Gaussian Model Selection with Unknown Variance

Y. Baraud, C. Giraud and S. Huet

Université de Nice - Sophia Antipolis, INRA Jouy en Josas

Luminy, 13-17 novembre 2006

The statistical setting

The statistical model

- Observations: $Y_i = \mu_i + \sigma \varepsilon_i$, i = 1, ..., n
- $\mu = (\mu_1, \dots, \mu_n)' \in \mathbb{R}^n$ and $\sigma > 0$ are unknown
- $\varepsilon_1, \ldots, \varepsilon_n$ are i.i.d standard Gaussian

Collection of models / estimators

• $\mathcal{S} = \{S_m, m \in \mathcal{M}\}$ a countable collection of linear subspaces of \mathbb{R}^n (models)

• $\hat{\mu}_m = \text{least-squares estimator of } \mu$ on S_m

Example: change-points detection

• $\mu_i = f(x_i)$ with $f : [0, 1] \mapsto \mathbb{R}$, piecewise constant.

• \mathcal{M} is the set of increasing sequences $m = (t_0, \ldots, t_q)$ with $q \in \{1, \ldots, p\}$, $t_0 = 0$, $t_q = 1$, and $\{t_1, \ldots, t_{q-1}\} \subset \{x_1, \ldots, x_n\}$.

models:

$$S_m = \{(g(x_1), \ldots, g(x_n))', g \in \mathcal{F}_m\},\$$

where

$$\mathcal{F}_{(t_0,...,t_q)} = \left\{ g = \sum_{j=1}^q a_j \mathbf{1}_{[t_{j-1},t_j[} \text{ with } (a_1,\ldots,a_q) \in \mathbb{R}^q \right\}.$$

No residual squares to estimate the variance.

Risk on a single model

Euclidean risk on S_m :

$$\mathbb{E}\left[\|\mu - \hat{\mu}_m\|^2\right] = \underbrace{\|\mu - \mu_m\|^2}_{\text{bias}} + \underbrace{D_m \sigma^2}_{\text{variance}}$$

Ideal: estimate μ with $\hat{\mu}_{m^*}$, where m^* minimizes $m \mapsto \mathbb{E}\left[\|\mu - \hat{\mu}_m\|^2\right] \dots$

Model selection

Selection rule: we set $D_m = \dim(S_m)$ and select \hat{m} minimizing

$$\operatorname{Crit}_{L}(m) = \|Y - \hat{\mu}_{m}\|^{2} \left(1 + \frac{\operatorname{pen}(m)}{n - D_{m}}\right)$$
(1)

or

$$\operatorname{Crit}_{K}(m) = \frac{n}{2} \log\left(\frac{\|Y - \hat{\mu}_{m}\|^{2}}{n}\right) + \frac{1}{2}\operatorname{pen}'(m).$$
(2)

Some classical penalties:

FPE	AIC	BIC	AMDL
$pen(m) = 2D_m$	$pen'(m) = 2D_m$	$\operatorname{pen}'(m) = D_m \log n$	$\operatorname{pen}'(m) = 3D_m \log n$

Model selection

Selection rule: we select \hat{m} minimizing

$$\operatorname{Crit}_{L}(m) = \|Y - \hat{\mu}_{m}\|^{2} \left(1 + \frac{\operatorname{pen}(m)}{n - D_{m}}\right)$$

or

$$\operatorname{Crit}_{K}(m) = \frac{n}{2} \log \left(\frac{\|Y - \hat{\mu}_{m}\|^{2}}{n} \right) + \frac{1}{2} \operatorname{pen}'(m).$$

Criteria (1) and (2) are equivalent with

$$\operatorname{pen}'(m) = n \log \left(1 + \frac{\operatorname{pen}(m)}{n - D_m} \right).$$

Objectives

• for classical criteria: to analyze the Euclidean risk of $\hat{\mu}_{\hat{m}}$ with regard to the complexity of the family of model S, and compare this risk to

$$\inf_{m \in \mathcal{M}} \mathbb{E}\left[\left\| \mu - \hat{\mu}_m \right\| \right]^2.$$

 to propose penalties versatile enough to take into account the complexity of S and the sample size.

Complexity:

We say that S has an index of complexity (M, a) if for all $D \ge 1$

card $\{m \in \mathcal{M}, D_m = D\} \leq M e^{aD}$.

Theorem 1: Performances of classical penalties

Let K > 1 and S with complexity $(M, a) \in \mathbb{R}^2_+$. If for all $m \in \mathcal{M}$,

 $D_m \le D_{\max}(K, M, a)$ (explicit)

and

 $\operatorname{pen}(m) \ge K^2 \phi^{-1}(a) D_m,$

with $\phi(x) = (x - 1 - \log x)/2$ for $x \ge 1$, then

$$\mathbb{E}\left[\|\mu - \hat{\mu}_{\hat{m}}\|^2\right] \leq \frac{K}{K-1} \inf_{m \in \mathcal{M}} \left[\|\mu - \mu_m\|^2 \left(1 + \frac{\operatorname{pen}(m)}{n - D_m}\right) + \operatorname{pen}(m)\sigma^2\right] + R$$

where

$$R = \frac{K\sigma^2}{K-1} \left[K^2 \phi^{-1}(a) + 2K + \frac{8KMe^{-a}}{\left(e^{\phi(K)/2} - 1\right)^2} \right]$$

Performances of $\hat{\mu}_{\hat{m}}$

• under the above hypotheses if $pen(m) = K\phi^{-1}(a)D_m$ with K > 1

$$\mathbb{E}\left[\|\mu - \hat{\mu}_{\hat{m}}\|^2\right] \le c(K, M) \,\phi^{-1}(a) \left| \inf_{m \in \mathcal{M}} \mathbb{E}\left[\|\mu - \hat{\mu}_m\|^2\right] + \sigma^2 \right|$$

• The condition "pen $(m) \ge K^2 \phi^{-1}(a) D_m$ with K > 1" is sharp (at least when a = 0 and $a = \log n$).

Roughly, for large values of n this imposes the restrictions:

Criteria	FPE	AIC	BIC	AMDL
Complexity	a < 0.15	a < 0.15	$a < \frac{1}{2}\log(n)$	$a < \frac{3}{2}\log(n)$

Dkhi function

For $x \ge 0$, we define

$$Dkhi[D, N, x] = \frac{1}{\mathbb{E}(X_D)} \times \mathbb{E}\left[\left(X_D - x\frac{X_N}{N}\right)_+\right] \in [0, 1].$$

where X_D and X_N are two independent $\chi^2(D)$ and $\chi^2(N)$.

Computation: $x \mapsto \text{Dkhi}[D, N, x]$ is decreasing and

$$\mathsf{Dkhi}[D, N, x] = \mathbb{P}\left(F_{D+2, N} \ge \frac{x}{D+2}\right) - \frac{x}{D} \mathbb{P}\left(F_{D, N+2} \ge \frac{(N+2)x}{DN}\right),$$

where $F_{D,N}$ is a Fischer random variable with D and N degrees of freedom.

Theorem 2: a general risk bound

Let pen be an arbitrary non-negative penalty function and assume that $N_m = n - D_m \ge 2$ for all $m \in \mathcal{M}$. If \hat{m} exists a.s., then for any K > 1

$$\mathbb{E}\left[\|\mu - \hat{\mu}_{\hat{m}}\|^2\right] \le \frac{K}{K-1} \inf_{m \in \mathcal{M}} \left[\|\mu - \mu_m\|^2 \left(1 + \frac{\operatorname{pen}(m)}{N_m}\right) + \operatorname{pen}(m)\sigma^2\right] + \Sigma \quad (3)$$

where

$$\Sigma = \frac{K^2 \sigma^2}{K - 1} \sum_{m \in \mathcal{M}} (D_m + 1) \operatorname{Dkhi} \left[D_m + 1, N_m - 1, \frac{N_m - 1}{K N_m} \operatorname{pen}(m) \right].$$

Minimal penalties

• Choose K > 1 and $\mathcal{L} = \{L_m, m \in \mathcal{M}\}$ non-negative numbers (weights) such that

$$\Sigma' = \sum_{m \in \mathcal{M}} (D_m + 1)e^{-L_m} < +\infty.$$

• For any $m \in \mathcal{M}$ set

$$\operatorname{pen}_{K,\mathcal{L}}^{L}(m) = K \frac{N_m}{N_m - 1} \operatorname{Dkhi}^{-1} \left[D_m + 1, N_m - 1, e^{-L_m} \right]$$

• When $L_m \vee D_m \leq \kappa n$ with $\kappa < 1$:

 $\operatorname{pen}_{K,\mathcal{L}}^{L}(m) \leq C(K,\kappa) \left(L_m \vee D_m \right).$

How to choose the L_m ?

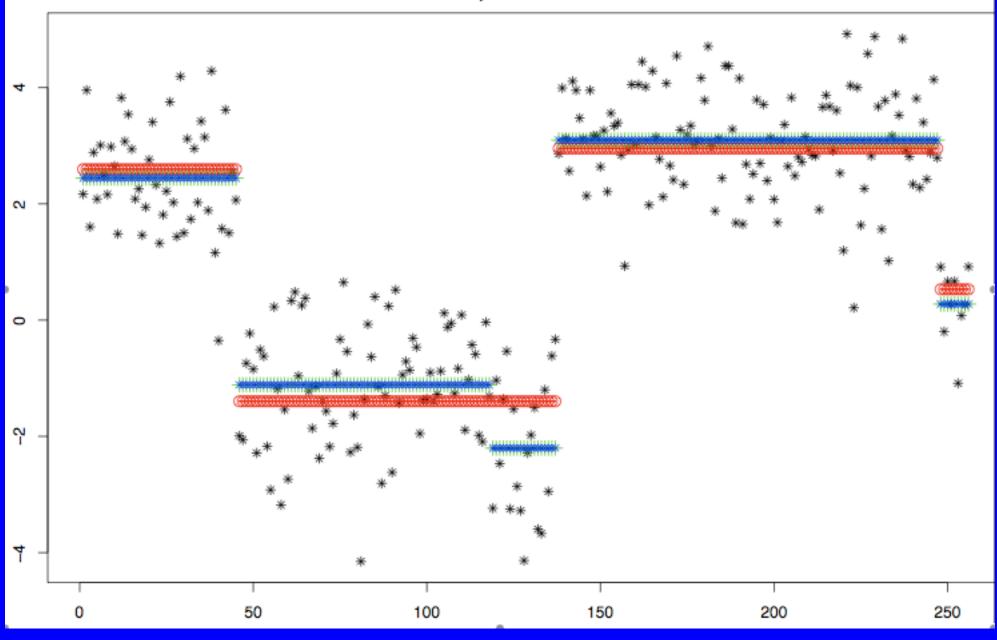
• When S has a complexity (M, a): a possible choice is $L_m = aD_m + 3\log(D_{m+1})$. Then

$$\Sigma' = \sum_{m \in \mathcal{M}} (D_m + 1)e^{-L_m} \le M \sum_{D \ge 1} D^{-2}$$

• For change-point detection: We choose $L_m = L(|m|) = \log \left[\binom{n}{|m|-2}\right] + 2\log(|m|)$, for which

$$\Sigma' = \sum_{D=2}^{p+1} \binom{n}{D-2} De^{-L(D)} = \sum_{D=2}^{p+1} \frac{1}{D} \le \log(p+1).$$

rouge : Dstar= 4 , vert : DhatK= 5 , bleu : DAMDL= 5



rouge : Dstar= 15 , vert : DhatK= 13 , bleu : DAMDL= 8

