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Chapter 1

Introduction

1.1 From genomics to functional genomics

1.1.1 The basics of molecular genetic studies

The basics of molecular biology has been summarized in a concept called the Central
Dogma of Molecular Biology. DNA molecules contain biological informations coded in an
alphabet of four letters, A (Adenosine), T (Thymine), C (Cytosine), G (Guanine). The
succession of these letters is referred as a sequence of DNA that constitutes the complete
genetic information defining the structure and function of an organism.

Proteins can be viewed as effectors of the genetic information contained in DNA coding
sequences. They are formed using the genetic code of the DNA to convert the informa-
tion contained in the 4 letter alphabet into a new alphabet of 20 amino acids. Despite
an apparent simplicity of this translation procedure, the conversion of the DNA-based
information requires two steps in eucariotyc cells since the genetic material in the nucleus
is physically separated from the site of protein synthesis in the cytoplasm of the cell.
Transcription constitutes the intermediate step, where a DNA segment that constitutes a
gene is read and transcribed into a single stranded molecule of RNA (the 4 letter alphabet
remains with the replacement of Thymine molecules by Uracyle molecules). RNAs that
contain information to be translated into proteins are called messenger RNAs, since they
constitute the physical vector that carry the genetic information form the nucleus to the
cytoplasm where it is translated into proteins via molecules called ribosomes (figure 1.1).

Biological information is contained in the DNA molecule that can be viewed as a
template, then in the RNA sequence that is a vector, and in proteins which constitute
effectors. These three levels of information constitute the fundamental material for the
study of the genetic information contained in any organism:

1 - Finding coding sequences in the DNA,
2 - Measuring the abundance of RNAs,
3 - Studing the diversity of Proteins.
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Figure 1.1: The central dogma of molecular biology

1.1.2 The success of sequencing projects

In the past decades, considerable effort has been made in the collection and in the dissem-
ination of DNA sequences informations, through initiatives such as the Human Genome
Project 1. The explosion of sequence based informations is illustrated by the sequencing
of the genome of more than 800 organisms, that represents more than 3.5 million genetic
sequences deposited in international repositories (Butte (2002)). The aim of this first
phase of the genomic area consisted in the elucidation of the exact sequence of the nu-
cleotides in the DNA code, that has allowed the search for coding sequences diluted all
along the genomes, via automatic annotation. Nevertheless there is no strict correspon-
dance between the information contained in the DNA and the effective biological activity
of proteins. In a more general point of view genotype and phenotype do not correspond
strictly, due to the physical specificity of genomes which has a dynamic structure (Pollack
and Iyer (2003)), and also due to environmental influences. This explains why there is
now a considerable desequilibrium between the number of identified sequences, and the
understanding of their biological functions, that remain unknown for most of the genes.
The next logical step is then to discover the underlying biological informations contained
in the succession of nucleotides that has been read through sequencing projects. Attention
has now focused on functional genomics, that aims at determining the functions of the
thousands of genes previously sequenced.

1http://www.ornl.gov/sci/techresources/Human Genome/home.shtml
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1.1.3 Aims of functional genomics

Assessing the function of genes can be tackled by different approaches. It can be predicted
through homology to genes with functions that are better known, possibly from other or-
ganisms. This is the purpose of comparative genomics. An other way to determine the
function of genes is through repeated measurements of their RNA transcripts. Investiga-
tors now want to know which genes are responsible for important healthy functions and
which, when damaged, contribute to diseases. Accordingly, the new field of functional
genomics focuses on the expression of DNA. To that extend, functional genomics has been
divided into two major fields : transcriptomics and proteomics.

1.2 A new technology for transcriptome studies

The study of the transcriptome requires the measurement of the quantity of the messen-
ger RNAs of thousands of genes simultaneously. As sequencing projects needed a new
technology for ”en masse” sequencing, the field of transcriptomics has explosed with the
progress made in the development of technologies that merge inventions from the semi-
conductor and computer industry with laser engineering (Duggan et al. (1999)). Various
techniques have been developped to exploit the growing number of sequence based data,
like Serial Analysis of Gene Expression (SAGE) for instance (Boheler and Stern (2003)),
and microarrays have become the standard tool for the understanding of gene functions,
regulations and interactions.

1.2.1 The potential of transcriptome studies

More than the direct interest of transcriptome studies in fundamental biology, high
throughput functional genomic technologies now provide new potentialities in areas as
diverse as pharmacogenomics and target selectivity, pronostic and biomarkers determi-
nation, and disease subclass discovery. In the first case, gene expression profiles can be
used to characterize the genomic effects of an exposure of an organism to different doses
of drugs, and to classify therapeutic targets according to the gene expression patterns
they provoke. Then gene expression profiling can be used to find genes that distinguish a
disease from an other, and that correlate and predict the disease progression (Golub et al.
(1999b)). In the latter situation, the classical classification of diseases based on morpho-
logical and histological characteristics could be refined using genetic profile classification
(Alizadeh et al. (2000)). Since the cost of microarrays continues to drop, their potential-
ities could be widely used in personnalized medicine, in order to adapt treatments to the
genetics of individual patients.

1.2.2 The basis of microarray experiments

The basics of microarray experiments take advantage of the physical and chemical proper-
ties of the DNA molecules. A DNA molecule is composed of two complementary strands.
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Each strand can bind with its template molecule, but not with templates whose sequences
are very different from its own. Since the sequences of thousands of different genes are
known and stored in public data bases, they will be used as template, or probes, and fixed
on a support. The DNA spots adhere on a slide, each spot being either a cloned DNA
sequence with known function or genes with unknown function. In parallel, RNAs are
extracted from biological samples, converted into complementary DNAs (cDNAs), ampli-
fied and labelled with fluorescent dyes (called Cy3 and Cy5) or with radioactivity. This
mixture of transcripts, or targets, is hybridized on the chip, and cDNAs can bind their
complementary template. Since probes are uniquelly localized on the slide, the quantifi-
cation of the fluorescence signals on the chip will define a measurement of the abundance
of thousands of transcripts in a cell in a given condition. See Duggan et al. (1999) and
references therein for details concerning the construction of microarrays.

1.2.3 Different types of microarrays

Selecting the arrayed probes is then the first step in any microarray assay : it is crucial
to start with a well characterized and annotated set of hybridization probes. The direct
amplification of genomic gene specific probes can be accomplished for prokaryotes and
simple eukaryotes, but remains impossible for most of eukaryotic genomes, since the large
number of genes, the existence of introns, and the lack of a complete genome sequence
makes direct amplification impracticable. For these species, EST data can be viewed as
a representation of the transcribed portion of the genome, and the cDNA clones from
which the ESTs are derived have become the primary reagents for expression analysis.
For other array based assays, such as Affimetrix Genechips assays, little information is
provided concerning the probe set, and the researcher is dependent on the annotation
given by the manufacturer. Nevertheless, probes are designed to be theoretically similar
with regard to hybridization temperature and binding affinity, that makes possible the
absolute quantification of transcript quantities, and the direct comparison of results be-
tween laboratories (this is also the case for membrane experiments). On the contrary, for
cDNA microarrays, each probe has its own hybridization characteristic, that hampers the
absolute quantification of transcripts quantity. To that extend cDNA microarray assays
will necessarily require two biological samples, referred as the test and the reference sam-
ple, that will be differentially labelled by fluorescent dyes, and competively hybridized on
the chip to provide a relative measurement of the transcripts quantity. The comparison
between different microarray technologies is given in table 1.1.

1.2.4 Data collection

After biological experiments and hybridizations are performed, the fluorescence intensities
have to be measured with a scanner. This image acquisition and data collection step can
be divided into four parts (Leung and Cavalieri (2003)). The first step is the image
acquisition by scanners, independently for the two conditions present on the slide. The
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oligo-arrays cDNA arrays nylon membrane
support of the probes glass slide glass slide nylon membrane
density of the probes (/cm2) ∼ 1000 ∼ 1000 ∼ 10
type of probes oligonucleotides cDNAs cDNAs
labelling fluorescence fluorescence radioactivity
number of condition on the slide 1 2 1

Table 1.1: Comparison of different types of arrays. The ratio of densities between mem-
branes and slides is 1/100 but the ratio of the number of genes is rather 1/10 since nylon
membranes are bigger in size.

Oligoarray cDNA array Nylon membrane

Figure 1.2: Comparison of acquired images for different arrays

quality of the slide is essential in this step, since once an array has been imaged, all
data, high or poor quality are essentially fixed. The second step consists in the spot
recognition or gridding. Automatic procedures are used to localize the spots on the image,
but a manual adjustment is often needed to the recognition of low quality spots, that are
flagged and often eliminated. Then the image is segmented to differentiate the foreground
pixels in a spot grid from the background pixels. The quality of the image is crucial in
this step, since poor quality images will result in various spot morphologies. After the
spots have been segmented, the pixel intensities within the foreground and background
masks are averaged separately to give the foreground and background intensities. After
the image processing is done, the raw intensity data have been extracted from the slide,
indenpendently for the test and the reference, and the data for each gene are typically
reported as an intensity ratios that measure the relative abundance of the transcripts in
the test condition compared to the reference condition.

1.3 Upstream intervention of statistical concepts

Once biological experiments are done and images are acquired, the researcher disposes of
the mesurement of relative expression of thousands of genes simultaneously. The aim is
then to extract biological significance from the data, in order to validate an hypothesis.
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The need for statistics has become striking soon after the apparition of the technology,
since the abundance of the data required rigorous procedures for analysis. It is important
to notice that the intervention of statistical concepts occurs far before the analysis of
the data stricto sensu. Looking for an appropriate method to analyze the data, whereas
no experimental design has been planed, or no normalization procedure has been ap-
plied, is unrealistic. This explains why the first two chapters of this review will detail
the construction of an appropriate experimental design, and the choice of normalization
procedures.

1.3.1 The variability of microarray data and the need for nor-

malization

Even if the microarray technology provides new potentialities for the analysis of the tran-
scriptome, as every new technology, several problems arise in the execution of a microarray
experiment, that can make two independent experiments on the same biological material
differ completely, because of the high variability of microarray data. Let’s go back to the
experimental procedure detailed above : every single step is a potential source of technical
variability. For instance the RNA extraction and the retro-transcription efficiency are not
precisely controlled, that can lead to various amounts of biological material analyzed in
fine. Despite the control of hybridization conditions (temperature, humidity), the effi-
ciency of the binding on the slide is not known precisely. As for the image acquisition,
many defaults on the slide can lead to bad quality images that hampers any reliable inter-
pretation. This is considered ”conditionnaly” to the fact that many experimentators can
perform microarray experiments, on the same biological sample, in the same laboratory
or in different place, but with the objective to put their work in common.

1.3.2 Experimental design

Despite the vast sources of variabilities, some errors can be controlled and some can not,
leading to a typology of errors : systematic errors and random errors. The first type of
errors can be viewed as a bias that can be controlled using strict experimental procedures.
For instance, assays can be performed by the same researcher all along the experiment.
The second type of errors constitutes a noise that leads to a lack of power for statistical
analysis. Normalization procedures will be crucial for its identification and correction.
The first need for a biologist is then to consider an appropriate experimental design.
This will allow not only some control quality for the experimental procedure, but also
the optimization of the downstream statistical analysis. Chapter 2 will explain why a
precise knowledge of the analysis that is to be performed is required when designing an
experiment.
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1.3.3 Normalization

Even if some variability can be controlled using appropriate experimental design and pro-
cedures, other sources of errors can not be controlled, but still need to be corrected. The
most famous of these source of variability is the dye bias for cDNA microarray experi-
ments : the efficiency, heat and light sensitivities differ for Cy3 and Cy5, resulting in a
systematically lower signal for Cy3. Furthermore, this signal can present an heterogeneous
spatial repartition on the slide, due to micro physical properties of the hybridization mix
on the slide. Normalization allows the adjustment for differences in labelling and for the
detection efficiencies for the fluorescent labels, and for differences in the quantity of initial
RNA from the two samples examined in the assay.

1.4 Downstream need for appropriate statistical tools

For many biologists, the need for statistical tools is new and can constitute a complete
change in the way of thinking an experiment and its analysis. Although it is advisable for
a biologist to collaborate with statisticians, it is crucial to understand the fundamental
concepts underlying any statistical analysis. The problem is then to be confronted to var-
ious methods and concepts, and to choose among the appropriate ones. To that extend, it
is crucial, from the statistician point of view, to diffuse statistical methods and concepts,
to provide biologists as many informations as possible for them to be autonomous regard-
ing the analysis needed to be performed. The role of softwares is central for microarray
data analysis, but this review will rather be focused on statistical methods. Description
of softwares dedicated to microarrays can be found in Parmigiani et al. (2003). Other
informations can be found about general aspects of microarray data analysis in Quack-
enbush (2001), Leung and Cavalieri (2003), Butte (2002), Nadon and Shoemaker (2002)
(this list is of course not exhaustive).

1.4.1 Class Discovery

The first step in the analysis of microarray data can be to perform a first study, without
any a priori knowledge in the underlying biological process. The considerable amount
of data requires automatic grouping techniques that aim at finding genes with similar
behavior, or patients with similar expression profiles. In other words, the question can be
to find an internal structure or relationships in the data set, trying to establish expression
profiles. The purpose of unsupervised classifications is to find a partition of the data
according to some criteria, that can be geometrical for instance. These techniques are
widely used in the microarray community, but it is necessary to recall some fundamen-
tals about clustering techniques: the statistical method will find a structure in the data
because it is dedicated to it, even if no structure exist in the data set. This to illustrate
that clustering will define groups based on statistical considerations, whereas biologists
will want to interpret these groups in terms of biological function. The use and definition
of appropriate clustering methods is detailed in chapter 4.
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1.4.2 Class Comparison

Then the second question can be to compare the expression values of genes from a con-
dition to another, or to many others. To know which genes are differentially expressed
between conditions is of crucial importance for any biological interpretation. The aim of
differential analysis is to assess a significance threshold above which a gene will be declared
differentially expressed. Statistical tests consitute the core tool for such analysis. They
require the definition of appropriate statistics and the control of the level of the tests.
Chapter 5 show how the statistic has to be adapted to the special case of microarrays,
and how the considerable amount of hypothesis tested leads to new definitions of control
for statistical procedures.

1.4.3 Class Prediction

An other application to microarray data analysis is to use gene expression profiles as a
way to predict the status of patients. In classification studies, both expression profiles
and status are known for individuals of a data set. This allows to built a classification
rule that is learned according to this training set. Then the objective is to be able to
predict the status of new undiagnosed patients according to their expression profile. Since
the number of studied genes is considerable in microarray experiments, another issue will
be to select the genes that will be the most relevant for the status assignement. These
problems of classification are detailed in chapter 6.
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Chapter 2

Experimental designs

2.1 Aim of designing experiments

The statistical approach does not start once the results of an experiment have been
obtained, but at the very first step of the conception of the experiment. To make the
analysis really efficient, the way data are collected must be consistent with the statistical
tools that will be used to analyze them. Our general message to biologists in this section
is ‘Do not wait till you get your data to go and discuss with a statistician.’

The goal of experimental designs is to organize the biological analysis in order to
get the most precise information from a limited number of experiments. Therefore, the
design of experiments can be viewed as an optimization problem under constraints. The
quantity to optimize is typically the precision of some estimate, which can be measured
by the inverse of its standard deviation. A wide range of constraints (time, money, etc.)
can occur. In this section, they will be summarized by the limitation in terms of number
of experiments, i.e. by the number of slides.

What is a replicate? A basic principle of experimental designs is the need of replicates.
In this section, most results will depend on the number R of replicates made under each
condition. However, the definition of a replicate has to be precised. A set of R replicates
can be constituted either by R samples coming from a same patients, or by R samples
each coming from a different patient. In the former case, the variability between the
results will be mostly due to technological irreproducibility, while in the latter it will be
due to biological heterogeneity. The former are called technological replicates, and the
latter biological replicates (see Yang and Speed (2002)).

The statistical approach presented in this section can be applied in the same way to
both kinds of replicates. A significant difference between 2 conditions may be detected
with technological replicates, but not with biological ones, because the biological vari-
ability is higher than the technological ones. Therefore, the significance is always defined
with respect to a specific type of variability (technological or biological).

However, the biological conclusions will be completely different depending on the kind
of replicates. In most cases, the aim of the experiment is to derive conclusions that are

12



valid for a population, from which the individuals under study come from. In this purpose,
only biological replicates are valid, since they take into account the variability between
individuals. Effects observed on technological replicates can only be interpreted as in vitro
phenomena: technological replicates are only useful to evaluate or correct technological
biases

Contrasts and model. This chapter does not present a general overview of experi-
mental designs for microarray experiments (that can be found in Draghici (2003)). Our
purpose is to focus on the connection between the two following elements:

1. The kind of information one wants to get: we will mainly consider comparative
experiments, the results of which are summarized in contrasts;

2. The model with which data will be analyzed: we will use the general framework of
the analysis of variance (anova) model, proposed for example by Kerr and Churchill
(2001) for microarray data analysis.

Paired and unpaired data. Of course, the experimental design strongly depends on
the technological framework in which the biological analyses are performed. From a sta-
tistical point of view, there are two main type of microarray technology that respectively
produce unpaired and paired data.

Unpaired data are obtained with technologies that provide measures under only one
condition per slide, that is Affymetrix chip or nylon membrane. In this case, the
different measures obtained for a given gene may be considered as independent from
one chip (or membrane) to the other.

Paired data are produced by technologies where two different conditions (labeled with
different dyes) are hybridized on the same slide. The values of the red and green
signals measured for a same gene on a same slide can not be considered as indepen-
dent, whereas the difference between them can be considered as independent from
one slide to the other.

2.2 Two conditions comparison

The specific case of the comparison between 2 treatments will be intensively studied in
chapter 5. We introduce here the general modeling and discuss some hypotheses, without
going any further into testing procedure and detection of differentially expressed genes.

In such experiments, for a given gene, we may want to estimate

• its mean expression level µt in condition t (t = 1, 2),

• or its differential expression level δ = µ1 − µ2.

13



2.2.1 Unpaired data

Statistical model

Assume that R independent slides are made under each condition (t = 1, 2), and denote
Xtr the expression level of the gene under study, in condition t and replicate r (that is
chip or membrane r). The basic statistical model assumes that the observed signal Xtr is
the sum of a ‘theoretical’ expression level µt under condition t and a random noise Etr,
and that the residual terms {Etr} are independent, with mean 0 and common variance
σ2:

Xtr = µt + Etr, {Etr} independent, E (Etr ) = 0, V(Etr ) = σ2. (2.1)

Independence of the data. The model (2.1) assumes the independence of the data
and all the results presented in this section regarding variances rely on this assumption.
Independence is guaranteed by the way data are collected. Suppose the data set is consti-
tuted of measurements made on P different patients, with R replicates for each of them.
The data set can not be naively considered as a set of PR independent measures, since
data coming from a same patient are correlated. The analysis of such an experiment
requires a specific statistical modeling, such as random effects or mixed model, which is
not presented here.

Variance homogeneity. The model (2.1) also assumes that the variance of the noisy
variable Etg is constant. Most of the statistical methods we present are robust to moder-
ate departure from this hypothesis. However, a strong heterogeneity can have dramatic
consequences, even on the estimation of a mean. This motivates the systematic use of the
log-expression level, for the log-transform is the most common transform to stabilize the
variance. In this chapter, expression levels will always refer to log-expression levels.
It must be reminded that the common variance σ2 can describe either a technological, or
a biological variability, depending on the kind of replicates.

Parameter estimate

The estimation of the parameters of the model (2.1) is straightforward. The following
table gives these estimates (denoting Xt• =

∑
r Xtr/R, the mean expression level in

condition t1) and there variances. We define the precision as the inverse of the standard
deviation:

parameter estimate variance precision

µt µ̂t = Xt• V(µ̂t) = σ2/R
√

R/σ

δ = µ1 − µ2 δ̂ = X1• − X2• V(δ̂) = 2σ2/R
√

R/(σ
√

2)

The first observation is that the precision of the estimate is directly proportional to 1/σ:
the greater the variability, the worst the precision. This result reminds a fairly general

1In all this chapter, the symbol ‘•’ in place of an index means that the data are averaged over this
index. For example, X•j• =

∑I

i=1

∑K

k=1
Xijk/(IK).
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order of magnitude in statistics: the precision of the estimates increases at rate
√

R. The
number of experiments must be multiplied by 4 to get twice as precise estimates, and by
100 to get 10 times more precise estimates. It will be shown in chapter 5 that the power
of the tests in differential analysis evolves in the same way.

2.2.2 Paired data

Slide effect

As explained in the introduction, the glass slide technology produces paired data. Due to
heterogeneity between slides, a correlation between the red and green signals obtained on
a same slide exists. Formally, the slide effect can be introduced in model (2.1) as follows:

Xtr = µt + βr + εtr (2.2)

where βr is the effect of slide r that can be either fixed or random. When two treatments
are compared on the same slide r, βr vanishes in the difference:

X1r − X2r︸ ︷︷ ︸ = µ1 − µ2︸ ︷︷ ︸ + ε1r − ε2r︸ ︷︷ ︸
Yr = δ + Er.

This explains why most statistical analyses of glass slide experiments only deal with
differences Yr, generally referred to as log-ratio because of the log-transform previously
applied to the data. Differences Yr can be considered as independent, since they are
obtained on different slides.

Labeling effect

The slide effect introduced in model (2.2) is not the only technological effect influencing the
signal. It is well known that the two fluorophores Cy3 and Cy5 have not the same efficiency
in terms of labeling, so there is a systematic difference between the signal measured in
the two channels. Using index c (for ‘color’) to denote the labeling, the expression Xtcr

of the gene in condition t, labeled with dye c on slide r can be modeled as:

Xtcr = µt + αc + βr + Etcr. (2.3)

Since there are only two dyes and conditions, indexes t and c are redundant given r.
Treatment t can be deduced from the slide r and dye c indexes, or, conversely, dye c from
slide r and treatment t. However, we need here to use both t and c to distinguish the
biological effect we are interested in (µt) from the technological ‘bias’ (αc).

Risk of aliasing. The redundancy described above may have strong consequences on
parameter estimates. Suppose treatment t = 1 is labeled with dye c = 1 (and treatment
t = 2 with dye c = 2) on all slides. Then, the treatment effect µt can not be estimated
independently from the dye effect αc since the mean expression level in condition 1 (X1••)
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equals the mean expression level with dye 1 (X•1•) and X2•• = X•2• for the same reason.
When each treatment is systematically labeled with the same dye, it is impossible to
separate the true treatment effect from the labeling bias. This motivates the use of the
‘swap’ design.

Swap experiment

Design. The goal of the swap design is to correct the bias due to cDNA labeling by
inverting the labeling from one slide to the other. This design involves two slides:

dye c
condition t
1 2

slide r
1 1 2
2 2 1

Such a design is known as a latin square design.

Contrast. When comparing condition 1 and 2, the contrast δ is estimated by

δ̂ = X1•• − X2•• = (X111 + X122)/2 − (X221 + X212)/2.

According to the model (2.3), the expectation of δ̂ is E (δ̂) = µ1 − µ2, so the labeling and
the slide effects are removed, simply because of the structure of the design. Hence, the
swap design can be considered as a normalizing design.

Aliasing. The model (2.3) does not involve interaction terms, whereas they may exist.
A general property of latin square design is that the interaction effects are confounded
with the principal effects. For example the dye*slide interaction is confounded with the
condition effect. This is because, in a swap design, the condition remains the same when
both the labeling and the slide change.
When analyzing several genes at the same time, the aliasing mentioned above implies that
the gene*treatment interaction is confounded with the gene*dye*slide interaction. The
gene*treatment interaction is of great interest, since its reveals genes which expression
differs between conditions 1 and 2.

Consequences of the tuning of the lasers. The tuning of the lasers is a way to get
a nice signal on a slide. In many laboratories, a specific tuning of the lasers is applied to
each slide, depending on the mean intensity of the signal. This specific tuning induces a
dye*slide interaction, which often implies a gene*dye*slide interaction since the efficiency
of the labeling differs from one gene to another.
Hence, the slide-specific tuning of the lasers implies a noisy effect (the gene*dye*slide in-
teraction) that is confounded with the interesting effect (the gene*treatment interaction),
due to the properties of the swap design. Any procedure (such as the loess regression,

16



presented in chapter 3) aiming at eliminating the gene*dye*slide interaction will also re-
duce the gene*treatment effect. Therefore, it is strongly advised to abandon slide-specific
tuning, and to keep the laser intensity fixed, at least for all the slides involved in a given
experiment.

2.3 Comparison between T conditions

Many microarray experiments aim at comparing T conditions, denoted t = 1, . . . , T . We
use here the term ‘condition’ in a very large sense. Conditions may be different times in
a time course experiment, different patients in a biomedical assay, or different mutants of
a same variety. In some cases, a reference condition (denoted 0) can also be considered,
which may be the initial time of a kinetics, or the wild type of the variety.

In such experiments we may want to estimate the mean expression level µt in condition
t of a given gene, or its differential expression level δtt′ = µt − µt′ between conditions t
and t′, with the particular case of δt0 = µt − µ0 where t is compared to the reference.

Unpaired data. The results given in section 2.2 for unpaired data are still valid here.
The estimates of µt and δtt′ , their variances and their precisions are the same.

2.3.1 Designs for paired data

When designing an experiment that aims at comparing T treatments, the central question
is to choose which pairs of treatments must be hybridized on the same slide. This choice
will of course have a major influence on the precision of the estimates of the contrast δtt′ .
Figure 2.1 displays two of the most popular design to compare T treatements with paired
data: the star and loop designs.

Two preliminary remarks can be made about these designs:

1. In both of them, the conditions are all connected to each other. This is a crucial
condition to allow comparisons.

2. These 2 designs involve the same number of slides: TR (if each comparison is
replicated R times); differences between them are due to the arrangement of the
slides

“Star” design

In this first design, each of the T conditions is hybridized with a common reference. We
assume here that each hybridization is replicated R times, and denote Ytt′r the logratio
between condition t and t′ on slide number r. In this setup, the estimates of the contrast
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Figure 2.1: Design for comparing conditions (0), 1, . . . , T in paired experiments. Left:
star design, right: loop design. Arrow ‘↔’ means that the 2 conditions are hybridized on
the same slide.

δtt′ and their variances are the following.

contrast estimate variance precision

δt0 Yt0• σ2/R
√

R/σ

δtt′ Yt0• − Yt′0• 2σ2/R
√

R/(σ
√

2)

We see here that the precision of δ̂t0 is better than the precision of δ̂tt′ . The weak precision
of δ̂tt′ is due to the absence of direct comparison between t and t′ on a same slide.

In this design, half of the measures (one per slide) are made in the reference condition
which means that half of the information regards the reference conditions. If the aim of
the design is to compare, for example, a set of mutants to a wild type, it seems relevant
to accumulate information on the wild type, which plays a central role. In this case, the
star design is advisable. On the contrary, if the reference condition is arbitrary and has
no biological interest, and if the main purpose is to compare conditions between them,
then the star design is not very efficient in terms of precision of the contrasts of interest.

“Loop” design

In this design, conditions 1, . . . , T are supposed to be ordered and condition t is hybridized
with its two neighbor conditions (t − 1) and (t + 1) (Churchill (2002)). This design
is especially relevant for time course experiments where the ordering of the conditions
(times) is natural, and where the contrast between time t and the next time t + 1 is of
great biological interest.
Using the same notations as for the star design, the estimates of the contrasts, their
variances and precisions are:

parameter estimate variance precision

δt(t+1) Yt(t+1)• σ2/R
√

R/σ

δt(t+d) Yt(t+1)• + · · ·+ Y(t+d−1)(t+d)• dσ2/R
√

R/(σ
√

d)
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The main result is that, with the same number of slide as in the star design, the precision
of δ̂t(t+1) is twice better. Of course, the precision of the contrasts decreases as conditions
t and t + d are more distant in the loop: the variance increases linearly with d.

Loop designs are particularly interesting for time course analysis since they provide
precise informations on the comparisons between successive times. They essentially rely
on some ordering of the conditions. This ordering is natural when conditions correspond
to times or doses but may be difficult to establish in other situations. In this last case,
the ordering can be guided by the statistical properties described above: conditions that
must be compared with a high accuracy must be hybridized on the same slide, or at least
be close in the loop.

Normalization problem. The comparison between treatment 1 and T may induce
some troubles in the normalization step. We remind that some normalization procedures
are based on the assumption that most genes have the same expression level in the two
conditions hybridized on the same slide (see 3) . If treatments are times or doses, this
assumption probably holds when comparing condition t and (t+1), but may be completely
wrong for the comparison between conditions 1 and T .

Reducing the variance of the contrasts. Because the design forms a loop, there are
always two paths from one condition to another. Because the variance of the estimated
contrast δ̂tt′ is proportional to the number of steps, it is better to take the shortest
path, rather than the longest one, to get the most precise estimate. Suppose we have
T = 8 conditions, the shortest path from condition 1 to condition 6 has only 3 steps:
1 → 8 → 7 → 6, so the variance of δ̂16 = Y1,8• + Y87• + Y76• is 3σ2/R. The longest path

leads to the estimate δ̂′16 = Y12• + · · · + Y56•, the variance of which is 5σ2/R.
A new estimate δ̃tt′ can be obtained averaging the two estimates: δ̃tt′ = wδ̂tt′ + (1 −

w)δ̂′tt′ . The weight w has to be chosen in order to minimize the variance of δ̃tt′ . If δ̂tt′ is

based on a path of length d (and δ̂′tt′ on a path of length T − d), the optimal value of w
is d/T . The variance of δ̃tt′ is then d(T − d)σ2/(TR). In particular, the variance of δ̃t(t+1)

is (T − 1)σ2/(TR), which is smaller than the variance of δ̂t(t+1) (which is σ2/R). Even in
this very simple case, the estimate is improved by considering both the shortest and the
longest path.
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Chapter 3

Data normalization

Microarray data show a high level of variability. Some of this variability is relevant
since it corresponds to the differential expression of genes. But, unfortunately, a large
portion results from undesirable biases introduced during the many technical steps of
the experimental procedure. Thus, microarray data must be corrected at first to obtain
reliable intensities corresponding to the relative expression level of the genes. This is the
aim of the normalization step, which is a tricky step of the data process. We present
in 3.1 exploratory tools to detect experimental artifacts. Section 3.2 reviews the main
statistical methods used to correct the detected biases, and Section 3.3.2 discusses the
ability for biologists to reduce experimental variability and facilitate the normalization
step in microarray experiments.

3.1 Detection of technical biases

Most technical biases can be detected with very simple methods. We recommend as many
authors the systematic use of graphical representations of the slide and other diagnostic
plots presented in the following. We distinguish here exploratory methods that look for
no particular artifact, from methods that diagnose the presence of a specific artifact.

3.1.1 Exploratory methods

A simple way to observe experimental artifacts is to represent the spatial distribution
of raw data along the slide, as in Figure 3.1. Cy3 or Cy5 log-intensities, background,
log-ratios M = logR − logG or mean intensity A = (logR + logG)/2 can be plotted
this way as an alternative to the classical scanned microarray output images. These
representations are very useful to detect unexpected systematic patterns, gradients or
strong dissimilarities between different areas of the slide. As an example, we present
here a simple case where a single Arabidopsis slide was hybridized with Cy3 and Cy5
labeled cDNA samples to analyse the differences in gene expression when Arabidopsis is
grown either on environment A or B. The spotting was performed with a robot whose
printing head consisted of 48 (4 × 12) print-tips, each of them spotting in duplicate all
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the cDNA sequences of an entire rectangular area of the glass slide, defining a block. In
this experiment, we are interested by the impact of the treatments and of some possible
technical artifacts.

Figure 3.1 (left) represents the distribution of M along the slide. It shows particular
areas with high level signals that could correspond to cDNA sequences spotted with faulty
print-tips: for instance, if the opening of these print-tips is longer than those of other ones,
the amount of material they deposit could be systematically more extensive for sequences
deposited by these print-tips.

3.1.2 Detection of specific artifacts

Graphical analysis: Once an artifact is suspected, plots that reveal its presence can
be performed. Typical specific representations include boxplots. For a given dataset, the
boxplot (Fig. 3.1, right) represents the middle half of the data (first to third quartiles)
by a rectangle with the median marked within, with whiskers extending from the ends
of the box to the extremes of the data or to one and a half times the interquartile range
of the data, whichever is closer . To compare the distribution between different groups,
side-by-side per group boxplots can be performed. Figure 3.1 (right) shows per print-tip
boxplots for the Arabidopsis slide, and confirm a differential effect of print-tip 6(shown)
and 32, 35, 36 (not shown).

At last, a convenient way to compare variables distribution of different slides from a
same experiment is to use a Quantile-Quantile plot (QQplot). A QQ plot plots empirical
quantiles from the signal distribution on a slide against the ones of an other slide. If the
resultant plot appears linear, then the signal distributions on both slides are similar.

Figure 3.1: Left: Spatial distribution of the signal on the slide. Each pixel represents the
uncorrected log-ratio of the median Cy5 (635 nm) and Cy3 (532 nm) channel fluorescence
measurements, associated to a printed DNA feature. Background is not represented. Red
squares correspond to print-tip effect. Right: Box plots per print-tip for the first 24
blocks of the previous slide. Print-tip 6 corresponds to the red square on the left of the
slide.

Analysis of variance: An alternative to graphical displays is the use of the Analysis of
Variance (ANOVA). The ANOVA is a powerful statistical tool used to determine which
factors explain the data variability. To this end, sums of squares are used to quantify the
effect of each factor, and tests can be performed to state their significance. The use of the
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ANOVA to analyse microarray data was first proposed by Kerr et al. (2000). We present
here the ANOVA analysis performed for the Arabidopsis slide.

The effect of four factors is studied: growth in the presence of treatment A or B, Cy3
and Cy5 intensity dependent effect, print-tips artifacts, and genes. Interactions between
factors are also considered. We denote Xgtfp the measured signal of gene g whose RNA
was extracted from cells of Arabidopsis grown in presence of treatment t, labeled with
fluorochrome f , and spotted with print-tip p. The complete ANOVA model is:

Xgtfp = µ + αg + βt + γf + δp main effects
+(αβ)gt + (αγ)gf + (αδ)gp interactions of order 2 with gene effect
+(βγ)tf + (βδ)tp + (γδ)fp other interactions of order 2
+(αβγ)gtf + ... interactions of order 3
Egtfp residual

(3.1)

where residuals Egtfp are supposed to be independent with common variance and 0-
centered random variables, that represent the measurement error and the biological vari-
ability altogether. In practice, most of the interaction are neglected or confounded with
other effects, leading to simpler models (see Kerr et al. (2000)). Notice that in our ex-
ample, the Treatment effect is confounded with the Dye effect. In this case the model
sums up to:

Xgfp = µ + αg + γf + δp + (αγ)gf + (γδ)fp + Egfp (3.2)

were γf is the confounded effect of both fluorochrome and treatment.
The analysis of variance is summarized in Table 3.1. The Dye × Gene interaction

appears to be the less important effect in this experiment. This can be worrisome, since
due to aliasing this interaction also corresponds to the Treatment × Gene interaction of
interest. It seems then that the differential effect of the treatments on genes in negligible
compared to the experimental effects. But these low MS are partly due to the huge degree
of freedom of the interaction, that makes the detection of a differential effect more difficult:
indeed we look for the differential effect of at least one gene among 10080, whereas for
the print-tip effect for instance we look for the differential effect of at least one print-tip
among 48 (explicit formulas of expected sums of squares can be found in Draghici (2003),
Chap. 8). We will see in Section 3.2.2 that with a simpler modelling, the Dye × Gene
effect appears to be strong.

Table 3.1 shows that the Print− tip effect is one of the main experimental artifacts of
this experiment, confirming the results of the exploratory analysis of the previous section.
Normalization will then be crucial step of the data analysis. Moreover, the quantification
of effects is a precious knowledge for the experimenter, who will carefully control the
print-tips in following experiments.

The application of the presented descriptive tools already enabled the discovery of
several sources of experimental noise , such as dye or fluorophore, and print-tips (Yang
et al. (2002), Schuchhardt et al. (2000)). Even if exploratory methods seem to be more
appropriate for the identification of new experimental artifacts, it should be clear that

22



Effect d.f. M.S.
Print-tip 47 131.17

Dye 1 1647.19
Gene 10032 4.24

Dye×Print-tip 47 4.60
Dye×Gene 10032 0.08

Table 3.1: Analysis of variance (d.f.=degrees of freedom, M.S.=Mean Squares)

the detection of experimental sources of noise is mostly based on an accurate knowledge
and analysis of the experimental process that will help to propose adapted tools for the
normalization.

Once these experimental effects are detected, one needs procedures to correct them.
The following section presents the main tools that are used in common normalization
procedures.

3.2 Correction of technical artifacts

Most experimental artifacts alter the signal mean, i.e. the mean value of the log-ratios
of genes. The main function of normalization methods is then to quantify the effect of a
given experimental bias on a gene, and second to subtract this quantity from the observed
gene log-ratio value. The tricky part of the normalization is obviously the estimation of
the effect contribution. One has to distinguish between systematic biases, that do not
depend on gene and can be easily corrected with simple methods, and gene dependent
biases, that generally request a more sophisticated modelling to be corrected. These two
kinds of biases and their associated normalization procedures are described in the two
following sections.

Alternatively, some artifacts can alter the signal variance. Methods that have been
proposed for variance correction are presented in Section 3.2.3.

3.2.1 Systematic biases

Since most experimental sources of noise can be considered as systematic, the effect they
have will be identical for all the genes they affect. For instance, we saw that the print-tip
effect alter all gene log-ratios of an block. A possible modelling of the print-tip effect is
to assume that the bias is constant within each block. The log-ratios are corrected by
subtracting a constant ci to log-ratios of block i, where ci is estimated from the log-ratio
mean of block i. This normalization can be performed with the previous ANOVA model by
just adding a print-tip effet in model (3.1). A more robust estimation of systematic effects
can be made replacing the mean by the median (Yang et al. (2002)), which is the method
usually implemented on normalization softwares. Figure 3.2 shows the boxplots after per
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print-tip median normalisation: the bias observed for print-tip 6 is now corrected. Other
systematic biases that can be considered as systematic and similarly corrected include
slide and plate effects (this list is not exhaustive).

Figure 3.2: Box plots per print-tip for the first 24 blocks of the Arabidopsis slide, after
print-tip normalization.

3.2.2 Gene dependent biases

All biases cannot be modeled as systematic effects, because their impact is gene dependent.
We present the case of the dye or fluorochrome effect for cDNA microarrays.

To perform a comparison between two conditions labelled with Cy3 and Cy5, respec-
tively, one needs to state that the differential labelling will not corrupt the log-ratio values.
Yet, it is well known that a dye effect exists, that can have two different causes:

• optical : the higher the mean intensity of the gene is, the more the green label
prevails over the red one when the slide is scanned.

• biological : some specific genes are systematically badly labeled by Cy3 or Cy5.
For instance, Cy3 can be preferentially incorporated into some sequences, relative
to Cy5.

The dye effect is then clearly gene dependant. To correct it, one can estimate each
Dye × Gene interaction in model (3.2), and subtract it from log-ratios per gene. But
this requests as many estimations as G. Most of them will be very imprecise, and the
resulting normalized log-ratios could be noisier than the raw log-ratios. The estimation
problem can be avoided by proposing a simpler modelling of the Dye×Gene interaction.
For instance, we can assume that the dye effect depends on gene only through its mean
intensity A. This assumption allows a convenient graphical observation of the dye effect,
the M-A plot, proposed by Yang et al. (2002), along with a more robust estimation of
the effect. In figure 3.3 (left) we observe the differential effect of the two dyes: M values
increase with A values, confirming that Cy5 signal prevails for high mean expression
genes. Moreover, it is clear that the shape of the data cloud is neither constant nor linear,
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meaning that a constant or linear modelling will not adequately correct the dye effect. In
this case, one needs to perform non linear normalization methods.

The Loess procedure (Cleveland (1979)) was the first non linear method proposed
to correct the dye effect (Yang et al. (2002)). The Loess is a robust locally weighted
regression based on the following model:

M = c(A) + E (3.3)

where c is an unknown function and E is a symmetric centered random variable with
constant variance. The aim of the Loess procedure is to locally approximate c with a
polynomial function of order d, and to estimate the polynomial parameters by weighted
least square minimization from the neighbor points (Ai, Mi). Weights depend on the
distance between point (Ai, Mi) and the neighborhood center: the lower the distance, the
higher the weight. The size of the neighborhood is fG, where f is a proportion parameter
that ranges from 0 to 1. If f is close to 1, the neighborhood will contain almost all the
sample points and the estimated function will be very smooth. Conversely, if f is close
to 0, the function will be very adaptive to the data cloud. The correction will be more
specific but the risk for overfitting will increase. In figure 3.3 (left) the Loess estimation of
the data cloud trend appears in grey. As for systematic biases, once the trend is estimated
it is substracted from the log-ratio to obtain a centered data cloud.

As described above, the Loess function request the tuning of many parameters, mainly
the weight function, the order of the polynomial function, and the size of the neighbor-
hood. In dedicated softwares, all these parameters are fixed to a by default value. Yet,
it is worth mentioning that the efficiency of the normalization can be highly dependent
on the choice of these parameters. Alternative non linear methods have been proposed
to correct intensity dependent biases: for instance, Workman et al. (2002) proposed the
use of cubic splines instead of Loess. But the Loess has become the reference method
implemented in most softwares. Common normalization procedures also include by-print
tip Loess normalization.

One has to know whether the Loess procedure completely corrects the dye effect, i.e.
if the assumption that the dye effect is gene dependent only through A is satisfied. In
Martin et al. (2004), it is shown that the incorporation bias can be important, and is not
corrected by the Loess procedure. This is the reason why it is recommended to make swap
experiments (see 2.2.2), even if the Loess or any other intensity dependent procedure is
performed during the normalization step.

3.2.3 Variance normalization

Besides, most of the statistical methods that are used to normalize and analyse the data
assume that all observations have the same variance. To ensure this hypothesis, data
are systematically log-transformed at first in order to stabilize the variance (see 2.2.1).
Although most sources of experimental variability mainly affect the level of log-ratios,
the variance of the observation can also be affected by artifacts. In this case one has to
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Figure 3.3: Left: M-A graph on raw data. The gray line is the loess estimation of
function c, the dotted line represents the abscissa axis Right: M-A graph after Loess
normalization

normalize the variance. For instance, boxplots on figure 3.2 show that log-ratio variances
slightly differ from one print-tip to another after a per print-tip median correction.

As for bias normalization, the distinction between systematic and gene dependent
artifacts exists, with the same consequences. We only deal here with systematic het-
eroscedasticity through the print-tip example. Genes that were spotted by the same
print-tip are assumed to have the same variance, that can be estimated from the empir-
ical standard deviation. The log-ratios are divided by their respective empirical SD to
be normalized. As for mean effect normalization, robust methods of estimation exist for
the standard error: in Yang et al. (2002), the authors propose the use of MAD (Median
Absolute Deviation) estimation.

3.3 Conditions for normalization

Considering the previous section, it is clear that some fundamental hypotheses have to
be verified to perform any normalisation procedure. At the same time, normalization
can also be simplified by a sharp control of the data quality and an adapted experi-
mental design. The first following section discusses the three main points to be checked
before normalization and the second one proposes some guidelines to enhance the data
normalization.

3.3.1 Three hypotheses

Normalization procedures are based on the three following hypotheses:

• Most of genes that are used to estimate the artifact contribution to signal are sup-
posed not to be differentially expressed,

• The artifacts that are corrected are not confounded with a biological effect,
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• The technical variability of the artifact estimator is small compared to the biological
variability.

The first hypothesis is stated to be sure that genes used for estimation have a constant
expression w.r.t. the biological problem, and therefore only reflect bias effects (Ball et al.
(2003)). The use of housekeeping genes whose expression is supposed to be constant has
been proposed, but such genes are difficult to identify. This is the reason why in many
cases all genes are used for the normalization, implying that only a minority of them are
expected to be differentially expressed. Notice that for some specific experiments this last
hypothesis cannot hold: dedicated experiments where only a few but relevant genes are
spotted on the slide, or loop designed kinetics experiments where the last time point is
compared to the first time point on a same slide are typical examples of departure to the
hypothesis.

The second hypothesis is also important since normalization aims at reducing the
experimental variability of the data without altering the biological information contained
in the data. It is then important to determine the conditions in which the correction
of an experimental effect is appropriate. In Section 2.2.2, we already saw that if a given
treatment is always treated with the same fluorochrome, it will be impossible to distinguish
the dye effect from the treatment effect. The same problem exists with other biases
correction, for example in by-plate normalization (Mary-Huard et al. (2004)). It is worth
mentioning that no correction can be performed when confusion occurs, meaning that
the experimental effect remains, and can considerably affect the biological conclusions of
experiments (Balazsi et al. (2003)).

The last hypothesis amounts to state that the normalization step does correct data
rather than adds noise. We already observed in the previous section that the estimation
of the Dye × Gene interaction is based on very few observations, leading to a estimator
possibly noisy enough to alter the data. This can be generalized to other normalization
procedures, such as background correction for example. In background correction, the
background measurement is subtracted to the signal at each spot. Such correction is
reasonable only to the condition that the background is a sharp indicator of the local
quality of the slide. In practice, the background measurement can be as imprecise as
the signal measurement, therefore the background corrected signal will be unreliable. To
ensure the normalization quality, one can increase the number of technical replicates, in
order to have an accurate estimation of the technical variance to compare to the biological
variance. Alternatively, it is important to verify that estimations of technical artifacts are
based on a large enough number of observations to be robust.

3.3.2 Enhancement of the normalization

As pointed out by Quackenbush (2002), ”the single most important data-analysis tech-
nique is the collection of the highest-quality data possible”. It is clear that no normal-
ization procedure can compensate for poor quality data: it is thus important to control
carefully the wet laboratory microarray process. We consider here guidelines that can
help to design and perform an efficient normalization procedure.
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The previous section and chapter 2 already pointed out that the normalization process
and its efficiency intimately depend on the experimental design. Optimizing the design
will lead to accurate estimations of the log-ratios, and will help the quantification and the
correction of experimental biases. A good experimental design will also avoid confusion
between biological and experimental effects when possible. Therefore a particular care
must be given to the experimental design.

We already considered the fact that any normalization procedure is susceptible of
altering the data, so every effort must be made to avoid intensive data transformation.
The data normalization process should be as reduced and as specific to the platform as
possible. For instance, it is clear that the dye effect is detectable in most experiments,
along with block effects. Nonetheless the use of per-block loess normalization should
not be systematical, since the number of genes spotted on a block vary from less than a
hundred to more than four hundred. In the former case, the use of a local regression can
lead to an overfitted adjustment. Therefore, depending on platform, the experimenter
will have to choose either to tune parameter f appropriately, or to perform a global loess
and a per block median normalization.

Due to the now intensive microarray production, it is unrealistic to question the nor-
malization procedure at each microarray analysis. But the elaboration of an effective and
platform-tailored normalization procedure can be eased by the use of self-hybridized mi-
croarray experiments. Self-hybridization experiments have proved to be efficient in detect-
ing systematic biases (Ball et al. (2003)) and provide simple means to test normalization
procedures. They can be used by platforms as test data to calibrate the normalization
process, but also as quality control experiments that can be regularly performed to adapt
the normalization with time.
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Chapter 4

Gene clustering

Aim of clustering

Summarizing information. Clustering analysis is probably the most widely used sta-
tistical tool in microarray data analysis. Because of the size of the data sets provided
by microarray experiments, the information needs to be summarized in some way for any
synthetic interpretation. Clustering techniques are of great help in this task, since they
reduce the size of the data sets by gathering genes (or tissues) into a reduced number
of groups. In many cases, clustering analysis are only considered as a convenient way to
display the information present in the data set. One purpose of this chapter is to show
that the choice of the clustering algorithm has a strong influence on the final result, so
this result can never be considered as an objective representation of the information.

Defining biologically relevant groups. From a biological point of view, a more am-
bitious task is often assigned to clustering analysis. The understanding of gene functions
and the discovery of ‘co-regulated’ genes are two typical goals of microarray experiments.
A natural way to achieve them is to try to gather genes having similar expression profiles
in a set of conditions, at different times or among different tissues into clusters. These
clusters may then be interpreted as functional groups and the function of an unknown
gene can be inferred on the basis of the function of one or several known genes belonging
to the same cluster (cf. groups labeled A to E in Figure 4.2).

Data set

The basic data set is an array X with G rows and T columns, G being the number of
genes and T the number of conditions (or times, or tissues). The element xgt at row g
and column t denotes the (log-)expression level of gene g in condition t.

All along this chapter, we will consider the problem of clustering genes according to
their expression profiles among conditions or tissues. However, the clustering of tissues
(according to the expression levels of the different genes) can also be relevant to discover
particular subclasses of disease. In this case, the algorithm is simply applied to the
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transposed matrix X. An example of such a dual analysis can be found in Alizadeh et al.
(2000) where the authors both define groups of patients and groups of genes.

Two approaches for a general problem

The aim of clustering technique is to build groups of items without any prior information
about these groups: such algorithms perform an unsupervised classification of the data,
or class discovery. Schaffer et al. (2001) presents a typical clustering analysis of gene
expression data: genes are spread into 5 clusters, each characterized by an ‘idealized
pattern’ that is a smoothed version of the mean expression profile of the cluster.

There are essentially two families of clustering methods: distance-based and model-
based methods. The former only aim at gathering similar genes according to a dissimilarity
measure given a priori. These methods are essentially geometric and do not assume much
about the structure of the data. The latter are based on a statistical modeling that is
supposed to reveal the underlying structure of the data. The aim of these methods is
to discover this underlying structure, that is the potential belonging of each gene to the
different cluster, as well as the general characteristics of these clusters.

Distance-based methods are the most popular in microarray data analysis, mainly
because of their computational efficiency. However, these methods do not take the vari-
ability of the data into account, while model-based methods do, thanks to the statistical
modeling. This is a major drawback of distance-based methods, because of the weak
reproducibility of microarray data.

Moreover, most clustering techniques provide disjoint clusters, which means that they
assign each gene to one single group. This property is not always biologically desirable:
clusters are often interpreted as groups of co-regulated genes and, therefore, connected
with regulation networks. A gene can be involved in several networks and should therefore
be allowed to belong to more than one cluster. In contrast, model-based methods perform
fuzzy affectation by assigning to each gene a probability of belonging to each of the
clusters. Up to now, these methods have received very few attention in the microarray
community, probably because of their computational complexity.

The first aim of this chapter is to present in detail the most popular distance-based
algorithms, emphasizing the arbitrary choices that underly all of them, in particular the
definition of the distance. Our second purpose is to introduce model-based methods and
to show that, in some situations, they seem to be more adapted to the biological questions
under study.

4.1 Distance-based methods

4.1.1 Dissimilarities and distances between genes

The dissimilarity d(g, g′) between gene g and g′ is the basic element of the first type of clus-
tering algorithms presented here. Many algorithms only require a dissimilarity, that is a
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function d satisfying the 3 following properties: (i) d is positive: d(g, g′) ≥ 0, (ii) symmet-
ric: d(g, g′) = d(g′, g), and (iii) null only between g and itself: {d(g, g′) = 0} ⇔ {g = g′}.
Some algorithms require a distance, that is a dissimilarity satisfying the triangular in-
equality:

∀g, g′, g′′ : d(g, g′′) ≤ d(g, g′) + d(g′, g′′).

Euclidian distances. The most popular distances are the simple and standardized Eu-
clidian distances. Denoting x•t the mean expression level in condition t: x•t =

∑
g xgt/G

and σ2
t the variance of these levels in condition t: σ2

t =
∑

g(xgt − x•t)
2/G, this distances

are defined as

simple Euclidian: d2(g, g′) =
∑

t

(xgt − xg′t)
2,

standardized Euclidian: d2(g, g′) =
∑

t

(xgt − xg′t)
2/σ2

t .

The simple distance gives the same weight to all conditions t, while the standardized one
penalized the conditions with high variance, presuming that a large difference (xgt − xg′t)
is more admissible in highly variant conditions than in very stable ones.

Correlation coefficient. In their seminal paper on clustering technique for microarray
data (and in the related free software), Eisen et al. (1998) proposed to use dissimilarity
based on the correlation coefficient. Denoting xg• the mean expression level of gene g :
xg• =

∑
t xgt/T , the (centered) coefficient is defined as

r(g, g′) =
∑

t

(xgt − xg•)(xg′t − xg′•)

/√∑

t

(xgt − xg•)2
∑

t

(xg′t − xg′•)2 .

When the data are normalized (that is when the mean expression level of each gene
xg• =

∑
t xgt/T is set to 0 and its variance s2

g =
∑

g(xgt − xg•)
2/T is set to 1), r(g, g′) is

related the simple Euclidian distance d2(g, g′): r(g, g′) = 1 − d2(g, g′)/(2T ).

Choice of the dissimilarity. A general discussion about the crucial point of the choice
of a ‘good’ dissimilarity can not be given here. We only illustrate the influence of this
choice on a simple example. The correlation coefficient must be transformed to take
positive values, in order to get a dissimilarity. Two dissimilarities can be derived from
r(g, g′):

d1(g, g′) = [1 − r(g, g′)]/2, or d2(g, g′) = 1 − [r(g, g′)]
2
.

Both d1 and d2 will be small for positively correlated genes (r ≃ 1), but d1 will be high
for negatively correlated genes (r ≃ −1), while d2 will be small (see Figure 4.1). Using d1,
genes having opposite profiles will belong to different clusters, while, using d2, they will
be gathered in the same one. If clusters are to be interpreted as sets of genes involved in
a same regulatory network, it seems that d2 is more relevant since opposite profiles are
often observed in a same pathway. The choice between d1 and d2 is a matter of definition
of similar or ‘co-regulated’ genes, which is a biological question, and not a statistical one.
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r = 0.9
d1 = 0.05 d2 = 0.81

r = 0.0
d1 = 0.50 d2 = 0.95

r = −0.9
d1 = 0.95 d2 = 0.81

Figure 4.1: Fictitious time courses. r is the correlation coefficient between the two courses,
d1 = (1 − r)/2, d2 = 1 − r2.

Time course experiments. Clustering algorithms are often applied to time-course ex-
periments in which conditions 1, . . .T are ordered times. The distances and dissimilarities
presented here can be used for such data but it must be noted that they do not account
for the ordering structure of the times. The columns of the data set can be randomly per-
muted without affecting the distances between genes. However, time-course data can be
analyzed from a more dynamic point of view by considering variations δg,t = xg,t − xg,t−1

instead of levels xg,t. A specific modeling of time-course data will be presented in Section
4.2.2.

4.1.2 Combinatorial complexity and heuristics

A clustering is satisfying when groups are

(i) homogeneous (with low within-group variability),

(ii) well separated (with high between-group variability).

Given some criterion measuring the quality of the clustering (such as the within-group
inertia defined in section 4.1.4), one may search for the best clustering, that is the best
partition of a set of G genes into K groups. The number of such partitions is given
by the Bell number:

∑K
k=1(−1)k(K − k)G/[k!(K − k)!]. There are approximately 1047

possible partitions of G = 100 genes into K = 3 groups, and 1068 for K = 5 groups. This
shows that, no matter the power of the available computers, there is no way to explore
all possible partitions.

This complexity motivates the use of heuristics. We will now introduce two of the
most popular clustering algorithms (see Anderberg (1973)):

• hierarchical clustering, that works with an unknown number of groups K

• and K means for which K has to be known.
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4.1.3 Hierarchical clustering

The principle of hierarchical algorithms is to build the clusters by joining iteratively the
two ‘closest’ genes or groups of genes. This is clearly a heuristic approach that aims
at minimizing the within-group variability. The result is generally displayed as a tree
(dendrogram), as shown in Figure 4.2.

It has to be noted that the tree structure is the result of the clustering history, but does
not reveal some presupposed underlying structure. This makes a major difference with,
for example, phylogenetic trees that are obtained in the framework of an evolutionary
models that involves a tree structure. Hierarchical algorithms always provide a tree,
even if the data are not structured according to a tree. Even though dendrograms are
considered as simple visualization tools, it must be stressed that it is a very particular
representation of the data, that can be completely irrelevant. This is a major drawback
of these ‘algorithmic’ approaches: because of the lack of statistical modeling, the fit of
the representation to the data is difficult to assess.

Figure 4.2: Hierarchical clustering of gene expression data, from Eisen et al. (1998).
Groups A to E are putative functional groups, containing few genes with known function:
A = cholesterol biosynthesis, B = cell cycle, etc.

Hierarchical algorithm

The general hierarchical clustering algorithm is the following:

Initialization. Calculate the G × G matrix D containing the dissimilarities between all
the couples of genes (called the dissimilarity matrix);
Set the y-value of each gene in the dendrogram to 0.

Iteration: Proceed steps 1 to 4.
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1. Find the smallest dissimilarity in D and the corresponding couple of genes or
groups of genes (g1, g2);

2. merge g1 and g2 into a new group of genes g12; set the y-value of g12 in the
dendrogram to d(g1, g2)

1;

3. calculate the dissimilarity between the new group g12 and all the other genes
or groups of genes g (g 6= g1, g2);

4. remove rows and columns corresponding to g1 and g2 from matrix D and add
one row and column corresponding to g12 and go back to step 1.

Distance between groups

The first steps of the algorithms generally result in the gathering of single genes into cou-
ples. Once genes have been merged into groups, we need a dissimilarity d(C, C′) between
groups of genes to let the process go on. This second dissimilarity is sometimes called
aggregation criterion, and traditionally gives the name of the general clustering algorithm
(‘Single linkage algorithm’, ‘Ward algorithm’, etc). We present here some of the most
popular.

Single linkage. The dissimilarity between groups C and C′ is defined as the smallest
distances between their elements: d(C, C′) = ming∈C,g′∈C′ d(g, g′). This criterion is
often considered as parsimonious since it assumes that two groups are close to each
other if some of their elements are close. It is known to give very unbalanced groups,
the groups of big size absorbing isolated elements one by one.

Average linkage. The dissimilarity is the mean dissimilarity between elements of C and
C′: d(C, C′) =

∑
g∈C

∑
g′∈C′ d(g, g′)/(|C||C′|), where |C| denotes the number of genes

in group C.

Complete linkage. This criterion follows the opposite principle of the single linkage:
d(C, C′) = maxg∈C,g′∈C′ d(g, g′) and strongly penalizes large groups.

Centroid. The centroid dissimilarity only accounts for the centers g and g′ of the groups,
no matter of their size: d(C, C′) = d(g, g′).

Ward. The Ward criterion is interesting because it is consistent with principle component
analysis (PCA, see Anderson (2003) for a general presentation, or Alter et al. (2000)
for an application to microarray). At each step, two elements (genes or groups) are
gathered to form a new element. Ward defines the loss of information due to this
gathering as the within inertia (defined in equation (4.1)) of these two elements
and uses it as a dissimilarity (that is actually a distance). The resulting criterion is
d2(C, C′) = |C||C′|d2(g, g′)/(|C| + |C′|).

1Another representation can be obtained by cumulating the dissimilarities of all the past steps.
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A huge number of different criterions have been proposed in the literature. It can be noted
that one of the oldest references is Sokal and Sneath (1963) in which are defined the
Unweighted/Weighted Pairwise Group Method Average/Centroid (UPGMA, UPGMC,
etc.)

Stopping rule

From a theoretical point of view, the clustering is only achieved when groups are com-
pletely defined. Letting the aggregating process go on will lead from a classification where
each gene is a class to another classification where all the genes belong to the same class.
Of course, none of these two classifications is biologically relevant.

The general idea to choose the number of groups in hierarchical algorithms is to cut
the tree at a given height d∗. Depending on the definition of the y-axis of the tree, we get
two different stopping rules.

Local criterion. The y-axis of the tree is defined as the distance between the two el-
ements being merged. Cutting this tree at a level d∗ means that the aggregating
process stops as soon as the distance between the two closest elements exceeds d∗.

Global criterion. The y-axis is the sum of all the distances between the elements that
have been merged since the first step of the algorithm. In the case of the Ward
algorithm, this sum is exactly the information (defined as the inertia) lost since the
beginning of the process. Cutting the tree at height d∗ means that the algorithm
stops when the loss of information exceeds d∗.

In practice many users do not use any stopping rule and define the clusters simply
by looking at the dendrogram. In Figure 4.2, we see that groups A to E correspond to
very different heights in the tree: they have defined according to exogenous information
regarding genes with known functions.

Comparison of trees

The upper part of Figure 4.3 presents a comparison of the first step of 3 methods for an
artificial data set with G = 5 individuals. The middle part of the same figure displays
the dendrograms obtained with 3 different methods. The y-axis is given by the distance
between the two elements to be gathered. This comparison shows that these methods
lead to different clusters. For example, for K = 3 groups, single and average linkage give
{d, e, b}, {c} and {a} while complete linkage gives {d, e}, {b, a}, {c}.

One of the great difficulties in clustering is the validation of the method. Since the
purpose is to discover unknown groups, there is generally no validation data (such as the
validation set in supervised classification, see Chapter 6).

The quality of a clustering can be measured by comparing the distances between the
elements in the dendrogram to the original dissimilarities. The distance between two
elements in a tree is defined as the y-value of the highest node in the path from one
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original single average complete
distances linkage linkage linkage

d(g, g′) a b c d e {d, e} {d, e} {d, e}
a 3 7 3 4 3 3.5 4
b 4 4 1 1 2.5 4
c 2 6 2 4 6
d 0.5 - - -
e - - -

Single linkage Average linkage Complete linkage
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Figure 4.3: Top left: original dissimilarity matrix. The two closest elements are d and
e: d(d, e) = 0.5. Top right: comparison of the distances between {d, e} and the other
elements for three algorithms. Middle: clustering trees obtained with the same algorithms.
Bottom: distances in the trees. Based on an example from Bouroche and Saporta (1998).

element to the other along the edges of the tree. These distances are given at the bottom
of Figure 4.3.

These distance matrices can be compared to the original one with the cophenetic
coefficient (see Sokal and Sneath (1963)). Denoting d the original dissimilarity and d̂ the
distance in the tree, this coefficient is defined as the correlation between d and d̂. When
applied to the example of Figure 4.3, the cophenetic coefficient is 0.54 for the single
linkage, 0.67 for the average and 0.65 for the complete. In this case, the best cophenetic
coefficient is obtained with the average linkage algorithm, but the difference with the
complete linkage is not big. Due to the absence of a proper statistical framework, neither
the fit of the average linkage clustering, nor the significance of its difference with the
complete linkage can be assessed.

4.1.4 K means

An alternative way to build homogenous clusters is to characterize each cluster by a
central point (its mean), and to assign each gene to the closest cluster. In this case, the
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distance from a gene to a cluster is defined as the distance from the gene to the mean of
the cluster. This again is a heuristic way to minimize the within-cluster variability. The
wide popularity of the K means algorithm comes from its simplicity.

Algorithm

Each gene g is represented by a point xg with coordinates (xg1, . . . , xgT ) in a T -dimensional
space. The mean of cluster Ck is denoted mk = (mk1, . . . , mkT ) where mkt =

∑
g∈Ck

xgt/|Ck|.
The K means algorithm updates these mean value after each affectation step.

Initialization. Choose K points (generally at random among x . . .xG) that become the
initial means m0

1 . . .m0
K of the K groups.

Iteration h. Proceed steps 1 and 2.

1. Assign each element g to the closest group Ch
k with mean mh

k such as d(xg,m
h
k) =

mink′ d(xg,m
h
k′);

2. Update the mean of each group: mh+1
k =

∑
g∈Ck

xg/|Ck| and go back to step 1.

Stop. If mh+1
k = mh

k for all k.

Step 1 (affectation) and 2 (updating) are respectively connected with the E and M
steps of the EM algorithm described in Section 4.2.2.

Properties

Within-group minimization and convergence. The within-group inertia at step h

Ih =
∑

k=1,K

∑

g∈Ch
k

d2
(
xg −mh

k

)2
(4.1)

decreases at each iteration and the K means algorithm converges in a finite number of
iterations.
Indeed, Ih decreases during the affectation by definition of the affectation rule. Moreover,
Ih also decreases during the updating step since, for each group Ch+1

k we have
∑

g∈Ch+1
k

d2
(
xg − mh+1

k

)2 ≤
∑

g∈Ch+1
k

d2
(
xg − mh

k

)2

because mh+1
k is precisely the mean of group Ch+1

k .
Hence Ih, which is always positive, decreases at each step, so it converges. Furthermore,
the number of repartitions of the G into K groups being finite, the number of iterations
is finite.

In practice, it appears that the K means algorithm converge surprisingly quickly. Even
for large data sets, the number of iterations is often smaller than 10. It should be noted
that some groups may be emptied at some step, so the final number of groups can be
smaller than K.
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Local maxima. The major drawback of the K means algorithm is its high sensitivity
to the choice of the starting points m0 . . .m0

K . As explained above, it is only a heuristic
method and we have no guarantee that the final clustering is optimal in any sense. The
fact that the inertia Ih always decreases only insures that it converges to a local minimum,
but not to the global one. This problem is encountered in many optimization algorithm,
for which no general optimality properties can be shown.
Simple simulations (not presented here) show that using the K means algorithm on the
same data with different starting points leads to very different final clustering, some groups
being split, and some other being merged.

Practical use. Because of the instability of the results it provides, the K means algo-
rithm has to be used carefully or in specific cases. The basic prudential rule is to try a
large number of starting points to check the variability of the clusters. This, of course, in-
creases the computation time and reduces the advantage of the K means over hierarchical
methods.

An interesting way to use the K means algorithm is to take advantage of its draw-
backs. Instead of being chosen at random, the starting points m0 . . .m0

K can be chosen
on purpose, on the basis of some biological information. Typically, m0 . . .m0

K can be
defined as K genes known to be related to K specific functions or pathways. In this case,
K means will gather unknown genes around known ones, and the interpretation of the
clusters will be natural.

K means can also be used as a post-processing of a hierarchical clustering to check
the stability of the clusters and to allow few genes to go from one cluster to another.
Analyzing these genes can help in giving a biological interpretation to the clusters.

4.2 Model-based methods

We finally introduce mixture models that constitute the general framework for clustering
problems in a model-based approach. These models assume that the profiles Xg are
random, and that their distribution depends on the group to which gene g belongs. The
randomness of Xg is coherent with the observed variability of microarray data. Moreover,
mixture models provide additional informations with respect to distance-based methods:

• estimates of the parameters (mean, variance, etc.) characterizing each group,

• probability for each gene to belong to each group (rather than a deterministic af-
fectation),

• statistical criterions to choose the number of groups.

Mixture models constitute a very large class of statistical models (see McLachlan and
Peel (2000) for a general presentation), with numerous applications. We focus here on
their use for clustering analysis and on the use of the EM algorithm to estimate the
parameters of the mixture. EM is not the only available algorithm, but it is the most
widely used and has some interesting similarity with the K means algorithm.
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4.2.1 Mixture model

The set of the G genes is supposed to be a mixture of K groups (or populations) C1,
. . . , CK . Each gene has marginal probability πk (

∑
k πk = 1) to belong to group Ck.

Conditionally to the group it belongs, the expression profile Xg of gene g has distribution
φ(·, θk):

(Xg | g ∈ Ck) ∼ φ(·; θk) ⇔ Xg ∼
∑

k

πkφ(·; θk),

the parameter θk being characteristic of group Ck. The log-likelihood of the profiles Xg

(g = 1 . . . G) is

logL ({Xg}; {πk, θk}) =
∑

g

log

[
∑

k

πkφ(Xg; θk)

]
. (4.2)

Prior and posterior probabilities

In terms of clustering, the most interesting information provided by mixture models is the
probability for gene g to belong to group Ck given its expression profile xg. The (unknown)
marginal probability πk = Pr{g ∈ Ck} does not take into account the expression profile
Xg. It is called the prior probability and does not provide any specific information about
gene g. πk only informs use about the size of population Ck. The conditional probability
τgk = Pr{g ∈ Ck | xg} can be viewed as a version of πk updated according to the observed
profile xg. This probability, called posterior probability is given by Bayes’ formula:

τgk = πkφ(xg; θk)

/
∑

ℓ

πℓφ(xg; θℓ) . (4.3)

Hence mixture models provide by the posterior probability for a given gene to belong to
each of the K groups, instead of assigning it to a particular group. This justifies the term
of fuzzy classification.

Gaussian mixture

Gaussian mixtures are naturally the most popular. In this case, parameter θk = (µk,Σk)
where µk is the mean vector and Σk the variance matrix of population Ck. µk represents
the mean expression profile of the group, while Σ describes the within-group variability
of the profiles (see Fraley and Raftery (1998) for an introduction to the modeling of Σ).

Figure 4.4 presents the calculation of posterior probabilities in a mixture of univariate
Gaussian densities. In this case, the expression profile of each gene is reduced to one value
xg. In this example, given the xg’s, gene 1 most probably belongs to group 1, gene 2 may
belong to groups 1 and 2 with equal probabilities and it is almost certain that gene 3
belongs to group 3.
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x1 x2 x3 x1 x2 x3

τgk (%) g = 1 g = 2 g = 3
k = 1 65.8 0.7 0.0
k = 2 34.2 47.8 0.0
k = 3 0.0 51.5 1.0

Figure 4.4: Univariate Gaussian mixture. Top left: mixture of 3 Gaussian densities
φ(·, θk). Top right: posterior probabilities τgk as a function of xg. Bottom: posterior
probabilities for 3 particular values of xg.

4.2.2 Parameter estimation

The most difficult part in mixture models lies in the estimation of parameters πk and θk.
We present here the maximum likelihood approach using the EM algorithm, which is a
general algorithm for maximum likelihood estimation when the data are incomplete.

Complete likelihood

‘Complete’ data. Clustering problems can be presented as an incomplete data prob-
lem. For each gene g, we observe the expression profile Xg but we miss the group to which
it belongs. This last information can be represented by a binary variable Zkg = I{g ∈ Ck}
(where I{A} equals 1 if A is true, and 0 otherwise). In an ideal world, we should observe
for each gene the profile Xg and the vector of binary variables Zg = (Zg1 . . . ZgK) with
multinomial distribution

Zg ∼ M(1; π, . . . , πK), (Xg | Zgk = 1) ∼ φ(·; θk)

If g belongs to Cℓ, the joint (log-) distribution of (Zg,Xg) is

log[πℓφ(Xg, θℓ)] =
∑

k

Zgk log[πkφ(Xg, θk)]

since only Zgℓ is 1, all others Zgk being 0. So the likelihood of the complete data set is

logL ({Xg,Zk}; {πk, θk}) =
∑

g

∑

k

Zgk log [πkφ(Xg; θk)] .

It is called complete likelihood, while the likelihood given in (4.2) is called the incomplete
likelihood.
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Estimation with the EM algorithm

The direct maximization of the incomplete likelihood turns out to be very difficult in most
cases. The idea of the EM algorithm is to work on the complete likelihood, which is more
convenient to handle. Iteration h of the algorithm is composed of two steps.

E (expectation) step. Missing data Zg is replaced by its conditional expectation given
the profile Xg. The conditional expectation of Zgk is actually the posterior proba-

bility τh−1
gk given in (4.3), calculated with the estimates {π̂h−1

k , θ̂h−1
k } at step (h−1).

M (maximization) step. The expectation of the conditional likelihoodE [logL({xg | Zg = k})] =
∑

k

∑

g

τh
gk log

[
π̂h

kφ(xg; θ̂
h
k)

]

is maximized (separately for each group Ck).

Univariate Gaussian mixture. In this case, we have

φ(x; θk) = exp
[
−(x − µk)

2/(2σ2
k)

]/
(σk

√
2π)

with θk = (µk, σ
2
k). At each M step, the updated versions of µ̂k and σ̂2

k are weighted
version of the usual estimates, with weights ph−1

g (k):

µ̂h
k =

1
∑

g τh−1
gk

∑

g

τh−1
gk xg, σ̂2

k

h
=

1
∑

g τh−1
gk

∑

g

τh−1
gk

(
xg − µh

k

)2
.

Other versions. Several variations around the basic EM algorithm have been proposed.

CEM. The simplest one replaces the E step by an affectation step where Zkg is set to
one for group k having the maximal posterior probability τgk. The likelihood then
obtained in the M step is called the classifying (C) likelihood; this algorithm is
actually a generalized version of the K means algorithm.

SEM. A stochastic version of EM is obtained by drawing Zg at random with probabilities
τg1, . . . τgK . This version may help in avoiding local maxima since it allows the
likelihood to decrease at some steps (see Celeux et al. (1995)).

Properties of the EM algorithm

It can be shown (Dempster et al. (1977), McLachlan and Peel (2000)) that the incomplete
likelihood (4.2) increases at each iteration, so EM algorithm always converges. However,
as for the K means algorithm, we have no guarantee that it converges towards the ab-
solute maximum, for the same reasons as the K means algorithm. Both EM and K
means algorithm are therefore highly dependent on the initial values of the parameters.
Stochastic versions like SEM tend to limit this important drawback, and are preferred to
the basic EM for complex likelihoods.
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Mixture models for time course experiments

Luan and Li (2003) proposed to use a mixture model for time-course experiment on gene
expression data. Each gene is characterized by its profile xg = (xg1, . . . xgT ). The model
is a mixture of Gaussian distributions that takes the time structure into account. Each
cluster Ck of genes is characterized by a ‘mean’ profile µk(t):

Xgt | g ∈ Ck ∼ N
(
µk(t), σ

2
k

)
.

The interesting point is that, in this approach, the clusters and their characteristic
profiles µk are estimated simultaneously. Functions µk(t) are allowed to have a fairly
general form (polynomial, B-splines). This is possible because all the data associated
with gene putatively belonging to group Ck are used to fit µk. A more traditional way
would be to estimate a specific function µg(t) for each gene and then to apply some
clustering technique, but this would lead to very unstable results because of the lack of
precision of the estimated function µ̂g(t).

4.2.3 Choice of the number of groups

As for all clustering methods, the choice of the number of groups is a difficult part of
mixture modeling. However, for model-based methods, this problem can be stated in a
model selection framework for which several standard statistical tools exists.

It is first important to remark that the criterion to be optimized (within inertia for
Ward hierarchical method or for the K means, likelihood for mixture models) improves
when the number of groups increases. Therefore, this criterion can not be used directly
to compare clusterings, since clusterings with larger number of groups will systematically
be preferred. We present here two solutions for this model selection problem in mixture
models.

Penalized likelihood criterion. The number of groups can be chosen using some
penalized contrast criterion (see Burnham and Anderson (1998)). Denoting D the di-
mension of parameter θ, a mixture model with K groups involve P = K(D + 1) − 1
independent parameters. The most popular criterions are AIC = −2 logL + 2P and
BIC = −2 logL + P log G. Empirical studies (Fraley and Raftery (1998), Biernacki and
Govaert (1999)) showed that BIC provides satisfying results.

Monte Carlo Markov Chain (MCMC) methods. An interesting way to choose
the number of groups is to consider that this number is itself a parameter of the model,
that has to be estimated together with others. The reversible jump algorithm (Green
(1995)), defined in a Bayesian framework, is based on this idea. This MCMC algorithm
estimates the posterior distribution of K (given the data) that allows to select the most
likely number of groups.
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Chapter 5

Differential analysis

A classical question motivating microarray experiments is the impact of treatments on
genes expression. These treatments can be seen as covariates that could be discrete
(irradiated sample vs. non irradiated sample), or continuous (dose of a drug). The
purpose of differential analysis is the identification of differentially expressed genes or
genes whose expression level differ from a condition to another. Differential analysis
experiments include single slide experiments, where two conditions are hybridized on
the same slide and identified by fluorescent dyes, and multiple slide experiments where
biological samples are hybridized on different slides.

The statistical context of such analysis is the comparison of two populations according
to a variable of interest : the level of expression of a gene, and the associated methodology
is based on statistical hypothesis testing. This analysis always requires three steps : the
definition of a statistic that scores the difference of expression between the two conditions,
the definition of a decision rule based on this score to declare a gene differentially expressed
or not, and the control of the probability to take the wrong decision.

The definition of an appropriate statistic is not new, and the traditionnal t-test remains
relevant. Nevertheless, crucial choices of modelization have to be made, in order to adapt
the t-test to the special case of microarrays. The question of the variability of the gene
expression is central in this regard, and we will show that a compromise between statistical
requirements and biological knowledge is essential for this analysis.

Classical decision rules can be applied in differential analysis studies, but the main
problem will lie in the control of the tests that are performed. This question is also
classical in the context of single hypothesis testing, where the problem is to control the
probability to declare a single gene differentially expressed whereas it is not. Nevertheless,
the characteristics of microarray data lies in the number of tests that are performed :
as many as genes present on the slide, meaning thousands of tests. The question of
differential expression is then restated as a problem of multiple testing.
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5.1 Classical concepts and tools for hypothesis test-

ing

Definition of a differential score

The question underlying differential analysis could be summarized as follows : does the
expression of a given gene differ from condition A to condition B ? The first step is then
to define a quantity that could score the difference of expression of a gene between the
two conditions. Let us note X̄A and X̄B the mean expression of a given gene, calculated
on RA and RB replicates, and S2

A and S2
B their variance.

X̄A =
1

RA

RA∑

i=1

XAi and S2
A =

1

RA − 1

RA∑

i=1

(XAi − X̄A)2.

A natural score is then :

T =
X̄A − X̄B

S
√

1
RA

+ 1
RB

where S =
(RA − 1)S2

A + (RB − 1)S2
B

RA + RB − 2
. (5.1)

The choice of this criterion is partly arbitrary, but is easy to interpret : it quantitizes the
difference of the average expression of a given gene between two conditions, normalized
by the variability of the expression of this gene. Remark that this definition assumes that
the global difference of expression between condition A and B has been set to zero due
to normalization procedures.

This score could also be defined as the average difference of expression of this gene,
normalized by the variability of this difference of expression. For this purpose, let us note
Di = XAi − XBi, the difference of expression of a given gene between conditions A and
B, measured on replication i (i = 1 . . .R), D̄ the average difference of expression, and S2

D

the variability of this difference. The score is then :

T =
D̄

S2
D

√
R where S2

D =

R∑

i=1

(Di − D̄)2. (5.2)

Since we aim at declaring a gene differentially expressed or not, a high value of the score
will indicate that the expression of the gene is ”really” different from condition A to B.

Statistical Hypothesis

Now that the differential score has been defined, the problem is to take a decision :
is the considered gene differentially expressed or not? Two hypothesis are considered :
the null hypothesis H0 of no difference between the two conditions, and an alternative
hypothesis H1. The problem is then to define a decision rule that would accept or reject
H0 given H1. Nevertheless, when the decision is taken, it can be the wrong decision,
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meaning that a gene can be declared differentially expressed, whereas it is not, or can
be declared not differentially expressed whereas it is. Four situations are possible, and
summarized in table 5.1.

Decision
accept H0 reject H0

reality H0 true 1 − α α
H0 false β 1 − β

Table 5.1: Statistical hypotheses and associated risks.

Each situation is possible with a certain probability. α is the Type I error, or the
probability to declare a gene differentially expressed whereas it is not. This gene will be
a false positive. On the other hand, β is the Type II error, or the probability to declare
a gene not differentially expressed, whereas it is. This gene will be a false negative. The
aim of any decision rule is then to facilitate the decision making but also to control those
probability of errors.

Nevertheless the simultaneous control of the type I and type II error rates is not
possible: if α is very low, then the probability to reject H0 is very low, meaning that
the decision rule is very strict and could lead to the conservation of H0, even in wrong
situations : the type II error rate increases as the type I error rate decreases.

Traditional statistical procedures aim at controlling the type I error rate and the para-
metric approach offers a theoretical framework for this purpose.

Why controlling the type I error rate?

As discussed above, classical statistical procedures aim at controling the type I error
rate. Nevertheless, the error committed while taking the decision to reject H0 can be
either the type I error rate, or the type II error rate. The need for a specific control of the
type I error rate is simple to understand in our context, where microarray experiments
results have to be further checked using a different technique, such as PCR. It is clear
that if the type I error rate is large, a lot of genes will be declared differentially expressed
and will have to be checked, even if they are not differentially expressed. This is why, it
seems reasonnable to control this first type error in a practical point of view. An other
reason is that the control of the type II error rate would require some knowlegde about
the distribution of the statistics under H1, whereas it is not available (cf section 5.2.1).

5.2 Presentation of the t-test

5.2.1 The t-test in the parametric context

In the parametric context, the measures of the gene expression are considered to be the
realizations of random variables, noted XA and XB. Since measures are repeated, RA
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and RB times respectively, let us note xA1, . . . , xARA
and xB1, . . . , xBRB

the realizations of
the random variables XA1, . . . , XARA

and XB1, . . . , XBRB
. A classical assumption is that

the distribution of XAi and XBj is gaussian, with parameters µA and σ2
A, and µB and σ2

B

respectively. The estimators of the parameters µA and σ2
A are X̄A and S2

A.
The question of differential analysis is then reformulated in terms of an hypothesis on

the parameters: ”there is no difference of mean expression for the gene g between condi-
tions A and B” :

H0 = {µA = µB} vs H1 = {µA 6= µB}.
The interest of this parametric context, is that the distribution of the differential score
(5.1), or t-statistic is known under H0, and is a Student distribution with RA + RB − 2
degrees of freedom. Since the quantiles of this distribution are perfectly known, the
decision to accept or reject H0 will be taken comparing the observed value of the statistics
to its theoretical quantiles.

Nevertheless, before assessing the special problem of the decision rule, let us remark
that the t-test requires some hypothesis :

1 - the XAi must be mutually idenpendent,
2 - the XBi must be mutually idenpendent,
3 - XAi and XBj must be independent.

Hypothesis 1 and 2 are generally reasonnable. Nevertheless in the case of cDNA mi-
croarray experiments, the two conditions A and B are hybridized on the same support,
and distinguished by fluorescent dyes. This is why populations A and B are clearly not
independent in a statistical point of view. In this case, hypothesis 3 is not valid, and
the model should rather concern the difference of expression between the two conditions.
Using same notations as above, if Di represents the difference of expression of a given gene
between conditions A and B, the new model is D ∼ N (µD, σ2

D), and H0 is reformulated:
”the mean difference of expression between conditions A and B is null” :

H0 = {µD = 0} vs H1 = {µD 6= 0}.

In this case, the new statistic is the score defined in (5.2) and has a Student distribution
with R − 1 degrees of freedom under H0. This test is called a t-test on paired data .

Decision rule

Since we dispose of the probability distribution of the t-statistic, we can compare
the value of the realization of T , noted tobs, to the theoretical quantiles of the Student
distribution:

If |tobs| > t1−α
2

then reject H0.

This decision rule is equivalent to the definition of a rejection zone Rα, defined as the set of
values of T that are unrealistic under H0. The probability to declare a gene differentially
expressed whereas it is not is α if this procedure is used since:

Pr{|T | > t1−α
2
} = α.
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This decision rule ensures the control of the first type error to α 1.

p-values

Softwares and automatic statistical procedures do not express the result of a test with the
comparison of the observed value of the t-statistic to theoretical quantiles, but the result
is rather expressed in terms of p-values. A p-value is defined by:

Pv(tobs) = Pr(|tobs| ≥ t1−α/2) = Pr(|T | ≥ |tobs|).

It has two interpretations. First, it is the probability to obtain the observed score if H0

was true. In our context, it is the probability to observe a large value of the t-statistic if
the gene considered was not differentially expressed. If this probability is small ”enough”,
the null hypothesis will be rejected.

The threshold to which the p-value should be compared is α, and we have the funda-
mental property :

{Pv(tobs) ≤ α} ⇔ {tobs ∈ Rα},
meaning that if H0 is rejected when the p-value is lower than α, then the type I error is
controlled and equals α. This leads to a second interpretation of the p-value : it is the
level of the test at which H0 would just be rejected.

5.2.2 The non parametric context

In some situations, the assumption that data are realizations of gaussian random variables
is not suitable. In the non-parametric context, no assumption is made on the distribution
of the differential score, and theoretical quantiles and p-values are not caculable in a close
form. The alternative proposed by non-parametric approaches is to compute the empirical
distribution of the t-statistic, using permutation methods.

Let us recall that the data can be summarized in the following form :

XA1, . . . , XARA
, XB1, . . . , XBRB

.

Under the null hypothesis of no difference between the two conditions, the control and
treatment status is independent of gene expression. Resampling methods (bootstrap or
permutation) randomly assign the label treatement A and B to the data. This permutation
is done L times (L ≥ CRB

RA+RB
), and ℓth permuation provides a pseudo value for the t-

statistic. The empirical distribution of the statistic T is then obtained via the values
(t1, . . . , tL).

The p-value associated with T is estimated via the proportion of pseudo values tℓ
exceeding T :

p̂v =
1

L

∑

ℓ

I{|tℓ| > |T |}.

1Note that the definition of the rejection zone depends on the alternative hypothesis H1. The results
shown are valid for bilateral tests.
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5.2.3 Power of the t-test

The power of a test is its ability to detect true differences: it is the probability to reject
H0 when it is false. It is noted π, and equals 1−β. Since the type I and type II error rate
are linked (cf section 5.1), and the type I error rate is fixed, classical procedures do not
control the power of the tests. Thus an easy way to compare different tests procedures
will be to compare their respective power.

The next question is then : how can the power be optimized? The key factor in the
optimization of the power of a test procedure is the number of replicates. Let us consider
the moments of a t-statistic with distribution TR under H0 :E (T ) = 0 and V(T ) =

R

R − 2
if R ≥ 2.

It is clear that the more replicates will be available, the more the variance of the t-statistic
will decrease. In the first situation, where only few replicates are available, H0 is accepted,
but when more replicated are available, H0 is rejected. The first situation leads to an
acceptation of H0 whereas it was false, or to a high type II error rate β. When the number
of replicates increases (second situation), the variance of the t-statistic is decreased, lead-
ing to less spread tails of distribution. As a consequence, the null hypothesis is rejected.
The increase in the number of replicates leads to a decrease in the type II error rate, thus
to an increase in the power of the test.

The next logical step would be to calculate the number of replicates required to reach
a given power, or to calculate the power of a test given the number of replicates. Never-
theless, this exact calculus is not possible since it requires the knowlegde of the probability
distribution of the statistic under H1. This calculus can be achieved with the expected
normalized difference noted δR, depending on the number of replicates R. In the particular
case of a t-test, we have

T ∼
H1

T2R−2(δR) with δR =
µA − µB

σ

√
2R − 2.

Then the power of the test can be calculated with the formula:

π(δR) = Pr(|T | > t1−α/2)

= 1 − F (t1−α/2; 2R − 2; δR) + F (−t1−α/2; 2R − 2; δR)

where F (·; 2R − 2; δR) is the distribution function of a non-central Student variable with
parameter of non-centrality δR.

This calculus means that the question of the power has to be reformulated to:
- ”How much power can I achieve, if I have R replicates in my experiment to observe

a normalized difference of expression of δR” ?
- ”How many replicates do I need to achieve a given power for the observation of a
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normalized difference of expression of δR?”

A figure like 5.1 can be used to answer these questions. This graph shows the power of
a t-test for the comparison of two independant populations, with level α = 0.05, according
to the number of replicates. If the number of replicates is equal to 2, the probability to
detect a difference of |µA − µB| = 5σ is equal to 0.70. It can be seen on this graph that
this probability is lower than 50% for differences lower than 4σ. Let’s compare the power
of the test according to the number of replicates for a given difference of 3σ. The power
for R = 2 or R = 4 is approximatively of 40% and 90% respectively. Then 4 replicates
are needed for each treatment to be nearly sure to detect a difference of 3σ.
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π
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Figure 5.1: Power curves for different sample sizes (R = 2, 4, 8, 16, 32, 64), for a
normalized difference δ. The level of the test is fixed and equals α = 0.05.

Once more these considerations point out that the question of the power has to be
asked before the experiment is performed, and thus is central in the design of any exper-
iment that aims at comparing two populations, as explained in chapter 2.
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5.3 Modeling the variance

As discussed before, the value of the t-statistic depends on two quantities : the mean
difference of the expression values between two conditions, but also the variability of this
difference of expression. Large values of this statistic can be obtained if the difference of
expression is high, or if the variability of expression is low. The precision with which the
variance is estimated becomes crucial, since small artefactual values of this variance can
lead to an explosion of the statistic, thus to a decrease in power of the test. Modeling the
variance is then of crucial interest for differential analysis.

5.3.1 A gene specific variance ?

Assuming that each gene presents a specific variability of expression between two con-
ditions appears reasonnable in a biological point of view. Let us consider the case of a
t-test on paired data. The estimator of the variance of expression of the gene g is :

S2
g =

1

R

R∑

i=1

(Di,g − D̄g)
2.

Notice that the number of replicates has a considerable influence on the estimation
of the variance. In practical situations, only few replicates are available (R=3,4), leading
to spurious small values of the variance due to errors of estimation, and thus to a lack
of power. One simple solution to this problem is to add a constant s2

0 to the variance
estimator, and the t-statistic for gene g is then

Tg =
D̄√

S2
g + s2

0

√
R.

This approach has been developped by Tusher et al. (2001), within a general framework for
differential analysis of microarray data called SAM for Significant Analysis of Microarray
data. The constant is chosen so that the median of the absolute deviation from the
median of the test statistic is as uniform as possible over the standard error range. Other
approaches have been developped in this context by several authors, see Efron et al.
(2001) for a mixture model approach, Baldi and Long (2001) and Lönnstedt and Speed
(2001) for a bayesian approach and Kerr et al. (2002), Rudemo et al. (2002) for intensity
based approaches.

5.3.2 A common variance ?

An other possibility would be to suppose that all the genes present the same variability of
expression between the two conditions. This solution, though simple in a biological point
of view, presents some statistical advantages. In this case, the variance is estimated via :

S2 =
1

m

m∑

g=1

S2
g .
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This variance represents the average variability of expression for all the m genes and
is fixed for all the t-statistics, leading to gaussian statistics, instead of t-statistics (this
method does not allow missing data). This solution has the main advatage to calculate
an estimator over a large number of data, leading to a robust estimation of the variance,
and to a gain in the power of the test. Nevertheless, this modelization is very rigid in the
biological point of view.

5.3.3 An intermediate solution

The two situations described above are biologically relevant and statistically of low power
for the first one, and biologically simple and statistically robust for the second one. Del-
mar et al. (2003) thus propose and intermediate modeling, considering that groups of
variability can be identified from the data. This model suggests that a gene can belong to
a population defined by its variability of expression. For this reason, a variance mixture
model is considered, where each gene has the variance of the group of genes it is found to
belong to. If σ2

k is the ”true” variability of expression of the group k, then the estimator
S2

g of the variance for the gene g is supposed to follow a mixture of gamma distributions,
such as:

RS2
g ∼

K∑

k=1

πkγσ2
k
,R.

This parametrization allows the definition of exact testing procedures, and can reproduce
complex patterns in the variance structure.

5.4 Multiple testing problems

The question of comparing to populations according to a variable of interest can be han-
dled via classical statistical tools, such as the t-test, modulo some adaptations to the
special case of microarray data. The procedures described above show how a difference of
expression can be scored, and how the decision to declare a gene differentially expressed
can be taken for one gene, controlling the type I error. Nevertheless, the reality of mi-
croarray data is much more complicated, since thousands of genes have to be studied
simultaneously. Even if the same statistical score can be used for each gene, the question
of differential analysis has to be restated in terms of error control.

False positives, false negatives, expected number of errors

Table 5.1 can be viewed not only in terms of probability of errors, but also in terms
of number of errors, as shown in table 5.2.

A small example is used to illustrate the problem of multiple testing. Let’s con-
sider that all the genes are differentially expressed (m0 = m), and that all the tests are
performed with level α. Then the number of false positives is a random variable, with
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Decision
declared NDE declared DE

reality m0 DE genes TN FP
m1 NDE genes FN TP
m = m0 + m1 genes R = TN + FN S = FP + TP

Table 5.2: DE: Differentially expressed, NDE: non differentially expressed, TN : number
of True Negatives, FN : number of False Negatives, R: number of Negatives, FP : number
of False positives, TP : number of True Positives, S: number of Positives

Bernoulli probability distribution such as :

FP ∼ B(m, α).

This simple modeling leads to the conclusion that the expected number of false positives,
when m hypothesis are tested simultaneously is E (FP ) = mα. Regarding the high num-
ber of tests performed in microarray experiments (for instance m = 10000), 500 genes
will be declared differentially expressed whereas they are not, if the level of the tests is
α = 0.05. The purpose of multiple testing is then to control the global risk of the proce-
dure.

Definition of global risks : the FWER and the FDR

Let us note Hj
0 the null hypothesis concerning the individual gene j, and pj the asso-

ciated p-value. The multiple testing procedure requires the definition of a complete null
hypothesis, noted Hc

0 : ”there is no difference of expression between condition A and B,
for none of the genes”:

Hc
0 =

m⋂

j=1

Hj
0.

As classical procedures aim at controlling the individual risk associated with Hj
0, multiple

testing aims at controlling the global risk associated with the complete null hypothesis
Hc

0.
As many hypotheses are drawn simultaneously, the question of error could be refor-

mulated : ”what is the kind of error that could be committed while testing the complete
null hypothesis ?”. The natural first type of error is that among the m hypothesis tested,
at least one decision taken is wrong. This defines he Family Wise Error Rate : the
probability to have at least one False Positive.

5.4.1 Controlling the Family Wise Error Rate

The procedures of Sidak and Bonferroni are the most widely used to control the FWER,
because of a simplicity of interpretation and implementation. Let us consider the following
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simplified situation. If the genes are assumed to be all differentially expressed (m =
m0), then the probability of having at least one false positive is equal to one minus the
probability of making no error among the m hypothesis tested. In a first step, we can
simplify the situation assuming the all the m tests performed are independent. Since the
probability of no error for hypothesis Hj

0 is 1 − α, the Family Wise Error Rate can be
calculated directly :

FWER = Pr{FP > 0} = 1 −
m∏

j=1

(1 − α) = 1 − (1 − α)m

The principle of multiple testing is to recalculate the individual risk for each individual
hypothesis Hj

0, in order to control the global error. Then, performing each test at level
1− (1−α)1/m ensures the global control of the FWER at level α. This procedure is called
the Sidak correction.

Even if the Sidak procedure offers the exact calculus of the Family Wise Error Rate, it
requires oversimplifying assumptions. First, in real situations, the number of differentially
expressed genes is rarely or never equal to the total number of genes. This number m0

remains unknown, and could be estimated (see below). This leads to the definition of
levels of controls : an exact control of the FWER requires the knowledge of the exact
number of differentially expressed genes (m0 known), a weak control if it is calculated
under the assumption that all the genes are differentially expressed (m0 = m), and strong
if it is calculated over all the possible choices of sets of genes really non differentially
expressed. In the case of microarrays, it is crucial to have an exact or a strong control of
the FWER, since the assumption m0 = m is absolutely not verified.

An other criticism that could me made to the Sidak procedure is that is assumes
that the tests are independent, whereas the gene expressions are obviously not. For this
reason, an other procedure can be applied, the Bonferroni procedure. It is based on the
inequality

Pr

{
⋃

j

Aj

}
≤

∑

j

Pr(Aj).

This procedure does not provide an exact form for the FWER, but a majoration. This
is the most famous of these procedures : performing each test at individual level α/m
ensures the control of the FWER at level at most α.

5.4.2 Practical implementation of control procedures

As mentioned in 5.2.1, the practical use of statistical tests involves the use of p-values to
declare a gene differentially expressed or not. Since the p-value pj can be considered as
the level of the test at which Hj

0 would just be rejected, the adjusted p-value p̃j is defined
as the global level of the procedure at which Hj

0 would just be rejected. If interest is in
controlling the FWER, the adjusted p-value for hypothesis Hj

0 is

p̃j = inf{α : Hj
0 is rejected at FWER = α}
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and Hj
0 is rejected at FWER α if p̃j ≤ α.

Let us define two procedures of p-value adjustment for the Sidak and the Bonferroni
methods.

Procedure adjusted p-value control
Sidak p̃j = 1 − (1 − pj)

m FWER=α
Bonferroni p̃j = min(1, m × pj) FWER ≤ α

Dudoit et al. (2003) provide a complete review of adjustment procedures for p-values.

5.4.3 Adaptative procedures for the control of the FWER

The previous procedures are called single step procedures, since they provide the same ad-
justment for all hypothesis, regardless of the ordering of the unadjusted p-values, meaning
without consideration for the degree of significance of individual hypothesis. As a result,
they lead to very conservative decisions, and thus to a decrease in the power of the proce-
dure. Improvement of power, while preserving the control of the FWER may be achieved
by considering step-down procedures which order p-values and make successively smaller
adjustments.

Let denote p(1) < . . . < p(m) the sequence of ordered p-values, and apply the following
correction :

Procedure adjusted p-value
Adaptative Sidak p̃j = max

j≤g

{
min

[
1 − (1 − p(j))m − j + 1, 1

]}

Adaptative Bonferroni p̃j = max
j≤g

{
min

[
(m − j + 1)p(j), 1

]}

The increase of power of these procedure lies in the fact that a particular hypothesis
can be rejected provided all hypothesis with smaller unadjested p-values were rejected
beforehand.

5.4.4 Dependency

Despite the increase in power provided by step down procedures, no method proposed
above addresses the problem of dependency that could lie between the test statistics. In
the special case of microarrays, since the expression of a gene is dependent on complex reg-
ulatory networks, the hypothesis of independence between the t-statistics can reasonnably
be rejected. Westfall and Young (1993) proposed two alternative procedures to consider
the dependency between statistics, based on permutations.

Procedure adjusted p-value

Westfall and Young (1993) minP p̃j = 1
S

∑
S I{|ps

(j)| ≤ |pj|
}

Westfall and Young (1993) maxT p̃j = 1
S

∑
S I{|T s

(j)| ≥ |Tj |
}
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As discussed in 5.2.2, this procedures are very dependent on the number of permuta-
tions performed. When p-values are estimated via the minP procedure, more computa-
tions are needed, since since method requires the estimation of the unadjusted p-values
before considering the distribution of their successive minima.

5.5 An other approach, the False Discovery Rate

An alternative approach to the control of the FWER has been proposed by Benjamini and
Hochberg (1995), based on the principle that any reasercher is ready to tolerate some type
I errors, provided their number is small regarding the number of rejected hypothesis. In
comparison to the control of the FWER that often leads to conservative procedures, the
control of the expected proportion of type I errors among the rejected hypothesis leads
to less conservative results, thus to an increase in the power of the tests.

Let us define the False Discovery Rate: it is the expected proportion of false positives
among the total number of positives

FDR = E [
FP

S

]
if S > 0

= 0 oherwise

The introduction of the False Discovery Rate is new compared to the traditionnal
procedures to control the number of false positives. Two steps are thus important for the
use of the FDR: its control and its estimation.

5.5.1 Controlling the False Discovery Rate

Before controlling the FDR, it is important to specify that the number of false positives
and the total number of positive genes depends on a threshold fixed by the utilisator. It
is noted t, and then we define:

FP (t) = #{null pi ≤ t, i = 1 . . .m}

S(t) = #{pi ≤ t, i = 1 . . .m}
and thus the False Discovery rate is also a function of this threshold. In our context, the
threshold will be given by ordered p-values.

The control of the FDR can be performed via the separate calculus of E [FP (t)] andE [S(t)] since the number of hypothesis m is large. E [S(t)] can be replaced by S(t), and
if the procedure stops at threshold p(g), the observed number of positives is g

S(p(g)) = g.

The problem is rather in the calculus of the expected number of false positives.
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The central hypothesis is that the p-values are uniformly distributed under H0. Then
the probability for a p-value to be lower than the threshold t equals t under H0:

Pr
{
p(g) ≤ t

}
=
H0

t.

The expectation of the number of false positives is then E [FP (t)] = m0t with m0

being the number of true non differentially expressed genes, which is unknown. Then if
the procedure threshold is p(g) the FDR equals:

FDR(p(g)) =
m0p(g)

g
.

Since the number of true positives m0 is unknown, a classical strategy is to replace it
by m that is known. If the aim of the procedure is to control the FDR at level α, then
the stopping rule will be:

p(g) <
gα

m
.

5.5.2 Estimating the False Discovery Rate and the definition of

q-values

The quality of this procedure can be improved if the number of true positive m0 is not
bounded, but estimated. This estimation is performed with respect to a tuning parameter
λ:

m̂0(λ) =
{#pi > λ, i = 1 . . .m}

(1 − λ)
.

Further details concerning the estimation procedure can be found in Storey and Tibshirani
(2003) and Storey et al. (2004), who explain the choice of the tuning parameter λ. Then
the False Discovery Rate at t is estimated such as:\FDR(p(g)) =

m̂0 × p(g)

g
.

Storey and Tibshirani (2003) propose to define an equivalent of the p-value but dedi-
cated to the case of the FDR. A q-value is defined such as:

q̂(p(g)) = min
t≥p(g)

\FDR(t).

Contrary to p-values, q-values provide a measure of each significance taking into account
the fact that thousands of genes are tested. If genes with q-values lower than 5% are
called significantly differentially expressed, then there is a False Discovery Rate of 5%
among the significant genes.
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Chapter 6

Supervised classification

6.1 The aim of supervised classification

An other application of microarray experiment is the diagnosis. In the case of cancerous
tumor one would like to predict the disease status sane (+) or tumorous (-) of a tissue
sample t according to its gene expression profiles xt = (x1t, ..., xGt). To classify an undiag-
nosed tissue, a classifier - also called a classification rule - is constructed on the basis of a
database of gene expression profiles from diagnosed tissues. The construction of the clas-
sifier is the goal of supervised classification or learning methods. The construction step is
called the training phase, and the database employed to elaborate the classifier is called
training data. In Section 6.2, we present learning methods that have been successfully
employed by the microarray community.

What properties do we expect the classifier to have ? On one hand, we expect the
constructed classifier to have a good generalization capacity, meaning that we do not want
it to correctly classify the samples of the training data but to correctly predict the status
of a new undiagnosed sample, or to err only when the expression profile of the tissue
is ambiguous. The error rate, i.e. the probability for the classifier to err on a case, is
then a natural indicator of the generalization of a classifier. Yet the real error rate of the
constructed data is unknown and has to be estimated. Section 6.3 deals with the different
methods to estimate this error rate. On the other hand, one would like the classifier to
be easily interpretable, meaning that the way the classifier operates has to be clear and
biologically relevant, and robust, i.e. not too dependant on the given sample used to
construct it. These two goals can be achieved with the construction of a classifier based
on only a few genes. This is one of the reasons why the variable (gene) selection is an
important feature in supervised classification applied to microarray data. Section 6.4 is
dedicated to this feature.
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6.2 Supervised classification methods

Two important notions for the understanding of classifier construction and classifier per-
formance are the Bayes classifier and the bayesian error rate. A well-known statistical
result states that the best classification (the one that minimizes the error rate) is the
Bayes classifier:

fBayes(s) =

{
+ if P {s ∈ C+|X = x} > P {s ∈ C−|X = x}
- otherwise

The decision is then based on the maximal posterior probability of belonging to class
C+ or C−. The inequality between posteriori probabilities is equivalent to the following
inequality :

π+φ+(X) > π−φ−(X) (6.1)

where φ+, φ−, are the conditional distributions of X in classes C+ and C−, and π+, π− are
the prior probabilities to belong to class C+ and C−, respectively. In practice the posterior
probabilities cannot be computed, since φ+, φ−, π+, π− are not known. Nevertheless
having a good idea of the way the best classifier works will help for the construction
of efficient classifiers. Besides, we now know that a good classification method should
guarantee an error rate comparable to the bayesian error rate.

In this section we present three learning methods among the many powerful ones that
exist. We start with a parametrical method, the Fisher Discriminant Analysis, to end
with Support Vector Machines, that encapsulates the main concepts of recently developed
non parametric learning methods. A very complete description of learning methods can
be found in Hastie et al. (2001). Although a complete statistical analysis of each of the
three methods is not possible here, we discuss some of the following interesting properties
for each method:

• Interpretation facility: by construction, some classification methods provide insight
in the biology of the data, or can be designed to explicitly include some prior
knowledge about the data. One is then able to build a comprehensible classification
rule that will be easier to interpret.

• Complexity of use: some classification methods require the choice of ”tuning pa-
rameters”, for instance the number of neighbors to consider in the kNN classifier.
Although crucial for the classifier construction, one often lacks an efficient way to
adjust these parameters.

• Universal consistency: since the bayesian error rate is the best we can hope for, it is
interesting to know whether the considered methods produce classifiers whose error
rate gets closer to the bayesian error rate as the sample size increases, whatever
the distribution of the data is. This last statistical property is useful since the real
distribution of the data is unknown.

58



6.2.1 Fisher Discriminant Analysis

In the previous section we saw that the Bayes classifier is based on unknown conditional
distributions φ+, φ− and prior probabilities π+, π−. In Fisher Discriminant Analysis, we
make the strong assumption that the conditional distributions are gaussian:

Xt ∼ N (µ+, Σ+) if t ∈ C+ Xt ∼ N (µ−, Σ−) if t ∈ C− (6.2)

with unknown parameters µ+, Σ+, µ− and Σ−. In this parametric context, the training
phase consists in estimating the unknown parameters of the gaussian distributions, along
with the prior probabilities. Once the parameters estimated, a given sample t can be
classified by plugging-in the estimates in inequality (6.2) as follows :

f̂FDA(t) =

{
+ if π̂+φ̂+(xt) > π̂−φ̂−(xt)
- otherwise

Thus in FDA the Bayes classifier is mimicked by estimating posterior probabilities with
the help of the gaussian assumption.

Which are the critical points for which π̂+φ̂+(x) = π̂−φ̂−(x), that define a frontier
between classes (+) and (-) ? Solving the equality gives the expression :

2x
(
Σ̂−1

+ µ̂′
+ − Σ̂−1

− µ̂′
−

)
+ x

(
Σ̂−1

+ − Σ̂−1
−

)
x′ = Cst (6.3)

where Cst is constant w.r.t. x. Thus the feature space, where all possible samples are
represented and labeled according to the classifier, will be split by a quadratic function if
the covariance matrices are different in each class (Fig.6.1). In the case where covariance
matrices are supposed to be equal, the quadratic term vanishes in expression (6.3), and
the frontier becomes linear.

The main interest of FDA is that parametric models make assumptions on the data
explicit, and therefore facilitate the interpretation of the classification rule. For instance,
in LDA, the only differences between classes are the mean expression of genes. This
means that for a given problem, if the discrimination between classes lies in changes in
a given gene regulation, i.e. in changes in covariance matrice between the two classes,
then LDA will fail to take it into account and show poor performance, so QDA with
fewer genes will be preferred. Besides, in the well-known gaussian framework stated in
FDA, many results are available that can be directly applied to perform statistical testing
procedures. Curiously, although the gaussian framework provides an explicit stepwise
procedure for variable (gene) selection, described in Rao (1965), we found no application
of this procedure in microarray data analyses.

A major drawback of parametric methods lies in over-parametrization: in the par-
ticular case of the FDA, if the number of samples is small compared with the number
of genes, th covariance matrices will be singular. This means that a possibly important
number of genes will be discarded to make the covariance matrices inversible, or that non
interpretable generalized inverse matrices will be computed. Moreover, it is clear that no
guarantee of universal convergence can be given for the FDA since one assumes normality
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for the conditional distributions. Yet, practical applications (Dudoit et al. (2002), Brown
et al. (2000)) have shown that in many cases FDA or derivatives perform as well as other
performant methods such as SVM or Neural Networks.
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Figure 6.1: Left: Linear Discriminant Analysis. The frontier is a linear function of
the gene expressions. The stars represent the empirical means of each class samples
Right: Quadratic Discriminant Analysis. The frontier is a quadratic function of the gene
expressions.

6.2.2 k-Nearest Neighbors

In its simplest form, the kNN can be understood as a pure geometrical conception of
classification : an undiagnosed tissue sample t is diagnosed according to the most recurrent
diagnostic among its k nearest neighbors. To class t, the algorithm as follows :

1. Find the k tissues in the training data whose gene expression profiles are the closest
to the one of t

2. Count the number of ”sane” and ”tumorous” tissues among the k tissue samples
selected

3. classify t as ”sane” if most of the k neighbors are sane, ”tumorous” otherwise.

The kNN decision is then based upon a majority vote. Compared with FDA, kNN method
can be considered as a local estimation of the posterior probabilities: the probability to
belong to class ”+” is estimated by the proportion of ”+”-samples in the neighborhood.
The main advantage of kNN is to provide these estimations under no assumption on the
conditional distributions. Such methods are called non-parametric

The only two parameters that have to be given are the number k of neighbors to be
considered, and the distance d used to measure proximity between two tissues. An optimal
k can be determined by comparing the error rate of each kNN classifier, k = 1, 2, ..., on
test data (see 6.3). But this solution requires extra data, independent from the training
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ones, to choose k. Indeed, to estimate the error rate on the training samples would lead to
the choice of low k. For instance, the 1NN classifier does not make any misclassification
on the training data, but can err more than any other kNN classifier on new data, because
it ”consults” only one neighbor to classify a new tissue sample. Other rules to select k
have been proposed (see the discussion on the topic in Devroye and Lugosi (1995)), but
this remains a major difficulty of the method.

The choice of a distance reveals interesting possibilities to integrate some prior knowl-
edge to the classifier. Consider for instance the euclidian distance that can be defined
between two samples si, sj as follows:

d2(si, sj) =‖ Xi − Xj ‖2=

G∑

g=1

wg(X
g
i − Xg

j )2 where wg = 1, g = 1, ..., G

To the condition that gene expressions have been scaled to 1, the choice wg = 1 means
that genes equally contributes to the distance between tissues. A first solution to integrate
prior information is to choose unequal weights. The use of unequal weights emphasizes the
role of selected genes on the basis of biological considerations: irrelevant genes that are
known to be unrelated to the classification problem can be weighted to 0. An alternative
solution is to compute the distance between tissues according to their gene expression
profiles along with information collected in previous experience for instance.

More refined applications of the kNN include weighted votes, where the influence of
each voting neighbor to classify s0 is proportional to its distance to s0, and thresholding,
where s0 is classified only if the votes exceed a predetermined threshold, and is considered
uncertain otherwise (see Golub et al. (1999a)).

At last, it is worth mentioning that despite its intuitive construction, the kNN method
also has interesting statistical properties, such as universal convergence to the best clas-
sifier, that can be found in Devroye and Lugosi (1995).

6.2.3 Support Vector Machines

In Section 6.2.1, we noticed that classifying data with FDA (with equal covariance ma-
trices hypothesis) amounts to split the sample in the g-dimensional expression space or
”input space” by a hyperplane - linear function. This hyperplane is deduced from the
estimated parameters of the conditional distributions. Based on this observation, the
principle of Support Vector Machines (SVM) is also to find a separating hyperplane but
that is not deduced from any distribution assumption. How to select the separating hy-
perplane then ? The SVM algorithm looks for the hyperplane that perfectly separate each
class samples with a maximum margin, where the margin is defined as the distance from
the hyperplane to the nearest point (see Fig.6.2). SVM are then a particular member
of large margin classifier methods such as Boosting (Freund and Schapire (1996)), that
have been proven to be efficient and robust in many applications. To choose the optimal
classifier in the margin sense results in a better generalization of the trained classifier.
This was first proved for SVM by the pioneering work of Vapnik (1998) and then by
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many successful practical applications of SVM to classification problems. To find the
hyperplane with maximum margin, one needs to solve the following convex quadrating
programming problem:

max
αt

1

2
||w||2 −

n∑

t=1

αt(yt(〈xt, w〉 + b) − 1) with αt ≥ 0 (6.4)

where w and b are the normal vector and the constant that define the hyperplane, respec-
tively, αi are positive Lagrangian multipliers, and yt is the label variable that takes value
+1 if sample t belongs to class (+), −1 otherwise. It is well known in the regularization
theory that the solution is: w =

∑n
t=1 αtytxt. Thus a new sample t0 will be classified as

follows :

f̂SV M(t0) =

{
+ if 〈w, t0〉 + b =

∑n
t=1 αtyt〈xt, xt0〉 + b > 0

- otherwise
(6.5)

In practice, only some of the αt coefficient have a non-null value, meaning that the re-
sulting classifier depends on a few samples that are called the support vector. In Fig.
6.2, the support vector are the closest ones to the frontier, i.e. those which define the
margin (dotted lines). Thus the support vectors can be seen as the borderline cases of
the training dataset.

The strength of SVM lies in the computational kernel trick (see Schölkopf and Smola
(2002)). SVM look for a hyperplan that splits the dataset according to the sample labels.
Such a linear separation does not always exist in the input space {X1, ..., Xg}, and one
would like to extend the search and find non-linear separations between classes, or equiv-
alently to find an optimal hyperplan in a bigger feature space that includes {X1, ..., Xg}
and some transformations of X1, ..., Xg. This can be done by:

1. perform a data mapping ϕ: x 7→ ϕ(x)

2. apply the SVM algorithm to the transformed data, i.e. in the feature space

According to the dimension of the feature representation, the mapping computation and
the convex optimization resolution times become discouraging. For some particular trans-
formations, this computational burden can be avoided by replacing the dot products 〈., .〉
in (6.4) and (6.5) by a kernel function k(., .). In that case, the kernel function allows
the display of the classifier fSV M found in the feature space without the explicit compu-
tation of data transformation. For instance, the use of polynomial kernel with order 2,
k(xi, xj) = (1 + 〈xi, xj〉)2, allows the determination of quadratic frontiers (see Fig.6.2).

Thus the SVM algorithm can be generalized to non-linear separation by finding the
maximal margin hyperplane in a very high (possibly infinite) dimension space without
the computational difficulty of representing the feature points. While interesting from a
computational point of view, the drawback of the kernel trick is that no conclusion about
the predictive structure of the data can be obtained from the resulting classifier: roughly
speaking, no representation of the separating hyperplane is available, so no interpretation
can be made of it.
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Figure 6.2: a. SVM classification: the two dotted lines delimit the margin. b. SVM
classification with a quadratic kernel: in this situation, no linear classifier can correctly
separate groups ”0” and ”+”.

6.3 Error rate estimation

Having selected a classifier f̂ with a given classification method, one would like to known
its performance in terms of error (misclassification) rate. Its intuitive estimator is the
empirical error rate EER of f̂ on the training set, defined as follows:

EER =
1

n

n∑

i=0

I{si is misclassified with bf} (6.6)

where I{Cond} equals 1 if Cond is verified, 0 otherwise. This results to an optimistically

biased estimation, because f̂ was selected in some sense to fit the training data. Moreover
for sufficiently complex classifiers, for instance SVM classifier with high order polynomial
kernels, the EER is known to be null whatever the minimum error rate achievable (i.e
the bayesian rule error rate) is. Alternative estimation methods are:

• the estimation of the error rate of f̂ on a test sample

• the r-cross validation (rCV) and in particular leave-one-out cross validation (LOOCV)

A test sample is a dataset that contains observations independent from the training
dataset, but obtained under the same conditions. Estimating the error rate on a test
sample gives a unbiased estimation of the true error rate, but means that a part of the
data at hand will not be used to construct the classifier. This is an important drawback
in microarray experiments where the sample size is usually small.

The cross validation method proceeds as follows: one withholds a tissue samples from
the training dataset, builds a predictor based on the remaining samples, and predicts the
class of the withheld sample. The process is repeated for each different sample, and finally

63



the cumulative error rate is computed. The obtained estimation of the error rate has a
small bias, but the difficulty here lies in the computation time: one needs to construct as
many classifier as the number of samples. The LOOCV can be extended by withholding
r samples at each iteration. The properties of the r-cross validation estimator has been
studied by McLachlan (92), who shows that the estimator bias increases with r, whereas
its variance diminishes. Yet, the disadvantage of r cross-validation is the computation
time: as many classifiers as the number of combination of r samples among n, the total
number of samples, have to be constructed.

6.4 Variable selection

The variable selection or feature selection aims to select a reduced subset of informative
variables (genes) without loss in term of prediction. We suppose that no prior knowledge
is available for the selection, which has to be done on the basis of the data. In microarray
experiments, feature selection is an important step that fulfills different functions :

• From a statistical point of view, eliminating thousands of irrelevant variables will
significantly reduce the complexity of the selected classifier, and will make results
more robust.

• From a biological point of view, to select pertinent features that are strongly involved
in the disease status will help to understand the mechanisms at work.

• From a practical point of view, the few genes are used to establish the diagnostic,
the better.

While variable selection seems to be an important item, the specificity of microarray
data makes selection a difficult task. First, gene expressions are highly correlated. This
means that a given expression profile will correspond to many different genes. Choosing
one among them will then be somehow arbitrary, and so can be the deduced biological
interpretation. An other consequence of redundancy is that small changes in the training
data result in a completely different gene selection. This problem will occur for instance
when choosing a best subset by cross-validation: given the withheld sample, variations in
the select subset can be strong.

Selection methods are usually classified in filter or wrapper methods. Filter methods
consider the discriminative power of each gene separately. For instance, a score is com-
puted for each gene on the basis of the correlation between the gene expression and the
status, and genes with highest scores are selected. Many filter methods lead to the choice
of genes that are strongly differentially expressed, and thus should be carefully considered:
the subset of selected genes may be highly redundant, while genes with lower score but
original information may be displayed.

In wrapper methods, subsets of genes are directly considered, and error rates of the
resulting classifiers are used to compare them. The main difficulty is computational: one
cannot test each possible subset of genes, so genes have to be sequentially selected. In
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forward sequential selection, genes are selected one by one according to the information
they bring for discrimination that is not contained in already selected genes. In contrast,
backward selection starts with the entire set and discards at each step the gene whose
information is not relevant regarding the information of the remaining genes. Although
more attractive than filter methods, wrapper methods can be very unstable, because the
selection of an ith gene is highly dependent of the subset of genes that have been already
selected. Moreover, due to the complexity of wrapper procedures, generally no guarantee
for the resulting classifier error rate can be stated.

A gold rule pointed out by Ambroise and McLachlan (02) is to consider the variable
selection as a part of the training phase. We showed in the previous section that estimating
the error rate with the training set gives optimistically biased performances. Similarly,
one should not estimate the error rate of a classifier based on a selected subset of genes
with the same dataset that was used to perform the selection. The authors show that in
some cases, the estimation of the error rate can be biased by more than 15% if the variable
selection step is not taken into account. Practical consequences of this remark are the
following: in a LOOCV procedure to estimate the error rate, the variable selection has to
be performed once the sample is withheld of the training set, and will then be performed
as many time as the number of samples. One can alternatively estimate the error rate
one a test sample, after the feature selection and the training phase.

Methods for variable selection are numerous, a good review may be found in Krishna-
puram et al.. Some articles have been dedicated to the comparison between classification
methods applied to microarray data, one may consult Dudoit et al. (2002) or Brown et al.
(2000).
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