AN EXPLICIT FORMULA FOR THE BENJAMIN-ONO EQUATION

PATRICK GÉRARD

Abstract

We establish an explicit formula for the general solution of the Benjamin-Ono equation on the torus and on the line.

Contents

1. Introduction 1
1.1. The Benjamin-Ono equation 1
1.2. The Lax pair 2
1.3. The explicit formula on the torus 3
1.4. The explicit formula on the line 3
1.5. Organization of the paper 4
2. Proof of the explicit formula on the torus 5
3. Proof of the explicit formula on the line 6
4. Final remarks 9
References 10

1. Introduction

1.1. The Benjamin-Ono equation. The Benjamin-Ono equation was introduced by Benjamin [1] (see also Davis-Acrivos [3], Ono [15]) to model long, one-way internal gravity waves in a two-layer fluid. It reads

$$
\begin{equation*}
\partial_{t} u=\partial_{x}\left(|D| u-u^{2}\right) . \tag{1}
\end{equation*}
$$

Date: December 20, 2022.
2010 Mathematics Subject Classification. 37K15 primary, 47B35 secondary.
Key words and phrases. Benjamin-Ono equation, explicit formula, Lax pair, Toeplitz operators.

I would like to warmly thank my colleagues M. Bellassoued, N. Burq, B. Dehman and C. Zuily for inviting me to give a minicourse in the Tunisian-French conference of October 2022 in Hammamet, which encouraged me to provide a joint presentation of the cubic Szegő equation and of the Benjamin-Ono equation, and led me to the explicit formulae established here. I am grateful to Sandrine Grellier, Enno Lenzmann, Alexander Pushnitski, Peter Perry and Peter Topalov for fruitful discussions about these formulae.

Here $u=u(t, x)$ denotes a real valued function and $|D|$ denotes the Fourier multiplier associated to the symbol $|\xi|$. There is a vast literature about this equation, and we refer to the book by Klein and Saut [13] for a recent survey. We consider both the case of periodic boundary conditions $u(t, x+2 \pi)=u(t, x)$, which we refer as $x \in \mathbb{T}$, and the case where $u(t, x)$ cancels as x tends to $\pm \infty$, which we refer as $x \in \mathbb{R}$. In both cases, we will restrict ourselves to sufficiently smooth solutions, which can be proved to exist globally by a combination of standard quasilinear scheme and appropriate conservation laws.
More precisely, for every $s \in \mathbb{R}$, let us denote by H^{s} the Sobolev space of tempered distributions with s derivatives in L^{2}, and by H_{r}^{s} the real subspace of H^{s} made of real valued distributions. Then one can prove the following result.
Theorem 1 (Saut, 1979 [16]). For every $u_{0} \in H_{r}^{2}$, there exists a unique solution $u \in C\left(\mathbb{R}, H_{r}^{2}\right)$ of (1) with $u(0)=u_{0}$.

Our goal in this paper is to provide an explicit formula of the solution $u(t)$ in terms of the initial datum u_{0}.

For this, we need to introduce the Lax pair structure for (1).
1.2. The Lax pair. On \mathbb{T} or \mathbb{R}, we denote by L_{+}^{2} the Hardy space corresponding to L^{2} functions having a Fourier transform supported in the domain $\xi \geq 0$. Recall that both Hardy spaces identify to some spaces of holomorphic functions. The space $L_{+}^{2}(\mathbb{T})$ identifies to holomorphic functions f on the unit disc $\mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}$ such that

$$
\sup _{r<1} \int_{0}^{2 \pi}\left|f\left(r \mathrm{e}^{i x}\right)\right|^{2} d x<+\infty
$$

while $L_{+}^{2}(\mathbb{R})$ identifies to holomorphic functions on the upper half plane $\mathbb{C}_{+}:=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$ such that

$$
\sup _{y>0} \int_{\mathbb{R}}|f(x+i y)|^{2} d y<+\infty .
$$

We denote by Π the orthogonal projector from L^{2} onto L_{+}^{2}. Remarkable operators on L_{+}^{2} are Toeplitz operators, associated to functions $b \in L^{\infty}$ by the formula

$$
\forall f \in L_{+}^{2}, T_{b} f=\Pi(b f) .
$$

For every $u \in H_{r}^{2}$, we denote by L_{u} the semi-bounded selfadjoint operator defined on L_{+}^{2} by

$$
\operatorname{Dom}\left(L_{u}\right)=H_{+}^{1}:=H^{1}(\mathbb{T}) \cap L_{+}^{2}, L_{u} f=D f-T_{u} f,
$$

where

$$
D:=\frac{1}{i} \frac{d}{d x} .
$$

We also consider, for $u \in H_{r}^{2}$, the bounded antiselfadjoint operator defined by

$$
B_{u}=i\left(T_{D \mid u}-T_{u}^{2}\right)
$$

Then one can check the following identity (see e.g. [4], [18], [6], [8]).
Theorem 2. Under the conditions of Theorem 1, we have

$$
\forall t \in \mathbb{R}, \frac{d}{d t} L_{u(t)}=\left[B_{u(t)}, L_{u(t)}\right]
$$

Corollary 1. Under the conditions of Theorem 1, denote by $U=U(t)$ the operator-valued solution of the linear ODE

$$
U^{\prime}(t)=B_{u(t)} U(t), U(0)=\mathrm{Id}
$$

Then, for every $t \in \mathbb{R}, U(t)$ is unitary on L_{+}^{2}, and

$$
L_{u(t)}=U(t) L_{u(0)} U(t)^{*}
$$

1.3. The explicit formula on the torus. Let us mention some more properties of the Hardy space on the torus. The Hardy space $L_{+}^{2}(\mathbb{T})$ is equipped with the shift operator $S:=T_{\mathrm{e}^{i x}}$ and with its adjoint $S^{*}=T_{\mathrm{e}-i x}$. With this notation, our main result on the torus reads as follows.

Theorem 3. Let $u \in C\left(\mathbb{R}, H_{r}^{2}(\mathbb{T})\right)$ be the solution of the BenjaminOno equation on the torus \mathbb{T} with $u(0)=u_{0}$.
Then $u(t)=\Pi u(t)+\overline{\Pi u}(t)-\left\langle u_{0} \mid 1\right\rangle$, with

$$
\forall z \in \mathbb{D}, \Pi u(t, z)=\left\langle\left(\operatorname{Id}-z \mathrm{e}^{i t} \mathrm{e}^{2 i t L_{u_{0}}} S^{*}\right)^{-1} \Pi u_{0} \mid 1\right\rangle
$$

Remark 1. The above formula can be equivalently stated as a characterization of Fourier coefficients of the solution u,

$$
\begin{aligned}
\forall k \geq 0, \hat{u}(t, k) & =\left\langle\left(\mathrm{e}^{i t} \mathrm{e}^{2 i t L_{u_{0}}} S^{*}\right)^{k} \Pi u_{0} \mid 1\right\rangle \\
& =\left\langle\Pi u_{0} \mid\left(S \mathrm{e}^{-i t} \mathrm{e}^{-2 i t L_{u_{0}}}\right)^{k} 1\right\rangle
\end{aligned}
$$

Under this form, it extends to much more singular data, for which the flow of the Benjamin-Ono has been proved to extend continuously. According to [7], this is the case if u_{0} belongs to $H_{r}^{s}(\mathbb{T})$ for some $s>$ $-1 / 2$. Indeed, in this case, $L_{u_{0}}$ is selfadjoint, semibounded, and the domain of the square root of $L_{u_{0}}+K \mathrm{Id}$, for K big enough, is the space $H_{+}^{1 / 2}:=H^{1 / 2}(\mathbb{T}) \cap L_{+}^{2}$. Consequently, the operator $S \mathrm{e}^{-i t} \mathrm{e}^{-2 i t L_{u_{0}}}$ acts on $H_{+}^{1 / 2}(\mathbb{T})$, so that the inner product in the second line above is well defined.
1.4. The explicit formula on the line. On $L_{+}^{2}(\mathbb{R})$, the shift operator S must be replaced by the Lax-Beurling semi-group $(S(\eta))_{\eta \geq 0}$ of isometries defined as

$$
\forall f \in L_{+}^{2}(\mathbb{R}), S(\eta) f(x)=\mathrm{e}^{i \eta x} f(x)
$$

We denote by G the adjoint of the operator of multiplication by x on $L_{+}^{2}(\mathbb{R})$. Notice that $-i G$ is the infinitesimal generator of the adjoint semi-group of contractions $\left(S(\eta)^{*}\right)_{\eta \geq 0}$, so that

$$
\forall \eta \geq 0, S(\eta)^{*}=\mathrm{e}^{-i \eta G}
$$

It is easy to check that the domain of G consists of those functions $f \in L_{+}^{2}(\mathbb{R})$ such that the restriction of \hat{f} to the half-line $(0,+\infty)$ belongs to the Sobolev space $H^{1}(0,+\infty)$, and that

$$
\widehat{G f}(\xi)=i \frac{d}{d \xi}[\hat{f}(\xi)] \mathbf{1}_{\xi>0}
$$

As a consequence, for every $f \in \operatorname{Dom}(G)$, one may define

$$
I_{+}(f):=\hat{f}\left(0^{+}\right) .
$$

This definition can be extended to any $f \in L_{+}^{2}$ such that the restriction of \hat{f} to some interval $(0, \delta)$ belongs to the Sobolev space $H^{1}(0, \delta)$ for some $\delta>0$, and we shall use it as well.
With this notation, our main result on the line reads as follows.
Theorem 4. Let $u \in C\left(\mathbb{R}, H_{r}^{2}(\mathbb{R})\right)$ be the solution of the BenjaminOno equation on the line \mathbb{R} with $u(0)=u_{0}$.
Then $u(t)=\Pi u(t)+\overline{\Pi u}(t)$, with

$$
\forall z \in \mathbb{C}_{+}, \quad \Pi u(t, z)=\frac{1}{2 i \pi} I_{+}\left[\left(G-2 t L_{u_{0}}-z \mathrm{Id}\right)^{-1} \Pi u_{0}\right]
$$

Notice that, in the above formula, the function

$$
f_{z, t}:=\left(G-2 t L_{u_{0}}-z \mathrm{Id}\right)^{-1} \Pi u_{0}
$$

belongs to the domain of $G-2 t L_{u_{0}}$ - see the end of section 3 for more detail -, and therefore its Fourier transform satisfies $\hat{f} \in H^{1}(0, \delta)$ for every finite $\delta>0$, hence one can define $I_{+}\left(f_{z, t}\right)$.

Remark 2. At this time, the wellposedness theory for (1) on the line is slightly less advanced than on the torus, see [14] for a detailed account of this, with extension of the flow map to $L_{r}^{2}(\mathbb{R})$. However, one can easily prove - see section 3 below - that the above formula makes sense for u_{0} in the space $L^{\infty}(\mathbb{R}) \cap L_{r}^{2}(\mathbb{R})$.
1.5. Organization of the paper. Sections 2 and 3 are respectively devoted to the proofs of Theorems 3 and 4. The main idea is to take advantage of commutation identities between the operators of the shift structure of the Hardy space and the operators L_{u} and B_{u} of the Lax pair, in the spirit of what was done in [5] for the cubic Szegő equation on the torus. At the end of Section 3, we also provide a short discussion of the meaning of the formula, leading to an extension to real valued initial data in $L^{\infty}(\mathbb{R}) \cap L^{2}(\mathbb{R})$. Section 4 briefly draws possible applications and extensions to other equations.

2. Proof of the explicit formula on the torus

The proof is based on the following lemma.
Lemma 1. For every $u \in H_{r}^{2}(\mathbb{T})$,

$$
\left[S^{*}, B_{u}\right]=i\left(\left(L_{u}+\mathrm{Id}\right)^{2} S^{*}-S^{*} L_{u}^{2}\right)
$$

Let us postpone the proof of Lemma 1 and complete the proof of Theorem 3. Since $u(t)$ is real valued, we have the identity

$$
u(t)=\Pi u(t)+\overline{\Pi u}(t)-\langle u(t) \mid 1\rangle
$$

and $\langle u(t) \mid 1\rangle=\left\langle u_{0} \mid 1\right\rangle$ because of the equation. It remains to identify $\Pi u(t)$ as a holomorphic function on the disc. For this, we proceed as in [5], where a similar formula was established for the cubic Szegő equation. We have, for every $z \in \mathbb{D}$,

$$
\Pi u(t, z)=\sum_{n=0}^{\infty} z^{n}\left\langle\Pi u(t), \mathrm{e}^{i n x}\right\rangle=\left\langle\left(\operatorname{Id}-z S^{*}\right)^{-1} \Pi u(t) \mid 1\right\rangle
$$

We denote by $U=U(t)$ the solution of the linear initial value problem in $\mathscr{L}\left(L_{+}^{2}(\mathbb{T})\right.$), (see Corollary 1),

$$
U^{\prime}(t)=B_{u(t)} U(t), U(0)=\operatorname{Id}
$$

Since $B_{u(t)}$ is anti-selfadjoint, $U(t)$ is unitary, and we can write

$$
\begin{equation*}
\Pi u(t, z)=\left\langle\left(\operatorname{Id}-z U(t)^{*} S^{*} U(t)\right)^{-1} U(t)^{*} \Pi u(t) \mid U(t)^{*} 1\right\rangle \tag{2}
\end{equation*}
$$

Let us calculate

$$
\begin{aligned}
\frac{d}{d t} U(t)^{*} 1 & =-U(t)^{*} B_{u(t)} 1=-i U(t)^{*}\left[\left(T_{|D| u(t)}-T_{u(t)}^{2}\right)(1)\right] \\
& =-i U(t)^{*}\left[D \Pi u(t)-T_{u(t)} \Pi u(t)\right]=-i U(t)^{*} L_{u(t)} \Pi u(t) \\
& =i U(t)^{*} L_{u(t)}^{2}(1)=i L_{u_{0}}^{2} U(t)^{*} 1
\end{aligned}
$$

where we have used Corollary 1, from which we conclude

$$
U(t)^{*} 1=\mathrm{e}^{i t L_{u_{0}}^{2}}(1)
$$

Consequently, using again Corollary 1,
$U(t)^{*} \Pi u(t)=-U(t)^{*} L_{u(t)}(1)=-L_{u_{0}} U(t)^{*}(1)=-L_{u_{0}} \mathrm{e}^{i t L_{u_{0}}^{2}}(1)=\mathrm{e}^{i t L_{u_{0}}^{2}} \Pi u_{0}$.
Finally, using Lemma 1,

$$
\begin{aligned}
\frac{d}{d t} U(t)^{*} S^{*} U(t) & =U(t)^{*}\left[S^{*}, B_{u(t)}\right] U(t)=U(t)^{*}\left[i\left(\left(L_{u(t)}+\mathrm{Id}\right)^{2} S^{*}-S^{*} L_{u(t)}^{2}\right] U(t)\right. \\
& =i\left(L_{u_{0}}+\mathrm{Id}\right)^{2} U(t)^{*} S^{*} U(t)-i U(t)^{*} S^{*} U(t) L_{u_{0}}^{2}
\end{aligned}
$$

from which we infer

$$
U(t)^{*} S^{*} U(t)=\mathrm{e}^{i t\left(L_{u_{0}}+\mathrm{Id}\right)^{2}} S^{*} \mathrm{e}^{-i t L_{u_{0}}^{2}} .
$$

Plugging the previous identites into (1), we conclude

$$
\begin{aligned}
\Pi u(t, z) & =\left\langle\left(\mathrm{Id}-z \mathrm{e}^{i t\left(L_{u_{0}}+\mathrm{Id}\right)^{2}} S^{*} \mathrm{e}^{-i t L_{u_{0}}^{2}}\right)^{-1} \mathrm{e}^{i t L_{u_{0}}^{2}} \Pi u_{0} \mid \mathrm{e}^{i t L_{u_{0}}^{2}}(1)\right\rangle \\
& =\left\langle\left(\mathrm{Id}-z \mathrm{e}^{-i t L_{u_{0}}^{2}} \mathrm{e}^{i t\left(L_{u_{0}}+\mathrm{Id}\right)^{2}} S^{*}\right)^{-1} \Pi u_{0} \mid 1\right\rangle
\end{aligned}
$$

which yields the claimed formula.
Finally, let us prove Lemma 1. First of all, it easy to check the following commutation identity with the Toeplitz operators,

$$
\forall b \in L^{\infty}(\mathbb{T}),\left[S^{*}, T_{b}\right]=\langle\cdot \mid 1\rangle S^{*} \Pi b
$$

On the other hand, from the adjoint Leibniz formula, we have

$$
S^{*} D=D S^{*}+S^{*}
$$

Combining the two above identities, we infer

$$
S^{*} L_{u}=\left(L_{u}+\mathrm{Id}\right) S^{*}-\langle. \mid 1\rangle S^{*} \Pi u
$$

and finally

$$
\begin{aligned}
{\left[S^{*}, B_{u}\right] } & =i\left(\left[S^{*}, T_{|D| u}\right]-T_{u}\left[S^{*}, T_{u}\right]-\left[S^{*}, T_{u}\right] T_{u}\right) \\
& =i\left(\langle\cdot \mid 1\rangle S^{*} D \Pi u-T_{u}\langle\cdot \mid 1\rangle S^{*} \Pi u-\left\langle\cdot\left(|1\rangle S^{*} \Pi u\right) T_{u}\right)\right. \\
& =i\left(\langle\cdot \mid 1\rangle\left(D S^{*} \Pi u-T_{u} S^{*} \Pi u+S^{*} \Pi u\right)-\left\langle\cdot \mid T_{u} 1\right\rangle S^{*} \Pi u\right) \\
& =i\left(\langle\cdot \mid 1\rangle\left(L_{u} S^{*} \Pi u+S^{*} \Pi u\right)+\left\langle\cdot \mid L_{u} 1\right\rangle S^{*} \Pi u\right) \\
& =i\left(\left(L_{u}+\mathrm{Id}\right)\langle\cdot \mid 1\rangle S^{*} \Pi u+\left(\langle\cdot \mid 1\rangle S^{*} \Pi u\right) L_{u}\right) \\
& =i\left(\left(L_{u}+\mathrm{Id}\right)\left(\left(L_{u}+\mathrm{Id}\right) S^{*}-S^{*} L_{u}\right)+\left(\left(L_{u}+\mathrm{Id}\right) S^{*}-S^{*} L_{u}\right) L_{u}\right) \\
& =i\left(\left(L_{u}+\mathrm{Id}\right)^{2} S^{*}-S^{*} L_{u}^{2}\right) .
\end{aligned}
$$

The proof of Theorem 3 is complete.

3. Proof of the explicit formula on the line

We start with the inverse Fourier transform for every $f \in L_{+}^{2}(\mathbb{R})$, which we can write in the upper-half plane, as an absolutely convergent integral,

$$
\forall z \in \mathbb{C}_{+}, f(z)=\frac{1}{2 \pi} \int_{0}^{\infty} \mathrm{e}^{i z \xi} \hat{f}(\xi) d \xi
$$

while, in view of the Plancherel theorem, we have, in $L^{2}(0,+\infty)$,

$$
\hat{f}(\xi)=\lim _{\varepsilon \rightarrow 0} \int_{\mathbb{R}} \mathrm{e}^{-i x \xi} \frac{f(x)}{1+i \varepsilon x} d x=\lim _{\varepsilon \rightarrow 0}\left\langle S(\xi)^{*} f \mid \chi_{\varepsilon}\right\rangle
$$

where χ_{ε} denotes the following function in $L_{+}^{2}(\mathbb{R})$,

$$
\chi_{\varepsilon}(x):=\frac{1}{1-i \varepsilon x} .
$$

Plugging the second formula into the first one, we infer

$$
\begin{aligned}
f(z) & =\lim _{\varepsilon \rightarrow 0} \frac{1}{2 \pi} \int_{0}^{\infty} \mathrm{e}^{i z \xi}\left\langle S(\xi)^{*} f \mid \chi_{\varepsilon}\right\rangle d \xi \\
& =\lim _{\varepsilon \rightarrow 0} \frac{1}{2 \pi} \int_{0}^{\infty} \mathrm{e}^{i z \xi}\left\langle\mathrm{e}^{-i \xi G} f \mid \chi_{\varepsilon}\right\rangle d \xi \\
& =\lim _{\varepsilon \rightarrow 0} \frac{1}{2 i \pi}\left\langle(G-z \mathrm{Id})^{-1} f \mid \chi_{\varepsilon}\right\rangle \\
& =\frac{1}{2 i \pi} I_{+}\left[(G-z \mathrm{Id})^{-1} f\right]
\end{aligned}
$$

Since $u(t)$ is real valued, we can write $u(t)=\Pi u(t)+\overline{\Pi u(t)}$, and it remains to characterize $\Pi u(t, z)$ for $z \in \mathbb{C}_{+}$. We are going to proceed as in the previous paragraph, using the family $U(t)$ of unitary operators in $\mathscr{L}\left(L_{+}^{2}(\mathbb{R})\right)$ defined by Corollary 1 ,

$$
U^{\prime}(t)=B_{u(t)} U(t), U(0)=\mathrm{Id}
$$

For every $z \in \mathbb{C}_{+}$, we have

$$
\begin{aligned}
\Pi u(t, z) & =\lim _{\varepsilon \rightarrow 0} \frac{1}{2 i \pi}\left\langle U(t)^{*}(G-z \mathrm{Id})^{-1} \Pi u(t) \mid U(t)^{*} \chi_{\varepsilon}\right\rangle \\
& =\lim _{\varepsilon \rightarrow 0} \frac{1}{2 i \pi}\left\langle\left(U(t)^{*} G U(t)-z \operatorname{Id}\right)^{-1} U(t)^{*} \Pi u(t) \mid U(t)^{*} \chi_{\varepsilon}\right\rangle
\end{aligned}
$$

We have the following lemma.
Lemma 2. For every $u \in H_{r}^{2}(\mathbb{T})$,

$$
\left[G, B_{u}\right]=-2 L_{u}+i\left[L_{u}^{2}, G\right]
$$

Let us postpone the proof of Lemma 2 and complete the proof of Theorem 4. We calculate

$$
\begin{aligned}
\frac{d}{d t} U(t)^{*} G U(t) & =U(t)^{*}\left[G, B_{u(t)}\right] U(t) \\
& =U(t)^{*}\left(-2 L_{u(t)}+i\left[L_{u(t)}^{2}, G\right]\right) U(t) \\
& =-2 L_{u_{0}}+i\left[L_{u_{0}}^{2}, U(t)^{*} G U(t)\right]
\end{aligned}
$$

Integrating this ODE, we get

$$
U(t)^{*} G U(t)=-2 t L_{u_{0}}+\mathrm{e}^{i t L_{u_{0}}^{2}} G \mathrm{e}^{-i t L_{u_{0}}^{2}}
$$

Let us determine the other terms in the inner product. First of all, we recall an identity coming directly from (1) (see also [17]),

$$
\begin{aligned}
\partial_{t} \Pi u & =\partial_{x} D \Pi u-\partial_{x} \Pi\left(u^{2}\right)=i D^{2} \Pi u-\partial_{x}\left((\Pi u)^{2}\right)-2 \Pi \partial_{x}\left(|\Pi u|^{2}\right) \\
& =i L_{u}^{2}(\Pi u)+T_{u} \partial_{x} \Pi u+\partial_{x}\left(T_{u} \Pi u\right)-i T_{u}^{2} \Pi u-\partial_{x}\left((\Pi u)^{2}\right)-2 \Pi \partial_{x}\left(|\Pi u|^{2}\right) \\
& =i L_{u}^{2}(\Pi u)+\Pi u \partial_{x} \Pi u+\Pi\left(\overline{\Pi u} \partial_{x} \Pi u\right)-\Pi \partial_{x}\left(|\Pi u|^{2}\right)-i T_{u}^{2} \Pi u \\
& =i L_{u}^{2}(\Pi u)+B_{u}(\Pi u) .
\end{aligned}
$$

We infer, using Corollary 1 ,

$$
\frac{d}{d t} U(t)^{*} \Pi u(t)=U(t)^{*}\left(\partial_{t} \Pi u(t)-B_{u(t)} \Pi u(t)\right)=i U(t)^{*} L_{u(t)}^{2} \Pi u(t)=i L_{u_{0}}^{2} U(t)^{*} \Pi u(t)
$$

from which we conclude

$$
U(t)^{*} \Pi u(t)=\mathrm{e}^{i t L_{u_{0}}^{2}} \Pi u_{0}
$$

Finally, we have

$$
\frac{d}{d t} U(t)^{*} \chi_{\varepsilon}=-U(t)^{*} B_{u(t)} \chi_{\varepsilon}=-i U(t)^{*}\left(T_{|D| u(t)} \chi_{\varepsilon}-T_{u(t)}^{2} \chi_{\varepsilon}\right)
$$

and the right hand side converges in L_{+}^{2} to

$$
\begin{aligned}
& -i U(t)^{*}\left(D \Pi u(t)-T_{u(t)} \Pi u(t)\right)=-i U(t)^{*} L_{u(t)} \Pi u(t) \\
& =-i L_{u_{0}} U(t)^{*} \Pi u(t)=-i L_{u_{0}} \mathrm{e}^{i t L_{u_{0}}^{2} \Pi u_{0}} \\
& =\lim _{\varepsilon \rightarrow 0} i L_{u_{0}}^{2} \mathrm{e}^{i t L_{u_{0}}^{2}} \chi_{\varepsilon} .
\end{aligned}
$$

By integrating in time, we infer

$$
U(t)^{*} \chi_{\varepsilon}-\mathrm{e}^{i t L_{u_{0}}^{2}} \chi_{\varepsilon} \rightarrow 0
$$

in L_{+}^{2}. Plugging these informations into the formula which gives $\Pi u(t, z)$, we infer

$$
\begin{aligned}
\Pi u(t, z) & =\lim _{\varepsilon \rightarrow 0} \frac{1}{2 i \pi}\left\langle\left(\mathrm{e}^{i t L_{u_{0}}^{2}} G \mathrm{e}^{-i t L_{u_{0}}^{2}}-2 t L_{u_{0}}-z \mathrm{Id}\right)^{-1} \mathrm{e}^{i t L_{u_{0}}^{2}} \Pi u_{0} \mid \mathrm{e}^{i t L_{u_{0}}^{2}} \chi_{\varepsilon}\right\rangle \\
& =\lim _{\varepsilon \rightarrow 0} \frac{1}{2 i \pi}\left\langle\left(G-2 t L_{u_{0}}-z \mathrm{Id}\right)^{-1} \Pi u_{0} \mid \chi_{\varepsilon}\right\rangle \\
& =\frac{1}{2 i \pi} I_{+}\left[\left(G-2 t L_{u_{0}}-z \mathrm{Id}\right)^{-1} \Pi u_{0}\right]
\end{aligned}
$$

It remains to prove Lemma 2. We shall appeal to the following elementary identity, whose proof can be found in [17], [10].

Lemma 3. For every $f \in \operatorname{Dom}(G), b \in H^{1}(\mathbb{R}), T_{b} f \in \operatorname{Dom}(G)$ and

$$
\left[G, T_{b}\right] f=\frac{i}{2 \pi} I_{+}(f) \Pi b
$$

Using Lemma 3 and the simple observation that $[G, D]=i \mathrm{Id}$, we obtain (see also [17]),

$$
\forall f \in \operatorname{Dom}(G) \cap \operatorname{Dom}\left(L_{u}\right),\left[G, L_{u}\right] f=i f-\frac{i}{2 \pi} I_{+}(f) \Pi u
$$

We infer, for $f \in \operatorname{Dom}(G) \cap \operatorname{Dom}\left(L_{u}^{2}\right)$,

$$
\begin{aligned}
{\left[G, B_{u}\right] f } & =i\left(\left[G, T_{|D| u}\right] f-T_{u}\left[G, T_{u}\right] f-\left[G, T_{u}\right] T_{u} f\right) \\
& =\frac{i}{2 \pi}\left(i I_{+}(f)\left(D \Pi u-T_{u} \Pi u\right)-i I_{+}\left(T_{u} f\right) \Pi u\right) \\
& =\frac{i}{2 \pi}\left(i I_{+}(f) L_{u} \Pi u+i I_{+}\left(L_{u} f\right) \Pi u\right) \\
& =i\left(L_{u}\left(i f-\left[G, L_{u}\right] f\right)+i L_{u} f-\left[G, L_{u}\right] L_{u} f\right) \\
& =-2 L_{u} f+i\left[L_{u}^{2}, G\right] f
\end{aligned}
$$

The proof of Theorem 4 is complete.
Let us conclude this section by discussing the formula of Theorem 4 for more singular data u_{0}. First of all, let us observe that, for every $t \in \mathbb{R}$, the operator

$$
A_{t}:=-i\left(G-2 t L_{0}\right)
$$

is maximally dissipative. Recall that we use the following definition : an unbounded operator A on a Hilbert space H is maximally dissipative if, for every $\lambda>0, \lambda \operatorname{Id}-A: \operatorname{Dom}(A) \rightarrow H$ is onto and if, for every $f \in \operatorname{Dom}(A), \operatorname{Re}\langle A f \mid f\rangle \leq 0$. Indeed, the expression of A_{t} in the Fourier representation is given by

$$
\widehat{A_{t} f}(\xi)=\frac{d}{d \xi} \hat{f}(\xi)+2 i t \xi \hat{f}(\xi)
$$

and therefore it is easy to check by explicit calculations that

$$
\operatorname{Dom}\left(A_{t}\right)=\left\{f \in L_{+}^{2}(\mathbb{R}): \mathrm{e}^{i t \xi^{2}} \hat{f} \in H^{1}(0, \infty)\right\}
$$

with

$$
\forall f \in \operatorname{Dom}\left(A_{t}\right), \operatorname{Re}\left\langle A_{t} f \mid f\right\rangle \leq 0
$$

and that $A_{t}+i z \operatorname{Id}: \operatorname{Dom}\left(A_{t}\right) \rightarrow L_{+}^{2}(\mathbb{R})$ is bijective for every $z \in \mathbb{C}_{+}$. From standard perturbation theory, we infer that, for every bounded antiselfadjoint operator B on $L_{+}^{2}(\mathbb{R}), A_{t}+B$ is maximally dissipative. In particular, if $u_{0} \in L^{\infty}(\mathbb{R}) \cap L_{r}^{2}(\mathbb{R})$,

$$
-i\left(G-2 t L_{u_{0}}\right)=A_{t}-2 i t T_{u_{0}}
$$

is maximally dissipative, so that the formula of Theorem 4 still holds. Consequently, Theorem 4 provides a formula for the extension of the flow map of the Benjamin-Ono equation to $H_{r}^{s}(\mathbb{R})$ for every $s>1 / 2$ [14].

4. Final Remarks

In the case of finite gap potentials on the torus [6], or multisolitons on the line [17], formulae of Theorems 3 and 4 take place in finite dimensional vector spaces, and they reduce to calculations on finite dimensional matrices, as already observed in these references.

We expect Theorems 3 and 4 to be useful for the study of long time behaviour of solutions to the Benjamin-Ono equation. This is
particularly important on the line, where soliton resolution for generic data is still an open problem (see however [12] for partial results in this direction).

Let us now briefly discuss applications of a similar approach to other integrable equations. First of all, it is clear that Theorems 3 and 4 easily extend to the spin Benjamin-Ono system [2], [8]. Furthermore, these formulae could probably be very useful in the study of the small dispersion limits of these equations, in particular the half-wave maps equation [9], [2]. We also expect similar formulae to hold for the recently introduced Calogero-Moser equation [10], since the Lax pair of operators for this equation enjoys similar commutation properties with the shift structure of the Hardy space. Finally, as we already observed, a similar formula is known to hold for the cubic Szegő equation on the torus [5], and it is possible to adapt the approach with the operator G developed in this paper in order to get an explicit formula for the cubic Szegő equation on the line [11]. On the other hand, we have no clue whether such explicit formulae could be extended to KdV, cubic NLS or DNLS equations.

References

[1] T. Benjamin, Internal waves of permanent form in fluids of great depth, J. Fluid Mech., 29(1967), 559-592.
[2] B. Berntson, E. Langmann, J. Lenells, Spin generalizations of the Benjamin-Ono equation. Lett. Math. Phys. 112 (2022), no. 3, Paper No. 50.
[3] R. Davis, A. Acrivos, Solitary internal waves in deep water, J. Fluid Mech. 29(1967), 593-607.
[4] A. Fokas, M. Ablowitz, Inverse scattering transform for the Benjamin-Ono equation: A pivot to multidimensional problems, Stud. Appl. Math. 68(1983), 1-10.
[5] P. GÉrard, S. Grellier, An explicit formula for the cubic Szegő equation, Trans. Amer. Math. Soc. 367 (2015), 2979-2995.
[6] P. Gérard, T. Kappeler, On the integrability of the Benjamin-Ono equation on the torus, Comm. Pure Appl. Math. 74 (2021), 1685-1747.
[7] P. Gérard, T. Kappeler, P. Topalov, Sharp wellposedness results of the Benjamin-Ono equation on $H^{s}(\mathbb{T}, \mathbb{R})$ and qualitative properties of its solutions, preprint, April 2020, arXiv:2004.04857, to appear in Acta Mathematica.
[8] P. GÉrard, The Lax pair structure for the spin Benjamin-Ono equation, preprint, February 2022, arXiv:2202.08219.
[9] P. Gérard, E. Lenzmann, A Lax pair structure for the half-wave maps equation. Lett. Math. Phys. 108 (2018), no. 7, 1635-1648.
[10] P. GÉrard, E. Lenzmann, The Calogero-Moser derivative nonlinear Schrödinger equation, preprint, August 2022, arXiv:2208.04105.
[11] P. GÉrard, A. Pushnitski, in preparation.
[12] M. Ifrim, D. Tataru, Well-posedness and dispersive decay of small data solutions for the Benjamin-Ono equation, Ann. Sci. Éc. Norm. Supér. (4) 52 (2019), no. 2, 297-335.
[13] C. Klein, J.-C. Saut, Nonlinear dispersive equations, Inverse scattering and PDE methods, Applied Mathematical Sciences, vol. 209, Springer, 2021.
[14] L. Molinet, D. Pilod, The Cauchy problem for the Benjamin-Ono equation in L^{2} revisited, Anal. and PDE 5 (2) (2012), 365-395.
[15] H. Ono, Algebraic solitary waves in stratified fluids, J. Physical Soc. Japan 39(1975), 1082-1091.
[16] J.-C. Saut, Sur quelques généralisations de l'équation de Korteweg-de Vries, J. Math. Pures Appl. 58(1979), 21-61.
[17] R. Sun, Complete integrability of the Benjamin-Ono equation on the multisoliton manifolds, Comm. Math. Phys. 383 (2021), 1051-1092.
[18] Y. Wu, Simplicity and finiteness of discrete spectrum of the Benjamin-Ono scattering operator, SIAM J. Math. Anal. 48(2016), no. 2, 1348-1367.

Université Paris-Saclay, Laboratoire de Mathématiques D'Orsay, CNRS, UMR 8628, 91405 Orsay, France

Email address: patrick.gerard@universite-paris-saclay.fr

