Inferring Biological Regulation Networks

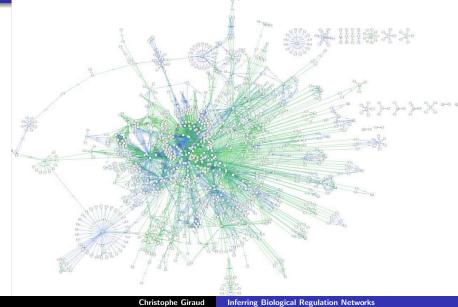
Christophe Giraud

Université de Nice et INRA Jouy-en-Josas

(On the estimation of Gaussian graphs)

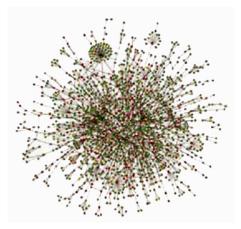
▲□ ► < □ ► </p>

Gene regulation network of E. coli

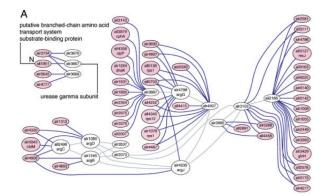


Proteomic regulation network of a yeast

1458 proteins (nodes) and their 1948 interactions (edges)

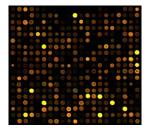


Gene regulation network for Anabaena (nitrogen deprivation)



з

Detect such a regulation network from microarray experiments



Available data:

- $p \approx$ a few 100 or 1000 proteins or genes
- $n \approx$ a few 10 microarray

< 🗇 🕨

- ₹ 🖬 🕨

Some tools

- Kernels methods: supervised learning (need some learning) can handle data of different nature
- Bayesian network: integration of a priori knowledge
- Gaussian graphical models: no need of a priori knowledge purely explanatory

Estimation of Gaussian Graphs. Theory.

http://hal.archives-ouvertes.fr/hal-00178275/fr/

Strategy Which "size" of graph Which penalty?

Model: Gaussian Graphs

Statistical model: The gene expression levels $(X^{(1)}, \ldots, X^{(p)})$ are distributed according to $\mathcal{N}(0, C)$ in \mathbb{R}^p , with *C* positive definite.

Notation: We write
$$\theta = (\theta_k^{(j)})$$
 for the $p \times p$ matrix such that $\theta_j^{(j)} = 0$ and
and $\mathbb{E} (X^{(j)} | X^{(k)}, k \neq j) = \sum_{k \neq j} \theta_k^{(j)} X^{(k)}.$

Remark:
$$\theta_k^{(j)} = -(C^{-1})_{k,j} / (C^{-1})_{j,j}$$
 so
 $\theta_k^{(j)} \neq 0 \iff \theta_j^{(k)} \neq 0.$

- 4 同 6 4 日 6 4 日 6

Strategy Which "size" of graph? Which penalty?

A few References

Multiple testing	L ¹ procedures
- Drton & Perlman (2004)	- Meinshausen & Bühlmann (2006)
- Schäfer & Strimmer (2005)	- Huang <i>et al.</i> (2006)
- Wille & Bühlmann (2006)	- Yuan & Lin (2007)
- Verzelen & Villers (2007)	- Banerjee <i>et al.</i> (2007)
	- Friedman <i>et al.</i> (2007)

<ロ> <同> <同> < 同> < 同>

Goal

Goal: Estimate θ from a sample X_1, \ldots, X_n with n < p, with quality criterion

$$\begin{split} \text{MSEP}(\hat{\theta}) &= \mathbb{E}\left[\|\mathcal{C}^{1/2}(\hat{\theta}-\theta)\|_{p\times p}^{2}\right] \\ &= \sum_{j=1}^{p} \mathbb{E}\left[\|X_{new}^{T}(\hat{\theta}^{(j)}-\theta^{(j)})\|_{1\times p}^{2}\right] \end{split}$$

Notations: For a matrix $A \in \mathbb{R}^{k \times q}$

•
$$A = [A^{(1)}, \dots, A^{(q)}]$$

• $||A||_{k \times q}^2 = \sum_{i=1}^k \sum_{j=1}^q (A_i^{(j)})^2$

Theory

Estimation strategy

Christophe Giraud Inferring Biological Regulation Networks

・ロン ・雪 と ・ ヨ と ・ ヨ と

Strategy Which "size" of graph? Which penalty?

- 2 Associate to each graph $g \in \mathcal{G}$ an estimator $\hat{\theta}_g$ of θ .
- Select one of these estimators by minimizing some penalized empirical risk.

Strategy Which "size" of graph Which penalty?

Collection of candidate graphs

Choice of a collection ${\mathcal{G}}$ of candidate graphs

Examples

- Set of the graphs with p nodes of degree $\leq D$,
- Set of the graphs with p nodes including a known graph g_o .

Model for θ associated to $g \in \mathcal{G}$: $g \frown \Theta_g = \left\{ \theta \in \mathbb{R}^{p \times p} : i \nleftrightarrow j \Rightarrow \theta_i^{(j)} = 0 \right\}$

Estimator $\hat{\theta}_g$ associated to g

Characterization: $\theta = \operatorname{argmin}_{A \in \Theta} \|C^{1/2}(I - A)\|_{p \times p}^2$ where Θ =span of matrices with 0 on the diagonal.

Problem

Some theory...

Strategy

Empirical version:
$$C^{1/2} \leftrightarrow X = \begin{bmatrix} X_1^T \\ \vdots \\ X_n^T \end{bmatrix} = [X^{(1)}, \dots, X^{(p)}]$$

Estimator associated to g:

$$\hat{ heta}_g = \operatorname*{argmin}_{A \in \Theta_g} \|X(I - A)\|_{n imes p}^2$$

・ロト ・同ト ・ヨト ・ヨト

Which estimator shall we choose among the $\{\hat{ heta}_g, \ g \in \mathcal{G}\}$?

Risk: if
$$d_j = \deg(j) = \#\{i : i \leftrightarrow j\}$$

$$\begin{split} \text{MSEP}(\hat{\theta}_g) &= \mathbb{E}\left(\|C^{1/2}(\theta - \hat{\theta}_g)\|^2 \right) \\ &= \sum_{j=1}^p \frac{n-1}{n-d_j-1} \left[\|C^{1/2}(\theta^{(j)} - \theta^{(j)}_g)\|^2 + \frac{d_j}{C_{jj}^{-1}(n-1)} \right] \ (1) \\ &\approx \|C^{1/2}(\theta - \theta_g)\|^2 + \sum_{j=1}^p \frac{\deg(j)}{nC_{jj}^{-1}} \end{split}$$

Oracle: the ideal would be to choose $\hat{\theta}_{g_*}$ minimizing (1).

Selection criterion: penalized empirical risk

We choose
$$\hat{ heta}=\hat{ heta}_{\hat{m{g}}}$$
, where $\hat{m{g}}$ minimizes over ${\cal G}$ ${
m crit}(m{g})=\|X(I-\hat{ heta}_{m{g}})\|^2$ of $(1+{
m pert})$

Empirical MSEP

< ロ > < 同 > < 三 > < 三 > 、

Selection criterion: penalized empirical risk

We choose
$$\hat{\theta} = \hat{\theta}_{\hat{g}}$$
, where \hat{g} minimizes over \mathcal{G}
 $\operatorname{crit}(g) = \underbrace{\|X(I - \hat{\theta}_g)\|^2}_{\operatorname{Empirical MSEP}} \times (1 + \operatorname{pen}(g))$

(日) (同) (日) (日) (日)

-

Selection criterion: penalized empirical risk

We choose
$$\hat{ heta} = \hat{ heta}_{\hat{g}}$$
, where \hat{g} minimizes over \mathcal{G}
 $\operatorname{crit}(g) = \underbrace{\|X(I - \hat{ heta}_g)\|^2}_{\operatorname{Empirical MSEP}} imes (1 + \operatorname{pen}(g))$

イロト イポト イヨト イヨト

-

Selection criterion: penalized empirical risk

We choose $\hat{ heta}=\hat{ heta}_{\hat{ heta}}$, where $\hat{ heta}$ minimizes over ${\cal G}$

$$\operatorname{crit}(g) = \sum_{j=1}^{p} \left[\|X^{(j)} - X\hat{\theta}_{g}^{(j)}\|^{2} \right] \times \left(1 + \frac{\operatorname{pen}(d_{j})}{n - d_{j}}\right)$$

où $d_j = \deg(j)$

- 4 同 6 4 日 6 4 日 6

Selection criterion: penalized empirical risk

We choose $\hat{ heta}=\hat{ heta}_{\hat{ heta}}$, where $\hat{ heta}$ minimizes over ${\cal G}$

$$\operatorname{crit}(g) = \sum_{j=1}^{p} \left[\|X^{(j)} - X\hat{\theta}_{g}^{(j)}\|^{2} \right] \times \left(1 + \frac{\operatorname{pen}(d_{j})}{n - d_{j}}\right)$$

où $d_j = \deg(j)$

- 4 同 6 4 日 6 4 日 6

Selection criterion: penalized empirical risk

We choose $\hat{\theta} = \hat{\theta}_{\hat{g}}$, where \hat{g} minimizes over \mathcal{G}

$$\operatorname{crit}(g) = \sum_{j=1}^{p} \left[\|X^{(j)} - X\hat{\theta}_{g}^{(j)}\|^{2} \right] \times \left(1 + \frac{\operatorname{pen}(d_{j})}{n - d_{j}}\right)$$

où $d_j = \deg(j)$

Questions:

- Which penalty $pen(\cdot)$ shall we use?
- Which "size" of graph can we hope to estimate?

イロト イポト イラト イラト

Selection criterion: penalized empirical risk

We choose $\hat{\theta} = \hat{\theta}_{\hat{g}}$, where \hat{g} minimizes over \mathcal{G}

$$\operatorname{crit}(g) = \sum_{j=1}^{p} \left[\|X^{(j)} - X\hat{\theta}_{g}^{(j)}\|^{2} \right] \times \left(1 + \frac{\operatorname{pen}(d_{j})}{n - d_{j}}\right)$$

où $d_j = \deg(j)$

Questions:

- Which penalty $pen(\cdot)$ shall we use?
- Which "size" of graph can we hope to estimate?

- 4 周 ト 4 戸 ト 4 戸 ト

Problem Strategy Some theory... In pratice Which "size" of graph? Which penalty?

Theory

Maximum "size" of the graph?

・ロン ・回 と ・ ヨ と ・ ヨ と …

Which "size" of graph can we hope to estimate?

Risque:
MSEP
$$(\hat{\theta}) = \mathbb{E}(\|C^{1/2}(\theta - \hat{\theta})\|^2) = \mathbb{E}(\|C^{1/2}(I - \hat{\theta})\|^2) - \|C^{1/2}(I - \theta)\|^2$$

To control the MSEP, we would like to have with large probability:

$$(1-\delta)\|C^{1/2}(I-A)\|_{p\times p} \le \frac{1}{\sqrt{n}}\|X(I-A)\|_{n\times p} \le (1+\delta)\|C^{1/2}(I-A)\|_{p\times p}$$

for all matrices $A \in \bigcup_{g \in \mathcal{G}} \Theta_g$.

- 4 同 6 4 日 6 4 日 6

Strategy Which "size" of graph? Which penalty?

Complexity of a graph

Different notions of complexity for a graph: number of edges, degree, exponent of the number of cycles, fractal dimension, etc

Natural notion here: the degree of g

$$\deg(g) = \max \left\{ \deg(j), \ j = 1, \dots, p \right\}.$$

Problem Strategy Some theory... In pratice Which "size" of graph? Which penalty?

Proposition: control of the empirical risk

If $\deg(\mathcal{G}) = \max \{ \deg(g), \ g \in \mathcal{G} \}$ fulfills

$$\deg(\mathcal{G}) \leq \eta \; rac{n}{2\left(1.1 + \sqrt{\log p}
ight)^2}, \quad ext{for} \; \; \eta < 1,$$

and if $\delta > \sqrt{\eta}$, then with probability $\geq 1 - 2 \exp\left(-n(\delta - \sqrt{\eta})^2/2\right)$ we have $(1 - \delta) \|C^{1/2}(I - A)\| \leq \frac{1}{\sqrt{n}} \|X(I - A)\| \leq (1 + \delta) \|C^{1/2}(I - A)\|$ for all matrices $A \in \bigcup_{\sigma \in G} \Theta_{\sigma}$.

Note: $\log(p)$ can be replaced by $\log(p/\deg(\mathcal{G}))$ in the box

・ロト ・同ト ・ヨト ・ヨト

Problem Strategy Some theory... In pratice Which "size" of graph? Which penalty?

Lemma: Restricted quasi-isometry

Let Z be a $n \times p$ (with $n \le p$) matrix with i.i.d. $\mathcal{N}(0, 1)$ entries. Consider any collection V_1, \ldots, V_N of subspaces of \mathbb{R}^p with dimension d < n. Then for any x > 0

$$\mathbb{P}\left(\inf_{v\in V_1\cup\ldots\cup V_N}\frac{\|Zv\|}{\sqrt{n}\|v\|} \le 1 - \frac{\sqrt{d} + \sqrt{2\log N} + \delta_N + x}{\sqrt{n}}\right) \le e^{-x^2/2}$$

where
$$\delta_N = \frac{1}{N\sqrt{8\log N}}$$
. Similarly,

$$\mathbb{P}\left(\sup_{v\in V_1\cup\ldots\cup V_N}\frac{\|Zv\|}{\sqrt{n}\|v\|}\geq 1+\frac{\sqrt{d}+\sqrt{2\log N}+\delta_N+x}{\sqrt{n}}\right)\leq e^{-x^2/2}$$

Problem Strategy Some theory... In pratice Which penalty?

For C = I, there exists some constant $c(\delta) > 0$ such that if

$$\mathsf{deg}(\mathcal{G}) \geq c(\delta) \, rac{n}{1 + \log{(p/n)}},$$

there exists no $n \times p$ matrix X fulfilling

$$(1-\delta) \| C^{1/2}(I-A) \| \le \frac{1}{\sqrt{n}} \| X(I-A) \| \le (1+\delta) \| C^{1/2}(I-A) \|$$

for all matrices $A \in \bigcup_{g \in \mathcal{G}} \Theta_g$.

Theory.

Which penalty?

Christophe Giraud Inferring Biological Regulation Networks

-2

Strategy Which "size" of graph Which penalty?

The minimal size of pen(d)?

Selection criterion:

$$\operatorname{crit}(g) = \sum_{j=1}^{p} \left[\|X^{(j)} - X\hat{\theta}_{g}^{(j)}\|^{2} \times \left(1 + \frac{\operatorname{pen}(\operatorname{deg}(j))}{n - \operatorname{deg}(j)}\right) \right]$$

In the simple case where $\theta = 0$ (viz C = I) we would like that the selected graph \hat{g} stay of "small" size.

Minimal penalty

$$\implies$$
 "pen $(d_j) \ge 2d_j \log(p)$ "

The choosen penalty

Notation: we write EDkhi(d, N, x) for the inverse of

$$x \mapsto \mathbb{P}\left(F_{d+2,N} \ge \frac{x}{d+2}\right) - \frac{x}{d} \mathbb{P}\left(F_{d,N+2} \ge \frac{N+2}{Nd} x\right)$$

where $F_{d,N}$ is a Fisher random variable with d and N degrees of freedom.

Penalty: For K > 1 we set

$$pen(d) = K \frac{n-d}{n-d-1} EDkhi \left[d+1, n-d-1, \left(C_{p-1}^{d} (d+1)^{2} \right)^{-1} \right].$$

Strategy Which "size" of graph? Which penalty?

Size of the penalty

When

$$\deg(\mathcal{G}) \leq \eta \; rac{n}{2\left(1.1 + \sqrt{\log p}
ight)^2}.$$

we have

$$\operatorname{pen}(d) \lesssim K \left(1 + e^{\eta} \sqrt{2\log p}\right)^2 (d+1).$$

イロン イロン イヨン イヨン

Theory

Performance

Strategy Which "size" of graph Which penalty?

Modified estimator $\hat{\theta}$

To handle any family \mathcal{G} of graph we need to slightly modify $\hat{\theta}$.

Modification of $\hat{\theta}$: we set $\tilde{\theta}$ for $\tilde{\theta}^{(j)} = \hat{\theta}^{(j)} \mathbf{1}_{\{\|\hat{\theta}^{(j)}\| \le \sqrt{p}T_n\}}, \text{ for } j \in \{1, \dots, p\}, \text{ with } T_n = n^{2\log n}.$

(人間) システレ イテレ

Theorem: non-asymptotic control of the risk

When \mathcal{G} fulfills the condition

$$\deg(\mathcal{G}) \leq \eta \; rac{n}{2\left(1.1 + \sqrt{\log p}
ight)^2}, \quad ext{for some } \eta < 1,$$

the risk of the estimator $\tilde{\theta}$ is bounded by

$$\mathbb{E}\left(\|C^{1/2}(\theta-\tilde{\theta})\|^{2}\right)$$

$$\leq c_{\mathcal{K},\eta} \log(p) \inf_{g \in \mathcal{G}} \left\{ \mathbb{E}\left(\|C^{1/2}(\theta-\hat{\theta}_{g})\|^{2}\right) \vee \frac{\|C^{1/2}(I-\theta)\|^{2}}{n} \right\} + R_{n}(\eta,C).$$
where $R_{n}(\eta,C) = O(p^{2}n^{-4\log n}).$

Theorem: non-asymptotic control of the risk

When \mathcal{G} fulfills the condition

$$\deg(\mathcal{G}) \leq \eta \; rac{n}{2\left(1.1 + \sqrt{\log p}
ight)^2}, \quad ext{for some } \eta < 1,$$

the risk of the estimator $\tilde{\theta}$ is bounded by

$$\mathbb{E}\left(\|C^{1/2}(\theta-\tilde{\theta})\|^{2}\right)$$

$$\leq c_{\mathcal{K},\eta} \log(p) \inf_{g\in\mathcal{G}} \left\{ \mathbb{E}\left(\|C^{1/2}(\theta-\hat{\theta}_{g})\|^{2}\right) \vee \frac{\|C^{1/2}(I-\theta)\|^{2}}{n} \right\} + R_{n}(\eta,C).$$
where $R_{n}(\eta,C) = O(p^{2}n^{-4\log n}).$

Theorem: non-asymptotic control of the risk

When \mathcal{G} fulfills the condition

$$\deg(\mathcal{G}) \leq \eta \; rac{n}{2\left(1.1 + \sqrt{\log p}
ight)^2}, \quad ext{for some } \eta < 1,$$

the risk of the estimator $\tilde{\theta}$ is bounded by

$$\mathbb{E}\left(\|C^{1/2}(\theta-\tilde{\theta})\|^{2}\right)$$

$$\leq c_{\mathcal{K},\eta} \log(p) \inf_{g \in \mathcal{G}} \left\{ \mathbb{E}\left(\|C^{1/2}(\theta-\hat{\theta}_{g})\|^{2}\right) \vee \frac{\|C^{1/2}(I-\theta)\|^{2}}{n} \right\} + R_{n}(\eta,C).$$
where $R_{n}(\eta,C) = O(p^{2}n^{-4\log n}).$

Theorem: non-asymptotic control of the risk

When \mathcal{G} fulfills the condition

$$\deg(\mathcal{G}) \leq \eta \; rac{n}{2\left(1.1 + \sqrt{\log p}
ight)^2}, \quad ext{for some } \eta < 1,$$

the risk of the estimator $\tilde{\theta}$ is bounded by

$$\mathbb{E}\left(\|C^{1/2}(\theta-\tilde{\theta})\|^{2}\right)$$

$$\leq c_{\mathcal{K},\eta} \log(p) \inf_{g\in\mathcal{G}} \left\{ \mathbb{E}\left(\|C^{1/2}(\theta-\hat{\theta}_{g})\|^{2}\right) \vee \frac{\|C^{1/2}(I-\theta)\|^{2}}{n} \right\} + R_{n}(\eta,C).$$
where $R_{n}(\eta,C) = O(p^{2}n^{-4\log n}).$

Theorem: non-asymptotic control of the risk

When \mathcal{G} fulfills the condition

$$\deg(\mathcal{G}) \leq \eta \; rac{n}{2\left(1.1 + \sqrt{\log p}
ight)^2}, \quad ext{for some } \eta < 1,$$

the risk of the estimator $\tilde{\theta}$ is bounded by

$$\mathbb{E}\left(\|C^{1/2}(\theta-\tilde{\theta})\|^{2}\right)$$

$$\leq c_{\mathcal{K},\eta} \log(p) \inf_{g\in\mathcal{G}} \left\{ \mathbb{E}\left(\|C^{1/2}(\theta-\hat{\theta}_{g})\|^{2}\right) \vee \frac{\|C^{1/2}(I-\theta)\|^{2}}{n} \right\} + R_{n}(\eta,C).$$
where $R_{n}(\eta,C) = O(p^{2}n^{-4\log n}).$

Strategy Which "size" of graph? Which penalty?

Numerical simulations

- Simulation of "Erdos-Reny" graphs, with random covariance matrices,
- n = 15 observations,
- p from 10 to 40,
- from 2.5% to 33% of edges,
- SNR more or less high,
- comparaison to SINful and L^1 (Meinschausen & Bühlmann).

Strategy Which "size" of graph? Which penalty?

n = 15, p = 10, edges= 10% - 20%, good SNR

Sparse grap	ns (10%)
-------------	----------

	<i>K</i> = 2	L^1 "or"	L^1 " and"	SIN(0.05)	SIN(0.25)
risk/oracle	2.4	2.2	3000	15.10 ³	12.10 ³
Power	84%	86%	67%	41%	46%
FDR	4.6%	3%	1%	1.2%	6.4%

More connected graphs (20%)					
	$ K = 2 L^{1}$ "or" $ L^{1}$ "and" $ SIN(0.05) SIN(0.25)$				
risk/oracle	4.1	5.4	2000	8900	7900
Power	49%	44%	28%	7%	11%
FDR	7.7%	4.4%	1.8%	1.5%	7.2%

n = 15, p = 10, edges = 20%, poor SNR

poor SNR

	K = 2	<i>L</i> ¹ " or"	L^1 "and"	SIN(0.05)	SIN(0.25)
risk/oracle	5.8	12	11	13	12
Power	30%	7.9%	7%	3.8%	8.4%
FDR	5.5%	0.6%	0.5%	3.5%	7.9%

Strategy Which "size" of graph? Which penalty?

n = 15, p = 10, edges = 30 - 33%

edges= 30%					edg	ges= 33%
	<i>K</i> = 2	<i>L</i> ¹ " or"			<i>K</i> = 2	<i>L</i> ¹ "or"
risk/oracle	4.3	6.8		risk/oracle	4.5	6.5
Power	24%	15%		Power	14%	4.5%
FDR	7%	3.2%		FDR	5.8%	1.3%

・ロン ・雪 と ・ ヨ と ・ ヨ と

Problem Some theory... Strategy Which "size" of graph? Which penalty?

With a larger p and "less" edges

$n = 15, \ p = 15$	and 10%	of edges
--------------------	---------	----------

	<i>K</i> = 2	<i>L</i> ¹ "ou"
risk/oracle	5.9	36
Power	57%	14%
FDR	5.7%	1%

n = 15, $p = 40$ and 2.5% of edges							
$ K = 2 L^1$ "ou"							
	risk/oracle	4.1	330				
	Puissance 77% 0.0%						
	FDR 4.1% 0.0%						

2

Estimation of gaussian graphs. In pratice.

Christophe Giraud Inferring Biological Regulation Networks

< - 10 ▶

→ 3 → 4 3

To avoid a poor estimation of a graph with degree d we need

$$\frac{2d(1+\log(p/d))}{n} < 1$$

viz
$$p < de^{n/(2d)-1}$$
.

To reduce p:

- Restrict to the genes that are differentially expressed and have a "high" variance
- Group genes with the same expression profile and search the interaction between the groups

- 4 周 ト 4 戸 ト 4 戸 ト

Reduce the numerical computational complexity

- Reduce *p*...
- Compute approximate solutions.
- First select "candidate" edges with (e.g.) (adaptive-)LARS and apply the selection procedure to these edges

In progress ...