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Abstract. — We prove smoothing properties of the solutions of the Benjamin-Ono
equation in the Sobolev space Hs(T,R) for any s ≥ 0. To this end we show that Tao’s

gauge transform is a high frequency approximation of the nonlinear Fourier transform

for the Benjamin-Ono equation, constructed in our previous work. The results of this
paper are manifestations of the quasi-linear character of the Benjamin-Ono equation.

Résumé. — Nous établissons des propriétés de régularisation pour les solutions de

l’équation de Benjamin-Ono dans l’espace de Sobolev Hs(T;R) pour tout s ≥ 0. À

cette fin nous montrons que la transformation de jauge de Tao est une approximation

à haute fréquence de la transformation de Fourier non linéaire pour l’équation de
Benjamin-Ono, construite dans notre précédent travail. Les résultats de cet article

sont des manifestations du caractère quasi-linéaire de l’équation de Benjamin-Ono.
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1. Introduction

In this paper we consider the Benjamin-Ono (BO) equation on the torus,

(1) ∂tv = H[∂2
xv]− ∂xv2 , x ∈ T := R/2πZ , t ∈ R,

where v ≡ v(t, x) is real valued and H denotes the Hilbert transform, defined for

f =
∑
n∈Z f̂(n)einx, f̂(n) = 1

2π

∫ 2π

0
f(x)e−inxdx, by

H[f ](x) :=
∑
n∈Z
−i sign(n)f̂(n) einx

with sign(±n) := ±1 for any n ≥ 1, whereas sign(0) := 0.
Equation (1) has been introduced by Benjamin [2] and Davis & Acrivos [3] to

model long, uni-directional internal waves in a two-layer fluid. It has been extensively
studied, both on the real line R and on the torus T. Let us briefly summarize some
of the by now classical results on the well-posedness problem of (1), relevant for
this paper – we refer to [27] for an excellent survey as well as a derivation of (1).
Based on work of Saut [26], Abdelouhab & Bona & Felland & Saut proved in [1]
that for s > 3/2, equation (1) is globally in time well-posed on the Sobolev space
Hs
r ≡ Hs(T,R) (endowed with the standard norm ‖ · ‖s, defined by (31) below),

meaning the following:
(S1) Existence and uniqueness of classical solutions: For any initial data v0 ∈ Hs

r ,
there exists a unique curve v : R → Hs

r in C(R, Hs
r ) ∩ C1(R, Hs−2

r ) so that
v(0) = v0 and for any t ∈ R, equation (1) is satisfied in Hs−2

r . (Since Hs
r is an

algebra, one has ∂x(v(t)2) ∈ Hs−1
r for any time t ∈ R.)

(S2) Continuity of solution map: The solution map S : Hs
r → C(R, Hs

r ) is contin-
uous, meaning that for any v0 ∈ Hs

r , T > 0, and ε > 0 there exists δ > 0, so
that for any w0 ∈ Hs

r with ‖w0 − v0‖s < δ, the solutions w(t) = S(t, w0) and
v(t) = S(t, v0) of (1) with initial data w(0) = w0 and, respectively, v(0) = v0

satisfy sup|t|≤T ‖w(t)− v(t)‖s ≤ ε.
In the sequel, further progress has been made on the well-posedness of (1) on Sobolev
spaces of low regularity. The best results so far in this direction were obtained by
Molinet, using as a key ingredient the gauge transform, introduced by Tao [28] for
the Benjamin-Ono equation on R. Molinet’s results in [22] (cf. also [23]) imply that
the solution map S, introduced in (S2) above, continuously extends to any Sobolev
space Hs

r with 0 ≤ s ≤ 3/2. More precisely, for any such s, S : Hs
r → C(R, Hs

r ) is
continuous and for any v0 ∈ Hs

r , S(t, v0) satisfies equation (1) in Hs−2
r . Finally, in

the recent paper [9] we proved that (1) is wellposed in the Sobolev space Hs
r for any

s > −1/2, but illposed for s ≤ −1/2.
In a straightforward way one verifies that for any solution v(t) ≡ S(t, v0) of (1) in

Hs
r with s > −1/2, the mean 〈v(t)|1〉 is conserved. Here 〈· | ·〉 denotes the extension

of the L2-inner product,

(2) 〈f |g〉 =
1

2π

2π∫
0

fgdx , ∀ f, g ∈ L2
c ≡ L2(T,C)
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to the dual pairing Hs
r×H−sr → C. As a consequence, for any s > −1/2, the subspace

(3) Hs
r,0 := {v ∈ Hs

r : 〈v|1〉 = 0} ,

of Hs
r is invariant by the flow of (1). (For s = 0, we usually write L2

r,0 for H0
r,0.)

Since for any a ∈ R and any solution v(t) = S(t, v0) of (1) in Hs
r with s > −1/2,

va(t, x) := a+v(t, x−2at) is again a solution of (1) in Hs
r , for our purposes, it suffices

to consider solutions in Hs
r,0.

The main goal of this paper is to prove smoothing properties of solutions of (1). A
first key ingredient in their proof is Tao’s gauge transform, which we denote by G. To
define it, we first need to introduce some more notation. For any f ∈ Hs

c ≡ Hs(T,C),

s ∈ R, the Szegő projection Πf of f =
∑
n∈Z f̂(n)einx is defined as

∑
n≥0 f̂(n)einx.

Clearly, Π defines a bounded linear operator Hs
c → Hs

+ where

Hs
+ := {f ∈ Hs

c : f̂(n) = 0 ∀n < 0} .

Furthermore, we denote by ∂−1
x the operator

∂−1
x : Hs

c → Hs+1
c,0 , f 7→

∑
n 6=0

1

in
f̂(n)einx ,

where for any s ∈ R, Hs
c,0 := {v ∈ Hs

c : 〈v|1〉 = 0}. For notational convenience, the

restriction of ∂−1
x to Hs

c,0 is also denoted by ∂−1
x .

For our purposes, it suffices to consider solutions of (1) in the Sobolev spaces Hs
r,0

with s ≥ 0. For any u ∈ Hs
r,0 with s ≥ 0, we denote by G(u) (the following version

of) Tao’s gauge transform of u [28, 23],

(4) G(u) := ∂xΠe−i∂
−1
x u .

It was pointed out in [28] that G can be viewed as a complex version of the Cole-Hopf
transform, which was introduced independently by Cole and Hopf in the early fifties
to convert Burgers’ equation ∂tu = ∂x(∂xu− u2) into the heat equation. See e.g. [7,
Section 4.4].

Note that

∂xΠ[e−i∂
−1
x u] = Π[∂xe

−i∂−1
x u] = −iΠ[ue−i∂

−1
x u]

and that for any s ≥ 0,

G : Hs
r,0 → Hs

+,0 , u 7→ ∂xΠe−i∂
−1
x u ,

is a real analytic map, where

Hs
+,0 := {f ∈ Hs

+ : 〈f |1〉 = 0} , H+,0 ≡ H0
+,0 .

It turns out that for any s ≥ 0, G is a diffeomorphism onto an open proper subset of
Hs

+,0. See Appendix B for a proof.
Given any initial data u0 ∈ Hs

r,0 with s ≥ 0, let u(t) = S(t, u0) and denote by
w(t) = G(u(t)) the gauge transform of u(t), i.e.,

w(t) = ∂xΠ[e−i∂
−1
x u(t)] .
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For notational convenience, we will often not explicitly indicate the dependence of
u, v, and w on t in the sequel. Let us derive the equation, satisfied by w(t). Since
∂−1
x ∂x(u2) = u2 − 〈u2|1〉 one sees that v(t) := ∂−1

x u(t) satisfies

(5) ∂tv = H[∂2
xv]− (∂xv)2 + 〈(∂xv)2|1〉 , v(0) = ∂−1

x u0 .

Furthermore, using that ∂tw = ∂xΠ[−i∂tv · e−iv] and

∂2
xw = ∂xΠ[−i∂2

xv · e−iv − (∂xv)2e−iv] ,

one computes

∂tw + i∂2
xw = ∂xΠ[−i∂tv · e−iv + ∂2

xv · e−iv − i(∂xv)2e−iv] .

Since for any f ∈ Hs
c , the Hilbert transform H[f ] of f satisfies H[f ] = −if + 2i(Id−

Π)[f ] one infers that

∂2
xv = iH[∂2

xv] + 2(Id−Π)[∂2
xv] .

Combining the latter identity with (5) then yields

∂tw + i∂2
xw = ∂xΠ

[
− i〈(∂xv)2|1〉e−iv + 2(e−iv · (Id−Π)(∂2

xv)
]
.

Finally, writing

e−iv = Πe−iv + (Id−Π)[e−iv] , Πe−iv = ∂−1
x w + 〈e−iv|1〉 ,

and using that

Π
[
〈e−iv|1〉 · (Id−Π)(∂2

xv)] = 0 , Π
[
(Id−Π)e−iv · (Id−Π)(∂2

xv)] = 0 ,

one arrives at

∂tw + i∂2
xw = −i〈(∂xv)2|1〉w + 2∂xΠ[∂−1

x w · (Id−Π)(∂2
xv)] ,

or, expressing the latter equation in terms of u = ∂xv instead of v,

(6) ∂tw + i∂2
xw + i〈u2|1〉w = 2∂xΠ[∂−1

x w · (Id−Π)(∂xu)] .

One verifies in a straightforward way that 〈u2|1〉 is conserved along the flow of (1) so
that the left hand side of (6) can be viewed as a linear expression in w with constant
coefficients. We are now ready to state the smoothing properties of u(t).

1.1. Approximation of u(t). — For any u0 ∈ Hs
r,0 with s ≥ 0, let w0 := G(u0).

Furthermore, denote by wL(t) the solution of the linear initial value problem

∂tw + i∂2
xw + i〈u2

0|1〉w = 0 , w(0) = w0 .

Then wL(t) is given by

(7) wL(t) =
∑
n≥1

eit(n
2−〈u2

0|1〉)ŵ0(n)einx .

Finally, we define

(8) σ(s) :=


1 if s > 1/2

1− if s = 1/2

2s if 0 ≤ s < 1/2

where a− means a− ε for any ε > 0.
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Theorem 1.1. — For any u0 ∈ Hs
r,0 with s ≥ 0 there exists Ms > 0 so that for any

t ∈ R,

(9) ‖w(t)− wL(t)‖s+σ(s) ≤Ms〈t〉 , 〈t〉 := 1 + |t| ,

(10) u(t) = 2Re
(
ei∂

−1
x u(t)iwL(t)

)
+ r(t) , ‖r(t)‖s+σ(s) ≤Ms〈t〉 .

The constant Ms > 0 can be chosen uniformly for bounded subsets of initial data u0 in
Hs
r,0. Furthermore, for any 0 ≤ s < 1/2, there exists u0 ∈ Hs

r,0 so that for any t 6= 0

and any ε > 0, w(t)−wL(t) does not belong to H
s+σ(s)+ε
+ and r(t) not to H

s+σ(s)+ε
r .

Remark 1.2. — The estimate (9) in Theorem 1.1 improves on [15, Theorem 1.2]
in the following ways: (i) the estimate holds for Hs

r,0 with s > 0 arbitrary instead of
1/6 < s ≤ 1; (ii) the estimate holds for any t ∈ R with an explicit growth rate in t
instead for compact time intervals [0, T ]; (iii) for 1/2 < s ≤ 1, the order of smoothing
is 1 instead of (1/3)−, and for 1/6 < s < 1/2, it is 2s instead of (s− 1/6)−; (iv) for
any 0 ≤ s < 1/2, the estimate is sharp.

Remark 1.3. — The estimate (10) for s > 1/2 answers a question, raised by Tzvetkov,
and improves the estimate he conjectured.

1.2. Enhanced approximation of u(t). — It turns out that an enhanced version
wL,∗(t) of wL(t) is obtained by replacing for any n ≥ 1 the frequency n2 − 〈u2

0|1〉 in
the nth summand in (7) by the nth BO frequency ωn ≡ ωn(u0). To define ωn, let us
recall the definition of the Lax operator of (1),

(11) Lu :=
1

i
∂x − Tu ,

acting on the Hardy space H+ ≡ H0
+ with domain H1

+. Here Tu denotes the Toeplitz
operator with symbol u, given by

Tu[f ] := Π[uf ] , ∀f ∈ H1
+ .

The operator Lu is self-adjoint and bounded from below. Since it has a compact
resolvent, its spectrum is discrete. We list the eigenvalues of Lu in increasing order
and with their multiplicites, λ0(u) ≤ λ1(u) ≤ λ2(u) ≤ · · · . By [8, Proposition 2.1]

(12) γn := λn − λn−1 − 1 ≥ 0 , ∀n ≥ 1 ,

and by [8, Proposition 3.1], the following trace formulas hold,

(13) λn = n−
∑

k≥n+1

γk , ∀n ≥ 0 , ‖u‖20 = 2
∑
n≥1

nγn ,

where for notational convenience, we (often) do not indicate the dependence of λn
(n ≥ 0) and γn (n ≥ 1) on u. In particular, all eigenvalues of Lu are simple. The nth
BO frequency is then given by (cf. [8, formula (8.4)])

(14) ωn = n2 − 〈u2
0 | 1〉+ 2

∑
k>n

(k − n)γk .
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By [9, Proposition 5], it follows that ωn(u0) − (n2 − 〈u2
0|1〉) = O(n−2s) as n → ∞,

uniformly on bounded subsets of initial data u0 in Hs
r,0. Now we can define the

enhanced approximation of w,

(15) wL,∗(t) :=
∑
n≥1

eitωnŵ0(n)einx .

To state our enhanced approximation result, we introduce

(16) τ(s) :=


1 if s > 1/2

1− if s = 1/2

s+ 1
2 if 0 ≤ s < 1/2

Theorem 1.4. — For any u0 ∈ Hs
r,0 with s ≥ 0 there exists Ms > 0 so that for any

t ∈ R,

(17) ‖w(t)− wL,∗(t)‖s+τ(s) ≤Ms ,

(18) u(t) = 2Re
(
ei∂

−1
x u(t)iwL,∗(t)

)
+ r∗(t) , ‖r∗(t)‖s+τ(s) ≤Ms .

The constant Ms > 0 can be chosen uniformly for bounded subsets of initial data u0

in Hs
r,0.

Remark 1.5. — Smoothing properties can also be proved for solutions in some Sobolev
spaces Hs

r,0 with s negative. In order to limit the size of the paper, we decided to focus
on solutions in Hs

r,0 with s ≥ 0.

Note that, in addition to providing a better gain of regularity for s in the interval
0 ≤ s < 1/2, the estimates of Theorem 1.4 are uniform in time. These improvements
are obtained by taking into account that the BO equation is integrable and as a
consequence that the BO dynamics are determined by the BO frequencies.

1.3. High frequency approximation of the nonlinear Fourier transform.
— A second key ingredient in the proof of the smoothing properties of solutions of
(1) is the high frequency approximation of the nonlinear Fourier transform Φ of the
Benjamin-Ono equation, which was constructed in [8], [9]. Let us review the definition
of Φ and the properties of Φ needed to state our smoothing results for solutions of
(1). To this end, we first need to review further properties of the Lax operator
Lu, introduced in the previous subsection. It is shown in [8] that Lu admits an
orthonormal basis of eigenfunctions fn ≡ fn(·, u) ∈ H1

+, n ≥ 0, uniquely determined
by the normalisation conditions

(19) 〈f0|1〉 > 0 , 〈fn|eixfn−1〉 > 0 , ∀n ≥ 1 .

For any s ∈ R, denote by hs ≡ hs(N,C) the weighted `2-sequence space

hs := {z = (zn)n≥1 ⊂ C : ‖z‖s <∞} , ‖z‖s :=

∑
n≥1

n2s|zn|2
1/2

.
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In [8], we introduced the map

(20) Φ : H0
r,0 → h1/2, u 7→ (ζn(u))n≥1 , ζn(u) :=

〈1|fn(·, u)〉√
κn(u)

,

and proved that Φ is a homeomorphism and that

(21) |ζn(u)|2 = γn(u) , ∀n ≥ 1 , ∀u ∈ H0
r,0 .

Here κn ≡ κn(u) > 0, n ≥ 1, are defined as absolutely convergent infinite products,

(22) κn =
1

λn − λ0

∏
1≤p 6=n

(1− γp
λp − λn

) .

It is shown in [9] that for any s ≥ 0, the restriction of Φ to Hs
r,0 takes values in hs+1/2

and in [11]-[12] that

(23) Φ : Hs
r,0 → hs+1/2

is a real analytic diffeomorphism.
One of the principal features of Φ is that it can be used to solve the initial value

problem of (1). Indeed, it is shown in [9] that for any initial data u0 ∈ Hs
r,0 with

s ≥ 0, the solution t 7→ u(t) ∈ Hs
r,0 of (1) with initial data u(0) = u0 satisfies

(24) Φ(u(t)) = (eitωnζn(u0))n≥1 ,

where ωn ≡ ωn(u0), n ≥ 1, denote the BO frequencies of u0, introduced in (14)
above. The high frequency approximation of Φ : H0

r,0 → h1/2 is then defined as the

map Φ0 : H0
r,0 → h1/2, given by

(25) Φ0(u) :=
(√
n〈1|g∞einx〉

)
n≥1

, g∞ ≡ g∞(·, u) := ei∂
−1
x u .

Note that Φ0 is a quasi-linear perturbation of the Fourier transform. Indeed, since

n〈1 | g∞einx〉 = 〈g∞ |neinx〉 = 〈g∞ |
1

i
∂xe

inx〉 ,

integration by parts yields

(26) n〈1 | g∞einx〉 = 〈1
i
∂xg∞ | einx〉 = −〈ug∞ | einx〉 .

This shows that

(27) Φ0(u) = (− 1√
n
〈u | g∞einx〉)n≥1 .

Since g∞ is a function of ∂−1
x u, the map Φ0 can be viewed, up to scaling, as a quasi-

linear perturbation of the Fourier transform.
The following smoothing properties of Φ − Φ0, which are of independent interest,

are key ingredients in the proofs of Theorem 1.1 and Theorem 1.4.

Theorem 1.6. — For any s ≥ 0, the map Φ − Φ0 is smoothing of order τ(s) with
τ(s) as defined in (16), i.e., Φ − Φ0 is a continuous map from Hs

r,0 with values in

hs+1/2+τ(s). Furthermore, there exists u ∈ H1/2
r,0 with the property that Φ(u)−Φ0(u) /∈
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h2 and similarly, for any 0 < s < 1/2, there exists u ∈ Hs
r,0 so that for any ε > 0,

Φ(u)− Φ0(u) /∈ hs+1/2+τ(s)+ε.

Remark 1.7. — (i) Theorem 1.6 says that Φ0 can be viewed as a quasi-linear high
frequency approximation of Φ.
(ii) Note that for any u ∈ H0

r,0, one has

G(u) = ∂xΠ(e−i∂
−1
x u) = ∂xΠ(g∞) =

∑
n≥1

in〈g∞|einx〉einx

and hence

(28) Φ0(u) =
(
− i√

n
〈G(u) | einx〉

)
n≥1

.

It then follows from Theorem B.1 in Appendix B that for any s ≥ 0, Φ0 : Hs
r,0 →

hs+1/2 is a diffeomorphism onto an open proper subset of hs+1/2.
(iii) In [28], Tao asks whether the gauge transform G is related to the integrability
of the Benjamin–Ono equation. In view of the formula (28) for Φ0, Theorem 1.6
answers Tao’s question for the BO equation on T by proving that (up to scaling) the
Fourier transform of G is a high frequency approximation of the Birkhoff map Φ.

Remark 1.8. — In Appendix C, we provide high frequency approximations of the
differentials of Φ and of Φ−1. Such approximations are useful when studying the
pullback of vector fields by Φ or Φ−1.

As a corollary of Theorem 1.6, we obtain smoothing properties of solutions of (1),
expressed in the coordinates provided by Φ. To this end, we introduce the following
evolution maps: given any α ≥ 1

2 and t ∈ R, define for any initial data ζ ∈ hα,

SL(t, ζ) :=
(
eit(n

2−2‖ζ‖21/2)ζn
)
n≥1
∈ hα ,

SL,∗(t, ζ) :=
(
eit(n

2−2‖ζ‖21/2+δn(ζ))ζn
)
n≥1
∈ hα ,

where

δn(ζ) := 2
∑
k>n

(k − n)|ζk|2 .

Corollary 1.9. — For any u0 ∈ Hs
r,0 with s ≥ 0, there exists Ms > 0 so that for

any t ∈ R,

(29) ‖Φ(S(t, u0))− SL(t,Φ0(u0))‖s+ 1
2 +σ(s) ≤Ms〈t〉 ,

(30) ‖Φ(S(t, u0))− SL,∗(t,Φ0(u0))‖s+ 1
2 +τ(s) ≤Ms .

The constant Ms > 0 can be chosen uniformly on bounded subsets of initial data in
Hs
r,0.
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1.4. Applications. — In Section 4, we apply Theorem 1.1 to study the action of
the Benjamin–Ono flow S(t) on the Hölder spaces Cα(T,R). In particular, we prove
that there exists a subset N ⊂ R of Lebesgue measure 0 so that for any t /∈ N and
any 1/2 < α < 1, S(t) does not map

⋂
ε>0 C

α−ε(T,R) into
⋃
ε>0 C

α−1/2+ε(T,R). On
the other hand it is easy to check that for any t ∈ R, S(t) maps

⋂
ε>0 C

α−ε(T,R) into⋂
ε>0 C

α−1/2−ε(T,R). We refer to Section 4 for additional results.

1.5. Comments. — (i) Birkhoff maps have been constructed for integrable PDEs
such as the KdV equation [16], the mKdV equation, and the defocusing NLS equation
[14]. Each of these maps admits a high frequency approximation, similar to the one
of the Birkhoff map of the Benjamin-Ono equation, stated in Theorem 1.6. But in
contrast to the Benjamin-Ono equation, it is given (up to scaling) by the Fourier
transform. See [17] (cf. also [21]), [18, 19]. Hence for these equations, the Birkhoff
map can be viewed as a semilinear perturbation of the Fourier transform.
(ii) Smoothing properties, similar to the ones stated in Theorem 1.1 and Theorem
1.4 for the Benjamin-Ono equation, have been established previously for solutions
of integrable PDEs such as the KdV equation [4, 6, 17] and the defocusing NLS
equation [5, 6, 20]. In contrast to (10), (1.4), these smoothing properties are obtained
by approximating solutions of these equations by solutions of the Airy equation (in
the case of the KdV equation) and by solutions of the linear Schrödinger equation
(in the case of the defocusing NLS equation) or by enhanced versions of solutions of
these linear equations, involving the KdV and NLS frequencies.
(iii) Reference [13], posted by the first author after the first version of this paper was
submitted, provides an explicit formula for the solution of the Benjamin–Ono in terms
of the Lax operator Lu0 associated to the initial datum u0 which is useful for studying
low regularity solutions. However, in order to study the high frequency phenomena
which are the core of the present paper, it seems impossible to avoid a thorough
spectral analysis of Lu0

, which precisely led us to the Birkhoff map introduced in [8]
and to Theorem 1.6.

1.6. Organization of the paper. Notation. — The paper is organized as follows.
In Section 2 we prove Theorem 1.6, which then is used in Section 3 to derive Theorems
1.1 and 1.4 and Corollary 1.9. In Section 4, we apply Theorem 1.1 to study the action
of the Benjamin–Ono flow on Hölder spaces. In Appendix A, we record smoothing
properties of Hankel operators, which are used throughout the main body of the
paper. In Appendix B, we prove diffeomorphism properties of Tao’s gauge transform.
Finally, in Appendix C, we derive high frequency approximations of the differential
of Φ and the one of Φ−1.

By and large, we will use the notation established in [8]. In particular, the Hs-
norm of an element v in the Sobolev space Hs

c ≡ Hs(T,C), s ∈ R, will be denoted by
‖v‖s. It is defined by

(31) ‖v‖s =
(∑
n∈Z
〈n〉2s|v̂(n)|2

)1/2
, 〈n〉 = max{1, |n|} .
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For s = 0, we usually write ‖v‖ for ‖v‖0. By 〈· | ·〉, we will also denote the extension
of the L2-inner product, introduced in (2), to H−sc × Hs

c , s ∈ R, by duality. By
H+ ≡ H0

+ we denote the Hardy space, consisting of elements f ∈ L2(T,C) ≡ H0
c with

the property that f̂(n) = 0 for any n < 0. More generally, for any s ∈ R, Hs
+ denotes

the subspace of Hs
c , consisting of elements f ∈ Hs

c with the property that f̂(n) = 0
for any n < 0. By hs ≡ hs(N,C) we denote the weighted `2-sequence space

hs := {z = (zn)n≥1 ⊂ C : ‖z‖s <∞} , ‖z‖s := (
∑
n≥1

n2s|zn|2)1/2 .

For notational convenience, we often write zn = hsn for a sequence (zn)n≥1 in hs. The
same notation is also used for other sequence spaces such as `1 ≡ `1(N,R). Finally,
for any a, b in R, the expression a . b means that there exists C > 0 so that a ≤ Cb.
Acknowledgement. We would like to warmly thank Nikolay Tzvetkov for interesting
discussions and for sharing with us his (unpublished) work on the smoothing proper-
ties of solutions of the Benjamin-Ono equation, which is at the origin of this paper.
We are grateful to the referees and to the editors for their patient reading of the
manuscript and for their suggestions which allowed us to improve the presentation of
our paper.

2. Proof of Theorem 1.6

In this section we prove Theorem 1.6. Throughout this section we assume that
s ≥ 0. Recall that Φ denotes the Birkhoff map,

Φ : Hs
r,0 → hs+1/2, u 7→ (ζn(u))n≥1 , ζn(u) =

〈1|fn(·, u)〉√
κn(u)

,

where fn ≡ fn(·, u), n ≥ 0, is the orthonormal basis of eigenfunctions of the Lax
operator Lu (cf. (11)), uniquely determined by the normalization conditions (19),
and κn ≡ κn(u) > 0 are scaling factors given by (22). To prove that Φ0(u) =(√
n〈1|g∞einx〉

)
n≥1

, defined in (25), approximates Φ, we introduce the auxiliary map

(32) Φ1 : H0
r,0 → h1/2, u 7→

(√
n〈1|fn〉

)
n≥1

.

Since λn〈1|fn〉 = 〈1|Lufn〉 = −〈u|fn〉, the map Φ1 can be viewed (up to scaling) as
a version of the Fourier transform where the orthonormal basis einx, n ≥ 0, of the
Hardy space H+ is replaced by the basis fn, n ≥ 0, of eigenfunctions of Lu.

In a first step we study the difference Φ(u)−Φ1(u). Its nth component is given by

(33) ζn(u)−
√
n〈1|fn〉 =

√
n

(
1

√
nκn

− 1

)
〈1|fn〉 .

We begin by deriving an estimate for nκn.

Lemma 2.1. — For any u ∈ Hs
r,0 with s ≥ 0,

(34) nκn(u) = 1 +O

(
1

n

)
.
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As a consequence

(35)
1√

nκn(u)
= 1 +O

(
1

n

)
.

For any given s ≥ 0, the estimates for nκn(u) and 1√
nκn(u)

hold uniformly on bounded

subsets of potentials u in Hs
r,0.

Proof. — In view of (22) we write nκn − 1 = In + II n where

In =

(
n

λn − λ0
− 1

)∏
p 6=n

(
1− γp

λp − λn

)
, II n =

∏
p 6=n

(
1− γp

λp − λn

)
− 1 .

Let us first estimate In. Since for any m ≥ 0, λm ≡ λm(u) satisfies λm = m −∑
k≥m+1 γk (cf. (13)) one has

(36) λn − λ0 = n+

n∑
k=1

γk , ∀n ≥ 1,

and in turn
n

λn − λ0
− 1 = − 1

n

∑n
k=1 γk

1 + 1
n

∑n
k=1 γk

.

The product
∏
p 6=n(1− γp

λp−λn ) can be estimated as follows. Taking into account that∣∣∣∣∣∣
∏
p 6=n

(
1− γp

λp − λn

)∣∣∣∣∣∣ ≤
∏
p 6=n

(
1 +

γp
|λp − λn|

)
= exp

∑
p 6=n

log

(
1 +

γp
|λp − λn|

)
and that 0 ≤ log(1 + a) ≤ a for any a ≥ 0 one sees that∣∣∣∣∣∣

∏
p 6=n

(
1− γp

λp − λn

)∣∣∣∣∣∣ ≤ exp

∑
p 6=n

γp
|λp − λn|

 ≤ exp

∑
p 6=n

γp

 ,

where for the latter inequality we used that |λp − λn| ≥ 1 for any p 6= n. By (13) it
then follows that

(37) In = O

(
1

n

)
.

Next let us consider II n. We start from the following identity,

(38) 1−
N∏
p=1

(1− ap) =

N∑
p=1

ap
∏

1≤q<p

(1− aq) ,

which can be easily checked by induction on N for any given sequence of real (or
complex) numbers an. Note that (38) continues to hold for N =∞ if the series of ap
is absolutely convergent. Since |1 − ap| ≤ 1 + |ap| ≤ exp(|ap|) for any p ≥ 1, one is
led to the estimate

(39)

∣∣∣∣∣1−
∞∏
p=1

(1− ap)

∣∣∣∣∣ ≤
( ∞∑
p=1

|ap|

)
exp

( ∞∑
p=1

|ap|

)
.
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Using again that |λp − λn| ≥ 1, it then follows that

|II n| ≤

 ∑
1≤p 6=n

γp
|λp − λn|

 exp

( ∞∑
q=1

γq

)
.

Since by (13) for any p > n,

λp − λn = p− n+
∑

n<k≤p

γk ≥ p− n ,

one infers that for any p, |λp − λn| ≥ |p− n|. Hence∑
|p−n|≥n2

γp
|λp − λn|

≤ 2

n

∑
p

γp

and ∑
0<|p−n|<n

2

γp
|λp − λn|

≤
∑

0<|p−n|<n
2

γp ≤
21+2s

n1+2s

∑
p≥1

p1+2sγp .

By (21) and [9, Proposition 5] it then follows that

(40) II n = O

(
1

n

)
,

which together with estimate (37) yields (34).
By (21) and [9, Proposition 5], the estimate for nκn(u) hold uniformly on bounded

subsets of potentials in Hs
r,0 with s ≥ 0.

To see that the estimate for 1√
nκn(u)

also holds uniformly on bounded subsets of

potentials in Hs
r,0, it remains to find a uniform positive lower bound for nκn, n ≥ 1,

on such subsets. To this end note that by (22) and (36)

nκn =
1

1 + 1
n

∑n
k=1 γk

∏
1≤p<n

(
1 +

γp
λn − λp

)
·
∏
p>n

(
1− γp

λp − λn

)
,

yielding, when combined with (13),

nκn ≥
1

1 + |λ0|
exp

(
−
∑
p>n

− log

(
1− γp

λp − λn

))
.

Applying the estimate

− log(1− a) =

a∫
0

1

1− x
dx ≤ a

1− a
, ∀ 0 < a < 1 ,

to a =
γp

λp−λn and using that for any p > n,

λp − λn − γp = p− n+
∑

n<k<p

γk ≥ 1 ,
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one concludes that for any p > n
a

1− a
=

γp
λp − λn − γp

≤ γp

and hence we obtain the following positive lower bound for nκn, n ≥ 1,

nκn ≥
1

1 + |λ0|
exp

(
−
∑
p>n

γp

)
≥ 1

1 + |λ0|
e−|λ0| , ∀n ≥ 1 .

By (13) the latter lower bound is uniformly bounded away from 0 on bounded subsets
of potentials u in H0

r,0.

Combining (33) and (35) then leads to the following

Corollary 2.2. — For any s ≥ 0, the difference Φ− Φ1 is one-smoothing, meaning
that it can be viewed as a continuous map from Hs

r,0 with values in hs+3/2.

Proof. — Going through the arguments of the proof of Lemma 2.1 one sees that
Φ− Φ1 : Hs

r,0 → hs+3/2 is continuous for any s ≥ 0.

Next we investigate Φ1 − Φ0. To this end we first derive asymptotic estimates
for the scaling factors µn, introduce in [8, Section 4]. Recall that for any n ≥ 1,
0 < µn ≤ 1 is given by

(41) µn = 〈fn|eixfn−1〉2

and admits the following infinite product representation (cf. [8, (4.9)])

µn =

(
1− γn

λn − λ0

)∏
p 6=n

(1− bnp) , bnp = γn
γp

(λp − λn)(λp−1 − λn−1)
.

Lemma 2.3. — For any u ∈ Hs
r,0 with s ≥ 0,

0 ≤ 1−√µn ≤ 1− µn = `1,2+2s
n ,

meaning that (1− µn)n≥1 ∈ `1,2+2s(N,R) (cf. “Notation” in Section 1). As a conse-
quence

0 ≤
√

1−√µn ≤
√

1− µn = h1+s
n .

For any given s ≥ 0, these estimates hold uniformly on bounded subsets of potentials
u in Hs

r,0, s ≥ 0.

Proof. — Using (39) and |λp − λn| ≥ |p− n|, we have

0 ≤ 1− µn ≤ Sn exp(Sn) , Sn :=
γn
n

+ γn
∑
p 6=n

γp
(p− n)2

.

Since by (21) and [9, Proposition 5], (γn)n≥1 ∈ `1,1+2s(N,R) and hence (γnn )n≥1 ∈
`1,2+2s(N,R) it follows that

γn
∑

|p−n|>n/2

γp
(p− n)2

≤ 4γn
n2

∑
p≥1

γp = `1,3+2s
n
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and
γn

∑
0<|p−n|≤n/2

γp
(p− n)2

≤ γn
∑

0<|p−n|≤n/2

γp

≤ 21+2sγn
n1+2s

∑
p≥1

p1+2sγp = `1,2+4s
n

.

By (21) and [9, Proposition 5], the stated estimates hold uniformly on bounded
subsets of potentials u in Hs

r,0 with s ≥ 0.

To estimate Φ1 − Φ0, introduce Ξ : Hs
r,0 → hs, u 7→ (Ξn(u))n≥1 where

(42) Ξn(u) :=
√
n(Φ1(u)− Φ0(u))n = n〈1|fn〉 − n〈1|g∞einx〉 , ∀n ≥ 1 .

We recall that the exponent τ(s), s > 0, of the gain of regularity has been introduced
in (16).

Lemma 2.4. — Let s ≥ 0. Then for any u ∈ Hs
r,0,

(Ξn(u))n≥1 ∈ hs+τ(s)

and (Ξn(u))n≥1 is uniformly bounded on bounded subsets of potentials u in Hs
r,0.

Furthermore, there exists u ∈ H1/2
r,0 with the property that (Ξn(u))n≥1 /∈ h1/2+1 and

for 0 < s < 1/2, there exists u ∈ Hs
r,0 so that for any ε > 0, (Ξn(u))n≥1 /∈ hs+τ(s)+ε.

Proof. — Assume that u ∈ Hs
r,0 with s ≥ 0. Then for any n ≥ 1,

(43) n〈1|fn〉 = (n− λn)〈1|fn〉+ 〈1|Lufn〉 = (n− λn)〈1|fn〉 − 〈u|fn〉
and by (26)

(44) n〈1|g∞einx〉 = −〈u|g∞einx〉 .
Substituting (43) and (44) into the definition of Ξn ≡ Ξn(u), one gets

Ξn = T1,n + 〈u|g∞einx − fn〉 , T1,n := (n− λn)〈1|fn〉 .
We then write 〈u| g∞einx − fn〉 = T2,n + T3,n where

T2,n := 〈(Id−Π)u | g∞einx〉 , T3,n := 〈Πu | g∞einx − fn〉 .
We thus have

Ξn(u) =

3∑
j=1

Tj,n(u) , Tj,n ≡ Tj,n(u) , 1 ≤ j ≤ 3 .

We begin by estimating T1,n. By (13),

(45) 0 ≤ n− λn =
∑

k≥n+1

γk ≤
1

n1+2s

∑
k≥n+1

k1+2sγk .

Since by (20), Lemma 2.1 , and [9, Proposition 5], one has

(46) 〈1|fn〉 = h1+s
n ,

the inequality (45) implies that

(47) T1,n = (n− λn)〈1|fn〉 = hs+(2+2s)
n .



SMOOTHING PROPERTIES AND TAO’S GAUGE TRANSFORM 15

To estimate T2,n we note that

(48) T2,n = 〈u| (Id−Π)[g∞einx]〉 = 〈g∞(Id−Π)u| einx〉 .

Hence for any ρ ∈ R, (T2,n)n≥1 ∈ hρ if and only if Π(g∞(Id−Π)u) ∈ Hρ
+. If u ∈ Hs

r,0

with s ≥ 0, then g∞ ∈ Hs+1
c and by the smoothing properties of Hankel operators

recorded in Lemma A.1(i),(ii),(iii) with α = 1, we infer that

(49) (T2,n(u))n≥1 ∈ hs+τ(s) , ∀u ∈ Hs
r,0 .

To estimate T3,n, we write

(50) T3,n = 〈Πu| einx(g∞ − gn)〉 , gn := fn e
−inx .

By writing g∞ − gn as a telescoping sum,

(51) g∞ − gn =
∑
k≥n

(gk+1 − gk) ,

we proved in [10] (cf. [10, Proposition 9]) that for any u ∈ Hs
r,0 with s ≥ 0, gn

converges in H1+s
c to g∞ as n→∞. To improve the estimates for g∞ − gn, obtained

in [10], we write

g∞ − gn = 〈g∞ − gn| g∞〉g∞ + rn .

Whereas 〈g∞−gn| g∞〉 will be estimated using (51), we need to analyze the remainder
term rn ≡ rn(u) further. To this end we introduce for any u ∈ H0

r,0 and n ≥ 1 the
operators

Kn ≡ Kn(u) : H
1
2 +ε
c → H1

c , f 7→ g∞D
−1[g∞Π<−n(uf)] ,

K ′n ≡ K ′n(u) : H0
c → H1

c , f 7→ (n− λn)g∞D
−1[g∞f ] ,

where D−1 := i∂−1
x and ε > 0.

Lemma 2.5. — For any u ∈ H0
r,0 and n ≥ 1,

(52) (Id +Kn +K ′n)[g∞ − gn] = 〈g∞ − gn| g∞〉g∞ +Kng∞ .

Furthermore, for any u ∈ Hs
r,0 with 0 ≤ s ≤ 1/2, 0 < ε < 1/2 + s, and n ≥ 1, there

exists a constant Cs,ε > 0 so that

‖Knf‖1/2+ε + ‖K ′nf‖1/2+ε ≤
Cs,ε

n1/2+s−ε ‖f‖1/2+ε ,(53)

‖Knf‖+ ‖K ′nf‖ ≤
Cs,ε
n1+s

‖f‖1/2+ε .(54)

Similarly, for any u ∈ Hs
r,0 with s > 1/2, there exists a constant Cs > 0 so that

‖Knf‖s + ‖K ′nf‖s ≤
Cs
n
‖f‖s ,(55)

‖Knf‖+ ‖K ′nf‖ ≤
Cs
n1+s

‖f‖s .(56)

The constants Cs,ε and Cs can be chosen uniformly for n ≥ 1 and for bounded subsets
of potentials u ∈ Hs

r,0.
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Proof of Lemma 2.5. — Since for any u ∈ H0
r,0 and n ≥ 0, fn ∈ H1

+ is an eigenfunc-
tion of the Lax operator Lu with eigenvalue λn, Dfn − Π[ufn] = λnfn, the function
gn = e−inxfn ∈ H1

c satisfies

(57) (D − u)gn = (λn − n)gn −Π<−n[ugn] ,

where Π<−n is the L2-orthogonal projector, defined by

f =
∑
k∈Z

f̂ke
ikx 7→ Π<−n[f ] :=

∑
k<−n

f̂(k)eikx .

Substracting (57) from (D − u)g∞ = 0 we obtain

(D − u)[g∞ − gn] = (n− λn)gn + Π<−n[ugn]

or, after multiplying left and right hand side of the latter identity by g∞, and using
that D[g∞ (g∞ − gn)] = −ug∞ (g∞ − gn) + g∞D(g∞ − gn),

D[g∞ (g∞ − gn)] = (n− λn)g∞ gn + g∞Π<−n[ugn] .

Applying g∞D
−1 to the left and right hand side of the latter identity, we obtain

g∞ − gn − 〈 g∞(g∞ − gn)| 1〉g∞ = (K ′n +Kn)[gn] .

Since K ′n(g∞) = 0, identity (52) follows.
Next we prove the estimates (53) - (54) for the operators Kn, n ≥ 1. First assume

that u ∈ Hs
r,0 with 0 ≤ s ≤ 1/2 and 0 < ε < 1/2 + s. Since g∞ ∈ H1+s

c ⊂ H
1/2+ε
c , it

follows that for any f ∈ H1/2+ε
c ,

‖Knf‖1/2+ε = ‖g∞D−1[g∞Π<−n(uf)]‖1/2+ε

. ‖Π<−n[uf ]‖−1/2+ε

.
1

n1/2+s−ε ‖uf‖s .
1

n1/2+s−ε ‖f‖1/2+ε .

Similarly,

‖Knf‖ = ‖g∞D−1[g∞Π<−n(uf)]‖ . ‖Π<−n[uf ]‖−1

.
1

n1+s
‖uf‖s .

1

n1+s
‖f‖1/2+ε .

Now assume u ∈ Hs
r,0 with s > 1/2. Note that for such s, Hs

c is an algebra, and H1+s
c

acts on Hs−1
c by multiplication. Hence for any f ∈ Hs

c , one gets

‖Knf‖s = ‖g∞D−1[g∞Π<−n(uf)]‖s

. ‖Π<−n[uf ]‖s−1 .
1

n
‖uf‖s .

1

n
‖f‖s .

Similarly,

‖Knf‖ = ‖g∞D−1[g∞Π<−n(uf)]‖

. ‖Π<−n[uf ]‖−1 .
1

n1+s
‖uf‖s .

1

n1+s
‖f‖s .
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Since for any u ∈ Hs
r,0 one has (cf. trace formula (13), properties (21), (23) of Φ )

0 ≤ n− λn =
∑
k>n

γk ≤ n−1−2s
∑
k>n

k1+2sγk .
1

n1+2s
,

the proofs of the claimed estimates for the operators K ′n, n ≥ 1, are easier and
hence we omit them. Going through the arguments of the proof one verifies that
the constants Cs,ε and Cs can be chosen uniformly for bounded subsets of potentials
u ∈ Hs

r,0.

Let us now continue with the proof of Lemma 2.4. The identity (52) and the estimates
of the operators Kn and K ′n of Lemma 2.5 allow to write g∞ − gn for u ∈ Hs

r,0 with
s ≥ 0 and n sufficiently large as a Neumann series, g∞ − gn = εng∞ + rn, where
εn := 〈g∞ − gn|g∞〉 and

(58) rn := (1− εn)

∞∑
j=1

(−1)j+1(Kn +K ′n)jg∞ .

Substituting εng∞ + rn for g∞ − gn in the formula for T3,n one obtains T3,n =
εn〈Πu| einxg∞〉+ (1− εn)〈Πu| einxrn〉, which we decompose further as

(59) T3,n = Un + Vn +Wn ,

where

(60) Un ≡ Un(u) := εn〈g∞Πu| einx〉 ,

(61) Vn ≡ Vn(u) := (1− εn)

∞∑
r=2

(−1)r+1〈Πu| einx(Kn +K ′n)r[g∞]〉 ,

and (using that K ′n[g∞] = 0)

(62) Wn ≡Wn(u) := (1− εn)〈Πu| einxKn[g∞]〉 .

We first estimate εn. Representing g∞ − gn by the telescoping sum (51), we get

εn = 〈g∞ − gn| g∞〉 =
∑
k≥n

〈gk+1 − gk| g∞ − gk〉+
∑
k≥n

(〈gk+1| gk〉 − 1) .

Note that by the definition (41) of µk+1 ,

〈gk+1| gk〉 =
√
µk+1 ,

and therefore, in view of Lemma 2.3,

(63)
∣∣∑
k≥n

(〈gk+1| gk〉 − 1)
∣∣ . 1

n2+2s
.

Moreover, ‖gk+1 − gk‖2 = ‖fk+1 − eixfk‖2 can be computed as

‖gk+1 − gk‖2 = 2− 〈gk+1| gk〉 − 〈gk| gk+1〉 = 2− 2
√
µk+1
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and hence ‖gk+1 − gk‖ =
√

2(1 − √µk+1)1/2. By Lemma 2.3, the Cauchy–Schwarz
inequality, and the assumption s ≥ 0, one then infers that

(64)

‖g∞ − gn‖ ≤
∑
k≥n

‖gk+1 − gk‖ ≤
∑
k≥n

√
2(1−√µk+1)1/2

.
∑
k≥n

(
k1+s(1−√µk+1)1/2

)
· 1

k1+s
.

1

n(1+2s)/2
,

and hence by the Cauchy-Schwarz inequality,∣∣∑
k≥n

〈gk+1 − gk| g∞ − gk〉
∣∣ ≤∑

k≥n

√
2(1−√µk+1)1/2‖g∞ − gk‖

.
∑
k≥n

(
k1+s(1−√µk+1)1/2

)
· 1

k1+s+(1+2s)/2
.

1

n1+2s
.(65)

Combining (63) and (65) we obtain

(66) |εn| .
1

n1+2s
.

Using that g∞Πu ∈ Hs
c and taking into account the estimates (66) it then follows

that Un, defined by (60), satisfies

Un = hs+1+2s
n .

Next we estimate Vn, defined by (61). First we consider the case where 0 ≤ s ≤ 1/2.
From (53) and (54), we have

|Vn| .
∞∑
r=2

‖(Kn +K ′n)r[g∞]‖

.
∞∑
r=2

1

n1+s+(r−1)(1/2+s−ε) ‖g∞‖1/2+ε .
1

n2s+3/2−ε .

Choosing 0 < ε < 1/4, we get

Vn = h2s+3/4
n .

In the case where s > 1/2, we use (55) and (56) to conclude that

|Vn| .
∞∑
r=2

‖(Kn +K ′n)r[g∞]‖

.
∞∑
r=2

1

n1+s+r−1
.

1

ns

∞∑
r=2

1

nr
.

1

ns+2
.

Hence for any ε > 0,

Vn = hs+3/2−ε
n .
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It remains to estimate Wn, defined by (62), for u ∈ Hs
r,0 with s ≥ 0. First we note

that

Kng∞ = g∞D
−1[g∞Π<−n(Dg∞)]

= g∞D
−1D[g∞ ·Π<−ng∞]− g∞D−1[(Dg∞) ·Π<−ng∞]

= Π<−ng∞ − ‖Π<−ng∞‖2g∞ + g∞D
−1[ug∞ ·Π<−ng∞] .

Since 〈Πu| einxΠ<−ng∞〉 = 0, it then follows that

Wn = −‖Π<−ng∞‖2〈Πu| einxg∞〉+ 〈g∞Πu| einxD−1[ug∞Π<−ng∞]〉

or

(67) Wn = h2+2s+s
n + 〈g∞Πu| einxD−1[ug∞Π<−ng∞]〉 .

To estimate the latter term, let

f1 := g∞Πu ∈ Hs
c , f2 := g∞ u ∈ Hs

c .

Then

|〈g∞Πu| einxD−1[ug∞Π<−ng∞]〉|2

=
∣∣ ∑
k∈Z\{n}

f̂1(k)
1

k − n

∞∑
p=1

f̂2(k + p)ĝ∞(−n− p)
∣∣2

≤ ‖f1‖2s
∑
k 6=n

1

(k − n)2〈k〉2s
∣∣ ∞∑
p=1

f̂2(k + p)ĝ∞(−n− p)
∣∣2

Since by the Cauchy-Schwarz inequality,∣∣ ∞∑
p=1

f̂2(k + p)ĝ∞(−n− p)
∣∣2

≤
( ∞∑
p=1

|f̂2(k + p)|2〈k + p〉2s
)
·
( ∞∑
p=1

1

〈k + p〉2s
|ĝ∞(−n− p)|2

)
≤ ‖f2‖2s

( ∞∑
p=1

1

〈k + p〉2s
|ĝ∞(−n− p)|2

)
,

we get

|〈g∞Πu| einxD−1[ug∞Π<−ng∞]〉|2

≤ ‖f1‖2s ‖f2‖2s
∞∑
p=1

Bn,p|ĝ∞(−n− p)|2 ,(68)

where

Bn,p :=
∑
k 6=n

1

(k − n)2〈k〉2s〈k + p〉2s
.
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Splitting the latter sum into two sums with domains 0 < |k− n| < n/2 and |k− n| ≥
n/2 respectively, one concludes that for any ε > 0,∑

0<|k−n|<n/2

1

(k − n)2〈k〉2s〈k + p〉2s
.

1

〈n〉2s(n+ p)2s

∑
0<|k−n|<n/2

1

(k − n)2
,

∑
|k−n|≥n/2

1

(k − n)2〈k〉2s〈k + p〉2s
.

1

n2

∑
|k|<3n/2

1

〈k〉2s
+

1

n1−ε

∑
|k|≥3n/2

1

〈k〉1+ε+4s
,

and hence

(69) Bn,p .
1

n2s(n+ p)2s
+

1

n1+2s−ε .

Given any γ > 0, it then follows from (67)–(69) that
∑∞
n=1 n

2(s+γ)|Wn|2 can be
bounded by

.
∞∑
n=1

n2γ−4−4s `1n +

∞∑
n=1

n2γ
∑
q>n

|ĝ∞(−q)|2(q−2s + n−1+ε)

.
∞∑
n=1

n2γ−4−4s `1n +

∞∑
q=1

(q2γ+1−2s + q2γ+ε)|ĝ∞(−q)|2 .

Using that g∞ ∈ H1+s
c and choosing γ as

τ1(s) =


(1 + s)− if s > 1

2
3
2 − if s = 1

2
1
2 + 2s if 0 ≤ s < 1

2

we conclude that for any u ∈ Hs
r,0 the latter two sums are finite.

In summary, we have proved that for any u ∈ Hs
r,0 with s ≥ 0, T3,n = h

s+τ1(s)
n .

Note that by the definition (16) of τ(s) and the one of τ1(s), one has

τ(0) =
1

2
= τ1(0) , τ(s) < τ1(s) , ∀ s > 0 .

Combining the estimate (47) of T1,n and the estimate (49) of T2,n with the estimate
of T3,n, we conclude that for any u ∈ Hs

r,0,

Ξn(u) =
∑

1≤j≤3

Tj,n(u) = hs+τ(s)
n

and that for any u ∈ Hs
r,0 with s > 0,

(70) (Ξn(u)− T2,n(u))n≥1 ∈ hs+τ1(s) , τ1(s) > τ(s) .

Furthermore, going through the arguments of the proof one verifies that for any s ≥ 0,
the stated estimates hold uniformly on bounded subsets of potentials u in Hs

r,0.

It remains to study the optimality of these estimates for 0 < s ≤ 1/2. First consider
the case 0 < s < 1/2. Assume that u ∈ Hs

r,0 satisfies (Ξn(u))n≥1 ∈ hs+τ(s)+ε for some
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ε > 0. In view of the estimate (70) of (Ξn(u)−T2,n)n≥1, it then follows that for ε > 0

small enough, (T2,n(u))n≥1 ∈ h2s+1/2+ε or, by the formula (48) for T2,n,

Π(g∞(Id−Π)u) ∈ H2s+1/2+ε .

Set v := −Πu. Since u is real–valued and has vanishing mean, one has (Id−Π)u = −v
and hence

Π[g∞(Id−Π)u)] = −Π[e−i∂
−1
x ve−i∂

−1
x vv] .

Since e−i∂
−1
x v is in the Hardy space Hs+1

+ and e−i∂
−1
x v in Hs+1

− , it follows that

Π[e−i∂
−1
x v(Id−Π)(e−i∂

−1
x vv)] = 0

and hence

Π[g∞(Id−Π)u)] = −Π[e−i∂
−1
x vΠ(e−i∂

−1
x vv)]

= −T
e−i∂

−1
x v [Π(e−i∂

−1
x vv)] .

Note that the Toeplitz operator T
e−i∂

−1
x v with symbol e−i∂

−1
x v is a linear isomorphism

on Hρ
+ for any 0 ≤ ρ ≤ 1 + s and that its inverse is given by T

ei∂
−1
x v (cf. e.g. [24],

[12, Section 6]). Since 1 + s ≥ 1/2 + 2s+ ε for ε small enough, we then conclude that

(71) Π[e−i∂
−1
x vv] ∈ H2s+1/2+ε .

Let us choose u = −v − v with

(72) v(x) =

∞∑
k=1

eikx

k1/2+s log(1 + k)
.

Clearly, v ∈ Hs
+ and u ∈ Hs

r,0. We claim that (71) fails for every ε > 0. Indeed,

observe that the Fourier coefficients of v and of i∂−1
x v are positive, and so are the

Fourier coefficients of (i∂−1
x v)pv for every integer p ≥ 1. Expanding

ei∂
−1
x v =

∞∑
p=0

(i∂−1
x v)p

p!
,

we infer that the kth Fourier coefficient of Π(ei∂
−1
x vv) is larger than the kth Fourier

coefficient of Π((i∂−1
x v)v), and hence (71) implies

(73) Π[(i∂−1
x v)v] ∈ H2s+1/2+ε .

For any k ≥ 1, the kth Fourier coefficient of Π[(i∂−1
x v)v] can be computed as

ak =
∑
j∈Z

v̂(k − j)v̂(j)

k − j
=
∑
j≤−1

v̂(k − j)v̂(−j)
k − j

=

∞∑
`=1

v̂(k + `)v̂(`)

k + `
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and thus by the definition (72) of v, one has

ak =

∞∑
`=1

1

(k + `)3/2+s log(1 + k + `)`1/2+s log(1 + `)

≥
k∑
`=1

1

(k + `)3/2+s log(1 + k + `)`1/2+s log(1 + `)

≥ 2−3/2−s

k1+2s log(1 + 2k) log(1 + k)
,

so that

k2s+1/2+εak ≥ bk :=
2−3/2−s

k1/2−ε[log(1 + 2k)]2
.

Clearly, for any ε > 0, (bk)k≥1 is not an `2-sequence. This contradicts (73) and shows

that for u = −v − v with v given by (72), (Ξn(u))n≥1 /∈ h2s+1/2+ε for any ε > 0.
In the case s = 1/2, we argue similarly as in the case 0 < s < 1/2. Choose

u = −v − v with

v(x) =

∞∑
k=1

eikx

k[log(1 + k)]α
,

where 1/2 < α < 3/4. Since 1/2 < α it follows that u ∈ H1/2
r,0 . In this case, the kth

Fourier coefficient of Π[i∂−1
x vv] is

ak =

∞∑
`=1

v̂(k + `)v̂(`)

k + `
=

∞∑
`=1

1

(k + `)2[log(1 + k + `)]α`[log(1 + `)]α

≥
k∑
`=1

1

(k + `)2[log(1 + k + `)]α`[log(1 + `)]α

≥ 4−1

k2[log(1 + 2k)]α[log(1 + k)]α

k∑
`=1

1

`

&
1

k2[log(k)]2α−1

so that

k3/2ak & bk :=
1

k1/2[log(k)]2α−1
.

Since α < 3/4, (bk)k≥1 is not an `2-sequence, hence Π[(i∂−1
x v)v] does not belong to

H3/2, and consequently (Ξn(u))n≥1 /∈ h3/2.
This finishes the proof of Lemma 2.4.

In view of the definition (42) of Ξ, Lemma 2.4 yields the following

Corollary 2.6. — For any s ≥ 0, the difference Φ1−Φ0 is τ(s)-smoothing, meaning
that for any s ≥ 0, Φ1−Φ0 is a continuous map from Hs

r,0 with values in hs+1/2+τ(s).
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Furthermore, there exists u ∈ H1/2
r,0 so that Φ1(u)− Φ0(u) /∈ h2 and for 0 < s < 1/2,

there exists u ∈ Hs
r,0 so that for any ε > 0, Φ1(u)− Φ0(u) /∈ h2s+1+ε.

Proof of Theorem 1.6. — The claimed results directly follow from Corollary 2.2 and
Corollary 2.6.

3. Approximations of the Benjamin–Ono flow

In this section we apply Theorem 1.6 to prove smoothing properties of the flow map
of the Benjamin-Ono equation, stated in Theorem 1.1, Theorem 1.4 and Corollary
1.9.

Recall from Section 1 that for any u0 ∈ Hs
r,0 with s ≥ 0, we denote by u(t) =

S(t, u0) the solution of the Benjamin-Ono equation constructed in [9] and by w(t)
the gauge transformation of u(t) (cf. (4)),

w(t) = G(u(t)) = ∂xΠ(e−i∂
−1
x u(t)) , w0 := w(0) = ∂xΠ(e−i∂

−1
x u0) .

Furthermore, we introduced (cf. (7), (15))

(74) wL(t) =
∑
n≥1

eit(n
2−〈u2

0|1〉)ŵ0(n)einx ,

(75) wL,∗(t) =
∑
n≥1

eitωnŵ0(n)einx .

Proof of Theorem 1.4. — First we prove (17), saying that for any bounded subset B
of Hs

r,0 with s ≥ 0, there exists Ms > 0 so that

(76) sup
t∈R
‖w(t)− wL,∗(t)‖s+τ(s) ≤Ms , ∀u0 ∈ B .

Recall that by [9, Corollary 8, Appendix A], there exists a bounded subset B̃ of Hs
r,0

so that S(t, u0) ∈ B̃ for any t ∈ R and u0 ∈ B. By Theorem 1.6, applied to u = u(t)
and (28) it follows that

(77) ŵ(t)(n) = i
√
nζn(u(t)) + ρn(t) , ∀n ≥ 1 ,

where (ρn(t))n≥1 is uniformly bounded in hs+τ(s) with respect to t ∈ R. Since by
(24),

i
√
nζn(u(t)) = i

√
neitωnζn(u0) ,

and by (77) for t = 0,

ŵ(0)(n) = i
√
nζn(u0) + ρn(0) ,

we conclude that for any t ∈ R,

(78) ŵ(t)(n)− eitωnŵ(0)(n) = ρn(t)− eitωnρn(0) , ∀n ≥ 1 ,

which proves (76). It remains to prove estimate (18). Following a suggestion by

N. Tzvetkov, we write u(t) = ei∂
−1
x u(t)e−i∂

−1
x u(t)u(t) as

u(t) = ei∂
−1
x u(t)Π[e−i∂

−1
x u(t)u(t)] + ei∂

−1
x u(t)(Id−Π)[e−i∂

−1
x u(t)u(t)] .
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Since Π[e−i∂
−1
x u(t)u(t)] = iw(t), one has

ei∂
−1
x u(t)Π[e−i∂

−1
x u(t)u(t)] = ei∂

−1
x u(t)iwL,∗(t) + ei∂

−1
x u(t)i(w(t)− wL,∗(t)) .

Recall that u(t) is real valued and satisfies 〈u(t)|1〉 = 0. Hence u(t) = 2Re(Πu(t)).

Splitting the term 2Re
(
Π[ei∂

−1
x u(t)iwL,∗(t)]

)
as

2Re(ei∂
−1
x u(t)iwL,∗(t))− 2Re

(
(Id−Π)[ei∂

−1
x u(t)iwL,∗(t)]

)
one then concludes that

u(t) = 2Re
(
ei∂

−1
x u(t)iwL,∗(t)

)
+ r∗(t)

where r∗(t) := I(t) + II (t) + III (t) and

I(t) := −2Re
(
(Id−Π)[ei∂

−1
x u(t)iwL,∗(t)]

)
,

II (t) := 2Re
(
Π[ei∂

−1
x u(t)i(w(t)− wL,∗(t))]

)
,

III (t) := 2Re
(
Π[ei∂

−1
x u(t)(Id−Π)(e−i∂

−1
x u(t)u(t))]

)
.

Since ∂−1
x u(t) ∈ Hs+1

r,0 , the claimed estimate of r∗(t) is obtained by estimating the

term II (t) with the help of estimate (17) and the terms III (t), I(t) by Lemma A.1 in
Appendix A.

Proof of Theorem 1.1. — First we prove estimate (9), saying that for any bounded
subset B of Hs

r,0 with s ≥ 0, there exists Ms > 0 so that

(79) sup
t∈R
‖w(t)− wL(t)‖s+σ(s) ≤Ms〈t〉 , ∀u0 ∈ B .

To this end note that by (14),

|eitωn − eit(n
2−〈u2

0|1〉)| ≤ 2|t|
∑
k>n

(k − n)γk(u0) ≤ C|t|
n2s

,

where the constant C > 0 can be chosen uniformly for u0 ∈ B. Combined with (78),
estimate (79) follows. Estimate (10) can be proved in a similar way as the estimate
(18) in the proof of Theorem 1.4 and hence we omit the details.

It remains to prove the optimality statement of Theorem 1.1. Let 0 < s < 1/2,
and consider u0 ∈ Hs

r,0 with the property that

(80) γn(u0) =
1

n2+2s[log(1 + n)]2
, ∀n ≥ 1 .

(Such u0 exist since by [9, Proposition 5 in Appendix A], Φ : Hs
r,0 → hs+1/2 is onto.)

By the definition (8), one has σ(s) = 2s. Assume that there exist t 6= 0 and ε > 0 so
that

(81) w(t)− wL(t) ∈ H3s+ε
+ .

Since 3s < 2s+ 1/2 = s+ τ(s), estimate (17) of Theorem 1.4 then implies that for ε
sufficiently small, (81) is equivalent to

(82) wL,∗(t)− wL(t) ∈ H3s+ε .
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By the above formulas (74), (75), this is equivalent to∣∣∣eitωn − eit(n2−〈u2
0|1〉)

∣∣∣ · |ŵ0(n)| = h3s+ε
n

(recall that w0 = ∂xΠ(e−i∂
−1
x u0)), or

(83)
(∑
k>n

(k − n)γk(u0)
)
|ŵ0(n)| = h3s+ε

n ,

where we used that for n sufficiently large (cf. (14)),∣∣∣eitωn − eit(n2−〈u2
0|1〉)

∣∣∣ = 2
∑
k>n

(k − n)γk(u0)

∣∣∣∣∣∣
t∫

0

eis2
∑
k>n(k−n)γk(u0)ds

∣∣∣∣∣∣
∼ |t|

∑
k>n

(k − n)γk(u0) .

Since by (80), ∑
k>n

(k − n)γk(u0) ≥ 1

2

∑
k>2n

kγk(u0)

&
1

n2s[log(n)]2
,

it then follows from (83) that

ns+ε(log(n))−2|ŵ0(n)| = `2n

and hence w0 ∈ Hs+δ
+ for any δ < ε. On the other hand, by the definition of w0,

iΠ[ei∂
−1
x u0w0] = Π[ei∂

−1
x u0Π(u0e

−i∂−1
x u0)]

= Πu0 −Π[ei∂
−1
x u0(Id−Π)(u0e

−i∂−1
x u0)] .

By Lemma A.1(iii) (with α = 1, β = s + 1/2) it then follows that iΠ[ei∂
−1
x u0w0] =

Πu0 + H
2s+1/2
+ . Since ei∂

−1
x u0 ∈ H1+s

c , w0 ∈ Hs+δ
+ , and hence iΠ[ei∂

−1
x u0w0] ∈ Hs+δ

+

one concludes that u0 ∈ Hs+δ
r,0 . Hence for any δ < ε,

∞∑
n=1

n1+2(s+δ)γn(u0) <∞ ,

which is in contradiction to (80). Therefore (82) is false and hence so is (81).
To finish the proof of Theorem 1.1, assume that r(t) is H3s+ε

r . Since by (10) and
(18),

r(t)− r∗(t) = 2Re[ei∂
−1
x u(t)(wL(t)− wL,∗(t))] ,

estimate (18) implies that for ε > 0 sufficiently small

2Re[ei∂
−1
x u(t)(wL(t)− wL,∗(t))] ∈ H3s+ε .

Note that Π
(
2Re[ei∂

−1
x u(t)(wL(t)− wL,∗(t))]

)
∈ H3s+ε equals

Π[ei∂
−1
x u(t)

(
wL(t)− wL,∗(t)

)
] + Π[e−i∂

−1
x u(t)

(
wL(t)− wL,∗(t)

)
] .
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By Lemma A.1(iii) (with α = 1 and β = s + 1/2), one then concludes that for ε
sufficiently small

T
ei∂

−1
x u(t) [wL(t)− wL,∗(t)] = Π[ei∂

−1
x u(t)(wL(t)− wL,∗(t))] ∈ H3s+ε

+ .

Since the Toeplitz operator T
ei∂

−1
x u(t) : H3s+ε

+ → H3s+ε
+ is a linear isomorphism, one

obtains

wL(t)− wL,∗(t) ∈ H3s+ε ,

which contradicts the above conclusion that (82) is false.
This finishes the proof of Theorem 1.1.

Proof of Corollary 1.9. — The claimed results can be proved in a similar way as
Theorem 1.1, using again Theorem 1.6, and hence we leave the details of the proof to
the reader.

4. Benjamin–Ono flow and Hölder spaces

As an illustration of possible applications of Theorem 1.1, we show in this section
how this theorem can be used to study the action of the Benjamin–Ono flow S(t) on
Hölder spaces Cα(T,R), 1/2 < α < 1. The main result of this section is Proposition
4.8 below, which states that for almost any time t ∈ R and any 1/2 < α < 1, S(t) does
not map Cα−(T,R) into

⋃
ε>0 C

α−1/2+ε(T,R), whereas by the Sobolev embedding

theorem, S(t) maps Cα−(T,R) into C(α−1/2)−(T,R). Here for any 0 < β < 1,

Cβ−(T,C) :=
⋂
γ<β

Cγ(T,C) .

First we need make some preliminary considerations. We begin by reviewing a
result on the flow map of the linear Schrödinger equation on T,

−i∂tψ = ∂2
xψ ,

related to the Talbot effect. See [6, Section 2.3 and references therein]. First we need
to introduce some additional notation. For any 0 < α < 1, we denote by Cα(T,C)
the Banach space of α-Hölder continuous functions ψ : T → C, endowed with the
standard norm,

‖ψ‖Cα := sup
x∈T
|ψ(x)|+ sup

x6=y

|ψ(y)− ψ(x)|
(d(x, y))α

,

where d(x, y) denotes the distance between x and y in T.

Theorem 4.1. — [6, Theorem 2.16] There exists a subset N ⊂ R of Lebesgue mea-
sure 0 so that for any t /∈ N and any function ψ : T → C of bounded variation,

eit∂
2
xψ ∈ C1/2−(T,C).

Remark 4.2. — It follows from the proof of Theorem 2.16 in [6, p.37-39] that the
set N of Theorem 4.1 can be chosen independently of ψ.
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Theorem 4.1 can be used to analyze the action of the flow map eit∂
2
x on C1/2−(T,C).

To state our result we make the following preliminary considerations. The C-vector
space C1/2−(T,C) is endowed with the countable family of the norms of C1/2−1/p(T,C),
p ∈ Z≥3. In this way, C1/2−(T,C) becomes a Fréchet space with the property that

C∞(T,C) is dense in C1/2−(T,C), since C∞(T,C) is dense in Cα(T,C), when con-
sidered with the norm of Cα−ε(T,C), ε > 0.

Corollary 4.3. — Let N be any set satisfying the conclusions of Theorem 4.1. Then

for any t /∈ N ′ := −N , eit∂
2
x does not map C1/2−(T,C) into L∞(T,C).

Proof. — Let t /∈ N ′ and suppose that for any ψ ∈ C1/2−(T,C), eit∂
2
xψ ∈ L∞(T,C).

Since for any n ∈ Z, êit∂
2
xψ(n) = e−itn

2

ψ̂(n), it then easily follows from the closed
graph theorem that the linear map

eit∂
2
x : C1/2−(T,C)→ L∞(T,C)

is continuous. In particular, since C∞(T,C) is dense in C1/2−(T,C) by the consid-

erations above, one concludes that the image of C1/2−(T,C) by eit∂
2
x is contained in

the closure of C∞(T,C) in L∞(T,C). As a consequence, the image of C1/2−(T,C) by

eit∂
2
x consists of functions which are almost everywhere equal to a continuous function.
Consider a function ψ of bounded variation, which is not continuous, e.g., a step

function. Then ψ is not almost everywhere equal to a continuous function. On the
other hand, since −t /∈ N , it follows from Theorem 4.1 that

φ := e−it∂
2
xψ ∈ C1/2−(T,C) ,

and hence in contradiction to our choice of ψ, eit∂
2
xφ = ψ would have to be almost

everywhere equal to a continuous function.

Let us now turn to the flow map S(t) of the Benjamin-Ono equation. In view of
Corollary 4.3, we begin by studying the action of S(t) on C1/2−(T,C). To this end
we need to establish the following auxiliary result on the action of S(t) on the Besov
space B1

1,1(T,R). Recall that for any s ≥ 0 and p ≥ 1, Bsp,1(T,K), K ∈ {R,C}, is a
Banach space, endowed with the norm

(84) ‖f‖Bsp,1 :=
∑
j≥0

2sj‖Pjf‖Lp ,

where Pj , j ≥ 0, are Littlewood-Paley projections (cf. e.g. [25, Apppendix 2.6]).
Note that elements in B1

1,1(T,R) are absolutely continuous and hence of bounded

variation. Furthermore, B1
1,1(T,R) is a Banach algebra.

Lemma 4.4. — Let N be any set satisfying the conclusions of Theorem 4.1. Then
for any t /∈ N and any u0 ∈ B1

1,1(T,R) with 〈u0 | 1〉 = 0, S(t, u0) ∈ C1/2−(T,R).

Proof. — For any given u0 ∈ B1
1,1(T,R) with 〈u0 | 1〉 = 0, let

w0 := −iΠ(u0e−i∂
−1
x u0) .
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Note that the Szegő projection Π maps B1
1,1(T,C) into itself (cf. e.g. [25, Apppendix

2.6]) and hence w0 ∈ B1
1,1(T,C). Since any function in B1

1,1(T,C) is of bounded
variation, it then follows by Theorem 4.1 that for any t /∈ N ,

wL(t) := eit(∂
2
x+〈u2

0|1〉)w0 ∈ C1/2−(T,C) .

Furthermore, B1
1,1(T,R) ⊂ B1/2

2,1 (T,R) ⊂ H1/2(T,R), and therefore

u(t) := S(t, u0) ∈ H1/2
r , ei∂

−1
x u(t) ∈ H3/2

r ⊂
⋂
α<1

Cα(T,R) .

As a consequence, by Theorem 1.1,

u(t) = 2Re
(

ei∂
−1
x u(t)iwL(t)

)
+ r(t) ,

where

r(t) ∈ H3/2−
r ⊂

⋂
α<1

Cα(T,R) .

Altogether we thus proved that u(t) ∈ C1/2−(T,R).

As already advertised above, the following proposition states a result on the action
of the BO flow map on C1/2−(T,R). It should be compared with the result of Corol-

lary 4.3 on the action of the flow map eit∂
2
x of the linear Schrödinger equation on

C1/2−(T,C).

Proposition 4.5. — Let N be any set satisfying the conclusions of Theorem 4.1.
Then for any t /∈ N ′ := −N , S(t) does not map C1/2−(T,R) into ∪ε>0C

ε(T,R).

Proof. — Given any u0 ∈ B1
1,1(T,R) with 〈u0 | 1〉 = 0, it follows from Lemma 4.4 that

for any t /∈ N ′ (and hence −t /∈ N), v := S(−t, u0) ∈ C1/2−(T,R). Since S(t, v) = u0,
the proposition is proved by choosing

u0 ∈ B1
1,1(T,R) \

⋃
ε>0

Cε(T,R) .

A possible choice is

u0(x) = Re
( ∞∑
j=0

1

j2
ei2

jxχj(x)
)
, χj(x) :=

∑
k∈Z

χ(2j(x− 2kπ)) ,

where χ : R → R is C∞-smooth with χ(0) = 1 and support contained in the open
interval (−1/4, 1/4).

Let us now turn to the main result of this section, which concerns the action of the
BO flow map on Cα−(T,R) with 1/2 < α < 1. To prove this, we first extend Theorem
4.1 and Lemma 4.4. The extension of Theorem 4.1 is obtained from the proof of the
latter in a straightforward way and reads as follows.

Corollary 4.6. — Let N be any set satisfying the conclusions of Theorem 4.1. Then
for any t /∈ N and any 1/2 < α < 1,

eit∂
2
x : B

α+1/2
1,1 (T,C)→ Cα−(T,C) .
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Proof. — Let β := α− 1/2. Given ψ ∈ Bα+1/2
1,1 (T,C), we write ψ as

ψ = 〈ψ | 1〉+ |D|−βφ ,

where φ := |D|βψ ∈ B1
1,1(T,C). Then

eit∂
2
xψ = 〈ψ | 1〉+ |D|−βeit∂

2
xφ ∈ Cα−(T,C)

This completes the proof.

By the arguments used in its proof, Lemma 4.4 can be extended as follows.

Lemma 4.7. — Let N be the set of Lebesgue measure zero of Theorem 4.1 and 1/2 <

α < 1. Then for any t /∈ N and any u0 ∈ Bα+1/2
1,1 (T,R) with 〈u0 | 1〉 = 0, S(t, u0) ∈

Cα−(T,R).

Now we are ready to state our result on the action of S(t) on Cα−(T,R).

Proposition 4.8. — For any 1/2 < α < 1 the following holds.
(i) For any t ∈ R, S(t) maps Cα−(T,R) continuously into C(α−1/2)−(T,R).
(ii) Let N be any set satisfying the conclusions of Theorem 4.1. Then for any t /∈
N ′ := −N , S(t) does not map Cα−(T,R) into

⋃
ε>0 C

α−1/2+ε(T,R).

Proof. — (i) Note that for any 0 < β < 1, Cβ(T,R) ⊂ Hβ−
r := ∩ε>0H

β−ε
r . Fur-

thermore, if β > 1/2, then Hβ
r ⊂ Cβ−1/2(T,R) by the Sobolev embedding theo-

rem. Now let u0 ∈ Cα−(T,R) with 1/2 < α < 1. Then u0 ∈ Hα−
r and hence

S(t, u0) ∈ Hα−
r ⊂ C(α−1/2)−(T,R) for any t ∈ R.

(ii) We argue as in the proof of Proposition 4.5. Given any u0 ∈ Bα+1/2
1,1 (T,R) with

〈u0 | 1〉 = 0, it follows from Lemma 4.7 that for any t /∈ N ′ (and hence −t /∈ N),
v := S(−t, u0) ∈ Cα−(T,R). Since S(t, v) = u0, the proposition is proved by choos-
ing

u0 ∈ Bα+1/2
1,1 (T,R) \

⋃
ε>0

Cβ+ε(T,R) , β := α− 1/2 .

A possible choice is

u0(x) = Re
( ∞∑
j=0

2−jβ

j2
ei2

jxχj(x)
)
, χj(x) :=

∑
k∈Z

χ(2j(x− 2kπ)) ,

where χ : R → R is C∞-smooth with χ(0) = 1 and support contained in the open
interval (−1/4, 1/4).
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Appendix A

Smoothing properties of Hankel operators

In this appendix, we record results on smoothing properties of Hankel operators,
which are used throughout the paper. First we need to introduce some more notation.
For any s ∈ R, Hs

− denotes the Hardy space with Sobolev exponent s, i.e.,

Hs
− := {f ∈ Hs

c : f̂(n) = 0 ∀n > 0}

and Π− the corresponding projection,

Π− : Hs
c → Hs

− , f =
∑
n∈Z

f̂(n)einx 7→ f =
∑
n≤0

f̂(n)einx .

For any u ∈ H1
c , denote by Hu : H0

− → H0
+ and H−u : H0

+ → H0
− the Hankel operators

with symbol u, defined as

Huf := Π[uf ], ∀ f ∈ H0
− , H−u f := Π−[uf ], ∀ f ∈ H0

+ .

Actually, Hu and H−u extend as bounded linear operators,

Hu : Hs
− → Hs

+ , H−u : Hs
+ → Hs

− ,

for any −1/2 < s < 0 (see e.g. [10, Lemma 1]). The following lemma shows that the

operators Hu and H−u can be defined for symbols u in H
1/2
c on appropriate Hardy

spaces and that they have smoothing properties, which depend on s. For notational
convenience, we itemize them according to the size of the gain of regularity. For
s < 1/2 and α ≥ 0, let

(85) β ≡ β(s, α) := α+ s− 1

2
< α .

Lemma A.1. — (Smoothing properties of Hankel operators) For any u ∈
Hs+α
c and f ∈ Hs

− with s ∈ R, α ≥ 0, the following holds:

(i) ‖Hu[f ]‖s+α .s,α ‖u‖s+α ‖f‖s, if s > 1
2 , α ≥ 0.

(ii) ‖Hu[f ]‖ 1
2 +α−ε .α,ε ‖u‖ 1

2 +α ‖f‖ 1
2
, if s = 1

2 , α ≥ 0, ε > 0.

(iii) ‖Hu[f ]‖s+β .s,α ‖u‖s+α ‖f‖s, if 0 ≤ s < 1
2 , α ≥ 1

2 − s.
(iv) ‖Hu[f ]‖s+β .s,α ‖u‖s+α ‖f‖s, if s < 0, α ≥ 1

2 − s, α > −2s,
where β ≡ β(s, α) is given by (85). Corresponding results hold for the operator H−u .

Proof.— Let u =
∑
k∈Z û(k)eikx ∈ Hs+α

c and f =
∑
p≥0 f̂(−p)e−ipx ∈ Hs

−. Then

with n := −(k + p),

g(x) := Π

 ∑
k∈Z,p≥0

û(−k)f̂(−p)e−i(k+p)x

 =
∑
n≥0

ĝ(n)einx

where

ĝ(n) :=
∑
p≥0

û(n+ p)f̂(−p) , ∀n ≥ 0 .
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By the Cauchy Schwarz inequality, one obtains

|ĝ(n)|2 ≤ ‖f‖2s
∑
p≥0

1

〈p〉2s
|û(n+ p)|2 , ∀n ≥ 0 ,

and thus for any γ ∈ R,

(86) ‖g‖2s+γ ≤ ‖f‖2s
∑
`≥0

|û(`)|2
∑

p,n≥0,p+n=`

〈n〉2(s+γ)

〈p〉2s
.

(i) In the case s > 1/2, α ≥ 0 one has 2s > 1 and hence∑
p,n≥0,p+n=`

〈n〉2(s+α)

〈p〉2s
≤ 〈`〉2(s+α)

∑
0≤p≤`

1

〈p〉2s
.s 〈`〉2(s+α),

so that by (86),

‖g‖s+α .s ‖u‖s+α‖f‖s.
(ii) Recall that s = 1/2, α ≥ 0 and note that without loss of generality, we can assume
that 0 < ε < 1/2. Then∑

p,n≥0,p+n=`

〈n〉2(s+α−ε)

〈p〉2s
≤ 〈`〉2( 1

2 +α−ε)
∑

0≤p≤`

1

〈p〉
. 〈`〉2( 1

2 +α−ε) log〈`〉.

Hence (86) implies that

‖g‖ 1
2 +α−ε .s,ε ‖u‖ 1

2 +α‖f‖ 1
2
.

(iii) In the case 0 ≤ s < 1/2, α ≥ 1/2 − s, one has 1 − 2s > 0 and s + β =
s+ α− (1/2− s) ≥ 0, implying that∑

p,n≥0,p+n=`

〈n〉2(s+β)

〈p〉2s
≤ 〈`〉2(s+β)

∑
0≤p≤`

1

〈p〉2s
.s 〈`〉2(s+β)〈`〉1−2s.

Since s+ β + 1/2− s = s+ α, it then follows by (86) that

‖g‖s+β .s ‖u‖s+α‖f‖s .

(iv) In the case s < 0 and α ≥ 1
2 + |s|, α > 2|s|, one has

s+ β = −1

2
+ α− 2|s| > −1/2

and hence ∑
p,n≥0,p+n=`

〈n〉2(s+β)

〈p〉2s
≤ 〈`〉−2s

∑
0≤n≤`

〈n〉2(s+β) .s 〈`〉−2s〈`〉1+2s+2β .

Since 1/2 + β = s+ α, it then follows by (86) that

‖g‖s+β .s ‖f‖s ‖u‖s+α .
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Appendix B

Diffeomorphism properties of Tao’s gauge transform

The aim of this appendix is to prove diffeomorphism properties of Tao’s gauge
transform. Without further reference, we will use the notation introduced in the main
body of the paper.

Theorem B.1. — For any s ≥ 0, Tao’s gauge transform

G : Hs
r,0 → Hs

+,0, u 7→ ∂xΠ(e−i∂
−1
x u) ,

is a real analytic diffeomorphism onto an open proper subset of Hs
+,0. Furthermore,

the functions ineinx, n ≥ 1, do not belong to the range of G and the differential of G
at u = 0 reads d0G = −iΠ.

Before proving Theorem B.1, we make some preliminary considerations. For any
given any u ∈ L2

r,0, let w = G(u) and introduce

(87) v := e−i∂
−1
x Πu ∈ H1

+ .

Since u = Πu+ Πu, one has

(88) e−i∂
−1
x u = e−i∂

−1
x Πu · e−i∂

−1
x Πu =

v

v̄

and consequently,

(89) ∂−1
x w = ∂−1

x ∂xΠ[e−i∂
−1
x u] = Π

[ v
v̄

]
+ a , a := −〈e−i∂

−1
x u|1〉 .

Given g ∈ H1
c , we denote by Ȟg the anti-linear Hankel operator of symbol g,

Ȟg : H+ → H+, h 7→ Π[gh̄] .

Lemma B.2. — For any w ∈ G(L2
r,0), the nullspace ker(Id − Ȟ∂−1

x w) of the linear

operator Id− Ȟ∂−1
x w : H+ → H+ satisfies

ker(Id− Ȟ∂−1
x w) ∩H+,0 = {0} .

Proof of Lemma B.2. — Let h be an element in ker(Id− Ȟ∂−1
x w) ∩H+,0. Then h =

Π[(∂−1
x w)h̄] and by (89)

Π
[ v
v̄
h̄
]

= Π
[(

Π
[v
v̄

])
h̄
]

= Π[(∂−1
x w) h̄]− aΠ[ h̄ ] .

Since h ∈ H+,0, one has Π[ h̄ ] = 〈1|h〉 = 0. Using that h = Π[(∂−1
x w)h] it then follows

that

Π
[ v
v̄
h̄
]

= h (= Πh) .

Hence there exists f ∈ H+,0 so that

(90)
v

v̄
h̄ = h+ f̄ .

This implies that

(91) v̄ f̄ = vh̄− v̄h = (v̄h− v h̄) = −vf ∈ H+ ,
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where we used that by (87), v is in H1
+. Consequently (1), vf is a constant function.

Furthermore, since v and f both belong to H+ and 〈f |1〉 = 0,

〈vf |1〉 = 〈v|1〉 · 〈f | 1〉 = 0 .

Therefore vf = 0 and in turn, since v does never vanish, f = 0. Coming back to (90),
we conclude that

h̄

v̄
=
h

v
∈ H+ .

We thus again conclude that the function h/v is constant. Since〈
h

v

∣∣∣ 1〉 = 〈h| 1〉 ·
〈

1

v

∣∣∣ 1〉 = 0

we infer that h = 0.

Proof of Theorem B.1. — In a first step we consider the case where s = 0. It is
straightforward to verify that G : L2

r,0 → H+,0 is real analytic and d0G = −iΠ. Next

we prove that for any integer n ≥ 1, the function fn(x) := ineinx is not an element
in the image G(L2

r,0) of G. In the case where n ≥ 2 we argue as follows. Note that for
n ≥ 2,

hn(x) := eix + ei(n−1)x ∈ H+,0

and since ∂−1
x fn = einx, one has hn − Ȟ∂−1

x fn
[hn] = 0 and hence

hn ∈ ker(Id− Ȟ∂−1
x fn

) ∩H+,0 .

By Lemma B.2 one then concludes that fn /∈ G(L2
r,0) . In the case n = 1 we have

to argue differently since h1 := eix + 1 is not an element in H+,0. We note that G
possesses the following scaling invariance : for any u ∈ L2

r,0 and any integer n ≥ 1,

G(un)(x) = nG(u)(nx) , un(x) := nu(nx) .

Consequently, if f1(x) = eix were to belong to the range of G, then so would fn(x) =
neinx = nf1(nx) for any n ≥ 2, in contradiction to what we just have proved.

Next we establish that G : L2
r,0 → H+,0 is injective. Assume that u1, u2 ∈ L2

r,0

satisfy G(u1) = G(u2). Set

v1 := e−i∂
−1
x Πu1 ∈ H1

+ , v2 := e−i∂
−1
x Πu2 ∈ H1

+ .

By (88), the assumption G(u1) = G(u2) can then be written as

(92) ∂xΠ

[
v1

v̄1
− v2

v̄2

]
= 0 .

It means that there exists f ∈ H+ so that

(93)
v1

v̄1
− v2

v̄2
= f̄ .

Arguing as in (91) it then follows that

v̄1 v̄2 f̄ = v1 v̄2 − v2 v̄1 = −(v1 v̄2 − v2 v̄1) = −v1v2 f ,

1. Throughout this appendix, we make frequent use of the elementary observation that any func-
tion f ∈ H+ with f ∈ H+, is constant.
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implying that v1v2 f is a constant function, v1v2 f = a ∈ C. Coming back to (93), we
obtain

(94)
v1

v2
− v̄1

v̄2
=

ā

v2 v̄2
.

Note that

(95) v1 = 1 + r , r :=

∞∑
k=1

(−i∂−1
x Πu1)k

k!
∈ H+,0 .

Hence 〈v1 | 1〉 = 1 and in turn 〈v̄1 | 1〉 = 1. Substituting −u2 for u1, (95) yields
〈 1
v2
| 1〉 = 1 and 〈 1

v̄2
| 1〉 = 1. Finally, since v1 and 1/v2 both belong to H+, one has

(96)

〈
v1

v2

∣∣∣ 1〉 = 〈v1 | 1〉 ·
〈

1

v2

∣∣∣ 1〉 = 1 ,

and in turn 〈 v̄1

v̄2
| 1〉 = 1. We then conclude from (94) that

0 =

〈
ā

v2v̄2

∣∣∣ 1〉 = ā

∥∥∥∥ 1

v2

∥∥∥∥2

,

implying that a = 0. By (94) it then follows that v1

v2
= v̄1

v̄2
is a constant, which by

(96) equals 1. We thus have proved that v1 = v2 and therefore

Π[u1] =
1

v1
i∂xv1 =

1

v2
i∂xv2 = Π[u2] ,

yielding u1 = u2. This proves the injectivity of G.
It remains to show that G is a local diffemorphism. As already pointed out, G :

L2
r,0 → H+,0 is a real analytic map. Hence by the inverse function theorem, we just

need to prove that for any u ∈ L2
r,0, duG : L2

r,0 → H+,0 is a linear isomorphism.

An easy computation yields that for any h ∈ L2
r,0,

(97) duG[h] = −i∂xΠ[(∂−1
x h)e−i∂

−1
x u ] = −i∂xΠ

[
(∂−1
x h)

v

v̄

]
,

where v := e−i∂
−1
x Πu ∈ H1

+ (cf. (88)). First we prove that duG is one-to-one. Assume
that h belongs to the kernel of duG. Then h ∈ H+,0 and there exists f ∈ H+ so that

(∂−1
x h)

v

v̄
= f̄ .

It follows that

v̄2 f̄ = ∂−1
x h v v̄

is real valued and belongs to H+. Hence v̄2 f̄ is a constant function, v̄2 f̄ = a ∈ C,
implying that

∂−1
x h =

a

v v̄
.

Taking the inner products of both sides of the latter identity with 1, we get a = 0.
Since h ∈ H+,0, we conclude that h = 0, proving that duG is one-to-one.
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It remains to show that duG : L2
r,0 → H+,0 is onto. Since duG is one-to-one, it

suffices to prove that for any u ∈ L2
r,0, duG is a compact perturbation of a linear

isomorphism. For any h ∈ L2
r,0, one has

h = h1 + h2 , h1 = Π[h] ∈ H+,0 , h2 = h̄1 = (Id−Π)[h] ,

and hence by (97),

duG[h] = L1[h1] + L2[h2] + L3[h1] + L4[h2] , ∀h ∈ L2
r,0 ,

where L1, L3 : H+ → H+ are the bounded linear operators,

L1[g] := −iΠ
[v
v̄
g
]
, L3[g] := −iΠ

[
∂x

(v
v̄

)
· ∂−1
x g

]
,

and L2, L4 : H− → H+ the bounded linear operators,

L2[g] := −iΠ
[v
v̄
g
]
, L4[g] := −iΠ

[
∂x

(v
v̄

)
· ∂−1
x g

]
.

By the Sobolev embedding theorem and Rellich’s theorem, the bounded linear oper-
ator ∂−1

x : L2
r,0 → H1

r,0 gives rise to a compact linear operator L2
+,0 → L∞r,0, which

we again denote by ∂−1
x . Hence L3 and L4 are compact operators. Furthermore,

Π[vv̄ ] ∈ H1
+ and L2 is the Hankel operator H−iΠ[ vv ] with symbol −iΠ[vv̄ ],

L2[g] = −iHΠ[ vv̄ ] [g] , ∀ g ∈ H− .

By the smoothing properties of Hankel operators (cf. Lemma A.1(iii) in Appendix A
with α = 1, s = 0, β = 1/2) it then follows that L2 : H− → H+ is compact. Finally,
L1 : H+ → H+ is a Toeplitz operator with symbol −i vv̄ ,

L1[g] = −iT v
v̄
[g] , ∀ g ∈ H+ ,

which is invertible with inverse given by (cf. e.g. [12, Lemma 6.5])

L−1
1 [f ] = i

1

v
Π

[
1

v̄
f

]
, ∀ f ∈ H+ .

Denote by Π1 the projection

Π1 : H+ → H+,0 , g 7→ g − 〈g|1〉 .
Since duG : L2

r,0 → H+,0 it follows that for any h ∈ L2
+,0, duG[h] equals

Π1 ◦ L1[Πh] + Π1 ◦ L3[Πh] + Π1 ◦ L2[(Id−Π)h] + Π1 ◦ L4[(Id−Π)h]

Clearly, the linear operators Π1 ◦ L3 ◦Π : L2
r,0 → H+,0 and

Π1 ◦ L2 ◦ (Id−Π) : L2
r,0 → H+,0 , Π1 ◦ L4 ◦ (Id−Π) : L2

r,0 → H+,0

are compact. Furthermore, one verifies in a straightforward way that Π1 ◦ L1 ◦ Π :
L2

+,0 → H+,0 is a linear isomorphism (cf. [12, Lemma 6.5]). Altogether, we thus have

proved that dG(u) : L2
r,0 → Hr,0 is a compact perturbation of a linear isomorphism

and hence a Fredholm operator of index zero. This completes the proof of Theorem
B.1 in the case s = 0.

By the same arguments as in the above proof one verifies that for any s > 0, G :
Hs
r,0(T)→ Hs

+,0(T) is a diffeomorphism onto an open proper subset of Hs
+,0(T).
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The following considerations add to the results on the image of Tao’s gauge transform
of Theorem B.1. Consider the family of one gap potentials uα ∈

⋂
s≥0H

s
r,0, given by

(98) (Πuα)(x) =
αeix

1− αeix
= i∂x log(1− αeix)

where α ∈ C satisfies 0 < |α| < 1. Such potentials, studied in [8, Appendix B], give
rise to traveling wave solutions of the BO equation. They are one gap potentials in
the sense that

γ1(uα) =
|α|2

1− |α|2
, γn(uα) = 0 , ∀n ≥ 2 .

Using the identity (88), the definition of G(u), and the second identity in (98) one
sees that

G(uα) = ∂xΠ

[
1− αeix

1− ᾱe−ix

]
= ∂xΠ

(1− αeix)
∑
k≥0

(ᾱe−ix)k


= ∂x

(
(1− αeix)− αeixᾱe−ix

)
= −iαeix .

In particular, it follows that any β ∈ C with 0 ≤ |β| < 1, βeix is in the image G(L2
r,0)

of G. It is then natural to ask whether βeix is in G(L2
r,0) for some β ∈ C with |β| ≥ 1.

Proposition B.3. — For any β ∈ C with |β| ≥ 1 βeix is not in G(L2
r,0) .

Proof. — Assume that u ∈ L2
r,0 has the property that G(u) = βeix where β ∈ C.

Following (87), define v := e−i∂
−1
x Πu ∈ H1

+. By (88) one has e−i∂
−1
x u = v

v , implying
that (cf. (89))

G(u) = ∂xΠ
[ v
v̄

]
.

Applying ∂−1
x to both sides of the latter identity, one concludes that there exists a

constant a ∈ C so that −iβeix = Π[ vv̄ ] +a. It means that there exists f ∈ H+ so that

−iβeix − v
v̄ = f̄ or, multiplying both sides of the latter equation by v,

(99) − iβeix v̄ − v = f̄ v̄ .

Since by (95), 〈v | 1〉 = 1 and βeix(v̄ − 1) ∈ H̄+ and hence

−iβeixv̄ ∈ −iβeix + H̄+,

it then follows from (99) that −iβeix − v ∈ H̄+ and hence is a constant. Using that
〈v | 1〉 = 1 we then conclude that

(100) v = 1− iβeix

and hence

(101) ∂xv = βeix

On the other hand, one has v = e−i∂
−1
x Πu and hence by (100)

(102) ∂xv = −ivΠu = −i(1− iβeix)Πu.
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Combining (101) and (102) it then follows that

Πu =
iβeix

1− iβeix
=
∑
n≥1

(iβeix)n =
∑
n≥1

(iβ)neinx.

Since by assumption u ∈ L2
r,0, ‖Πu‖2 =

∑
n≥1 |β|2n <∞ and hence we conclude that

|β| < 1.

Appendix C

Approximation of the differential of Φ

So far, no high frequency approximation has been found for Φ−1. Our goal is to
derive such an approximation at least for the differential of Φ−1. At the same time we
derive a high frequency approximation for the differential of Φ. Such approximations
are useful for analyzing the pullback of vector fields by the maps Φ and Φ−1.

Denote by F+
1/2 the (partial) weighted Fourier transform

F+
1/2 : Hs

c → hs+
1
2 , u 7→

(
1√
n
û(n)

)
n≥1

and by G Tao’s gauge transform, defined for any given s ≥ 0 by

(103) G : Hs
r,0 → Hs

+,0, u 7→ ∂xΠ[ḡ∞] ,

where we recall that g∞ ≡ g∞(·, u) = ei∂
−1
x u. By (28), Φ0 can be expressed in terms

of G and F+
1/2 as

(104) Φ0(u) =
1

i
F+

1/2[G(u)] .

By Theorem 1.6, 1
iF

+
1/2 ◦ G is a high frequency approximation of Φ. In more detail,

for any s ≥ 0, u 7→ Φ(u) − 1
iF

+
1/2[G(u)] is a continuous map from Hs

r,0 with values

in hs+
1
2 +τ(s). By [11, 12], for any s ≥ 0, the Birkhoff map Φ : Hs

r,0 → hs+
1
2 is a

real analytic diffeomorphism and by Theorem B.1 in Appendix B, so is Φ0 from Hs
r,0

onto an open proper subset of hs+
1
2 . To state our high frequency approximation of the

differential of Φ and of Φ−1 we introduce

τ2(s) :=


1 if s > 3/2

1− if s = 3/2
s
2 + 1

4 if 1/2 ≤ s < 3/2

s if 0 < s < 1/2

.

Note that for any s > 0,

(105) min{s, s− τ2(s) + τ(s− τ2(s))} = s .

We then obtain the following corollary of Theorem 1.6 and Theorem B.1.



SMOOTHING PROPERTIES AND TAO’S GAUGE TRANSFORM 38

Corollary C.1. — (i) For any s ≥ 0, Φ − Φ0 : Hs
r,0 → hs+

1
2 +τ(s) is real analytic.

As a consequence, for any u ∈ Hs
r,0, s ≥ 0, duΦ0 is a high frequency approximation

of duΦ, i.e., for any u ∈ Hs
r,0 with s ≥ 0,

duΦ− duΦ0 : Hs
r,0 → hs+

1
2 +τ(s)

is a bounded linear operator.
(ii) For any u ∈ Hs

r,0 with s > 0, (duΦ0)−1 is a high frequency approximation of

(duΦ)−1 in the sense that (duΦ)−1 − (duΦ0)−1 maps hs+
1
2−τ2(s) into Hs

r,0 and

(duΦ)−1 − (duΦ0)−1 : hs+
1
2−τ2(s) → Hs

r,0

is bounded.

Proof. — (i) By the above considerations, Φ− Φ0 : Hs
r,0 → hs+

1
2 is real analytic for

any s ≥ 0. In particular, each component of Φ−Φ0 is a real analytic map Hs
r,0 → C.

Since by Theorem 1.6, Φ − Φ0 : Hs
r,0 → hs+

1
2 +τ(s) is continuous for any s ≥ 0, one

infers from [16, Theorem A.5] that Φ− Φ0 : Hs
r,0 → hs+

1
2 +τ(s) is real analytic.

(ii) For any given u ∈ Hs
r,0 with s > 0, introduce the linear operators

A(u) := duΦ− duΦ0 : L2
r,0 → h

1
2 ,

B(u) := duΦ−1 − duΦ−1
0 : h

1
2 → L2

r,0 .

Note that
Id = duΦ ◦ (duΦ)−1 = duΦ ◦ ((duΦ0)−1 +B(u))

= (duΦ0 +A(u)) ◦ (duΦ0)−1 + duΦ ◦B(u)

= Id +A(u) ◦ (duΦ0)−1 + duΦ ◦B(u) .

It then follows that

B(u) = −(duΦ)−1 ◦A(u) ◦ (duΦ0)−1 .

Furthermore, by item (i) and (105), A(u) maps H
s−τ2(s)
r,0 into hs+

1
2 and

(106) A(u) : H
s−τ2(s)
r,0 → hs+

1
2 ,

is bounded. Since (duΦ0)−1 : hs+
1
2−τ2(s) → H

s−τ2(s)
r,0 and (duΦ)−1 : hs+

1
2 → Hs

r,0 are

bounded linear operators, we then conclude that B(u) maps hs+
1
2−τ2(s) into Hs

r,0 and

that B(u) : hs+
1
2−τ2(s) → Hs

r,0 is bounded.
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[6] M. Erdoğan, N. Tzirakis. Dispersive partial differential equations. Wellposedness and
applications, London Mathematical Society Student Texts, 86. Cambridge University
Press, Cambridge, 2016

[7] L. Evans, Partial Differential Equations, Graduate Studies in Mathematics, vol. 19,
American Math. Soc., 1998

[8] P. Gérard, T. Kappeler, On the integrability of the Benjamin–Ono equation on the
torus, Comm. Pure Appl. Math. 74 (2021), no. 8, 1685-1747

[9] P. Gérard, T. Kappeler, P. Topalov, Sharp well-posedness results of the Benjamin-
Ono equation in Hs(T,R) and qualitative properties of its solutions, to appear in Acta
Math., arXiv:2004.04857

[10] P. Gérard, T. Kappeler, P. Topalov, On the spectrum of the Lax operator of the
Benjamin-Ono equation on the torus, J. Funct. Anal. 279 (2020), no. 12, 108762

[11] P. Gérard, T. Kappeler, P. Topalov, On the analytic Birkhoff normal form of the
Benjamin-Ono equation and applications, Nonlinear Anal. 216 (2022), Paper No 112687

[12] P. Gérard, T. Kappeler, P. Topalov, On the analyticity of the nonlinear Fourier
transform of the Benjamin-Ono equation on T , arXiv:2109.08988

[13] P. Gérard, An explicit formula for the Benjamin–Ono equation, arXiv:2212.03139
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