperbolicity of the linear map, and preservation of the lattice) is not automatic and
several difficulties arise. The study of algebraic examples alone comprises a large research
topic which we do not attempt to survey completely as we present them only to have con-
crete examples of partially hyperbolic diffeomorphisms (see [KSS] and references therein
for a more detailed account on homogeneous dynamics).

4This is always the case when there exists a cocompact lattice.
5It is the derivative of the automorphism of G induced by conjugation by g .
6This is important in the study of accessibility, mainly when one works with simple Lie algebras where

the unique ideals are the whole Lie algebra.
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3.1.1. Torus automorphisms. The simplest construction is obtained by considering an el-
ement A ∈ SL(d ,Z): it induces a diffeomorphism f A on Td . The diffeomorphism is par-
tially hyperbolic if A has at least least one eigenvalue smaller than 1 in modulus (which
automatically implies that there is one eigenvalue larger than 1 in modulus and therefore
f A is strongly partially hyperbolic).

For instance the following has two complex eigenvalues of modulus one and two real
eigenvalues different from ±1.

A =


0 0 0 −1
1 0 0 8
0 1 0 −6
0 0 1 8


This family of examples includes Anosov diffeomorphisms of tori, which are the ones

for which there is no eigenvalue of modulus one. This examples can usually be seen as
partially hyperbolic in many different ways according on how one chooses to group the
eigenvalues and their respective eigenspaces.

In dimension 3, there are several possibilities which by algebraic reasons can be divided
in the following cases:

• There is an eigenvalue of modulus one. In this case, this eigenvalue is unique
and real (it is ±1) and it follows that f A preserves a foliation by compact circles
corresponding to the projection of the eigenspace associated to this eigenvalue.
The action of f A in such circles is an isometry and this corresponds to the center
direction.

• There are three different real eigenvalues all of them of modulus different from 1.
In this case, one can see f A as strongly partially hyperbolic in two different ways:
One can consider that f A has no center direction, or one can consider the middle
eigenvalue as the center direction.

• There are two complex conjugate eigenvalues. In this case, f can only be regarded
as strongly partially hyperbolic by considering the center direction to be trivial.

The possible ways to see the diffeomorphisms of the type f A as strongly partially hyper-
bolic grow as one increases the dimension. The same happens if one allows to consider
partially hyperbolic splittings in general (not necessarily strong).

We end this description by noticing that translations in Td are isometries so that one
can compose f A with any translation to obtain an affine diffeomorphism which will also
be partially hyperbolic.

3.1.2. Nilmanifolds. A generalization of the previous family of examples is to work in nil-
manifolds, which can be seen as a generalization of tori from the point of view of Lie
groups. Indeed, tori are compact quotients of simply connected abelian Lie groups and
nilmanifolds are, by definition, compact quotients of nilpotent Lie groups.

The first important reason to consider this examples is the following result from Lie
algebra theory which we shall not prove:

Proposition 3.1. Let g be a Lie algebra and Φ : g→ g a linear Lie algebra automorphism
such that Φ has no eigenvalues which are roots of unity. Then, g is nilpotent.

Just to give a taste of the idea, consider eigenvectors x and y with eigenvalues λ and µ
respectively, then [x, y] is also an eigenvector, and if it is non-zero, then its eigenvalue is
λµ. One deduces that ad(x)k y is either zero or an eigenvector of eigenvalue λkµ. Since
λ is not a root of unity, one deduces that eventually ad(x)k y vanishes. This implies that
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for every eigenvector ad(x) is nilpotent. We refer the reader to [Sm, Section I.3] and refer-
ences therein for more details on this. This proposition shows that in order to construct
algebraic Anosov diffeomorphisms, the only hope is to work in nilmanifolds.

Borel-Smale examples (presented in [Sm, Section I.3] along with an account on how
they were concieved) are examples of algebraic Anosov diffemorphisms in nilmanifolds.
We refer the reader to [BuW] (and references therein) for a clear and detailed account on
this examples. Borel-Smale examples live in 6-dimensional nilmanifolds. There is by now
a good understanding of which nilpotent groups admit hyperbolic automorphisms which
descend to compact quotients in low dimensions (up to dimension 8), but the general
problem remains wide open, see [LW].

Here, we will present an easier set of examples, not of Anosov but of partially hyperbolic
examples, which can be constructed in 3-dimensional nilmanifolds.

Exercise 20. Show that the only 3-dimensional nilpotent Lie algebras that admits hyper-
bolic automorphisms preserving a cocompact lattice is R3.

Consider H to be the Heissenberg group, this is, the group of 3×3-matrices of the form:

H :=


 1 x z
0 1 y
0 0 1

 : x, y, z ∈R


It is easy to check that it is closed under matrix products and therefore it is a Lie group
(seen as a subgroup of SL(3,R)). Its Lie algebra h is generated by the following three ma-
trices:

X =
 0 1 0

0 0 0
0 0 0

 , Y =
 0 0 0

0 0 1
0 0 0

 , Z =
 0 0 1

0 0 0
0 0 0


and as it can be easily checked one has that the only non-trivial bracket relation is [X ,Y ] =
X Y −Y X = Z .

Consider the lattice Hk :

Hk =


 1 x z
0 1 y
0 0 1

 : x, y ∈Z , z ∈ 1

k
Z

 .

Exercise 21. (1) Show that Hk is a subgroup of H but it is not normal.
(2) Show that Nk =H /Hk is compact.
(3) Show that Nk is a circle bundle over the torus whose Euler number is k.

To have an example of a partially hyperbolic diffeomorphism of N we need a partially
hyperbolic Lie algebra automorphism which induces an automorphism of H and pre-
serves some lattice Hk . This is provided (for example) by the following automorphism:

(x, y, z) 7→ (2x + y, x + y, z +x2 + y2

2
+x y)

which clearly preserves H2.

Exercise 22. Show that the automorphism defined above induces a partially hyperbolic
diffeomorphism of N2. Study which are the invariant bundles and show that the center
direction integrates into a foliation by circles.
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3.1.3. Suspensions of Anosov automorphisms. Let A : Rd → Rd be a linear map with inte-
ger entries and determinant of modulus 1, that is, A ∈ GL(d ,Z). Let A = PDP−1 the Jordan
form of A and for t ∈R we denote At = PD t P−1 (here D t denotes the exponential at time
t of the matrix d ∈ gl(d ,R) such that ed = D).

Now, consider the following Lie group defined as the following crossed product:

G A =Rd nA R

We recall that this means that the product between elements (x, t ) and (y, s) of G A (with
x, y ∈Rd and t , s ∈R) verifies:

(x, t ) · (y, s) = (As x + y, t + s)

A natural lattice in G A is given by the subgroup ΓA := Z2 nA Z which consists of the
elements of the form (m,n) with m ∈Z2 and n ∈Z.

Consider L(0,t ) the left translation by the element (0, t ). One has that L(0,t )(x, s) = (x, s +
t ). On the other hand, if one looks at Ad((0, t )) : gA → gA it is given by the derivative at
(0,0) of the map R−1

(0,t )L(0,t ) which maps (x, s) 7→ (At x, s). This map is partially hyperbolic
if A is (it has the same eigenvalues plus the eigenvalue 1 associated to the tangent space
of the curve t 7→ (0, t )). When A is hyperbolic, the flow ψt : G A/ΓA → G A/ΓA is an Anosov
flow as we shall see later.

The same construction can be made starting from automorphisms of nilmanifolds.
Also, one can make crossed products with Rk (see for example [KKRH, Section 2.1]) or
even more complicated Lie groups.

3.1.4. Geodesic flows in surfaces of negative curvature. Let H2 = {z ∈ C : ℑ(z) > 0} be the

hyperbolic plane with the usual metric given by ‖v‖H2 = ‖v‖R2

ℑ(z) where v ∈ TzH
2 ∼=R2.

It is standard to identify T 1H2 (the unit tangent bundle of the hyperbolic plane) with
PSL(2,R) via Möbius transformations. Indeed, given a point z ∈H2 and a unit tangent vec-
tor v in TzH

2 one has that there exists a unique Möbius transformation which preserves
H2 and sends the point i to z while the vertical vector is sent to v . This correspondence is
smooth and it can be easily seen that Möbius transformations act as isometries ofH2.

A Fuchsian group is a discrete subgroup of PSL(2,R). A Fuchsian group Γ is called of first
type if its limit set consists in the whole ∂H2, this means, that if one considers any point
x ∈H2, then its orbit x ·Γ accumulates in the whole R∪ {∞} = ∂H2. A classical example of
Fuchsian group of first type is the choice of a hyperbolic metric on a surface of genus ≥ 2.
Other examples consist on branched quotients of such surfaces giving rise to hyperbolic
orbifolds. It can be seen that even if the action in H2 may have torsion elements (and
therefore it is not free) the action in PSL(2,R) ∼= T 1H2) is free and properly discontinuous
(notice that if a Möbius transformation which is not the identity fixes a point inH2 then it
must be a rotation around that point; since the group is discrete, the rotation is rational,
and therefore it is free in the circle fiber of the fixed point). We now fix a Fuchsian group
of first type Γ acting on PSL(2,R) with quotient M = PSL(2,R)/Γ.

We consider the action on PSL(2,R) by left translations of the element

at :=
(

e t/2 0
0 e−t/2

)
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defining the maps `at : M → M . To see that these are partially hyperbolic one has to com-
pute the adjoint representation and it follows that in the Lie algebra one has the following
3-invariant subspaces with eigenvalues smaller, equal and larger to one respectively:

gs = 〈
(

0 1
0 0

)
〉 , gc = 〈

(
1 0
0 −1

)
〉 , gu = 〈

(
0 0
1 0

)
〉

Exercise 23. Compute the adjoint representation and check the claims made above.

One can check that the flow `at is Anosov (equivalently, that its time one map is par-
tially hyperbolic) by more geometric and explicit calculations. This flow is in fact the
geodesic flow of the hyperbolic metric induced by Γ when Γ is the fundamental group of
a hyperbolic surface. See for example [KH, Sections 5.4 and 17.5].

3.1.5. Other interesting algebraic examples. Other instances of this construction are geo-
desic flows on rank 1 symmetric spaces (negatively curved), frame flows, and many oth-
ers. We briefly explain the construction of the frame flow as an algebraic example since
it is a genuinely partially hyperbolic flow whose study appears historically as one of the
strong motivations for the study of partially hyperbolic systems. We refer the reader to
[KH, Section 17.7] for an account on geodesic flows on rank 1 symmetric spaces and again
to [KSS] and references therein for more examples of algebraic diffeomorphisms. We also
recommend the notes [Q] where rank one symmetric spaces are presented with more de-
tail.

Let G = Isom(Hd ) the Lie group of isometries of the hyperbolic space Hd . It is possible
to identify it with a well known matrix group. Consider the Lie group SO(1,d) consisting
of matrices in SL(d +1,R) preserving the linear form q such that q(x) = x2

0 − x2
1 − . . .− x2

d
where x = (x0, x1, . . . , xd ) ∈ Rd+1. It follows that every g ∈ SO(1,d) preserves both con-
nected components of x2

0 − x2
1 − . . .− x2

d = 1 since the determinant is positive. It is well

known that Hd , the d-dimensional hyperbolic space, is isometric to the connected com-
ponent of x2

0 −x2
1 − . . .−x2

d containing (1,0, . . . ,0) with the metric induced by the quadratic

form q , this way, one obtains the identification Isom(Hd ) ∼= SO(1,d). For details, see [Q,
Section 2.2.1].

The stabilizer of a point consists on the matrices fixing (1,0, . . . ,0) which can be identi-
fied with the group of rotations of Rd , this is, SO(d), and the quotient SO(1,d)/SO(d) 'Hd

is the symmetric space, and so if Γ is a group of isometries of Hd which has a compact
quotient then the quotient of SO(1,d) by Γ is also compact. Existence of such cocompact
lattices is not immediate, a large such family can be obtained by algebraic methods (see
[Ben, Chapter 2]).

Being rank-1 means that there is a distinguished 1-parameter subgroup {at }t∈R which,
when acting in the symmetric space of SO(1,d) represents the geodesic flow of this group,
meaning that the projection of an orbit of the parameter subgroup to the symmetric space
Hd is a (parametrized) geodesic of Hd . It follows that when considering the action of
{at }t∈R in SO(1,d)/Γ one obtains a lift of the geodesic flow to the fiber bundle over the
manifold with structure group SO(d). The group SO(d) can be identified with the choice
of an orthonormal basis in TxH

d . This flow is known as frame flow over M =Hd /Γ. It is not
hard to see that this flow is partially hyperbolic and can be checked directly by computing
the adjoint Ad(a1) of a1.

3.2. Skew-products. Consider a partially hyperbolic diffeomorphism f : M → M with
splitting of the form T M = E s ⊕E c ⊕E u and N a closed manifold. Now, consider a contin-
uous map g : M → Diff1(N ) verifying that for every x ∈ M one has that:
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‖D f |E s (x)‖ < m(D t gx ) ≤ ‖D t gx‖ < m(D f |E u (x)) ∀t ∈ N (3.2.1)

Then, if p : M ×N → M is the first projection and if one defines F : M ×N → M ×N as

F (x, t ) = ( f (x), gx (t ))

it is not hard to show that F is partially hyperbolic with splitting T (M ×N ) = Ê s ⊕ Ê c ⊕ Ê u

with dim(Êσ
x ) = dim(Eσ

p(x)), σ ∈ {s,u}.

Exercise 24. Use the cone-field criteria to show that F is partially hyperbolic with the
splitting announced above. Use uniqueness of the splitting to show that Ê c

x = Dp−1
x (E c

p(x)).

(In particular T N ⊂ Ê c .) Construct examples showing that Eσ needs not be equal7 to Êσ

(σ= s,u) but show that the projection of Êσ to T M is Eσ.

This construction can be easily generalized to the case where the manifold is a fiber
bundle instead of a product. Assume that E is a (C 1-)smooth fiber bundle over M with
fiber N , this means that there exists a C 1-map p : E → M such that for every x ∈ M one has
that p−1({x}) is diffeomorphic to N and these diffeomorphisms vary continuously. More
precisely, for every x ∈ M there is a neighborhood U of x such that p−1(U ) is diffeomor-
phic to U ×N via a diffeomorphism which sends p−1({y}) to {y}×N for every y ∈U . We
denote as Ex ' N the fiber p−1({x}).

Given a diffeomorphism f : M → M we say that F : E → E is a lift of f if one has that
p◦F = f ◦p. We denote as Fx : Ex → E f (x) the diffeomorphism induced by restriction. One
has the following general criterium generalizing equation 3.2.1:

Proposition 3.2. Let f : M → M be a partially hyperbolic diffeomorphism with splitting of
the form T M = E s ⊕E c ⊕E u and let F be a lift of f verifying that for every x ∈ M and t ∈ Ex

one has

‖D f |E s (x)‖ < m(D t Fx ) ≤ ‖D t Fx‖ < m(D f |E u (x)

Then, F is partially hyperbolic with splitting T E = Ê s ⊕ Ê c ⊕ Ê u where if ξ ∈ E one has that
Tξ(Ep(ξ)) ⊂ Ê c and Dp(Êσ) = Eσ where σ= s,c,u.

PROOF. This result is left as an exercise for the reader.

�

Example 3.3 ([BoW]). Consider a non-trivial bundle p : N → T2 over the torus. It is not
hard to see that if you take U an open ball in T2 and V an open set such that U ∪V =T2

we can find differentiable charts of N (see the Exercise below) such that ϕ1 : U ×S1 → N
and ϕ2 : V ×S1 → N verify the following properties:

- ϕ1(U×S1)∪ϕ2(V ×S1) = N . Moreover, p(ϕ1(x, t )) = x for every x ∈U and p(ϕ2(x, t )) =
x for every x ∈V .

- The change of coordinates is by a rotations in the fibers: This means, for x ∈U∩V ,
if π2 : V ×S1 is the projection in the second coordinate we have that the map

ψx : S1 → S1 ψ(t ) =π2ϕ
−1
2 (ϕ1(x, t ))

is a rigid rotation.

7Here we are considering E s in T (M×N ) to be the bundle E s×{0} in the coordinates T (M×N ) = T M×T N .
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If A : T2 → T2 is an Anosov diffeomorphism then we can write A = g2 ◦ g1 where g1 is
the identity in V and g2 the identity in U . For this, U and V must be properly be chosen
(see the Exercise below).

We can thus define the following maps G1 : N → N is defined to be the identity in V ×S1

and ϕ1 ◦ (g1 × I d) ◦ϕ−1
1 in U ×S1 and similarly G2 : N → N as the identity in U ×S1 and

ϕ2 ◦ (g2 × I d) ◦ϕ−1
2 in V × S1. One can check that F = G2 ◦G1 is a partially hyperbolic

diffeomorphism.

Exercise 25. (i) Show that every circle bundle over the torus can be decomposed as
above. In particular, V can be chosen such that U∩V is an annulus and the bundle
is determined up to homeomorphism by the degree of the map x 7→ψx from U∩V
to Homeo(S1) (which is homotopy equivalent to a circle).

(ii) Show that one can choose two open sets U and V of T2 with U contractible such
that A = g2 ◦ g1 as above.

(iii) Check that the diffeomorphism F defined above is (absolutely) partially hyper-
bolic.

(iv) Compare this example to the one of Exercise 22.

3.3. Iterated function systems. The skew product construction needs not be restricted
to the whole manifold. If f : M → M is a diffeomorphism and K ⊂ M is a compact f -
invariant subset admitting a partially hyperbolic splitting of the form TK M = E s ⊕E c ⊕E u

and N is a closed manifold, one can construct a partially hyperbolic set of a diffeomor-
phism F : M ×N → M ×N straightforwardly as above from a map g : M → Diff1(N ) satis-
fying the properties of equation 3.2.1 for points in K . Of course, this can also be done for
non-trivial fiber bundles, etc.

There are several relevant instances of this approach which can be unified by this point
of view (the references below are very far from being exhaustive):

• the study of cocycles over hyperbolic dynamics (see [AV, KP, Wi3] and references
therein),

• the study of random dynamics (see [Ar, KL]),
• the study of iterated function systems (see [Fa] and also [GIKN, BBD] and refer-

ences therein for connections with partial hyperbolicity).

Let us explain briefly how this kind of examples appear naturally in some contexts.
Indeed, the typical model of a completely random (discrete) motion is the shift space
with the Bernoulli measure, this gives rise to a choice of independent and identically dis-
tributed random variables with finite target.

Consider a finite set of diffeomorphisms f1, . . . , fk ∈ Diff(N ) (for simplicity we will as-
sume that all the fi ’s are isotopic to the identity) and choose a diffeomorphism g of a
manifold M with the following property: there is an open set U such that the maximal
invariant set K ⊂ U is a hyperbolic set topologically conjugate to the shift in k-symbols
σ : {1, . . . ,k}Z→ {1, . . . ,k}Z. We call the i ’th leg of K to the set corresponding via the conju-
gacy to {1, . . . ,k}Z to sequences whose zeroth entry is i .

There are two relevant remarks for this:

• It is possible to construct such a diffeomorphism in any manifold of dimension
≥ 2. The construction is completely analogous to the horseshoe and it is left as an
exercise.

• It is possible to do so in such a way that the contraction and expansion of the
derivative of g in the bundles E s and E u over K are as strong as one wants. In
particular, one can do in such a way that the weakest contraction of g along E s
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is smaller than the strongest contraction of any of the fi ’s and that the weakest
expansion of g along E u is stronger than the strongest expansion of any of the fi .

In this way, one can construct a diffeomorphism F : U × N → U × N which is of the
form (x, y) 7→ (g (x),h(x, y)) with the property that if x belongs to the i -th leg of K then
h(x, y) = fi (y). This can be extended to a diffeomorphism of M ×N which will contain a
partially hyperbolic set of the form K ×N and whose dynamics corresponds to the desired
choice.

Exercise 26. Complete the details in the construction of F . In particular, show that one
can construct the desired horseshoe with the expected contractions and expansions and
show that the resulting diffeomorphism is partially hyperbolic.

Examples of this type, where the dynamics in the fiber N depends only on the zeroth
position of the dynamics, are sometimes called one-step skew products to indicate that
the dependence of the chosen dynamics does not depend on the future or past of the
orbit. One can make more involved examples, with some Markov type dependence, or
even an arbitrary dependence (such as in general skew-products).

3.4. Hyperbolic flows and actions. Given a flow ϕt : M → M of closed manifold, we say
that a compact invariant subset K ⊂ M is a hyperbolic set if (modulo a change of the
metric) there exists a splitting TK M = E s ⊕E 0 ⊕E u into Dϕt -invariant bundles such that
dimE 0 = 1, one has ‖Dϕt |E 0‖ = 1 and there exist constants C > 0 and λ< 1 such that:

‖Dϕt |E s‖ <Cλt ; ‖Dϕ−t |E u‖ <Cλt ∀t ≥ 0

As the reader can easily notice, the definition is very much related with the definition of
partial hyperbolicity. In fact, it is very easy to see that if K is a hyperbolic set of a flow ϕt ,
then, K is an (absolutely) partially hyperbolic set for the diffeomorphism ϕ1 when con-
sidering E 0 to be the center-direction. Moreover, it has been proved in [HPS] that there is
a C 1-open neighborhood ofϕ1 consisting on partially hyperbolic diffeomorphisms which
fix a foliation homeomorphic to the foliation by the orbits of the flow ϕt (this will be ex-
plained later).

In a similar way, one can construct Anosov or hyperbolic actions of certain Lie-groups,
implying that the transverse direction of the action is uniformly contracted or expanded
in a stronger way than the direction of the action. This gives rise to further examples of
partially hyperbolic sets. See [PSh1, KS, GoSp].

3.4.1. Anosov flows. A particularly important family of examples are Anosov flows. An
Anosov flow ϕt is a flow for which the whole manifold is a hyperbolic set. Some well
known examples of Anosov flows are the following:

- The suspension of an Anosov diffeomorphism f : M → M is obtained as follows:
Consider in M ×[0,1] the constant vector field given by vectors tangent to the sec-
ond coordinate (i.e. whose integral lines are of the formϕt ((x, s)) = (x, t+s)). Now,
we can identify M×{0} with M×{1} via (x,1) ∼ ( f (x),0). The manifold one obtains
by this process will be denoted as M f and it is sometimes called the mapping
torus of f . It is not hard to see that the flow ϕt is an Anosov flow (see the exercise
below).

- Given a (closed) manifold M whose curvature is everywhere negative, it is a well
known result that the geodesic flow on T 1M (the unit tangent bundle of M) is an
Anosov flow (see for example [KH]).



32 S. CROVISIER AND R. POTRIE

FIGURE 6. Local picture of a hyperbolic flow.

Exercise 27. Show that the suspension of an Anosov diffeomorphism is an Anosov flow.

Very little is known about general Anosov flows in higher dimensions. We refer the
reader to the papers [PT, Ve, Ghy1] for some references in the codimension one case,
and to [BFL] for the contact case under assumptions on the regularity of the invariant
foliations.

3.4.2. Anosov flows in dimension 3. No Anosov diffeomorphisms other than the algebraic
ones are known to this moment (up to topological conjugacy). It is conjectured that these
comprise all possible examples (see [BM, Man] and references therein). On the other
hand, Anosov flows seem less rigid, and even in dimension 3, plenty of examples of non-
algebraic Anosov flows have been constructed. The first ones were provided by Franks
and Williams ([FW]) and were quite surprising since they were not transitive.

After those examples were made, plenty of examples appeared, one must mention in
particular those of [HaTh, Goo]. These examples have the property of being constructed
from the previous ones via surgery: One cuts a manifold admitting an Anosov flow along
a certain tori in such a way that after doing a Dehn-twist along the torus and re-gluing the
manifold the Anosov property will persist. These techniques allowed to construct plenty
of new examples in different 3-manifolds.

Later, the technique of [FW], which consisted in gluing different manifolds admitting
hyperbolic sets and being transverse to a torus was reinterpreted in [BL] and pushed
much further recently in [BBY1]. We refer the reader to the introduction of [BBY2] for
a nice account on the known examples of Anosov flows in dimension 3.

Still, this research subject is wide open. At the moment:

• We know infinitely many 3-manifolds which do not admit Anosov flows. The fun-
damental group must have exponential growth ([PT]), but the same obstruction
which was pointed out in [PT] provides many other restrictions (there are no Reeb
components, so the manifold must be irreducible, etc..). In particular, there is an
infinite family of hyperbolic manifolds not admitting Anosov flows ([RSS]). We
also known some other obstructions, of different nature ([Ghy2, Ba]), on certain
specific families of 3-manifolds.

• We know infinitely many 3-manifolds which admit Anosov flows. Other than fi-
nite lifts or quotients of geodesic flows in surfaces of negative curvature and sus-
pensions of linear Anosov flows, there are all the examples mentioned above. In
particular, let us mention that the construction of [Goo] allows one to construct
examples in an infinite family of hyperbolic 3-manifolds.

• There are still infinitely many 3-manifolds which we do not know if support Anosov
flows. In this case, insisting on the hyperbolic manifold case, “most” hyperbolic
3-manifolds fall in this category.
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Let us also remark that the constructions in [BBY1] show that even in manifolds which
support Anosov flows the panorama is not clear; the same manifold may admit plenty of
topologically inequivalent Anosov flows.

3.5. Deformations. Partially hyperbolic diffeomorphisms are C 1-open. This is because
there existence of cone-fields which are sent by D f inside their interior. When one is able
to control the global (or local) position of cone-fields, it is possible to push this argument
in order to consider different kind of deformations, or even compositions with large dif-
feomorphisms.

3.5.1. Local modifications. Let f be a partially hyperbolic diffeomorphism with a split-
ting T M = E s ⊕E c ⊕E u and let C s and C u be cones associated to the bundles E s and E u

and such that:

– the cone C u is contracted by D f , and moreover non-zero vectors u ∈C u are con-
tracted by D f −1, i.e. ‖D f −1u‖ < 1

2‖u‖,
– the cone C s is contracted by D f −1, and moreover vector u ∈C s are contracted by

D f , i.e. ‖D f u‖ < 1
2‖u‖.

Then, one can consider deformations of f through isotopies among diffeomorphisms
which still have these properties, hence are partially hyperbolic by the cone field criterion.

Derived from Anosov examples.

As an example of system obtained by a local modification, let us consider a linear
Anosov automorphism of T3 with three real eigenvalues 0 < λ1 < λ2 < 1 < λ3. For in-
stance given by

A =
0 0 1

1 0 1
0 1 −2


The map can thus be locally written (x, y, z) 7→ (λ1.x,λ2.y,λ3.z). Let us deform it in a

small ball, for a ∈ (0,1) as a diffeomorphism fa of the form:

fa : (x, y, z) 7→ (λ1.x, agx,z (a−1 y),λ3.z), such that λ1 < ‖Dgx,z‖ <λ3.

Notice that the derivative of agx,z (a−1 y) with respect to x and z can be chosen as small
as desired by considering small a > 0.

Let us consider the cone C cu of vectors (vx , vy , vz ) such that ‖vx‖ ≤α‖vy + vz‖.
The image (v ′

x , v ′
y , v ′

z ) satisfies

‖v ′
x‖ =λ1‖vx‖,

‖v ′
y + v ′

z‖ ≥ min
x,z

(‖Dgx,z‖)‖vy + vz‖−|∂gx,z

∂x
vx |− |∂gx,z

∂x
vz |

If one chooses a small enough, noticing that |vx | ≤α‖vy +vz‖ and ‖vz‖ ≤ ‖vy +vz‖ one
has that the cone-field is invariant. Also, vectors inside the cone C cu,∗ are contracted by
D fa so that the invariant bundle inside C cu,∗ is uniformly contracted.

This proves that there exists a dominated splitting E s ⊕F1, where dim(E s) = 1. Arguing
symmetrically, one gets a splitting T M = E s ⊕E c ⊕E u , as required. Notice also that if one
chooses a small enough, one can consider the cone-field to be as narrow as desired.

The new system can be non-hyperbolic: it is enough to deform near a fixed point in
order to introduce new fixed points with different stable dimension8, see figure 7.

8This requires an argument. In principle, it could be that the new saddle is in a different chain-recurrence
class than the rest of the points, however, as we shall see in section 5, this is not the case.



34 S. CROVISIER AND R. POTRIE

FIGURE 7. Deformation inside the stable manifold of a fixed point.

The technique of local perturbations can be applied to any partially hyperbolic sys-
tem in order to change the index of periodic points. We just refer here to the example
by Bonatti and Viana ([BV]) which provides an example of a robustly transitive (and sta-
bly ergodic) diffeomorphism without uniform bundles and we refer the reader to [BDV,
Section 7.1] or [Cr2, Section 5.10] for a survey on this type of constructions.

Exercise 28. (1) Use a local modification to construct a globally partially hyperbolic
diffeomorphism for which the domination is not absolute.

(2) Use a local modification to construct a diffeomorphism isotopic to the same lin-
ear Anosov diffeomorphism as above whose finest dominated splitting is of the
form TT3 = E cs ⊕E u and such that E cs is not uniformly contracted but it con-
tracts volume uniformly. (Hint: See figure 1 of [BV],page 181.)

3.5.2. Global deformations. The following criteria has been used in [BPP, BGP, BGHP] to
construct new examples of partially hyperbolic diffeomorphisms in dimension 3. The
point is that one can compose the time T map of an Anosov flow (for some large T ) by a
diffeomorphism which is not isotopic to the identity and preserve partial hyperbolicity.
Notice that this Proposition was already essentially used in section 3.5.1.

Proposition 3.4. Let f : M → M be a diffeomorphism with a dominated splitting T M =
E ⊕F . Let h : M → M be a diffeomorphism such that for every x ∈ M one has:

Dh(E(x))>∩F (h(x)) (3.5.1)

then, there exists n > 0 such that f n ◦h admits a dominated splitting.

This proof essentially follows from the classical cone-field criteria. Let us briefly give a
sketch of the proof:

Sketch of the proof: Let us first show that there exists n such that f n ◦h preserves an un-
stable cone-field.

To do this, consider first a given cone-field C for the bundle F of f , that is, D f (C (x))) ⊂
C ( f (x)). Notice that by considering the cone-fields D f k (C ) one can assume that C is as
narrow as one wishes.

By compactness and the fact that Dh(F )>∩E one can assume that Dh(C (x))>∩E(h(x)).
In particular, there exists n > 0 such that D f n(Dh(C )) ⊂C . This concludes. �

Just to give a taste on the applications of the Proposition, let us briefly explain an ex-
ample from [BGP].
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Consider a hyperbolic surface S with Riemannian metric g and its geodesic flow ϕt :
T 1S → T 1S. It is well known that if the curvature of g is everywhere negative, then ϕt is
an Anosov flow.

Let f : S → S be any smooth diffeomorphism. Consider its projectivization P f : T 1S →
T 1S defined as P f (v) = D f v

‖D f v‖ which conjugates the geodesic flow of the metric g with the
one obtained by the pullback f∗g . That is, if ψt denotes the geodesic flow of f∗g one has
that:

P f ◦ϕt =ψt ◦P f

In particular, since the conjugacy is smooth, it follows that the derivative of P f sends
the invariant bundles of ϕt onto the ones of ψt . So the key remark is:

Proposition 3.5. It is possible to construct f : S → S not isotopic to the identity in S so that
f∗g and g are very close to each other (in the C∞-topology) and with g being uniformly
Anosov9.

This is done in [BGP, Section 2] via considering a hyperbolic metric of constant curva-
ture −1 with a very short geodesic and choosing f to be a Dehn-twist along this curve,
since the geodesic is short, it follows that, in the universal cover, the lift of the diffeomor-
phism f is very close to the identity.

It follows that the diffeomorphism P f ◦ϕN for large N will be partially hyperbolic thanks
to Proposition 3.4 and not isotopic to the identity because P f isn’t. Notice that P f is dis-
sipative along the fibers, but it is not hard to correct it in order that a small perturbation
of P f (which still guarantees condition (3.5.1) for all the involved bundles) preserves the
Liouville measure.

3.6. Attractors. Attractors play an important role in this notes. An attractor for a diffeo-
morphism f : M → M is a compact f -invariant set K such that it admits an open neigh-
borhood U such that f (U ) ⊂U and K = ⋂

n>0 f n(U ). The importance of considering at-
tractors, other than the fact that one expects points to approach them (and contain the
physical measures) is that their structure allows one to have more tools to study them
(in particular, they are saturated by unstable manifolds). Notice that we are not assum-
ing here dynamical indecomposability of the attractor, so that the whole manifold M is
always an attractor. However, if one looks for partially hyperbolic attractors it might be
important to restrict to some subsets of the manifold.

3.6.1. Hyperbolic attractors. Hyperbolic attractors are still far from being completely un-
derstood. A hyperbolic attractor is a compact f -invariant set Λ with a hyperbolic split-
ting TΛM = E s ⊕E u such that it admits a neighborhood U such that f (U ) ⊂ U and Λ =⋂

n>0 f n(U ). It follows that Λ is saturated by unstable manifolds (c.f. Section 4). The
Plykin attractor explained in the Introduction is one such example.

When Λ is a hyperbolic attractor, it follows that its neighborhood U is foliated by local
stable manifolds. It seems reasonable to quotient down by the stable manifolds which
“escape” the attractor and one obtains a hyperbolic map from a branched manifold. This
can be formalized when the attractor is expanding, meaning that its topological dimen-
sion equals dimE u . These have been studied in detail (see [Wil]).

Exercise 29. An expanding map f : M → M is a C 1-map such that ‖Dx f v‖ > ‖v‖ for every
x ∈ M and v ∈ Tx M \ {0}. Show that if M is compact and f : M → M is an expanding map
then:

9We shall not define this here. This is implied for example if the curvature of g is bounded away from 0
which implies that the strength of the dominations, contractions and expansions is uniform.
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(1) There exists λ> 1 such that ‖Dx f v‖ ≥λ‖v‖ for every x ∈ M and v ∈ Tx M .
(2) If M̃ denotes the universal cover of M with the lifted Riemannian metric, show

that there exists a polynomial P such that the volume of a ball of radius R in M̃
is smaller than P (R). (Hint: Show that the volume of a ball of radius R centered
at a fixed point verifies the following inequality: Vol(B(x,λR)) ≤C Vol(B(x,R)) for
some λ> 1 and C > 0. Show that this inequality implies polynomial growth.)

In general, if one has a C 1-map f : M → M which is hyperbolic yet not necessarily
invertible (for example, a hyperbolic d×d matrix with integer coeficients but determinant
different from one acting on Td ) it is possible to consider its inverse limit and one will
obtain a homeomorphism of a solenoid which can be embedded as a hyperbolic attractor
in a larger dimensional manifold. When f is invertible, one has just to embed M in a
larger dimensional manifold as an attracting manifold.

In [Bro] the topology of hyperbolic attractors in 3-dimensional manifolds was studied
and a classification is provided. The examples as the one mentioned above are also stud-
ied in detail.

3.6.2. Partially hyperbolic attractors. We explain here some mechanisms to construct par-
tially hyperbolic attractors.

• The first consists in generalizing the one explained in the hyperbolic case. One
considers a partially hyperbolic map (not necessarily invertible) and constructs
its solenoid by taking its inverse limit and then one embeds the example in a
larger dimensional manifold. This will provide an example of partially hyperbolic
attractor.

• Other way to construct examples is to start with hyperbolic (or partially hyper-
bolic) attractors and make its suspension, obtaining a partially hyperbolic attrac-
tor of a flow; the time one map of this flow (and its small perturbations) will have a
partially hyperbolic attractor. Similarly, one can do skew-products over (partially)
hyperbolic attractors. A different, and to this moment quite unexplored example
of this type is to consider perturbations of the time one map of singularly hyper-
bolic attractors10, such as the Lorenz attractor.

• A third mechanism to construct examples is to start with previous examples and
perform local modifications as explained in section 3.5.1. This way, one creates
new partially hyperbolic sets for which one can eliminate some of the domina-
tions or create genuine center bundles instead of the original uniform bundles
(for example, start with a uniformly contracting direction and create a periodic
point which has an eigenvalue of modulus larger than 1 in that direction as in
section 3.5.1).

Let us explain a bit further on this last mechanism.

In [Carv] an attractor is constructed by starting with a linear Anosov automorphism
of T3 with dimE s = 2 and performing a Hopf bifurcation respecting the conditions of
section 3.5.1. This provides an example of an attractor with splitting TΛT3 = E cs ⊕ E u

on which E cs is not decomposable into further subbundles. This attractor is the maxi-
mal invariant set outside a neighborhood of a hyperbolic source p. Of course, since it
is done with the technique of section 3.5.1 the example admits a global splitting of the
form TΛT3 = E cs ⊕E u , but the advantage of considering the attracting set Λ is that on Λ

one can guarantee that the jacobian is uniformly contracted, this is good to understand

10Some progress has been reported by C. Bonatti and Y. Shi who showed that it is possible to perturb this
time one map to get a robustly transitive attractor.
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FIGURE 8. Deformation inside the stable manifold of a fixed point.

properties such as transitivity and further statistical properties. It can be shown that this
attractor Λ is transitive and that its topology is transversally a Sierpinsky carpet. Nikolaz
Gourmelon has remarked that one can do the example by a standard bifurcation (instead
of a Hopf one) and obtain a diffeomorphism such that TT3 = E1⊕E2⊕E u by bifurcating a
fixed point into a source (in the center-stable direction two saddles and two sinks appear,
see figure 8). It follows that the attractor Λ obtained as the maximal invariant set outside
a neighborhood of the source is partially hyperbolic with splitting TΛT3 = E s ⊕E c ⊕E u

with all bundles one-dimensional.

This kind of constructions can be done starting with any partially hyperbolic attractor.
In general, the key difficulty relies on ensuring that the new periodic points that one has
created belong to the same chain-recurrence class of the attractor (for example, this is
never the case when one creates a source). An important tool to create examples with
this property are blenders (see [BD1]).

This ideas have been used in [BLY] to construct examples of generic diffeomorphisms
without attractors. See also [Pot1] for a construction in the lines of Carvalho’s example
and [BoS] for a volume hyperbolic example.

3.7. Other examples and questions. Many examples have been neglected in this section.
Just to name a few important ones:

• Frame flows on general manifolds of negative curvature are also globally partially
hyperbolic. Historically their importance lies in that they are one of the first gen-
uine partially hyperbolic (not Anosov) examples on which the question of ergod-
icity came up and was solved in [BG] (see also [Br1]).

• Skew products can be done the other way around; by choosing the fibers to have
the strong contractions and expansions. The advantage of this point of view is
that the topology of a fiber bundle is at least as complicated as the base topology,
but can be less complicated than the fiber11. This approach has allowed Gogolev-
Ontaneda-Rodriguez Hertz to obtain partially hyperbolic diffeomorphisms in sim-
ply connected manifolds ([GORH]). See also the work of Farrel-Gogolev ([FG]) for
a systematic study of this approach.

Exercise 30. (1) Construct examples of Anosov diffeomorphisms in non-trivial torus
bundles over a torus via a skew-product construction.

11Think for example at the Hopf fibration of S3 which is a circle bundle over the sphere. The total space
is simply connected (as the base); however, the fiber is the circle which is not simply connected.
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(2) (∗) Show that the only way to obtain an Anosov diffeomorphism as a skew product
over a linear Anosov diffeomorphism on a torus gives a nilmanifold.

Classification in dimension 3. We end this section by very briefly discussing the prob-
lem of classification of partially hyperbolic diffeomorphisms in dimension 3. It is not
the purpose of this notes to describe this problem in detail, so we refer the reader to
[CRHRHU] or the forthcoming [HPo3] for more information.

It seems natural to try to understand globally (strong) partially hyperbolic dynamics
in low dimensions and hope for a classification, at least transitive or volume preserv-
ing ones. In dimension 3, strongly partially hyperbolic diffeomorphisms have all three
bundles of dimension one so it seems a reasonable class to work with. Anosov flows in
dimension 3 are far from being classified and provide examples of strong partially hy-
perbolic dynamics and so the problem seems hopeless. However, Pujals has proposed
to classify partially hyperbolic systems modulo Anosov systems and this has opened the
field for many works in the direction of this classification. Let us point some of the main
results:

• In [BoW] the problem suggested by Pujals was formalized and many results were
obtained under assumptions on the structure of the center-foliations (in particu-
lar, it assumes the existence of such foliation),

• In [BI] (building on the previous work [BBI1]) the first topological obstructions to
admitting partially hyperbolic systems were found. They are related to the exis-
tence of Reebless foliations in the manifolds. This was pushed in [Par] to obtain a
characterization of 3-manifolds with polynomial growth of volume which admit
globally partially hyperbolic diffeomorphisms.

• In [Ham] a new notion of classification was implicitely proposed, this is leaf con-
jugacy and it is related to the notion of structural stability of normally hyperbolic
foliations of [HPS].

• The examples in [RHRHU3] clarified the requirement of transitivity in the “con-
jectures” and introduced the notion of Anosov tori. See [CRHRHU].

• In [HPo1, HPo2] the classification was achieved for 3-manifolds with (virtually)
solvable fundamental group.

• Very recently, several new examples were produced ([BPP, BGP, BGHP]) and the
main task now is to understand how to make these new examples fit into a classi-
fication program.

We end by mentioning that recently, in a joint work of the second author with A. Ham-
merlindl and M. Shannon, the obstructions related to the work [Ghy2] on 3-manifolds
which are circle bundles over higher genus surfaces were shown to be obstructions for
the existence of partially hyperbolic diffeomorhisms too.

In higher dimensions, the classification of globally partially hyperbolic diffeomorphisms
is much less developed. However, the idea of pursuing a classification modulo Anosov
systems as suggested by Pujals and [BoW] is for the moment the main guiding force. See
for example [Bonh, Carr, Go, Ham, Pot3] for partial results in this direction.
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4. INVARIANT MANIFOLDS

We discuss in this section the existence and smoothness of invariant manifolds which
extend the classical stable manifold for hyperbolic sets.

4.1. Strong manifolds and laminations. Consider f ∈ Diffr (M) with r ≥ 1 and K a com-
pact f -invariant set admitting a partially hyperbolic splitting of the form TK M = E s ⊕E c

with dimE s ≥ 1.

Definition 4.1. For ε> 0 small enough, one defines at each x ∈ K its strong stable set:

W ss(x) =
{

y ∈ M , ∃c > 0, ∀n ≥ 0,d( f n(y), f n(x)) < ce−εn min{m(D f n |E c (x)) , 1}
}

(4.1.1)

In other terms W ss(x) is the set of points whose orbit converge to the orbit of x faster than
the contractions D f n |E c (x).

In the case there is a partially hyperbolic splitting E c ⊕E u we define symmetrically the
strong unstable set W uu(x) as the strong stable set of x for f −1.

Remark 4.2. (i) The strong stable set does not depend on the metric.
(ii) We have f (W ss(x)) =W ss(x).

(iii) There could exist a different choice for the partially hyperbolic splitting, leading
to a different stable manifold (of smaller or larger dimensions). However, thanks
to Proposition 2.2 once the dimension of the stable bundle is fixed, the strong
stable manifold is unique (see below).

Theorem 4.3 (Stable Manifold Theorem [HPS]). Let f ∈ Diffr (M) and K ⊂ M a compact
f -invariant set with a partially hyperbolic splitting of the form TK M = E s ⊕ E c and E s

uniformly contracted.

(a) For any x ∈ K , the strong stable set W ss(x) is an injectively immersed C r -submani-
fold diffeomorphic to Rdim(E s ), which is tangent to E s(x) at x.

(b) The strong stable set does not depend on the choice of ε in equation (4.1.1) as long
as it is small enough.

(c) For any x, y ∈ K , the strong stable sets W ss(x),W ss(y) are either disjoint or coincide.
(d) For η> 0 small, the ball D s

η(x) in W ss(x) centered at x of radius η depends contin-
uously on x and f for the C r -topology.

The sets W ss(x), W uu(x) are called strong stable and strong unstable manifolds of x.

Remark 4.4. 1. In the case K = M , the manifold W ss(x) is tangent to E s at each of its
points. The coherence argument form the section 4.3 below proves that conversely any
C 1-manifold tangent to E s at each of its points is contained in a manifold W ss(x).

2. The regularity r can take non integral values: f is C r means that it admits [r ] deriva-
tives and that its [r ]th derivative is r − [r ]-Hölder. One will see below that submanifolds
with intermediate C r -regularity, r ∈ (1,2), may appear naturally in dynamics, even if one
considers smooth systems.

3. As a consequence of the previous result, one deduces that the collection of strong
stable (resp. strong unstable) sets form a lamination which we sometimes denote as W ss

(resp. W uu). When the whole manifold M is partially hyperbolic, this lamination is indeed
a foliation (notice that even if leaves are C r , the foliation is, in principle, just continuous).

4. If g is C r -close to f and y is a point close to x ∈ K and whose orbit remains close to
K , then the ball D s

η(y) in W ss(y) for g is C r -close to D s
η(x).
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Exercise 31. Let f : M → M partially hyperbolic with splitting T M = E s⊕E c at every point
and such that dimE s = 1.

(1) Use Peano’s existence theorem for differential equations to show that through ev-
ery point x ∈ M there exists a curve ηx tangent to E s such that for every compact
arc Ix ⊂ ηx the length of f n(Ix ) converges to zero exponentially fast.

(2) Show that the bundle E s is uniquely integrable into a foliation tangent to E s .

4.2. Plaque families – The graph transform argument. Theorem 4.3 for the C 1-topology
will be a consequence of the following local version.

Theorem 4.5 (Plaque Families [HPS]). Let f : M → M be a C 1-diffeomorphism and K ⊂ M
a compact f -invariant subset admitting a dominated splitting of the form TK M = E ⊕F .
Then, for every x ∈ K there exists a C 1-embedding DE (x) : B(0,1) ⊂ E(x) → M with the
following properties:

• (Tangency:) for every x ∈ K one has that DE (x)(0) = x and the image of DE (x) is
tangent to E(x) at x.

• (Continuity:) the embeddings DE (x) depend continuously on the C 1-topology on
x ∈ K .

• (Local invariance:) there isδ0 < 1 such that for x ∈Λ one has that f (DE (x)(B(0,δ0))) ⊂
DE ( f (x))(B(0,1)).

The setting for this theorem is more general than in the strong stable manifold theo-
rem. For that reason, in general the plaques DE (x)(B(0,1)) are not uniquely defined, they
are a tangent to F only at their center and the union of two plaques is not necessarily a
submanifold. The plaques are not C 2 in general, even if f is C r , r large.

PROOF OF THE PLAQUE FAMILY THEOREM. This can be obtained by a graph transform
argument (Hadamard’s method). Let us explain its principle.

a. Lifted dynamics. Consider x ∈ K . One can assume that the exponential map identifies
the ball B(0,1) in Tx M with a neighborhood of x in M . One can thus lift f as a C k local
diffeomorphism fx := exp f (x) ◦ f ◦exp−1

x from the ball B(0,α) in Tx M to a neighborhood
of 0 in T f (x)M . It can be glued with the restriction of Dx f to the complement of B(0,α)

by a bump function. In this way one obtains a diffeomorphism f̂x : Tx M → T f (x)M . This
diffeomorphism is C 1-close to Dx f if α is small enough (see Lemma 4.6 below).

b. Lipschitz graphs. Each tangent space Tx M has a splitting Ex ⊕Fx . Section 2.2 gives a
cone field C along the direction F and which is contracted by f and a cone field C ∗ along
the direction E and which is contracted by f −1. One obtains in each tangent space Tx M a
constant cone field which coincides with C ∗

x . The map f̂ −1
x contracts the cone field C ∗

f (x)
into the cone field C ∗

x .

Let us consider the family Lx of Lipschitz graphs tangent to C ∗
x containing 0, that is

graphs of Lipschitz functions ψ : Ex → Fx such that ψ(0) = 0 and for each u,u′ ∈ Ex , the
vector (u −u′,ψ(u)−ψ(u′)) (for the decomposition Ex ⊕Fx ) is tangent to C ∗

x . The cone
contraction implies (this requires an argument, see Lemma 4.7 below) that the image by
f̂ −1

x of each ψ ∈ L f (x) is a graph in Lx .

The space Lx is complete for the distance

d(ψ1,ψ2) = max
u∈Fx

d(ψ1(u),ψ2(u))

‖u‖ ,

which is bounded since the graphs are uniformly Lipschitz.
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c. Contraction. Let us fix n large. We will show that the distance on the spaces Lx is con-
tracted in the past by large iterates F̂ = f̂ f n−1(x) ◦ · · · ◦ f̂x . Indeed, let ψ′

1,ψ′
2 be the graphs

images by F̂−1 of ψ1,ψ2 ∈ L f n (x) and fix u ∈ Fx . Let us consider (u,ψ′
1(u)) and (u,ψ′

2(u)).
They are the image by F̂−1 of two points (v,ψ1(v)), (w,ψ2(w)). In order to simplify, one
will assume that v = w .

f n(x) x
vw u

F̂−1

E

F

FIGURE 9. Contraction by the graph transform.

The point (v,ψ1(v)) is mapped on (u,ψ′
1(u)). These two vectors are tangent to the cones

C ∗
f n (x) and C ∗

x and the maps f̂y are close to the tangent maps D y f . Hence

‖u‖ ≤ ‖D f n(x)|E‖eεn‖v‖.

One the other hand, (0,ψ′
1(u)−ψ′

2(u)) is tangent to the cone Cx , which is contracted by
F̂ . This gives

d(ψ1(v),ψ2(v)) ≥ m(D f n
|F (x))e−εnd(ψ′

1(u),ψ′
2(u)).

One deduces:

d(ψ′
1(u),ψ′

2(u))

‖u‖ ≤ e2εn ‖D f n
E (x)‖

m(D f n(x)|F )

d(ψ1(v),ψ2(v))

‖v‖ .

With the domination this gives

d(ψ′
1,ψ′

2) ≤ cλne2εnd(ψ1,ψ2),

hence the uniform contraction.

d. Construction of the embedding. Let Lx be the product space
∏

n∈ZL f n (x) with the dis-

tance given by the supremum of the distances on each L f n (x). The product map ( f̂ f n (x))
acts and its inverse contracts this complete space. Consequently, there exists a fixed point
(ψ f n (x)). The embedding DE (x) is the map

DE (x) : u 7→ expx (u,ψx (u)).

Since f̂ coincides with fx := exp f (x) ◦ f ◦exp−1
x on B(0,α), and since f̂x sends the graph

ψx on the graphψ f (x), for η> 0 small enough the disc DE (x)(B(0,η)) is mapped inside the
disc DE ( f (x))(B(0,1)) by f .

e. C 1-smoothness. The properties we obtained in Chapter 2 still hold for the maps f̂x ,
in particular since the cones Cx are contracted, there exists at each u ∈ Tx M a splitting
Êu ⊕ F̂u with the property that Eu is the collection of vectors ζ tangent at u in Tx M such
that its iterates by ( f̂ f n (x)) remain in the cones C ∗

f n (x) and Fu is the collection of vectors ζ

tangent at u in Tx M such that its iterates by ( f̂ f n (x)) remain in the cones C f n (x).

As Lipschitz graph, ψx is differentiable at almost every point u, hence has a tangent
space at u whose iterates remain in the cones C ∗

f n (x). Consequently the tangent space is
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Êu . Since Êu varies continuously with u, one deduces that ψ is C 1 and tangent to Êu at
each of its points. In particular it is tangent to Ex at 0.

f. Continity with respect to x. By construction, the graph ψx that we built is close to

f̂ −1
x ◦ f̂ −1

f (x) ◦ · · · ◦ f̂ −1
f n−1(x)(ψ

′)

for arbitrary graphs ψ′ ∈ L f n (x) and n large. If one fixes n and considers ψ′ =ψ f −n (x ′) for
x ′ close to x, it implies that ψx and ψ′

x are close on the ball B(0,1).

�

It remains to prove the intermediate lemmas.

Lemma 4.6. Given ε> 0 there exists α such that dC 1 ( f̂x ,Dx f ) < ε.

PROOF. Consider a smooth bump function ρ : Tx M → [0,1] with the following properties:

• ρ(v) = 1 if ‖v‖ ≤ α
2 .

• ρ(v) = 0 if ‖v‖ ≥α
• ‖∇ρ(v)‖ ≤ 4

α for every α.

We consider then the function f̂x : Tx M → T f (x)M defined as f̂x = ρ fx + (1−ρ)Dx f .

The C 1-distance of f̂x and Dx f is the C 1 size of ρ( fx −Dx f ) which is of the order of the
C 0 size of ∇ρ( fx −Dx f )+ρD( fx −Dx f ).

Both terms can be seen to go to zero when α→ 0. The first one is small: since f is C 1,
the quantity ‖ fx −Dx f ‖/|α| goes to 0 as α→ 0. The second term goes to zero with α since
ρ is bounded and the derivative of fx is continuous and equal to Dx f in 0.

�

Lemma 4.7. The image by f̂ −1
x of a function ψ ∈ L f (x) is contained in Lx .

PROOF. Let us prove that the projection on Ex is injective on the image of the graph.
Consider two points (v,ψ(v)) and (w,ψ(w)) whose images have the same projection u.
The difference between the two images is tangent to C . Since the cone C is contracted by
f̂ , one deduces that (v −w,ψ(v)−ψ(w)) is tangent to D f̂ (C ) ⊂C . This is a contradiction
(since ψ is tangent to C ∗), unless the two points are the same.

The image of the graph of ψ is thus a graph over a subset of Ex . This set is homeo-
morphic to Ex (by invariance of the domain) and proper, hence it is Ex (see the exercise
below).

The fact that the graph is Lipschitz with the same constants is direct from the fact that
the cone-field is contracted by D f̂ .

�

Exercise 32. Show that if f : Rd → Rd is continuous, injective and proper, then it is a
homeomorphism. (Hint: consider the one point compactification ofRd , since f is proper,
it extends. Then use the fact that continuous and injective implies that f is of degree 1 or
−1.)

4.3. Proof of the stable manifold theorem (C 1-version) – The coherence argument. The
following is a direct consequence of Theorem 4.5.

Corollary 4.8. Let us consider a partially hyperbolic splitting TK M = E s ⊕E c , the embed-
dings DE s (x) given by Theorem 4.5 associated to the bundle E s and N ≥ 1 large. For η > 0
small, one defines W ss

loc (x) =DE s (x)(B(0,η)).
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(a) For any x ∈ K and n ≥ 0, one has diam( f n(W ss
loc (x))) ≤ enε∏[n/N ]

i=0 ‖D f i N |E s (x)‖
(b) For any x ∈ K and n ≥ N , f n(W ss

loc (x)) ⊂W ss
loc ( f n(x)).

(c) For any x ∈ K , W ss(x) =⋃
n≥0 f −n(W ss

loc ( f n(x))).

PROOF. Covering with charts, one works in Rd . By compactness, for η > 0 small enough,
the embedded disc W ss

loc (x) is almost linear and the action of f n is close to D f n |E s (x). One
gets (a) inductively checking by the local invariance that f n(W ss

l oc (x)) ⊂DE s ( f n(x))(B(0,1)).
In particular item (b) follows. The (a) and the domination give also the inclusion ⊃ in (c).

For proving the inclusion ⊂ in (c), one applies the following argument.

The coherence argument. Considers a point z ∈W ss(x) and assume (up to replace by iter-
ates) that the forward orbits of x and z remain at distance ¿ η. Consider a small disk D
containing z and a point y in W ss

loc (x) and tangent to a contracted cone field C . By forward
iterations the disk remains tangent to C . By domination, the distance between forward
iterates of y and z in D decays slower than eεn‖D f n |E s (x)‖ and since all iterates remain in
a small neighborhood of the orbit of x where the bundles are almost constant, this dis-
tance is comparable to the distance in the manifold. Hence this contradicts x ∈ W ss(x)
unless z = y .

�

x

y z
D

FIGURE 10. The coherence argument.

Remark 4.9. In the coherence argument, it is essential that the manifolds one works with
have some dynamical properties (the design of figure 10 remains at small scale for every
future iterate). This fact is essential for two important reasons:

• it allows to compare derivatives in different points in order to compare lengths of
the iterates with derivatives at some fixed point,

• it allows to control the geometry of the figure; at small scales the bundles are more
or less constant and one can compare lengths and distances.

In [Br3] this argument is pushed to an extreme and he shows unique integrability of cer-
tain invariant bundles by assuming both absolute domination (to deal with the first issue)
and quasi-isometry of the foliations (to deal with the second).

Remark 4.10. Notice that the graph transform argument also provides a uniqueness re-
sult. In general it is not satisfying since it is unique once one chooses the extension of
fx to the whole Tx M which is non-canonical. However, for points that remain close to
the orbit of x, the choice of the extension is irrelevant and therefore those points must be
inside the plaques no matter which extension we consider.

PROOF OF THE STABLE MANIFOLD THEOREM ( THEOREM 4.3) FOR C 1-DIFFEOMORPHISMS.
From (b) and (c) of Corollary 4.8, W ss(x) is an increasing union of the submanifolds
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f −nN (W ss
l oc ( f nN (x))), n ≥ 0. Hence it is an injectively immersed submanifold diffeomor-

phic to Rdim(E s ) proving (a) of Theorem 4.3 (only providing C 1-regularity). From (c) of
Corollary 4.8, one deduces that W ss(x) does not depend on ε, that is (b) of Theorem 4.3.

If one assumes that W ss(x) and W ss(y) intersect, up to replace x, y, by forward iterates,
the distance d( f n(x), f n(y)) is small for each n ≥ 0. In particular

∏[n/N ]
i=0 ‖D f i N |E s (y)‖ ≤

enε∏[n/N ]
i=0 ‖D f i N |E s (x)‖. So by (a) of Corollary 4.8, the distance d( f n(x), f n(y)) is smaller

than 2e2εn ∏[n/N ]
i=0 ‖D f i N |E s (x)‖. Similarly, for any point z in W ss(y), there exists cz such

that d( f n(y), f n(z)) is smaller than cz e2εn ∏[n/N ]
i=0 ‖D f i N |E s (x)‖. These two estimate to-

gether and the partial hyperbolicity imply that the distance d( f n(x), f n(z)) is smaller than
ce−nεmin{m(D f n |E c (x)),1}. Hence z ∈ W ss(x). We have shown W ss(y) ⊂ W ss(x). The re-
verse inclusion holds similarly. This gives item (c).

Property (d) (again for the C 1-topology) comes from the dependance of DE (x) in The-
orem 4.5.

�

4.4. Hölder continuity of the bundles. Let M be a smooth manifold, Λ ⊂ M a compact
subset and E ⊂ TΛM a continuous subbundle. We say that E is θ-Hölder if there exists
c > 0 such that d(E(x),E(y)) ≤ cd(x, y)θ. Here, the distance we consider is any distance
in the Grasmannian bundle Gk (M) over M of dimension k = dimE which is smoothly
equivalent to the one given by the Riemannian metric in M . The next result should go
back to Anosov for Anosov systems, see for instance [Br2].

Theorem 4.11. Let f : M → M be a C 2-diffeomorphism andΛ⊂ M a compact f -invariant
set admitting a dominated splitting of the form TΛM = E ⊕F . Then, the bundles E is θ-
Hölder continuous for some θ ∈ (0,1].

Remark 4.12. a. Even if f is smooth, the bundles E ,F are in general not Lipschitz.

b. One can take any exponent θ such that for N ≥ 1 large and for any x ∈ K , the following
pinching condition is satisfied

‖D f N |E(x)‖ ‖D f N |F (x)‖θ < m(D f N |F (x)).

In particular, it is sometimes possible to get a Lipschitz regularity; under a bunching con-
dition: ‖D f |E(x)‖ < m(D f |F (x)) / ‖D f |F (x)‖ (see also Section 4.7).

c. If f is just C 1, then one can construct examples of diffeomorphisms with a dominated
splitting (even Anosov) on which the regularity of the bundles is no better than continu-
ous. To do this, start with a linear Anosov diffeomorphism of T2 and consider a sequence
of periodic orbits On → p where p is a fixed point. Using Franks Lemma (see for exam-
ple [Cr2, Section 2.3]) one can modify the invariant bundles of On about the size of any
function which goes to zero with d(On , p) and therefore break all possible modulus of
continuity better than plain continuity.

PROOF OF THEOREM 4.11. Let us assume that the metric is adapted to the domination
and to the θ-pinching condition: It satisfies at any point x ∈ K :

λ(x) := max
x∈K

‖D f |E(x)‖ / m(D f |F (x)) < 1 and ‖D f |E(x)‖ ‖D f|F (x)‖θ < m(D f |F (x)).

By working in charts, one has for some constant c > 0,

d(Ex ,Ey ) ≤ d(D f −1
f (x)(E f (x)),D f −1

f (x)(E f (y)))+d(D f −1
f (x)(E f (y)),D f −1

f (y)(E f (y)))

≤λ(x)d(E f (x),E f (y))+ cd( f (x), f (y))θ.
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The first part of the estimate comes from the contraction in the Grassmanian bundle, see
Exercise 11. The second from the C 2 regularity.

By induction one gets for any k ≥ 1,

d(Ex ,Ey ) ≤ c
k−1∑
j=0

(
λ( f j (x)) . . .λ(x)

)
d( f j+1(x), f j+1(y))θ+

+
(
λ( f k (x)) . . .λ(x)

)
d(E f k (x),E f k (y)).

For ε> 0 small, one can bound d( f j (x), f j (y)) by eε j .‖D f j |F (x)‖.d(x, y), provided x, y are
close enough. Since λ(x)‖D f |F (x)‖θ is smaller than some constant < 1, this gives

d(Ex ,Ey ) ≤ c(d(x, y)θ+λk ).

By choosing k large enough, one gets the estimate.

�

The proof of the previous theorem also implies the following.

Lemma 4.13. Let f : M → M be a C 2-diffeomorphism and Λ⊂ M a compact f -invariant
set admitting a dominated splitting of the form TΛM = E ⊕F such that for N large enough:
‖D f N |E(x)‖2 < m(D f N |F (x)). Then there exists c,δ> 0 with the following property.

Consider any two points x, y ∈ K whose iterates satisfy:

d( f i (x), f i (y)) < δ for any 0 ≤ i ≤ n ⇒ f n(y)− f n(x) ∈C ∗(x).

Then, d(E(x),E(y)) ≤ cd(x, y).

PROOF. By our assumptions on x, y , one bounds d( f j (x), f j (y)) by eε j .‖D f j |E(x)‖.d(x, y).
The condition ‖D f N |E(x)‖2 < m(D f N |F (x)) gives λ(x)‖D f |E(x)‖ < 1 which ensures the
uniform convergence of the series in the previous argument.

�

4.5. Smoothness of the leaves – r -domination. We now discuss the smoothness of the
stable manifolds and of the plaques.

Definition 4.14. The bundle E in invariant splitting TK M = E ⊕F is r -dominated with
r ≥ 1, if there exists c > 0 and λ ∈ (0,1) such that for any x ∈ K , u ∈ Ex \ {0}, v ∈ Fx \ {0} and
n ≥ 0,

max

{ ‖Dx f nu‖
‖u‖ ,

(‖Dx f nu‖
‖u‖

)r }
≤ cλn ‖Dx f n v‖

‖v‖ (4.5.1)

Exercise 33. If E is r -dominated, it is `-dominated for any 1 ≤ `≤ r .

We state a C r -version of the plaque family theorem.

Theorem 4.15 (C r -plaque family [HPS]). If f is C r , if K admits a dominated splitting
TK M = E ⊕F and if E is r -dominated, r ≥ 1, then one can choose the embeddings DE (x)
defining a plaque family tangent to E to be C r and to depend continuously on x for the
C r -topology.

It allows to end the proof of the stable manifold theorem.

PROOF OF THE STABLE MANIFOLD THEOREM (C r VERSION). From Corollary 4.8, the (local)
strong stable manifold coincides locally with the plaques of any plaque family tangent to
E s . It remains to prove that one can take these plaques to be C r , i.e. that theorem 4.15
applies.
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Note that in the case the bundle E is uniformly contracted
( ‖Dx f n u‖

‖u‖
)r ≤ ‖Dx f n u‖

‖u‖ pro-

vided n is large enough and for any u ∈ E . Hence E = E s is r -contracted for any r , in
particular, for the r such that f ∈ Diffr (M) and the conclusion then follows.

�

PROOF OF THE C r -PLAQUE FAMILY THEOREM ( THEOREM 4.15). One will prove it induc-
tively on the smoothness r .

Induction argument. Let k be the dimension of the fibers of the bundle E . Let p : Gk (M) →
M be the Grassmannian bundle, that is, for each x ∈ M , (Gk (M))x denotes the space of
k-dimensional vector planes of Tx M . This defines a smooth compact manifold without
boundary. Assuming that r ≥ 2, the tangent map ϕ := D f acts as a C r−1 diffeomorphism
on this space.

Moreover the bundle EK defines a compact invariant set Λ ⊂ Gk (M) which projects
homeomorphically by p on K .

Lemma 4.16. If r ≥ 2 and if E is r -dominated, thenΛ admits a dominated splitting E ⊕F

which is (r −1)-dominated. The map Dp : EΛ→ EK is a diffeomorphism and Fx contains
ker(Dx p) for each x ∈Λ.

Idea of the proof. We will assume that the metric is adapted. Note that the tangent spaces
T P to the fibers P (x) = p−1(x) of p : Gk (M) → M are Dϕ-invariant.

The dominated splitting E⊕F is obtained with the cone field criterion. Instead to check
it in detail, we just observe that how Dϕ expands in the different directions at points ofΛ:

– transversally to the fibers, Dϕ acts as D f on T M and reproduces the decomposi-
tion E ⊕F ,

– along the fibers, Dϕ acts as an expansion, bounded from below by the quantity
m(D f (x)|F )/‖D f (x)|E‖, which is larger than 1 by the domination.

In order to check this second point, consider a plane ∆ ⊂ Tx M close to Ex and let us
see how close is the image D f (x).∆ to E f (x). Let us take a vector u ∈ ∆ such that u =
u0 + ũ where u0 ∈ E is a unit vector and ũ ∈ F is small. Its image after normalization by
‖Dx f u0‖−1 is v = v0 + ṽ , where

– v0 = Dx f u0

‖Dx f u0‖ belongs to E( f (x)) and is a unit vector

– ṽ = Dx f ṽ
‖Dx f u0‖ belongs to F ( f (x)) and is still small.

We have

‖ṽ‖ = ‖Dx f ũ‖
‖Dx f u0‖

≥ m(D f |F (x))

‖D f |E(x)‖
‖ũ‖,

which gives the announced expansion.

The 1-dominated splitting: Since E is 2-dominated, one has

m(D f |F (x))

‖D f |E(x)‖
> ‖D f |E(x)‖,

hence the expansion along the fibers is stronger than along E .

This allows to obtain a dominated splitting E c ⊕F , where E c lifts E and F = Dp−1(F ).

The r −1-domination: It remains to check that E is r −1-dominated, i.e. that

m(D f |F (x))

‖D f |E(x)‖
> ‖D f |E(x)‖r−1,

which is direct from the fact that E is r -dominated. This ends the proof of the lemma. �
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Let us continue with the proof of Theorem 4.15. As in the proof of the plaque family
theorem, one introduces a fibred diffeomorphism f̂ on T M that is tangent to D f at the
0-section. It is close to D f , hence there exists a splitting Ê ⊕ F̂ at each point of each space
Tx M , x ∈ K , which extends E ⊕F and such that Ê is still r -dominated. The plaque family
theorem gives a family of C 1-graphs ψx ⊂ Tx M for each x ∈ K . By invariance, the graphs
are tangent to Ê . Since Ê is 2-dominated and f̂ is C 2 on each space Tx M , the Lemma 4.13
shows that the bundle Ê is Lipschitz along each graph ψx .

The map ϕ̂ := D f̂ is a C r−1-diffeomorphism acts on the Grassmanian bundle of T M .
The Lemma 4.16 applied to f̂ shows that ϕ̂ also preserves a dominated splitting E ⊕F

and that E is (r −1)-dominated. The bundle Ê in restriction to the graphs ψx defines a
collection of Lipschitz graphs Ψ in (Gk (M)) which is invariant by ϕ̂ and transverse to the
bundle F . As in the proof of Theorem 4.5, one deduces that the graphs Ψ are C 1 and
tangent to E . This means that E is C 1 on the graphs ψx , i.e. that these graphs are C 2.

If r ≥ 3, one can repeat this argument and prove that the graphs Ψ are C 2, i.e. that the
graphs ψ are C 3. By induction, one concludes that the plaques are C r . �

4.6. Reduction of the dimension and normally hyperbolic manifolds. Possibly, the most
important information given by the existence of a dominated splitting or of the existence
of a partially hyperbolic splitting comes with the fact that Theorem 4.5 allows one to “re-
duce the dimension” of the study. In general, if one has a strong partially hyperbolic split-
ting, one can use Theorem 4.5 to reduce the situation to a kind of skew-product over a
hyperbolic set, at least, one can think the skew-product over a hyperbolic set as a toy
model for the general situation. This approach has been pursued when dimE c = 1 (see
[Cr1]).

However, there are some cases where the reduction of dimension is even more drastic:
instead of obtaining a sequence of maps of a lower dimensional manifolds, one can in
some cases deal with a unique one. This is the case when the dynamics one is interested
in lives in a normally hyperbolic submanifold.

Theorem 4.17 (Bonatti-Crovisier [BC2]). Let K be a compact f -invariant set admitting a
partially hyperbolic splitting of the form TK M = E c ⊕E u . Assume moreover that for every
x ∈ K one has that W uu(x)∩K = {x}.

Then, there exists a C 1-submanifoldΣ⊂ M containingΛ and tangent to E c at every point
of K such that it is locally invariant (i.e. f (Σ)∩Σ is a neighborhood of K inside Σ).

If E c is r -dominated and f is C r , the submanifold Σ can be chosen C r also.

We do not prove this result, but mention two ingredients:

– The assumption W uu(x)∩K = {x} allows to show that near each point x ∈ K , the
set K is “tangent” to E c

x . Whitney’s extension theorem then provides a submani-
fold S that contains K and is tangent to E c

x at each point of K .
– We then define an iteration scheme which allows to iterate backward S and obtain

a sequence of submanifolds having uniform sizes. The graph transform technique
shows that it converges to a locally invariant submanifold Σ.

Exercise 34. Show the converse: if K is partially hyperbolic and it is contained in such a
submanifold, then one has that W uu(x)∩K = {x} for every x ∈ K .

Definition 4.18. An compact C 1-manifold N ⊂ M is r -normally hyperbolic if there exists
a partially hyperbolic splitting TN M = E s ⊕E c ⊕E u with E c = T N such that (E s ⊕E c ) is
r -dominated by E u for f and (E c ⊕E u) is r -dominated by E s for f −1.
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Corollary 4.19 ([HPS]). If f is a C r diffeomorphism and N is a r -normally hyperbolic
manifold, then N is C r .

Proof. Indeed by the previous theorem N is contained in a C r -submanifold Σ. It is tan-
gent to E c = T N , so N =Σ. �

4.7. Transverse smoothness of the laminations – Bunching. Let us now consider a dif-
feomorphism f which preserves a partially hyperbolic splitting T M = E c ⊕E u over the
whole manifold M (i.e. a globally partially hyperbolic diffeomorphism). In this case the
strong unstable manifold induces a foliation of M .

Since the local leaves vary continuously for the C 1-topology, this is a C 0,1-foliation:
each point x ∈ M has a neighborhood U and a continuous chart ϕ : U → Rd which is
C 1 along unstable manifolds and sends each local leaf to a horizontal plane Rk × {0}d−k

where d = dim M and k = dimE u . In general this foliation (i.e. the chart ϕ) is not even
differentiable. More precisely let us consider two discs D1, D2 transverse to a same leaf
W uu(x) at some points x1, x2; the holonomy along the unstable foliation induces a home-
omorphism h between a neighborhood of x1 in D1 to a neighborhood of x2 in D2. This
holonomy is in general not even Lipschitz. Similarly to Theorem 4.11, if the diffeomor-
phism f is C 2, the holonomies are θ-Hölder for some θ ∈ (0,1] (see [PSW]).

Definition 4.20. If K has a partially hyperbolic splitting TK M = E c ⊕E u , the bundle E c is
bunched if there exists N ≥ 1 satisfying for each x ∈ K

‖D f N
|E c (x)‖

m(D f N
|E c (x))

< m(D f N
|E u (x)).

The following result admits stronger and more precise formulations with sharper esti-
mates and different regularities depending on the type of bunching. Here we present only
this statement to give a taste on the type of results.

Theorem 4.21 (Pugh-Shub-Wilkinson [PSW]). Let f be a globally partially hyperbolic C 2-
diffeomorphism preserving a splitting T M = E c ⊕E u which is center-bunched.

Then the strong unstable foliation is C 1.

PROOF. It is enough to prove that the bundle E u is C 1. Indeed, one can then define locally
a decomposition E u = R.X1 ⊕ ·· · ⊕R.Xk by C 1 non-singular vector fields. (Considering
coordinates (x1, . . . , xn) such that the projection of E u to x1, . . . , xd is an isomorphism, Xi

is the unit vector whose projection to x j vanishes, for all j 6= i .) By construction, the
integral curves toR.X1 are contained in the strong unstable leaves. Hence the Lie brackets
[Xi , X j ] all vanish. One then apply Frobenius theorem which asserts that the plane field
E u uniquely integrate as a foliation by C 1-leaves and that this foliation is C 1.

As in the proof of Theorem 4.15, one considers the action ϕ induced by D f on the
Grassmannian bundle p : Gk (M) → M , where k denotes the dimension of the unstable
spaces E u(x). Since f is C 2, the mapϕ is C 1. The unstable bundle E u defines an invariant
compact set Λ of ϕ and the map p : Λ→ M is a homeomorphism.

Lemma 4.22. If E c is bunched, then Λ ⊂ Gk (M) admits a partially hyperbolic splitting
TGk (M)|Λ = E s ⊕E c , where E s is the tangent space to the fibers of the bundle Gk (M) → M.

Idea of the proof. The tangent space T P to the fibers P (x) = p−1(x) of p are invariant and
are a candidate for E s . The bundle E c will be transverse to the fibers, hence Dp : E c → T M
will be a diffeomorphism which conjugates Dϕ|E c to D f . The partial hyperbolicity should
be checked with the cone field criterion, but the main points are:
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– the fiber P (x) is contracted in a neighborhood of E u(x) ∈Λ,
– the contraction is stronger than the contraction by D f on T M .

Consider a plane F ⊂ Tx M close to E u(x) and let us see how close is the image Dx f (F )
to E u( f (x)). We will assume that the metric is adapted. Let us take a vector u ∈ F such
that u = u0 + ũ where u ∈ E u is a unit vector and ũ ∈ E c is small.

Its image after normalization by ‖Dx f u0‖−1 is v = v0 + ṽ , where

– v0 = Dx f u0

‖Dx f u0‖ belongs to E u( f (x)) is a unit vector

– ṽ = Dx f ũ
‖Dx f u0‖ belongs to E c ( f (x)) and is still small.

Note that

‖ṽ‖ = ‖Dx f ũ‖
‖Dx f u0‖

≤ ‖D f |E c (x)‖
m(D f |E u (x))

‖ũ‖.

This gives a contraction by
‖D f |Ec (x)‖

m(D f |Eu (x))
, which is smaller than 1 by the domination.

The bunching gives

‖D f |E c (x)‖
m(D f |E u (x))

< m(Dx f ) = m(D f |E c (x)).

which gives the second required property. �

Since the fibers of p are invariant byϕ and tangent to E s , they contain the strong stable
manifolds of Λ. Each fiber meets Λ in a unique point. In particular W ss(p)∩Λ = {p}
for each p ∈ Λ. The assumptions of Theorem 4.17 are thus satisfied. One deduces that
Λ is contained in a locally invariant C 1-submanifold Σ tangent to E s . This manifold is
transverse to the fibers, and since p : Λ→ M is a homeomorphism, Σ coincides with Λ.
We have thus shown that the plane field E u is C 1, as required. �

Exercise 35. a) Prove that for a C 2 Anosov diffeomorphism such that E u is one-dimensi-
onal, the stable foliation is C 1.

b) For a C 2 Anosov flow such that E u is one-dimensional, the center-stable foliation is C 1.

c) For an Anosov C 3-diffeomorphism of T2 which preserves the volume, the stable folia-
tion is C 1+α for any α ∈ (0,1).

See [Hass, HuK] for more results on regularity of the splitting for Anosov systems.

4.8. Dynamical coherence. Let us consider a globally partially hyperbolic diffeomor-
phism f with a splitting T M = E s ⊕E c ⊕E u . In general one can not find sub manifolds
tangent to E c . Indeed there is an algebraic example [Wi1] such that E c is smooth but the
Frobenius integrability condition fails (see also [BuW]).

Definition 4.23. One says that a globally partially hyperbolic diffeomorphism f is dy-
namically coherent if there exists two foliations W cs , W cu , that are invariant by f , whose
leaves are C 1 and tangent to E s ⊕E c and E c ⊕E u respectively.

Notice that we do not ask for uniqueness of the foliation. In principle there might be
many foliations tangent to E s ⊕E c (or E c ⊕E u), even many invariant foliations. See [BuW]
for discussion of different types of integrability of the bundles.

Exercise 36. Show that if f is dynamically coherent, then there exists an f -invariant foli-
ation W c tangent to E c .
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Dynamical coherence is interesting since it allows locally to project transversally to the
center. These systems behave to some extent as fibred examples and finer properties may
sometimes be obtained (such as their statistical description).

When the center is one-dimensional, there exist curves tangent to E c by Peano’s theo-
rem. But an invariant foliation tangent to E c does not necessarily exist.

Example 4.24 (Non-dynamically coherent examples [RHRHU3]). We will construct a glob-
ally partially hyperbolic diffeomorphism ofT3 with one-dimensional center bundle which
is not dynamically coherent.

Consider A ∈ SL(2,Z) a hyperbolic matrix, we denote as λ ∈ (0,1) the stable eigen-
value of A and vs , vu denote unit vectors in the eigenspaces associated respectively to
λ and λ−1. We further consider ψ : S1 → S1 a diffeomorphism of S1 which we view as
[−1,1]/(−1)∼1 such that it verifies the following properties:

- ψ(0) = 0 and ψ(1) = 1 are the only fixed points of ψ.
- 0 <ψ′(0) <λ< 1 <ψ′(1) <λ−1.

Define a diffeomorphism f :T3 →T3 viewed as T3 =T2 ×S1 and defined by:

f (x, t ) = (Ax +ϕ(t )vs ,ψ(t ))

where ϕ : S1 →Rwill be defined later. We get that

f −1(x, t ) = (A−1x −ϕ(ψ−1(t ))vs ,ψ(t ))

We denote vc to be a vector tangent to {x}×S1. So, at each point we have a basis for the
tangent space given by the vectors vs ,vc ,vu , we denote as 〈B〉 to the vector space spanned
by a subset B in a vector space. For such an f we have the following properties:

(P1) There exists a normally attracting (see section 4.9) torus T cu =T2× {0}. Moreover,
f |T cu is partially hyperbolic with splitting given by E s = 〈vc〉, E c = 〈vs〉 and E u =
〈vu〉.

(P2) There exists a repelling (but not normally repelling) torus T su =T2×{1}. Moreover,
f |T su is partially hyperbolic with splitting given by E s = 〈vs〉, E c = 〈vc〉 and E u =
〈vu〉.

We must choose ϕ : S1 → R in such a way that f is globally partially hyperbolic12. We
will use the cone criterium (Theorem 2.6). Let us first write the derivative of f :

D f(x,t )(uvu + svs + cvc ) = (λ−1u)vu + (λs +ϕ′(t )c)vs + (ψ′(t )c)vc

This implies that the subspaces 〈vu〉 and 〈vs ,vc〉 are invariant and a small cone field
around 〈vs ,vc〉 is contracted by D f −1 while vectors outside this cone field are expanded
by D f . This implies that we must only concentrate on constructing the cone field C cu

for a suitable choice of ϕ. From the invariance seen above, it suffices to work in the plane
〈vs ,vc〉 and define the cones in that plane.

An easy calculation shows that:

D f n
(x,t )(svs + cvc ) =

(
λn s +

n∑
j=1

λ j−1ϕ′(ψn− j (t ))(ψn− j )′(t )c

)
vs + ((ψn)′(t )c)vc

We will demand ϕ to verify the following.

12Since the non-wandering set is trivially partially hyperbolic we already know that f is partially hyper-
bolic. However, the splitting might not extend to the whole manifold.
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FIGURE 11. The center and stable directions inside a center-stable manifold.

(F1) ϕ′ are different from zero and have constant sign in (0,1) and (−1,0).
(F2) ϕ′(0) =ϕ′(1) = 0 and ϕ′′(0), ϕ′′(1) are non-zero.

To fix ideas, we can assume that ϕ′ is positive in (0,1) and negative in (−1,0). We claim
that this is enough to guarantee that f is partially hyperbolic. We will work only in (0,1)
the other side is symmetric.

We have to define C cu in T3. We will just define C cu ∩〈vs ,vc〉 which as we mentioned
is enough. First we define it in a neighborhood of T su . There, it must contain the center
direction of f |T su so we choose a very narrow cone field in a small neighborhood of T su

of vectors of the form v = avs +bvc with |a| ≤ ε|b|. In a small neighborhood of T su , since
ψ′(t ) is larger than λ we know that the cone field is invariant.

Now, we will propagate this cone field which we have defined inT2×[t0,1] (with t0 very
close to 1) by iterating13 it by D f n which defines a cone field in T2 × (0,1]. Since ϕ′ is
positive in all of (0,1) we can see that after some iterates, the cone field gets twisted into
the quadrant of vectors v = avs +bvc with ab > 0 (or possibly a = b = 0). This is crucial
for the construction of the cone-field, and it is where the need to add ϕ becomes clear
(notice that if ϕ= 0 the diffeomorphism cannot be partially hyperbolic).

Once the points arrive to the region (0, t1) where ψ′ is much smaller than λ one gets
that this cone field starts getting thinner and closer to the subspace 〈vs〉. Since in T2 ×
[0, t1) one can consider the cone field of vectors of the form v = avs +bvc with |b| ≤ ε|a|
which is also D f -invariant one gets that one can glue both cone-fields in order to get a
well defined global cone-field C cu which is D f -invariant. It is easy to check that vectors
outside C cu when iterated by D f −n get expanded uniformly so that the stable bundle
is uniformly contracted. The same argument can be done in T2 × [−1,0] which implies
partial hyperbolicity.

To show that E c is not integrable, we will use a simple argument we learned from C.
Bonatti14. Assume by contradiction that f is dynamically coherent. Choose a fixed point
p ∈ T su and consider a small arc I in the center foliation for which p is one extreme point.
Since in p the center direction is expanding, this arc I gets expanded by forward itera-
tions. Call In to the arc f n(I ), it follows by invariance of the center foliation that In ⊂ In+1.
After enough iterations, one gets that In intersects a small neighborhood of T cu . Since
the center direction gets tilted towards the center direction in T cu which is exponen-
tially contracted, one obtains that the length of f n(I ) is bounded by a geometric sum
and therefore, the union of all In has finite length. Since T cu is attracting, this implies
that the curve must “land” in T cu but T cu is foliated by center curves. This implies that
E c is not uniquely integrable. Using the fact that the same happens from both sides (and

13One must consider its iterate and then thicken it a little in order to have that the closure of the cone gets
mapped into the interior of its image.

14Who attributes it to Grines, Levchenko, Medvedeev and Pochinka.
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that the curves land with the same direction because of property (F2), see figure 11) one
contradicts dynamical coherence15.

♦

It is an open problem to decide if a transitive partially hyperbolic diffeomorphism with
one-dimensional center must be dynamically coherent. In dimension 3, the work of
Burago-Ivanov ([BI]) is quite relevant and an important partial answer. It allows one
to define branching foliations which are sometimes useful to understand dynamical co-
herence (one must notice however that this branching foliations exist in the example of
[RHRHU3]).

In [BBI2] branching foliations as well as a criteria of Brin (see remark 4.9) is used to
obtain dynamical coherence for absolutely partially hyperbolic diffeomorphisms of T3.

In the series of works [Pot2, HPo1, HPo2], among other things, dynamical coherence is
established for strong partially hyperbolic diffeomorphisms in 3-manifolds with (virtu-
ally) solvable fundamental group, unless the diffeomorphism admits a torus tangent to
either E s ⊕E c or E c ⊕E u . In the setting of 3-manifolds, it is a conjecture of [RHRHU3]
that the existence of such tori is the unique obstruction for dynamical coherence (see
[CRHRHU] for a more detailed account on this problem).

We wish to remark that when the center-dimension is higher, less is known. There
are the local stability results ([HPS]) which we shall review in the next section, but very
few “global stability results” are known. We refer the reader to [Pot2, FPS] and reference
therein for some results in this direction under some strong assumptions on the underly-
ing topology of the manifold and the isotopy class of the diffeomorphism. Techniques for
studying the involutivity of bundles under dynamical assumptions are being developed
by Luzzatto, Turelli and War [LTW], but still many questions remain.

Exercise 37 ([BI] Proposition 3.1). Let f : M → M be a partially hyperbolic diffeomor-
phism with splitting T M = E s ⊕E c ⊕E u with dimE c = 1 and γ be a closed arc tangent to
E c . Show that the saturation of γ by local strong stable manifolds is an embedded sub-
manifold tangent to E s ⊕E c .

Notice that this does not imply that the saturation of a center curve by strong stable
manifolds is a complete submanifold of M . Indeed, in the example of [RHRHU3] center-
stable leaves are not complete. The problem of completeness of center-stable manifolds
seems to be at the heart of difficulties concerning the understanding of dynamical coher-
ence in dimension 3 (see [BoW, BI, HPo2]).

4.9. Structural stability of normally hyperbolic laminations. It is sometimes useful to
perform the graph transform method globally. This is the case in the proof of persistence
of normally hyperbolic submanifolds or foliations. We refer the reader to [HPS] or [Ber]
for detailed proofs.

Consider f : M → M a C 1-diffeomorphism and Λ ⊂ M a compact f -invariant set. We
shall assume that Λ is laminated by an f -invariant lamination L . This means that for
each x ∈Λ there exists a C 1-injectively immersed submanifold L (x) ⊂Λ with the follow-
ing properties:

• if L (x)∩L (y) 6= ; then L (x) =L (y),

15If one chooses ϕ differently one can construct a dynamically coherent example for which E c is not
uniquely integrable, see [RHRHU3].
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• if xn → x then L (xn) converges to L (x) uniformly in the C 1-topology in compact
subsets, (in particular the map x 7→ TxL (x) ⊂ Tx M defines a continuous distribu-
tion),

• f (L (x)) =L ( f (x)) for each x ∈Λ.

We say that the lamination L is normally hyperbolic if f admits a partially hyperbolic
splitting TΛM = E s ⊕E c ⊕E u where E c (x) = TxL (x) for every x ∈Λ. Moreover, we say it
is normally expanded (resp. normally contracted) if E s = {0} (resp. E u = {0}). One defines
similarly (see Definition 4.18) an r -normally hyperbolic lamination.

Remark 4.25. Notice that if L is a lamination by points, normal hyperbolicity of L is
equivalent to have that uniform hyperbolicity of Λ.

Whenever there is a normally hyperbolic lamination, one has the following persistence
result:

Theorem 4.26 (Stability of normally hyperbolic laminations). Let f : M → M be a C 1-
diffeomorphism, leaving invariant a normally hyperbolic lamination L on a compact set
Λ. Then, a C 1-neighborhood U of f exists such that for every g ∈U there exists a continu-
ous map i g : Λ→ M with the following properties:

• (Invariance:) g (i g
x (L (x))) = i g

f (x)(L ( f (x))) (and hence Λg := i g (Λ) is invariant).

• (Continuation of leaves:) the map i g induces an immersion i g
x : L (x) → M (possi-

bly no longer injective) whose image is everywhere tangent to E c
g (the continuation

of the bundle E c of f for g on Λg ).
As g gets C 1-close to f , the maps i g

x get C 1-close to the inclusions ix : L (x) ,→ M.
• (Continuity:) The leaves Lx

g = i g
x (L (x)) with x ∈ Λ vary continuously for the C 1-

topology on compact subsets.
• (Uniqueness:) The (image of the) immersion i g

x is unique with the condition of
being C 0-close to ix .

The idea of the proof is to perform a graph transform argument in an entire neigh-
borhood of the immersion. This involves unwrapping the immersion to an abstract im-
mersion into a neighborhood of the leaf which depends on the point and then applying
arguments very similar to the ones we have already done albeit more technical.

This result is not completely satisfactory since in principle leaves of the new “lamina-
tion” could merge. One sometimes calls this branching laminations (see [BI] for use of
this notion).

Under a technical condition (which is always satisfied in case the lamination can be
extended to a neighborhood into a C 1-foliation) it is possible to improve Theorem 4.26
to have a true lamination for diffeomorphisms close to f . This condition is known by the
name of plaque-expansiveness (we refer the reader to [HPS] and [Ber] for more informa-
tion about it). In subsection 4.10, we give some indications on how to use this property to
show that leaves do not merge.

We make the following remarks on Theorem 4.26 since we shall not enter in the details
of its proof. The first remark is that to be able to perform a global graph transform one
uses strongly the fact that the dynamics are C 0-close (and not only that the invariant bun-
dles are close). The other remark is that even in the simplest case of a closed submanifold
N ⊂ M which is normally hyperbolic, the graph transform must be performed with some
care since does not have a priori a fixed point on which to “center” the graph transform
argument. We refer the reader to [BerB] for a short proof in this particular and easier case
and propose the following:
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Exercise 38. Show the persistence of a normally attracting circle in a surface.

Exercise 39. Give an example of an integrable distribution E ⊂ T M and of an integrable
perturbation such that the tangent foliations are very “different” (for example, leaves get
arbitrarily separated in the universal cover). Compare with the stability ensured by The-
orem 4.26.

4.10. Plaque expansivity. For simplicity, we will work with globally partially hyperbolic
diffeomorphisms. Let f : M → M be a globally partially hyperbolic diffeomorphism with
a splitting T M = E s ⊕E c ⊕E u leaving invariant a foliation F c tangent to E c .

Definition 4.27. f is plaque-expansive if there exists ε> 0 such that if (xn)n∈Z and (yn)n∈Z
are two sequences sastifying for each n ∈Z:

• f (xn) ∈ F c
ε (xn+1) and f (yn) ∈ F c

ε (yn+1) (i.e. xn and yn are ε-pseudo orbits with
jumps in center plaques),

• d(xn , yn) < ε for every n ∈Z,

then, y0 ∈F c
ε (x0).

The following result is contained in [HPS]:

Theorem 4.28. Let f be a globally partially hyperbolic diffeomorphism preserving a foli-
ation F c tangent to E c which is plaque expansive. Then, for any C 1-small perturbation g
of f , there exists a foliation F c

g tangent to the center bundle of g and a homeomorphism
h : M → M such that h ◦ f (F c (x)) = g (F c

g (h(x))).

PROOF. We apply Theorem 4.26. Define the map h = i g . Assume by contradiction that
there are points x, y such that y ∉F c

ε (x) and i g (x) = i g (y) = z.

We consider two sequences: (xn)n∈Z, (yn)n∈Z defined by

xn = (i g
f n x )−1(g n(z)) ∈F c ( f n(x)) and yn = (i g

f n y )−1(g n(z)) ∈F c ( f n(y)).

Since g and f are C 0-close, they are ε-pseudo-orbits with jumps in center plaques. More-
over, since the maps are close to the inclusion and one takes the pre image of the same
point, one gets that d(xn , yn) ≤ ε for every n. Using plaque-expansiveness one deduces
that y ∈F c

ε (x) a contradiction. This proves that h = i g is injective. Since h is close to the
identity, it has degree 1, hence is surjective. Hence h is a homeomorphism. We refer the
reader to [HPS, Chapter 7] for more details.

�

Exercise 40 ([HPS]). Show that if F is a normally hyperbolic C 1-foliation then it is plaque
expansive.

Corollary 4.29 ([HPS]). There exist C 1 open sets of globally partially hyperbolic diffeomor-
phisms such that all of them are dynamically coherent.

It is an open problem to determine whether every foliation tangent to the center bundle
of a partially hyperbolic diffeomorphism is plaque expansive.
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5. ROBUST TRANSITIVITY

In the last parts of these notes, we discuss how to generalize Smale’s spectral decom-
position theorem to the partially hyperbolic setting. In this section we discuss the case
where the dynamics is undecomposable.

We will focus on the class PHr of C r -diffeomorphisms such that M is endowed with a
global partially hyperbolic structure T M = E s ⊕E c ⊕E u and both E s and E u non-trivial.
We will mainly concentrate on the subclass PHr

c=1 where the center is one dimensional.

Clearly, the dynamics decomposes when there exists a non-trivial trapping region:

Trapping region: there exists a proper non-empty open set U such that f (U ) ⊂U .

In this case there exists at least two chain-recurrence classes (see Section 1.1.2 above).
When this does not happen, the whole system is chain-transitive: for any ε > 0, there
exists a dense forward ε-pseudo-orbit. But one usually considers stronger forms of recur-
rence (or undecomposability):

Transitivity: f is transitive if it admits a dense forward orbit.

In the C 1-topology, the following dichotomy holds.

Theorem 5.1 (Bonatti-Crovisier [BC1]). There exist two disjoint open sets O1,O2 ⊂ Diff1(M)
whose union is dense:

– the diffeomorphisms in a dense Gδ subset of O1 are transitive,
– the diffeomorphisms in O2 have a trapping region.

In this statement, the transitivity only occurs for a dense set of diffeomorphisms in
Diff1(M)\O2. One would like to improve this result by removing the genericity and getting
a robust property, i.e. replace the Gδ set by an open set. This lead to the following notion.

Robust transitivity: A diffeomorphism is robustly transitive if any diffeomorphism
C 1-close is still transitive.

This section introduces several geometrical properties of the strong stable/unstable
laminations which have dynamical consequences and in particular allows – in some cases
– to prove the robust transitivity. Our ultimate goal is to give the following improvement of
the previous theorem, which is a combination of results established in [ACP] and [CPoS].

Theorem 5.2 (Abdenur-Crovisier-Potrie-Sambarino). There exists two disjoint open sets
O1,O2 ⊂PH1

c=1 whose union is dense:

– the diffeomorphisms in O1 are (robustly) transitive,
– the diffeomorphisms in O2 have a trapping region.

Exercise 41. Consider an homeomorphism f on a compact metric space X . Prove that:
The homeomorphism f is transitive if and only if for any non-empty open sets U ,V ,
there exists n ≥ 1 such that f n(U )∩V 6= ;. Assuming that X has no isolated points, f
is transitive if and only if for any non-empty open sets U ,V , there exists n ∈ Z such that
f n(U )∩V 6= ;.

5.1. Accessibility. Here we do not necessarily assume that the center is one-dimensional,
but the partial hyperbolicity holds on the whole M .

Definition 5.3. A diffeomorphism f which preserves a partially hyperbolic splitting T M =
E s ⊕E c ⊕E u is accessible if for any x, y ∈ M , there exists a finite collection of points x0 =
x, x1, . . . , xn = y such that each pair xi , xi+1 belong to a same strong stable manifold or a
same strong unstable manifold. (In particular M has to be connected.)
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x = x0

xn = y

s u u
s

FIGURE 12. The accessibility property.

In W σ(x) the leaf of W σ through x one has a well defined intrinsic metric induced by
the restriction of the riemannian metric to the leaf W σ(x) (for σ = ss,uu). We say that a
subset U ⊂W σ(x) has internal radius ≥ R if it contains a disk of radius R with this metric.

Theorem 5.4 (Brin’s argument [Br1]). If f is accessible and Ω( f ) = M, then f is transitive.

In particular if f is accessible and preserves a volume form on M , it must be transitive.

PROOF. Consider two open sets U and V ⊂ M . Choose x ∈ U and y ∈ V and consider a
sequence x0 = x, x1, . . . , xn = y such that each pair xi , xi+1 belongs to the same stable or
unstable manifold as in the definition of accessibility.

Claim. Given neighborhoods Bi ,Bi+1 of xi , xi+1 and a sequence of open sets Wk ⊂ Bi accu-
mulating on xi , there exists a sequence (nk ) in Z such that f nk (Wk ) accumulates to xi+1.

Proof. Choose an arbitrary ε > 0. We can assume it is so small that B(xi+1,ε) ⊂ Bi+1.
Continuity of the unstable manifold (Theorem 4.3) gives δ and R > 0 such that if a point
z is at distance smaller than δ from xi then its unstable manifold of size R intersects
B(xi+1,ε).

Now, choose k large enough so that W ′
k :=Wk ∩B(xi ,δ) 6= ;. Using the fact that Ω( f ) =

M one can choose a points zk ∈ W ′
k and such that f nk (zk ) ∈ W ′

k with ni arbitrarily large.
It follows that f nk (W uu(zk )∩W ′

k ) has arbitrarily large internal radius and so, for large k,
intersects B(xi+1,ε). Since εwas arbitrary small, this concludes the proof of the claim. �

Now, one can conclude the proof of the theorem by induction on i , finding iterates of U
which intersect small neighborhoods of xi ’s until they intersect a small neighborhood of y
and therefore intersect V as desired. The criterion for the transitivity stated in exercise 41
is thus satisfied. �

Accessibility holds for many diffeomorphisms:

Theorem 5.5 (Dolgopyat-Wilkinson [DW]). Let us assume M connected.

There exists an open and dense subset U ⊂ PH1 (for the C 1-topology) such that the dif-
feomorphisms in U are accessible.

The space of volume preserving globally partially hyperbolic C 1-diffeomorphisms con-
tains an open and dense subset U ⊂PH1

vol whose elements are accessible.

Corollary 5.6. If M is connected, then the set of transitive diffeomorphisms contains a
dense open set of PH1

vol .

In the case the center is one-dimensional, stronger results hold:

– accessibility is open (for the C 1-topology) in PH1
c=1 (Didier [Di]),

– accessibility is dense in PHk
c=1 for any k ≥ 1 (F. Rodriguez-Hertz - M.A. Rodriguez-

Hertz - Ures [RHRHU2]).
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5.2. Criteria for robust transitivity. Different arguments for producing robust transitiv-
ity have been introduced:

– Shub, Mañé, Bonatti-Viana,... constructed examples of robustly transitive sys-
tems by deformation of Anosov diffeomorphisms,

– Bonatti-Díaz and Bonatti-Diaz-Viana have given a geometrical mechanism, which
uses the construction of large hyperbolic sets (blenders).

We refer the reader to [BDV, Chapter 7] for an introduction to these mechanisms with
plenty of references. We present here another mechanism, quite related to Bonatti-Diaz-
Viana’s criterion (but which does not use blenders) or to Pujals-Sambarino [PS2].

a. Dynamically minimal strong foliations.

Definition 5.7. Consider a diffeomorphism f ∈ PH. Its strong stable foliation W ss is dy-
namically minimal if any f -invariant compact set, saturated by strong stable leaves is
either empty or equal to M .

We will mainly work with dynamically minimal strong stable foliations but symmetric
statements hold for strong unstable foliations.

Proposition 5.8. If f ∈ PH has a dynamically minimal strong stable foliation, then it is
transitive.

Exercise 42. (1) Show that the strong stable foliation is dynamically minimal if and
only if for every disk D in a strong stable leaf verifies that

⋃
n≤0 f n(D) = M .

(2) Prove Proposition 5.8.
(3) Show that if the strong stable foliation is dynamically minimal, then for every ε> 0

there exists R > 0 and n0 > 0 such that every disk D in a strong stable manifold
with internal radius ≥ R verifies that D ∪ f −1(D)∪ . . .∪ f −n0 (D) intersects every
ball of radius ε in M (i.e. it is ε-dense). Conclude that if the strong stable foliation
is dynamically minimal, then for every ε > 0 there is a C 1-open neighborhood of
f such that every g in the neighborhood verifies that its strong stable foliation is
dynamically ε-minimal.

(4) Give an example of f ∈ PH whose strong stable foliation is dynamically minimal
but not minimal. (Hint: Consider a product example.)

However the dynamical minimality is in general not a robust property as can be seen
by considering the diffeomorphism f :T2×S1 →T2×S1 given as (x, t ) 7→ (Ax, t+α) where
A ∈ SL(2,R) is hyperbolic and α ∈R\Q. However, one has the following:

Proposition 5.9. Let f ∈ PH whose strong stable foliation is dynamically minimal, then,
for every ε > 0 there exists U a C 1-neighborhood of f such that the strong stable foliation
of any g ∈ U is dynamically ε-minimal. More precisely, there exist n0 > 0 and R > 0 (in-
dependent of g ) such that if D is a disk in a strong stable manifold of g of internal radius
larger than R then D ∪ g−1(D)∪ . . .∪ g−n0 (D) is ε-dense in M.

PROOF. This follows from property (3) in Exercise 42 and the continuous variation of
strong manifolds with respect to the diffeomorphism. �

b. Property SH (“some hyperbolicity”). The following property was introduced in [PS2] to
obtain a criteria for having robustly minimal foliations:

Definition 5.10. Let f ∈PH. We say that the strong unstable foliation has the property SH
if there exists N ≥ 1 and ε > 0 such that any a strong unstable disk Du of internal radius
> ε contains a closed subdisk D ′ ⊂ Du such that:
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• f N (D ′) has internal radius > ε,
• for any x ∈ D ′ one has that m(D f N |E c (x)) > 2.

Remark 5.11. This property can be defined also for invariant strong compact sets which
are union of strong unstable leaves, see Section 5.3 below.

Exercise 43. a– An equivalent definition of SH: there exists N ≥ 1 and ε> 0 such that any
any a strong unstable disk Du of internal radius > ε contains a point x which satisfies:

n−1∏
k=0

m(D f N |E c ( f N k (x))) > 2n . (5.2.1)

b– The property SH is open: If the strong unstable foliation of f ∈ PH has the prop-
erty SH, then for any g in a C 1-neighborhood of f the strong unstable foliation has the
property SH (with the same constants N ,ε).

To show that how property SH implies robust transitivity, let us state the following re-
sult, close to [PS2].

Proposition 5.12. Let f ∈ PH whose strong stable foliation is dynamically minimal and
whose strong unstable foliation has the property SH. Then for any diffeomorphism C 1-close
to f the strong stable foliation is dynamically minimal.

PROOF. Since property SH is open, one can choose U0, a C 1-neighborhood of f such
that for every g ∈U0 and any strong unstable disk Du of internal radius larger than ε has
a point x satisfying equation (5.2.1). This implies that there exists δ > 0 such that any
center-unstable disk around x has a forward iterate with internal radius larger than δ.

Choose U1 ⊂U0 a smaller neighborhood of f such that if g ∈U1 one has that the strong
stable foliation is dynamically δ-minimal (c.f. exercise 42).

Choose g ∈U1, a strong stable disk D s for g and an arbitrary open set U ⊂ M . We must
show that there exists n > 0 such that g−n(D s)∩U 6= ; to apply again exercise 42 and
conclude.

Consider Du an unstable disk contained in U and after a finite forward iterate there is
a point x ∈ g n1 (Du) such that equation (5.2.1) holds. Choose an arbitrary center-unstable
disk Dcu containing g−n1 (x) and contained in U . It follows that it eventually attains an
internal radius larger than δ; i.e. there exists n2 such that g n1+n2 (Dcu) contains a disk
of radius δ tangent to the center-unstable bundle. Now, since the strong stable foliation
is dynamically δ-minimal it follows that there exists n3 > 0 such that g−n3 (D s) intersects
g n1+n2 (Dcu). It follows that g−n1−n2−n3 (D s)∩U 6= ; as desired. �

Remark 5.13. Notice that for the proof it is not essential that the time it takes to the center-
unstable disk to grow is controlled. Moreover, it is enough to have a property “like” prop-
erty SH in a dense set of unstable leafs, since we have chosen any unstable disk inside U
but we could have chosen a different one without a problem.

In the next subsections, we will discuss how to check the property SH for a certain par-
tially hyperbolic diffeomorphism. See also [HeTe] for related results.

c. Mañé’s example of a robustly transitve non-hyperbolic dynamics. We show here how to
construct a derived from Anosov in T3 which is robustly transitive yet not hyperbolic, as
proposed in [Ma1]. The proof uses the deformation introduced in Section 3.5.1 and then
the criterion of Proposition 5.12 as in [PS2].
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We start by a linear Anosov diffeomorphism f A :T3 →T3 where A ∈ SL(3,Z) is a hyper-
bolic matrix with eigenvalues 0 < λ1 < 1 < 2 < λ2 < λ3. In a small neighborhood U of a
fixed point p of f A we perform an isotopy ft with t ∈ [0,1] (and f0 = f A) of the same form
as the one made in subsection 3.5.1, which in local coordinates looks, for t < 1, like

ft : (x, y, z) 7→ (λ1.x, g t
x,z (y),λ3.z), such that 1 < ‖Dg t

x,z‖ <λ3.

As in subsection 3.5.1 we require that cone-fields around the initial bundles are pre-
served by D ft for every t , in particular ft is partially hyperbolic with splitting TT3 =
E s ⊕E c ⊕E u (and if t < 1 the bundle E c is uniformly expanded and ft is Anosov).

By choosing g t correctly we can ensure that for t = 1 the point p is no longer hyperbolic
(has eigenvalue equal to 1 in the y direction) while at any other point it continues to hold
that 1 < ‖Dg 1

x,z‖ <λ3. It follows that f1 is no longer Anosov, however:

Exercise 44. Show that the strong stable foliation of f1 is minimal. (Hint: f1 is still topo-
logically conjugate to f A .)

Now, we must check that the strong unstable foliation W uu of f1 satisfies the SH prop-
erty. But this is quite direct since we have performed the perturbation in a small ball
around p, and therefore every unstable arc of length larger than one has at least one point
outside the perturbation region. Therefore, the derivative of f1 along that point expands
by at least λ2 > 2 establishing property SH.

Using Proposition 5.12 we know that f1 is robustly transitive. Moreover, one can per-
turb f1 to a diffeomorphism g which is C 1-close and for which there is at least one peri-
odic point whose stable dimension is 2; in particular, it is robustly non-Anosov.

d. Another criterion for robust transitivity. We give a variant of the previous criterion
which does not use the minimality of the strong stable foliation.

Proposition 5.14. Let f ∈PH transitive whose both strong stable and strong unstable foli-
ations have the property SH. Then f is robustly transitive.

PROOF. As in the proof of Proposition 5.12 one has δ > 0 and a neighborhood U0 of f
such that if g ∈U0 and Du is any unstable disk, then there is a point x ∈ Du such that for
any center-unstable disk Dcu containing x has a forward iterate by g containing a center-
unstable disk of internal radius ≥ δ. Since property SH also holds for the stable foliation
one can assume that the same δ and U0 work for strong stable disks and backward iter-
ates.

Now, choose ε¿ δ and pick a neighborhood U1 ⊂ U0 of f such that for every g ∈ U1

there is a point y whose forward and backward orbits are ε-dense.

Let g ∈ U1 and open sets U ,V ⊂ M . Since g ∈ U0 there exists n1 such that g n1 (U )
contains a center-unstable disk Dcu of internal radius ≥ δ. Similarly, there exists n2 such
that g−n2 (V ) contains a center-stable disk Dcs of internal radius ≥ δ. Now, consider the
point y with ε-dense backward and forward orbit, so one has that there exists n3,n4 >
0 such that g−n3 (y) is very close to Dcu and g n4 (y) is very close to Dcs . It follows that
W ss
ε (g−n3 (y))∩Dcu 6= ; and W uu

ε (g n4 (y))∩Dcs 6= ;.

Let z ∈ W ss
ε (g−n3 (y))∩Dcu and consider g n3+n4 (W uu

ε (z)) ⊂ g n3+n4 (Dcu) which is very
close to a compact part of W uu

loc (g n4 (y)) and therefore intersects Dcs . One has proved that
g n1+n2+n3+n4 (U )∩V 6= ; showing transitivity of g . �
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5.3. Minimal strong unstable laminations. Let f ∈ PH. In general its strong foliations
may not be dynamically minimal and one introduces the following notions.

Definition 5.15. A compact set Λ is a strong unstable lamination if it consists of entire
strong unstable leaves (i.e. if x ∈Λ then W uu(x) ⊂Λ).

A set Λ will be called a minimal strong unstable lamination if

– it is a non-empty f -invariant strong unstable lamination,
– any subset of Λ satisfying the same properties coincides with Λ.

Exercise 45. 1. Any invariant strong unstable lamination contains a minimal strong un-
stable laminations.

2. On any minimal strong unstable lamination the dynamics is transitive.

Minimal strong unstable laminations will re-appear in the next section, but in this one
we are interested in such sets mainly because of the following property from [ACP]:

Theorem 5.16 (Abdenur-Crovisier-Potrie). There exists a dense Gδ subset G ⊂PH1
c=1 such

that any f ∈G and any minimal strong unstable laminationΛ has the following property:
EitherΛ has a basis of U neighborhoods satisfying f (U ) ⊂U , orΛ satisfies the property SH.

Corollary 5.17. For any non-Anosov transitive diffeomorphism f in a dense Gδ set ofPH1
c=1,

the property SH holds for any minimal strong stable lamination and any minimal strong
unstable lamination.

In fact, from the Theorem one can show that every strict strong stable (resp. strong
unstable) lamination has property SH. But being non-Anosov and using the fact that we
can choose f in a dense Gδ set one knows that if the strong stable (resp. strong unstable)
lamination is minimal then it must cross a blender and therefore will also have property
SH. See [BD2].

5.4. Transversality. In this section we discuss a geometric property of the strong unsta-
ble foliation. This will be discussed further and with more details in the following section.
The definition only makes sense when the center direction is one-dimensional (so that
the strong-unstable manifolds are one-codimensional inside the center-unstable discs).

Definition 5.18. Let f ∈PH1
c=1. We say that the strong unstable foliation W uu (or a min-

imal strong unstable lamination Λ) is transverse if there exists R > 0 large and ε> 0 small
so that inside any unstable disk D of internal radius > R there exist points x 6= y with:

– d(x, y) < ε and y ∈W ss
loc (y),

– using the holonomyΠss along the strong stable leaves onto a center unstable disc
W cu

loc (x) centered at x, the projection of the local unstable manifold W uu
l oc (y) inter-

sects both connected components of W cu
l oc (x) \W uu

loc (x). See figure 13.

y

x

W uu(y)

W uu(x) W ss (x)

Πss (W uu(x))

FIGURE 13. Transversality of the unstable lamination.
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Exercise 46. a) Let f ∈ PHc=1. If the transversality holds in restriction to each minimal
strong unstable lamination, then the strong unstable foliation is transverse.

b) The transversality of the strong unstable foliation is a C 1 open property in PHc=1.

c) If the strong unstable foliation of f ∈ PHc=1 is transverse, then there exist at most
finitely many minimal strong unstable laminations.

d) If f is generic in PHr
c=1 and has a transverse strong unstable foliation, the the number

of minimal strong unstable lamination is constant on a neighborhood of f . Moreover
for g close to f , the minimal strong unstable laminations of g are contained in small
neighborhoods of the minimal strong unstable laminations of f .

The following improves the Theorem 6.7 which will be discussed in the next section.

Theorem 5.19 ([ACP]). There exists a dense Gδ subset G ⊂PH1
c=1 such that any f ∈G and

any minimal strong unstable lamination Λ has the following property:

– Either there exists a basis of neighborhoods U of Λ satisfying f (U ) ⊂U ,
– or Λ is transverse.

Corollary 5.20. For any transitive diffeomorphism f in a dense Gδ subset of PH1
c=1 the

strong stable and strong unstable foliations are transverse.

5.5. A dichotomy: robust transitivity versus trapping region. We now explain shortly
how to conclude the proof of Theorem 5.2. It is enough to consider a transitive diffeo-
morphism f ∈ PH1 which belong to the dense Gδ subsets provided by Corollaries 5.17
and 5.20 and to show that f is robustly transitive.

1. Corollary 5.20 implies that the strong stable and unstable foliations are transverse, this
is a robust property.

2. The exercise 46 implies that the minimal strong unstable laminations are finite and
remain close for diffeomorphisms g close to f .

3. Corollary 5.17 holds on any minimal strong stable lamination and any minimal strong
unstable lamination of f . From item (2), this is still satisfied for g close to f (with the
same constants N ,ε, see also exercise 43).

4. We then conclude by a variation of Proposition 5.14 (see also remark 5.13) that f is
robustly transitive:

Proposition 5.21. Let f ∈ PH transitive whose both strong stable and strong unstable fo-
liations are transverse and such that SH holds for any minimal strong stable or unstable
lamination of any diffeomorphism close. Then f is robustly transitive.
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6. ATTRACTORS AND UNSTABLE LAMINATIONS

In order to generalize Smale’s spectral decomposition (that holds for hyperbolic diffeo-
morphisms), we would like to describe how the dynamics may be decomposed.

a. Finiteness of the decomposition. Following the discussion of section 1.1.2, one asks:

Question 1. How many (non-trivial) levels can we obtain in a filtration?
That is: can one find filtrations U0 ⊂U1 ⊂ ·· · ⊂UN with N arbitrarily large such that the
maximal invariant set in Ui+1 \Ui is non-empty?
Equivalently, is the set of chain-recurrence classes infinite?

Inside the whole space of diffeomorphisms we have seen that there are large classes
of diffeomorphisms which possess infinitely many chain-recurrence classes (for instance
these diffeomorphisms may have infinitely many sinks, as in the Newhouse phenome-
non): all known examples occur close to diffeomorphisms exhibiting homoclinic tangen-
cies. In the class of partially hyperbolic diffeomorphisms whose center bundle splits into
one-dimensional subbundles (as discussed in Section 1.2.1) we expect that it is not the
case:

Finiteness conjecture. (Bonatti [Bon]) For f in a dense open subset of PH1
c=1, the number

of chain-recurrence classes is finite.

As in Section 5, PH1
c=1 denotes the space of globally partially hyperbolic C 1-diffeomor-

phisms with one-dimensional center. One can also consider the more general class P̂H1
c=1

of C 1-diffeomorphisms whose chain-recurrence classes have a partially hyperbolic de-
composition TΛM = E s ⊕E c ⊕E u , such that dim(E c ) ≤ 1, and E s or E u can be trivial.

b. Finiteness of attractors. We will restrict the problem of finiteness to specific chain-
recurrence classes, called quasi-attractors, which include the classical notion of transitive
attractor. We will present some parts of [CPoS] where the following result is obtained.

Theorem 6.1 (Crovisier-Potrie-Sambarino). For f is a dense open subset of PH1
c=1 or more

generally of P̂H1
c=1, there exist at most finitely many (quasi-)attractors.

For hyperbolic diffeomorphisms, the finiteness of the spectral decomposition holds
as a simple consequence of the uniform size of stable and unstable manifolds. For par-
tially hyperbolic diffeomorphisms stable and unstable sets are small or degenerate in the
center direction and this argument is no longer available. Instead, we use the fact that
quasi-attractors are saturated by unstable manifolds and we obtain the result as a con-
sequence of a geometric property satisfied by unstable laminations which, in a nutshell,
implies that each quasi-attractor must occupy a uniform space in M . This study was ini-
tiated in [CPu] where the case of diffeomorphisms far from homoclinic tangencies and
heterodimensional cycles was treated. The problem for classes which are not attractors is
much harder and, for the moment, there is no known technique to approach the problem
of finiteness of chain-recurrence classes in this general setting.

Together with Theorem 1.6 (which uses completely different techniques) our main re-
sult gives as a consequence the following one which is a step towards the understanding
of dynamics far from homoclinic tangencies. It also improves (in dimension 3) a result
announced16 in [BGLY] (though their result holds in any dimension).

16In [BGLY] they show that there exists a dense Gδ subset G of diffeomorphisms far away from homoclinic
tangencies such that if f ∈G then all quasi-attractors of f are isolated from each other (but might in principle
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Corollary 6.2. Let M be a 3-dimensional manifold. Then, there exists an open and dense
subset U of Diff1(M) such that if f ∈U then:

• either f has robustly finitely many quasi-attractors,
• or f can be C 1-approximated by a diffeomorphism g which exhibits a homoclinic

tangency.

c. Recurrence inside the classes. It is possible to pose some questions about the internal
dynamics of each of the chain-recurrence classes, particularly when they are isolated:

Question 2. How recurrent is the dynamics in each level?
What happens when one perturbs the dynamics?

Let us consider a level of a filtration defined by a filtration pair Ui ⊂Ui+1 and which can-
not be split further: there is no open set V such that ;⊂Ui ⊂V ⊂Ui+1 ⊂ M is a filtration
and the maximal invariant sets in V \Ui and Ui+1 \V are non-empty.

Does it mean that the dynamics on the maximal invariant in Ui+1 \Ui is transitive?

In this case Is it still the case for the diffeomorphisms close?

Again, it may make sense to separate this study depending on further properties of the
chain-recurrence classes (for example, as we did in the last section, the case where the
whole manifold is a chain recurrence class). We refer the reader to the introduction of
[BCGP] for a more detailed presentation of this problem and we also mention the work
[No] for some progress in the case of attractors.

6.1. Attracting sets and quasi-attractors.

a. General definition. Let f be a homeomorphism of a compact metric space M .

Definition 6.3. We say that a compact invariant set Λ is an attractor if

– there exists an open set U ⊂ M such that f (U ) ⊂U and Λ=⋂
n>0 f n(U ),

– the restriction of f to Λ is transitive.

An attractor for f −1 is called a repeller.

In general, a diffeomorphism may not have any attractor, however, it will always have
what we call quasi-attractors.

Definition 6.4. A compact invariant set Q is a quasi-attractor for f if

– there exist arbitrarily small neighborhoods U ⊂ M of Q such that f (U ) ⊂U ,
– Λ is a chain-recurrence class.

A quasi-attractor for f −1 is called a quasi-repeller.

Exercise 47. Show that every homeomorphism f : M → M has a quasi-attractor.

In contrast, large sets of diffeomorphisms may present no attractors at all ([BLY]).

accumulate in a set which is not a quasi-attractor). They call essential attractors such quasi-attractors since
it can be shown that their basin contains a dense Gδ subset of a neighborhood.
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b. Partially hyperbolic quasi-attractors. Now f is a diffeomorphism. Consider a filtrating
pair defined by open sets V ⊂U ⊂ M satisfying f (U ) ⊂U and f (V ) ⊂V and let us assume
that the maximal invariant set K = ⋂

n∈Z f n(U \ V ) has a partially hyperbolic structure
TΛM = E s ⊕E c ⊕E u where both E s and E u are non-trivial and such that dimE c = 1.

Exercise 48. Show that any quasi-attractor Q ⊂U \V is saturated by strong unstable man-
ifolds.

Exercise 49. Show that if {Qn} is a sequence of quasi-attractors in K converging to Λ in
the Hausdorff topology, then Λ⊂ K is W uu-saturated.

c. Minimal strong unstable laminations. If Q and Q ′ are two different quasi-attractors
then Q ∩Q ′ =;. Therefore, there are fewer quasi-attractors in K than there are minimal
strong unstable laminations (recall Definition 5.15). The main result on [CPoS] is the
following. Clearly it implies Theorem 6.1.

Theorem 6.5 ([CPoS]). For any diffeomorphism f in a dense Gδ subset of Diff1(M), an
compact f -invariant set K admitting a strong partially hyperbolic splitting TK M = E s ⊕
E c ⊕E u with dimE c = 1 then K contains at most finitely many minimal strong unstable
laminations.

PROOF OF THEOREM 6.1. It is enough to consider a diffeomorphism in a dense Gδ subset
of P̂H1

c=1, since the number of quasi-attractor varies semi-continuously with respect to f .

Let us assume by contradiction that there exists an infinite sequence of quasi-attractors,
hence of minimal strong unstable laminations (Ln). Each of them is contained in a chain-
recurrence class Cn . Up to consider a sub-sequence, Cn converges to a setΛ contained in
a chain-recurrence class C (prove it!). Since f ∈ P̂H1

c=1, the class C has a partially hyper-
bolic structure with one-dimensional center. Moreover, there exists a filtrating pair V ⊂U
such that the maximal invariant set K in U \V is a small neighborhood of C , hence is also
partially hyperbolic. For n large Ln is contained in U \ V , hence in K . This contradicts
Theorem 6.5. �

The proof of Theorem 6.5 has two stages which will be described in the next sections:

– obtain by perturbation a geometric property of strong unstable laminations veri-
fied in an open and dense subset of Diff1(M),

– deduce from this geometric property the finiteness of minimal strong unstable
laminations.

6.2. Non joint integrability inside unstable laminations. Let f ∈ Diff1(M). As before we
consider the geometry of strong unstable laminations contained in a partially hyperbolic
set with a one-dimensional center.

Definition 6.6. We say that a strong unstable lamination Λ is non-jointly integrable (NJI)
if for every r,r ′t > 0 sufficiently small, there exists δ> 0 with the following property.

If x, y ∈Λ′ satisfy y ∈W ss
l oc (x) and ds(x, y) ∈ (r,r ′), then there is z ∈W uu

t (y) such that:

d(W ss
l oc (z),W uu

loc (x)) > δ

By ds we refer to the distance inside W ss and by W σ
ε (x) (σ= ss,uu) we denote the ε-ball

around x in W σ(x) with the intrinsic metric.

This property is weaker than the transversality, but is a strong form of non-joint inte-
grability: the joint integrability between E ss and E uu fails for any pair of strong unstable
manifolds connected by a strong stable leaf.
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FIGURE 14. The non-joint integrability.

Theorem 6.7 ([CPoS]). For any diffeomorphism f in a Gδ-dense subset G of Diff1(M) and
inside any partially hyperbolic set with one-dimensional center bundle, each strong unsta-
ble lamination Λ is NJI.

Remark 6.8. Using the continuity of the strong manifolds with respect to the diffeomor-
phism (see Remark 4.4), one sees that at a given scale (i.e. if one fixes the values of r,r ′, t ),
this property holds for small perturbations of f ∈G and unstable laminations close to Λ.

This allows to get a uniform lack of joint integrability on a dense open subset of PH1

which is a starting point for proving the transversality in Theorem 5.19.

6.3. Finiteness of minimal strong unstable laminations. Now, we use Theorem 6.7 and
the results in the previous sections of this notes to conclude the proof of Theorem 6.5.

Let f be a diffeomorphism in the Gδ subset provided by Theorem 6.7 and let K be a
partially hyperbolic set with one-dimensional center. We must show that K contains at
most finitely many minimal strong unstable laminations.

Exercise 50. Show that one can reduce to the case K itself is a strong unstable lamination.
(In particular it is NJI.)

The following remark will be important in the proof.

Exercise 51. Show that if Λ1,Λ2 ⊂ K are different minimal strong unstable laminations,
then their stable manifolds are disjoint.

1. First case: minimal laminations with no strong stable connection.

Proposition 6.9. The set K contains at most finitely many minimal strong unstable lami-
nations Λ with the property that W ss(x)∩Λ= {x} for every x ∈Λ.

PROOF. Assume by contradiction that there are infinitely many such subsets and denote
them as {Λn}n . From Theorem 4.17 , each Λn is contained in a locally invariant submani-
fold Σn tangent to E c ⊕E u at each point of Λn .

Notice moreover that there exists h > 0 such that htop ( f |Λn ) > h for every n. This follows
from the following argument: consider a finite covering of Λn by balls of radius ε where
ε is small enough (independent on n) so that any disk tangent to a small cone around
E u of diameter 1 contains at least two disks of radius ε contained in different balls of
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the covering. Given any disk tangent to a small cone around E u its iterates grow so that
the internal radius multiplies by an uniform amount (independent of n). We can choose
such a disk D to be contained in Λn (since it is W uu-saturated). We get that for some
k0 (independent of n), the image f k0 (D) contains two such disks. Therefore, inside D
one has that in k0 iterates we duplicate the number of “different” orbits and therefore the
entropy of f in Λn is larger than 1

k0
log2 (independent of n).

Using the variational principle and Ruelle’s inequality for f −1 (see [Ma4]) we obtain that
Λn has a measure µn whose Lyapunov exponent for f −1 along E c (recall thatΛn “lives” in
Σn) is larger than h. This means (see the exercise 52 below) that Λn contains a point xn

whose stable manifold has uniform size along E s ⊕E c .

Now one can conclude as in the uniformly hyperbolic case: from exercise 51, for differ-
ent n,m the points xn , xm are separated by a uniform distance. This is impossible if there
are infinitely many Λn .

�

Exercise 52. Let f be a C 1-diffeomorphism and K be a partially hyperbolic set with one-
dimension center. Show that for every ε> 0 there exists δ> 0 such that if µ is an ergodic
measure supported on K whose Lyapunov exponent along E c is smaller than −ε, then
there is a point in K whose stable manifold along E c is of size δ. (See [ABC2] for more
results in this direction.)

2. Second case: minimal laminations with strong stable connection.

Proposition 6.10. The set K contains at most finitely many minimal strong unstable lam-
inations Λ with the property that W ss(x)∩Λ 6= {x} for some x ∈Λ.

z ∈Λm

xn yn

FIGURE 15. The stable manifolds of the minimal sets must intersect.

PROOF. Assume by contradiction that there are infinitely many such laminations {Λn}n

in K . For every n there exists xn 6= yn ∈ Λn such that yn ∈ W ss(xn). By iteration, we can
assume that y ∈W ss

loc (x) and ds(xn , yn) ∈ (r,r ′), where r,r ′ are chosen small and such that
r ′ > maxx {‖Dx f ±1‖}r .

Then, these pairs of points converge to points x, y ∈ K which still satisfy y ∈W ss
l oc (x) and

ds(x, y) ∈ (r,r ′). Since the strong unstable manifolds get separated by projection by stable
holonomy, it is possible to show (see Figure 15) that this configuration forces the strong
stable manifold of one of the Λn to intersect some other Λm for n,m large, contradicting
the fact that the minimal sets where different. This concludes.
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