

Robust regression

Christophe Giraud

Université Paris-Sud

M2 DS

Christophe Giraud (Paris Sud)

Theoretical guidelines

M2 DS 1 / 8

1/8

<ロ> (四) (四) (三) (三) (三) (三)

Don't trust too much theoreticians' fables

2/8

The theoretical / practical gap

Typical assumptions in statistical learning theory

- observations $(X_i, Y_i)_{i=1...,n}$ i.i.d.
- large sample size asymptotic $(n o \infty)$ or sub-Gaussian "errors" $\mathbb{P}\left(|arepsilon| > x
 ight) \leq e^{-x^2/2}$

Yet, when data are collected in a poorly controlled way, it is not likely to be true...

Contaminated data

What happens when a fraction of the data is spurious?

Typically, what if you have some "good" data $(X_i, Y_i)_{i=1...,n_G}$ mixed with some "junk" data $(X_i, Y_i)_{i=1,...,n_J}$?

- are the estimators stable?
- at which fraction $n_J/(n_J + n_G)$ of spurious data does an algorithm breakdown?

Example of (badly) contaminated data

Classification problem with a small fraction of spurious data

- 3 5/8 M2 DS

5/8

(a)

Classical algorithms versus robustified version

M2 DS 6

6/8 6 / 8

Error with heavy tails

What happens when the errors have heavy tails?

Typically, what if we only have $\mathbb{P}(|\varepsilon| > x) \le c/x^{1+\delta}$? Or if we only have $\mathbb{E}\left[|\varepsilon|^{1+\delta}\right] < +\infty$?

• are the classical estimators stable?

• what is the best that we can do?

Topics of the day

Plan

- starter: estimation of mean in presence of heavy tails
- robust regression with Huber loss
- Discussion of the paper: Adaptive Huber Regression: Optimality and Phase Transition

8/8