
AN EXPLICIT FORMULA FOR THE BENJAMIN–ONO
EQUATION

PATRICK GÉRARD

Abstract. We establish an explicit formula for the general solu-
tion of the Benjamin–Ono equation on the torus and on the line.
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1. Introduction

1.1. The Benjamin–Ono equation. The Benjamin–Ono equation
was introduced by Benjamin [1] (see also Davis–Acrivos [3], Ono [15])
to model long, one-way internal gravity waves in a two-layer fluid. It
reads

(1) ∂tu = ∂x(|D|u− u2) .
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Here u = u(t, x) denotes a real valued function and |D| denotes the
Fourier multiplier associated to the symbol |ξ|. There is a vast lit-
erature about this equation, and we refer to the book by Klein and
Saut [13] for a recent survey. We consider both the case of periodic
boundary conditions u(t, x + 2π) = u(t, x), which we refer as x ∈ T,
and the case where u(t, x) cancels as x tends to ±∞, which we refer as
x ∈ R. In both cases, we will restrict ourselves to sufficiently smooth
solutions, which can be proved to exist globally by a combination of
standard quasilinear scheme and appropriate conservation laws.
More precisely, for every s ∈ R, let us denote by Hs the Sobolev space
of tempered distributions with s derivatives in L2, and by Hs

r the real
subspace of Hs made of real valued distributions. Then one can prove
the following result.

Theorem 1 (Saut, 1979 [16]). For every u0 ∈ H2
r , there exists a unique

solution u ∈ C(R, H2
r ) of (1) with u(0) = u0.

Our goal in this paper is to provide an explicit formula of the solution
u(t) in terms of the initial datum u0.

For this, we need to introduce the Lax pair structure for (1).

1.2. The Lax pair. On T or R, we denote by L2
+ the Hardy space cor-

responding to L2 functions having a Fourier transform supported in the
domain ξ ≥ 0. Recall that both Hardy spaces identify to some spaces
of holomorphic functions. The space L2

+(T) identifies to holomorphic
functions f on the unit disc D := {z ∈ C : |z| < 1} such that

sup
r<1

2π∫
0

∣∣f(reix)
∣∣2 dx < +∞,

while L2
+(R) identifies to holomorphic functions on the upper half plane

C+ := {z ∈ C : Im(z) > 0} such that

sup
y>0

∫
R

|f(x+ iy)|2 dy < +∞ .

We denote by Π the orthogonal projector from L2 onto L2
+. Remarkable

operators on L2
+ are Toeplitz operators, associated to functions b ∈ L∞

by the formula
∀f ∈ L2

+ , Tbf = Π(bf) .

For every u ∈ H2
r , we denote by Lu the semi–bounded selfadjoint op-

erator defined on L2
+ by

Dom(Lu) = H1
+ := H1(T) ∩ L2

+ , Luf = Df − Tuf ,
where

D :=
1

i

d

dx
.
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We also consider, for u ∈ H2
r , the bounded antiselfadjoint operator

defined by

Bu = i(T|D|u − T 2
u ) .

Then one can check the following identity (see e.g. [4], [18], [6], [8]).

Theorem 2. Under the conditions of Theorem 1, we have

∀t ∈ R ,
d

dt
Lu(t) = [Bu(t), Lu(t)] .

Corollary 1. Under the conditions of Theorem 1, denote by U = U(t)
the operator–valued solution of the linear ODE

U ′(t) = Bu(t)U(t) , U(0) = Id .

Then, for every t ∈ R, U(t) is unitary on L2
+, and

Lu(t) = U(t)Lu(0)U(t)∗ .

1.3. The explicit formula on the torus. Let us mention some more
properties of the Hardy space on the torus. The Hardy space L2

+(T)
is equipped with the shift operator S := Teix and with its adjoint
S∗ = Te−ix . With this notation, our main result on the torus reads as
follows.

Theorem 3. Let u ∈ C(R, H2
r (T)) be the solution of the Benjamin–

Ono equation on the torus T with u(0) = u0.
Then u(t) = Πu(t) + Πu(t)− 〈u0|1〉, with

∀z ∈ D , Πu(t, z) =
〈
(Id− zeite2itLu0S∗)−1Πu0|1

〉
.

Remark 1. The above formula can be equivalently stated as a charac-
terization of Fourier coefficients of the solution u,

∀k ≥ 0 , û(t, k) =
〈
(eite2itLu0S∗)kΠu0|1

〉
=

〈
Πu0|(Se−ite−2itLu0 )k 1

〉
.

Under this form, it extends to much more singular data, for which
the flow of the Benjamin–Ono has been proved to extend continuously.
According to [7], this is the case if u0 belongs to Hs

r (T) for some s >
−1/2. Indeed, in this case, Lu0 is selfadjoint, semibounded, and the
domain of the square root of Lu0 +KId, for K big enough, is the space

H
1/2
+ := H1/2(T) ∩ L2

+. Consequently, the operator Se−ite−2itLu0 acts

on H
1/2
+ (T), so that the inner product in the second line above is well

defined.

1.4. The explicit formula on the line. On L2
+(R), the shift opera-

tor S must be replaced by the Lax–Beurling semi–group (S(η))η≥0 of
isometries defined as

∀f ∈ L2
+(R) , S(η)f(x) = eiηxf(x) .
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We denote by G the adjoint of the operator of multiplication by x on
L2
+(R). Notice that −iG is the infinitesimal generator of the adjoint

semi–group of contractions (S(η)∗)η≥0, so that

∀η ≥ 0 , S(η)∗ = e−iηG .

It is easy to check that the domain of G consists of those functions
f ∈ L2

+(R) such that the restriction of f̂ to the half–line (0,+∞)
belongs to the Sobolev space H1(0,+∞), and that

Ĝf(ξ) = i
d

dξ
[f̂(ξ)]1ξ>0 .

As a consequence, for every f ∈ Dom(G), one may define

I+(f) := f̂(0+) .

This definition can be extended to any f ∈ L2
+ such that the restriction

of f̂ to some interval (0, δ) belongs to the Sobolev space H1(0, δ) for
some δ > 0, and we shall use it as well.
With this notation, our main result on the line reads as follows.

Theorem 4. Let u ∈ C(R, H2
r (R)) be the solution of the Benjamin–

Ono equation on the line R with u(0) = u0.
Then u(t) = Πu(t) + Πu(t), with

∀z ∈ C+ , Πu(t, z) =
1

2iπ
I+[(G− 2tLu0 − zId)−1Πu0] .

Notice that, in the above formula, the function

fz,t := (G− 2tLu0 − zId)−1Πu0

belongs to the domain of G−2tLu0 — see the end of section 3 for more

detail —, and therefore its Fourier transform satisfies f̂ ∈ H1(0, δ) for
every finite δ > 0, hence one can define I+(fz,t).

Remark 2. At this time, the wellposedness theory for (1) on the line is
slightly less advanced than on the torus, see [14] for a detailed account of
this, with extension of the flow map to L2

r(R). However, one can easily
prove – see section 3 below — that the above formula makes sense for
u0 in the space L∞(R) ∩ L2

r(R).

1.5. Organization of the paper. Sections 2 and 3 are respectively
devoted to the proofs of Theorems 3 and 4. The main idea is to take
advantage of commutation identities between the operators of the shift
structure of the Hardy space and the operators Lu and Bu of the Lax
pair, in the spirit of what was done in [5] for the cubic Szegő equation on
the torus. At the end of Section 3, we also provide a short discussion of
the meaning of the formula, leading to an extension to real valued initial
data in L∞(R) ∩ L2(R). Section 4 briefly draws possible applications
and extensions to other equations.
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2. Proof of the explicit formula on the torus

The proof is based on the following lemma.

Lemma 1. For every u ∈ H2
r (T),

[S∗, Bu] = i((Lu + Id)2S∗ − S∗L2
u) .

Let us postpone the proof of Lemma 1 and complete the proof of
Theorem 3. Since u(t) is real valued, we have the identity

u(t) = Πu(t) + Πu(t)− 〈u(t)|1〉,

and 〈u(t)|1〉 = 〈u0|1〉 because of the equation. It remains to identify
Πu(t) as a holomorphic function on the disc. For this, we proceed
as in [5], where a similar formula was established for the cubic Szegő
equation. We have, for every z ∈ D,

Πu(t, z) =
∞∑
n=0

zn〈Πu(t), einx〉 = 〈(Id− zS∗)−1Πu(t)|1〉 .

We denote by U = U(t) the solution of the linear initial value problem
in L (L2

+(T)), (see Corollary 1),

U ′(t) = Bu(t)U(t) , U(0) = Id .

Since Bu(t) is anti–selfadjoint, U(t) is unitary, and we can write

(2) Πu(t, z) = 〈(Id− zU(t)∗S∗U(t))−1U(t)∗Πu(t)|U(t)∗1〉 .

Let us calculate

d

dt
U(t)∗1 = −U(t)∗Bu(t)1 = −iU(t)∗[(T|D|u(t) − T 2

u(t))(1)]

= −iU(t)∗[DΠu(t)− Tu(t)Πu(t)] = −iU(t)∗Lu(t)Πu(t)

= iU(t)∗L2
u(t)(1) = iL2

u0
U(t)∗1 ,

where we have used Corollary 1, from which we conclude

U(t)∗1 = eitL
2
u0 (1) .

Consequently, using again Corollary 1,

U(t)∗Πu(t) = −U(t)∗Lu(t)(1) = −Lu0U(t)∗(1) = −Lu0eitL
2
u0 (1) = eitL

2
u0Πu0 .

Finally, using Lemma 1,

d

dt
U(t)∗S∗U(t) = U(t)∗[S∗, Bu(t)]U(t) = U(t)∗[i((Lu(t) + Id)2S∗ − S∗L2

u(t)]U(t)

= i(Lu0 + Id)2U(t)∗S∗U(t)− iU(t)∗S∗U(t)L2
u0
,

from which we infer

U(t)∗S∗U(t) = eit(Lu0+Id)2S∗e−itL
2
u0 .
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Plugging the previous identites into (1), we conclude

Πu(t, z) = 〈(Id− zeit(Lu0+Id)2S∗e−itL
2
u0 )−1eitL

2
u0Πu0|eitL

2
u0 (1)〉

= 〈(Id− ze−itL
2
u0eit(Lu0+Id)2S∗)−1Πu0|1〉

which yields the claimed formula. �
Finally, let us prove Lemma 1. First of all, it easy to check the

following commutation identity with the Toeplitz operators,

∀b ∈ L∞(T), [S∗, Tb] = 〈 . |1〉S∗Πb .

On the other hand, from the adjoint Leibniz formula, we have

S∗D = DS∗ + S∗ .

Combining the two above identities, we infer

S∗Lu = (Lu + Id)S∗ − 〈 . |1〉S∗Πu

and finally

[S∗, Bu] = i([S∗, T|D|u]− Tu[S∗, Tu]− [S∗, Tu]Tu)

= i(〈 . |1〉S∗DΠu− Tu〈 . |1〉S∗Πu− 〈 . (|1〉S∗Πu)Tu)

= i(〈 . |1〉(DS∗Πu− TuS∗Πu+ S∗Πu)− 〈 . |Tu1〉S∗Πu)

= i(〈 . |1〉(LuS∗Πu+ S∗Πu) + 〈 . |Lu1〉S∗Πu)

= i((Lu + Id)〈 . |1〉S∗Πu+ (〈 . |1〉S∗Πu)Lu)

= i((Lu + Id)((Lu + Id)S∗ − S∗Lu) + ((Lu + Id)S∗ − S∗Lu)Lu)
= i((Lu + Id)2S∗ − S∗L2

u) .

The proof of Theorem 3 is complete. �

3. Proof of the explicit formula on the line

We start with the inverse Fourier transform for every f ∈ L2
+(R),

which we can write in the upper–half plane, as an absolutely convergent
integral,

∀z ∈ C+ , f(z) =
1

2π

∞∫
0

eizξf̂(ξ) dξ ,

while, in view of the Plancherel theorem, we have, in L2(0,+∞),

f̂(ξ) = lim
ε→0

∫
R

e−ixξ
f(x)

1 + iεx
dx = lim

ε→0
〈S(ξ)∗f |χε〉 ,

where χε denotes the following function in L2
+(R),

χε(x) :=
1

1− iεx
.
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Plugging the second formula into the first one, we infer

f(z) = lim
ε→0

1

2π

∞∫
0

eizξ〈S(ξ)∗f |χε〉dξ

= lim
ε→0

1

2π

∞∫
0

eizξ〈e−iξGf |χε〉dξ

= lim
ε→0

1

2iπ
〈(G− zId)−1f |χε〉

=
1

2iπ
I+[(G− zId)−1f ] .

Since u(t) is real valued, we can write u(t) = Πu(t) + Πu(t), and it
remains to characterize Πu(t, z) for z ∈ C+. We are going to proceed
as in the previous paragraph, using the family U(t) of unitary operators
in L (L2

+(R)) defined by Corollary 1,

U ′(t) = Bu(t)U(t) , U(0) = Id .

For every z ∈ C+, we have

Πu(t, z) = lim
ε→0

1

2iπ
〈U(t)∗(G− zId)−1Πu(t)|U(t)∗χε〉

= lim
ε→0

1

2iπ
〈(U(t)∗GU(t)− zId)−1U(t)∗Πu(t)|U(t)∗χε〉 .

We have the following lemma.

Lemma 2. For every u ∈ H2
r (T),

[G,Bu] = −2Lu + i[L2
u, G] .

Let us postpone the proof of Lemma 2 and complete the proof of
Theorem 4. We calculate

d

dt
U(t)∗GU(t) = U(t)∗[G,Bu(t)]U(t)

= U(t)∗(−2Lu(t) + i[L2
u(t), G])U(t)

= −2Lu0 + i[L2
u0
, U(t)∗GU(t)] .

Integrating this ODE, we get

U(t)∗GU(t) = −2tLu0 + eitL
2
u0Ge−itL

2
u0 .

Let us determine the other terms in the inner product. First of all, we
recall an identity coming directly from (1) (see also [17]),

∂tΠu = ∂xDΠu− ∂xΠ(u2) = iD2Πu− ∂x((Πu)2)− 2Π∂x(|Πu|2)
= iL2

u(Πu) + Tu∂xΠu+ ∂x(TuΠu)− iT 2
uΠu− ∂x((Πu)2)− 2Π∂x(|Πu|2)

= iL2
u(Πu) + Πu∂xΠu+ Π(Πu∂xΠu)− Π∂x(|Πu|2)− iT 2

uΠu

= iL2
u(Πu) +Bu(Πu) .
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We infer, using Corollary 1,

d

dt
U(t)∗Πu(t) = U(t)∗(∂tΠu(t)−Bu(t)Πu(t)) = iU(t)∗L2

u(t)Πu(t) = iL2
u0
U(t)∗Πu(t) ,

from which we conclude

U(t)∗Πu(t) = eitL
2
u0Πu0 .

Finally, we have

d

dt
U(t)∗χε = −U(t)∗Bu(t)χε = −iU(t)∗(T|D|u(t)χε − T 2

u(t)χε)

and the right hand side converges in L2
+ to

−iU(t)∗(DΠu(t)− Tu(t)Πu(t)) = −iU(t)∗Lu(t)Πu(t)

= −iLu0U(t)∗Πu(t) = −iLu0eitL
2
u0Πu0

= lim
ε→0

iL2
u0

eitL
2
u0χε .

By integrating in time, we infer

U(t)∗χε − eitL
2
u0χε → 0

in L2
+. Plugging these informations into the formula which gives Πu(t, z),

we infer

Πu(t, z) = lim
ε→0

1

2iπ
〈
(

eitL
2
u0Ge−itL

2
u0 − 2tLu0 − zId

)−1
eitL

2
u0Πu0|eitL

2
u0χε〉

= lim
ε→0

1

2iπ
〈(G− 2tLu0 − zId)−1Πu0|χε〉

=
1

2iπ
I+[(G− 2tLu0 − zId)−1Πu0] .

It remains to prove Lemma 2. We shall appeal to the following elemen-
tary identity, whose proof can be found in [17], [10].

Lemma 3. For every f ∈ Dom(G), b ∈ H1(R), Tbf ∈ Dom(G) and

[G, Tb]f =
i

2π
I+(f)Πb .

Using Lemma 3 and the simple observation that [G,D] = iId, we
obtain (see also [17]),

∀f ∈ Dom(G) ∩Dom(Lu) , [G,Lu]f = if − i

2π
I+(f)Πu .
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We infer, for f ∈ Dom(G) ∩Dom(L2
u),

[G,Bu]f = i([G, T|D|u]f − Tu[G, Tu]f − [G, Tu]Tuf)

=
i

2π
(iI+(f)(DΠu− TuΠu)− iI+(Tuf)Πu)

=
i

2π
(iI+(f)LuΠu+ iI+(Luf)Πu)

= i(Lu(if − [G,Lu]f) + iLuf − [G,Lu]Luf)

= −2Luf + i[L2
u, G]f .

The proof of Theorem 4 is complete. �
Let us conclude this section by discussing the formula of Theorem

4 for more singular data u0. First of all, let us observe that, for every
t ∈ R, the operator

At := −i(G− 2tL0)

is maximally dissipative. Recall that we use the following definition :
an unbounded operator A on a Hilbert space H is maximally dissipative
if, for every λ > 0, λId − A : Dom(A) → H is onto and if, for every
f ∈ Dom(A), Re〈Af |f〉 ≤ 0. Indeed, the expression of At in the
Fourier representation is given by

Âtf(ξ) =
d

dξ
f̂(ξ) + 2itξf̂(ξ) ,

and therefore it is easy to check by explicit calculations that

Dom(At) = {f ∈ L2
+(R) : eitξ

2

f̂ ∈ H1(0,∞)}
with

∀f ∈ Dom(At) , Re〈Atf |f〉 ≤ 0,

and that At + izId : Dom(At) → L2
+(R) is bijective for every z ∈ C+.

From standard perturbation theory, we infer that, for every bounded
antiselfadjoint operator B on L2

+(R), At +B is maximally dissipative.
In particular, if u0 ∈ L∞(R) ∩ L2

r(R),

−i(G− 2tLu0) = At − 2itTu0

is maximally dissipative, so that the formula of Theorem 4 still holds.
Consequently, Theorem 4 provides a formula for the extension of the
flow map of the Benjamin–Ono equation to Hs

r (R) for every s > 1/2
[14].

4. Final remarks

In the case of finite gap potentials on the torus [6], or multisolitons
on the line [17], formulae of Theorems 3 and 4 take place in finite
dimensional vector spaces, and they reduce to calculations on finite
dimensional matrices, as already observed in these references.

We expect Theorems 3 and 4 to be useful for the study of long
time behaviour of solutions to the Benjamin–Ono equation. This is
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particularly important on the line, where soliton resolution for generic
data is still an open problem (see however [12] for partial results in this
direction).

Let us now briefly discuss applications of a similar approach to other
integrable equations. First of all, it is clear that Theorems 3 and 4
easily extend to the spin Benjamin–Ono system [2], [8]. Furthermore,
these formulae could probably be very useful in the study of the small
dispersion limits of these equations, in particular the half–wave maps
equation [9], [2]. We also expect similar formulae to hold for the re-
cently introduced Calogero–Moser equation [10], since the Lax pair of
operators for this equation enjoys similar commutation properties with
the shift structure of the Hardy space. Finally, as we already observed,
a similar formula is known to hold for the cubic Szegő equation on the
torus [5], and it is possible to adapt the approach with the operator
G developed in this paper in order to get an explicit formula for the
cubic Szegő equation on the line [11]. On the other hand, we have no
clue whether such explicit formulae could be extended to KdV, cubic
NLS or DNLS equations.
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Trans. Amer. Math. Soc. 367 (2015), 2979–2995.

[6] P. Gérard, T. Kappeler, On the integrability of the Benjamin–Ono equa-
tion on the torus, Comm. Pure Appl. Math. 74 (2021), 1685–1747.

[7] P. Gérard, T. Kappeler, P. Topalov, Sharp wellposedness results of the
Benjamin–Ono equation on Hs(T,R) and qualitative properties of its solutions,
preprint, April 2020, arXiv:2004.04857, to appear in Acta Mathematica.

[8] P. Gérard, The Lax pair structure for the spin Benjamin–Ono equation,
preprint, February 2022, arXiv:2202.08219.

[9] P. Gérard, E. Lenzmann, A Lax pair structure for the half-wave maps
equation. Lett. Math. Phys. 108 (2018), no. 7, 1635–1648.

[10] P. Gérard, E. Lenzmann, The Calogero–Moser derivative nonlinear
Schrödinger equation, preprint, August 2022, arXiv:2208.04105.

[11] P. Gérard, A. Pushnitski, in preparation.
[12] M. Ifrim, D. Tataru, Well-posedness and dispersive decay of small data

solutions for the Benjamin-Ono equation, Ann. Sci. Éc. Norm. Supér. (4) 52
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