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Abstract. We consider a connection ∇
X on a complex line bundle over a Riemann surface

with boundary M0, with connection 1-form X. We show that the Cauchy data space of the
connection Laplacian (also called magnetic Laplacian) L := ∇

X∗

∇
X + q, with q a complex

valued potential, uniquely determines the connection up to gauge isomorphism, and the
potential q.

1. Introduction

Let M0 be a smooth Riemann surface with boundary, equipped with a metric g. A complex
line bundle E on M0 has a trivialization E ≃ M0 × C, thus there is a non-vanishing smooth
section s : M0 → E, and a connection ∇ on E induces a complex valued 1-form iX on M0

(where i =
√
−1 ∈ C) defined by ∇s = s⊗ iX, which means that ∇(fs) = s⊗ (d+ iX)f if d

is the exterior derivative. The associated connection Laplacian (∗ is the Hodge operator with
respect to g) is the operator

∆X := ∇X∗∇X = − ∗ (d ∗ +iX ∧ ∗)(d+ iX)

acting on complex valued functions (sections of E). When X is real valued, this operator is
often called the magnetic Laplacian associated to the magnetic field dX, and the connection
1-form X can be seen as to a connection 1-form on the principal bundle M0×S1 by identifying
iR ⊂ C with the Lie algebra of S1. This also corresponds to a Hermitian connection, in the
sense that it preserves the natural Hermitian product on E. Let q be a complex valued
function on M0 and assume that the 1-form X is real valued, and consider the magnetic
Schrödinger Laplacian associated to the couple (X, q)

(1) L := ∇X∗∇X + q = − ∗ (d ∗ +iX ∧ ∗)(d+ iX) + q.

If Hs(M0) denotes the Sobolev space with s derivatives in L2, we define the Cauchy data
space of L to be

(2) CL := {(u,∇X
ν u)|∂M0 ∈ H

1
2 (M0) ×H− 1

2 (M0);u ∈ H1(M0), Lu = 0}
where ν is the outward pointing unit normal vector field to ∂M0 and ∇X

ν u := (∇Xu)(ν) .
The first natural inverse problem is to see if the Cauchy data space determines the connection
form X and the potential q uniquely, and one easily sees that it is not the case since there
are gauge invariances in the problem: for instance, conjugating L by ef with f = 0 on ∂M0,
one obtains the same Cauchy data space but with a Laplacian associated to the connection
∇X+df , therefore it is not possible to identify X but rather one should expect to recover its
relative cohomology class.

In general in inverse problems for magnetic Laplacians, it is shown that if two couples
(X1, q1) and (X2, q2) are such that the associated connection Laplacian L1 and L2 have same
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Cauchy data space, then d(X1 − X2) = 0 and q1 = q2. In geometric terms, this means
here that the curvature of the connections ∇X1 and ∇X2 agree. If the domain is simply
connected, X1 would then differ from X2 by an exact form, and moreover i∗∂M0

(X1 −X2)=0
by boundary determination . For these types of results in Euclidean domains of dimensions
three and higher, we refer the readers to the works of Henkin-Novikov [11], Sun [21, 22],
Nakamura-Sun-Uhlmann in [19], Kang-Uhlmann in [15], and for partial data Dos Santos
Ferreira-Kenig-Sjöstrand-Uhlmann in [5]. For simply connected planar domains, Imanuvilov-
Yamamoto-Uhlmann in [14] deal with the case of general second order elliptic operators for
partial data measurement, and Lai [17] deals with the special case of magnetic Schrödinger
operator for full data measurement.

However, on a general Riemann surface with boundary, the first cohomology space is non-
trivial in general and X1 − X2 may not be exact and there is another gauge invariance.
Indeed, if Xj are real valued and if there exists a unitary bundle isomorphism F : E → E
(i.e. preserving the Hermitian product) such that ∇X1 = F ∗∇X2F with F = Id on E|∂M0 ,
then it is clear that the Cauchy data spaces CL1 = CL2 agree. We shall say in this case
that the connections are related by a gauge isomorphism. Such a bundle isomorphism corre-
sponds to the multiplication by a function F on M0 satisfying |F | = 1 everywhere and F = 1
on ∂M0 and this is equivalent to have i∗∂M0

(X1 − X2) = 0 on ∂M0, d(X1 − X2) = 0 and

that
∫
γ(X1 − X2) ∈ 2πZ for all closed loop γ in M0. Another way of stating this isomor-

phism is the following: let γ1, . . . , γM be some non-homotopically equivalent closed loops of
M0, non-homotopically equivalent to any boundary component, and let ω1, . . . , ωM be closed
1-forms which form a basis of the first relative cohomology group H1(M0, ∂M0), dual to
γ1, . . . , γM in the sense

∫
γk
ωj = δij , then there is a bundle isomorphism as above if and only

if X1 = X2 + 2π
∑M

m=1 nmωm + df with nm ∈ Z and f |∂M0= 0.

For s ∈ N, p ∈ [1,∞], let us denote by W s,p(M0) the Sobolev space consisting of functions
with s derivatives in Lp. The following theorem provides a characterization of precisely when
two Cauchy data spaces agree:

Theorem 1.1. Let X1, X2 ∈W 2,p(M0, T
∗M0) be real valued 1-forms and let q1, q2 ∈W 1,p(M0)

be complex valued functions, where p > 2. Let L1, L2 be the magnetic Schrödinger Laplacians
defined in (1) for the couples (X1, q1) and (X2, q2). Then the Cauchy data spaces CL1 and
CL2 coincide if and only if q1 = q2, and ∇X1 is related to ∇X2 by a gauge isomorphism.

As far as we know, this is the first result with such a characterization in the case of el-
liptic equations at fixed frequency. There are results for time-dependent inverse problems,
or equivalently when one knows the Cauchy data spaces at all frequencies, for instance by
Kurylev-Lassas [16] and Eskin-Isozaki-O’Dell [6] (see the references therein for results about
inverse scattering). The problem of recovering the fluxes

∫
γ X (modulo 2πZ) of the magnetic

potential along closed loops is related to the so-called Aharonov-Bohm effect [1]. We notice
that for the free case X = 0, the identification of q (or of an isotropic conductivity) on a
Riemann surface with boundary from full data measurement was proved recently in [10, 8],
and in [9] from partial data measurement, it was done in a domain of C in [13].

For a general complex valued connection form X and the associated operator L of (1), we
can define its real and imaginary parts of iX by XR := 1

2(iX + iX) and XiR := 1
2(iX − iX)
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and by an easy computation we have

∇X∗∇X = ∇XiR
∗∇XiR + δ(XR) + |XR|2g

with δ := d∗ = − ∗ d∗ and therefore, comparing to the case where X was real, it changes the
operator L in (1) only through the addition of a potential, namely δ(XR)+|XR|2. Considering
the Cauchy data space of L to be

CL := {(u,∇XiR
ν u)|∂M0 ∈ H

1
2 (M0) ×H− 1

2 (M0);u ∈ H1(M0), Lu = 0}
we see from Theorem 1.1 that the Cauchy data space CL determines δ(XR) + |XR|2 + q, and
the imaginary part of iX up to gauge isomorphism.

To prove the identification of the potential and the curvature of the connection, we shall
reduce the problem to a first order system and we shall actually prove an inverse result for
the following auxiliary problem: let us define the bundle Σ := Λ0(M0) ⊕ Λ0,1(M0) over M0

where Λk(M0) denotes the bundle of complex valued k-forms on M0 (for k = 0, 1, 2) and

Λ0,1(M0) = T ∗
0,1M0 = kerΛ1(∗ − iId), Λ1,0(M0) = T ∗

0,1M0 = kerΛ1(∗ + iId)

and ∗ is the Hodge star operator on Λk(M0). Let D := C∞(Σ) → C∞(Σ) be the self adjoint
operator defined by

D :=

(
0 ∂̄∗

∂̄ 0

)

and V be a complex valued diagonal endomorphism, then we set P := D + V . The Cauchy
data space is defined by

CV := {U |∂M0 ;U ∈W 1,p(M0,Σ), (D + V )U = 0}.
and we prove

Theorem 1.2. Let V1, V2 ∈W 1,p(M0,End(Σ)) be two diagonal endomorphisms of Σ. Assume
that they have the same Cauchy data spaces, ie. CV1 = CV2, then V1 = V2.

Such a result was recently proved by Bukhgeim [3] in the case of the disk in C, and we use
a similar approach to solve this problem in this geometric setting, together with some results
on holomorphic Morse functions proved in our previous work [8]. This also provides a recon-
struction procedure of a potential V at any given point z0 of M0 where there exists a Morse
holomorphic function with a critical point at z0, see Remark 3.4. Constructive methods have
also been obtained by [10, 12] for isotropic conductivity on Riemann surfaces. The result in
Theorem 1.2 is however not sufficient to identify the curvature connection and potential, and
part of our work is to show that the Cauchy data space of L determines the Cauchy data
space of P = D + V for a certain V associated to (X, q).

The last part of Theorem 1.1 consist in showing that the integrals of X1 −X2 along closed
loops are in 2πZ if CL1 = CL2 . This is done using parallel transport and unique continuation.

The organisation of the paper is the following: in the first section, we construct some right
inverses for the operators ∂̄ and ∂̄∗ on a manifold with boundary M0. Then in the next section
we prove identification results for first order systems D+V as explained above. The following
section is focused on boundary determination in the inverse problem for the operator L, and
then we use this to reduce the problem on the magnetic Laplacian to the problem for a first
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order system D + V . The last section deals with the holonomy identification and we end up
with an appendix containing technical results.

Acknowledgement. C.G. is partially supported by grant ANR-09-JCJC-0099-01. L.T
is partially supported by NSF Grant No. DMS-0807502 and thanks the Ecole Normale
Supérieure for its hospitality. We both thank Gunther Uhlmann for helpful discussions.

2. The Cauchy-Riemann Operator on M

Let M be the interior of a compact Riemann surface with boundary M . The surface
is equipped with a complex structure. The Hodge star operator ∗ acts on the cotangent
bundle T ∗M , its eigenvalues are ±i and the respective eigenspace T ∗

1,0M := ker(∗ + iId)

and T ∗
0,1M := ker(∗ − iId) are sub-bundle of the complexified cotangent bundle CT ∗M and

the splitting CT ∗M = T ∗
1,0M ⊕ T ∗

0,1M holds as complex vector spaces. In local complex
coordinate z induced by the complex structure, T1,0M is spanned by dz while T ∗

0,1M is
spanned by dz̄. If π1,0, π0,1 are the respective projections from T ∗M onto T ∗

1,0M and T ∗
0,1M ,

the Cauchy-Riemann operators ∂̄, ∂ mapping functions to 1-forms are defined by ∂̄ := π0,1d
and ∂ := π1,0d so that d = ∂ + ∂̄. The operators ∂̄, ∂ mapping 1-forms to 2-forms are defined
by ∂̄ := dπ1,0 and ∂ := dπ0,1, and again d = ∂ + ∂̄. Our main goal in this subsection is to
construct some right inverses of the Cauchy-Riemann operators.

Proposition 2.1. There exists an operator ∂̄−1 : C∞
0 (M,T ∗

1,0M) → C∞(M) which satisfies
the following
(i) ∂̄∂̄−1ω = ω for all ω ∈ C∞

0 (M,T ∗
1,0M),

(ii) if χj ∈ C∞
0 (M) are supported in some complex charts Ui bi-holomorphic to a bounded

open set Ω ⊂ C with complex coordinate z, and such that χ :=
∑

j χj equal 1 on M0, then as
operators

∂̄−1χ =
∑

j

χ̂j T̄ χj +K

where χ̂j ∈ C∞
0 (Uj) are such that χ̂jχj = χj, K has a smooth kernel on M ×M and T̄ is

given in the complex coordinate z ∈ Ui ≃ Ω by

T̄ (fdz̄) =
1

π

∫

C

f(z′)

z − z′
dz′1dz

′
2

where dvg(z) = α2(z)dz1dz2 is the volume form of g in the chart.
(iii) ∂̄−1 is bounded from Lp(T ∗

0,1M) to W 1,p(M) for any p ∈ (1,∞).

Proof. The existence of a right inverse ∂̄−1 is proven in [18, Th. C1.10] : by taking a totally
real subbundle F ⊂ ∂M × C over the boundary ∂M with a large boundary Maslov index
(see [9, Cor 2.2.]) for an explicit F having large Maslov index, the operator ∂̄ = W 1,2

F (M) →
L2(T ∗

0,1M) is Fredholm if W 1,2
F (M) denotes the space of L2 functions with one derivative in

L2 and boundary value in the bundle F , and moreover ∂̄ is surjective if the Maslov index is
chosen larger than −2χ(M) where χ(M) is the Euler characteristic ofM . Moreover, ∂̄−1 maps
W k,2(M) toW k+1,2(M,T ∗

0,1M) for all k ∈ N by elliptic regularity. Observe that ∂̄−1∂̄−1 maps

W 1,2
F (M) into ker ∂̄ ∩W 1,2

F (M) which is a finite dimensional space spanned by some smooth
functions ψ1, . . . ψn (by elliptic regularity) on M . Assuming that (ψj)j is an orthonormal
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basis in L2, this implies that, on W 1,2
F (M)

∂̄−1∂̄ = 1 − Π where Π =
n∑

k=1

ψk〈·, ψk〉L2(M).

Now we also have

∂̄
∑

j

χ̂j T̄ χj = χ+
∑

j

[∂̄, χj ]T̄ χj

and the last operator on the right has a smooth kernel in view of χj∇χ̂j = 0 and the fact

that T has a smooth kernel outside the diagonal z = z′. Now since χ̂j ∈ C∞
0 (M) ⊂W 1,2

F (M),
we can multiply by ∂̄−1 on the left of the last identity and obtain

∂̄−1χ =
∑

j

χ̂j T̄ χj − Π
∑

j

χ̂j T̄ χj − ∂−1
∑

j

[∂̄, χj ]T̄ χj .

The last two operator on the right have a smooth kernel on M×M , in view of the smoothness
of ψk and the kernel of

∑
j [∂̄, χj ]T̄ χj , and since ∂−1 maps C∞

0 (M) to C∞(M,T ∗
0,1M). �

Lemma 2.1. Let ∂̄∗ = −i ∗ ∂ : W 1,p(T ∗
0,1M) → Lp(M), then there exists an operator ∂̄∗−1

mapping C∞
0 (M) to C∞(T ∗

0,1M) which satisfies the following:

(i) ∂̄∗∂̄∗−1ω = ω for all ω ∈ C∞
0 (M),

(ii) if χj ∈ C∞
0 (M) are supported in some complex charts Ui bi-holomorphic to a bounded

open set Ω ⊂ C with complex coordinate z, and such that χ :=
∑

j χj equal 1 on M0, then as
operators

∂̄∗−1χ =
∑

j

χ̂jTχj +K

where χ̂j ∈ C∞
0 (Uj) are such that χ̂jχj = χj, K has a smooth kernel on M ×M and T is

given in the complex coordinate z ∈ Ui ≃ Ω by

Tf(z) =
( 1

π

∫

C

f(z′)

z̄ − z̄′
dvg(z

′)
)
dz̄

where dvg(z) = α2(z)dz1dz2 is the volume form of g in the chart.
(iii) ∂̄∗−1 is bounded from Lp(M) to W 1,p(T ∗

0,1M) for any p ∈ (1,∞).

Proof. Let G be the Green’s kernel with Dirichlet condition on M . Then one has 2∂̄∗∂̄G = 1
and G maps Lp(M) to W 2,p(M) by elliptic regularity. Thus we shall set ∂̄∗−1 := 2∂̄G which
maps Lp(M) to W 1,p(T ∗

0,1M). This proves (i) and (iii). In local complex coordinate z in

each Ui, the metric has the local form g = α2(z)|dz|2 for some positive function α(z), thus
∆g = α−2(z)∆z where ∆z = −4∂z∂z̄ is the Euclidean Laplacian. Therefore

∆g

∑

j

χ̂jG0α
2χj = χ+

∑

j

[∆, χ̂j ]G0α
2χj

if G0(z, z
′) := −(2π)−1 log |z − z′| is the Green’s function on R2. Since χ̂j ∈ C∞

0 (M), we can
multpliply this identity on the right by (∂̄∗)−1 = 2∂̄G and we deduce

(∂̄∗)−1χ = 2
∑

j

χ̂j∂z̄G0α
2χj + 2

∑

j

[∂̄, χ̂j ]G0α
2χj − 2

∑

j

∂̄G[∆, χ̂j ]G0α
2χj .
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Since χj∇χ̂j = 0 and G0 is smooth outside the diagonal z = z′, we deduce that the last
two terms have smooth kernel in view of the fact that ∂̄G preserves C∞. Now the operator
2∂z̄G0α

2 is equal to T and we have proved (ii). �

Let M0 be a surface with boundary included strictly in M (for instance a deformation rec-
tract ofM) and for q, p ∈ [1,∞] let E be a linear extension operator fromM0 toM which maps

continuously W k,p(M0, T
∗
0,1M0) to the set W k,p

c (M,T ∗
0,1M) of compactly supported functions

in Wk,p(M,T ∗
0,1M), for k = 0, 1, with a range made of functions with support inside the region

Mδ := {m ∈ M ; d(m,M0) ≤ δ} for some small δ > 0. Finally, let R : Lq(M) → Lq(M0) be
the restriction map from M to M0.

Lemma 2.2. Let ψ be a real valued smooth Morse function on M and let ∂̄−1
ψ := R∂̄−1e−2iψ/hE

where ∂̄−1 is the right inverse of ∂̄ : W 1,p(M) → Lp(T ∗
0,1M) constucted in Proposition 2.1.

Let q ∈ (1,∞) and p > 2, then there exists C > 0 independent of h such that for all
ω ∈W 1,p(M0, T

∗
0,1M0)

(3) ||∂̄−1
ψ ω||Lq(M0) ≤ Ch2/3||ω||W 1,p(M0,T ∗

0,1M0) if 1 ≤ q < 2

(4) ||∂̄−1
ψ ω||Lq(M0) ≤ Ch1/q||ω||W 1,p(M0,T ∗

0,1M0) if 2 ≤ q ≤ p.

There exists ǫ > 0 and C > 0 such that for all ω ∈W 1,p
c (M0, T

∗
0,1M0)

(5) ||∂̄−1
ψ ω||L2(M0) ≤ Ch

1
2
+ǫ||ω||W 1,p(M0,T ∗

0,1M0).

Proof. Observe that the estimate (5) is a direct corollary of (4) and (3) by using interpolation.
We recall the Sobolev embedding W 1,p(M) ⊂ Cα(M) for α ≤ 1 − 2/p if p > 2, and we shall
denote by T the Cauchy-Riemann inverse of ∂z̄ in C:

Tf(z) :=
1

π

∫

C

f(ξ)

z − ξ
dξ1dξ2

where ξ = ξ1 + iξ2. If Ω,Ω′ ⊂ C are bounded open sets, then the operator 1lΩ′ T maps Lp(Ω)
to Lp(Ω′). Clearly, since E,R are continuous operators, it suffices to prove the estimates for
compactly supported forms ω ∈W 1,p(T ∗

0,1M) on M . Thus by partition of unity, it suffices to
assume that ω is compactly supported in a chart biholomorphic to a bounded domain Ω ∈ C,
and since the estimates will be localized, we can assume with no loss of generality that ψ has
only one critical point, say z0 ∈ Ω (in the chart). The expression of ∂̄−1

ψ (fdz̄) in complex

local coordinates in the chart Ω satisfies

∂̄−1
ψ (f(z)dz̄) = χ(z)T (e−2iψ/hf) +K(e−2iψ/hfdz̄)

where K is an operator with smooth kernel and χ ∈ C∞
0 (C).

Let us first prove (3). Let ϕ ∈ C∞
0 (C) be a function which is equal to 1 for |z − z0| > 2δ

and to 0 in |z − z0| ≤ δ, where δ > 0 is a parameter that will be chosen later (it will depend
on h). Using Minkowski inequality, one can write when q < 2

||χT ((1 − ϕ)e−2iψ/hf)||Lq(C) ≤
∫

Ω

∣∣∣
∣∣∣
χ(·)
| · −ξ|

∣∣∣
∣∣∣
Lq(C)

|(1 − ϕ(ξ))f(ξ)|dξ1dξ2

≤C||f ||L∞

∫

Ω
|(1 − ϕ(ξ))|dξ1dξ2 ≤ Cδ2||f ||L∞ .

(6)
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On the support of ϕ, we observe that since ϕ = 0 near z0, we can use

T (e−2iψ/hϕf) =
1

2
ih[e−2iψ/hϕf

∂̄ψ
− T (e−2iψ/h∂̄(

ϕf

∂̄ψ
))]

and the boundedness of T on Lq to deduce that for any q < 2

||χT (ϕe−2iψ/hf)||Lq(C) ≤Ch
(
||ϕf
∂̄ψ

||Lq + ||f∂̄ϕ
∂̄ψ

||Lq + ||ϕ∂̄f
∂̄ψ

||Lq + || fϕ

(∂̄ψ)2
||Lq

)
.(7)

The first term is clearly bounded by δ−1‖f‖L∞ due to the fact that ψ is Morse. For the last
term, observe that since ψ is Morse, 1

|∂ψ| ≤
c

|z−z0|
near z0, therefore

|| fϕ

(∂̄ψ)2
||Lq ≤ C‖f‖L∞(

∫ 1

δ
r1−2qdr)1/q ≤ Cδ

2
q
−2‖f‖L∞ .

The second term can be bounded by ||f∂̄ϕ
∂̄ψ

||Lq ≤ ‖f‖L∞ || ∂̄ϕ
∂̄ψ

||Lq . Observe that while ‖ ∂̄ϕ
∂̄ψ

‖L∞

grows like δ−2, ∂̄ϕ is only supported in a neighbourhood of radius 2δ. Therefore we obtain

||f∂̄ϕ
∂̄ψ

||Lq ≤ δ2/q−2‖f‖L∞ .

The third term can be estimated by

||ϕ∂̄f
∂̄ψ

||Lq ≤ C||∂̄f ||Lp || ϕ
∂̄ψ

||L∞ ≤ Cδ−1||∂̄f ||Lp .

Combining these four estimates with (7) we obtain

||χT (ϕe−2iψ/hf)||Lq(C) ≤ h‖f‖W 1,p(δ−1 + δ2/q−2).

Combining this and (6) and optimizing by taking δ = h1/3, we deduce that

(8) ||χT (e−2iψ/hf)||Lq(C) ≤ h2/3‖f‖W 1,p

if q < 2. We now move on to the smoothing part given by K(e−2iψ/hf). Take χ to be a
compactly supported function in Ω such that it is equal to 1 on the support of f , we see that
K(e2iψ/hf) = K(e−2iψ/h(f − χf(z0)) + f(z0)K(e−2iψ/hχ). By applying stationary phase, we

easily see that ‖f(z0)K(e−2iψ/hχ)‖Lq ≤ Ch‖f‖C0 for any q ∈ [1,∞]. For the first term, we

write f̃ := f − χf(z0) and we integrate by parts to get, for some smoothing operator K ′

K(e−2iψ/hf̃) = hK ′(e−2iψ/hf̃) +
h

2i
K
(
e−2iψ/h∂z

( f̃

∂zψ

))
.

By the fact that K and K ′ are smoothing, we see that for all k ∈ N

‖K(e2iψ/hf̃)‖Ck ≤ hC
(
‖f‖L∞ +

∥∥∥∂z
( f̃

∂zψ

)∥∥∥
L1

)

Using the fact that ψ is Morse, the Sobolev embedding W 1,p ⊂ Cα for α = 1 − 2/p and

f̃(z0) = 0, we can estimate the last term by C‖f‖W 1,p if p > 2. Therefore,

‖K(e2iψ/hf)‖Lq ≤ Ch‖f‖W 1,p(9)

for any q ∈ [1,∞] and p > 2. Combining (9) and (8) we see that (3) is established.
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Let us now turn our attention to the case when ∞ > q ≥ 2, one can use the boundedness
of T on Lq and thus

(10) ||χT ((1 − ϕ)e−2iψ/hf)||Lq(C) ≤ ||(1 − ϕ)e−2iψ/hf ||Lq(Ω) ≤ Cδ
2
q ||f ||L∞ .

Now since ϕ = 0 near z0, we can use

T (e−2iψ/hϕf) =
1

2
ih[e−2iψ/h ϕf

∂z̄ψ
− T (e−2iψ/h∂z̄(

ϕf

∂z̄ψ
))]

and the boundedness of T on Lq to deduce that for any q ≤ p, (7) holds again with all the
terms satisfying the same estimates as before so that

‖T (e−2iψ/hϕf)‖Lq ≤ Ch‖f‖W 1,p(δ2/q−2 + δ−1) ≤ Chδ2/q−2‖f‖W 1,p

since now q ≥ 2. Now combine the above estimate with (10) and take δ = h
1
2 we get

‖T (e−2iψ/hf)‖Lq ≤ h1/q‖f‖W 1,p

for 2 ≤ q ≤ p. The smoothing operator K is controlled by (9) for all q ∈ [1,∞] and therefore
we obtain (4). �

Observe that the adjoint R∗ : L2(M0) → L2(M) of R : L2(M) → L2(M0) is simply
given by R∗f = 1lM0 f where 1lM0 is the characteristic function of M0 in M . In particular
R∗V ∈W 1,p(M) for p > 2 if V |∂M0 = 0 and V ∈W 1,p(M0). By Proposition 2.1, the operator
(∂̄−1)∗ satisfies

χ(∂̄−1)∗ =
∑

j

χj T̄
∗χ̂j +K∗

where K∗ has a smooth integral kernel on M ×M and T̄ ∗ = T . The proof of Lemma 2.2 can
then be applied in the same way to deduce that for v ∈W 1,p(M0) with v|∂M0 = 0

(11) ||E∗(∂̄−1)∗R∗(e−2iψ/hv)||L2(T ∗

0,1M0) ≤ Ch
1
2
+ǫ||v||W 1,p(M0)

where we used that χE = E if χ = 1 on Mδ. The same following estimate also holds if
w ∈W 1,p(M0, T

∗
0,1M0) with w|∂M0 = 0

(12) ||E∗(∂̄∗−1)∗R∗(e2iψ/hw)||L2(M0) ≤ Ch
1
2
+ǫ||w||W 1,p(M0,T ∗

0,1M0).

Similarly, let R also denotes the restriction of section of T ∗
0,1M toM0 and if E is an extension

map from M0 to M which is continuous from W k,p(M0) to W k,p
c (M) for k = 0, 1 and with

range some functions having support in Mδ. One has

Lemma 2.3. Let ψ be a smooth real valued Morse function on M and let ∂̄∗−1
ψ := R∂̄∗−1e2iψ/hE

where ∂̄∗−1 is the right inverse constucted in Proposition 2.1 for ∂̄∗ : W 1,p(M,T ∗
0,1M) →

Lp(M). Let q ∈ (1,∞) and p > 2, then there exists C > 0 independent of h such that for all
ω ∈W 1,p(M0)

(13) ||∂̄∗−1
ψ ω||Lq(M0,T ∗

0,1M0) ≤ Ch2/3||ω||W 1,p(M0) if 1 ≤ q < 2

(14) ||∂̄∗−1
ψ ω||Lq(M0,T ∗

0,1M0) ≤ Ch1/q||ω||W 1,p(M0) if 2 ≤ q ≤ p.

There exists ǫ > 0 and C > 0 such that for all ω ∈W 1,p
c (M0)

(15) ||∂̄∗−1
ψ ω||L2(M0,T ∗

0,1M0) ≤ Ch
1
2
+ǫ||ω||W 1,p(M0).
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Proof. The proof is exactly the same as the proof of Lemma 2.2. We do not repeat it. �

3. Solutions to First Order Systems

Let M0 be a surface with boundary included strictly in M (for instance a deformation
retract of M) and let Φ = φ + iψ be a Morse holomorphic function on M . Such Φ exist by
Corollary 2.2. in [8]. We shall denote respectively by

V =

(
v 0
0 v′

)
and D =

(
0 ∂̄∗

∂̄ 0

)

the matrix potential where v, v′ ∈ W 1,p(M0) (with p > 2) are complex valued and the Dirac
type operator, acting on sections of the bundle Σ := Λ0(M0) ⊕ Λ0,1(M0) over M0. In this
section, we will construct geometric optic solutions F ∈ W 1,p(Σ) (also called Faddeev type
solutions) which solve the equation

(D + V )F = 0

on M0. It is clear that

D =

(
e−Φ̄/h 0

0 e−Φ/h

)
D

(
eΦ/h 0

0 eΦ̄/h

)

and thus (
e−Φ̄/h 0

0 e−Φ/h

)
(D + V )

(
eΦ/h 0

0 eΦ̄/h

)
= D + Vψ ,

Vψ :=

(
e2iψ/hv 0

0 e−2iψ/hv′

)
.

We will then construct solutions Fh of (D + Vψ)Fh = 0 which have the form

Fh =

(
a+ rh
b+ sh

)
=: A+ Zh

where a is some holomorphic functions on M , b some anti-holomorphic 1-form and (rh, sh) ∈
W 1,p(Σ) which decays appropriately as h→ 0. In particular, we need to solve the system

(D + Vψ)Zh = −VψA = −
(

e2iψ/hva

e−2iψ/hv′b

)
.

Let us define the operators D−1 and D−1
ψ acting on Λ0(M0) ⊕ Λ0,1(M0) by

D−1 :=

(
0 R∂̄−1E

R∂̄∗−1E 0

)
, D−1

ψ :=

(
0 ∂̄−1

ψ

∂̄∗−1
ψ 0

)

which satisfy DD−1 = Id on Lq(M0) for all q ∈ (1,∞) and DD−1
ψ V = Vψ. To construct Zh

solving (D + Vψ)Zh = −VψA in M0, it then suffices to solve

(I +D−1
ψ V )Zh = −D−1

ψ V A.

Writing the components of this system explicitly we get

(16)

{
rh + ∂̄−1

ψ (v′sh) = −∂̄−1
ψ (v′b)

sh + ∂̄∗−1
ψ (vrh) = −∂̄∗−1

ψ (va)
.
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Observe that since we are allowed to choose any holomorphic function a and anti-holomorphic
1-form b, we may set a = 0 in (16) and solve for rh to get

(I − Sh)rh = −∂̄−1
ψ (v′b) with Sh := ∂̄−1

ψ v′∂̄∗−1
ψ v.(17)

where v, v′ are viewed as multiplication operators. We have the following lemma:

Lemma 3.1. Let p > 2 and assume that v ∈ L∞(M0) and v′ ∈ W 1,p(M0), then Sh is

bounded on Lr(M0) for any 1 < r ≤ p and satisfies ||Sh||Lr→Lr = O(h1/r) if r > 2 and

||Sh||L2→L2 = O(h1/2−ǫ) for any 0 < ǫ < 1/2 small.

Proof. First, notice that ∂̄∗−1
ψ maps Lr(M0) to W 1,r(M0, T

∗
0,1M0) with norm O(1) as h→ 0 by

(iii) in Lemma 2.1 and the properties of E,R. Therefore, if v′ ∈ W 1,p(M0) and v ∈ L∞(M0),
the operator v′∂̄∗−1

ψ v maps Lr to W 1,r(M0, T
∗
0,1M0) with norm O(1) for r ≤ p and Lemma

2.2 can be used to deduce that Sh maps Lr to Lr with norm O(h1/r) if r > 2. If r < 2,
v′∂̄∗−1

ψ maps Lr(M0) to Lr(T ∗
0,1M0) with norm O(1), and ∂̄−1

ψ maps Lr(T ∗
0,1M0) to Lr(M0)

with norm O(1), and thus Sh is bounded on Lr(M0) with norm O(1). For all ǫ > 0 small,
interpolating between r = 1 + ǫ and r = 2 + ǫ, gives the desired result for r = 2. �

In view of Lemma 3.1, equation (17) can be solved by using Neumann series by setting (for
small h > 0)

(18) rh := −
∞∑

j=0

Sjh∂̄
−1
ψ v′b

as an element of any Lq(M0) for q ≥ 2. Substituting this expression for r into equation (16)
when a = 0, we get that

(19) sh = −∂̄∗−1
ψ vrh.

We now derive the asymptotics in h for sh and rh.

Lemma 3.2. If v ∈ L∞(M0) and v′ ∈W 1,p(M0) for some p > 2, then there exists ǫ > 0 such
that

‖sh‖L2(M0) + ‖rh‖L2(M0) = O(h
1
2
+ǫ)

Proof. The statement for rh is an easy consequence of Lemma 2.2 and 3.1: indeed ||∂̄−1
ψ v′b||L2 =

O(h
1
2
+ǫ) by Lemma 2.2 and ||Sh||L2→L2 = O(h

1
2
−ǫ) thus ||rh||L2 = O(h

1
2
+ǫ). The estimate

for sh comes from the fact that ||∂̄∗−1
ψ ||L2→L2 = O(1) and (19). �

The same method can clearly be used by setting b = 0 and solving for sh first. We
summarize the results of this section into the following proposition

Proposition 3.1. Let Φ = φ + iψ be a Morse holomorphic function on M , and b an anti-
holomorphic 1-form on M . If v ∈ L∞(M0) and v′ ∈ W 1,p(M0) for some p > 2, then there
exist solutions to (D + V )F = 0 on M0 of the form

(20) Fh =

(
eΦ/hrh

eΦ̄/h(b+ sh)

)
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where ‖sh‖L2(M0) + ‖rh‖L2(M0) = O(h
1
2
+ǫ) for some ǫ > 0. If conversely v′ ∈ L∞(M0) and

v ∈W 1,p(M0) for some p > 2, then there exist solutions to (D+ V )G = 0 on M0 of the form

(21) Gh =

(
eΦ/h(a+ rh)

eΦ̄/hsh

)

where ‖sh‖L2(M0) + ‖rh‖L2(M0) = O(h
1
2
+ǫ) for some ǫ > 0.

As a corollary we obtain the

Theorem 3.3. Let p > 2 and Vj ∈ L∞(M0,End(Σ)) be some complex diagonal endomor-
phisms of Σ for j = 1, 2 with diagonal entries vj ∈ L∞(M0), v

′
j ∈ L∞(M0). Denote by

CVj
:= {i∗∂M0

F ∈ H
1
2 (∂M0; Σ);F ∈ H1(M0,Σ), (D + Vj)F = 0}

the Cauchy data space of D+Vj, where i∂M0 : ∂M0 →M0 denotes the natural inclusion map.
(i) If v′j ∈W 1,p(M0) and CV1 = CV2 then v′1 = v′2.

(ii) if vj ∈W 1,p(M0) and CV1 = CV2 then v1 = v2.
As a consequence, if Vj ∈W 1,p(M0,End(Σ)), and CV1 = CV2, then V1 = V2.

Proof. Let Φ be a Morse holormophic function with a critical point at z0. The existence of
such a function for a dense set of points z0 of M0 is insured by Proposition 2.1 of [8]. We
start by defining the respective solutions

F 1
h :=

(
eΦ/hr1h

eΦ̄/h(b+ s1h)

)
, F 2

h :=

(
e−Φ/hr2h

e−Φ̄/h(b+ s2h)

)

of (D + V1)F
1
h = 0 and (D + V ∗

2 )F 2
h = 0 where rjh, s

j
h are constructed in Proposition 3.1.

Since C1 = C2, there exists Fh solution of (D + V2)Fh = 0 such that i∗∂M0
Fh = i∗∂M0

F 1
h . In

particular, (D + V2)(F
1
h − Fh) = (V2 − V1)F

1
h and i∗∂M0

(F 1
h − Fh) = 0. Then using Green’s

formula and the vanishing of F 1
h − Fh on the boundary

(22) 0 =

∫

M0

〈(D + V2)(F
1
h − Fh), F

2
h 〉 =

∫

M0

〈(V2 − V1)F
1
h , F

2
h 〉.

where 〈·, ·〉 denotes the natural Hermitian scalar product on Σ induced by g. This gives

(23) 0 =

∫

M0

(v′2 − v′1)e
−2iψ/h

(
|b|2 + 〈b, s2h〉 + 〈s1h, b〉

)
+ (v2 − v1)e

2iψ/hr1hr
2
h.

First, notice that by Proposition 3.1,

(24)

∫

M0

(v2 − v1)e
2iψ/hr1hr

2
h = O(h1+ǫ)

for some ǫ > 0. Then we choose b to be an anti-holomorphic 1-form which vanishes at all
critical points of Φ in M0 except at the critical point z0 ∈ M0 of Φ. This can be done by
using Riemann-Roch theorem (see Lemma 4.1 in [8]). We observe by using stationary phase
that

(25)

∫

M0

(v′1 − v′2)e
2iψ/h|b|2 = Cz0he

2iψ(z0)/h(v′1(z0) − v′2(z0))|b(z0)|2 + o(h)

for some constant Cz0 6= 0. More precisely, to show this, it suffices to decompose v′ := v′1 − v′2
as (v′ − χv′(z0)) + χv′(z0) where χ ∈ C∞

0 (M0) is supported near p, then we apply stationary
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phase to the term χv′(z0) and use integration by parts for the other term: if
∑

j χj = 1 is a
partition of unity on M0 associated to charts Uj with complex coordinate z

∫

M0

e2iψ/hχj(v
′ − χv′(z0))|b|2 =

h

2i

∫

Uj

e2iψ/h∂z

(χj(v′ − χv′(z0))|b|2
∂zψ

)

since v′|∂M0 = 0 by the boundary identification of Lemma 7.3, and we finally conclude us-
ing Riemann-Lebesgue to deduce that the right hand side term is o(h) since ∂z(χj(v

′ −
χv′(z0))|b|2/∂zψ) ∈ L1(M0) if v′ ∈ W 1,p for p > 2. Let us now consider the term with 〈b, s2h〉
in (23): using (19)

∫

M0

〈e2iψ/hv′b, s2h〉 =

∫

M0

〈E∗(∂̄∗−1)∗R∗e2iψ/hv′b, v2r
2
h〉.

Since v′|∂M0 = 0, we may use (12) to deduce that ||E∗(∂̄∗−1)∗R∗e2iψ/hv′b||L2 = O(h1/2+ǫ) and
thus combining with Proposition 3.1, we deduce that

∫

M0

〈e2iψ/hv′b, s2h〉 = O(h1+ǫ).

the same argument gives that the term involving 〈s1h, b〉 in (23) is O(h1+ǫ). These last two
estimates combined with (25) and (24) imply that v′1(z0) = v′2(z0) by letting h→ 0. The same
proof using the complex geometric optics Gh of Proposition 3.1 gives v1 = v2 if vj ∈W 1,p(M0)
and vj ∈ L∞(M0). �

Remark 3.4. As noted in section 4 of [3], this methods allows to get an inversion (or recon-
struction) procedure to recover the value of a matrix potential V at a given z0 ∈M0, provided
we know a Morse holomorphic function Φ with a critical point at z0 and Φ(z0) = 0. We do
not give details since it is essentially the same idea as [3], but essentially the method is to
compare to case V1 = V to the free case V2 = 0 and use complex geometric optic (or Fad-
deev type) solutions F 1

h , F
2
h for h → 0, together with the Green formula as we did above for

identification: the boundary term is not zero anymore but is the information we measure and
therefore multiplying by h−1 and letting h → 0, the boundary term converges to V (z0) times
an explicit non-zero constant .

4. Boundary Determination

For smooth (X, q), it was shown by Nakamura-Sun-Uhlmann in [19] that the Cauchy data
space determines the boundary values of Xj up to an exact form. This is relaxed to regularity
X ∈ C1, q ∈ L∞ by Brown-Salo [2]. We summarize it in

Proposition 4.1. Let X1, X2 ∈ W 2,p(M0, T
∗M0) and q1, q2 ∈ W 1,p(M0) for some p > 2,

then if CL1 = CL2 then i∗∂M0
X1 = i∗∂M0

X2 and q1|∂M0 = q2|∂M0, where i∂M0 is the inclusion
map of ∂M0 into M0.

This statement was only shown in [19, 2] for M = Ω ⊂ Rn but since the proof is only
localized near a neighbourhood of the boundary, it adapts naturally on a general Riemann
surface and we will not provide a proof here. Notice that by adding an exact form dζ to X1

with ζ a function vanishing on the boundary, we do not change the Cauchy data space CL1 .
If x is a boundary defining function such that |dx|g = 1 at ∂M0, we can set ζ = xf(x) for
some C1 function f and we have dζ|∂M0 = f |∂M0dx; therefore if ν is the unit interior pointing
normal vector field to ∂M0, we have dζ(ν)|∂M0 = f |∂M0 and choosing f accordingly, we can



IDENTIFICATION OF A CONNECTION FROM CAUCHY DATA 13

choose ζ so that X1 + dζ = X2 at ∂M0. By the gauge invariance, we can at best identify
X up to exact forms, and therefore we may assume that X1 = X2 at ∂M0 as forms on M0,
possibly by modifying X1 through an exact form dζ.

For our purpose we will need additional information along the boundary in order to reduce
our problem to a first order system. That is, we will show that the boundary value of
certain primitives of the forms Xj agree with that of the boundary value of a holomorphic
function. More precisely, let Xj ∈ Λ1(M0) and Aj := π0,1Xj and Bj := π1,0Xj where
π0,1 : Λ1(M0) → Λ0,1(M0), and π1,0 : Λ1(M0) → Λ1,0(M0) are the natural projections. The
main result of this section is

Proposition 4.2. Let α1 and α2 be smooth functions such that ∂̄αj = Aj. Then e−i(α1−α2)|∂M
is the boundary value of a holomorphic function.

In order to prove the Proposition, we shall need a few Lemma characterizing boundary
values of holomorphic functions. Let us denote by i∂M0 : ∂M0 →M0 the inclusion map.

Lemma 4.1. Let f ∈ H1/2(∂M0) be a complex valued function. Then f is the restriction of
a holomorphic function if and only if ∫

∂M
fi∗∂M0

η = 0

for all 1-forms η ∈ C∞(M0;T
∗
1,0M0) satisfying ∂̄η = 0. Similarly, f ∈ H1/2(∂M0) is the

restriction of an anti-holomorphic function if and only if∫

∂M0

fi∗∂M0
η = 0

for all 1- forms η ∈ C∞(M0;T
∗
0,1M0) satisfying ∂η = 0.

Proof. We will only prove the holomorphic statement, the anti-holomorphic statement follows
similarly. Suppose f ∈ H1/2(∂M0) is such that

∫

∂M
fi∗∂M0

η = 0.

and denote by u ∈ H1(M0) its harmonic extension to M0. We would like to show that u is
actually holomorphic. We will do this by showing that

〈∂̄u, ω〉 = 0, ∀ω ∈ C∞(M0, T
∗
0,1M0).

By the Hodge-Morrey decomposition given in [20, Th 2.4.2], a 1-form ω ∈ L2 can be decom-
posed as

ω = dα+ ∗dβ + ω0

where α, β ∈ H1(M0) satisfy Dirichlet condition α|∂M0 = β|∂M0 = 0 and ω0 is closed and
co-closed dω0 = 0, d ∗ ω0 = 0. If ω ∈ C∞(M0, T

∗
0,1M0), then

ω = π0,1ω = π0,1dα+ π0,1 ∗ dβ + π0,1ω0

Since π0,1d = ∂̄ and π0,1 ∗ d = −i∂̄ on functions, and η := π0,1ω0 ∈ C∞(M0, T
∗
0,1M0) satisfies

∂η = 0, we can write ω = ∂̄γ + η where γ has Dirichlet boundary condition and ∂η = 0. We
now compute by Stoke’s Theorem

〈∂̄u, ω〉 = 〈∂̄u, ∂̄γ〉 + 〈∂̄u, η〉 = 〈∂̄∗∂̄u, γ〉 − i

∫

∂M
fi∗∂M0

η̄.
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The first term on the right side vanishes since u is harmonic, the last term vanishes since
η̄ ∈ C∞(M0, T

∗
1,0M0) satisfies ∂̄η̄ = 0 and we have assumed that f is orthogonal to all such

boundary values of sections of T ∗
1,0M0. Therefore we conclude that ∂̄u = 0. Since we will not

actually use the converse statement in this paper, it is left as an exercise. �

Lemma 4.2. Let f ∈ H1/2(∂M0) be a complex valued function. Then f is the restriction of
a holomorphic function if and only if

∫

∂M0

fi∗∂M0
∂φ = 0

for all smooth real valued harmonic functions φ which have no critical point on the boundary.
Similary, f ∈ H1/2(∂M0) is the restriction of an anti-holomorphic function if and only if

∫

∂M0

fi∗∂M0
∂̄φ = 0

for all smooth real valued harmonic functions φ which have no critical point on the boundary.

Proof. By applying [18, Th. C1.10] like in [9, Cor. 2.3] with a totally real subbundle
boundary condition having high boundary Maslov index, one obtains that the operator
∂ : H4(M0) → H3(M0;T

∗
1,0M0) is surjective. Using this we see that Lemma 4.1 implies

that f is the restriction of a holomorphic function if and only if
∫

∂M0

fi∗∂M0
∂φ = 0

for all harmonic functions φ. Now it remains to show that this statement is equivalent to
the case where we consider only smooth harmonic functions with no critical points on the
boundary. That is, we want to show that smooth harmonic functions with no critical points
on the boundary form a dense subset of the harmonic functions in Ck(M0). Indeed, let φ
be a harmonic function with smooth boundary value g ∈ C∞(∂M0). Since Morse functions
are generic on the circle, it suffices to consider the case where g is a Morse function with
isolated critical points {x1, .., xN}. Clearly, the critical points of φ forms a subset of the set
{x1, .., xN}. We will make a small perturbation to φ so that x1 is guaranteed to not be a
critical point. Let φ1 be a smooth harmonic function with boundary value g1 ∈ C∞(∂M0)
and such that and dφ1(xj) = dν for all j = 1, . . . , N if dν is the unit conormal form to ∂M0;
the existence of such a function φ1 is insured by applying Lemma 2.6 of [9] on the manifold M
containing strictly M0: indeed this Lemma says that there exist holomorphic functions with
prescribed Taylor expansion to order 2 at x1, . . . , xN ∈ int(M) and therefore taking its real
part one obtains the desired harmonic function. For all ǫ > 0 small, the points x1, . . . , xN
are not critical point of the function φ′ := φ+ ǫφ1. Furthermore, for all ǫ > 0 small enough,
g′ := φ′|∂M0 is again a Morse function on ∂M0 with critical points {x1, .., xN}, therefore the
critical points of φ′ on ∂M0 are contained in {x1, .., xN}, which implies that φ′ has no critical
points on ∂M0. Thus smooth harmonic functions with no critical points on ∂M0 form a dense
subset of Ck harmonic functions and we are done. �

In view of Lemma 4.2 and the fact that Morse harmonic functions form a dense subset of
harmonic functions (see [8, Lemma 2.2]) in Ck(M0), we have the following corollary:
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Corollary 4.3. Let f ∈ H1/2(∂M0) be a complex valued function. Then f is the restriction
of a holomorphic function if and only if

∫

∂M0

fi∗∂M0
∂φ = 0

for all smooth real valued harmonic functions φ which is Morse up to the boundary and has
no critical point on the boundary. Similary, f ∈ H1/2(∂M0) is the restriction of an anti-
holomorphic function if and only if

∫

∂M0

fi∗∂M0
∂̄φ = 0

for all smooth real valued harmonic functions φ which is Morse up to the boundary and has
no critical point on the boundary.

Let φ be a smooth real valued harmonic function defined on M . It is easy to see that φ
has a harmonic conjugate if and only if

Mj(φ) :=

∫

γj

∗dφ = 0 j = 1, .., n.

where {γ1, .., γn} is a family of generators of the fundamental group π(M0,m0) (with m0 ∈M0

fixed). However, if M(φ) = (M1(φ), ..,Mn(φ)) ∈ (2πZ)n then one can construct a multivalued
function ψ such that F := eφ+iψ is a (single-valued) holomorphic function with |F | = eφ and
∂F = (1 − i)F∂φ. Indeed, it simply suffices to set ψ(m) = −

∫
γ(m) ∗dφ where γ(m) is a

smooth path joining m0 to m.

Lemma 4.4. Let f ∈ H1/2(∂M0) be a complex valued function. Then f is the restriction of
a holomorphic function if and only if

(26)

∫

∂M0

fi∗∂M0
∂φ = 0

for all smooth real valued harmonic functions φ which is Morse up to the boundary and
M(φ) ∈ (2πZ)n. Similary, f ∈ H1/2(∂M0) is the restriction of an anti-holomorphic function
if and only if ∫

∂M0

fi∗∂M0
∂̄φ = 0

for all smooth real valued harmonic functions φ which is Morse up to the boundary and
M(φ) ∈ (2πZ)n.

Proof. By Corollary 4.3, we need to check that (26) is equivalent to the condition stated in
Corollary 4.3. Observe that if M(φ) ∈ (2πQ)n, then M(kφ) ∈ (2πZ)n for some integer k,
thus the condition (26) is satisfied for all smooth harmonic Morse φ with M(φ) = (2πQ)n

and no boundary critical point if and only if it is satisfied for all smooth harmonic Morse φ
with M(φ) ∈ (2πZ)n and no boundary critical points. Therefore, by taking limits, it suffices
to show that any Morse harmonic function φ with no critical point on the boundary can be
approximated by a sequence of Morse harmonic functions with periods in 2πQ in the C3(M0)
topology. Indeed, let {φ1, .., φn} be a set of real valued C3 harmonic functions in M0 such that
Mj(φk) = δjk. Such harmonic functions exist due to equation (3.1) of [4] which states that the
period matrix is invertible. Then given a real valued harmonic function φ, we consider small
perturbations φ′ := φ +

∑n
j=1 ǫjφj of φ. Since Q is dense in R, ǫj can be chosen arbitrarily
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small such that M(φ′) ∈ (2πQ)n. If φ is Morse with no critical points on the boundary and
being Morse is an open condition, φ′ is also Morse with no critical points on the boundary if
ǫj are taken small enough. �

Lemma 4.5. Let φ be a harmonic Morse function such that M(φ) ∈ (2πZ)n and α1, α2 are
functions such that ∂̄α1 = A1 and ∂̄α2 = A2. Then for all k ∈ Z large enough, there exists a
solution u1 ∈ H1(M0) to

L1u1 = 0

such that

u1 = F k(e−iα1 + r1) with
√
k‖r1‖L2 + ‖r1‖H1 ≤ C

where F is holomorphic, ∂F = (1 − i)F∂φ and |F | = eφ. Similarly, there exists a solution
u2 ∈ H1(M0) to

L∗
2u2 = 0

such that

u2 = F̄−k(e−iᾱ2 + r2) with
√
k‖r2‖L2 + ‖r2‖H1 ≤ C.

Proof. Since M(φ) ∈ (2πZ)n we can construct a multivalued complex conjugate ψ such that
F := eφ+iψ is a well defined holomorphic function satisfying ∂F = (1 − i)F∂φ and |F | = eφ.
Since for any α1 satisfying ∂ᾱ1 = Ā1, L1 can be written as

L1 = −2i ∗ (∂ + iĀ1∧)(∂̄ + iA1) +Q1 = −2i ∗ e−iᾱ1∂eiᾱ1e−iα1 ∂̄eiα1 +Q1

for some Q1 ∈ L∞(M0), we have that L1F
keiα1 = F keiα1Q1. By Corollary 7.2, for all |k|

large enough there exists a r̃1 solving

e−kφL1e
kφr̃1 = |F−k|L1|F k|r̃1 = Q̃1

such that √
k‖r̃1‖L2 + ‖r̃1‖H1 ≤ C‖Q̃1‖L2 .

Setting r1 = Fk

|Fk|
r̃1 we have that

L1F
k(eα1 + r1) = 0

and that r1 satisfies the desired estimates. The construction for u2 follows similarly after
factorizing

L2 = −2i ∗ e−iα1 ∂̄eiα1e−iᾱ2∂eiᾱ2 + Q̃2

for some Q̃2 ∈ L∞(M0) and using that L∗
2 − L2 is a zeroth order differential operator. �

Proof of Proposition 4.2: We need to show that if α1 and α2 are functions such that
∂̄αj = Aj , then e−i(α1−α2) |∂M0 is the boundary value of a holomorphic function. By Lemma
4.4 this is equivalent to showing that

∫

∂M0

fi∗∂M0
∂φ = 0

for all smooth real valued harmonic functions φ which is Morse up to the boundary and
M(φ) ∈ (2πZ)n.
Let φ be such a harmonic function and let u1 = F k(e−iα1 + r1) and u2 = F̄−k(e−iᾱ2 + r2) be
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the solutions constructed in Lemma 4.5. Plugging these solutions into the boundary integral
identity ∫

M0

ū2(2(A1 −A2) ∧ ∂u1 + 2(Ā1 − Ā2) ∧ ∂̄u1 + (Q1 −Q2)u1) = 0

we have that

2k(1 − i)

∫

M0

e−i(α1−α2)(A1 −A2) ∧ ∂φ+O(
√
k) = 0.

Using the fact that −ie−i(α1−α2)(A1 − A2) = ∂̄e−i(α1−α2) we can integrate by parts and take
k → ∞ to get that ∫

∂M0

e−i(α1−α2)i∗∂M0
∂φ = 0.

Since this is true for any real valued harmonic Morse function φ with M(φ) ∈ (2πZ)n,

e−i(α1−α2)|∂M0 is the boundary value of a holomorphic function by Lemma 4.4. �

In view of this proposition we will denote by F−i(α1−α2) to be the unique holomorphic

function with boundary value e−i(α1−α2) |∂M0 . Observe that one can reverse the indices 1

and 2 in the proof above, and this shows that ei(α1−α2)|∂M0 is also the boundary value of a
holomorphic function Fi(α1−α2). Therefore, writing α = α1 − α2, it is clear after remarking
that the product FiαF−iα has boundary value 1, that

(27) FiαF−iα = 1.

5. Reduction to First Order Systems

In this section we use the boundary identity result we obtained in Proposition 4.2 to reduce
the inverse problem for the second order equation to an inverse problem for the first order
system of Dirac type on sections of the bundle Σ = Λ0 ⊕ Λ0,1 introduced in Section 3. We
will do this by factoring the operators L1 and L2 the appropriate way.

Let αj satisfy ∂̄αj = Aj (this exists by Proposition 2.1), then we also have ∂ᾱj = Āj . We
set α := α1 − α2, then by Proposition 4.2 and (27), we see that there exists a nonvanishing
holomorphic function F−iα such that F−iα|∂M0 = e−iα|∂M0 . In particular, if

(28) FA2 := eiα2 and FA1 = F−iαe
iα1

then

(29) ∂̄FAj
= iAjFAj

and FA1 |∂M0 = FA2 |∂M0 .

Similarly, there is a unique nonvanishing anti-holomorphic function F̄iα such that FĀ1
:=

F̄iαe
iᾱ1 and FĀ2

:= eiᾱ2 satisfy

(30) ∂FĀj
= iFĀj

Āj and FĀ1
|∂M0 = FĀ2

|∂M0 .

We can then write

Lj = −2i ∗ (∂ + iĀj∧)(∂̄ + iAj) +Qj = 2F−1
Āj
∂̄∗FĀj

F−1
Aj
∂̄FAj

+Qj .

where Qj = ∗dXj + qj . Let uj ∈ H2(M0) and set ωj := F−1
Aj
∂̄FAj

uj ∈ H1(M0, T
∗
0,1M0),

Ljuj = 0 ⇐⇒
(

0 ∂̄∗

∂̄ 0

)(
FAj

0
0 FĀj

)(
uj
ωj

)
+

(
FĀj

Qj/2 0

0 −FAj

)(
uj
ωj

)
= 0.
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Observe that (27) implies F̄Āj
= F−1

Aj
, therefore, if we set (ũj , ω̃j) := (FAj

uj , FĀj
ωj) =

(FAj
uj , F

−1
Aj
ωj), then (uj , ωj) solves the above system of equations if and only if (ũj , ω̃j)

solves

(31)

(
0 ∂̄∗

∂̄ 0

)(
ũj
ω̃j

)
+

(
1
2Qj |FAj

|−2 0
0 −|FAj

|2
)(

ũj
ω̃j

)
= 0

Denoting the Cauchy data space for Lj to be

CLj
= {(u,∇Xj

ν u)|∂M0 ∈ H
1
2 (∂M0) ×H− 1

2 (∂M0);u ∈ H1(M0), Lju = 0}

where ∇Xj
ν u := du(ν)+iXj(ν)u and ν the unit normal interior vector field to ∂M0, we deduce

from this discussion the

Proposition 5.1. Assume that X1, X2 ∈ W 2,p(M0, T
∗M0) are real valued and q1, q2 ∈

W 1,p(M0) complex valued for some p > 2. If L1 and L2 have the same Cauchy data space
CL1 = CL2, then the first order system (31) with diagonal endomorphism (1

2Q1|FA1 |−2, |FA1 |2)
of Σ has the same Cauchy data space as the one with endomorphism (1

2Q2|FA2 |−2, |FA2 |2) for
Qj = −dXj + qj and FAj

defined as above.

Proof. By the boundary determination and the remark following Proposition 4.1, we can
suppose that X1 = X2 on ∂M0 as forms, and therefore A1 = A2 as well on ∂M0. Combining
the discussion above with equalities (29), (30), we have that 2 solutions uj of Ljuj = 0
satisfying (u1 − u2)|∂M0 = 0 are such that (ũ1 − ũ2)|∂M0 = 0 and

i∗∂M0
(ω̃1 − ω̃2) = i∗∂M0

(
F̄−1
A1

[(∂̄ + iA1)u1 − (∂̄ + iA2)u2]
)

= i∗∂M0
(eiᾱ2 ∂̄(u1 − u2))

where (ũj , ω̃j) := (FAj
uj , |FAj

|−2∂̄FAj
uj). Now,

∇Xj
ν uj |∂M0 = (duj(ν) + iXj(ν)uj)|∂M0

and since X1 = X2 on ∂M0, CL1 = CL2 implies that d(u1 − u2)(ν)|∂M0 = 0, which together
with (u1 − u2)|∂M0 = 0 gives ω̃1 = ω̃2 on ∂M0. This achieves the proof. �

We deduce from Proposition 5.1 and Theorem 3.3 the following

Corollary 5.1. Let Xj ∈W 2,p(M0, T
∗M0) be real valued and qj ∈W 1,p(M0) complex valued,

and p > 2. If the Cauchy data spaces for L1, L2 satisfy CL1 = CL2, then d(X1 −X2) = 0 and
q1 = q2.

Proof. Acoording to Proposition 5.1 and Theorem 3.3, we have that

(32) −dX1 + q1 = −dX2 + q2 and |FA2 |2 = |FA1 |2

where Xj = Aj + Āj and Aj ∈ Λ0,1, Āj ∈ Λ1,0. The functions FAj
are defined in (28) and αj

satisfies ∂̄αj = Aj . Since |FA2 | = e−Im(α2) = |FA1 | = e−Im(α1)|F−iα| for α = α1 − α2 and Fiα
is a holomorphic function which does not vanish in M0 in view of (27) (the log of its modulus
is then harmonic), then setting A = ∂̄α = A1 −A2 we deduce that

0 = 2i∆Im(α) = ∆(α− ᾱ) = −2i ∗ ∂∂̄α− 2i ∗ ∂̄∂ᾱ = −2i ∗ (∂A+ ∂̄Ā) = −2i ∗ d(X1 −X2)

and therefore q1 = q2 as well by (32). �
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6. Cauchy data determine the holonomy

For each m ∈ M0 and each closed loop γ based at m0, the parallel transport for the
connection ∇X on the bundle M0 × C defines an isomorphism PXγ : C → C of the fiber C at

m, thus Pγ can be viewed as a non-zero complex number PXγ ∈ C\{0}. The holonomy group

of ∇X at m is given by

Hm(∇X) := {PXγ ∈ C \ {0}; γ is a closed loop based at m}.
For the connection ∇X = d+ iX, an easy computation shows that

PXγ = e−i
R

γ
X

where γ is an oriented closed curve. Notice that if X is real valued, the holonomy group
Hm(∇X) is a subgroup of S1. If X is a flat connections 1-forms, ie. with cuvature dX = 0,
then the map γ → PXγ induces a natural group morphism ρXm : π1(M0,m) → Hm(∇X) where
π1(M0,m) is the fundamental group based at m, ie. the set of closed loop up to homotopy
equivalence. The morphism ρX is called the holonomy representation into GL(C) and it is
trivial if and only if

e−i
R

γ
X = 1 for all closed loop γ based at m,

this condition is also independent of m. If X1, X2 are two connection 1-forms with same
curvature dX1 = dX2, and if the holonomy representation of X := X2 − X1 is trivial, then
there exist a unitary bundle isomorphism F : E → E (recall that E = M0×C), or equivalently
a function F : M0 → C of modulus |F | = 1, defined by

F (m′) = e
i

R

γ(m,m′)X

where γ(m,m′) is any C1 path joining m and m′, this is well defined independently of the path
since dX = 0 and thanks to the triviality of the holonomy representation. The connections
X1 and X2 are related by F ∗(d+ iX1)F = d+ iX2, and if moreover i∗∂M0

X1 = i∗∂M0
X2, then

the isomorphism F is the identity when restricted to ∂M0.
In view of this discussion, to prove Theorem 1.1, we need to prove

Theorem 6.1. Let X1, X2 ∈ W 2,p(M0) and q1, q2 ∈ W 1,p(M0) for some p > 2. Then the
Cauchy data spaces CL1 and CL2 coincide if and only if q1 = q2, ∇X1 and ∇X2 have same
curvature dX1 = dX2, and the holonomy representation ρXm is trivial for each m ∈M0, where
we have set X := X1 −X2.

Proof. We shall give two different proofs, the first one using directly the Cauchy data space,
the other one using Proposition 5.1.

First Proof. We have already shown that d(X1 −X2) = 0 and q1 = q2. Furthermore, by
boundary determination (Proposition 4.1 and the remark that follows), we can conclude that
the tangential components ofX1 andX2 agree along the boundary, ie. i∗∂M0

(X1−X2) = 0, and
that there exist a function ζ vanishing on the boundary such thatX1+dζ = X2 on ∂M0. Since
the addition of an exact form as above does not change the Cauchy data space, we may assume
without loss of generality that X1 = X2 at ∂M0. Let [γ] ∈ π1(M0, p1) be an equivalence class
of loop and γ be a representative. Since X := X1 −X2 is closed,

∫
γ X is independent of the

chosen representative. We choose a simple (non self-intersecting) representative γ based at p1,
made of 2 oriented pieces [p1, p2] and [p2, p1] such that [p2, p1] ⊂ ∂M0. This is possible for each
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primitive class (or generator) of [γ] ∈ π1(M0, p1), ie. every class which can not be expressed
as a power of another class. All the other classes in π1(M0, p1) are obtained by products
of primitive classes (in the group law) and therefore the integrals of X along these classes
are obtained by linear combinations over Z of integrals of X on primitive classes, therefore
it suffices to compute the integrals on X on simple representatives (primitive classes) in
π1(M0, p1). To prove the statement about the trivial holonomy representation, it suffices to
prove that

∫
γ X ∈ 2πZ.

Let γ : [0, 2] → M be a parametrization of this loop in such a way that γ(0) = p1,
γ(1) = p2, γ1 := γ((0, 1)) ⊂ int(M0), and γ2 := γ([1, 2]) ⊂ ∂M0. Now consider a thin tubular
neighbourhood O := {p ∈ intM0; dist(p, γ1) < ǫ} which is homeomorphic to (0, 1) × (−ǫ, ǫ)
and therefore simply connected, in particular we need to take ǫ so that dist(p1, p2) > 2ǫ. We
define for points p ∈ Ō the function α(p) :=

∫ p
p1
X, so that dα = X in Ō (since X is closed).

Since X = 0 on ∂M0, we also have α|U1 = 0 where U1 = {p ∈ ∂M0; dist(p, p1) ≤ ǫ}. Now let
f be a smooth function defined on the boundary such that f(p1) = f(p2) = 1 and let uj solve
(for j = 1, 2)

Ljuj = 0, u|∂M0 = f.

Let u := eiαu1 be defined in the tubular neighbourhood O and we shall now show that
u = u2 in O by unique continuation if the Cauchy data spaces CLj

agree. Indeed, using that

∇X2eiα = eiα∇X1 in O by simple calculation, we deduce that u solves L2u = 0 in O since

e−iα(∇X2
∗∇X2 + q2)e

iαu1 = (∇X1
∗∇X1 + q1)u1 = 0.

Furthermore, since α(p) = 0 for all p ∈ U1, one has u(p) = u1(p) = f(p) = u2(p) for all
p ∈ U1. Moreover, since the normal components of X1 and X2 agree on U1 as well, the
normal derivatives satisfy

∂νu|U1 = ∂νu1|U1 = ∇X1
ν u|U1 − iX1(ν)f = ∇X2

ν u|U1 − iX2(ν)f = ∂νu2|U1

where in the third equality we used the fact that the Cauchy data spaces CL1 and CL2 agree.
So we have that (u− u2) is the solution of a homogenous elliptic equation in O, vanishing on
U1 and with normal derivative vanishing on U1, therefore by standard unique continuation

eiα(p)u1(p) = u(p) = u2(p), ∀p ∈ O.

Now letting p converging to p2 ∈ Ō and using the fact that u1|∂M0 = u2|∂M0 = f , we have

that eiα(p2)f(p2) = f(p2). And since f(p2) = 1 by assumption, we deduce that eiα(p2) = 1
and consequently

α(p2) =

∫

γ1

X ∈ 2πZ.

Now since the tangential component of X vanishes along the boundary and γ2 ⊂ ∂M0, we
deduce that

∫
γ2
X = 0 and conclude that

∫

γ
X =

∫

γ1

X ∈ 2πZ

and the proof is complete.

Second Proof. Consider the functions FAj
of (28), then by Proposition 5.1 and using

F̄Āj
= F−1

Aj
, we know that Θ := FA1/FA2 = F̄Ā2

/F̄Ā1
is a function mapping M0 to the unit
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circle S1 ⊂ C, and by (29), (30) we also have

∂̄Θ/Θ = i(A1 −A2), ∂Θ/Θ = i(Ā1 − Ā2)

and thus dΘ/Θ = i(X1 −X2). Let γ,O, p1, p2 be like in the First Proof just above, we want
to prove that

∫
γ dΘ/Θ ∈ 2iπZ. In the tubular neighbourhood O of γ, we define G(p) :=

i
∫ p
p1

(X1 − X2) =
∫ p
p1
dΘ/Θ, which is well defined in the simply connected domain O since

d(X1−X2) = 0, and dG = dΘ/Θ in O with G(p1) = 0. The function eG takes value in S1 and
we have then proved that eG = Θ since Θ(p1) = 1. Then, to conclude, it suffices to notice
that Θ(p2) = 1 and so G(p2) ∈ 2πiZ. �

7. Appendix

In this appendix, we gather a couple of technical results which are essentially already proved
in the literature. First, we give a Carleman estimate

Lemma 7.1. Let X ∈ W 2,∞(M0, T
1M0) be real valued and q ∈ W 1,∞(M0) complex valued

and set L = ∇X∗∇X + q. Let φ be some harmonic real valued Morse function. Then there
exists C > 0 such that for all large k ∈ N and all u ∈ H2(M0)

||e−φ/hLeφ/hu||2L2 ≥ C(
1

h
||u||2L2 + ||du||2L2).

Proof. We observe that L is a first order perturbation of the Laplacian ∆g on M0, therefore
the Carleman estimate obtained for ∆g in Lemma 3.2 of [8] with a convexified weight φǫ
allows to absorb the first order terms by taking ǫ > 0 small and this shows the result for L for
the convexified weight. Then the argument of Proposition 3.1 in [8] shows that the desired
estimate for L holds for the weight φ. �

As a corollary

Corollary 7.2. With the same assumptions as in Lemma 7.1, there exists h0 > 0 and C > 0
such that for all h ∈ (0, h0) and for all f ∈ L2(M0) there exist a solution u ∈ H2(M0) of

e−φ/hLeφ/hu = f with norms ||u||L2 ≤ C
√
h||f ||L2 and ||du||L2 ≤ C||f ||L2.

Proof. The proof is a standard application of Lax-Milgram theorem (or Riesz representation)
with the estimate of Lemma 7.1, in exactly the same way as Lemma 4.4 of [8]. �

The boundary determination is standard, but since there seem to be no proof in the case
of the system D + V studied in section 3, we provide a sketch of proof, based essentially on
the arguments of [9, Appendix].

Lemma 7.3. With the notations of Section 3, let V1, V2 ∈W 1,p(M0,End(Σ)) be two diagonal
complex valued potentials endomorphisms of Σ. Assume that the Cauchy data spaces CV1 of
D + V1 and CV2 of D + V2 agree, then i∗∂M0

V1 = i∗∂M0
V2.

Proof. Let H1
0 (M0,Σ) be the completion of C∞

0 (int(M0)) for the H1(M0,Σ) topology, and
H−1(M0,Σ) the dual space. By standard arguments (for instance Carleman estimates and
Lax-Milgram theorem), we have that for all W ∈ L2(M0,Σ), there exists a U ∈ H1(M0,Σ)
such that (D + Vj)U = W and ||U ||L2 ≤ C||W ||H−1 . Now let Ah = (ah, 0) ∈ C∞(M0,Σ)
with ah a function supported in a chart Up near a boundary point p and defined as follows:
if z = x+ iy are complex coordinates near p with {y = 0} = ∂M0 ∩ Up, M0 ∩ Up = {y ≥ 0}
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and p = {z = 0} in this chart, then we set ah(z) := η(zh−α)eiz/h with η ∈ C∞
0 (C) supported

in the chart and equal to 1 at z = 0, and α ∈ (0, 1/2). Notice that ||Ah||L2 = O(h
1
2
(1+α)) and

DAh = (0, h−α∂z̄η(zh
−α)eiz/h) has L2 norm O(h

1
2
(1−α)). Let = (f1, f2dz̄) ∈ H1

0 (M0,Σ), then
one has (the metric g is of the form e2ρ|dz|2 for some smooth function ρ)

〈DAh, F 〉 = −ih−α+1

∫

Up

∂z(e
iz/h)〈∂z̄η(zh−α)dz̄, f2〉e2ρdxdy

and integrating by parts, we loose at most a power h−α when the derivative hits η(zh−α). Us-

ing Cauchy-Schwartz, we deduce |〈DAh, F 〉| ≤ Ch
3
2
(1−α)||F ||H1 and therefore ||DAh||H−1 =

O(h
3
2
(1−α)). Adding a potential is harmless and thus ||(D+V )Ah||H−1 = O(h

3
2
(1−α)). Taking

α = 1
3 for instance, we obtain that there exists Zh ∈ H1(M0,Σ), with norm ||Zh||L2 = O(h)

such that (D+ V )Fh = 0 with Fh = Ah +Zh. We get these solutions F 1
h , F

2
h for the diagonal

potentials V1 =

(
v1 0
0 v′1

)
and V1 =

(
v2 0
0 v′2

)
and plug them into the integral identity (22),

giving then by elementary computations (and using vj , v
′
j ∈W 1,p(M0))

0 =

∫

M0

(v1 − v2)η
2(zh−

1
3 )e−2y/he2ρdxdy + o(h

4
3 ) = C(v1(p) − v2(p))h

4
3 + o(h

4
3 ).

for some C 6= 0. This proves that v1 = v2 at p, the same argument can be used to prove that
v′1 = v′2 at p and since p is arbitrarily chosen, we have achieved the proof of the Lemma. �
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