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Let Y be a Gaussian vector whose components are independent with
a common unknown variance. We consider the problem of estimating the
mean μ of Y by model selection. More precisely, we start with a collection
S = {Sm,m ∈ M} of linear subspaces of Rn and associate to each of these
the least-squares estimator of μ on Sm. Then, we use a data driven penalized
criterion in order to select one estimator among these. Our first objective is
to analyze the performance of estimators associated to classical criteria such
as FPE, AIC, BIC and AMDL. Our second objective is to propose better
penalties that are versatile enough to take into account both the complexity
of the collection S and the sample size. Then we apply those to solve various
statistical problems such as variable selection, change point detections and
signal estimation among others. Our results are based on a nonasymptotic
risk bound with respect to the Euclidean loss for the selected estimator. Some
analogous results are also established for the Kullback loss.

1. Introduction. Let us consider the statistical model

Yi = μi + σεi, i = 1, . . . , n,(1.1)

where the parameters μ = (μ1, . . . ,μn)
′ ∈ Rn and σ > 0 are both unknown and

the εi ’s are i.i.d. standard Gaussian random variables. We want to estimate μ by
model selection on the basis of the observation of Y = (Y1, . . . , Yn)

′.
To do this, we introduce a collection S = {Sm,m ∈ M} of linear subspaces

of Rn, that hereafter will be called models, indexed by a finite or countable set M.
To each m ∈ M we can associate the least-squares estimator μ̂m = �mY of μ rel-
ative to Sm where �m denotes the orthogonal projector onto Sm. Let us denote
by Dm the dimension of Sm for m ∈ M and ‖ · ‖ the Euclidean norm on Rn. The
quadratic risk E[‖μ − μ̂m‖2] of μ̂m with respect to this distance is given by

E[‖μ − μ̂m‖2] = inf
s∈Sm

‖μ − s‖2 + Dmσ 2.(1.2)

If we use this risk as a quality criterion, a best model is one minimizing the right-
hand side of (1.2). Unfortunately, such a model is not available to the statistician
since it depends on the unknown parameters μ and σ 2. A natural question then
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arises: to what extent can we select an element m̂(Y ) of M depending on the
data only, in such a way that the risk of the selected estimator μ̂m̂ be close to the
minimal risk

R(μ,S) = inf
m∈M

E[‖μ − μ̂m‖2].(1.3)

The art of model selection is to design such a selection rule in the best possible
way. The standard way of solving the problem is to define m̂ as the minimizer
over M of some empirical criterion of the form

CritL(m) = ‖Y − �mY‖2
(

1 + pen(m)

n − Dm

)
(1.4)

or

CritK(m) = n

2
log

(‖Y − �mY‖2

n

)
+ 1

2
pen′(m),(1.5)

where pen and pen′ denote suitable (penalty) functions mapping M into R+. Note
that these two criteria are equivalent (they select the same model) if pen and pen′
are related in the following way:

pen′(m) = n log
(

1 + pen(m)

n − Dm

)
, or pen(m) = (n − Dm)

(
epen′(m)/n − 1

)
.

The present paper is devoted to investigating the performance of criterion (1.4)
or (1.5) as a function of collection S and pen or pen′. More precisely, we want to
deal with the following problems:

(P1) Given some collection S and an arbitrary nonnegative penalty function pen
on M, what will the performance E[‖μ − μ̂m̂‖2] of μ̂m̂ be?

(P2) What conditions on S and pen ensure that the ratio E[‖μ − μ̂m̂‖2]/R(μ,S)

is not too large.
(P3) Given a collection S, what penalty should be recommended in view of mini-

mizing (at least approximately) the risk of μ̂m̂?

It is beyond the scope of this paper to make an exhaustive historical review
of the criteria of the form (1.4) and (1.5). We simply refer the interested reader
to the first chapters of McQuarrie and Tsai (1998) for a nice and complete in-
troduction to the domain. Let us only mention here some of the most popular
criteria, namely FPE, AIC, BIC (or SIC) and AMDL which correspond respec-
tively to the choices pen(m) = 2Dm, pen′(m) = 2Dm, pen′(m) = Dm log(n) and
pen′(m) = 3Dm log(n). FPE was introduced in Akaike (1969) and is based on
an unbiased estimate of the mean squared prediction error. AIC was proposed
later by Akaike (1973) as a Kullback–Leibler information based model selection
criterion. BIC and SIC are equivalent criteria which were respectively proposed
by Schwarz (1978) and Akaike (1978) from a Bayesian perspective. More re-
cently, Saito (1994) introduced AMDL as an information-theoretic based criterion.
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AMDL turns out to be a modified version of the Minimum Description Length cri-
terion proposed by Rissanen (1983, 1984). The motivations for the construction
of FPE, AIC, SIC and BIC criteria are a mixture of heuristic and asymptotic ar-
guments. From both the theoretical and the practical point of view, these penalties
suffer from the same drawback: their performance heavily depends on the sample
size and the collection S at hand.

In recent years, more attention has been paid to the nonasymptotic point of
view and a proper calibration of penalties taking into account the complexity (in a
suitable sense) of the collection S. A pioneering work based on the methodology
of minimum complexity and dealing with discrete models and various stochastic
frameworks including regression appeared in Barron and Cover (1991) and Bar-
ron (1991). It was then extended to various types of continuous models in Barron,
Birgé and Massart (1999) and Birgé and Massart (1997, 2001a, 2007). Within the
Gaussian regression framework, Birgé and Massart (2001a, 2007) consider model
selection criteria of the form

crit(m) = ‖Y − μ̂m‖2 + pen(m)σ 2(1.6)

and propose new penalty structures which depend on the complexity of the collec-
tion S. These penalties can be viewed as generalizing Mallows’ Cp [heuristically
introduced in Mallows (1973)] which corresponds to the choice pen(m) = 2Dm

in (1.6). However, Birgé and Massart only deal with the favorable situation where
the variance σ 2 is known, although they provide some hints to estimate it in Birgé
and Massart (2007).

Unlike Birgé and Massart, we consider here the more practical case where σ 2 is
unknown. Yet our approach is similar in the sense that our objective is to propose
new penalty structures for criteria (1.4) [or (1.5)] which allow us to take both the
complexity of the collection and the sample size into account.

A possible application of the criteria we propose is variable selection in lin-
ear models. This problem has received a lot of attention in the literature. Recent
development includes Tibshirani (1996) with the LASSO, Efron et al. (2004) with
LARS, Candès and Tao (2007) for the Dantzig selector, Zou (2006) with the Adap-
tive LASSO, among others. Most of the recent literature assumes that σ 2 is known,
or suitably estimated, and aim at designing an algorithm that solves the problem
in polynomial time at the price of assumptions on the covariates to select. In con-
trast, our approach assumes nothing on σ 2 or the covariates, but requires that the
number of these is not too large for a practical implementation.

The paper is organized as follows. In Section 2 we start with some examples of
model selection problems among which variable selection, change point detection
and denoising. This section gives the opportunity to both motivate our approach
and make a review of some collections of models of interest. We address prob-
lem (P2) in Section 3 and analyze there FPE, AIC, BIC and AMDL criteria more
specifically. In Section 4 we address problems (P1) and (P3) and introduce new
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penalty functions. In Section 5 we show how the statistician can take advantage of
the flexibility of these new penalties to solve the model selection problems given in
Section 2. Section 6 is devoted to two simulation studies allowing to assess the per-
formances of our estimator. In the first one we consider the problem of detecting
the nonzero components in the mean of a Gaussian vector and compare our esti-
mator with BIC, AIC and AMDL. In the second study, we consider the variable
selection problem and compare our procedure with the adaptive Lasso proposed
by Zou (2006). In Section 7 we provide an analogue of our main result replacing
the L2-loss by the Kullback loss. The remaining sections are devoted to the proofs.

To conclude this section, let us introduce some notation to be used throughout
the paper. For each m ∈ M, Dm denotes the dimension of Sm, Nm the quantity
n−Dm and μm = �mμ. We denote by Pμ,σ 2 the distribution of Y . We endow Rn

with the Euclidean inner product denoted 〈·, ·〉. For all x ∈ R, (x)+ and �x� denote
respectively the positive and integer parts of x, and for y ∈ R, x ∧ y = min{x, y}
and x ∨y = max{x, y}. Finally, we write N∗ for the set of positive integers and |m|
for the cardinality of a set m.

2. Some examples of model selection problems. In order to illustrate and
motivate the model selection approach to estimation, let us consider some exam-
ples of applications of practical interest. For each example, we shall describe the
statistical problem at hand and the collection of models of interest. These collec-
tions will be characterized by a complexity index which is defined as follows.

DEFINITION 1. Let M and a be two nonnegative numbers. We say that a
collection S of linear spaces {Sm,m ∈ M} has a finite complexity index (M,a) if

|{m ∈ M,Dm = D}| ≤ MeaD for all D ≥ 1.

Let us note here that not all countable families of models do have a finite com-
plexity index.

2.1. Detecting nonzero mean components. The problem at hand is to recover
the nonzero entries of a sparse high-dimensional vector μ observed with additional
Gaussian noise. We assume that the vector μ in (1.1) has at most p ≤ n−2 nonzero
mean components but we do not know which are the null of these. Our goal is
to find m∗ = {i ∈ {1, . . . , n}|μi �= 0} and estimate μ. Typically, |m∗| is small as
compared to the number of observations n. This problem has received a lot of
attention in the recent years and various solutions have been proposed. Most of
them rely on thresholding methods which require a suitable estimator of σ 2. We
refer the interested reader to Abramovitch et al. (2006) and the references therein.
Closer to our approach is the paper by Huet (2006) which is based on a penalized
criterion related to AIC.

To handle this problem, we consider the set M of all subsets of {1, . . . , n} with
cardinality not larger than p. For each m ∈ M, we take for Sm the linear space of
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those vectors s in Rn such that si = 0 for i /∈ m. By convention, S∅ = {0}. Since
the number of models with dimension D is

(n
D

) ≤ nD , a complexity index for this
collection is (M,a) = (1, logn).

2.2. Variable selection. Given a set of explanatory variables x(1), . . . , x(N)

and a response variable y observed with additional Gaussian noise, we want to find
a small subset of the explanatory variables that adequately explains y. This means
that we observe (Yi, x

(1)
i , . . . , x

(N)
i ) for i = 1, . . . , n, where x

(j)
i corresponds to the

observation of the value of the variable x(j) in experiment number i, Yi is given
by (1.1) and μi can be written as

μi =
N∑

j=1

ajx
(j)
i ,

where the aj ’s are unknown real numbers. Since we do not exclude the practical
case where the number N of explanatory variables is larger than the number n of
observations, this representation is not necessarily unique. We look for a subset m

of {1, . . . ,N} such that the least-squares estimator μ̂m of μ based on the linear
span Sm of the vectors x(j) = (x

(j)
1 , . . . , x

(j)
n )′, j ∈ m, is as accurate as possible,

restricting ourselves to sets m of cardinality bounded by p ≤ n− 2. By convention
S∅ = {0}.

A nonasymptotic treatment of this problem has been given by Birgé and Mas-
sart (2001a), Candès and Tao (2007) and Zou (2006) when σ 2 is known. To our
knowledge, the practical case of an unknown value of σ 2 has not been analyzed
from a nonasymptotic point of view. Note that when N ≥ n the traditional resid-
ual least-squares estimator cannot be used to estimate σ 2. Depending on our prior
knowledge on the relative importance of the explanatory variables, we distinguish
between two situations.

2.2.1. A collection for “the ordered variable selection problem.” We consider
here the favorable situation where the set of explanatory variables x(1), . . . ,x(p) is
ordered according to decreasing importance up to rank p and introduce the collec-
tion

Mo = {{1, . . . , d},1 ≤ d ≤ p
}∪ ∅,

subsets of {1, . . . ,N}. Since the collection contains at most one model per dimen-
sion, the family of models {Sm,m ∈ Mo} has a complexity index (M,a) = (1,0).

2.2.2. A collection for “the complete variable selection problem.” If we do
not have much information about the relative importance of the explanatory vari-
ables x(j), it is more natural to choose for M the set of all subsets of {1, . . . ,N}
of cardinality not larger than p. For a given D ≥ 1, the number of models with di-
mension D is at most

(N
D

) ≤ ND so that (M,a) = (1, logN) is a complexity index
for the collection {Sm,m ∈ M}.
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2.3. Change-points detection. We consider the functional regression frame-
work

Yi = f (xi) + σεi, i = 1, . . . , n,

where {x1 = 0, . . . , xn} is an increasing sequence of deterministic points of [0,1)

and f an unknown real valued function on [0,1). This leads to a particular instance
of (1.1) with μi = f (xi) for i = 1, . . . , n. In such a situation, the loss function
‖μ − μ̂‖2 = ∑n

i=1(f (xi) − f̂ (xi))
2 is the discrete norm associated to the design

{x1, . . . , xn}.
We assume here that the unknown f is either piecewise constant or piecewise

linear with a number of change-points bounded by p. Our aim is to design an
estimator f which allows to estimate the number, locations and magnitudes of the
jumps of either f or f ′, if any. The estimation of change-points of a function f

has been addressed by Lebarbier (2005) who proposed a model selection procedure
related to Mallows’ Cp .

2.3.1. Models for detecting and estimating the jumps of f . Since our loss
function only involves the values of f at the design points, natural models are those
induced by piecewise constant functions with change-points among {x2, . . . , xn}.
A potential set m of q change-points is a subset {t1, . . . , tq} of {x2, . . . , xn} with
t1 < · · · < tq , q ∈ {0, . . . , p} with p ≤ n − 3, the set being empty when q = 0. To
a set m of change-points {t1, . . . , tq} we associate the model

Sm = {(g(x1), . . . , g(xn))
′, g ∈ Fm},

where Fm is the space of piecewise constant functions of the form

q∑
j=0

aj1[tj ,tj+1) with (a0, . . . , aq) ∈ Rq+1, t0 = x1 and tq+1 = 1,

so that the dimension of Sm is |m| + 1. Then we take for M the set of all subsets
of {x2, . . . , xn} with cardinality bounded by p. For any D with 1 ≤ D ≤ p + 1 the
number of models with dimension D is

(n−1
D−1

) ≤ nD so that (M,a) = (1, logn) is
a complexity index for this collection.

2.3.2. A collection of models for detecting and estimating the jumps of f ′.
Let us now turn to models for piecewise linear functions g on [0,1) with q + 1
pieces so that g′ has at most q ≤ p jumps. We assume p ≤ n − 4. We de-
note by C([0,1)) the set of continuous functions on [0,1) and set t0 = 0 and
tq+1 = 1, as before. Given two nonnegative integers j and q such that q <j , we
set Dj = {k2−j , k = 1, . . . ,2j − 1} and define

Mj,q = {{t1, . . . , tq} ⊂ Dj , t1 < · · · < tq
}
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and

M =
(⋃

j≥1

(2j−1)∧p⋃
q=1

Mj,q

)
∪{∅}.

For each m = {t1, . . . , tq} ∈ M (with m = ∅ if q = 0), we define Fm as the space
of splines of degree 1 with knots in m, that is,

Fm =
{ q∑

k=0

(αkx + βk)1[tk,tk+1)(x) ∈ C([0,1)), (αk, βk)0≤k≤q ∈ R2(q+1)

}

and the corresponding model

Sm = {(g(x1), . . . , g(xn))
′, g ∈ Fm} ⊂ Rn.

Note that 2 ≤ dim(Sm) ≤ dim(Fm) = |m| + 2 because of the continuity constraint.
Besides, let us observe that M is countable and that the number of models Sm with
a dimension D in {1, . . . , p + 2} is infinite. This implies that the collection has no
(finite) complexity index.

2.4. Estimating an unknown signal. We consider the problem of estimating
a (possibly) anisotropic signal in Rd observed at discrete times with additional
noise. This means that we observe the vector Y given by (1.1) with

μi = f (xi), i = 1, . . . , n,(2.1)

where x1, . . . , xn ∈ [0,1)d and f is an unknown function mapping [0,1)d into R.
To estimate f we use models of piecewise polynomial functions on partitions of
[0,1)d into hyperrectangles. We consider the set of indices

M = {(r, k1, . . . , kd), r ∈ N, k1, . . . , kd ∈ N∗ with (r + 1)dk1 · · · kd ≤ n − 2}.
For m = (r, k1, . . . , kd) ∈ M, we set Jm = ∏d

i=1{1, . . . , ki} and denote by Fm the
space of piecewise polynomials P such that the restriction of P to each hyper-
rectangle

∏d
i=1[(ji − 1)k−1

i , jik
−1
i ) with j ∈ Jm is a polynomial in d variables of

degree not larger than r . Finally, we consider the collection of models

Sm = {(P (x1), . . . ,P (xn))
′,P ∈ Fm}, m ∈ M.

Note that when m = (r, k1, . . . , kd), the dimension of Sm is not larger than
(r + 1)dk1 · · · kd . A similar collection of models was introduced in Barron, Birgé
and Massart (1999) for the purpose of estimating a density on [0,1)d under some
Hölderian assumptions.
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3. Analyzing penalized criteria with regard to family complexity. Through-
out the section, we set φ(x) = (x − 1 − log(x))/2 for x ≥ 1 and denote by φ−1 the
reciprocal of φ. We assume that the collection of models satisfies for some K > 1
and (M,a) ∈ R2+ the following assumption.

ASSUMPTION (HK,M,a). The collection of models S = {Sm,m ∈ M} has a
complexity index (M,a) and satisfies

∀m ∈ M,Dm ≤ Dmax = �(n − γ1)+� ∧ ⌊(
(n + 2)γ2 − 1

)
+
⌋
,

where

γ1 = (2ta,K) ∨ ta,K + 1

ta,K − 1
,

γ2 = 2φ(K)

(ta,K − 1)2

and

ta,K = Kφ−1(a) > 1.

If a = 0 and a = log(n), Assumption (HK,M,a) amounts to assuming Dm ≤
δ(K)n and Dm ≤ δ(K)n/ log2(n), respectively, for all m ∈ M where δ(K) < 1 is
some constant depending on K only. In any case, since γ2 ≤ 2φ(K)(K − 1)−2 ≤
1/2, Assumption (HK,M,a) implies that Dmax ≤ n/2.

3.1. Bounding the risk of μ̂m̂ under penalty constraints. The following holds.

THEOREM 1. Let K > 1 and (M,a) ∈ R2+. Assume that the collection S =
{Sm,m ∈ M} satisfies (HK,M,a). If m̂ is selected as a minimizer of CritL [defined
by (1.4)] among M and if pen satisfies

pen(m) ≥ K2φ−1(a)Dm ∀m ∈ M,(3.1)

then the estimator μ̂m̂ satisfies

E

[‖μ − μ̂m̂‖2

σ 2

]
(3.2)

≤ K

K − 1
inf

m∈M

[‖μ − μm‖2

σ 2

(
1 + pen(m)

n − Dm

)
+ pen(m) − Dm

]
+ R,

where

R = K

K − 1

[
K2φ−1(a) + 2K + 8KMe−a

(eφ(K)/2 − 1)2

]
.
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In particular, if pen(m) = K2φ−1(a)Dm for all m ∈ M,

E[‖μ − μ̂m̂‖2] ≤ Cφ−1(a)[R(μ,S) ∨ σ 2](3.3)

where C is a constant depending on K and M only and R(μ,S) the quantity
defined at equation (1.3).

If we exclude the situation where {0} ∈ S, one has R(μ,S) ≥ σ 2. Then, (3.3)
shows that the choice pen(m) = K2φ−1(a)Dm leads to a control of the ratio
E[‖μ − μ̂m̂‖2]/R(μ,S) by the quantity Cφ−1(a) which only depends on K and
the complexity index (M,a). For a typical collection of models, a is either of or-
der of a constant (independent of n) or of order of a log(n). In the first case, the
risk bound we get leads to an oracle-type inequality showing that the resulting es-
timator achieves up to constant the best trade-off between the bias and the variance
term. In the second case, φ−1(a) is of order of a log(n) and the risk of the estima-
tor differs from R(μ,S) by a logarithmic factor. For the problem described in Sec-
tion 2.1, this extra logarithmic factor is known to be unavoidable [see Donoho and
Johnstone (1994), Theorem 3]. We shall see in Section 3.3 that the constraint (3.1)
is sharp at least in the typical situations where a = 0 and a = log(n).

3.2. Analysis of some classical penalities with regard to complexity. In the
sequel, we make a review of classical penalties and analyze their performance in
the light of Theorem 1.

FPE and AIC. As already mentioned, FPE corresponds to the choice pen(m) =
2Dm. If the complexity index a belongs to [0, φ(2)) [φ(2) ≈ 0.15], then this

penalty satisfies (3.1) with K =
√

2/φ−1(a) > 1. If the complexity index of the
collection is (M,a) = (1,0), by assuming that

Dm ≤ min{n − 6,0.39(n + 2) − 1}
we ensure that Assumption (HK,M,a) holds and we deduce from Theorem 1
that (3.2) is satisfied with K/(K − 1) < 3.42. For such collections, the use of
FPE leads thus to an oracle-type inequality. The AIC criterion corresponds to
the penalty pen(m) = Nm(e2Dm/n − 1) ≥ 2NmDm/n and has thus similar prop-
erties provided that Nm/n remains bounded from below by some constant larger
than 1/2.

AMDL and BIC. The AMDL criterion corresponds to the penalty

pen(m) = Nm

(
e3Dm log(n)/n − 1

) ≥ 3Nmn−1Dm log(n).(3.4)

This penalty can cope with the (complex) collection of models introduced in
Section 2.1 for the problem of detecting the nonzero mean components in a
Gaussian vector. In this case, the complexity index of the collection can be taken
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as (M,a) = (1, log(n)) and since φ−1(a) ≤ 2 log(n), inequality (3.1) holds with
K = √

2. As soon as for all m ∈ M,

Dm ≤ min
{
n − 5.7 log(n),

0.06(n + 2)

(3 log(n) − 1)2 − 1
}
,(3.5)

Assumption (HK,M,a) is fulfilled and μ̂m̂ then satisfies (3.2) with K/(K −
1) < 3.42. Actually, this result has an asymptotic flavor since (3.5) and there-
fore (HK,M,a) hold for very large values of n only. For a more practical point
of view, we shall see in Section 6 that AMDL penalty is too large and thus fa-
vors small dimensional linear spaces too much. The BIC criterion corresponds to
the choice pen(m) = Nm(eDm log(n)/n − 1) and one can check that pen(m) stays
smaller than φ−1(log(n))Dm when n is large. Consequently, Theorem 1 cannot
justify the use of the BIC criterion for the collection above. In fact, we shall see in
the next section that BIC is inappropriate in this case.

When the complexity parameter a is independent of n, criteria AMDL and BIC
satisfy (3.1) for n large enough. Nevertheless, the logarithmic factor involved in
these criteria has the drawback to overpenalize large dimensional linear spaces.
One consequence is that the risk bound (3.2) differs from an oracle inequality by
a logarithmic factor.

3.3. Minimal penalties. The aim of this section is to show that the con-
straint (3.1) on the size of the penalty is sharp. We shall restrict ourselves to the
cases where a = 0 and a = log(n). Similar results have been established in Birgé
and Massart (2007) for criteria of the form (1.6). The interested reader can find the
proofs of the following propositions in Baraud, Giraud and Huet (2007).

3.3.1. Case a = 0. For collections with such a complexity index, we have seen
that the conditions of Theorem 1 are fulfilled as soon as pen(m) ≥ CDm for all m

and some universal constant C > 1. Besides, the choice of penalties of the form
pen(m) = CDm for all m leads to oracle inequalities. The following proposition
shows that the constraint C > 1 is necessary to avoid the overfitting phenomenon.

PROPOSITION 1. Let S = {Sm,m ∈ M} be a collection of models with com-
plexity index (1,0). Assume that pen(m̄) < Dm̄ for some m̄ ∈ M and set C =
pen(m̄)/Dm̄. If μ = 0, the index m̂ which minimizes criterion (1.4) satisfies

P

(
Dm̂ ≥ 1 − C

2
Dm̄

)
≥ 1 − ce−c′(Nm̄∧Dm̄),

where c and c′ are positive functions of C only.

Explicit values of c and c′ can be found in the proof.
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3.3.2. Case a = log(n). We restrict ourselves to the collection described
in Section 2.1. We have already seen that the choice of penalties of the form
pen(m) = 2CDm logn for all m with C > 1 was leading to a nearly optimal bias
and variance trade-off [up to an unavoidable log(n) factor] in the risk bounds. We
shall now see that the constraint C > 1 is sharp.

PROPOSITION 2. Let C0 ∈]0,1[. Consider the collection of linear spaces S =
{Sm|m ∈ M} described in Section 2.1, and assume that p ≤ (1 − C0)n and n >

e2/C0 . Let pen be a penalty satisfying pen(m) ≤ 2C4
0Dm log(n) for all m ∈ M. If

μ = 0, the cardinality of the subset m̂ selected as a minimizer of criterion (1.4)
satisfies

P
(|m̂| > �(1 − C0)D�) ≥ 1 − 2 exp

(
−c

n1−C0√
log(n)

)
,

where D = �c′n1−C0/ log3/2(n)� ∧ p and c, c′ are positive functions of C0 (to be
explicitly given in the proof).

Proposition 2 shows that AIC and FPE should not be used for model selection
purposes with the collection of Section 2.1. Moreover, if p log(n)/n ≤ κ < log(2)

then the BIC criterion satisfies

pen(m) = Nm

(
eDm log(n)/n − 1

) ≤ eκDm log(n) < 2Dm log(n)

and also appears inadequate to cope with the complexity of this collection.

4. From general risk bounds to new penalized criteria. Given an arbitrary
penalty pen, our aim is to establish a risk bound for the estimator μ̂m̂ obtained
from the minimization of (1.4). The analysis of this bound will lead us to pro-
pose new penalty structures that take into account the complexity of the collection.
Throughout this section we shall assume that Dm ≤ n − 2 for all m ∈ M.

The main theorem of this section uses the function Dkhi defined below.

DEFINITION 2. Let D,N be two positive numbers and XD,XN be two inde-
pendent χ2 random variables with degrees of freedom D and N respectively. For
x ≥ 0, we define

Dkhi[D,N,x] = 1

E(XD)
× E

[(
XD − x

XN

N

)
+

]
.(4.1)

Note that for D and N fixed, x �→ Dkhi[D,N,x] is decreasing from [0,+∞)

into (0,1] and satisfies Dkhi[D,N,0] = 1.

THEOREM 2. Let S = {Sm,m ∈ M} be some collection of models such that
Nm ≥ 2 for all m ∈ M. Let pen be an arbitrary penalty function mapping M
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into R+. Assume that there exists an index m̂ among M which minimizes (1.4)

with probability 1. Then, the estimator μ̂m̂ satisfies for all constants c ≥ 0 and
K > 1,

E

[‖μ − μ̂m̂‖2

σ 2

]

≤ K

K − 1
inf

m∈M

[‖μ − μm‖2

σ 2

(
1 + pen(m)

Nm

)
+ pen(m) − Dm

]
(4.2)

+ �,

where

� = Kc

K − 1

+ 2K2

K − 1

∑
m∈M

(Dm + 1)Dkhi
[
Dm + 1,Nm − 1,

Nm − 1

KNm

(
pen(m) + c

)]
.

Note that a minimizer of CritL does not necessarily exist for an arbitrary penalty
function, unless M is finite. Take for example, M = Qn and for all m ∈ M set
pen(m) = 0 and Sm the linear span of m. Since infm∈M ‖Y − �mY‖2 = 0 and
Y /∈ ⋃

m∈M Sm a.s., m̂ does not exist with probability 1. In the case where m̂ does
exist with probability 1, the quantity � appearing in right-hand side of (4.2) can
either be calculated numerically or bounded by using Lemma 6 below.

Let us now turn to an analysis of inequality (4.2). Note that the right-hand side
of (4.2) consists of the sum of two terms,

K

K − 1
inf

m∈M

[‖μ − μm‖2

σ 2

(
1 + pen(m)

Nm

)
+ pen(m) − Dm

]
and � = �(pen), which vary in opposite directions with the size of pen. There is
clearly no hope in optimizing this sum with respect to pen without any prior in-
formation on μ. Since only � depends on known quantities, we suggest choosing
the penalty in view of controlling its size. As already seen, the choice pen(m) =
K2φ−1(a)Dm for some K > 1 allows us to obtain a control of � which is indepen-
dent of n. This choice has the following drawbacks. First, the penalty penalizes the
same all the models of a given dimension, although one could wish to associate a
smaller penalty to some of these because they possess a simpler structure. Second,
it turns out that in practice these penalties are a bit too large and leads to an under-
fitting of the true by advantaging too much small dimensional models. In order to
avoid these drawbacks, we suggest to use the penalty structures introduced in the
next section.
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4.1. Introducing new penalty functions. We associate to the collection of mod-
els S a collection L = {Lm,m ∈ M} of nonnegative numbers (weights) such that

�′ = ∑
m∈M

(Dm + 1)e−Lm < +∞.(4.3)

When �′ = 1 then the choice of sequence L can be interpreted as a choice of a
prior distribution π on the set M. This a priori choice of a collection of Lm’s gives
a Bayesian flavor to the selection rule. We shall see in the next section how the
sequence L can be chosen in practice according to the collection at hand.

DEFINITION 3. For 0 < q ≤ 1 we define EDkhi[D,N,q] as the unique solu-
tion of the equation Dkhi[D,N,EDkhi[D,N,q]] = q .

Given some K > 1, let us define the penalty function penK,L

penK,L(m) = K
Nm

Nm − 1
EDkhi[Dm + 1,Nm − 1, e−Lm] ∀m ∈ M.(4.4)

PROPOSITION 3. If pen = penK,L for some sequence of weights L satisfy-
ing (4.3), then there exists an index m̂ among M which minimizes (1.4) with prob-
ability 1. Besides, the estimator μ̂m̂ satisfies (4.2) with � ≤ 2K2�′/(K − 1).

As we shall see in Section 6.1, the penalty penK,L or at least an upper bound can
easily be computed in practice. From a more theoretical point of view, an upper
bound for penK,L(m) is given in the following proposition, the proof of which is
postponed to Section 10.2.

PROPOSITION 4. Let m ∈ M such that Nm ≥ 7 and Dm ≥ 1. We set D =
Dm + 1, N = Nm − 1 and

� = Lm + log 5 + 1/N

1 − 5/N
.

Then, we have the following upper bound on the penalty penK,L(m):

penK,L(m) ≤ K(N + 1)

N

[
1 + e2�/(N+2)

√(
1 + 2D

N + 2

)
2�

D

]2
D.(4.5)

When Dm = 0 and Nm ≥ 4, we have the upper bound

penK,L(m) ≤ 3K(N + 1)

N

[
1 + e2Lm/N

√(
1 + 6

N

)
2Lm

3

]2

.(4.6)

In particular, if Lm ∨ Dm ≤ κn for some κ < 1, then there exists a constant C

depending on κ and K only, such that

penK,L(m) ≤ C(Lm ∨ Dm)

for any m ∈ M.
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We derive from Proposition 4 and Theorem 2 (with c = 0) the following risk
bound for the estimator μ̂m̂.

COROLLARY 1. Let κ < 1. If for all m ∈ M, Nm ≥ 7 and Lm ∨ Dm ≤ κn,
then μ̂m̂ satisfies

E

[‖μ − μ̂m̂‖2

σ 2

]
≤ C

[
inf

m∈M

{‖μ − μm‖2

σ 2 + Dm ∨ Lm

}
+ �′

]
,(4.7)

where C is a positive quantity depending on κ and K only.

Note that (4.7) turns out to be an oracle-type inequality as soon as one can
choose Lm of the order of Dm for all m. Unfortunately, this is not always possible
if one wants to keep the size of �′ under control. Finally, let us mention that
the structure of our penalties, penK,L, is flexible enough to recover any penalty
function pen by choosing the family of weights L adequately. Namely, it suffices
to take

Lm = − log
(

Dkhi
[
Dm + 1,Nm − 1,

(Nm − 1)pen(m)

KNm

])
to obtain penK,L = pen. Nevertheless, this choice of L does not ensure that (4.3)
holds true unless M is finite.

5. How to choose the weights.

5.1. One simple way. One can proceed as follows. If the complexity index of
the collection is given by the pair (M,a), then the choice

Lm = a′Dm ∀m ∈ M(5.1)

for some a′ > a leads to the following control of �′:

�′ ≤ M
∑
D≥1

De−(a′−a)(D−1) = M
(
1 − e−(a′−a))−2

.

In practice, this choice of L is often too rough. One of its nonattractive features
lies in the fact that the resulting penalty penalizes the same all the models of a
given dimension. Since it is not possible to give a universal recipe for choosing the
sequence L, in the sequel we consider the examples presented in Section 2 and
in each case motivate a choice of a specific sequence L by theoretical or practical
considerations.
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5.2. Detecting nonzero mean components. For any D ∈ {0, . . . , p} and m ∈ M
such that |m| = D, we set

Lm = L(D) = log
[(

n

D

)]
+ 2 log(D + 1)

and pen(m) = penK,L(m) where K is some fixed constant larger than 1. Since
pen(m) only depends on |m|, we write

pen(m) = pen(|m|).(5.2)

From a practical point of view, m̂ can be computed as follows. Let Y 2
(n), . . . , Y

2
(1)

be random variables obtained by ordering Y 2
1 , . . . , Y 2

n in the following way:

Y 2
(n) < Y 2

(n−1) < · · · < Y 2
(1) a.s.

and D̂ the integer minimizing over D ∈ {0, . . . , p} the quantity
n∑

i=D+1

Y 2
(i)

(
1 + pen(D)

n − D

)
.(5.3)

Then the subset m̂ coincides with {(1), . . . , (D̂)} if D̂ ≥ 1 and ∅ otherwise. In
Section 6 a simulation study evaluates the performance of this method for several
values of K .

From a theoretical point of view, our choice of Lm’s implies the following bound
on �′:

�′ ≤
p∑

D=0

(
n

D

)
(D + 1)e−L(D)

≤
p∑

D=1

1

D
≤ 1 + log(p + 1) ≤ 1 + log(n).

As to the penalty, let us fix some m in M with |m| = D. The usual bound
log[(n

D

)] ≤ D log(n) implies Lm ≤ D(2 + logn) ≤ p(2 + log(n)) and conse-
quently, under the assumption

p ≤ κn

2 + logn
∧ (n − 7)

for some κ < 1, we deduce from Corollary 1 that for some constant C′ = C′(κ,K),
the estimator μ̂m̂ satisfies

E[‖μ − μ̂m̂‖2] ≤ C′ inf
m∈M

[‖μ − μm‖2 + (Dm + 1) log(n)σ 2]

≤ C′(1 + |m∗|) log(n)σ 2.

As already mentioned, we know that the log(n) factor in the risk bound is un-
avoidable. Unlike the former choice of L suggested by (5.1) [with a′ = log(n)+1,
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e.g.], the bound for �′ we get here is not independent of n but rather grows with n

at rate log(n). As compared to the former, this latter weighting strategy leads to
similar risk bounds and to a better performance of the estimator in practice.

5.3. Variable selection. We propose to handle simultaneously complete and
ordered variable selection. First, we consider the p explanatory variables that we
believe to be the most important among the set of the N possible ones. Then, we
index these from 1 to p by decreasing order of importance and index those N − p

remaining ones arbitrarily. We do not assume that our guess on the importance of
the various variables is right or not. We define Mo and M according to Section 2.2
and for some c > 0 set Lm = c|m|, if m ∈ Mo, and otherwise set

Lm = L(|m|) where L(D) = log
[(

N

D

)]
+ logp + log(D + 1).

For K > 1, we select the subset m̂ as the minimizer among M of the criterion
m �→ CritL(m) given by (1.4) with pen(m) = penK,L(m). Except in the favorable
situation where the vectors x(j) are orthogonal in Rn there seems, unfortunately,
to be no way of computing m̂ in polynomial time. Nevertheless, the method can
be applied for reasonable values of N and p as shown in Section 6.3. From a
theoretical point of view, our choice of Lm’s leads to the following bound on the
residual term �′:

�′ ≤ ∑
m∈Mo

(|m| + 1)e−Lm + ∑
m∈M\Mo

(|m| + 1)e−Lm

≤
p∑

D=0

(D + 1)e−cD +
p∑

D=1

(
D

N

)
(D + 1)e−L(D)

≤ 1 + (1 − e−c)−2.

Besides, we deduce from Corollary 1 that if p satisfies

p ≤ κn

c
∧ κn

2 + logN
∧ (n − 7) with κ < 1,

then

E[‖μ − μ̂m̂‖2] ≤ C(κ,K, c)(Bo ∧ Bc),(5.4)

where

Bo = inf
m∈Mo

(‖μ − μm‖2 + (|m| + 1)σ 2),
Bc = inf

m∈M

[‖μ − μm‖2 + (|m| + 1) log(eN)σ 2].
It is interesting to compare the risk bound (5.4) with the one we can get by using

the former choice of weights L given in (5.1) [with a′ = log(N) + 1], that is

E[‖μ − μ̂m̂‖2] ≤ C′(κ,K)Bc.(5.5)
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Up to constants, we see that (5.4) improves (5.5) by a log(N) factor whenever the
minimizer m∗ of E[‖μ − μ̂m‖2] among M does belong to Mo.

5.4. Multiple change-points detection. In this section, we consider the prob-
lems of change-points detection presented in Section 2.3.

5.4.1. Detecting and estimating the jumps of f . We consider here the collec-
tion of models described in Section 2.3.1 and associate to each m the weight Lm

given by

Lm = L(|m|) = log
[(

n − 1
|m|

)]
+ 2 log(|m| + 2),

where K is some number larger than 1. This choice gives the following control
on �′:

�′ =
p∑

D=0

(
n − 1

D

)
(D + 2)e−L(D) =

p∑
D=0

1

D + 2
≤ log(p + 2).

Let D be some arbitrary positive integer not larger than p. If f belongs to the
class of functions which are piecewise constant on an arbitrary partition of [0,1)

into D intervals, then μ = (f (x1), . . . , f (xn))
′ belongs to some Sm with m ∈ M

and |m| ≤ D − 1. We deduce from Corollary 1 that if p satisfies

p ≤ κn − 2

2 + logn
∧ (n − 8)

for some κ < 1, then

E[‖μ − μ̂m̂‖2] ≤ C(κ,K)D log(n)σ 2.

5.4.2. Detecting and estimating the jumps of f ′. In this section, we deal with
the collection of models of Section 2.3.2. Note that this collection is not finite.
We use the following weighting strategy. For any pair of integers j, q such that
q ≤ 2j − 1, we set

L(j, q) = log
[(

2j − 1
q

)]
+ q + 2 log j.

Since an element m ∈ M may belong to different Mj,q , we set Lm = inf{L(j, q),

m ∈ Mj,q}. This leads to the following control of �′:

�′ ≤ ∑
j≥1

(2j−1)∧p∑
q=0

|Mj,q |(q + 3)
e−q(2j−1
q

)
j2

≤ ∑
j≥1

1

j2

∑
q≥0

(q + 3)e−q

= π2e(3e − 2)

6(e − 1)2 < 9.5.
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For some positive integer q and R > 0, we define S1(q,R) as the set of contin-
uous functions f on [0,1) of the form

f (x) =
q+1∑
i=1

(αix + βi)1[ai−1,ai )(x)

with 0 = a0 < a1 < · · · < aq+1 = 1, (β1, . . . , βq+1)
′ ∈ Rq+1 and (α1, . . . , αq+1)

′ ∈
Rq+1, such that

1

q

q∑
i=1

|αi+1 − αi | ≤ R.

The following result holds.

COROLLARY 2. Assume that n ≥ 9. Let K > 1, κ ∈]0,1[, κ ′ > 0 and p such
that

p ≤ (κn − 2) ∧ (n − 9).(5.6)

Let f ∈ S1(q,R) with q ∈ {1, . . . , p} and R ≤ σeκ ′n/q . If μ is defined by (2.1) then
there exists a constant C depending on K and κ, κ ′ only such that

E[‖μ − μ̂m̂‖2] ≤ Cqσ 2
[
1 + log

(
1 ∨ nR2

qσ 2

)]
.

We postpone the proof of this result to Section 10.3.

5.5. Estimating a signal. We deal with the collection introduced in Section 2.4
and to each m = (r, k1, . . . , kd) ∈ M, associate the weight Lm = (r + 1)dk1 · · ·kd .
With such a choice of weights, one can show that �′ ≤ (e/(e − 1))2(d+1). For
α = (α1, . . . , αd) and R = (R1, . . . ,Rd) in ]0,+∞[d , we denote by H(α,R)

the space of (α,R)-Hölderian functions on [0,1)d , which is the set of functions
f : [0,1)d → R such that for any i = 1, . . . , d and t1, . . . , td , zi ∈ [0,1)∣∣∣∣ ∂ri

∂t
ri
i

f (t1, . . . , ti , . . . , tn) − ∂ri

∂t
ri
i

f (t1, . . . , zi, . . . , tn)

∣∣∣∣ ≤ Ri |ti − zi |βi ,

where ri + βi = αi , with ri ∈ N and 0 < βi ≤ 1.
In the sequel, we set ‖x‖2

n = ‖x‖2/n for x ∈ Rn. By applying our procedure
with the above weights and some K > 1, we obtain the following result.

COROLLARY 3. Assume n ≥ 14. Let α and R fulfill the two conditions

nαR2α+d
i ≥ Rdσ 2α and nαRd

i ≥ 2αRd(r + 1)dα, for i = 1, . . . , d,

where

r = sup
i=1,...,d

ri, α =
(

1

d

d∑
i=1

1

αi

)−1

and R = (R
α/α1
1 , . . . ,R

α/αd

d )1/d .
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Then, there exists some constant C depending on r and d only, such that for any μ

given by (2.1) with f ∈ H(α,R),

E[‖μ − μ̂‖2
n] ≤ C

[(
Rd/ασ 2

n

)2α/(2α+d)

∨
(

R2

n2α/d

)]
.

The rate n−2α/(2α+d) is known to be minimax for density estimation in H(α,R)

[see Ibragimov and Khas’minskii (1981)].

6. Simulation study. In order to evaluate the practical performance of our
criterion, we carry out two simulation studies. In the first study, we consider the
problem of detecting nonzero mean components. For the sake of comparison, we
also include the performances of AIC, BIC and AMDL whose theoretical proper-
ties have been studied in Section 3. In the second study, we consider the variable
selection problem and compare our procedure with adaptive Lasso recently pro-
posed by Zou (2006). From a theoretical point of view, this last method cannot
be compared with ours because its properties are shown assuming that the error
variance is known. Nevertheless, this method gives good results in practice and
the comparison with ours may be of interest. The calculations are made with R
(www.r-project.org) and are available on request. We also mention that a simula-
tion study has been carried out for the problem of multiple change-points detection
(see Section 2.3). The results are available in Baraud, Giraud and Huet (2007).

6.1. Computation of the penalties. The calculation of the penalties we propose
requires that of the EDkhi function or at least an upper bound for it. For 0 < q ≤ 1,
the value EDkhi(D,N,q) is obtained by numerically solving for x the equation

q = P

(
FD+2,N ≥ x

D + 2

)
− x

D
P

(
FD,N+2 ≥ N + 2

ND
x

)
,

where FD,N denotes a Fisher random variables with D and N degrees of freedom
(see Lemma 6). However, this value of x cannot be determined accurately enough
when q is too small. Rather, when q < e−500 and D ≥ 2, we bound the value of
EDkhi(D,N,q) from above by solving for x the equation

q

2B(1 + D/2,N/2)
= 2 + NDx−1

N(N + 2)

(
N

N + x

)N/2( x

N + x

)D/2

,

where B(p,q) stands for the beta function. This upper bound follows from for-
mula (9.6), Lemma 6.

6.2. Detecting nonzero mean components.

Description of the procedure. We implement the procedure as described in
Sections 2.1 and 5.2. More precisely, we select the set {(1), . . . , (D̂)} where D̂

http://www.r-project.org/
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minimizes among D in {1, . . . , p} the quantity defined at equation (5.3). In the
case of our procedure, the penalty function pen depends on a parameter K , and is
equal to

penK(D) = K
n − D

n − D − 1
EDkhi

[
D + 1, n − D − 1,

{
(D + 1)2

(
n

D

)}−1]
.

We consider the three values {1;1.1;1.2} for the parameter K and denote D̂

by D̂K , thus emphasizing the dependency on K . Even though the theory does
not cover the case K = 1, it is worth studying the behavior of the procedure for
this critical value. For the AIC, BIC and AMDL criteria, the penalty functions are
respectively equal to

penAIC(D) = (n − D)

[
exp

(
2D

n

)
− 1

]
,

penBIC(D) = (n − D)

[
exp

(
D log(n)

n

)
− 1

]
,

penAMDL(D) = (n − D)

[
exp

(
3D log(n)

n

)
− 1

]
.

We denote by D̂AIC, D̂BIC and D̂AMDL the corresponding values of D̂.

Simulation scheme. For θ = (n,p, k, s) ∈ N × {(p, k) ∈ N2|k ≤ p} × R, we
denote by Pθ the distribution of a Gaussian vector Y in Rn whose components
are independent with common variance 1 and mean μi = s, if i ≤ k and μi = 0
otherwise. Neither s nor k are known but we shall assume the upper bound p on k

known:

� = {
(2j ,p, k, s), j ∈ {5,9,11,13},p = �n/ log(n)�, k ∈ Ip, s ∈ {3,4,5}},

where

Ip = {2j ′
, j ′ = 0, . . . , �log2(p)�} ∪ {0,p}.

For each θ ∈ �, we evaluate the performance of each criterion as follows. On the
basis of the 1000 simulations of Y of law Pθ we estimate the risk R(θ) = Eθ [‖μ−
μ̂m̂‖2]. Then, if k is positive, we calculate the risk ratio r(θ) = R(θ)/O(θ),
where O(θ) is the infimum of the risks over all m ∈ M. More precisely,

O(θ) = inf
m∈M

Eθ [‖μ − μ̂m‖2] = inf
D=0,...,p

[s2(k − D)ID≤k + D].

It turns out that, in our simulation study, O(θ) = k for all n and s.
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TABLE 1
Case k = 0. AIC, BIC and AMDL criteria: estimated risk R and percentage of the number of

simulations for which D̂ is positive

AIC BIC AMDL

n R ̂DAIC > 0 R ̂DBIC > 0 R ̂DAMDL > 0

32 24 100% 23 99% 0.65 6.2%
512 296 100% 79 100% 0.05 0.3%

2048 1055 100% 139 100% 0.02 0.1%
8192 3830 100% 276 100% 0.09 0.3%

Results. When k = 0, that is when the mean of Y is 0, the results for AIC,
BIC and AMDL criteria are given in Table 1. The theoretical results given in Sec-
tion 3.2 and 3.3.2 are confirmed by the simulation study: when the complexity of
the model collection a equals log(n), AMDL satisfies the assumption of Theo-
rem 1 and therefore the risk remains bounded, while the AIC and BIC criteria lead
to an over-fitting (see Proposition 2). In all simulated samples, the BIC criterion
selects a positive D̂ and the AIC criterion chooses D̂ equal to the largest possible
dimension p. Our procedure, whose results are given in Table 2, performs simi-
larly as AMDL. Since larger penalties tend to advantage small dimensional model,
our procedure performs all the better that K is large. AMDL overpenalizes models
with positive dimension even more that n is large, and then performs all the better.

When k is positive, Table 3 gives, for each n, the maximum of the risk ratios
over k and s. Note that the largest values of the risk ratios are achieved for the
AMDL criterion. Besides, the AMDL risk ratio is maximum for large values of k.
This is due to the fact that the quantity 3 log(n) involved in the AMDL penalty
tends to penalize too severely models with large dimensions. Even in the favorable
situation where the signal to noise ratio is large, AMDL criterion is unable to
estimate k when k and n are both too large. For example, Table 4 presents the
values of the risk ratios when k = n/16 and s = 5, for several values n. Except

TABLE 2
Case k = 0. Estimated risk R and percentage of the number of simulations for which D̂ is positive

using our penalty penK

K = 1 K = 1.1 K = 1.2

n R ̂DK > 0 R ̂DK > 0 R ̂DK > 0

32 0.67 6.4% 0.40 3.7% 0.25 2.2%
512 0.98 5.7% 0.33 1.9% 0.07 0.4%

2048 1.00 5.1% 0.48 2.3% 0.09 0.4%
8192 0.96 4.2% 0.31 1.2% 0.14 0.5%
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TABLE 3
For each n, maximum of the estimated risk ratios rmax over the values of (k, s) for k > 0. k̄ and s̄

are the values of k and s where the maxima are reached

Our criterion with

K = 1 K = 1.1 K = 1.2 AMDL

n rmax k̄ s̄ rmax k̄ s̄ rmax k̄ s̄ rmax k̄ s̄

32 14.6 9 4 15.2 9 4 15.4 9 4 23.2 9 5
512 11.5 82 4 15.2 82 4 15.9 82 4 25.0 82 5

2048 10.7 1 4 15.5 268 4 16.0 256 4 25.0 256 5
8192 12.7 1 4 13.9 909 4 16.0 909 4 25.0 512 5

in the situation where n = 32 and k = 2, the mean of the selected D̂AMDL’s is
small although the true k is large. This overpenalization phenomenon is illustrated
by Figure 1 which compares the AMDL penalty function with ours for K = 1.1.
Let us now turn to the case where k is small. The results for k = 1 are presented
in Table 5. When n = 32, the methods are approximately equivalent whatever the
value of K .

Finally, let us discuss the choice of K . When k is large, the risk ratios do not
vary with K (see Table 4). Nevertheless, as illustrated by Table 5, K must stay
close to 1 in order to avoid overpenalization. We suggest taking K = 1.1.

6.3. Variable selection. We present two simulation studies for illustrating the
performances of our method for variable selection and compare them to the adap-
tive Lasso. The first simulation scheme was proposed by Zou (2006). The second
one involves highly correlated covariates.

Description of the procedure. We consider the variable selection problem de-
scribed in Section 2.2 and we implement the procedure considering the collec-

TABLE 4
Case k = n/16 and s = 5. Estimated risk ratio r and mean of the D̂’s

Our criterion with

K = 1 K = 1.1 K = 1.2 AMDL

n k r ̂D r ̂D r ̂D r ̂D

32 2 3.43 2.04 3.89 1.94 4.49 1.85 3.39 1.90
512 32 1.96 33.2 1.93 32.6 1.94 32.1 23.5 2.12

2048 128 1.89 131 1.89 130 1.91 128 25 0.52
8192 512 1.91 532 1.89 523 1.89 515 25 0.22
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FIG. 1. Comparison of the penalty functions penAMDL(D) and penK(D) for K = 1.1.

tion M for complete variable selection defined in Section 2.2.2 with maximal di-
mension p. We select the subset m̂ of {1, . . . ,N} minimizing CritL(m) given at
equation (1.4) with penalty function

pen(m) = pen(|m|)

= K
n − |m|

n − |m| − 1
EDkhi

[
|m| + 1, n − |m| − 1,

{
p(|m| + 1)

(
N

|m|
)}−1]

.

This choice for the penalty ensures a quasi oracle bound for the risk of m̂ [see
inequality (5.5)].

TABLE 5
Case k = 1 and s = 5. For each n, estimated risk ratio followed by the percentages of simulations

for which D̂ is equal to 0,1 and larger than 1

Our criterion with

K = 1 K = 1.1 K = 1.2

Histogram Histogram Histogram

n R = 0 = 1 ≥ 2 R = 0 = 1 ≥ 2 R = 0 = 1 ≥ 2

32 3.6 7.3 84.8 7.9 3.9 9.8 84.6 5.6 4.5 12.9 82.7 4.4
512 5.4 14.6 80.4 5.0 6.1 20.3 77.8 1.9 7.2 26.0 73.0 1.0
2048 7.1 21.8 74.9 3.3 8.2 28.6 70.1 1.3 9.6 35.4 64.1 0.5
8192 9.1 29.5 67.7 2.8 10.4 37.4 61.6 1.0 12.2 45.9 53.9 0.2
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The adaptive Lasso procedure. The adaptive Lasso procedure proposed by Zou
starts with a preliminary estimator â of a as, for example, the ordinary least squares
estimator when it exists. Then one computes the minimizer âw among those a ∈
RN of the criterion

CritLasso(a) =
∥∥∥∥∥Y −

N∑
j=1

ajx
(j)

∥∥∥∥∥
2

+ λ

N∑
j=1

ŵj |aj |,

where the weights ŵj = 1/|̂a|γj for j = 1, . . . ,N . The smoothing parameters λ

and γ are chosen by cross-validation. The set m̂Lasso is the set of indices j such
that âw

j is nonzero.

Simulation scheme. Let M(n,N) be the set of matrices with n rows and N

columns. For θ = (X,a,σ ) ∈ M(n,N) × RN × R+, we denote by Pθ the distrib-
ution of a Gaussian vector Y in Rn with mean μ = Xa and covariance σ 2In. We
consider two choices for the pair (X,a). The first one is based on the Model 1
considered by Zou (2006) in its simulation study. More precisely, N = 8 and
the rows of the matrix X are n i.i.d. Gaussian centered variables such that for
all 1 ≤ j < k ≤ 8 the correlation between x(j) and x(k) equals 0.5(k−j). We did
S = 50 simulations of the matrix X, denoted XS = (Xs, s = 1, . . . , S) and define

�1 = {
(X,a,σ ),X ∈ XS, a = (3,1.5,0,0,2,0,0,0)T , σ ∈ {1,3}}.

The second one is constructed as follows. Let x(1), x(2), x(3) be three vectors of Rn

defined by

x(1) = (1,−1,0, . . . ,0)T /
√

2,

x(2) = (−1,1.001,0, . . . ,0)T /

√
1 + 1.0012,

x(3) = (1/
√

2,1/
√

2,1/n, . . . ,1/n)T /

√
1 + (n − 2)/n2

and for 4 ≤ j ≤ n, let x(j) be the j th vector of the canonical basis of Rn. We take
N = n and μ = (n,n,0, . . . ,0)T . Let a ∈ RN satisfying μ = Xa. Note that only
the two first components of a are nonzero. We thus define �2 = {(X,a,1)}.

We choose n = 20 and for each θ ∈ �1 ∪ �2 we did 500 simulations of Y with
law Pθ .

Our procedures were carried out considering all (nonvoid) subsets m of
{1, . . . ,N} with cardinality not larger than p = 8. On the basis of the results ob-
tained in the preceding section, we took K = 1.1.

For the adaptive Lasso procedure the parameters λ and γ are estimated using
one-fold cross-validation as follows: when θ ∈ �1, the values of λ vary between
0 and 200 and following the recommendations given by Zou, γ can take three
values (0.5,1,2). For θ ∈ �2, λ varies between 0 and 40, and γ takes the values
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TABLE 6
Case θ ∈ �1. Risk ratio r , expectation of |m̂| and percentages of the number of times m̂ equals or

contains the true model (m0 = {1,2,5}). These quantities are averaged over the S design
matrices X in �1

σ = 1 σ = 3

r E(|m̂|) m̂ = m0 m̂ ⊇ m0 r E(|m̂|) m̂ = m0 m̂ ⊇ m0

K = 1.1 1.64 3.44 67% 98.3% 2.89 2.23 12.4% 20.2%
A. Lasso 1.92 3.73 62% 98.9% 2.58 3.74 13.7% 49.3%

(0.5,1,1.5); the value γ = 2 leading to numerical instability in the LARS algo-
rithm.

We evaluate the performances of each procedure by estimating the risk ratio

r(θ) = Eθ [‖μ − μ̂m̂‖2]
infm∈M Eθ [‖μ − μ̂m‖2] ,

the expectation of |m̂|, and calculating the frequencies of choosing and containing
the true model m0.

Results. When θ ∈ �1, the methods give similar results. Looking carefully at
the results shown in Table 6, we remark that the adaptive Lasso method selects
more variables than ours. It gives results slightly better when σ = 3, the risk ratio
being smaller and the frequency of containing the true model being greater. But,
when σ = 1, using the adaptive Lasso method leads to increase the risk ratio and
to wrongly detect a larger number of variables.

In case θ ∈ �2, the adaptive Lasso procedure does not work while our procedure
gives satisfactory results (see Table 7). The good behavior of our method in this
case illustrates the strength of Theorem 2 whose results do not depend on the
correlation of the explanatory variables.

Finally, let us emphasize that these methods are not comparable either from a
theoretical point of view nor from a practical one. In our method the penalty func-
tion is free from σ , while in the adaptive Lasso method the theoretical results are
given for known σ and the penalty function depends on σ through the parameter λ.

TABLE 7
Case θ ∈ �2 with σ = 1. Risk ratio r , expectation of |m̂| and percentages of the number of times m̂

equals or contains the true model (m0 = {1,2})

r E(|m̂|) m̂ = m0 m̂ ⊇ m0

K = 1.1 2.35 2.28 80.2% 96.6%
A. Lasso 26.5 10.2 0.4% 40%
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All the difficulty of our method lies in the complexity of the collection M, making
impossible to consider in practice models with a large number of variables.

7. Estimating the pair (μ,σ 2). Unlike the previous sections which focused
on the estimation of μ, we consider here the problem of estimating the pair θ =
(μ,σ 2). All along, we shall assume that M is finite and consider the Kullback loss
defined between Pμ,σ 2 and Pν,τ 2 by

K(Pμ,σ 2,Pν,τ 2) = n

2

[
log

(
τ 2

σ 2

)
+ σ 2

τ 2 − 1 + ‖μ − ν‖2

nτ 2

]
.

Given some finite collection of models S = {Sm,m ∈ M} we associate to each
m ∈ M the estimator θ̂m of θ defined by

θ̂m = (μ̂m, σ̂ 2
m) =

(
�mY,

‖Y − �mY‖2

Nm

)
.

For a given m, the risk of θ̂m can be evaluated as follows.

PROPOSITION 5. Let θm = (μm,σ 2
m) where σ 2

m = σ 2 + ‖μ − μm‖2/n and
μm = �mμ. Then,

inf
ν∈Sm,τ 2>0

K(Pθ ,Pν,τ 2) = K(Pθ ,Pθm) = n

2
log

(
1 + ‖μ − μm‖2

nσ 2

)
(7.1)

and provided that Nm > 2,

Eθ [K(Pθ ,Pθ̂m
)] ≤ K(Pθ ,Pθm) + n

2

[
Dm + 2

Nm − 2
− log

(
1 − Dm

n

)]
,(7.2)

Eθ [K(Pθ ,Pθ̂m
)] ≥ K(Pθ ,Pθm) ∨

(
Nm ∧ Dm

2

)
.(7.3)

In particular, if Dm ≤ Nm and Nm > 2, then

K(Pθ ,Pθm) ∨ Dm

2
≤ E[K(Pθ ,Pθ̂m

)]
(7.4)

≤ K(Pθ ,Pθm) + 4(Dm + 2).

As expected, this proposition shows that the Kullback risk of the estimator θ̂m

is of order of a bias term, namely K(Pθ ,Pθm), plus some variance term which
is proportional to Dm, at least when Dm ≤ (n/2) ∧ (n − 3). We refer to Baraud,
Giraud and Huet (2007) for the proof of these bounds.

Let us now introduce a definition.
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DEFINITION 4. Let FD,N be a Fisher random variable with D ≥ 1 and N ≥ 3
degrees of freedom. For x ≥ 0, we set

Fish[D,N,x] = E[(FD,N − x)+]
E(FD,N)

≤ 1.

For 0 < q ≤ 1 we define EFish[D,N,q] as the solution to the equation Fish[D,N,

EFish[D,N,q]] = q .

We shall use the convention EFish[D,N,q] = 0 for q > 1. Note that the restric-
tion N ≥ 3 is necessary to ensure that E(FD,N) < ∞.

Given some penalty pen∗ from M into R+, we shall deal with the penalized
criterion

Crit′K(m) = n

2
log

(‖Y − �mY‖2

Nm

)
+ 1

2
pen∗(m)(7.5)

for which our results will take a more simple form than with criteria (1.4) and (1.5).
In the sequel, we define

θ̃ = θ̂m̂ where m̂ = arg min
m∈M

Crit′K(m).

THEOREM 3. Let S = {Sm,m ∈ M}, α = min{Nm/n|m ∈ M} and K1,K2 be
two numbers satisfying K2 ≥ K1 > 1. If Dm ≤ n − 5 for all m ∈ M, then the
estimator θ̃ satisfies

E[K(Pθ ,Pθ̃ )]
(7.6)

≤ K1

K1 − 1

{
inf

m∈M

[
E[K(Pθ ,Pθ̂m

)] + 9

4

(
pen∗(m) ∨ Dm

)]+ �1 + �2

}
,

where

�1 = 2.5e1/(K2
2 α)ne−n/(4K2

2 )|M|4/(αn), �2 = 5K1

4

∑
m∈M

(Dm + 1)�m

and

�m = Fish
[
Dm + 1,Nm − 1,

Nm − 1

K1Nm

K2Dm + (K2 − 1)pen∗(m)

K2(Dm + 1)

]
.

In particular, let L = {Lm,m ∈ M} be a sequence of nonnegative weights. If for
all m ∈ M, pen∗(m) = penK

K1,K2,L
(m) with

penK
K1,K2,L

(m) = K2

K2 − 1

[
K1(Dm + 1)Nm

Nm − 1
(7.7)

× EFish(Dm + 1,Nm − 1, e−Lm) − Dm

]
+
,

then the estimator θ̃ satisfies (7.6) with �2 ≤ 1.25K1
∑

m∈M(Dm + 1)e−Lm.
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This result is an analogue of Theorem 2 for the Kullbach risk. The expres-
sion of � is akin to that of Theorem 2 apart from the additional term of order
ne−n/(4K2

2 )|M|4/(αn). In most of the applications, the cardinalities |M| of the col-
lections are not larger than eCn for some universal constant C, so that this addi-
tional term usually remains under control.

An upper bound for the penalty penK
K1,K2,L

is given in the following proposi-
tion, the proof of which is delayed to Section 10.2.

PROPOSITION 6. Let m ∈ M, with Dm ≥ 1 and Nm ≥ 9. We set D = Dm + 1,
N = Nm − 1 and

�′ = Lm + log 5 + 1/(N − 2)

1 − 5/(N − 2)
.

Then, we have the following upper bound on the penalty penK
K1,K2,L

:

penK
K1,K2,L

(m) ≤ K1K2

K2 − 1

N + 1

N − 2

[
1 + e2�′/N

√(
1 + 2D

N

)
2�′
D

]2

D.(7.8)

8. Proofs of Theorems 2 and 3.

8.1. Proof of Theorem 2. We write henceforth εm = �mε and μm = �mμ.
Expanding the squared Euclidean loss of the selected estimator μ̂m̂ gives

‖μ − μ̂m̂‖2 = ‖μ − μm̂‖2 + σ 2‖εm̂‖2

= ‖μ‖2 − ‖μm̂‖2 + σ 2‖εm̂‖2

= ‖μ‖2 − ‖μ̂m̂‖2 + 2σ 2‖εm̂‖2 + 2σ 〈μm̂, ε〉.
Let m∗ be an arbitrary index in M. It follows from the definition of m̂ that it also
minimizes over M the criterion Crit(m) = −‖μ̂m‖2 + pen(m)σ̂ 2

m and we derive

‖μ − μ̂m̂‖2 ≤ ‖μ‖2 − ‖μ̂m∗‖2 + pen(m∗)σ̂ 2
m∗

− pen(m̂)σ̂ 2
m̂ + 2σ 2‖εm̂‖2 + 2σ 〈μm̂, ε〉

≤ ‖μ − μm∗‖2 − σ 2‖εm∗ |2 − 2σ 〈μm∗, ε〉 + pen(m∗)σ̂ 2
m∗

(8.1)
− pen(m̂)σ̂ 2

m̂ + 2σ 2‖εm̂‖2 + 2σ 〈μm̂, ε〉
≤ ‖μ − μm∗‖2 + R(m∗) − pen(m̂)σ̂ 2

m̂ + 2σ 2‖εm̂‖2

− 2σ 〈μ − μm̂, ε〉,
where for all m ∈ M,

R(m) = −σ 2‖εm‖2 + 2σ 〈μ − μm,ε〉 + pen(m)σ̂ 2
m.
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For each m, we bound 〈μ − μm,ε〉 from above by using the inequality

−2σ 〈μ − μm,ε〉 ≤ 1

K
‖μ − μm‖2 + Kσ 2〈um, ε〉2,(8.2)

where um = μ − μm/‖μ − μm‖ when ‖μ − μm‖ �= 0 and um is any unit vector
orthogonal to Sm otherwise. Note that in any case, 〈um, ε〉 is a standard Gaussian
random variable independent of ‖εm‖2. For each m, let Fm be the linear space both
orthogonal to Sm and um. We bound σ̂ 2

m from below by the following inequality:

Nm

σ̂ 2
m

σ 2 ≥ ‖�Fmε‖2,(8.3)

where �Fm denotes the orthogonal projector onto Fm.
By using (8.2), (8.3) and the fact that 2 − 1/K ≤ K , inequality (8.1) leads to

K − 1

K
‖μ − μ̂m̂‖2

≤ ‖μ − μm∗‖2 + R(m∗)
− pen(m̂)σ̂ 2

m̂ + (2 − 1/K)σ 2‖εm̂‖2 + Kσ 2〈um̂, ε〉2

(8.4)
≤ ‖μ − μm∗‖2 + R(m∗)

+ ∑
m∈M

[Kσ 2‖εm‖2 + Kσ 2〈um, ε〉2 − pen(m)σ̂ 2
m]1m̂=m

≤ ‖μ − μm∗‖2 + R(m∗) + σ 2
∑

m∈M

[
KUm − pen(m)

Vm

Nm

]
1m̂=m,

where Um = ‖εm‖2 + 〈um, ε〉2 and Vm = ‖�Fmε‖2. Note that Um and Vm are
independent and distributed as χ2 random variables with respective parameters
Dm + 1 and Nm − 1.

8.1.1. Case c = 0. We start with the (simple) case c = 0. Then, by taking the
expectation on both sides of (8.4), we get

K − 1

K
E[‖μ − μ̂m̂‖2]

≤ ‖μ − μm∗‖2 + E(R(m∗))

+ Kσ 2
∑

m∈M

E

([
Um − (Nm − 1)pen(m)

KNm

× Vm

Nm − 1

]
+

)
≤ ‖μ − μm∗‖2 + E(R(m∗))

+ Kσ 2
∑

m∈M

(Dm + 1)Dkhi
(
Dm + 1,Nm − 1,

(Nm − 1)pen(m)

KNm

)
.
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To conclude, we note that

E(R(m∗)) = −σ 2Dm∗ + pen(m∗)
(
σ 2 + ‖μ − μm∗‖2

Nm∗

)
and m∗ is arbitrary among M.

8.1.2. Case c > 0. We now turn to the case c > 0. We set V̄m = Vm/Nm and
am = E(V̄m). Analyzing the cases V̄m ≤ am and V̄m > am apart gives

KUm − pen(m)V̄m = [
KUm − (

pen(m) + c − c
)
V̄m

]
1V̄m≤am

+ [
KUm − (

pen(m) + c − c
)
V̄m

]
1V̄m>am

≤ cam + [
KUm − (

pen(m) + c
)
V̄m

]
+1V̄m≤am

+ [
KUm − (

pen(m) + c
)
am

]
+1V̄m>am

≤ c + [
KUm − (

pen(m) + c
)
V̄m

]
+

+ [
KUm − (

pen(m) + c
)
E(V̄m)

]
+,

where we used for the final steps am = E(V̄m) ≤ 1. Going back to the bound (8.4),
we obtain in the case c > 0

K − 1

K
‖μ − μ̂m̂‖2 ≤ ‖μ − μm∗‖2 + R(m∗) + cσ 2

+ σ 2
∑

m∈M

[
KUm − (

pen(m) + c
)
V̄m

]
+(8.5)

+ σ 2
∑

m∈M

[
KUm − (

pen(m) + c
)
E(V̄m)

]
+.

Now, the independence of Um and V̄m together with Jensen’s inequality ensures
that

E
([

KUm − (
pen(m) + c

)
E(V̄m)

]
+
) ≤ E

([
KUm − (

pen(m) + c
)
V̄m

]
+
)
,

so taking expectation in (8.5) gives
K − 1

K
E[‖μ − μ̂m̂‖2]

≤ ‖μ − μm∗‖2 + E(R(m∗)) + cσ 2

+ 2Kσ 2
∑

m∈M

E

([
KUm − (

pen(m) + c
)Vm

Nm

]
+

)
≤ ‖μ − μm∗‖2 + E(R(m∗)) + cσ 2

+ 2Kσ 2
∑

m∈M

(Dm + 1)Dkhi
(
Dm + 1,Nm − 1,

(Nm − 1)(pen(m) + c)

KNm

)
.

To conclude, we follow the same lines as in the case c = 0.
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8.2. Proof of Theorem 3. Let m be arbitrary in M. In the sequel we write
K(m) for the Kullback divergence K(Pμ,σ 2,Pμ̂m,σ̂ 2

m
), namely

K(m) = n

2
log(σ̂ 2

m) + ‖μ − μ̂m‖2 + nσ 2

2σ̂ 2
m

− n

2
(logσ 2 + 1).(8.6)

We also set φ(x) = log(x) + x−1 − 1 ≥ 0 for all x ≥ 0, δ = 1/K2, and for each m

we define the random variable ξm as the number 〈um, ε〉 with um = μ − μm/‖μ −
μm‖ when ‖μ − μm‖ �= 0 and um is any unit vector orthogonal to Sm otherwise.

We split the proof of Theorem 3 into four lemmas.

LEMMA 1. The index m̂ satisfies

K1 − 1

K1
K(m̂) ≤ K(m) + 1 − δ

2
pen∗(m) + R1(m) + F(m̂) + R2(m, m̂)(8.7)

where, for all m,m′ ∈ M,

R2(m,m′) = n(1 − δ) − ‖ε‖2

2

(
σ 2

σ̂ 2
m′

− σ 2

σ̂ 2
m

)
,

R1(m) = Dm

2
− σ 2‖εm‖2

σ̂ 2
m

+ σ 〈μ − μm,ε〉
σ̂ 2

m

− δn

2
φ

(
σ̂ 2

m

σ 2

)
,

F (m) = −Dm

2
+

(
1 − 1

2K1

)
σ 2‖εm‖2

σ̂ 2
m

+ K1

2

σ 2ξ2
m

σ̂ 2
m

1{ξm〈0}

− 1 − δ

2
pen∗(m).

PROOF. We have

K(m̂) = K(m) + n

2
log

σ̂ 2
m̂

σ̂ 2
m

+ ‖μ − μ̂m̂‖2 + nσ 2

2σ̂ 2
m̂

− ‖μ − μ̂m‖2 + nσ 2

2σ̂ 2
m

= K(m) + n

2
log

σ̂ 2
m̂

σ̂ 2
m

+ ‖μ − μ̂m̂‖2 + nσ 2 − ‖Y − Ym̂‖2

2σ̂ 2
m̂

− Dm̂

2

+ Dm

2
− ‖μ − μ̂m‖2 + nσ 2 − ‖Y − Ym‖2

2σ̂ 2
m

= K(m) + n

2
log

σ̂ 2
m̂

σ̂ 2
m

+ 2‖εm̂‖2 + n − ‖ε‖2

2σ̂ 2
m̂
/σ 2

− σ 〈μ − μm̂, ε〉
σ̂ 2

m̂

− Dm̂

2
+ Dm

2
− 2‖εm‖2 + n − ‖ε‖2

2σ̂ 2
m/σ 2 + σ 〈μ − μm,ε〉

σ̂ 2
m

.
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With ξm defined before the lemma, we get

K(m̂) ≤ K(m) + n

2
log

σ̂ 2
m̂

σ̂ 2
m

+ 2‖εm̂‖2 + n − ‖ε‖2

2σ̂ 2
m̂
/σ 2

+ ‖μ − μm̂‖2

2K1σ̂
2
m̂

− Dm̂

2

+ K11{ξm̂<0}ξ2
m̂

2σ̂ 2
m̂
/σ 2

+ Dm

2
− 2‖εm‖2 + n − ‖ε‖2

2σ̂ 2
m/σ 2 + σ 〈μ − μm,ε〉

σ̂ 2
m

.

In view of (8.6), since δ = 1/K2 ≤ 1/K1 < 1, we have

‖μ − μm̂‖2

2K1σ̂
2
m̂

= K(m̂)

K1
− σ 2‖εm̂‖2

2K1σ̂
2
m̂

− n

2K1
φ

(
σ̂ 2

m̂

σ 2

)

≤ K(m̂)

K1
− σ 2‖εm̂‖2

2K1σ̂
2
m̂

− δn

2
φ

(
σ̂ 2

m̂

σ 2

)
,

and thus,

K1 − 1

K1
K(m̂) ≤ K(m) + n

2
log

σ̂ 2
m̂

σ̂ 2
m

+
(

1 − 1

2K1

)
σ 2‖εm̂‖2

σ̂ 2
m̂

− δn

2
φ

(
σ̂ 2

m̂

σ 2

)

+ K11{ξm̂<0}
2

σ 2ξ2
m̂

σ̂ 2
m̂

− Dm̂

2
+ Dm

2
+ n − ‖ε‖2

2

(
σ 2

σ̂ 2
m̂

− σ 2

σ̂ 2
m

)

− σ 2‖εm‖2

σ̂ 2
m

+ σ 〈μ − μm,ε〉
σ̂ 2

m

≤ K(m) + (1 − δ)
n

2
log

σ̂ 2
m̂

σ̂ 2
m

+
(

1 − 1

2K1

)
σ 2‖εm̂‖2

σ̂ 2
m̂

+ K11{ξm̂〈0}
2

σ 2ξ2
m̂

σ̂ 2
m̂

− Dm̂

2
+ R2(m, m̂) + R1(m).

Finally, we get the result since m̂ satisfies by definition n log(σ̂ 2
m̂
/σ̂ 2

m) ≤ pen∗(m)−
pen∗(m̂). �

LEMMA 2. For all m ∈ M, we have E(R1(m)) ≤ Dm/2.

PROOF. Since φ is nonnegative, we have

R1(m) = Dm

2
− σ 2‖εm‖2

σ̂ 2
m

+ σ 〈μ − μm,ε〉
σ̂ 2

m

− δn

2
φ

(
σ̂ 2

m

σ 2

)
(8.8)

≤ Dm

2
+ σ 〈μ − μm,ε〉

σ̂ 2
m

.
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Since ε and −ε have the same distribution, note that

2E

( 〈μ − μm,ε〉
σ̂ 2

m

)

= (n − Dm)E

( 〈μ − μm,ε〉
‖μ − μm‖2 + ‖ε − εm‖2 + 2〈μ − μm,ε〉

)

+ (n − Dm)E

( −〈μ − μm,ε〉
‖μ − μm‖2 + ‖ε − εm‖2 − 2〈μ − μm,ε〉

)

= (n − Dm)E

( −4〈μ − μm,ε〉2

(‖μ − μm‖2 + ‖ε − εm‖2)2 − 4〈μ − μm,ε〉2

)
≤ 0.

Consequently, the result follows by taking the expectation on both sides of (8.8).
�

LEMMA 3. Under the assumptions that for all m ∈ M, Nm ≥ αn ≥ 5, we have
for all m ∈ M

E[R2(m, m̂)] ≤ 7
4pen∗(m) + 2.5ne−(αn−4)δ2/(4α)|M|4/(αn).

PROOF. Note that R2(m, m̂) ≤ R2,1(m, m̂) + R2,2(m, m̂), where

R2,1(m, m̂) = 1

2

(‖ε‖2 − (1 − δ)n
)
+
(

σ 2

σ̂ 2
m

− σ 2

σ̂ 2
m̂

)
and

R2,2(m, m̂) = 1

2

(
(1 − δ)n − ‖ε‖2)

+
σ 2

σ̂ 2
m̂

.

It remains to bound the expectation of these two terms.
It follows from the definition of m̂ and the inequality 1 − e−u ≤ u which holds

for all u ≥ 0 that

σ 2

σ̂ 2
m

− σ 2

σ̂ 2
m̂

= σ 2

σ̂ 2
m

(
1 − σ̂ 2

m

σ̂ 2
m̂

)

≤ σ 2

σ̂ 2
m

(
1 − e−pen∗(m)/n)

≤ pen∗(m)

n

σ 2

σ̂ 2
m
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and thus,

E[R2,1(m, m̂)] = 1

2
E

[(‖ε‖2 − (1 − δ)n
)
+
(

σ 2

σ̂ 2
m

− σ 2

σ̂ 2
m̂

)]

≤ 1

2
E

(
[‖ε‖2 − (1 − δ)n]+ σ 2

σ̂ 2
m

)
pen∗(m)

n

≤ 1

2
E
([‖ε‖2 − (1 − δ)n]2)1/2

E

(
σ 4

σ̂ 4
m

)1/2 pen∗(m)

n

≤
√

δ2 + 2/n

2

Nm√
(Nm − 2)(Nm − 4)

pen∗(m)

≤ 7

4
pen∗(m).

As to E[R2,2(m, m̂)], we apply Hölder’s inequality with p = �αn/4� + 1, q =
p/(p − 1) and have

E[R2,2(m, m̂)] = 1

2
E

[(
n(1 − δ) − ‖ε‖2)

+
σ 2

σ̂ 2
m̂

]

≤ n

2
E

[
σ 2

σ̂ 2
m̂

1‖ε‖2≤n(1−δ)

]

≤ n

2

[
P
(‖ε‖2 ≤ n(1 − δ)

)]1/q
E

(
σ 2p

σ̂
2p

m̂

)1/p

≤ n

2

[
P
(‖ε‖2 ≤ n(1 − δ)

)]1/q

[ ∑
m∈M

E

(
σ 2p

σ̂
2p
m

)]1/p

,

and by using that P(‖ε‖2 ≤ n(1 − δ)) ≤ exp(−nδ2/4) [see Laurent and Mas-
sart (2000), Lemma 1] together with (9.2) (note that Nm′ > 2p for all m′ ∈ M)

E[R2,2(m, m̂)]

≤ n

2
e−nδ2/(4q)

[ ∑
m∈M

N
p
m

(Nm − 2)(Nm − 4) · · · (Nm − 2p)

]1/p

≤ n

2
e−nδ2/(4q)

[ ∑
m∈M

N
p
m

(Nm − 2)(Nm − 4) · · · (Nm − 2p)

]1/p

≤ 2.5nσ 2e−nδ2/(4q)|M|1/p ≤ 2.5ne−(αn−4)δ2/(4α)|M|4/(αn). �
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LEMMA 4. Under the assumption that Nm ≥ 5 for all m ∈ M, we have

E[F(m̂)] ≤ 5K1

4

∑
m∈M

(Dm + 1)Fish[Dm + 1,Nm − 1, qm](8.9)

with

qm = (Nm − 1)

K1(Dm + 1)Nm

[
Dm + K2 − 1

K2
pen∗(m)

]
.

PROOF. Since E[F(m̂)] ≤ ∑
m∈M E[F(m)], it suffices to bound E[F(m)]

from above for all m. As in the proof of Theorem 2, we introduce Um = ‖εm‖2 +
ξ2
m and Vm = ‖�Fmε‖2 ≤ Nmσ̂ 2

m/σ 2. Since δ = 1/K2, we get

F(m) =
[(

1 − 1

2K1

)
‖εm‖2 + K1

2
1{ξm<0}ξ2

m

]
σ 2

σ̂ 2
m

− 1

2

(
Dm + (1 − δ)pen∗(m)

)
≤ K1

2

NmUm

Vm

− 1

2

(
Dm + K2 − 1

K2
pen∗(m)

)

≤ K1Nm(Dm + 1)

2(Nm − 1)

×
[
Um(Nm + 1)

Vm(Dm − 1)
− Nm − 1

K1(Dm + 1)Nm

(
Dm + K2 − 1

K2
pen∗(m)

)]
.

Since Um(Nm+1)
Vm(Dm−1)

is distributed as a Fisher random variable with Dm +1 and Nm −1
degrees of freedom, the result follows by taking the expectation on both sides and
using Nm ≥ 5. �

End of the proof of Theorem 3. By taking the expectation on both sides of
(8.7) and using Lemmas 2, 3 and 4 (we recall that δ = 1/K2) we obtain

K1 − 1

K1
E[K(m̂)]

≤ E[K(m)] + 9

4
pen∗(m) + Dm

2
+ 5

2
ne−(αn−4)δ2/(4α)|M|4/(αn)

+ 5K1

4

∑
m′∈M

(Dm′ + 1)Fish[Dm′ + 1,Nm′ − 1, qm′ ],

which leads to (7.6) since m is arbitrary in M. Note that the latter series is not
larger than

∑
m′∈M(Dm′ + 1)e−Lm′ for pen∗(m′) = penK

K1,K2,L
(m) by definition of

EFish.
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9. Some preliminary results. The aim of this section is to establish some
technical results we shall use hereafter. The proofs of these being elementary and
mainly based on integration by parts, we omit them and rather refer the interested
reader to the technical report Baraud, Giraud and Huet (2007). We start with some
moment inequalities on the inverse of a χ2 random variable.

LEMMA 5. Let V be a χ2 random variable with N > 2 degrees of freedom
and noncentrality parameter a. We have

1

a + N − 2
≤ E

(
1

V

)
≤ N

(N + a)(N − 2)
≤ 1

N − 2
.(9.1)

Let p be some positive integer. If N > 2p, then

E

(
1

V p

)
≤ 1

(N − 2) · · · (N − 2p)
.(9.2)

Besides, equality holds in (9.2) for a = 0.

We recall that φ(t) = (t − 1 − log(t))/2 for all t ≥ 1. For two positive inte-
gers D and N , FD,N denotes a Fisher random variable with D and N degrees of
freedom, and we set

B(N/2,D/2) =
∫ 1

0
tN/2(1 − t)D/2 dt,(9.3)

ψD,N(t) = φ(t) − D(t − 1)2

4(D + N + 2)
for all t ≥ 1.(9.4)

The following holds.

LEMMA 6. Let D and N be two positive integers. For all x ≥ 0,

Dkhi(D,N,x) = P

(
FD+2,N ≥ x

D + 2

)
(9.5)

− x

D
P

(
FD,N+2 ≥ (N + 2)x

DN

)
.

If D ≥ 2 and x ≥ D, then

Dkhi(D,N,x)

≤ 1

B(N/2,1 + D/2)

(
N

N + x

)N/2( x

N + x

)D/2 2(2x + ND)

N(N + 2)x
(9.6)

≤
(

1 + 2x

ND

)
P

(
FD,N+2 ≥ (N + 2)x

ND

)
(9.7)

≤
(

1 + 2x

ND

)
exp

[
−DψD,N

(
(N + 2)x

ND

)]
.(9.8)
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The next lemma states similar bounds on Fish(D,N,x).

LEMMA 7. Let D and N be integer fulfilling D ≥ 1 and N ≥ 3. Then, for any
x ≥ 0,

Fish(D,N,x)
(9.9)

= P

(
FD+2,N−2 ≥ (N − 2)D

(D + 2)N
x

)
− x

N − 2

N
P(FD,N ≥ x),

where FD,N is a Fisher random variable with D and N degrees of freedom.
Moreover, when x ≥ N

N−2 and D ≥ 2, we have the upper bounds

Fish(D,N,x)

≤ 2

B(D/2,N/2)

(
N

N + Dx

)N/2( Dx

N + Dx

)D/2−1 2x + N

N2(9.10)

≤
(

1 + 2x

N

)
P(FD,N ≥ x).(9.11)

10. Proofs of propositions and corollaries.

10.1. Proof of Proposition 3. Let m ∈ M, D ∈ {0, . . . , n − 2}, N = n−D and
MD = {m ∈ M,Dm = D}. For all c ≥ 0, (4.3) implies that {m′ ∈ MD|Lm′ ≤ c} is
finite and since the map x �→ EDkhi(D + 1,N − 1, x) is decreasing, so is

{m′ ∈ MD|EDkhi(D + 1,N − 1, e−Lm′ ) ≤ c}.
It follows from the definitions of CritL and penK,L that for some nonnegative
constant c = c(Y,D,n,m),

M̄D = {m′ ∈ MD|CritL(m′) ≤ CritL(m)}
is a subset of {m′ ∈ MD|EDkhi(D + 1,N − 1, e−Lm′ ≤ c)} and is therefore also
finite. We deduce that CritL is minimum for some element of the finite set
M̄ = ⋃n−2

D=0 M̄D , thus showing that m̂ exists. The remaining part of the propo-
sition follows by taking c = 0 in Theorem 2.

10.2. Proofs of Propositions 4 and 6. Let us start with the proof of Proposi-
tion 4. We set

b(�,D,N) =
[
1 + e2�/(N+2)

√(
1 + 2D

N + 2

)
2�

D

]2

and x = Db(�,D,N) ≥ D.
Since penK,L(m) = K(N+1)

N
EDkhi(D,N, e−Lm), we obtain (4.5) by showing

the inequality EDkhi(D,N, e−Lm) ≤ x or equivalently

Dkhi(D,N,x) ≤ e−Lm.(10.1)
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Let us now turn to the proof of (10.1). Since D ≥ 2 and x ≥ D, we can ap-
ply (9.7) and get

Dkhi(D,N,x) ≤
(

1 + 2x

ND

)
P

(
FD,N+2 ≥ (N + 2)x

ND

)
≤

(
1 + 2b(�,D,N)

N

)
P
(
FD,N+2 ≥ b(�,D,N)

)
.

The deviation inequality on Fisher random variables available in Baraud, Huet and
Laurent (2003) (Lemma 1) gives with F = FD,N+2

P
(
FD,N+2 ≥ b(�,D,N)

)
≤ P

(
F ≥ 1 + 2

√(
1 + D

N + 2

)
�

D
+ e4�/(N+2)

(
1 + 2D

N + 2

)
2�

D

)

≤ P

(
F ≥ 1 + 2

√(
1 + D

N + 2

)
�

D
+

(
1 + 2D

N + 2

)
N + 2

2D

[
e4�/(N+2) − 1

])
≤ e−�

and hence,

Dkhi(D,N,x) ≤
(

1 + 2b(�,D,N)

N

)
e−�.

By using D ≥ 2 and N ≥ 6, we crudely bound b(�,D,N) from above as follows:

b(�,D,N) =
[
1 + e2�/(N+2)

√(
1 + 2D

N + 2

)
2�

D

]2

≤
[
1 + √

�

√
3

2
e4�/N

]2

≤ (1 + �)

(
1 + 3

2
e4�/N

)
≤ 5

2
(1 + �)e4�/N

and deduce

Dkhi(D,N,x) ≤
(

1 + 2b(�,D,N)

N

)
e−�

≤ 5e4�/N

(
1 + 1 + �

N

)
e−�

≤ 5e1/Ne−�(1−5/N).
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Since �(1−5/N) = Lm+ log 5+1/N , inequality (10.1) follows, thus completing
the proof of (4.5).

We turn to (4.6). When Dm = 0, we obtain (4.6) by showing (10.1) for

x = 3
[
1 + e2Lm/N

√(
1 + 6

N

)
2Lm

3

]2

.

We deduce from (9.5) that Dkhi(1,N,x) ≤ P(F3,N ≥ x/3). Again, the deviation
inequality on Fisher random variables gives, with L = Lm,

P(F3,N ≥ x/3)

= P

(
F3,N ≥

[
1 + e2L/N

√(
1 + 6

N

)
2L

3

]2)

≤ P

(
F3,N ≥ 1 + 2

√(
1 + 3

N

)
L

3
+ e4L/N

(
1 + 6

N

)
2L

3

)

≤ P

(
F3,N ≥ 1 + 2

√(
1 + 3

N

)
L

3
+

(
1 + 6

N

)
N

6
[e4L/N − 1]

)
≤ e−L,

leading to (10.1). The proof of Proposition 4 is complete.
Since the proof of Proposition 6 is similar, we only give the main steps. We set

b′(�′,D,N) =
[
1 + e2�′/N

√(
1 + 2D

N

)
2�′
D

]2

and x′ = Nb′(�′,D,N)/(N − 2) ≥ N/(N − 2). In view of (9.11) and Lemma 1
in Baraud, Huet and Laurent (2003), we have

Fish(D,N,x′) ≤
(

1 + 2b′(�′,D,N)

N − 2

)
P
(
FD,N ≥ b′(�′,D,N)

)
≤

(
1 + 2b′(�′,D,N)

N − 2

)
e−�′

.

Furthermore, when D ≥ 2 and N ≥ 8,

b′(�′,D,N) ≤ [
1 + e2�/N

√
3/2

√
�′]2 ≤ 5

2(1 + �′)e4�′/N ,

which enforces

Fish(D,N,x′) ≤ 5e1/(N−2)e−�′(1−5/(N−2)) ≤ e−Lm.

As a consequence,

penK
K1,K2,L

(m) ≤ K1K2

K2 − 1

D(N + 1)

N
EFish(D,N, e−Lm) ≤ K1K2

K2 − 1

D(N + 1)

N
x′

≤ K1K2

K2 − 1

N + 1

N − 2

[
1 + e2�′/N

√(
1 + 2D

N

)
2�′
D

]2

D.
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10.3. Proof of Corollary 2. We start with an approximation lemma.

LEMMA 8. For all f ∈ S1(q,R) and j ≥ 1 such that 1 ≤ q ≤ 2j − 1, there
exists m ∈ Mj,q and g ∈ Fm such that ‖f − g‖∞ ≤ Rq2−j .

PROOF. For j ≥ 1 and a ∈ [0,1], we define a(j) = inf{x ∈ Dj :x ≥ a}. For all
x ∈ [0,1), one can write

f (x) = f (0) +
∫ x

0

q+1∑
i=1

αi1[ai−1,ai )(t) dt.

We take for x ∈ [0,1),

g(x) = f (0) +
∫ x

0

q+1∑
i=1

αi1[a(j)
i−1,a

(j)
i )

(t) dt.

Since one may have a
(j)
i−1 = a

(j)
i for some indices i, the function g belongs to

some space Fm′ with m′ ∈ Mj,q ′ and q ′ ≤ q . By taking (any) m ∈ Mj,q such that
m′ ⊂ m, one has g ∈ Fm.

For each i ∈ {1, . . . , q + 1}, we either have ai−1 ≤ a
(j)
i−1 < ai ≤ a

(j)
i or ai−1 <

ai ≤ a
(j)
i−1 = a

(j)
i . In any case, we have

1[ai−1,ai [ − 1[a(j)
i−1,a

(j)
i [ = 1[ai−1,a

(j)
i−1[ − 1[ai ,a

(j)
i [

and consequently, for all x ∈ [0,1),

f (x) − g(x) =
∫ x

0

q+1∑
i=1

αi

(
1[ai−1,ai [(t) − 1[a(j)

i−1,a
(j)
i [(t)

)
dt

=
∫ x

0

q+1∑
i=1

αi

(
1[ai−1,a

(j)
i−1[(t) − 1[ai ,a

(j)
i [(t)

)
dt

=
∫ x

0

[ q∑
i=1

(αi+1 − αi)1[ai ,a
(j)
i [(t)

+ α11[a0,a
(j)
0 [(t) − αq+11[aq+1,a

(j)
q+1[(t)

]
dt.

Since a0 = a
(j)
0 = 0, aq+1 = a

(j)
q+1 = 1, and |a(j)

i − ai | ≤ 2−j , we obtain for f ∈
S1(q,R)

|f (x) − g(x)| ≤
q∑

i=1

|αi+1 − αi |2−j ≤ Rq2−j .
�
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We take m ∈ Mj,q as in the lemma above with j such that

2j−1 ≤ max
{
q,

√
nR2q

σ 2

}
≤ 2j .

We deduce from Proposition 4 [inequality (4.5)] that when p ≤ (κn− 2)∧ (n− 9)

and R ≤ σeκ ′n/q , we have

penK,L(m) ≤ C(K,κ)q

(
2j

q

)36q/(1−κ)n

log
(

e2j

q

)

≤ C(K,κ, κ ′)q
[
1 + log

(
1 ∨ nR2

qσ 2

)]
.

Besides,

‖μ − μm‖2

σ 2

(
1 + penK,L(m)

Nm

)
≤ nR2q22−2j

σ 2

(
1 + penK,L(m)

Nm

)

≤ q

(
1 + penK,L(m)

Nm

)

≤ C′(K,κ, κ ′)q
[
1 + log

(
1 ∨ nR2

qσ 2

)]
,

and the result follows from (4.2).

10.4. Proof of Corollary 3. We write

η =
(

Rd/ασ 2

n

)α/(2α+d)

∨
(

R(r + 1)α

(n/2)α/d

)
,

and set m = (r, k1, . . . , kd) where

ki =
⌊(

Ri

η

)1/αi
⌋
, i = 1, . . . , d.

It follows from our choice of η ≥ (R(r+1)α

(n/2)α/d )
and the assumption n ≥ 14 that

(r + 1)dk1 · · ·kd ≤ n/2 ≤ n − 2.

Moreover, under the assumptions nαR2α+d
i ≥ Rdσ 2α and nα/dRi ≥ 2α/dR(r +1)α

we have ki ≥ 1 for all i. Consequently, m ∈ M.
From formula (4.25) in Barron, Birgé and Massart (1999) we know that there

exist a constant C = C(d, r) and a piecewise polynomial P in Fm such that

‖f − P‖∞ ≤ C

d∑
i=1

Rik
−αi

i ≤ C′η.
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Moreover, since the assumptions of Proposition 4 hold, we have

penK,L(m) ≤ C(K)Lm ≤ C(K)(r + 1)dR2d/(2α+d)(n/σ 2)d/(2α+d),

where the second inequality follows from the fact that η ≥ (Rd/ασ 2

n
)α/(2α+d). It

remains to apply Theorem 2 to obtain the result.
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