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Abstract 
Analyses of ecological data should account for the uncertainty in the process(es) that generated 
the data.  However, accounting for these uncertainties is a difficult task, since ecology is known 
for its complexity.  Measurement and/or process error are often the only sources of uncertainty 
confronted when addressing complex ecological problems, yet analyses need to account for 
uncertainty in sampling design, in model specification, in parameters governing the specified 
model, and in initial and boundary conditions.  Only then can we be confident in the scientific 
inferences and forecasts made from an analysis.  Probability and statistics provide a framework 
for accounting for multiple sources of uncertainty.  Given the complexities of ecological studies, 
the hierarchical statistical model is an invaluable tool.  This approach is not new in ecology, and 
there are many examples (both Bayesian and non-Bayesian) in the literature illustrating the 
benefits of this approach.  In this article, we provide a baseline of notation and technology from 
which discussion on hierarchical statistical modeling in ecology can emanate.  We have also 
planted some seeds for discussion and tried to show where the practical difficulties lie.  Our 
thesis is that hierarchical statistical modeling is a powerful way of approaching ecological 
analysis in the presence of inevitable uncertainties, even if practicalities sometimes necessitate 
pragmatic compromises. 
 
1.  Introduction 
 
The field of ecology is becoming increasingly aware of the importance of accurately accounting 
for multiple sources of uncertainty when modeling ecological phenomena and making 
inferences.  This development is motivated in part by the desire to provide an accurate picture of 
the state of knowledge of ecosystems and to be able to assess the quality of predictions of local 
and global change (Daszak et al., 2000; Clark et al., 2001; Beckage and Platt, 2003; Clark, 2005; 
Ibenez et al., 2006; Sacks et al., 2007).  However, accounting for various sources of uncertainty 
is by no means a simple task. 
 
Ecological data are almost always observed incompletely with large and unknown amounts of 
measurement error or data uncertainty, and often the expense of data collection prohibits 
collecting as much data as might be desirable. In addition, most ecological phenomena of interest 
can only be studied by combining various sources of data; aligning these data properly presents 
interesting statistical challenges.  While data play a large role in most ecological analyses, 
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incorporating scientific knowledge through substantive modeling of ecological processes is 
essential.  Often such theoretical contributions are based on competing scientific theories and 
simplifications of reality.  This results in an additional source of uncertainty, termed model or 
process uncertainty.  Furthermore, substantive models should acknowledge parameter 
uncertainty.  For example, more realistic descriptions of ecosystems might allow parameters to 
vary over space and time.  Parameter uncertainty can be handled either by estimating the 
unknown parameters (empirical Bayesian analysis) or by expressing that uncertainty via a prior 
probability distribution (Bayesian analysis); see, for example, Carlin and Louis (2000), where the 
two approaches are presented. 
 
In April 2006, a workshop on “Uncertainty in Ecological Analysis” was held at the Mathematical 
Biosciences Institute (MBI), The Ohio State University.  The workshop organizers, who are the 
authors of this paper, believe that the workshop was path-breaking in the way that hierarchical 
statistical modeling became central to dealing with uncertainty in ecology.  As will be exposited 
in the sections that follow, it is a statistical methodology for handling complex (ecological) 
problems; it is a framework for working in science teams; and it partitions variability/uncertainty 
in a way that can suggest study designs where uncertainty can be controlled. While there was not 
a consensus among the participants on how parameter uncertainty should be handled, the 
hierarchical statistical approach emerged as an essential technology in modern analyses of 
ecological data. 
 
The quantitative rough diamonds that fell out of the presentations and discussions of the 
workshop run the risk of being lost to those in the ecology community who did not attend; the 
conference organizers have polished the rough diamonds from their own perspective.  This paper 
does not introduce new methodology, but it is meant to reach and engender discussion from 
readers of this journal.  The Bayesian and non-Bayesian versions of the hierarchical statistical 
model are presented.  As the themes of the article are developed, we use an ecological study of 
abundance of haul-out sites in Alaska, as reported by Ver Hoef and Frost (2003), to illustrate the 
accompanying notation and theory. 
 
The organization of the paper is as follows.  Section 2 addresses the general notion of modeling 
in the presence of uncertainty and features hierarchical statistical modeling.  Section 3 addresses 
the important aspect of design for data collection.  Section 4 discusses statistical inference for 
ecological analysis.  Challenges for hierarchical statistical modeling are presented for discussion 
in Section 5. 
 
2.  Modeling in the presence of uncertainty 
 
Harbor seals haul out to rest (da Silva and Terhune, 1988), molt (Boily, 1995), and escape 
predators (Watts, 1992), among other reasons.  They are monitored for trend (e.g., Ver Hoef and 
Frost, 2003) and abundance (e.g., Boveng et al., 2003) in northern latitudes around the world.  
To illustrate the general notions that follow, we shall consider harbor-seals data from Ver Hoef 
and Frost (2003) in Prince William Sound in Alaska, where aerial surveys were flown over haul-
out sites and all seals were counted.  Surveys were flown repeatedly for 7-10 days in August or 
September each year from 1990-1999.  The data were collected as part of routine monitoring 
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following the Exxon Valdez oil spill in 1989.  We return to this study throughout the article as 
different notions are discussed. 
 
Why does one build models?  Is it simply to organize information? Does it depend on the goal, 
whether that is estimation, prediction, forecasting, explanation, or simplification? Ultimately, 
modeling is about the synthesis of information, whether that comes from observations, or from 
the collective wisdom of a group of scientists, or more broadly from diverse corners of the 
relevant literature. We present a basic framework here that accommodates the synthesis of 
information in a coherent manner. The key to this framework is thinking conditionally, 
something we argue comes naturally to scientists. For example, we observe D given E happens, 
E happens conditionally on P, and so forth.  Not only is this true in an observational context, but 
it is appropriate when we think about processes as well. Think of E as an ecological process; then  
E might behave in one way conditioned on one set of environmental conditions and in another 
way under a different set of conditions.  The conditional behavior is endemic to the process’ 
behavior, regardless of whether observations are taken or not. Formally, we can link such 
thinking in the context of (conditional) probabilities. 
 
Let E denote our ecological process of interest.  We also observe some data that may, in some 
sense, be relevant to this process – call these data D. A traditional approach that has often been 
considered is simply to fit a curve to different parts of the data D and interpret the parameters of 
that curve in some scientific context.  For example, in studies of population dynamics, 
population counts are often modeled using standard nonlinear growth curves, such as the Ricker 
or the Gompertz curves (e.g., Wright, 1926; Medawar, 1940; Ricker, 1954; Bjornstad and 
Grenfell, 2001) that are functions of ecologically interpretable parameters.  The goal is not to 
find an exact fit to the data but, rather, to find parameter values so that the curve “best” fits the 
data.  To find these best values for the unknown parameters, it is typically assumed that the data 
D are generated according to the growth curve up to additive error.  However, such 
considerations do not necessarily make a distinction between the errors of observations (e.g., 
measurement error) and the errors in modeling the process (e.g., error due to model 
misspecification).  For example, the model may not account for the true underlying process 
occurring on a much smaller scale (in space and/or time) than that of the observations, which 
themselves have error due to the particular measuring device.  Conceptually, it is important to 
separate out these different sources of uncertainty.   
 
An alternative to this “curve-fitting” approach is formal statistical modeling.  Here, we may wish 
to specify a probability distribution for D that depends on some parameters, say P. Thus, we 
might think about estimating the parameters of this distribution, [D| P]. That is, can we find an 
estimate of the parameters P that maximizes the likelihood (defined by the distributional 
assumption made about D) of observing the data D? Note that we are using the brackets "[  ]" to 
refer to a distribution and the vertical bar "|" is read as "conditioned upon". So, [A | B] would be 
read as "the distribution of A conditioned upon B", or "the distribution of A given B".  In this 
framework, the parameters P are assumed to summarize the ecological process E appropriately, 
and it is assumed there is no uncertainty at this stage.  Although greatly simplified, this is the 
idea behind much of classical statistical inference in science. In this setting, the observations on 
the process of interest are directly modeled without explicit reference to a statistical model for 
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the process E. The focus is on a data model, where it is assumed the uncertainty lies and is due to 
sampling and measurement.  
 
Alternatively, we may sometimes be interested in developing process models for E directly. 
Often these models are deterministic. However, our knowledge of E is always limited in some 
fashion, which suggests that randomness should also play a role in process modeling. Indeed, 
such thinking has long been crucial to ecological modeling, where it has been incorporated into 
the science (e.g., in the fire simulation models of Catchpole et al., 1989, or the forest simulation 
models of Botkin et al., 1972). These random processes can, in turn, be characterized by 
distributions that have associated parameters, say PE. That is, we know the distribution of [E | 
PE]. If we do not distinguish between observations on E (which we call D) and their true values, 
then the usual likelihood analysis ignores uncertainties about the relationship between E and D, 
resulting in incorrect statistical inferences. 
 
Recall the harbor-seals study introduced earlier in this section, where aerial surveys were flown 
over haul-out sites and all seals were counted; surveys were flown repeatedly for 7-10 days.  A 
map showing the geographical context and the sampling plan is given in Figure 1. 

___________ 
Figure 1 here 

 
Let Yij denote the jth count for the ith site, i = 1,2,…,n.  In terms of our previous discussion, all of 
the counts for all surveys and all sites form a set D = {Yij}.  A Poisson (e.g., Ver Hoef and Frost, 
2003) or negative binomial (e.g., Boveng et al., 2003) is a natural distribution to assume for 
count data.  We can imagine that for any given site at any given time, there is a true number of 
harbor seals that “should” haul out, but we are not able to observe that number.  That is, harbor 
seals are constantly sliding in and out of the water so that at any given time the actual number 
hauled is more or less than expected.  Let this expected number be λij, so we might consider Yij ∼ 
f(λij,κ), where f is a Poisson or negative binomial distribution with mean parameter λij and 
variance parameter κ (in the case of the negative binomial).  Write E = {λij} and PD = {κ}, and 
hence the joint distribution of all the data is [D | E, PD], where this data model is conditional on 
the ecological process E and a parameter κ expressing variability in the data. 
 
This model has very little “ecology” in it and would be very difficult to estimate because we 
have one parameter (λij) per datum (Yij).  However, we know more about harbor seals; for 
example, we know that counts are highest around low tide and midday, and that they change 
seasonally (date within year) and yearly (trend).  These factors reflect our understanding of 
harbor-seal biology, such as substrate availability and physiology, and we would like to include 
them in the model.  If we were omniscient, we would have a perfect deterministic model on the 
“expected” harbor-seal abundance, without error, on every haul-out site for every instant of time.  
Lacking that, we use a “smooth curve” of the ecological process that controls haul-out 
abundance, and we account for errors from that model using a random process.  The curve 
includes information on year, date (within year), tide (height), and time (of day).  We let log(λij) 
be distributed as a normal distribution with mean µij ≡ µi(yearij, dateij, tideij, timeij; θi) and 
variance σ2 for the i-th site.  Hence, exp(µij) could be used to predict abundance, but it should 
account for the variability (i.e., the uncertainty) in the process model.  For example, the smooth 
curve could be modeled as, 
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µi(yearij, dateij, tideij, timeij; θi) = θ0i + θ1iyearij + θ2i dateij + θ3i (dateij)2 +  

                                                                                θ4itideij + θ5i(tideij)2 + θ6i timeij + θ7i (timeij)2, 
 
where θi = (θ0i,θ1i,θ2i,θ3i,θ4i,θ5i,θ6i,θ7i).  In terms of our previous discussion, recall E = {λij} and 
write PE = {θ, σ2}.  Hence, we can obtain the conditional distribution of E, [E | PE], conditional 
on the parameters PE. 
 
It is then natural to link hierarchically the conditional modeling described above so that one may 
account for the uncertainty in the process E separately from the uncertainty in the observations D 
(Calder et al., 2003; Wikle, 2003a). We do this by considering the distribution, [D | E, PD], 
where recall that PD refers to the parameters that describe the distribution of the observations.  
Note that in the first formulation, we modeled [D | P]; in effect, we recognize that part of P may 
be the true process E, which deserves special consideration.  In principle, one could try to do 
inference by maximizing this likelihood jointly in terms of E and PD.  However, this can be very 
complicated in settings with spatial, temporal, and multiple-species dependencies, and it does not 
allow one to specify directly uncertainties and stochastic components related to the process E.  
 
Combining this data model, [D | E, PD], with the process model, [E | PE], implies the joint 
uncertainties in the data D and the ecological process E can be written as 
 
                                                 [D, E | PD, PE] = [D | E, PD][E | PE] ,                                           (1) 
 
which shows how they can be expressed hierarchically using conditional probabilities.  We note 
that this is the essence of Gaussian, linear, state-space models for temporal processes, that result 
in Kalman filtering for E at a current time based on data at current and past times. In terms of the 
harbor-seal study, (1) says that we obtain a joint model of the data and the underlying ecological 
process, [{Yij}, {λij} | κ, θ, σ2], now conditional on fewer parameters. Figure 2(A) shows this 
hierarchical model schematically, with conditional dependencies shown by arrows linking the 
relevant boxes. 

___________ 
Figure 2 here 

 
Note that, so far, we simply have a Poisson regression model for each site, and the sites are not 
assumed related.  This hierarchical model is a special case of a generalized linear mixed model, 
where the ecological process is a linear model with normal errors, and the measurement error 
comes from the exponential family of distributions (e.g., binomial, Poisson, gamma, Gaussian, 
and so forth). 
 
The formula given by (1) uses a general result from probability theory that we present here for 
three random variables, A, B, and C. We might try to specify directly the joint probabilistic 
behavior of these three variables, [A, B, C].  Equivalently, we could use the following result 
based on conditional probabilities: [A, B, C] = [A | B, C][B | C] [C]. That is, the joint distribution 
can be factored into a series of three distributions, namely two conditional distributions, [A | B, 
C] and [B | C], and one marginal distribution, [C]. We refer to such a representation as a 
hierarchical statistical model; equation (1) is such a representation for two random quantities, D 
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and E, conditional on parameters P = {PD, PE}.  Hierarchical statistical modeling simply means 
that we decompose the joint distribution into a probabilistically valid series of conditional 
models:  [D, E | P] = [D | E, P][E | P]. We note that a conditional-probability decomposition is 
not unique; for example, we could write equivalently, [A, B, C] = [B | C, A][C | A][A], and so 
forth. Part of scientific modeling in the presence of uncertainty is to use a decomposition that 
reflects the causal mechanisms:  If C causes B which causes A, then the original decomposition is 
appropriate.  
 
We now use this framework to put the hierarchical statistical model (1) into a more general 
context. Berliner (1996) gives the joint distribution of data, process, and parameters using the 
following decomposition: 
 
  [data, process, parameters] = [data | process, parameters]×[process | parameters]×[parameters] . 
 
Note that in this case the parameters are assumed to be random and thus they have a distribution. 
Although there may be many cases in which one really believes that this is scientifically 
plausible, it can also simply serve as a mechanism for accounting for uncertainty in our 
knowledge about the parameters. It is also possible to build a simpler hierarchical model that 
conditions on the parameters: 
 
             [data, process | parameters] = [data | process, parameters]×[process | parameters] , 
 
which is equation (1).  The parameters could then be estimated in a separate inference step 
(empirical Bayesian analysis; e.g., Ver Hoef, 1996) based on [data | parameters], or their 
uncertainty could be quantified distributionally (Bayesian analysis; e.g., Link et al., 2002). 
 
The analogous model to (1) that incorporates uncertainty in the parameters P = {PD, PE}, is 
 
  [D, E, P] = [D | E, P][E | P][P] = [D | E, PD][E | PE][PD,PE] , (2) 
 
where we have used the obvious relationships, [D | E, P] = [D | E, PD] and [E | P] = [E | PE] (e.g., 
Wikle, 2003a).  The utility of such a decomposition is that it allows us to account formally for 
uncertainty within each stage, where the stages are linked in a probabilistically consistent 
fashion. The real power of this approach for complicated problems comes from the fact that each 
of the component distributions in (2) can be decomposed further if necessary, and they may be 
simplified with modeling assumptions. For example, say we are interested in a process E for 
which we have several different data sets, D(1), D(2), D(3), all of which measure the process E with 
uncertainty, and perhaps at different spatial or temporal scales. Then it is often possible in such 
cases to make the following modeling assumption: 
 
                            ],,|][,|][,|[],|,,[ )3()3()2()2()1()1()3()2()1(

DDDD PEDPEDPEDPEDDD =  
 
where },,{ )3()2()1(

DDDD PPPP = . That is, we might assume that the different datasets are 
independent, conditional upon the true process. Although such an assumption must be justified, it 
is often plausible and provides a very convenient approach for synthesizing various types of 
observations. The parameters in each of the component distributions can accommodate changes 
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of resolution and alignment, as well as different measurement-error characteristics (e.g., Wikle et 
al., 1998; Mugglin et al., 2000; Gelfand et al., 2001; Wikle et al., 2001; Banerjee et al., 2004; 
Clark et al., 2004; Wikle and Berliner, 2005; LaDeau and Clark, 2006; Hille Ris Lambers et al., 
2006).    
 
Decomposition can also be considered for the process distributions. For example, consider a 
process made up of two subprocesses,  E(1) and E(2). We can often make use of conditional 
modeling in this context as well: 
 
                                [E(1), E(2) | PE] = [E(1) | E(2), PE][E(2) | PE]. 
 
In terms of the harbor-seals study, the ideas of multiple data sets and multiple processes were 
used by Ver Hoef and Frost (2003), yielding a model, 
 

]|][,|,,][|[]|[]|,,,,,,[ )()()()1()()()1()1()()()1()()1(
E

A
E

Annn
E

Ann PEPEEEEDEDPEEEDD KKKK =  
 
That is, a joint model for the data and linear regression parameters was built conditionally.  Here, 

]|[ )()( ii ED  is the Poisson regression formulation at each site, given earlier.  But now suppose 
that all intercepts across sites have a distribution with a common mean for the area, all slope 
parameters across sites have a distribution with a common mean for the area, and so forth, which 
we write as ],|,,[ )()()1(

E
An PEEE K .  This model is shown in Figure 2(B), which extends the 

model in Figure 2(A).  Further, let the collection of common means be normally distributed and 
independent for each parameter, which we write as ]|[ )(

E
A PE .  This makes clear one of the real 

strengths of hierarchical modeling.  Without it, we might model each site separately, but then 
lack the ability to say anything about all sites within the area, or we might ignore sites and model 
all data with a single Poisson regression.  The hierarchical model allows inference for )(iE at the 
i-th site or for )( AE  over the area that contains all sites. 
 
Figure 3 shows the posterior density of the individual slopes {θ1i : i = 1, … ,n} for year (trend) in 
the linear model for µi given above (Figure 2(B)), along with the posterior density of the slope  
θ1A , where recall that θ11, … , θ1n are conditionally distributed with mean θ1A.  Consider the 
mean of each posterior density and notice the distribution of the individual sites’ mean slopes 
around the areal mean slope.  The mean of each posterior density, considering each site 
separately (Figure 2(A)), is shown with solid circles along the x-axis of Figure 3.  The one-at-a-
time site means are linked by the dashed line to their counterparts under the conditional model 
with mean θ1A.  It is generally true that one-at-a-time estimates will “shrink” towards the global 
mean under the hierarchical model; the extent of shrinkage depends on the estimated variability 
within site versus among sites. 

___________ 
Figure 3 here 

 
It is often possible to simplify the joint interaction of one component of the process with another, 
by using a conditional probabilistic relationship. A well known example of this occurs in time 
series, with Markov assumptions. Specifically, if one has the time series, E1, E2, ..., ET-1, ET, it is 
often very difficult to specify the joint distribution of the entire series. However, under the first-
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order Markov assumption, the joint distribution is: 
 
                         [ET,ET-1,...,E2,E1] = [ET | ET-1][ET-1 | ET-2]...[E2 | E1][E1] . 
 
The key to these process decompositions is to model the process in stages that are scientifically 
plausible. In that way, very complicated joint distributions can be modeled by relatively simple 
conditional distributions. Often, deterministic process models for E (given PE) can be 
reformulated with stochastic components; for example, Wikle (2003b) uses a reaction-diffusion 
partial differential equation to motivate a stochastic process model for invasive species. 
 
The observant reader will see that the distinction between E and P is not always precise, but this 
is not probabilistically important in a hierarchical statistical model.  At the last stages of the 
hierarchy, there will typically be unknown parameters that could be estimated or whose 
uncertainty could be captured probabilistically by (prior) statistical distributions. 
 
 
3.  Design for data collection in ecological studies 
 
Before moving to discussion of statistical inference for hierarchical models (Section 4), in this 
section we consider the issue of design for data collection from a statistical modeling 
perspective.  Specifically, we highlight the importance of collecting data using sampling designs 
based on the principles of randomization, stratification, and replication, even when data are 
analyzed using the hierarchical statistical methods discussed in the previous section.  In addition, 
we show how sampling designs can be incorporated into statistical models, resulting in what is 
termed model-assisted design-based inferences. 
 
To many people who have taken a course in Design in a Statistics program, the topic brings back 
memories of randomized block designs, partially balanced incomplete block designs, latin-square 
designs, and so forth.  These are relatively dry topics (although variants of latin-square designs 
have surfaced with the popularity of the game of Su Doku, found in most daily newspapers).  In 
fact, design is a much broader concept, and appearances of it can be found throughout a typical 
Statistics graduate curriculum, particularly in survey-sampling courses (sampling design) and 
design-of-experiments courses (experimental design).  We begin with a general discussion of 
design concepts and then relate it to the formalization given in Section 2. 
 
The key features of design are stratification, randomization, and replication, which are intended 
to allow the scientist to get closer to the elusive goal of establishing causation.  Stratification 
controls variability by splitting populations into subpopulations that are internally comparable.  
An instance of poor design would be to study how soil moisture affects seed production but to 
fail to stratify on elevation.  The study would miss different soil-moisture/seed-production 
relationships for the same plant species but at different elevations.  In that instance, “elevation” 
has been confounded (or not controlled for) in the design. 
 
Every sampling design should start with a specification of the population and the subpopulations 
under study.  For the harbor-seals study, the population is the continuous abundance of harbor 
seals on all haul-out sites for a given study area and time span.  A sampling design becomes a 
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probability sampling design when there is a known non-zero inclusion probability for every 
member of the population (Overton, 1993).  The sampling weights, which should be given as 
part of the design, are simply one divided by the inclusion probabilities.   
 
Randomization offers protection against a biased (unintentional or intentional) choice of 
sampling sites (or of organisms) in the study.  If it is at all possible, ecologists should avoid 
choosing a so-called “representative site”.  In the harbor-seals study, Ver Hoef and Frost (2003) 
analyzed data from 25 sites in Prince William Sound, Alaska, but economical considerations did 
not permit sampling these 25 sites randomly from the hundreds of possible sites in the study 
area.  It is very expensive to contract aircraft, and there are only a few possible ways to fly 
economically from site to site.  Thus, to avoid spending a lot of time and money flying back and 
forth to sites selected at random, or even a spatially clustered set of sites in a random order, the 
harbor-seals study did not use random sampling. As a result, purely design-based statistical 
inference cannot extend beyond these 25 sites, and how representative they are of a larger region 
has been criticized by Hoover-Miller et al. (2002).  Absent the practical difficulties mentioned 
above, a well designed study should stratify by date, tide, and time of day, and should randomly 
sample sites within those strata over the whole region of interest. 
 
Even though design-based inference on the population is not permissible without random 
sampling, the study can still provide understanding about the relationship between abundance 
(hauling out) and important covariates, like tide, date, and time of day.  Stratification can help 
ensure sampling over a range of conditions for these covariates.  For example, we could divide 
the time relative to low tide into three categories:  more than 1/2 hour before low tide, 1/2 hour 
before to 1/2 hour after low tide, and more than 1/2 hour after low tide.  Likewise, we could 
divide time of day into three categories and date into three categories.  Then, one should at least 
try to get samples from each stratum for each site, and, if the budget permits, from some well 
chosen cross-classified strata.  Unfortunately, the dates the seals were counted came earlier in the 
year over the 10 years of the study.  As a result, the date and year covariates are confounded.  
That is, without making strong assumptions, it is not possible to separate how abundance varied 
by date from how it varied over time, the latter effect being of primary interest in assessing the 
impact of the oil spill.  Even with the most sophisticated statistical modeling tools, this study-
design limitation is difficult to overcome. 
 
Replication is a way to decrease (e.g., measurement, spatial, temporal) variability within strata.  
The general idea is that an average of responses within a stratum has variance proportional to one 
divided by the number of replicates.  The larger the number of replicates, the smaller the 
variance, and the more precise the inferences.  For the harbor-seals study, 7 – 10 replicate flights 
per year were flown to decrease variation. 
 
In the harbor-seals study, as is the case with most ecological studies, a limiting factor that 
influences the total number of observations is the amount of money available.  Generally, the 
number of strata that make up the stratification is determined by the science team, whose goal is 
to avoid confounding and to increase the precision of estimates as much as possible.  To 
illustrate, consider the simple case where there are equal numbers in each stratum.  Then, the 
number of replications per stratum is simply obtained by dividing the total number of 
observations by the number of strata.  Even those with a basic knowledge of statistics realize that 
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a small number of replicates typically does not allow us to find a regression parameter significant 
when it should be, or it results in a hypothesis test that has weak power.  Evidently, replication 
can be increased by spending more money or reducing the number of strata.   
 
Good design specifies, in advance, inference thresholds and determines the number of 
observations per stratum needed to achieve those thresholds.  There is clearly a tension between 
appropriate stratification/sufficient replication and cost of the scientific study.  Statistical design 
shows how to express this tension mathematically; it creates a rational basis for the inevitable 
compromise between the cost of the study and the ability to make scientific inferences from 
incomplete and noisy data (e.g., Cressie, 1998, relates cost and inference in an ice-core sampling 
design for a transect across Antarctica). 
 
Sampling design has traditionally eschewed the modeling approach given in Section 2.  
However, by using conditional-probability models, we show how traditional sampling design can 
be related to the approach we recommend below, that of model-assisted design-based inference.  
Given that many ecological processes evolve dynamically through space and time, purely spatial 
designs are typically not as efficient as those that consider spatio-temporal dependence.  For the 
most part, the construction of optimal designs in the spatio-temporal context is similar in 
principle to the optimal design problem in the purely spatial case (Le and Zidek, 1994; Federov 
and Nachtsheim, 1995; Arbia and Lafratta, 1997).  However, as demonstrated in Wikle and 
Royle (1999, 2005), even more efficient designs in the spatio-temporal context can be obtained 
by allowing the design to change with time.  Although related to the adaptive-sampling 
approaches for purely spatial designs (e.g., Thompson and Seber, 1996, Chao and Thompson, 
2001), these “dynamic designs” are fundamentally different.  They explicitly account for 
temporal changes of the process caused by the underlying dynamics. 
 
The ecological process E is of interest, and one wishes to design a sampling plan through which 
knowledge about E can be obtained.  For the moment, we make the (unrealistic) assumption that 
when E or parts of it are observed, it is observed without error.  We discard this assumption later 
in the section. 
 
In the rest of this section, we write 
 
                                                              E ≡ {Es : s ∈ A} , 
 
where A is an index set that describes the complete population of scientific interest.  In 
traditional sampling design, the unknown population is sampled randomly.  That is, a probability 
distribution is put on  {S : S ⊂ A}, the set of all subsets of A; then inference on E is based on the 
stochasticity in the random samples.  This is called design-based inference and, in the 
terminology developed in Section 2, it depends on [S | E]. 
 
Suppose that S = S(1) is observed, and hence E(1) ≡ {Es : s ∈ S(1)} is the observed part of E.  
Recall that we are momentarily assuming that there is no measurement error; hence we do not 
distinguish between Ds (data value) and Es (process value).  In this simple formulation, one 
wishes to make inference on the unobserved parts of E, }\:{ )1()1( SAsEE s ∈≡ , from the 
observed part E(1), where A\S(1) means the index set of A minus those in S(1).  Traditional 
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quantities of interest are the population total and the population mean:  TE ≡ Σs∈AEs, and µE ≡ 
Σs∈AEs/Σs∈A1, respectively, as well as the population variance:  1/)( 22

AsEsAsE E ∈∈ Σ−Σ≡ µσ  
(e.g., Cochran, 1977).   
 
Estimators of population quantities are functions of S(1) and E(1).  For example, consider 
estimating the total TE.  We can write it as, sSAssSsE EET )1()1( \∈∈

Σ+Σ= .  One popular estimator of 
TE is known as the Horvitz-Thompson estimator,  
 
                                                                 ),/(ˆ

)1( ssSsE pET
∈

Σ=  
 
where ps is the probability that s belongs to S(1);  that is,  
 

]|[ )1(
: )1()1( ESp SsSs ∈

Σ= . 
 
Recall that for a probability sampling design, ps is known.  The Horvitz-Thompson estimator is 
unbiased (e.g., Cochran, 1977); that is, the mean of the estimator is equal to the population 
quantity: 
 
                                                                    ,])|[ˆ( )1(

)1( EES
TEST =×Σ  

 
and its sampling variance can be calculated in a like manner, again based on [S(1) | E].  Notice 
that sampling moments (e.g., mean, variance) are calculated with respect to the  S(1) that could 
have occurred, through the probability [S(1) | E]. 
 
In other words, for design-based inference, the source of randomness is an externally imposed 
probability distribution that refers to which parts of the fixed E will be sampled.  A sample is 
purposive if a particular S(0) is used and hence data on E(0) ≡ {Es : s∈S(0)} is obtained; as 
mentioned above, ecologists should beware of choosing a “representative site” (i.e., purposive 
sample) for their study, because statistical inference on )0()0( \ EEE = , the unsampled part of E, 
requires further assumptions that may be difficult to justify. 
 
Surprisingly, much of the past sampling-design literature assumes that E can be observed without 
error (as we did above).  From the discussion in Section 2, this is an unrealistic assumption; 
uncertainty in the measurement process should always be accounted for.  Let D(1) ≡ {Ds : s∈ S(1)} 
denote the data resulting from observing E(1).  Then the joint uncertainties are expressed through: 
 
                                         [D(1), S(1) | E, PD] = [D(1) | S(1), E, PD][S(1) | E] . 
 
Model-assisted design-based inference (e.g., Särndal et al., 1992) takes the extra step of 
including uncertainties in the process E: 
 
                                     [D(1), S(1), E | P] = [D(1) | S(1), E, PD][S(1) | E][E | PE] , 
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where recall that P = {PD, PE}.  If parameters P are assumed fixed, inference on E is based on 
the posterior distribution: 
 
                                     [E | D(1), S(1), P] ∝ [D(1) | S(1), E, PD][S(1) | E ][E | PE] , 
 
where the proportionality constant is [D(1), S(1) | P].   
 
Now suppose that uncertainty in P = {PD, PE} is captured by the prior [P]; then the appropriate 
posterior distribution is: 
 
 [E, P | D(1), S(1)] ∝ [D(1) | S(1), E, PD][S(1) | E][E | PE][P] . (3) 
 
Many designs have the property that they are ignorable (e.g., Gelman et al., 2004), namely  
[S(1) | E] = [S(1)], independent of the process E.  In this case, an extraordinary simplification takes 
place: 
 
                                              [E, P | D(1), S(1)] ∝ [D(1) | S(1), E, PD][E | PE][P] . 
 
That is, sampling uncertainty disappears from the inference, yielding the purely model-based 
inference developed in Section 2.  (A similar result for ignorable designs occurs when P is 
assumed fixed.)  Further details on incorporating sampling designs (ignorable and non-ignorable) 
in a hierarchical statistical model can be found in Gelman et al. (2004), Ch. 7.   
 
It is important to realize that for purely observational studies without randomization, the sample 
is purposive; statistical inference on )0(E  is achieved by making ecological modeling 
assumptions about all of E through [E | PE].  Such is the case for the harbor-seals study, where 
recall that there was no randomization in the data acquisition.  Ver Hoef and Frost (2003) 
assumed that the measurement process D(i) had Poisson variation with means {λij}; then 
inference is based on [{λij}, κ, θ, σ2 | D(1),…, D(n)], where there is now no reference to the 
sampling scheme in the notation. 
 
We have presented a unified way to treat sampling design and statistical modeling together, 
using hierarchical statistical models.  Many sampling designs are chosen to be ignorable (such as 
simple random sampling, systematic sampling; e.g., see Cressie, 1993, pp. 316-323), in which 
case the approach given in Section 2 is appropriate.  More generally, the posterior distribution 
(3), which involves the sampling probabilities, should be used for inference. 
 
4.  Statistical inference in ecological analyses 
 
In Section 2, we have shown how conditional probabilities can be used to build complex models 
of ecological processes that account for uncertainty.  Even if we agree that this approach is 
reasonable, there remains the question of how one does inference in this setting.  An empirical 
Bayesian approach could be taken.  That is, consider only the first two stages, [D | E, PD] and  
[E | PE], and take the parameters P = {PD, PE}  to be fixed, but unknown. Depending on the 
complexity of the component models in this case, it is often possible to use classical statistical-
estimation approaches to obtain estimates of the parameters PD and PE, and hence to use plug-in 
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predictions for E. For example, the usual linear mixed model can be thought of in this context 
(Christensen, 1991).  In addition, spatial prediction (kriging) fits into this framework (Cressie, 
1993, Ch. 3), as do sequential time-series methods such as Kalman filtering. Common 
approaches for estimation of P include the Expectation-Maximization (E-M) algorithm, 
conditional and pseudo-likelihood methods, and estimating equations (Hardin and Hilbe, 2003). 
Although such methods do not explicitly account for the uncertainty in estimating the 
parameters, that uncertainty can, if deemed necessary, often be accounted for by resampling and 
bootstrap procedures (Efron and Tibshirani, 1993).  For example, prior to using the Bayesian 
hierarchical model for harbor seals given in Ver Hoef and Frost (2003), Frost et al. (1999) used a 
bootstrap approach.  They modeled variation in counts with Poisson regression for each site, and 
then summed up the model predictions across sites for a standardized set of covariate conditions 
for each year.  Linear regression was then used on these yearly sums to estimate trend.  When 
doing “statistics on statistics”, uncertainty from one analysis (parameter estimation) was passed 
to the next (prediction) through resampling (here a bootstrap). 
 
We turn now to the (fully) Bayesian approach.  This paradigm has a conceptually holistic 
approach to inference, where the parameters are also given distributions, and we are interested in 
the distribution of the process and parameters given the data: [E, PE, PD | D]. Our interest might 
be in terms of inference on the parameters PE and PD, or in prediction or forecasting of the 
process E. In each case, we seek distributions of these variables, given the data that were actually 
observed.  We use Bayes' Theorem from probability theory: 
 
 [E, PE, PD | D] = [D | E, PD][E | PE][PE, PD]/ [D]  (4) 
    
  ∝ [D | E, PD][E | PE][PE, PD], 
 
where we have already named the left-hand side the posterior distribution.  The numerator on the 
right-hand side of (4) is the hierarchical decomposition developed above, and the proportionality 
constant, 1/[D], is the inverse of the marginal distribution of the data.  
 
For the harbor-seals study, if we assume that the measurement error defining D has negative 
binomial variation, then the measurement-error process has a single parameter PD = {κ}.  The 
parameters in PE are mostly linear-regression coefficients of log{λij}, along with one variance 
parameter for a random effect; in the absence of other information, the prior [PE] can be chosen 
to be very diffuse and noninformative.  Then inference is based on [{λij}, PD, PE | D], where PE = 
{θ, σ2}. 
 
In principle, [D] in (4) is obtained by integrating out (in the continuous-distribution case) the 
process and the parameters in the numerator, but in practice it is seldom possible to obtain the 
constant analytically. As a result, numerical methods must be used. The realization that Markov 
Chain Monte Carlo (MCMC) methods could be used efficiently and generally for Bayesian 
hierarchical models (Gelfand and Smith, 1990) revolutionized such computation, and it extended 
the applicability of these models to ever-more-complicated modeling scenarios.  MCMC is a 
simulation-based method for drawing samples from probability distributions, where a Markov 
chain is constructed such that its stationary, or long-run, distribution coincides with the 
distribution from which random samples are desired.  This distribution is sometimes called the 
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“target” distribution which, for a Bayesian analysis, is the posterior distribution.  It follows that 
after a sufficient number of realizations, or a “burn-in”, the generated realizations of the chain 
comprise a random sample from the posterior distribution. 
 
The easiest MCMC algorithm to describe is the Gibbs sampler (e.g., Gelfand and Smith, 1990; 
Robert and Casella, 2005).  To sample from [E, PE, PD | D], we simulate successively from the 
steps: 
 
     [E | PE, PD, D] 
     [PE | E, PD, D] 
     [PD | E, PE, D] , 
 
and repeat; at each step we condition on all the latest values we obtained from the previous steps.  
The conditional distributions just above are referred to as the full-conditional distributions. 
 
When one of these full-conditional distributions can only be calculated up to a normalizing 
constant, we can carry out the simulation in that step by performing a Metropolis-type simulation 
(e.g., Tierney, 1994; Robert and Casella, 2005).  For example, consider the first step and suppose 
that [E | PE, PD, D] is given by the density,  
 

g( · | PE, PD, D)/ ∫ g(E | PE, PD, D)dE , 
 
where g is known but its integral is not.  Let E′ be the current value of E and suppose that E* is a 
simulated random variable of the same dimension as E (from a distribution centered at E′ with 
certain symmetry properties), where E* is easy to simulate (e.g., from a normal distribution).  
Define 
 

E′′ ≡ {
)).(/*)(,1min(1y   probabilitwith 

))(/*)(,1min(y   probabilitwith *
EgEgE

EgEgE
′−′
′

 

 
Then E′′ is the update of E′ (given PE, PD, D) in that step of the Gibbs sampler.  The Metropolis 
algorithm can slow up the MCMC procedure if the acceptance probability for E* is not chosen 
carefully, so where possible we avoid it in the Gibbs sampler.  There is much judgment involved 
in constructing an MCMC algorithm that burns in quickly and yields stable samples from the 
posterior distribution.  Furthermore, given the large number of variables whose posteriors we 
seek, MCMC can be a challenge.  In the harbor-seals study, Ver Hoef and Frost (2003) had to 
use Metropolis-Hastings algorithms for each of the Gibbs sampling steps, [E | PE, PD, D],  
[PE | E, PD, D], and [PD | E, PE, D]. 
 
We note that MCMC differs from standard Monte Carlo integration in that the samples are 
dependent, since they are realized paths of a Markov chain.  Some care should be taken when 
doing data analysis on the samples to produce the desired summaries of the posterior 
distribution.  Instead of describing how an MCMC algorithm can be set up for a particular 
model, we refer the reader to some of the excellent overviews in the literature (e.g., Casella and 
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George, 1992; Chib et al., 1995; Gilks et al., 1996; Chen et al., 2000; Gelman et al., 2004; and 
for an introduction in the ecological literature, see Link, 2002). 
 
In order to summarize inferences on the unknowns in a hierarchical Bayesian model using the 
output from an MCMC simulation, the sampled values from the posterior distribution are used to 
calculate common distributional summary statistics, such as histograms, means, and variances, of 
the marginal distributions of the unknowns, conditional on the observations D.  For example, the 
samples of a particular unknown E1, from the posterior distribution, can be averaged to 
approximate the center of the marginal posterior distribution of E1,  which is E(E1 | D), where 
E(·) denotes expectation.  In addition to the mean of the samples, it is also common to 
characterize the uncertainty in the marginal posterior distribution of each unknown using the 2.5 
and 97.5 percentiles of the posterior samples.  The interval defined by these two percentiles 
approximates the 95-percent credible interval of each unknown.  The interpretation of a 95-
percent credible interval for an unknown E1 is that the posterior probability that E1 falls inside its 
95-percent credible interval is 0.95.   Thus, the width of the credible interval summarizes the 
uncertainty in inferences on E1.  For the harbor-seals study (Ver Hoef and Frost, 2003) E1 
contains the trend parameters {θ1i} and θ1A, and the marginal distributions of the MCMC 
samples are given in Figure 3, from which means, credible intervals, and so forth, can be 
computed.  
 
 
There are a variety of different software packages available for fitting Bayesian hierarchical 
models using MCMC methods.  Several of these packages are based on the Bayesian inference 
Using Gibbs Sampling (BUGS) language, including its Windows implementation (WinBUGS; 
Spiegelhalter et al., 2004) and an open-source version (OpenBUGS; Thomas, 2004).  Another 
open-source software package for posterior simulation is Just Another Gibbs Sampler (JAGS; 
Plummer, 2005).  The JAGS model-specification syntax is nearly identical to BUGS, however 
the implementation is different.  While all of these MCMC software packages can greatly 
facilitate the fitting of Bayesian hierarchical models, many researchers choose to write their own 
MCMC code in languages such as R/S, C/C++, and FORTRAN.  This option provides increased 
flexibility over the various packages, but can be considerably more tedious to implement and 
debug.  For the analysis of the harbor-seals data, Ver Hoef and Frost (2003) used WinBUGS to 
obtain samples from the posterior distribution. 
 
A considerable amount of research in quantitative ecology has been devoted to model selection.  
We now reconsider this part of inference in the context of hierarchical statistical modeling.  For a 
simple example of model selection, consider again the general problem of “curve fitting”.  Our 
goal is to select the “best” curve. How do we define best, and how do we decide which is best? 
Most methods try to find a balance or can be viewed as a balance between parsimony (simpler is 
better) and goodness-of-fit (we want enough complexity to capture the essential features of the 
data).  These same considerations apply when trying to capture uncertainty in process models 
and parameter models.  Textbook treatments of model selection can be found in Linhart and 
Zucchini (1986), McQuarrie and Tsai (1998), and Burnham and Anderson (2002). 
 
For the harbor-seals study, we might want to simplify the model as much as possible by selecting 
among models that include a subset of tide, date, and time.  A traditional approach is to use 
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stepwise regression, but more popular recently is an information-theoretic approach, such as AIC 
(Akaike, 1973) or BIC (Schwarz, 1978).  These approaches are especially useful when 
comparing non-nested models.  For example, suppose that we want to use all three covariates, 
tide, date, and time in our model, but we want to compare a Poisson versus negative binomial 
distribution for the measurement errors.  Then a stepwise approach is not appropriate, however 
the information-theoretic approach handles it easily.  The information-theoretic approach uses 
the notion of maximizing the model likelihood (which can never get worse by adding more 
parameters), but with a penalty for the number of parameters.  However, the counting of 
parameters can become difficult for hierarchical models, so Spiegelhalter et al. (2002) introduced 
DIC; DIC would be useful in the harbor-seals study, especially when trend over years is 
considered.  Small, Pendleton, and Pitcher (2003) used an information-theoretic approach on a 
non-hierarchical analysis of the harbor-seals data. 
 
5.  Discussion 
 
Hierarchical models address complex problems for which there may be several sources of 
information and hidden variables (Wikle et al., 1998; Clark, 2005; Ogle et al., 2005).  Goals may 
include estimation of parameters for a process model (Ibanez et al., 2006; Hille Ris Lambers et 
al., 2005), inference on hidden states (Dupris, 1995; Ver Hoef and Cressie, 1997; deValpine, 
2003; Stenseth et al., 2003; Dorazio and Royle, 2003; Clark and Bjornstad, 2004; Gelfand et al., 
2004; Clark et al., 2005), quantifying the importance of interactions (Coulson et al., 2001; Cam 
et al., 2002; Clark et al., 2003, 2004; Mohan et al., 2007; LaDeau and Clark, 2006), and 
prediction (Beckage and Platt, 2003; Clark et al., 2007).  In this section, we begin a discussion of 
the issues surrounding hierarchical statistical modeling.  It is expected that in discussion these 
and other issues will be explored more deeply than we are able to do here. 
 
There are many challenges with building complicated models, with the associated inference, and 
with computational efficiency (Clark, 2005, and Clark and Gelfand, 2006, provide ecological 
examples). Like any model-building exercise, there must be considerable thought and effort 
devoted to the specification of the component distributions in the hierarchical framework. In 
some sense, model complexity is related both to data richness and "scientific richness", which is 
simply the knowledge one has about the process (and parameters) of interest.  The situation is 
only made more complex when the model is also Bayesian.  
 
Subjectivity of a Bayesian analysis 
A historical criticism of Bayesian methods is that it requires "subjective" specification of prior 
information on the parameters.  Can a Bayesian get any answer he or she desires by tuning the 
prior distribution?  Technically, the answer to this question is yes; the Bayesian approach can be 
“gamed”, but so can the classical/frequentist approach to inference.  However, there is a sizable 
literature on “objective Bayesian” analysis, which develops prior distributions for classes of 
models that do not impact the posterior distribution.  Such noninformative priors are often 
termed “vague”, “flat”, or “diffuse”.  For some models, appropriate noninformative priors are 
readily available, while for others they are not.  For a thorough discussion of issues related to the 
specification of prior distributions, see Berger (1985).  Alternatively, it is common practice to 
perform sensitivity analyses, or robustness assessments, to ascertain the influence of prior 
assumptions.  This is done by refitting the hierarchical model under different prior assumptions 
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and comparing the resulting inferences.  Not only does this exercise provide information on the 
influence of prior assumptions on inferences, but it gives insight into the amount of information 
in the data. 
 
Of course, there is subjectivity in the specification of the likelihood in a classical statistical 
approach. In fact, a broader perspective is that there is subjectivity involved with the 
specification of all of the model components: data models, process models, and parameter 
models. However, it is not always clear what "subjective" means in this context. For example, it 
might be "subjective" to specify a stochastic model for tropical winds (e.g., Wikle et al., 2001), 
but the science comes from Newton's laws of motion! Thus, from our perspective, it is better to 
ask about the sensitivity of results to model choices, and whether such choices make sense 
scientifically. 
 
There are cases where one tries to make the posterior distribution in a Bayesian hierarchical 
statistical model less sensitive to model specifications. Central to the Bayesian paradigm is the 
notion that as the data quantity and quality increase, the posterior is less sensitive to prior 
assumptions. This feature of Bayesian inference is often compared philosophically to “scientific 
learning” in that knowledge is continuously updated in light of new information, in a coherent 
fashion.   
 
 
Convergence of the MCMC algorithm 
Based on the discussion above, before the sample path of a Markov chain produces a sample 
from the posterior distribution, the MCMC algorithm must be run for a certain number of burn-in 
iterations.  While this number must be finite, the exact number of burn-in iterations is rarely 
known.  The process by which the chain moves from its starting value to values that are 
representative of the distribution is termed convergence of the algorithm. 
 
In practice, convergence is usually assessed using a set of diagnostic tools on the sample path of 
the Markov chain.  While this type of output analysis is not able to “prove” that the chain has 
converged, it can provide insight into the issue.  Output analysis can be numerical and graphical 
and can involve both comparing chains with multiple starting values and assessing differences in 
different segments of a single chain (e.g., Brooks and Roberts, 1998; Cowels and Carlin, 1995; 
Gelman et al., 2004).  Software for assessing convergence of MCMC algorithms include the 
Convergence Diagnosis and Output Analysis Software of Gibbs Sampling Output (CODA;  Best 
et al., 1995; Plummer et al., 2005) and Bayesian Output Analysis (BOA; Smith, 2005). 
 
Adequacy of the number of MCMC samples 
The sequences of samples from the joint posterior distribution generated by an MCMC algorithm 
are by construction correlated.  As a result, inferences based on MCMC samples (assuming the 
chain has converged) will generally be less precise than independent samples from the posterior.  
By examining the variance of the sample paths for a single parameter, marginal estimates of the 
“effective” number of iterations can be obtained.  If there is limited availability of storage for the 
output of an MCMC algorithm, the chain can be “thinned” by only saving every kth sample.  The 
autocorrelation of the resulting thinned chain will likely be less than the original chain.  
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Therefore, the precision of posterior inferences based on the thinned chain will be better than 
those based on an equal-length unthinned portion of the chain. 
 
Parameter Identifiability 
When building large hierarchical models, it is not always apparent that all model parameters are 
identifiable.  In order to motivate the issue of parameter identifiability, consider the following 
simple example.  Let y1,…,yn be independent samples from a normal distribution with unknown 
mean µ and variance σ2.  Clearly, from a classical/frequentist perspective, the observations 
contain information about the unknown parameters.  In fact, the sample mean and variance 
provide unbiased estimates of  µ and σ2, respectively.  Instead of parameterizing the sampling 
distribution in terms of µ and σ2, assume that the data were generated from a normal distribution 
with unknown mean µ1 + µ2 and variance σ2.  While there is information in the data about the 
sum, µ1 + µ2, there is no way to identify the components separately, which means that µ1 and µ2 
are not identifiable.   
 
From a Bayesian perspective, as long as proper prior distributions are assigned to all model 
parameters, all of them are technically identifiable.  To illustrate, consider the example above, 
now within the Bayesian paradigm.  Assuming proper prior distributions on µ1, µ2, and σ2, we 
can determine the posterior distribution of all three parameters, making them all technically 
identifiable.  However, unless there is very strong prior information on µ1 and µ2, it will be 
difficult to see very much difference in the posterior distributions of these parameters.  In 
practice, lack of identifiability can be problematic in the Bayesian setting (Gelfand and Sahu, 
1999).  When running MCMC algorithms, the sample paths of nonidentifiable parameters will 
“trade off” their values, leading to numerical and convergence problems.  If identifiability 
problems go undiagnosed, inferences on these model parameters and possibly others can be 
misleading. 
 
Assessing Model Fit and Diagnosing Lack of Fit 
We have already discussed the importance of assessing the influence of prior assumptions on 
inferences in Bayesian models.  In addition to performing these sensitivity analyses, it is 
important to assess the fit of a model.  There are both numerical and graphical tools for model 
checking, which are primarily based on the posterior predictive distribution, specifically the 
distribution of a new (replicate) observation, Drep, conditional on the observed data, D (see 
Gelman et al., 2004, Ch. 6).  The posterior predictive distribution is given by: 
 

,]|,,][[,,|[]|[ reprep
DEDEDE dPdPdEDPPEPPEDDD ∫=  

 
where the distribution is obtained numerically by taking an MCMC sample from the posterior  
[E, PE, PD | D] and plugging it into [Drep | E, PE, PD] to then generate a sample from [Drep | D]. 
 
With any model-checking procedure comes the opportunity to perform cross-validation.  That is, 
the i-th observation Di (or a carefully chosen subset of observations) in D is deleted, leaving data 
D-i to predict what should have been observed assuming the model is correct.  A Bayesian model 
allows the posterior distribution ]|[ rep

ii DD − to be computed, which can then be compared to the 
observation Di that was deleted (e.g., Stern and Cressie, 2000).  For example, if Di is in the tails 
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of the distribution of  ]|[ rep
ii DD − , there would be cause to doubt the model’s ability to fit well to 

the i-th datum.  Consequently, if cross-validation is used as an informal model-selection 
procedure, it tends to reject overly complicated models, since such models perform poorly when 
predicting beyond the observed data. 
 
While conceptually straightforward, in practice, model checking using the posterior predictive 
distribution for large hierarchical models can be tedious.  The distribution [Drep | D] can be high-
dimensional and likely will have a complex dependence structure.  Finding distributional 
summaries that adequately convey the extent to which the data fit the model can be a difficult 
task.  Still, if inferences and forecasts are going to be trusted, these checks must be performed.  
In the harbor-seals study, Ver Hoef and Frost (2003) used ]|[ rep DD   to average (Observedij – 
Expectedij)2/Expectedij, over j, for each site i, which should be near one.  They found lack of fit 
for models without a random effect to account for overdispersion. 
 
Bayesian inference in space and time 
In a spatio-temporal setting, process and parameter models are less influential on smoothing and 
filtering, because the data redeem us from misspecification.  But they can matter a lot when we 
are forecasting, particularly when there is long-range temporal dependence.  The Bayesian part 
of all this captures the variability in the parameters, whereas if they are estimated and plugged 
into summaries for inference on the process component, those inferences do not account properly 
for the variability in the parameter estimates.  Frequentist-based approximations (e.g., Rao, 2003, 
Sec. 6.2) are available for simple cases, but a dynamic, non-stationary, spatio-temporal 
hierarchical model is far from simple.  In contrast, Bayesian inference on the spatio-temporal 
process accounts for parameter variability coherently. 
 
In this article, we have featured the hierarchical statistical modeling approach for dealing with 
uncertainty in ecological analysis.  The last section is representative of the type of discussion we 
hope our presentation will engender. 
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Figure Captions 
 

Figure 1:  Map of Prince William Sound, Alaska, with the locations of n = 25 harbor-seal haul-
out sites superimposed.  The sites were chosen for aerial surveys to monitor harbor-seal 
trends following the Exxon Valdez oil spill in 1989.  [Reprinted from Ver Hoef and 
Frost, 2003, with permission.] 

 
Figure 2:  A schematic of the hierarchical statistical models for the harbor-seals study.  (A):  The 

data model is the top level with the process model at the second level.  A Bayesian 
hierarchical statistical model would have a parameter model at a third level. (B):  As in 
(A), except the linear model parameters from each site are given a distribution.  Here, a 
Bayesian hierarchical statistical model would have a parameter model at the fourth level. 

 
Figure 3:  Posterior densities of slopes {θ1i : i = 1,…,25}, corresponding to the year (trend) 

covariate, with the posterior density of θ1A superimposed with the heavy solid line.  These 
posterior densities correspond to model in Figure 2(B).  The solid circles on the x-axis 
correspond to the peak densities for the model in Figure 2(A).  The dashed lines link the 
peaks for each site, and show how the Bayesian hierarchical model “shrinks” one-at-a-
time site estimates toward the global trend estimate. 

 
 



 27

 
Figure 1 

 
 
 



 28

 
 
 

 
 
 

Figure 2 
 
 



 29

 
 
 
 

 
 
 

Figure 3 
 
 
 


