Dynamical systems arising from classification of geometric structures

Bill Goldman

Department of Mathematics University of Maryland

Dynamics, Geometry and Number Theory Institut Henri Poincaré Tuesday 14 June 2016

Classification of geometric structures

Ehresmann-Weil-Thurston principle

Example: Classifying hyperbolic structures (trivial dynamics) Examples of nontrivial dynamics

Symplectic/Poisson structure

Character functions and Hamiltonian twist flows Hamiltonian flows and Dehn twists

Surfaces with rank two fundamental group

Vogt-Fricke theorem and F_2 Polynomial automorphisms Real points: Unitary representations Real points: Hyperbolic structures on one-holed tori Example: The Markoff surface Fricke orbits define wandering domains for k > 2

The one-holed Klein bottle

Relative character variety for one-holed Klein bottle $C_{1,1}$ Structures on $C_{1,1}$ The level set for k > 2 and $\mathfrak{F}'(C_{1,1})$

Classification of geometric structures: A source of interesting dynamical systems

- Lie and Klein (1872): A geometry in the classical sense consists of the properties of a space X invariant under the transitive action of a Lie group G.
- ▶ Ehresmann (1936): Manifolds locally modeled on (G, X).
- Fix a topological manifold Σ.
- Classifying such (G, X)-structures on Σ leads to an action of the mapping class group Mod(Σ) := π₀(Homeo(Σ)) on a deformation space Def_(G,X)(Σ) of (G, X)-structures.

- Def_(G,X)(Σ) itself is locally modeled on Rep(π₁(Σ), G)
- The Mod(Σ)-action on Def_(G,X)(Σ) corresponds to the Out(π)-action on Rep(π₁(Σ), G).

Coordinate atlases and development

- Geometry: Homogeneous space X = G/H.
- Topology: Topological manifold Σ with universal covering $\widetilde{\Sigma} \longrightarrow \Sigma$ and fundamental group π .
- *Marking:* Homeomorphism $\Sigma \xrightarrow{f} M$; the geometry on M will vary, but the topology of Σ remains fixed.
 - Patches U ⊂ M; Coordinate atlas of charts U → X defining local coordinates on U modeled on X.
 - On overlapping patches the change of coordinates are restrictions of transformations of X lying in G.
 - Charts globalize to immersion Σ → X, equivariant respecting the holonomy homomorphism π → G.

(日) (同) (三) (三) (三) (○) (○)

Holonomy globalizes coordinate changes.

• M(G,X)-manifold, (M, f) marked (G,X)-structure on Σ .

Ehresmann-Weil-Thurston principle

- Construct a deformation space of marked (G, X)-structures on Σ up to appropriate equivalence relation.
- Holonomy defines a mapping

$$\mathsf{Def}_{(G,X)}(\Sigma) \xrightarrow{\mathcal{H}} \mathsf{Hom}\big(\pi_1(\Sigma),G\big)/\mathsf{Inn}(G)$$

- ▶ Best cases (e.g. hyperbolic manifolds): stratify into smooth manifolds and *H* local diffeomorphism.
- Changing the marking corresponds to an action of the mapping class group

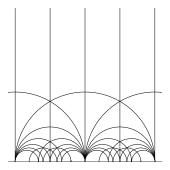
$$\mathsf{Mod}(\Sigma) := \pi_0 \big(\mathsf{Homeo}(\Sigma)\big)$$

on Rep (π, G) whose orbit structure defines the *moduli space* of (G, X)-structures on Σ .

Example of trivial dynamics: Hyperbolic surfaces

- Suppose $X = H^2$ and $G = Isom(H^2) \cong PGL(2, \mathbb{R})$.
- ► Then Def_(G,X)(Σ) is the Fricke space 𝔅(Σ), which identifies with the Teichmüller space by the uniformization theorem.
- \mathcal{H} embeds $\mathfrak{F}(\Sigma)$ as a connected component of $\operatorname{Rep}(\pi, G)$:
 - Open: Weil (1960).
 - Closed: Chuckrow(1968), Kazhdan-Margulis (1968)
 - Connected: $\mathfrak{F}(\Sigma)$ is a cell:
 - ▶ Teichmüller (1943)+ uniformization;
 - direct hyperbolic-geometry proofs: Fenchel-Nielsen (~ 1940?), Fricke-Klein (~ 1900?).
- For Σ = T², the deformation space of unit-area Euclidean structures is the upper half-plane H² with action the modular group Mod(Σ) ≅ GL(2, ℤ) acting *properly* by linear fractional transformations.

Examples of nontrivial dynamics



- In contrast, the deformation space of complete affine structures on T² is homeomorphic to ℝ², with the Euclidean structures corresponding to the origin. (O. Baues 2000)
 - Mod(T^2)-action is usual *linear action* of GL(2, \mathbb{Z}) on \mathbb{R}^2 .
 - This chaotic action admits no reasonable quotient.
- Therefore, the classification of geometric structures is a dynamical system, since the moduli space (its quotient) is often intractable.

Symplectic/Poisson structure

- When G = SL(2), then the character variety Rep(π, G) admits a symplectic structure extending:
 - ▶ Weil-Petersson Kähler form on Teichmüller component for G = SL(2, ℝ);
 - Narasimhan-Atiyah-Bott Kähler form for G = SU(2).
- When ∂Σ ≠ Ø, then Rep(π, G) inherits a Poisson structure with restriction mapping

$$\operatorname{Rep}(\pi, G) \longrightarrow \operatorname{Rep}(\pi_1(\partial \Sigma), G)$$

as universal Casimir. The level sets (relative character varieties) are its *symplectic leaves*.

Ergodicity for compact groups

- Let G be a compact Lie group with Levi factor K and Σ a compact orientable surface. If ∂Σ = Ø, then
 Γ := Mod(Σ) = Out(π) (Nielsen).
- Components of $\operatorname{Rep}(\pi, G)$ parametrized by $\pi_1(K)$.
- Γ acts ergodically on each component of Rep(π, G) (Pickrell-Xia).
 - ► Also known for all surfaces of genus > 1.
 - Case of local products of U(1) and SU(2), and all surfaces ealier (Goldman).

Character functions and Hamiltonian twist flows

► Elements γ ∈ π₁(Σ) define *character functions* on Rep(π, G):

$$\mathsf{Rep}(\pi, \mathcal{G}) \xrightarrow{f_{\gamma}} \mathbb{R} \ [
ho] \mapsto \Re(\mathsf{Tr}
ho(\gamma))$$

with Hamiltonian vector fields $Ham(f_{\gamma})$.

- For the Fricke-Teichmüller component when G = PSL(2, ℝ), and γ corresponding to a simple loop, Ham(f_γ) generates the Fenchel-Nielsen twist flows, reparametrized (Wolpert 1982).
 - γ determines an oriented cycle on Σ and the Killing vector field generating the holonomy ρ(γ) defines a coefficient in the Lie algebra sl(2, R), giving a *infinitesimal deformation* of ρ in

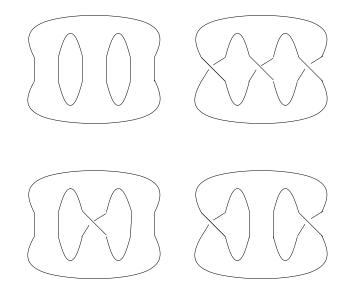
 $T_{[\rho]}\operatorname{Hom}(\pi_1(\Sigma), G)/G) \cong H_1(\Sigma, \mathfrak{sl}(2, \mathbb{R})_{\operatorname{Ad}\rho})$

• This deformation is *supported* on the cycle γ .

Hamiltonian flows and Dehn twists

- ▶ Dehn twist Tw_γ generates lattice inside ℝ-action corresponding to Ham(f_γ)-orbits.
- ρ(γ) elliptic element of G = SL(2, ℝ) ⇒
 Integral curves of Ham(f_γ) are circles S^γ_ρ.
- For almost every value of f_γ, the Dehn twist Tw_γ defines an ergodic translation of S^γ_ρ;
- Ergodic decomposition: Every Tw_γ-invariant function is a a.e. Ham(f_γ)-invariant.
 - For SL(2), a family of simple curves exist so that f_γ generate the coordinate ring of Rep(π, G)
 - Flows of Ham(f_γ) generate transitive action on each connected component of where the vector fields span.
- Mod(Σ)-action ergodic on regions where simple loops have elliptic holonomy.

Surfaces with $\pi \cong F_2$



▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - 釣A@

Vogt-Fricke theorem and F₂

• Let
$$F_2 = \langle X, Y \rangle$$
 be free of rank two. Then

 $\mathsf{Hom}(\mathsf{F}_2,\mathsf{SL}(2))\cong\mathsf{SL}(2)\times\mathsf{SL}(2)$

and $\text{Rep}(F_2, SL(2))$ is its quotient under Inn(SL(2)).

The Inn(SL(2))-invariant mapping

$$\operatorname{Hom}(\mathsf{F}_{2}, \mathsf{SL}(2)) \longrightarrow \mathbb{C}^{3}$$
$$\rho \longmapsto \begin{bmatrix} \xi := & \operatorname{Tr}(\rho(X)) \\ \eta := & \operatorname{Tr}(\rho(Y)) \\ \zeta := & \operatorname{Tr}(\rho(XY)) \end{bmatrix}$$

defines an isomorphism

$$\operatorname{Rep}(F_2, \operatorname{SL}(2)) \xrightarrow{\cong} \mathbb{C}^3.$$

Polynomial automorphisms

Out(F₂)-invariant commutator trace function:

$$\mathsf{Rep}(\mathsf{F}_2,\mathsf{SL}(2)) \cong \mathbb{C}^3 \xrightarrow{\kappa} \mathbb{C}$$
$$(\xi,\eta,\zeta) \longmapsto \xi^2 + \eta^2 + \zeta^2 - \xi\eta\zeta - 2$$
$$= \mathsf{Tr}[\rho(X),\rho(Y)]$$

- Casimir (∂ -trace) for one-holed torus $\Sigma_{1,1}$.
- (Nielsen): $Out(F_2) \cong GL(2,\mathbb{Z}) = Mod(\Sigma_{1,1}).$
- Nonlinear automorphisms generated by Vieta involutions:

$$\begin{bmatrix} \xi \\ \eta \\ \zeta \end{bmatrix} \longmapsto \begin{bmatrix} \eta \zeta - \xi \\ \eta \\ \zeta \end{bmatrix}, \quad \begin{bmatrix} \xi \\ \eta \\ \zeta \end{bmatrix} \longmapsto \begin{bmatrix} \xi \\ \xi \zeta - \eta \\ \zeta \end{bmatrix}, \quad \begin{bmatrix} \xi \\ \eta \\ \zeta \end{bmatrix} \longmapsto \begin{bmatrix} \xi \\ \eta \\ \xi \eta - \zeta \end{bmatrix}$$

- Coordinate projections are double Galois coverings
- Vieta involutions are deck transformations.

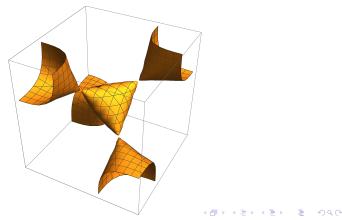
Cayley cubic $\xi^2 + \eta^2 + \zeta^2 - \xi \eta \zeta = 4$

- Reducible representations correspond precisely to $\kappa^{-1}(2)$.
 - Quotient of $\mathbb{C}^* \times \mathbb{C}^*$ by the involution

$$(a, b) \longmapsto (a^{-1}, b^{-1}).$$

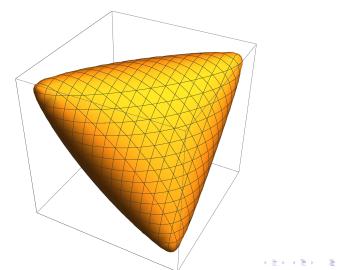
 $\xi = a + a^{-1}, \qquad \eta = b + b^{-1}, \qquad \zeta = ab + (ab)^{-1}$

• Homogeneous dynamics: $GL(2,\mathbb{Z})$ -action on $(\mathbb{C}^* \times \mathbb{C}^*)/(\mathbb{Z}/2)$.



\mathbb{R} -points: Unitary representations

- ▶ R-points correspond to representations into R-forms of SL(2): either SL(2, R) or SU(2).
- Characters in $[-2,2]^3$ with $\kappa \leq 2 \iff SU(2)$ -representations.



\mathbb{R} -points: Hyperbolic structures on one-holed tori

Hyperbolic structures on Σ_{1,1} correspond to real characters (ξ, η, ζ) ∈ ℝ³ with commutator trace k := κ(ξ, η, ζ) < -2 corresponding to the boundary length:

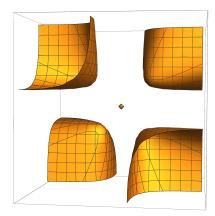
$$k = -2 \cosh\left(\ell_{\partial \Sigma}/2\right)$$

- The level set ℝ³ ∩ κ⁻¹(-2) corresponds to hyperbolic structures on a once-punctured torus, that is, the end of Σ corresponding to ∂Σ is a *cusp*.
- Level sets ℝ³ ∩ κ⁻¹(k) where -2 < k < 2 correspond to hyperbolic tori with one *cone point of angle* θ:

$$k=-2\cos\left(\theta/2\right)\big),$$

 Generalized Fricke space δ'(Σ) comprises hyperbolic structures on Σ with funnels, cusps or discs containing cone points.

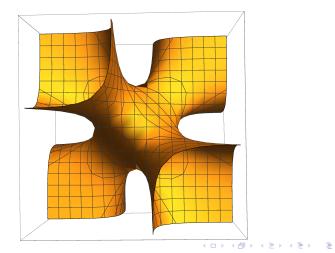
Example: The Markoff surface $x^2 + y^2 + z^2 = xyz$



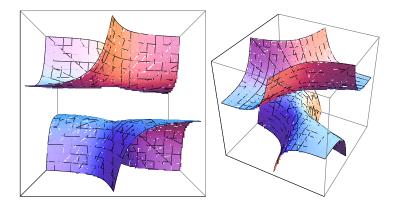
 $\mathbb{R}^3 \cap \kappa^{-1}(-2)$ parametrizes hyperbolic structures on the punctured torus. The origin (0,0,0) corresponds to the unique SU(2)-representation with k = -2. The famous *Markoff triples* correspond to triply symmetric hyperbolic punctured tori.

Fricke orbits define wandering domains for k > 2

- Homotopy equivalences Σ_{1,1} → Σ_{0,3} define embeddings of Fricke spaces 𝔅(Σ_{0,3}) in κ⁻¹(k) for k > 18;
- For $k \leq 18$, action is ergodic.
- For k > 18, action is ergodic on complement of Fricke orbit



Relative character variety for one-holed Klein bottle $C_{1,1}$



Let k > 2 be the commutator trace. The relative character variety is defined by:

$$-x^2 - y^2 + z^2 + xyz = k + 2$$

Each component projects diffeomorphically to the (x, y)-plane.

Structures on $C_{1,1}$

► The Generalized Fricke space \$\vec{F}'(C_{1,1})\$ of \$C_{1,1}\$ identifies with the subset defined by \$z > 2\$ and

$$Q_z(x,y) = x^2 + y^2 - zxy < 0.$$

- ► Trace function *z* corresponding to two-sided interior curve *Z*.
- The boundary trace is:

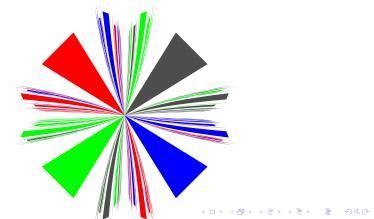
$$\begin{split} \delta &:= Q_z(x,y) + 2 = z^2 - k = \\ \begin{cases} -2\cosh(\ell/2) & \text{for a funnel with closed geodesic of length } \ell; \\ -2 & \text{for a cusp;} \\ -2\cos(\theta/2) & \text{for a point with cone angle } \theta; \end{cases} \end{split}$$

 Goldman – McShane – Stantchev – Ser Peow Tan Automorphisms of two-generator free groups and spaces of isometric actions on the hyperbolic plane, DG.1509.03790 The level set $\kappa^{-1}(k)$ for k > 2

Generalized Fricke space 𝔅'(C_{1,1}) of C_{1,1} projects to a linear sector in ℝ² invariant under

$$\mathsf{Mod}(C_{1,1}) \cong \mathbb{Z}/2 \times (\mathbb{Z}/2 \star \mathbb{Z}/2) \sim \langle \mathsf{Tw}_Z \rangle \cong \mathbb{Z}.$$

Wandering domain under Γ whose orbit is open and dense. What is the Hausdorff dimension of its complement?



HAPPY BIRTHDAY, GRISHA!

<□ > < @ > < E > < E > E のQ @