

High-dimensional statistics and probability

Christophe Giraud¹, Matthieu Lerasle^{2,3} and Tristan Mary-Huard^{4,5}

- (1) Université Paris-Saclay
- (2) CNRS
- (3) ENSAE
- (4) AgroParistech
- (5) INRA Le Moulon

M2 Maths Aléa & MathSV

Informations on the course

Objective

- **①** To understand the main features of high-dimensional observations;
- To learn the mains concepts and methods to handle the curse of dimensionality;
- **③** To get prepared for a PhD in statistics or machine learning
- [MSV] Some biological illustrations by T. Mary-Huard.

- \longrightarrow conceptual and mathematical course
- \longrightarrow blackboard course (except today)

Agenda (1/2)

Structure

The course has two parts

- **Part 1** [MDA+MSV]: <u>7 weeks with C. Giraud:</u> central concepts in the simple Gaussian setting
- Part 2 [MDA]: <u>7 weeks with M. Lerasle</u>: essential probabilistic tools for stats and ML
- Part 2 [MSV]: <u>3 weeks with T. Mary-Huard</u>: supervised classification and illustrations

Agenda (2/2)

[MDA+MSV] 19/09 - 10/11

- Curse of dimensionality + principle of model selection
- 2 Model selection theory
- Information theoretic lower bounds
- Onvexification: principle and theory
- Iterative algorithms
- O Low rank regression
- False discoveries and multiple testing

MDA (Matthieu)

7 weeks on central probabilistic tools for ML and statistics

MSV (Tristan)

3 weeks on supervised classification, algorithmic aspects, and illustrations. November 17, 24 and ??.

Organisation

Organisation for the first part

 Lectures: the lectures will take place every Thursday (29/09 - 10/11) at 15h-18h30 room 0A1. A recorded version of the lectures (2020) is available on the Youtube channel

https://www.youtube.com/channel/UCDo2g5DETs2s-GKu9-jT_BQ

- Lecture notes: lectures notes are available on the website of the COURSE https://www.imo.universite-paris-saclay.fr/-giraud/Orsay/HDPS.html as well as handwritten notes for each lecture
- Exercises: the list of assigned exercises is given on the website
- December 15: exam on the first part of the course
 - 7 pt: on 1 or 2 exercises from the assigned list
 - 13pt: research problem

Learn by doing

- you follow actively the lectures:
 - you try to understand all the explanations;
 - if a point is not clear, please ask questions. You can also look back at the explanations on the lecture notes and the Youtube channel.
- you work out the lecture notes: take a pen and a sheet of paper, and redo all the computations. You have understood something, only when you are able to
 - explain it to someone else;
 - answer the question "why have we done this, instead of anything else?"
- you work out the assigned exercises.
- you interact with the others: discussing with the others is very efficient for making progress (both when explaining something, and when receiving an explanation).

(4月) (日) (日) 日

Documents

Documents

- Lecture notes: pdf & printed versions, handwritten notes
- Website of the course

https://www.imo.universite-paris-saclay.fr/~giraud/Orsay/HDPS.html

Youtube channel

https://www.youtube.com/channel/UCDo2g5DETs2s-GKu9-jT_BQ

• A wiki website for sharing solutions to the exercises http://high-dimensional-statistics.wikidot.com

Evaluation

[MDA+MSV] Exam December 15

- 1 or 2 (part of) exercises of the list (7/20)
 - list = those on the website

https://www.imo.universite-paris-saclay.fr/~giraud/Orsay/HDPS.html

- a research problem (13/20)
- you can take with you the printed lecture notes

[MDA] second evaluation in January

Project related to the material presented by Matthieu Lerasle

(*) *) *) *)

Any questions so far?

э

High-dimensional data

3. 3

High-dimension data

- biotech data (sense thousands of features)
- images (millions of pixels / voxels)
- web data
- crowdsourcing data
- etc

(c) we can sense thousands of variables on each "individual" : potentially we will be able to scan every variables that may influence the phenomenon under study.

igeneral almost impossible in high-dimensional data and computations can rapidly exceed the available resources.

Probability in high-dimension

Chapter 1

C. Giraud (Paris Saclay)

High-dimensional statistics & probability M2 Maths Aléa & MathSV 14 / 40

A ball is essentially a sphere

Volume of an Euclidean ball $B_p(0, r)$ of radius r: $V_p(r) = r^p V_p(1)$

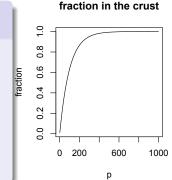
The volume of a high-dimensional ball is concentrated in its crust!

Crust:
$$C_p(r) = B_p(0,r) \setminus B_p(0,0.99r)$$

The fraction of the volume in the crust

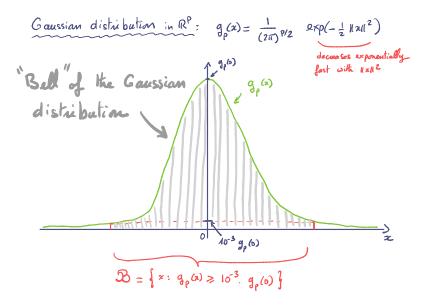
$$\frac{\text{volume}(C_p(r))}{\text{volume}(B_p(0,r))} = 1 - 0.99^p$$

goes exponentially fast to 1!



A Forget your low-dimensional intuitions!

C. Giraud (Paris Saclay)



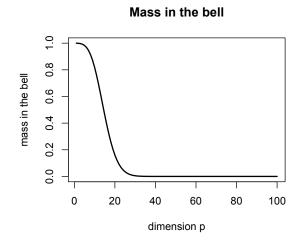


Figure: Mass of the standard Gaussian distribution $g_p(x)$ in the "bell" $\mathcal{B} = \{x \in \mathbb{R}^p : g_p(x) \ge 0.001g_p(0)\}$ for increasing dimension p.

C. Giraud (Paris Saclay)

Where is the Gaussian mass located? For $X \sim \mathcal{N}(0, I_p)$ and $\varepsilon > 0$ small

$$\begin{split} \frac{1}{\varepsilon} \mathbb{P}\left[R \le \|X\| \le R + \varepsilon\right] &= \frac{1}{\varepsilon} \int_{R \le \|x\| \le R + \varepsilon} e^{-\|x\|^2/2} \frac{dx}{(2\pi)^{p/2}} \\ &= \frac{1}{\varepsilon} \int_{R}^{R + \varepsilon} e^{-r^2/2} r^{p-1} \frac{pV_p(1) dr}{(2\pi)^{p/2}} \\ &\approx \frac{p}{2^{p/2} \Gamma(1 + p/2)} R^{p-1} \times e^{-R^2/2}. \end{split}$$

This mass is concentrated around $R^* = \sqrt{p-1}$!

Remark: the density ratio $\frac{g_p(R^*)}{g_p(0)}$ is smaller than $2e^{-p/2}$.

Concentration of the square norm Let $X \sim \mathcal{N}(0, I_p)$. We have for all $x \ge 0$ $\mathbb{P}\left[p - 2\sqrt{px} \le ||X||^2 \le p + 2\sqrt{2px} + 2x\right] \ge 1 - 2e^{-x}.$

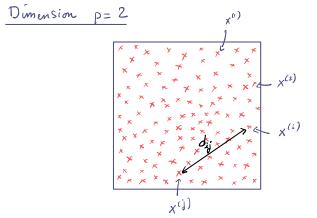
Proof: Chernoff bound (Exercise 1.6.6).

Gaussian \approx Uniform on the sphere $S(0,\sqrt{p})$

As a first approximation, the Gaussian $\mathcal{N}(0, I_p)$ distribution can be thought as a uniform distribution on the sphere of radius $\approx \sqrt{p}$!

伺 と く ヨ と く ヨ と … ヨ

We sample n = 100 data points $X^{(1)}, \ldots, X^{(n)} \stackrel{i.i.d.}{\sim} \mathcal{U}([0,1]^p)$ i.i.d. uniformly in the hypercube $[0,1]^p$.



let us look at the distribution of the pairwise distances $d_{ij} = ||X^{(i)} - X^{(j)}||$ between the points.

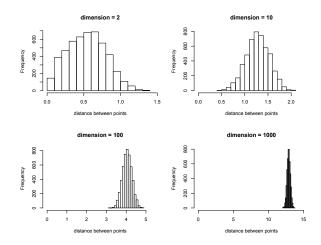


Figure: Histograms of the pairwise-distances between n = 100 points sampled uniformly in the hypercube $[0, 1]^p$, for p = 2, 10, 100 and 1000.

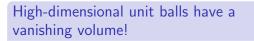
Square distances.

$$\mathbb{E}\left[\|X^{(i)} - X^{(j)}\|^2\right] = \sum_{k=1}^{p} \mathbb{E}\left[\left(X_k^{(i)} - X_k^{(j)}\right)^2\right] = p \mathbb{E}\left[(U - U')^2\right] = p/6,$$

with U, U' two independent random variables with $\mathcal{U}[0, 1]$ distribution.

Standard deviation of the square distances

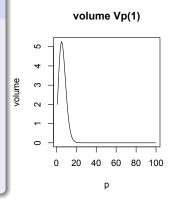
$$sdev\left[\|X^{(i)} - X^{(j)}\|^2\right] = \sqrt{\sum_{k=1}^{p} var\left[\left(X_k^{(i)} - X_k^{(j)}\right)^2\right]}$$
$$= \sqrt{\rho var\left[(U' - U)^2\right]} \approx 0.2\sqrt{\rho}$$



$$V_p(r) =$$
 volume of a ball of radius r
in dimension p
 $= r^p V_p(1)$

with

$$V_p(1) \stackrel{p o \infty}{\sim} \left(rac{2\pi e}{p}
ight)^{p/2} (p\pi)^{-1/2}.$$



Vanishing volume for
$$r \leq \sqrt{rac{p}{2\pi e}}$$
 !

Unreliable empirical covariance matrix

Empirical covariance in High-Dimension . Let X1,..., Xm NO, E) with $\Sigma = I_{P}$. Sp(Z) = (1, -, 1) (p times) . Empirical covariance $\hat{\Sigma} = \frac{1}{m} \sum_{i=1}^{m} x_i x_i^{\mathsf{T}} =$ We have same (Ê) - m $m \mathbb{E}[|\hat{\mathcal{L}}|_{\mathfrak{p}}] \geq \mathbb{E}[\mathcal{L}(\hat{\mathcal{L}})]$ $= Tr(E[\hat{z}])$ $= Tu\left(\pm \hat{Z} \mathbb{E}[X;X] \right)$ $= T_{\Lambda}(\Sigma) = p$

$$S_{o} \mathbb{E}\left[|\widehat{\Sigma}|_{op}\right] \geq \frac{p}{m} \gg 1 = |\Sigma|_{op}$$

Furthermore, we can prove (later) that $E\left[1\hat{\Sigma}l_{op}\right] \leq (1+\int_{m}^{E}\int_{m}^{2} = \frac{P}{m}(1+o(1))$ $p \gg m$

$$sp(\hat{z}) \approx \left(\underset{m}{P} (1+o(n)), \dots, \underset{m}{P} (1+o(n)) \right)$$

~ D very different from $sp(\mathcal{Z})$, so we cannot rely $m \stackrel{<}{\simeq} when p \gg m$. Take home message (so far)

In high-dimensional spaces, **be careful** not to be mislead by your low dimensional intuitions.

C. Giraud (Paris Saclay)

The curse of dimensionality

Chapter 1

C. Giraud (Paris Saclay)

High-dimensional statistics & probability M2 Maths Aléa & MathSV 26 / 40

Curse 1 : fluctuations cumulate

Example : $X^{(1)}, \ldots, X^{(n)} \in \mathbb{R}^p$ i.i.d. with $cov(X) = \sigma^2 I_p$. We want to estimate $\mathbb{E}[X]$ with the sample mean

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X^{(i)}.$$

Then

$$\mathbb{E}\left[\|\bar{X}_n - \mathbb{E}\left[X\right]\|^2\right] = \sum_{j=1}^{p} \mathbb{E}\left[\left([\bar{X}_n]_j - \mathbb{E}\left[X_j\right]\right)^2\right]$$
$$= \sum_{j=1}^{p} \operatorname{var}\left([\bar{X}_n]_j\right) = \frac{p}{n}\sigma^2.$$

 \odot It can be huge when $p \gg n...$

Curse 2 : local averaging is ineffective (in general)

Observations $(Y_i, X^{(i)}) \in \mathbb{R} \times [0, 1]^p$ for i = 1, ..., n.

Model: $Y_i = f(X^{(i)}) + \varepsilon_i$ with f smooth. assume that $(Y_i, X^{(i)})_{i=1,...,n}$ i.i.d. and that $X^{(i)} \sim \mathcal{U}([0,1]^p)$

Local averaging: $\hat{f}(x) = \text{average of } \{Y_i : X^{(i)} \text{ close to } x\}$

Problem: for $x \in [0, 1]^p$, we have

$$\mathbb{P}\left[\exists i=1,\ldots,n:\|x-X_i\|\leq\delta\right] \leq n \mathbb{P}\left[\|x-X_1\|\leq\delta\right] \leq n V_p(\delta)$$
$$\approx n \left(\frac{2\pi e}{p}\right)^{p/2} \frac{\delta^p}{\sqrt{\pi p}}.$$

which goes more than exponentially fast to 0 when $p \to \infty$.

Curse 2 : local averaging is ineffective

Which sample size to avoid the lost of locality?

Number *n* of points x_1, \ldots, x_n required for having at least one observation at distance $\delta = 1$ with probability 1/2:

$$n \geq rac{1}{2V_p(1)} \stackrel{p o \infty}{\sim} \left(rac{p}{2\pi e}
ight)^{p/2} \sqrt{rac{p\pi}{4}}$$

p	20	30	50	100	200
n	39	45630	5.7 10 ¹²	42 10 ³⁹	larger than the estimated number of particles in the observable universe

Curse 3: weak signals are lost

Finding active genes: we observe n repetitions for p genes

$$Z_j^{(i)} = heta_j + arepsilon_j^{(i)}, \quad j = 1, \dots, p, \quad i = 1, \dots, n,$$

with the $\varepsilon_j^{(i)}$ i.i.d. with $\mathcal{N}(0, \sigma^2)$ Gaussian distribution. **Our goal:** find which genes have $\theta_i \neq 0$

For a single gene

Set

$$X_j = n^{-1/2} (Z_j^{(1)} + \ldots + Z_j^{(n)}) \sim \mathcal{N}(\sqrt{n}\theta_j, \sigma^2)$$

Since $\mathbb{P}\left[|\mathcal{N}(0,\sigma^2)| \geq 2\sigma\right] \leq 0.05$, we can detect the active gene with X_j when

$$|\theta_j| \ge \frac{2\sigma}{\sqrt{n}}$$

Curse 3: weak signals are lost

Maximum of Gaussian For W_1, \ldots, W_p i.i.d. with $\mathcal{N}(0, \sigma^2)$ distribution, we have $\max_{j=1,\ldots,p} W_j \approx \sigma \sqrt{2\log(p)}.$

Consequence: When we consider the *p* genes together, we need a signal of order

$$| heta_j| \geq \sigma \sqrt{rac{2\log(p)}{n}}$$

in order to dominate the noise 😊

- Curse 6 : an accumulation of rare events may not be rare (false discoveries, etc)
- Curse 7 : algorithmic complexity must remain low.

When p is large, an algorithmic complexity larger than $O(p^2)$ is computationally prohibitive. For very large p, even a complexity $O(p^2)$ can be an issue...

etc

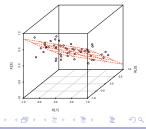
Low-dimensional structures in high-dimensional data Hopeless?

Low dimensional structures : high-dimensional data are usually concentrated around low-dimensional structures reflecting the (relatively) small complexity of the systems producing the data

- geometrical structures in an image,
- regulation network of a "biological system",
- social structures in marketing data,
- human technologies have limited complexity, etc.

Dimension reduction :

- "unsupervised" (PCA)
- "supervised"

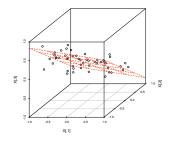


Principal Component Analysis

For any data points $X^{(1)}, \ldots, X^{(n)} \in \mathbb{R}^p$ and any dimension $d \leq p$, the PCA computes the linear span in \mathbb{R}^p

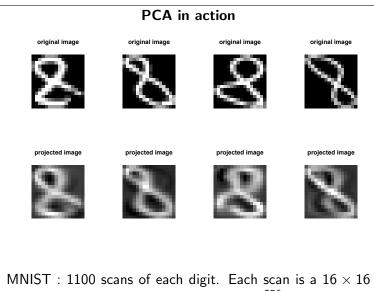
$$V_d \in \operatorname{argmin}_{\dim(V) \le d} \quad \sum_{i=1}^n \|X^{(i)} - \operatorname{Proj}_V X^{(i)}\|^2,$$

where Proj_V is the orthogonal projection matrix onto V.



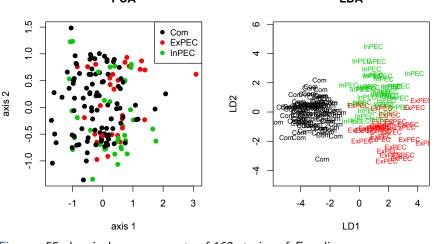
 V_2 in dimension p = 3.

Recap on PCA Exercise 1.6.4



MNIST : 1100 scans of each digit. Each scan is a 16×16 image which is encoded by a vector in \mathbb{R}^{256} . The original images are displayed in the first row, their projection onto 10 first principal axes in the second row.

"Supervised" dimension reduction



PCA

LDA

 Figure: 55 chemical measurements of 162 strains of *E. coli*.

 Left : the data is projected on the plane given by a PCA.

 Right : the data is projected on the plane given by a LDA.

 C. Giraud (Paris Saclay)

 High-dimensional statistics & probability

 M2 Maths Aléa & MathSV

 36 / 40

Summary

Statistical difficulty

- high-dimensional data
- relatively small sample size

Good feature

Data usually generated by a large stochastic system

- existence of low dimensional structures
- (sometimes: expert models)

The way to success

Finding, from the data, the hidden structure in order to exploit them.

Paradigm shift

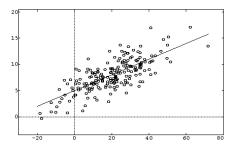
Chapter 1

3. 3

Paradigm shift

Classical statistics:

- small number p of parameters
- large number *n* of observations
- we investigate the performances of the estimators when $n \to \infty$ (central limit theorem...)



Paradigm shift

Classical statistics:

- small number p of parameters
- large number *n* of observations
- we investigate the performances of the estimators when $n \to \infty$ (central limit theorem...)

Actual data:

- inflation of the number p of parameters
- small sample size: $n \approx p$ ou $n \ll p$

 $\implies \text{Change our point of view on statistics!}$ (the $n \to \infty$ asymptotic does not fit anymore)

Statistical settings

- double asymptotic: both $n, p \rightarrow \infty$ with $p \sim g(n)$
- non asymptotic: treat n and p as they are

Double asymptotic

- more easy to analyse, sharp results (2)
- but sensitive to the choice of g \bigcirc

ex: if n = 33 and p = 1000, do we have $g(n) = n^2$ or $g(n) = e^{n/5}$?

Non-asymptotic

- no ambiguity 🙂
- but the analysis is more involved (based on concentration inequalities)

・ 同 ト ・ ヨ ト ・ ヨ