Gaussian Model Selection with Unknown Variance

Y. Baraud, C. Giraud and S. Huet

Université de Nice - Sophia Antipolis, INRA Jouy en Josas

Luminy, 13-17 novembre 2006

The statistical setting

The statistical model
Observations: $Y_{i}=\mu_{i}+\sigma \varepsilon_{i}, \quad i=1, \ldots, n$

- $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)^{\prime} \in \mathbb{R}^{n}$ and $\sigma>0$ are unknown
- $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are i.i.d standard Gaussian

Collection of models / estimators

- $\mathcal{S}=\left\{S_{m}, m \in \mathcal{M}\right\}$ a countable collection of linear subspaces of \mathbb{R}^{n} (models)
- $\hat{\mu}_{m}=$ least-squares estimator of μ on S_{m}

Example: change-points detection

- $\mu_{i}=f\left(x_{i}\right)$ with $f:[0,1] \mapsto \mathbb{R}$, piecewise constant.
- \mathcal{M} is the set of increasing sequences $m=\left(t_{0}, \ldots, t_{q}\right)$ with $q \in\{1, \ldots, p\}, t_{0}=0, t_{q}=1$, and $\left\{t_{1}, \ldots, t_{q-1}\right\} \subset\left\{x_{1}, \ldots, x_{n}\right\}$.
models:

$$
S_{m}=\left\{\left(g\left(x_{1}\right), \ldots, g\left(x_{n}\right)\right)^{\prime}, g \in \mathcal{F}_{m}\right\},
$$

where

$$
\mathcal{F}_{\left(t_{0}, \ldots, t_{q}\right)}=\left\{g=\sum_{j=1}^{q} a_{j} \mathbf{1}_{\left[t_{j-1}, t_{j}[\right.} \text { with } \quad\left(a_{1}, \ldots, a_{q}\right) \in \mathbb{R}^{q}\right\} .
$$

- No residual squares to estimate the variance.

Risk on a single model

Euclidean risk on S_{m} :

$$
\mathbb{E}\left[\left\|\mu-\hat{\mu}_{m}\right\|^{2}\right]=\underbrace{\left\|\mu-\mu_{m}\right\|^{2}}_{\text {bias }}+\underbrace{D_{m} \sigma^{2}}_{\text {variance }}
$$

Ideal: estimate μ with $\hat{\mu}_{m^{*}}$, where m^{*} minimizes $m \mapsto \mathbb{E}\left[\left\|\mu-\hat{\mu}_{m}\right\|^{2}\right] \ldots$

Model selection

Selection rule: we set $D_{m}=\operatorname{dim}\left(S_{m}\right)$ and select \hat{m} minimizing

$$
\begin{equation*}
\operatorname{Crit}_{L}(m)=\left\|Y-\hat{\mu}_{m}\right\|^{2}\left(1+\frac{\operatorname{pen}(m)}{n-D_{m}}\right) \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\operatorname{Crit}_{K}(m)=\frac{n}{2} \log \left(\frac{\left\|Y-\hat{\mu}_{m}\right\|^{2}}{n}\right)+\frac{1}{2} \operatorname{pen}^{\prime}(m) . \tag{2}
\end{equation*}
$$

Some classical penalties:

FPE	AIC	BIC	AMDL
$\operatorname{pen}(m)=2 D_{m}$	$\operatorname{pen}^{\prime}(m)=2 D_{m}$	$\operatorname{pen}^{\prime}(m)=D_{m} \log n$	$\operatorname{pen}^{\prime}(m)=3 D_{m} \log n$

Model selection

Selection rule: we select \hat{m} minimizing

$$
\operatorname{Crit}_{L}(m)=\left\|Y-\hat{\mu}_{m}\right\|^{2}\left(1+\frac{\operatorname{pen}(m)}{n-D_{m}}\right)
$$

or

$$
\operatorname{Crit}_{K}(m)=\frac{n}{2} \log \left(\frac{\left\|Y-\hat{\mu}_{m}\right\|^{2}}{n}\right)+\frac{1}{2} \operatorname{pen}^{\prime}(m) .
$$

Criteria (1) and (2) are equivalent with

$$
\operatorname{pen}^{\prime}(m)=n \log \left(1+\frac{\operatorname{pen}(m)}{n-D_{m}}\right) .
$$

Objectives

- for classical criteria: to analyze the Euclidean risk of $\hat{\mu}_{\hat{m}}$ with regard to the complexity of the family of model \mathcal{S}, and compare this risk to

$$
\inf _{m \in \mathcal{M}} \mathbb{E}\left[\left\|\mu-\hat{\mu}_{m}\right\|\right]^{2}
$$

- to propose penalties versatile enough to take into account the complexity of \mathcal{S} and the sample size.

Complexity:
We say that \mathcal{S} has an index of complexity (M, a) if for all $D \geq 1$

$$
\operatorname{card}\left\{m \in \mathcal{M}, D_{m}=D\right\} \leq M e^{a D} .
$$

Theorem 1: Performances of classical penalties

Let $K>1$ and \mathcal{S} with complexity $(M, a) \in \mathbb{R}_{+}^{2}$. If for all $m \in \mathcal{M}$,

$$
D_{m} \leq D_{\max }(K, M, a) \quad(\text { explicit })
$$

and

$$
\operatorname{pen}(m) \geq K^{2} \phi^{-1}(a) D_{m},
$$

with $\phi(x)=(x-1-\log x) / 2$ for $x \geq 1$, then

$$
\mathbb{E}\left[\left\|\mu-\hat{\mu}_{\hat{m}}\right\|^{2}\right] \leq \frac{K}{K-1} \inf _{m \in \mathcal{M}}\left[\left\|\mu-\mu_{m}\right\|^{2}\left(1+\frac{\operatorname{pen}(m)}{n-D_{m}}\right)+\operatorname{pen}(m) \sigma^{2}\right]+R
$$

where

$$
R=\frac{K \sigma^{2}}{K-1}\left[K^{2} \phi^{-1}(a)+2 K+\frac{8 K M e^{-a}}{\left(e^{\phi(K) / 2}-1\right)^{2}}\right] .
$$

Performances of $\hat{\mu}_{\hat{m}}$

- under the above hypotheses if pen $(m)=K \phi^{-1}(a) D_{m}$ with $K>1$

$$
\mathbb{E}\left[\left\|\mu-\hat{\mu}_{\hat{m}}\right\|^{2}\right] \leq c(K, M) \phi^{-1}(a)\left[\inf _{m \in \mathcal{M}} \mathbb{E}\left[\left\|\mu-\hat{\mu}_{m}\right\|^{2}\right]+\sigma^{2}\right]
$$

The condition "pen $(m) \geq K^{2} \phi^{-1}(a) D_{m}$ with $K>1$ " is sharp (at least when $a=0$ and $a=\log n$).

Roughly, for large values of n this imposes the restrictions:

Criteria	FPE	AIC	BIC	AMDL
Complexity	$a<0.15$	$a<0.15$	$a<\frac{1}{2} \log (n)$	$a<\frac{3}{2} \log (n)$

Dkhi function

For $x \geq 0$, we define

$$
\left.\left.\operatorname{Dkhi}[D, N, x]=\frac{1}{\mathbb{E}\left(X_{D}\right)} \times \mathbb{E}\left[\left(X_{D}-x \frac{X_{N}}{N}\right)_{+}\right] \in\right] 0,1\right]
$$

where X_{D} and X_{N} are two independent $\chi^{2}(D)$ and $\chi^{2}(N)$.

Computation: $x \mapsto \operatorname{Dkhi}[D, N, x]$ is decreasing and

$$
\operatorname{Dkhi}[D, N, x]=\mathbb{P}\left(F_{D+2, N} \geq \frac{x}{D+2}\right)-\frac{x}{D} \mathbb{P}\left(F_{D, N+2} \geq \frac{(N+2) x}{D N}\right)
$$

where $F_{D, N}$ is a Fischer random variable with D and N degrees of freedom.

Theorem 2: a general risk bound

Let pen be an arbitrary non-negative penalty function and assume that $N_{m}=n-D_{m} \geq 2$ for all $m \in \mathcal{M}$. If \hat{m} exists a.s., then for any $K>1$

$$
\begin{equation*}
\mathbb{E}\left[\left\|\mu-\hat{\mu}_{\hat{m}}\right\|^{2}\right] \leq \frac{K}{K-1} \inf _{m \in \mathcal{M}}\left[\left\|\mu-\mu_{m}\right\|^{2}\left(1+\frac{\operatorname{pen}(m)}{N_{m}}\right)+\operatorname{pen}(m) \sigma^{2}\right]+\Sigma \tag{3}
\end{equation*}
$$

where

$$
\Sigma=\frac{K^{2} \sigma^{2}}{K-1} \sum_{m \in \mathcal{M}}\left(D_{m}+1\right) \operatorname{Dkhi}\left[D_{m}+1, N_{m}-1, \frac{N_{m}-1}{K N_{m}} \operatorname{pen}(m)\right] .
$$

Minimal penalties

- Choose $K>1$ and $\mathcal{L}=\left\{L_{m}, m \in \mathcal{M}\right\}$ non-negative numbers (weights) such that

$$
\Sigma^{\prime}=\sum_{m \in \mathcal{M}}\left(D_{m}+1\right) e^{-L_{m}}<+\infty
$$

- For any $m \in \mathcal{M}$ set

$$
\operatorname{pen}_{K, \mathcal{L}}^{L}(m)=K \frac{N_{m}}{N_{m}-1} \operatorname{Dkhi}^{-1}\left[D_{m}+1, N_{m}-1, e^{-L_{m}}\right]
$$

- When $L_{m} \vee D_{m} \leq \kappa n$ with $\kappa<1$:

$$
\operatorname{pen}_{K, \mathcal{L}}^{L}(m) \leq C(K, \kappa)\left(L_{m} \vee D_{m}\right) .
$$

How to choose the L_{m} ?

- When \mathcal{S} has a complexity (M, a) : a possible choice is $L_{m}=a D_{m}+3 \log \left(D_{m+1}\right)$. Then

$$
\Sigma^{\prime}=\sum_{m \in \mathcal{M}}\left(D_{m}+1\right) e^{-L_{m}} \leq M \sum_{D \geq 1} D^{-2}
$$

- For change-point detection: We choose $L_{m}=L(|m|)=\log \left[\binom{n}{|m|-2}\right]+2 \log (|m|)$, for which

$$
\Sigma^{\prime}=\sum_{D=2}^{p+1}\binom{n}{D-2} D e^{-L(D)}=\sum_{D=2}^{p+1} \frac{1}{D} \leq \log (p+1) .
$$

rouge : Dstar= 4, vert :

DhatK=5, bleu : DAMDL= 5

rouge : Dstar= 15, vert :

DhatK=13, bleu : DAMDL= 8

