High-dimensional statistics and probability

Christophe Giraud ${ }^{1}$, Matthieu Lerasle ${ }^{2,3}$ and Tristan Mary-Huard ${ }^{4,5}$
(1) Université Paris-Saclay
(2) CNRS
(3) ENSAE
(4) AgroParistech
(5) INRA - Le Moulon

M2 Maths Aléa \& MathSV

Informations on the course

Objective

(1) To understand the main features of high-dimensional observations;
(2) To learn the mains concepts and methods to handle the curse of dimensionality;
(3) To get prepared for a PhD in statistics or machine learning
(9) [MSV] Some biological illustrations by T. Mary-Huard.
\longrightarrow conceptual and mathematical course
\longrightarrow blackboard course (except today)

Agenda (1/2)

Structure

The course has two parts

- Part 1 [MDA+MSV]: 7 weeks with C. Giraud: central concepts in the simple Gaussian setting
- Part 2 [MDA]: 7 weeks with M. Lerasle: essential probabilistic tools for stats and ML
- Part 2 [MSV]: 3 weeks with T. Mary-Huard: supervised classification and illustrations

Agenda (2/2)

[MDA+MSV] 19/09 - 10/11

(1) Curse of dimensionality + principle of model selection
(2) Model selection theory
(3) Information theoretic lower bounds
(9) Convexification: principle and theory
(3) Iterative algorithms
(6) Low rank regression
(O) False discoveries and multiple testing

MDA (Matthieu)

7 weeks on central probabilistic tools for ML and statistics

MSV (Tristan)

3 weeks on supervised classification, algorithmic aspects, and illustrations. November 17, 24 and ??.

Organisation

Organisation for the first part

- Lectures: the lectures will take place every Thursday (29/09-10/11) at $15 \mathrm{~h}-18 \mathrm{~h} 30$ room 0A1. A recorded version of the lectures (2020) is available on the Youtube channel
https://www.youtube.com/channel/UCDo2g5DETs2s-GKu9-jT_BQ
- Lecture notes: lectures notes are available on the website of the course https://www.imo.universite-paris-saclay.fr/~giraud/Orsay/HDPS.html as well as handwritten notes for each lecture
- Exercises: the list of assigned exercises is given on the website
- December 15: exam on the first part of the course

7 pt: on 1 or 2 exercises from the assigned list
13pt: research problem

Learn by doing

- you follow actively the lectures: you try to understand all the explanations; if a point is not clear, please ask questions. You can also look back at the explanations on the lecture notes and the Youtube channel.
- you work out the lecture notes: take a pen and a sheet of paper, and redo all the computations. You have understood something, only when you are able to
explain it to someone else; answer the question "why have we done this, instead of anything else?"
- you work out the assigned exercises.
- you interact with the others: discussing with the others is very efficient for making progress (both when explaining something, and when receiving an explanation).

Documents

Documents

- Lecture notes: pdf \& printed versions, handwritten notes
- Website of the course
https://www.imo.universite-paris-saclay.fr/~giraud/Orsay/HDPS.html
- Youtube channel https://www.youtube.com/channel/UCDo2g5DETs2s-GKu9-jT_BQ
- A wiki website for sharing solutions to the exercises http://high-dimensional-statistics.wikidot.com

Evaluation

[MDA+MSV] Exam December 15

- 1 or 2 (part of) exercises of the list $(7 / 20)$
- list = those on the website
https://www.imo.universite-paris-saclay.fr/~giraud/Orsay/HDPS.html
- a research problem $(13 / 20)$
- you can take with you the printed lecture notes

[MDA] second evaluation in January

Project related to the material presented by Matthieu Lerasle

Any questions so far?

High-dimensional data

High-dimension data

- biotech data (sense thousands of features)
- images (millions of pixels / voxels)
- web data
- crowdsourcing data
- etc

Blessing?

© we can sense thousands of variables on each "individual" : potentially we will be able to scan every variables that may influence the phenomenon under study.
; the curse of dimensionality : separating the signal from the noise is in general almost impossible in high-dimensional data and computations can rapidly exceed the available resources.

Probability in high-dimension

Chapter 1

A ball is essentially a sphere

Volume of an Euclidean ball $B_{p}(0, r)$ of radius $r: \quad V_{p}(r)=r^{p} V_{p}(1)$

The volume of a high-dimensional ball is concentrated in its crust!

Crust: $C_{p}(r)=B_{p}(0, r) \backslash B_{p}(0,0.99 r)$
The fraction of the volume in the crust

$$
\frac{\text { volume }\left(C_{p}(r)\right)}{\operatorname{volume}\left(B_{p}(0, r)\right)}=1-0.99^{p}
$$

goes exponentially fast to 1 !
fraction in the crust

Forget your low-dimensional intuitions!

Thin tails can concentrate the mass!
Gaussian distribution in $R^{p}: \quad g_{p}(x)=\frac{1}{(2 \pi)^{p / 2}} \exp \left(-\frac{1}{2}\|x\|^{2}\right)$

Thin tails can concentrate the mass!

Mass in the bell

Figure: Mass of the standard Gaussian distribution $g_{p}(x)$ in the "bell" $\mathcal{B}=\left\{x \in \mathbb{R}^{p}: g_{p}(x) \geq 0.001 g_{p}(0)\right\}$ for increasing dimension p.

Thin tails can concentrate the mass!

Where is the Gaussian mass located?
For $X \sim \mathcal{N}\left(0, I_{p}\right)$ and $\varepsilon>0$ small

$$
\begin{aligned}
\frac{1}{\varepsilon} \mathbb{P}[R \leq\|X\| \leq R+\varepsilon] & =\frac{1}{\varepsilon} \int_{R \leq\|x\| \leq R+\varepsilon} e^{-\|x\|^{2} / 2} \frac{d x}{(2 \pi)^{p / 2}} \\
& =\frac{1}{\varepsilon} \int_{R}^{R+\varepsilon} e^{-r^{2} / 2} r^{p-1} \frac{p V_{p}(1) d r}{(2 \pi)^{p / 2}} \\
& \approx \frac{p}{2^{p / 2} \Gamma(1+p / 2)} R^{p-1} \times e^{-R^{2} / 2}
\end{aligned}
$$

This mass is concentrated around $R^{*}=\sqrt{p-1}$!

Remark: the density ratio $\frac{g_{\rho}\left(R^{*}\right)}{g_{\rho}(0)}$ is smaller than $2 e^{-p / 2}$.

Thin tails can concentrate the mass!

Concentration of the square norm
Let $X \sim \mathcal{N}\left(0, I_{p}\right)$. We have for all $x \geq 0$

$$
\mathbb{P}\left[p-2 \sqrt{p x} \leq\|X\|^{2} \leq p+2 \sqrt{2 p x}+2 x\right] \geq 1-2 e^{-x} .
$$

Proof: Chernoff bound (Exercise 1.6.6).

Gaussian \approx Uniform on the sphere $S(0, \sqrt{p})$
As a first approximation, the Gaussian $\mathcal{N}\left(0, I_{p}\right)$ distribution can be thought as a uniform distribution on the sphere of radius $\approx \sqrt{p}$!

Lost in high-dimensional spaces

We sample $n=100$ data points $X^{(1)}, \ldots, X^{(n)} \stackrel{\text { i.i.d. }}{\sim} \mathcal{U}\left([0,1]^{p}\right)$ i.i.d. uniformly in the hypercube $[0,1]^{p}$.

let us look at the distribution of the pairwise distances $d_{i j}=\left\|X^{(i)}-X^{(j)}\right\|$ between the points.

Lost in high-dimensional spaces

Figure: Histograms of the pairwise-distances between $n=100$ points sampled uniformly in the hypercube $[0,1]^{p}$, for $p=2,10,100$ and 1000 .

Lost in high-dimensional spaces

Square distances.

$$
\mathbb{E}\left[\left\|X^{(i)}-X^{(j)}\right\|^{2}\right]=\sum_{k=1}^{p} \mathbb{E}\left[\left(X_{k}^{(i)}-X_{k}^{(j)}\right)^{2}\right]=p \mathbb{E}\left[\left(U-U^{\prime}\right)^{2}\right]=p / 6
$$

with U, U^{\prime} two independent random variables with $\mathcal{U}[0,1]$ distribution.

Standard deviation of the square distances

$$
\begin{aligned}
\operatorname{sdev}\left[\left\|X^{(i)}-X^{(j)}\right\|^{2}\right] & =\sqrt{\sum_{k=1}^{p} \operatorname{var}\left[\left(X_{k}^{(i)}-X_{k}^{(j)}\right)^{2}\right]} \\
& =\sqrt{p \operatorname{var}\left[\left(U^{\prime}-U\right)^{2}\right]} \approx 0.2 \sqrt{p}
\end{aligned}
$$

Lost in high-dimensional spaces

High-dimensional unit balls have a vanishing volume!

$$
\begin{aligned}
V_{p}(r)= & \text { volume of a ball of radius } r \\
& \text { in dimension } p \\
= & r^{p} V_{p}(1)
\end{aligned}
$$

with

$$
V_{p}(1) \stackrel{p \rightarrow \infty}{\sim}\left(\frac{2 \pi e}{p}\right)^{p / 2}(p \pi)^{-1 / 2}
$$

volume $\mathrm{Vp}(1)$

Vanishing volume for $r \leq \sqrt{\frac{p}{2 \pi e}}$!

Unreliable empirical covariance matrix

Empirical covariance in High -Dimension
. Let $x_{1}, \ldots, x_{m} \stackrel{\text { iid }}{\sim} \mathcal{N}(0, \Sigma)$ with $\Sigma=I_{p}$.

- $S_{p}(\Sigma)=(1, \sim, 1) \quad$ (p times)

Empirical covariance

$$
\hat{\Sigma}=\frac{1}{m} \sum_{i=1}^{m} x_{i} x_{i}^{\top}
$$

We have $\operatorname{rank}(\hat{\Sigma})=m$ so

$$
\begin{aligned}
m \mathbb{E}\left[|\hat{\Sigma}|_{o p}\right] & \geqslant \mathbb{E}\left[T_{r}(\hat{\Sigma})\right] \\
& =\operatorname{Tr}(\mathbb{E}[\hat{\Sigma}]) \\
& =\operatorname{Tr}(\frac{1}{n} \sum_{i=1}^{m} \underbrace{\left.\mathbb{E}\left[x_{i} x_{i}^{\top}\right]\right)}_{=\Sigma} \\
& =\operatorname{Tr}(\Sigma)=p
\end{aligned}
$$

So $\mathbb{E}\left[|\hat{\Sigma}|_{o p}\right] \geqslant \frac{p}{m} \gg 1=\mid \Sigma l_{o p}$

$$
\text { if } p \gg n
$$

- Furthermore, we can prove (later) that

$$
\mathbb{E}\left[|\hat{\Sigma}|_{o p}\right] \leqslant\left(1+\sqrt{\frac{p}{m}}\right)^{2}=\frac{p}{m}(1+o(1))
$$

So

$$
S_{p>n}\left(\hat{\sum}\right) \approx(\underbrace{\frac{p}{m}\left(1+o(1), \ldots, \frac{p}{n}(1+o(1))\right)}_{n \text { times }}
$$

\leadsto very different from $\operatorname{sp}(\Sigma)$,
So we cannot rely on $\hat{\sum}$ when $p \gg m$.

Take home message (so far)

In high-dimensional spaces, be careful

not to be mislead by
your low dimensional intuitions.

The curse of dimensionality

Chapter 1

Curse 1: fluctuations cumulate

Example : $X^{(1)}, \ldots, X^{(n)} \in \mathbb{R}^{p}$ i.i.d. with $\operatorname{cov}(X)=\sigma^{2} I_{p}$. We want to estimate $\mathbb{E}[X]$ with the sample mean

$$
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X^{(i)}
$$

Then

$$
\begin{aligned}
\mathbb{E}\left[\left\|\bar{X}_{n}-\mathbb{E}[X]\right\|^{2}\right] & =\sum_{j=1}^{p} \mathbb{E}\left[\left(\left[\bar{X}_{n}\right]_{j}-\mathbb{E}\left[X_{j}\right]\right)^{2}\right] \\
& =\sum_{j=1}^{p} \operatorname{var}\left(\left[\bar{X}_{n}\right]_{j}\right)=\frac{p}{n} \sigma^{2}
\end{aligned}
$$

(;) It can be huge when $p \gg n \ldots$

Curse 2 : local averaging is ineffective (in general)

Observations $\left(Y_{i}, X^{(i)}\right) \in \mathbb{R} \times[0,1]^{p}$ for $i=1, \ldots, n$.
Model: $Y_{i}=f\left(X^{(i)}\right)+\varepsilon_{i}$ with f smooth.
assume that $\left(Y_{i}, X^{(i)}\right)_{i=1, \ldots, n}$ i.i.d. and that $X^{(i)} \sim \mathcal{U}\left([0,1]^{p}\right)$
Local averaging: $\widehat{f}(x)=$ average of $\left\{Y_{i}: X^{(i)}\right.$ close to $\left.x\right\}$
Problem: for $x \in[0,1]^{p}$, we have

$$
\begin{aligned}
\mathbb{P}\left[\exists i=1, \ldots, n:\left\|x-X_{i}\right\| \leq \delta\right] & \leq n \mathbb{P}\left[\left\|x-X_{1}\right\| \leq \delta\right] \leq n V_{p}(\delta) \\
& \approx n\left(\frac{2 \pi e}{p}\right)^{p / 2} \frac{\delta^{p}}{\sqrt{\pi p}}
\end{aligned}
$$

which goes more than exponentially fast to 0 when $p \rightarrow \infty$.

Curse 2 : local averaging is ineffective

Which sample size to avoid the lost of locality?
Number n of points x_{1}, \ldots, x_{n} required for having at least one observation at distance $\delta=1$ with probability $1 / 2$:

$$
n \geq \frac{1}{2 V_{p}(1)} \stackrel{p \rightarrow \infty}{\sim}\left(\frac{p}{2 \pi e}\right)^{p / 2} \sqrt{\frac{p \pi}{4}}
$$

p	20	30	50	100	200
n	39	45630	5.710^{12}	4210^{39}	larger than the estimated number of particles in the observable universe

Curse 3: weak signals are lost

Finding active genes: we observe n repetitions for p genes

$$
Z_{j}^{(i)}=\theta_{j}+\varepsilon_{j}^{(i)}, \quad j=1, \ldots, p, \quad i=1, \ldots, n,
$$

with the $\varepsilon_{j}^{(i)}$ i.i.d. with $\mathcal{N}\left(0, \sigma^{2}\right)$ Gaussian distribution.
Our goal: find which genes have $\theta_{j} \neq 0$

For a single gene
Set

$$
X_{j}=n^{-1 / 2}\left(Z_{j}^{(1)}+\ldots+Z_{j}^{(n)}\right) \sim \mathcal{N}\left(\sqrt{n} \theta_{j}, \sigma^{2}\right)
$$

Since $\mathbb{P}\left[\left|\mathcal{N}\left(0, \sigma^{2}\right)\right| \geq 2 \sigma\right] \leq 0.05$, we can detect the active gene with X_{j} when

$$
\left|\theta_{j}\right| \geq \frac{2 \sigma}{\sqrt{n}}
$$

Curse 3: weak signals are lost

Maximum of Gaussian
For W_{1}, \ldots, W_{p} i.i.d. with $\mathcal{N}\left(0, \sigma^{2}\right)$ distribution, we have

$$
\max _{j=1, \ldots, p} W_{j} \approx \sigma \sqrt{2 \log (p)} .
$$

Consequence: When we consider the p genes together, we need a signal of order

$$
\left|\theta_{j}\right| \geq \sigma \sqrt{\frac{2 \log (p)}{n}}
$$

in order to dominate the noise $\cdot($

Some other curses

- Curse 6 : an accumulation of rare events may not be rare (false discoveries, etc)
- Curse 7 : algorithmic complexity must remain low.

When p is large, an algorithmic complexity larger than $O\left(p^{2}\right)$ is computationally prohibitive. For very large p, even a complexity $O\left(p^{2}\right)$ can be an issue...

- etc

Low-dimensional structures in high-dimensional data

 Hopeless?Low dimensional structures : high-dimensional data are usually concentrated around low-dimensional structures reflecting the (relatively) small complexity of the systems producing the data

- geometrical structures in an image,
- regulation network of a "biological system",
- social structures in marketing data,
- human technologies have limited complexity, etc.

Dimension reduction :

- "unsupervised" (PCA)
- "supervised"

Principal Component Analysis

For any data points $X^{(1)}, \ldots, X^{(n)} \in \mathbb{R}^{p}$ and any dimension $d \leq p$, the PCA computes the linear span in \mathbb{R}^{p}

$$
V_{d} \in \underset{\operatorname{dim}(V) \leq d}{\operatorname{argmin}} \sum_{i=1}^{n}\left\|X^{(i)}-\operatorname{Proj}_{V} X^{(i)}\right\|^{2}
$$

where Proj_{V} is the orthogonal projection matrix onto V.

V_{2} in dimension $p=3$.

Recap on PCA

Exercise 1.6.4

PCA in action

original image

original image
projected image

projected image

original image

projected image

original image

projected image

MNIST : 1100 scans of each digit. Each scan is a 16×16 image which is encoded by a vector in \mathbb{R}^{256}. The original images are displayed in the first row, their projection onto 10 first principal axes in the second row.

"Supervised" dimension reduction

Figure: 55 chemical measurements of 162 strains of E. coli.
Left : the data is projected on the plane given by a PCA.
Right : the data is projected on the plane given by a LDA.

Summary

Statistical difficulty

- high-dimensional data
- relatively small sample size

Good feature
Data usually generated by a large stochastic system

- existence of low dimensional structures
- (sometimes: expert models)

The way to success
Finding, from the data, the hidden structure in order to exploit them.

Paradigm shift

Chapter 1

Paradigm shift

Classical statistics:

- small number p of parameters
- large number n of observations
- we investigate the performances of the estimators when $n \rightarrow \infty$ (central limit theorem...)

Paradigm shift

Classical statistics:

- small number p of parameters
- large number n of observations
- we investigate the performances of the estimators when $n \rightarrow \infty$ (central limit theorem...)

Actual data:

- inflation of the number p of parameters
- small sample size: $n \approx p$ ou $n \ll p$
\Longrightarrow Change our point of view on statistics! (the $n \rightarrow \infty$ asymptotic does not fit anymore)

Statistical settings

- double asymptotic: both $n, p \rightarrow \infty$ with $p \sim g(n)$
- non asymptotic: treat n and p as they are

Double asymptotic

- more easy to analyse, sharp results ()
- but sensitive to the choice of $g \odot$
ex: if $n=33$ and $p=1000$, do we have $g(n)=n^{2}$ or $g(n)=e^{n / 5}$?

Non-asymptotic

- no ambiguity $)$
- but the analysis is more involved $)^{-}$
(based on concentration inequalities)

