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Résumé Abstract

Dans ce travail, nous nous sommes intéressés à l’étude asymptotique d’objets
combinatoires aléatoires. Deux thèmes ont particulièrement retenu notre
attention : les cartes planaires aléatoires et les modèles combinatoires liés à
la théorie des fragmentations.

La théorie mathématique des cartes planaires aléatoires est née à l’aube de notre
millénaire avec les travaux pionniers de Benjamini & Schramm, Angel & Schramm
et Chassaing & Schaeffer. Elle a ensuite beaucoup progressé, mais à l’heure où ces
lignes sont écrites, de nombreux problèmes fondamentaux restent ouverts. Résumons
en quelques mots clés nos principales contributions dans le domaine : l’introduction et
l’étude du cactus brownien (avec J.F. Le Gall et G. Miermont), l’étude de la quadran-
gulation infinie uniforme vue de l’infini (avec L. Ménard et G. Miermont), ainsi que
des travaux plus théoriques sur les graphes aléatoires stationnaires d’une part et les
graphes empilables dans Rd d’autre part (avec I. Benjamini).

La théorie des fragmentations est beaucoup plus ancienne et remonte à des travaux
de Kolmogorov (1941) et de Filippov (1961). Elle est maintenant bien développée (voir
par exemple l’excellent livre de J. Bertoin), et nous ne nous sommes pas focalisés sur
cette théorie mais plutôt sur ses applications à des modèles combinatoires. Elle s’avère
en effet très utile pour étudier différents modèles de triangulations récursives du disque
(travail effectué avec J.F. Le Gall) et les recherches partielles dans les quadtrees (travail
effectué avec A. Joseph).

Bonne lecture !

The subject of this thesis is the asymptotic study of large random combinatorial
objects. This is obviously very broad, and we focused particularly on two
themes : random planar maps and their limits, and combinatorial models
that are in a way linked to fragmentation theory.

The mathematical theory of random planar maps is quite young and was triggered
by works of Benjamini & Schramm, Angel & Schramm and Chassaing & Schaeffer. This
fascinating field is still growing and fundamental problems remain unsolved. We present
some new results in both the scaling limit and local limit theories by introducing and
studying the Brownian Cactus (with J.F. Le Gall and G. Miermont), giving a new view
point, a view from infinity, at the Uniform Infinite Planar Quadrangulation (UIPQ)
and bringing more theoretical contributions on stationary random graphs and sphere
packable graphs (with I. Benjamini).

Fragmentation theory is much older and can be tracked back to Kolmogorov and
Filippov. Our goal was not to give a new abstract contribution to this well-developed
theory (see the beautiful book of J. Bertoin) but rather to apply it to random combi-
natorial objects. Indeed, fragmentation theory turned out to be useful in the study of
the so-called random recursive triangulations of the disk (joint work with J.F. Le Gall)
and partial match queries in random quadtrees (joint work with A. Joseph).

Enjoy !
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PARTIE 1
Introduction

16 figures, 20 photos
et quelques blagues.

Cette partie introductive est divisée en deux chapitres, es-
sentiellement disjoints, qui présentent les résultats princi-
paux de cette thèse. Les contributions originales de ce tra-
vail correspondent aux travaux [16, 17, 46, 47, 48, 49, 50] et
peuvent être trouvées aux chapitres 3-9, ou dans les Sections
1.2.4, 1.3.4, 1.3.5, 1.3.6, 2.2, et 2.3 de l’introduction. Elles
sont signalées par des théorèmes ou propositions encadrés
par deux lignes horizontales.
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Cartes planaires aléatoires

« Evitez les cartes car ce jeu peut nuire. »

1.1 Cartes planaires
1.1.1 Définition

Un graphe G est un couple formé de deux ensembles, un ensemble de sommets V et
un ensemble d’arêtes E. Chaque arête a deux extrémités dans V éventuellement iden-
tiques. Ainsi les graphes considérés peuvent avoir des arêtes multiples ou des boucles.
Un graphe sans arête multiple ou boucle est dit simple. Sans plus attendre, donnons
la définition d’une carte planaire. Il existe de nombreuses définitions équivalentes mais
présentons la plus « géométrique » :

Définition 1. Une carte planaire est un plongement propre d’un graphe (planaire) fini
et connexe dans la sphère S2 , considéré à homéomorphisme préservant l’orientation
près.

L’adjectif planaire réfère à la sphère S2 munie de son orientation. Il existe aussi une
notion de carte de genre g ∈ {0, 1, 2, . . .} qui sont des plongements propres de graphes
dans le tore à g trous, vus à homéomorphisme préservant l’orientation près. Cependant,
dans ce travail, nous nous concentrerons sur le cas planaire g = 0.

Si m est une carte planaire, nous noterons respectivement V(m), E(m)

et F(m) l’ensemble de ses sommets, arêtes et faces (voir [113] pour une
définition rigoureuse). La célèbre formule d’Euler donne une relation très
simple entre les cardinaux de ces ensembles dans le cas planaire :

# V(m) + # F(m)−# E(m) = 2. (1.1)

Le degré deg(v) d’un sommet v ∈ V(m) est le nombre de demi-arêtes adjacentes à celui-
ci et le degré deg(f) d’une face f ∈ F(m) est le nombre d’arêtes la bordant, avec la
convention qu’une arête complètement incluse dans une face compte double. On notera
également d

m

gr(u, v) la distance de graphe entre deux sommets u, v ∈ V(m), c’est-à-dire
le nombre minimal d’arêtes d’un chemin reliant les deux points en question.
À la vue de la Définition 1, il n’est pas évident, a priori, qu’il n’existe qu’un nombre
fini de cartes planaires avec n arêtes. Pour s’en convaincre, il faut se persuader qu’une

9
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carte planaire peut-être caractérisée par sa structure de graphe, et par une orientation
cohérente des arêtes autour de chaque sommet : c’est la définition par système de
rotations (voir par exemple [93]). Une carte planaire contient donc plus d’informations
que la structure de graphe planaire sous-jacente, et il est aisé de construire plusieurs
cartes planaires différentes ayant la même structure de graphe.

Symétries. Il peut paraître saugrenu de considérer les cartes planaires au lieu des
graphes planaires. Les cartes sont en effet des objets beaucoup plus rigides que les
graphes, mais c’est justement cette rigidité qui va énormément faciliter l’énumération
des cartes planaires 1. Citons Gilles Schaeffer, [127, Introduction]

« Paradoxalement en effet, les cartes, a priori plus complexes que les
graphes, sont plus simples à bien des égards lorsqu’on s’intéresse à la
planarité. Ce paradoxe n’en est d’ailleurs pas vraiment un, puisque les
cartes planaires contiennent la description de leur planarité, par oppo-
sition aux graphes planaires, pour lesquels le plongement se contente
d’exister. »

Nous considérerons dans la suite uniquement des cartes enracinées, c’est-à-dire munies
d’une arête orientée distinguée, appelée la « racine » de la carte. Une carte enracinée
n’a alors aucune symétrie non triviale, voir [113, Proposition 1.1].

Une triangulation (resp. quadrangulation) est une carte planaire dont toutes les
faces sont de degré trois (resp. quatre). L’ensemble des cartes planaires à n arêtes est
naturellement en bijection avec l’ensemble des quadrangulations à n faces : dans chaque
face d’une carte générale, placez un point que vous reliez aux sommets adjacents de la
carte. La carte ainsi construite est une quadrangulation, et ses faces correspondent aux
arêtes de la carte originale.

Figure 1.1 – Une carte générale et la quadrangulation associée.

1. L’énumération des graphes planaires, sujet très difficile, passe d’ailleurs par l’énumération des
cartes planaires [73]. Le transfert graphe-carte utilise le théorème de Whitney qui stipule qu’un graphe
planaire 3-connexe n’a au plus que deux cartes associées (se déduisant l’une de l’autre par réflexion
dans S2 autour de l’équateur).
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1.1.2 A Census of Censuses of planar maps
Nous présentons dans cette section une esquisse de quelques méthodes « histo-

riques » d’énumération des cartes planaires. Elles illustrent les nombreuses connections
qu’elles entretiennent avec d’autres domaines des mathématiques et de la physique
théorique. Nous n’avons pas la prétention de donner des preuves.

Combinatoire énumérative

Le premier a avoir véritablement initié l’étude des cartes planaires est
William Thomas Tutte. Il décide dans les années 60 de lancer un vaste
projet pour les dénombrer [139, 140, 141, 142]. Son but (non atteint) était
de montrer le théorème des quatre couleurs en prouvant qu’il y a autant
de cartes planaires 4-coloriables que de cartes planaires quelconques, voir

[143]. Donnons une vue aérienne de la méthode. En vertu de la bijection présentée dans
la section précédente (et qui s’étend aisément au cas enraciné), l’énumérateur voulant
dénombrer les cartes planaires à n arêtes enracinées n’a besoin de compter que les
quadrangulations enracinées à n faces. Pour cela, on utilise une décomposition récursive
due à Tutte : l’effacement de la face à la droite de l’arête racine permet de passer de n
à n − 1 faces. Le problème est que lors de cette opération, la face « extérieure » de la
carte obtenue n’est plus forcément un carré et la carte peut même être scindée en deux
parties.
La solution consiste à considérer une classe plus générale de quadrangulations : les
quadrangulations à bord où toutes les faces sont des carrés, hormis la face à gauche
de l’arête racine qui peut être de degré arbitraire (mais pair). Ainsi, si F (x, y) est la
fonction génératrice des quadrangulations à bord avec poids x par face et y par arête
du bord,

F (x, y) =

�

quadrangulations
à bord

x#faces y#arêtes du bord,

cette décomposition récursive se traduit en une équation quadratique en F . Tutte déve-
loppa une méthode, dite méthode quadratique, pour résoudre ces équations et engendra
un nouveau champ de recherche en combinatoire énumérative, voir par exemple [31]. Il
arriva ainsi à montrer que le nombre de quadrangulations enracinées à n faces est

qn =
2

n+ 2
3
n

1

n+ 1

�
2n

n

�

. (1.2)

Combinatoire Bijective

Dès la découverte de la formule (1.2), les combinatoriciens ont cherché une interpré-
tation de l’apparition du n-ième nombre de Catalan, Cat(n) =

1

n+1

�
2n

n

�
, dans l’énumé-

ration des cartes planaires. En effet, l’omnipotent Cat(n) compte beaucoup de familles
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d’objets combinatoires, voir [136] pour 66 interprétations différentes des nombres de
Catalan. La réponse de Cori et Vauquelin [45] vint beaucoup plus tard. Ils montrèrent
que les cartes planaires peuvent être encodées par des objets beaucoup plus simples :
des arbres étiquetés.

Mais c’est Gilles Schaeffer [127] qui popularise et rend ces bijections
fonctionnelles (en particulier il montre que les étiquettes des arbres ont une
signification métrique dans la carte associée). Nous ne décrivons pas ici le
principe de ces bijections, qui sera détaillé en Section 1.2.1.

Modèle de matrice

Aussi surprenant que cela puisse paraître, les cartes planaires peuvent
aussi être énumérées à l’aide d’intégrales matricielles. Cette idée remonte à
’t Hooft [138], puis a été développée dans [38] où l’on peut trouver l’étrange
formule

lim
N→∞

1

N2
log

��
dM exp

�
N
�
−1

2
Tr(M2

) +
z

4
Tr(M4

)

���
=

�

cartes planaires
4-valentes

z#sommets
#symétries ,

où dM représente la mesure de Lebesgue sur les matrices hermitiennes de taille N ×N .
Rappelons qu’une carte planaire est 4-valente si tous ses sommets sont de degrés 4,
ou de manière équivalente si elle représente le dual d’une quadrangulation. Le mystère
s’éclaircit quelque peu si l’on arrive à se convaincre en utilisant la formule de Wick que
les termes non nuls dans le développement de E

�
Tr(M4

)
n
�

peuvent être représentés
sous forme d’un diagramme, dit de Feynman, à n sommets. Voir [147] pour plus de
détails.

5 Un autre exemple
Afin de montrer la robustesse des techniques précédentes, nous allons esquisser une autre énumération de dia-

grammes à l’aide d’une intégrale matricielle. Considérons maintenant la quantité suivante

E
�

Tr(H
4)n

�
. (5)

En développant la trace, la puissance et en utilisant la formule de Wick on obtient

E
�

Tr(H
4)n

�
=

�

i
1
1 ,i1

2 ,i1
3 ,i1

4
i

2
1 ,i2

2 ,i2
3 ,i2

4

...
i

n

1 ,in

2 ,in

3 ,in

4

�

Partitions de Wick
de {1,2,...,4n}

Produit de n espérances contenant deux termes. (6)

L’idée est encore et toujours de représenter géométriquement les couplages de Wick. Voir FIG. 3. Tout couplage de
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FIG. 3 – Un terme non nul dans (6) est représenté par un couplage de n étoile(s) à 4 branches comme ci-dessus à
gauche. Dans un terme non nul de (6), chaque espérance contient deux termes qui doivent être couplés ce que l’on
représente comme ci-dessus à droite. En bas, la figure représente un couplage de Wick complet de E

�
Tr(H

4)2
�
, c’est

ce que l’on appelle un diagramme de Feynman.

Wick est représenté par une somme de cartes en genre g (le diagramme obtenu peut ne pas être connexe) dont
tout les sommets sont de degré 4. Tout comme précédemment, on peut définir le degré de liberté d’un couplage

c’est-à-dire que nombre de termes dans (6) qui sont représentés par ce couplage est de l’ordre de N
degrés de liberté.

6

Figure 1.2 – Un diagramme de Feynman : une carte 4-valente de genre 1 avec 2 som-
mets. Les iba pour a ∈ {1, 2, 3, 4} et b ∈ {1, 2} représentent des indices de variables
gaussiennes composant la matrice H. Les indices doivent être couplés pour que l’espé-
rance du terme considéré ne soit pas nulle.
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Le nombre de termes dans E
�
Tr(M4

)
n
�

représentés par un diagramme fixé (c’est-
à-dire le nombre de degrés de liberté dans le choix des indices iba, a ∈ {1, 2, 3, 4}, b ∈
{1, 2} vérifiant un couplage donné, comme dans la Fig. 1.2) est N2−2g, où g est le
genre du diagramme (c’est une application de (1.1)). Attention, n représente le nombre
de sommets du diagramme alors que N est la taille de matrice M . Les diagrammes
dominants dans la limite N → ∞ sont donc les diagrammes planaires, et la formule
précédente perd de son étrangeté.
Les physiciens ont alors développé des techniques très robustes de calcul d’intégrales
matricielles permettant le comptage de nombreux modèles de cartes, voir [56].

1.1.3 Géométrie aléatoire
En plus de leur intérêt purement combinatoire et esthétique, les cartes planaires ont

été considérées par certains physiciens comme modèle de géométrie aléatoire [9]. Leur
motivation était d’étendre à la dimension deux les intégrales de chemins de Feynman, et
ce, afin de développer la gravité quantique bidimensionelle 2. Sans vouloir (et pouvoir)
entrer dans les considérations physiques de cette motivation, nous nous contenterons
du point de vue probabiliste.

Limite d’échelle

Le but est de construire l’analogue du mouvement brownien en dimension deux.
Prenons exemple sur le cas unidimensionel : la loi du mouvement brownien sur [0, 1]

est une mesure de probabilité sur les fonctions continues [0, 1] → R. Une manière de
construire cette distribution passe par la discrétisation. On considère tout d’abord la
loi uniforme sur les chemins discrets de pas ±1 et de longueur n. Après une remise à
l’échelle convenable, on peut montrer que les mesures de probabilité obtenues sur les
courbes [0, 1]→ R convergent faiblement vers la loi du mouvement brownien sur [0, 1]

quand n→∞ (c’est le théorème de Donsker).
Le rôle du chemin discret uniforme de taille n dans le cas bidimensionel est joué par une
quandrangulation uniforme à n faces. Ainsi, la carte aléatoire finie est une discrétisation
d’une surface topologique aléatoire de dimension deux, tout comme le chemin discret
est une discrétisation du mouvement brownien.
La construction de cette surface aléatoire, la carte brownienne [98, 110], n’est pas encore
totalement achevée, voir Section 1.2.3. Elle est supputée être universelle, au sens où
de nombreux modèles de grandes cartes planaires (triangulations, quadrangulations,
pentagulations...) sont censés converger en distribution au sens de Gromov-Hausdorff
(voir Section 1.2.3) vers cet objet.

2. impressionnant n’est ce pas ?
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Limite locale

Sans passer par le truchement d’une remise à l’échelle pour définir des objets conti-
nus, il est possible de donner un sens [11, 89] à la limite quand n→∞ des triangulations
ou quadrangulations uniformes de taille n. Cette convergence, dite locale, définit des ob-
jets limites qui ne sont plus des surfaces topologiques aléatoires mais des cartes infinies
enracinées, voir Section 1.3, Chapitre 6 et [49].

1.1.4 Science Fiction
La gravité quantique est une théorie physique qui suggère un lien très profond entre

géométrie aléatoire et géométrie déterministe. Des prédictions physiques [86] relient
en effet les dimensions fractales de certains objets aléatoires (amas de percolation, de
modèle d’Ising et autres systèmes de mécanique statistique) sur un réseau aléatoire et
sur un réseau fixe. La formule magique est la suivante,

∆−∆0 =
∆(1−∆)

k + 2
, (KPZ)

où 2 − 2∆ est la dimension de l’objet fractal en géométrie aléatoire et 2 − 2∆0 est la
dimension correpondante en géométrie déterministe (réseau régulier). Le paramètre k
est quant à lui spécifique du modèle de mécanique statistique considéré. De récents
progrès sur ce front ont été obtenus en considérant une géométrie aléatoire définie à
partir de cascades multiplicatives [22], ou à partir du champ libre gaussien [59]. Il est
également conjecturé que les cartes planaires aléatoires sont un modèle de géométrie
aléatoire à laquelle la formule (KPZ) devrait s’appliquer [15, 131]. Une conjecture ma-
thématiquement précise utilisant les empilements de cercles (voir Section 1.3.3) peut
être trouvée dans [15, Section 3.2]. À l’heure actuelle, tout ce champ reste grandement
ouvert.

Après ce tour d’horizon des mille et une recettes pour énumérer les cartes
planaires, et des fabuleux mais encore ténébreux liens qu’elles sont censées
entretenir avec la gravité quantique, entrons dans le vif du sujet. Le reste
de ce chapitre sur les cartes planaires est divisé en deux parties, la première
concerne les limites d’échelle, la seconde traite des limites locales.

1.2 Limite d’échelle
Afin de simplifier l’exposition, nous nous restreindrons au cas des quadrangulations.

Dans tout ce qui suit,Qn est une quadrangulation enracinée choisie uniformément parmi
les quadrangulations enracinées à n faces.

1.2.1 Description de la bijection Cori-Vauquelin-Schaeffer
L’outil principal pour l’étude des limites d’échelles de cartes planaires aléatoires

est la bijection de Cori-Vauquelin-Schaeffer (CVS). La forme la plus simple de cette



✐
✐

“theseavec” — 2011/5/24 — 15:45 — page 15 — #15 ✐
✐

✐
✐

✐
✐

Introduction 15

bijection établit une correspondance entre, d’un côté, les quadrangulations enracinées
et pointées, c’est-à-dire munies d’un sommet distingué ρ, et d’autre part, les arbres
plans étiquetés. Nous utiliserons le formalisme des arbres plans introduit dans [97]. Un
étiquetage d’un arbre τ est une fonction � : τ −→ Z qui vérifie les propriétés suivantes :

– l’étiquette de la racine est nulle, �(∅) = 0,
– si u et v sont deux sommets voisins alors |�(u)− �(v)| � 1.

Remarquons qu’une fois l’arbre τ fixé, se donner un étiquetage de τ revient à se donner
des étiquettes appartenant à {+1, 0,−1} portées par les arêtes de τ qui représentent
la variation des étiquettes des sommets le long de chaque arête. Il y a donc 3

n
Cat(n)

arbres étiquetés différents avec n arêtes.

Théorème ([43, Theorem 4]). Il y a une bijection entre les quadrangulations enracinées
et pointées à n faces, et les couples formés d’un arbre étiqueté à n arêtes et d’un
signe + ou−. Si q est une quadrangulation enracinée et pointée associée à un couple
((τ, (�u)u∈τ ),±), alors l’ensemble des sommets de la quadrangulation q est formé par
l’ensemble des sommets de l’arbre τ et un sommet supplémentaire ρ qui est le sommet
distingué de la carte. De plus, pour tout sommet u ∈ τ (avec l’identification des sommets
de l’arbre avec ceux de la carte différents de ρ) on a

�(u)−min �+ 1 = d
q
gr(u, ρ), (1.3)

où d
q
gr(., .) est la distance de graphe sur la quadrangulation q.

Remarque : La formule d’Euler (1.1) implique que toute quadrangulation
à n faces a exactement n+2 sommets. Ainsi le nombre de quadrangulations
enracinées et pointées à n faces est exactement n+ 2 fois le nombre de qua-
drangulations enracinées à n faces. Puisqu’il y a 3

n
Cat(n) arbres étiquetés

à n arêtes, le théorème précédent permet de (re-)déduire la formule de Tutte
(1.2) sur le nombre de quadrangulations enracinées à n faces

qn =
2

n+ 2
3
n

1

n+ 1

�
2n

n

�

.

Nous décrivons le fonctionnement de la bijection uniquement dans le sens partant
des arbres étiquetés vers les quadrangulations, sens le plus utile pour nos applications.
Nous renvoyons à [43, 127] pour les preuves. Soit (τ, (�u)u∈τ ) un arbre étiqueté. Rap-
pelons que τ est un arbre planaire, c’est-à-dire qu’il est muni d’une racine et d’une
orientation. On considère un plongement de τ dans le plan (avec des arêtes rectilignes
pour simplifier) qui respecte l’orientation de τ . Un coin de ce plongement est un secteur
angulaire formé par deux arêtes adjacentes. On peut alors vérifier que ce plongement
a 2n coins si τ a n arêtes. On définit le contour du plongement de τ dans le sens des
aiguilles d’une montre : on imagine que notre plongement est un mur et on le parcourt
en plaquant sa main droite sur le mur et en avançant. Ce contour munit l’ensemble des
coins d’une structure cyclique. La règle pour construire la quadrangulation associée à
(τ, (�u)u∈τ ) est la suivante :

Chaque coin associé à un sommet d’étiquette i est relié au premier coin
dans la suite du contour d’étiquette i− 1.
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Attention toutefois, cette règle ne peut pas être appliquée aux coins associés aux som-
mets d’étiquette minimale. Tous ces coins sont alors reliés à un sommet supplémentaire,
placé en dehors du plongement de τ que l’on note ρ. Il est possible de dessiner toutes
ces arêtes sans croisement, et après effacement du plongement de τ , le résultat est un
plongement d’une quadrangulation q à n faces. Le sommet distingué de q est ρ et l’arête
racine est l’arête émergeant du coin racine de τ , son orientation étant prescrite par le
signe + ou − donné en plus de l’arbre étiqueté.

16

55] pour les preuves. Soit (τ, (�u)u∈τ) un arbre étiqueté. Rappelons que τ est un arbre pla-

naire, c’est à dire qu’il est muni d’une racine et d’une orientation. On considère alors un plon-

gement de τ dans le plan (avec des arêtes rectilignes pour simplifier) qui respecte l’orientation

de τ. Un coin de ce plongement est un secteur angulaire formé par deux arêtes adjacentes.

On peut alors vérifier que ce plongement a 2n coins si τ a n arêtes. On définit alors le contour
du plongement de τ dans le sens des aiguilles d’un montre : on imagine que notre plonge-

ment est un mur et on le parcourt en plaquant sa main gauche sur le mur et en avançant.

Ce contour muni l’ensemble des coins d’une structure cyclique. La règle pour construire la

quadrangulation associée à (τ, (�u)u∈τ) est alors la suivante :

Chaque coin associé à un sommet d’étiquette i est relié au premier coin dans la

suite du contour d’étiquette i − 1.

Attention toutefois, cette règle ne peut être appliquée aux coins associés aux sommets d’éti-

quette minimale. Tous ces coins sont alors reliés à un sommet supplémentaire, placé en dehors

du plongement de τ que l’on note ρ. Il est possible de dessiner toutes ces arêtes sans croise-

ment, et après effacement du plongement de τ, le résultat est un plongement d’une quadran-

gulation q à n faces. Le sommet distingué de q est ρ et l’arête racine est l’arête emergeant du

coin racine de τ, son orientation étant prescrite par le signe {+,−} donné en plus de l’arbre

étiqueté.
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FIGURE 1.3 –

Bijection non pointée

Il existe une autre version de la bijection présentée qui établit une correspondance entre

les quadrangulations enracinées à n faces (non pointées) et les arbres étiquetés à n arêtes

vérifiant la propriété supplémentaire que les étiquettes doivent rester positives. Pour avoir

cette bijection il suffit de spécialiser la bijection précédente au cas où le point distingué de la

quadrangulation coincide avec l’origine de l’arête racine. xxx expliquer mieux et donner

1

22

1

2

0

2

1

2

3

Figure 1.3 – Un arbre étiqueté et la quadrangulation associée. Notez que les étiquettes
décalées par −min �+1 correspondent bien aux distances dans la carte depuis le sommet
distingué.

Bijection non pointée

Il existe une autre version de la bijection Cori-Vauquelin-Schaeffer qui établit une
correspondance entre les quadrangulations enracinées à n faces (non pointées), et les
arbres étiquetés à n arêtes vérifiant la propriété supplémentaire que les étiquettes
doivent rester positives. Pour déduire cette bijection de la précédente, on se restreint au
cas où le point distingué de la quadrangulation coïncide avec l’origine de l’arête racine.
D’après la formule (1.3) les étiquettes sont automatiquement positives et il n’y a plus
besoin d’un signe pour spécifier l’orientation de l’arête racine, voir [127] pour plus de
détails.

L’avantage de cette bijection est que les étiquettes de l’arbre correspondent main-
tenant à la distance dans la carte (moins un) depuis l’origine de l’arête racine, et non
depuis un sommet distingué. L’inconvénient est que les arbres mis en jeu ne sont plus
uniformes sur les arbres plans, mais pondérés par leur structure [42, 101].
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Extensions

Bouttier, Di Francesco et Guitter ont étendu dans
[32] la bijection précédente à toutes les cartes pla-
naires sans restriction sur les degrés des faces. Les
arbres étiquetés mis en jeu ont dans ce cas quatre
types de sommets jouant des rôles différents, mais

le principe de la bijection est grosso-modo le même. Il est à noter toutefois que le cas
des cartes biparties (où toutes les faces sont de degré pair) est plus maniable que le cas
général, voir [109].

Ces bijections ont également été généralisées par Chapuy, Marcus et Schaeffer au
cas des quadrangulations biparties de genre supérieur [41]. Les objets étiquetés ne sont
plus des arbres mais des cartes à une face en genre g appelés g-arbres.

Plus récemment, Grégory Miermont a introduit dans [117] une bijection « multi-
pointée » entre, d’une part, les quadrangulations avec p points distingués et n faces, et
d’autre part, des cartes à p faces et n arêtes.

Ces bijections peuvent également être étendues à certaines quadrangulations infi-
nies du plan. Chassaing et Durhuus ont introduit dans [42] une généralisation de la
bijection non pointée pour construire l’UIPQ. La base du travail [49] consiste en une
généralisation de la bijection pointée dans le cas de l’UIPQ. Voir 1.3.6.

1.2.2 Rayon et profil

L’étude des limites d’échelle des cartes planaires a été lancée par l’article
fondateur de Philippe Chassaing et Gilles Schaeffer : Random Planar Lat-
tices and Integrated SuperBrownian Excursion [43]. Rappelons que Qn est
une quadrangulation enracinée uniforme à n faces. Notons v0 le sommet ori-

gine de l’arête racine de Qn. Le rayon Rn de Qn est par définition Rn = maxv d
Qn
gr (v0, v).

Théorème ([43, Corollary 3]). On a la convergence en distribution

n−1/4Rn
(d)−−−→
n→∞

�
8

9

�
1/4

∆, (1.4)

où ∆ = maxZ −minZ, et Z est la tête du serpent brownien de Le Gall dirigé par une
excursion brownienne normalisée.

Chassaing & Schaeffer prouvent également que le profil vu de v0, c’est-à-dire la
mesure aléatoire sur R+ qui rend compte des distances à v0 des sommets de la carte,
converge, après renormalisation, vers la mesure aléatoire d’occupation de la tête du
serpent (ISE), translatée afin que son minimum soit 0.
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Introduisons succinctement ces objets qui nous seront utiles ultérieurement. Dans
la suite (et)0�t�1 désigne une excursion brownienne normalisée. Pour s, t ∈ [0, 1] on
note

de(s, t) = e(s) + e(t)− 2 min
[s∧t,s∨t]

e.

Le quotient de [0, 1] par la pseudo-distance de est noté (Te,de), c’est
le R-arbre codé par e, voir [97]. L’arbre aléatoire Te n’est autre que le
« Continuum Random Tree » (CRT) introduit et étudié par David Aldous
dans les années 90 dans [2, 3, 4]. Conditionnellement à e, on considère un

mouvement brownien indexé par l’arbre Te, c’est-à-dire un processus gaussien centré
(Za)a∈Te dont la covariance est prescrite par

E
�
(Za − Zb)2

�
= de(a, b),

pour tous a, b ∈ Te. Ce processus (en fait sa version indexée par [0, 1]) est le serpent
brownien dirigé par l’excursion e. Nous renvoyons le lecteur intéressé vers [96] pour
plus de détails.

Tentons d’expliquer intuitivement le théorème ci-dessus. Choisissons Qn une quadran-
gulation enracinée et pointée 3 uniforme à n faces, et notons (Tn, (�nu)u∈Tn) son arbre
étiqueté associé par la bijection CVS. Alors l’arbre Tn est uniforme parmi les arbres
planaires à n arêtes. Son étiquetage est également uniforme, c’est-à-dire que condition-
nellement à Tn, les variations des étiquettes au travers de chaque arête sont indépen-
dantes et uniformes sur {−1, 0,+1}. Le rayon de la carte Qn vu de ρn peut s’exprimer
grâce à (1.3) comme

R�n = max
v∈Qn

d
Qn
gr (ρn, v) = max �n −min �n + 1.

Aldous a montré [4] que les arbres Tn remormalisés par
√
n, c’est-à-dire en imaginant

que chaque arête a longueur n−1/2, convergent en distribution au sens de Gromov-
Hausdorff (voir Section 1.2.3) vers un multiple de l’arbre continu Te, voir aussi [97].

Puisque les étiquettes discrètes �n varient comme des marches aléatoires le long
de chaque branche de Tn, et comme la hauteur de Tn est de l’ordre de

√
n, il est

naturel de penser que le processus (n−1/4�nu)u∈Tn converge vers un multiple du mou-
vement brownien (Za)a∈Te , indexé par l’arbre Te. C’est effectivement le cas [43], ainsi
n−1/4

(max �n−min �n)→ κ∆ avec ∆ = maxZ−minZ quand n→∞, pour une bonne
constante κ > 0. On en déduit également n−1/4R�n → κ∆.
Notons toutefois que cette dernière convergence a lieu pour un rayon R�n vu du point
ρn ∈ Qn qui n’est pas le même que le rayon Rn défini depuis l’origine v0 de l’arête
racine de Qn, mais le résultat est le même. En un sens, le sommet distingué de Qn ou
le sommet origine de l’arête racine de Qn sont deux sommets typiques et le profil de la
carte vu de ces sommets a la même distribution asymptotique.

3. notez que dans le théorème on considère une quadrangulation Qn non pointée qui peut être
déduite de Qn après oubli du sommet distingué



✐
✐

“theseavec” — 2011/5/24 — 15:45 — page 19 — #19 ✐
✐

✐
✐

✐
✐

Introduction 19

1.2.3 Gromov-Hausdorff
Ces résultats sur le profil et le rayon des grandes quadrangulations aléatoires sug-

gèrent l’existence d’une limite continue. Dans [110], Marckert et Mokkadem construisent
à partir du couple (e, Z) une carte continue qu’ils nomment « the Brownian Map » et
montrent la convergence des quadrangulations Qn vers cet objet. Hélas, la topologie
considérée, définie en termes de fonctions de contours, n’est pas pratique du point de
vue métrique.

Il existe cependant une notion de convergence, la conver-
gence au sens de Gromov-Hausdorff, très utilisée par les géo-
mètres et qui capture beaucoup de propriétés métriques. Com-
mençons par rappeler la définition de la distance de Hausdorff.
Si A,B sont deux sous ensembles d’un espace métrique (E,d)

alors la distance de Hausdorff entre A et B est

d
E

H(A,B) = inf{ε > 0 , A ⊂ Bε et B ⊂ Aε},

où Xε = {y ∈ E , d(y,X) � ε} est le ε-voisinage de l’ensemble X. Si maintenant (F, δ)
et (F �, δ�) sont deux espaces métriques compacts abstraits, la distance de Gromov-
Hausdorff entre eux est

dGH

�
(F, δ), (F �, δ�)

�
= inf

�
d
E

H

�
φ(F ),ψ(F �)

��

où l’infimum est pris sur les tous les espaces métriques (E,d) et les plongements iso-
métriques φ : F → E et ψ : F � → E. Cette distance est effectivement une métrique sur
l’espace K des classes d’isométrie d’espaces métriques compacts [40, Chapitre 7]. En
outre (K,dGH) est un espace polonais. La convergence au sens de Gromov-Hausdorff a
depuis été beaucoup utilisée en probabilités, notamment pour les convergences d’arbres
aléatoires voir [1, 60, 64].

Si Qn est une quadrangulation enracinée uniforme à n faces, l’ensemble de ses
sommets V(Qn) muni de la distance d

Qn
gr (., .) est un espace métrique compact. Après

renormalisation par n−1/4, le but est d’obtenir la convergence suivante

BUT :
�

V(Qn), n
−1/4

d
Qn
gr

�
(d)−−−→
n→∞

(M,D), (1.5)

en distribution au sens de la distance de Gromov-Hausdorff.

Cette approche a pour la première fois été proposée par Oded Schramm
dans le cas des triangulations [129]. Les résultats les plus significatifs dans
la direction de (1.5) ont été obtenus par Le Gall.
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Théorème ([98, 102]). De toute suite d’entiers tendant vers +∞, on peut extraire une
suite (nk)k�1 le long de laquelle la convergence (1.5) a lieu. L’espace métrique compact
aléatoire (M,D) peut alors dépendre de la sous-suite considérée, mais

– (M,D) est presque sûrement de dimension de Hausdorff 4,
– (M,D) est presque sûrement homéomorphe à la sphère S2.

En d’autres termes, la convergence (1.5) n’est pas encore établie, mais un résultat de
compacité [98] montre qu’il existe des limites (M,D) le long de certaines sous-suites.
De plus ces espaces aléatoires vérifient des propriétés communes, comme celles exposées
dans le théorème précédent, voir également [48, 99, 117]. Pour prouver la convergence
(1.5), il suffirait d’établir des caractéristiques suffisantes sur les limites (M,D) pour
identifier leur loi.

! ! ! Dernières nouvelles ! ! !

Après la rédaction de cette (introduction de) thèse, Jean-François Le Gall et
Grégory Miermont ont indépendemment prouvé la convergence (1.5), voir

[100, 118]. Les preuves sont différentes mais utilisent toutes deux des
propriétés très fines des géodésiques dans la carte brownienne [99]. La

convergence vers la carte brownienne est également valide dans une bien plus
grande généralité que le cas des quadrangulations (voir [100]) et inclut par
exemple celui des triangulations (validation de la conjecture de Schramm).

Extensions

Les convergences du rayon et du profil établies dans [43] ont depuis été généralisées
à de nombreux modèles de cartes planaires comprenant par exemple les triangula-
tions [109, 119]. Les preuves reposent sur des principes d’invariance pour des arbres de
Galton-Watson multi-types étiquetés et sur l’utilisation des bijections étendues de [32].

Les résultats de Le Gall [98], et ceux de Le Gall et Paulin [102], ont également été
récemment généralisés dans le cas des quadrangulations biparties en genre supérieur
par Jérémie Bettinelli [27, 26].

1.2.4 Le cactus brownien (Chap. 3 ou [48])
Les résultats présentés dans cette section et détaillés dans le Chapitre 3
sont tirés de [48] et ont été obtenus en collaboration avec Jean-François
Le Gall et Grégory Miermont.

Présentation

« Le monde entier est un cactus » [62]

L’idée géométrique du cactus consiste à représenter une carte planaire pointée, en for-
çant les sommets à être à une hauteur qui correspond à leur distance au sommet pointé
(voir Fig. 1.4).
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Figure 1.4 – Une carte planaire pointée en ρ et sa représentation en « cactus »

On voit clairement une structure d’arbre émerger de cette représentation : imaginez
que l’on contracte tous les cycles horizontaux de la figure centrale. Plus formellement, si
G = (G, ρ) est un graphe pointé (non nécessairement planaire), on définit une pseudo-
distance sur V(G) par la formule

d
G
Cac(a, b) = d

G

gr(ρ, a) + d
G

gr(ρ, b)− 2 max
γ:a→b

d
G

gr(ρ, γ), (1.6)

où le maximum est pris sur tous les chemins γ reliant a à b dansG, et d
G

gr(ρ, γ) représente
la distance minimale entre un point du chemin γ et le point ρ. Le quotient de l’ensemble
V(G) par cette pseudo-distance est un espace métrique qui a une structure d’arbre
discret. Il est appelé cactus de G et est noté Cac(G). Notez que Cac(G) ne caractérise
pas G et dépend fortement du point de base ρ.

Le cactus brownien

Si Qn est une quadrangulation enracinée et pointée uniforme à n faces, on notera
Cac(Qn) le cactus du graphe de Qn pointé en le sommet distingué de la carte. Nous
avons établi le résultat suivant.

Théorème 2 ([48]).
On a la convergence en distribution au sens de Gromov-Hausdorff

n−1/4 · Cac(Qn)
(d)−−−→
n→∞

�
8

9

�
1/4

KAC, (1.7)

où KAC est un R-arbre aléatoire appelé cactus brownien.

Remarque : Malheureusement la convergence des cactus renormalisés as-
sociés à des grandes quadrangulations aléatoires ne permet pas d’en déduire
la convergence (1.5). Cependant, notre résultat est valable dans une bien
plus grande généralité [109, 114, 119] que le cadre des quadrangulations
présenté ici, voir [48] ou Chapitre 3.
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La preuve repose, bien entendu, sur des propriétés de la bijection CVS et de ses
extensions. Notons (Tn, (�nu)u∈Tn) l’arbre associé à Qn par la bijection CVS. Si a, b ∈
Qn\{ρn}, il est possible de « lire » approximativement la distance de cactus d

Qn
Cac

(a, b)
directement sur l’arbre étiqueté (Tn, (�nu)u∈Tn), sans avoir à reconstruire la carte Qn :

�����d
Qn
Cac

(a, b)−
�
�na + �nb − 2 min

[[a,b]]

�n
�
����� � 2,

où [[a, b]] est, avec l’identification des sommets de Qn\{ρn} avec ceux de Tn, la géo-
désique discrète entre a et b dans Tn. Cette propriété passe à la limite, et donne une
construction de l’arbre aléatoire KAC. On rappelle que (Te, (Za)a∈Te) est le CRT muni
de son étiquetage brownien défini en Section 1.2.2. Si a, b ∈ Te, on note également [[a, b]]
la géodésique dans Te entre a et b. La formule suivante définit une pseudo-distance sur
Te

dKAC(a, b) = Za + Zb − 2 min
c∈[[a,b]]

Zc, (1.8)

pour tout a, b ∈ Te. Le cactus brownien KAC est le quotient de Te pour la pseudo-
distance dKAC, il est muni de la distance quotient toujours notée dKAC.

Dimension de Hausdorff
Munis de la description du cactus brownien comme quotient du CRT par une rela-

tion d’équivalence basée sur son étiquetage brownien, il nous est maintenant possible
de faire des calculs reliés à sa dimension de Hausdorff. Le cactus KAC possède une
mesure aléatoire notée µ, qui provient de la projection de la mesure Leb[0, 1] sur l’arbre
brownien Te, puis sur KAC. Si BKAC(x, δ) est la boule dans le cactus brownien autour
de x et de rayon δ > 0 pour la distance dKAC on a les estimées suivantes :

Proposition 3 ([48]).
(i) On a

E
��

KAC

µ(dx)µ
�
BKAC(x, δ)

��
=

2
5/4 Γ(1/4)

3
√
π

δ3 + o(δ3),

quand δ → 0.
(ii) Pour tout ε > 0,

lim sup
δ→0

µ
�
BKAC(x, δ)

�

δ4−ε
= 0 , µ(dx) p.p., p.s.

En particulier, la seconde assertion de la proposition implique à l’aide de résultats
standards que la dimension de Hausdorff de (KAC,dKAC) est presque sûrement plus
grande que 4. On peut également montrer la borne supérieure associée 4, voir Chapitre
3 ou [48].

4. cette borne supérieure provient essentiellement du caractère 1/4 − ε Höldérien de la tête du
serpent brownien Z, pour tout ε > 0
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Figure 1.5 – Une grande quadrangulation aléatoire. Image réalisée par Jean-François
Marckert.

Cela ne manque pas de piquant ! Un phénomène inhabituel apparaît dans le cactus
brownien : si l’on fixe δ > 0, l’espérance du volume d’une boule typique de rayon δ
est de l’ordre de δ3, alors que dans le cas de la carte brownienne cette quantité est
de l’ordre de δ4 [98]. Ainsi, l’identification des points opérée dans le cactus fait grossir
l’espérance du volume d’une boule typique de rayon δ ; normal me-direz-vous...
En revanche, pour presque tout point x tiré selon µ(dx), le volume de BKAC(x, δ) est
asymptotiquement au plus de l’ordre de δ4−ε quand δ → 0, c’est le même ordre de
grandeur que dans le cas de la carte brownienne [98].
Ceci s’explique intuitivement : la carte brownienne est hérissée de pics 5 et un point
typique se trouve au sommet de l’un d’eux (voir Fig. 1.5). De plus, l’opération de passage
au cactus identifie de moins en moins de points à mesure que l’on zoome autour du
sommet de ce pic. Ainsi les volumes des boules microscopiques au voisinage de points
typiques sont approximativement les mêmes dans le cactus et dans la carte brownienne.

5. aïe aïe aïe, ouille !
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Cycle séparateur

Une autre propriété géométrique de la carte brownienne s’inspirant de la repré-
sentation en cactus est l’existence de cycles séparateurs. Présentons le problème sans
formalisme mais à l’aide d’un dessin. Imaginez une très grande quadrangulation enra-
cinée avec trois points distingués uniformes. Alors, asymptotiquement, il n’existe es-
sentiellement qu’un chemin de longueur minimale (dans la limite d’échelle) qui sépare
les deuxième et troisième points tout en passant par le premier. Ceci n’est pas du tout
évident et découle des résultats de Le Gall sur les géodésiques dans la carte brownienne
[99]. Voir Fig. 1.6.Application : Separating cycle Application : Separating cycle

Sample three points from
the mass measure (one is
the base point). Consider
a cycle of minimal length
passing through the ba-
sed point and separating
the two others. (unique,
thanks to a result of Le
Gall).

Application : Separating cycle

Figure 1.6 – Une grande quadrangulation avec trois points distingués. Le premier est
utilisé pour la représentation « en cactus » de la carte. Sur la deuxième et troisième
figure on voit le cycle minimal séparant et le découpage de la carte le long de ce cycle.

On peut caractériser ce cycle séparant et calculer la loi du couple des masses 6

(M1,M2) des deux composantes découpées par ce cycle.

Théorème 4 ([48]).
Le couple (M1,M2) suit une loi Gamma de paramètres (

1

4
, 1

4
), c’est-à-dire

E [f(M1,M2)] =
Γ(1/2)

Γ(1/4)2

�
1

0

dt
�
t(1− t)

�−3/4
f(t, 1− t),

pour toute fonction borélienne positive f sur R2
+.

Remarque : Dans le cas des quadrangulations, ce résultat a été obtenu
auparavant par J. Bouttier et E. Guitter [34], avec des méthodes différentes.

6. c’est-à-dire la fraction asymptotique des sommets
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1.3 Limite locale
Dans la partie précédente, nous avons étudié les limites d’échelle de quadrangula-

tions aléatoires. Cette partie se focalise sur les limites dites locales. Avec ce type de
convergence, on ne renormalise plus les cartes considérées et les objets limites sont des
cartes infinies. Ici aussi, nous nous en tiendrons aux quadrangulations pour faciliter
l’exposition.

1.3.1 Convergence

Notons Qf l’ensemble des quadrangulations finies enracinées. Soit q ∈ Qf . La boule
de rayon r dans q, notée Ball(q, r), est la carte enracinée formée par l’ensemble des
faces de q qui comportent un sommet à distance au plus r de l’origine de l’arête ra-
cine de q. Notez que Ball(q, r) n’est pas une quadrangulation en général : certaines
faces correspondent à des « trous », c’est-à-dire à un ensemble connexe de faces de
q\Ball(q, r).

Définition 5. La distance locale entre deux quadrangulations q, q� ∈ Qf est

dloc(q, q
�
) =

�
1 + sup

�
r � 0 : Ball(q, r) = Ball(q�, r)

� �−1
.

Il est facile de vérifier que dloc est bien une distance sur Qf , mais (Qf ,dloc) n’est
pas complet. Son complété est noté Q, et les éléments de Q\Qf sont appelés cartes
infinies. Une carte infinie q peut être décrite par la suite de ses boules qi = Ball(q, i)
qui possèdent la propriété de cohérence Ball(qi, j) = qj pour j � i.

On rappelle que Qn est une quadrangulation enracinée uniforme à n faces.

Théorème ([89]). On a la convergence en distribution au sens de dloc

Qn
(d)−−−→
n→∞

Q∞,

où Q∞ est une quadrangulation enracinée infinie aléatoire appelée la qua-
drangulation infinie uniforme du plan (UIPQ a).

a. pour Uniform Infinite Planar Quadrangulation

Un travail pionnier avait été réalisé auparavant par Omer Angel et Oded
Schramm [11]. Ils ont défini un objet analogue dans le cas des triangulations :
l’UIPT 7. Leur preuve reposait sur des formules énumératives exactes obte-
nues par Tutte dans le cas des triangulations. Bien qu’une approche similaire

soit possible dans le cas des quadrangulations, Maxim Krikun a utilisé des arguments
quelque peu différents pour définir l’UIPQ. Il est conjecturé que les propriétés à grande
échelle de l’UIPT ou de l’UIPQ sont les mêmes.

7. pour Uniform Infinite Planar Triangulation
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1.3.2 Petit Historique
L’UIPT et l’UIPQ ont été les objets de nombreuses recherches. Tentons de faire

l’état de l’art sur le sujet.

L’étude des limites locales de graphes planaires a été initiée par
l’article fondateur d’Itai Benjamini et Oded Schramm [21] que
nous détaillerons en Section 1.3.3 . La convergence locale des tri-
angulations uniformes du plan était une question laissée ouverte
dans cet article... I. Benjamini

en taste-andouille
Elle ne le resta pas longtemps : dans [11] Angel & Schramm définissent l’UIPT

comme la limite locale de grandes triangulations uniformes. Ils établissent également
les propriétés élémentaires de cet objet, en particulier ils montrent que l’UIPT n’a qu’un
seul bout et possède une propriété de Markov spatiale 8.

Dans [10], Omer Angel s’inspire du peeling 9 introduit par le physicien Watabiki
[146] pour explorer de façon markovienne l’UIPT. Il montre par exemple que le vo-
lume de la boule de rayon r � 0 autour de la racine dans l’UIPT croît comme r4,
à corrections logarithmiques près. L’exposant 4 qui intervient ici est très intimement
lié à l’exposant 1/4 intervenant dans le théorème de Chassaing et Schaeffer 10. Cette
technique a également été utilisée par le même auteur pour prouver que le paramètre
critique de la percolation par site sur l’UIPT est pc = 1/2.

Figure 1.7 – Illustration de la technique de peeling. Images tirées de [146].

Poursuivant la voie ouverte dans [11], Maxim Krikun définit dans [89] l’UIPQ comme
la limite locale des grandes quadrangulations uniformes. Son approche, bien que simi-
laire à celle de [11], diffère sur quelques points. Par exemple, la définition de l’UIPQ
passe par l’étude de son « squelette » (il étudia auparavant le squelette de l’UIPT dans

8. grosso-modo, étant donné un voisinage de l’origine dans l’UIPT, conditionnellement à la taille
des frontières de ce voisinage, le reste de la triangulation est indépendant

9. épluchage
10. La bijection CVS et la technique du peeling sont, à l’heure actuelle, les deux seuls moyens pour

prouver que les distances dans une quadrangulation de taille n sont de l’ordre de n1/4.
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[91]). Krikun est également l’auteur de l’article [90] dans lequel il établit une propriété
des distances dans l’UIPQ « vue de l’infini » et propose quelques conjectures qui moti-
veront notre approche [49].

Parallèlement, Chassaing et Durhuus [42] ont introduit une quadran-
gulation infinie aléatoire a priori différente de l’UIPQ. Pour ce faire, ils
prouvent d’abord que la distribution sur les arbres étiquetés positifs à n
arêtes, associée à la probabilité uniforme sur Qn par la bijection CVS non
pointée vue en Section 1.2.1 admet une limite locale (en un sens similaire à

dloc) quand n → ∞. Ils définissent ainsi un arbre aléatoire infini avec étiquettes posi-
tives et étendent la bijection CVS à cet objet pour créer une quadrangulation infinie.
Ils établissent que l’espérance du volume de la boule de rayon r autour de la racine
dans cette quadrangulation est de l’ordre de r4 quand r est grand.

Plus tard, Laurent Ménard [111] montre que l’objet définit par Chassaing et Du-
rhuus est effectivement le même que l’UIPQ introduite par Krikun. Enfin, récemment,
Le Gall et Ménard ont précisé les résultats sur le volume des boules (convergence en
loi après renormalisation) en étudiant des limites d’échelle de l’UIPQ via l’approche de
Chassaing et Durhuus.

Une irréductible question...

Beaucoup d’informations géométriques sont disponibles sur l’UIPQ ou son alter-ego
l’UIPT. Néanmoins une question essentielle reste encore et toujours ouverte :

Question 1. La marche aléatoire simple sur l’UIPQ (ou UIPT) est-elle p.s. transiente
ou récurrente ?

Il a été conjecturé dans [11] que l’UIPT est presque sûrement récurrente. Cette
conjecture est fortement supportée par le résultat [21], le très récent travail [72] et le
fait que l’UIPQ est presque sûrement Liouville [17] (ou Section 1.3.5 et Chapitre 5).
Néanmoins, toutes ces techniques buttent sur un écueil pour prouver la récurrence :
les degrés des sommets ne sont pas uniformément bornés dans l’UIPT/Q.

1.3.3 L’approche de Benjamini et Schramm
Nous décrivons ici informellement le résultat principal de [21] avec quelques modi-

fications pour alléger notre présentation. Commençons par une notion centrale :

Définition 6. Soit M une carte planaire enracinée presque sûrement finie. Condi-
tionnellement à M , soit �E une arête orientée choisie uniformément parmi les arêtes
orientées de M . Si la carte M̃ obtenue en ré-enracinantM en �E a la même distribution
que M , on dit que M est uniformément enracinée.

Par exemple, une quadrangulation enracinée à n faces uniforme est uniformément
enracinée. Le théorème suivant est une légère adaptation du théorème principal de [21].
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Théorème. Soit (Mn)n�0 une suite de cartes planaires aléatoires uniformément enra-
cinées. On suppose que

(i) il existe un entier d > 0, tel que pour tout n � 0, le degré maximal d’un sommet
de Mn est borné par d,

(ii) les cartes Mn n’ont pas de boucles ni d’arêtes multiples,
(iii) la suite (Mn)n�0 converge en loi pour dloc vers une carte aléatoire enracinée infinie
M∞.

Alors M∞ est presque sûrement récurrente pour la marche aléatoire simple.

La raison principale pour laquelle ce théorème ne peut pas s’appliquer (ou s’adapter)
à l’UIPQ/T, est l’absence de la condition (i) dans le cas des quadrangulations/triangulations
uniformes. La preuve de ce théorème est très originale et mérite quelques explications.
À son cœur réside la théorie des empilements de cercles.

Empilement de cercles

Un empilement de cercles P est une collection de cercles du plan C dont les disques
sont d’intérieurs disjoints. On associe à P un graphe, appelé graphe de tangence, dont
les sommets sont les centres des cercles de P et les arêtes correspondent à des cercles
tangents, voir Fig. 1.8.

Figure 1.8 – Un graphe planaire et sa représentation en tant que graphe de tangence
d’un empilement de cercles.

Le graphe obtenu est clairement planaire et n’a pas de boucles ni d’arêtes multiples
(le graphe est dit simple). La réciproque est beaucoup plus surprenante et a été prouvée
par Koebe puis redécouverte par Thurston comme un corollaire des travaux d’Andreev.

Théorème (Koebe-Andreev-Thurston). Tout graphe planaire fini simple peut être re-
présenté comme graphe de tangence d’un empilement de cercles 11.

On en déduit par exemple que tout graphe planaire simple peut être dessiné dans
le plan avec des arêtes droites (théorème de Fáry). Nous renvoyons le lecteur intéressé

11. Si de plus le graphe est une triangulation, alors l’empilement de cercles est unique à transformation
de Möbius près !
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par ce magnifique sujet à l’excellent article de survol [126] ou au livre [137]. Le théo-
rème précédent peut être généralisé à des graphes planaires infinis où une dichotomie
apparaît. Le support d’un empilement P est l’union des disques associés aux cercles de
P et des interstices entre ces disques.

Théorème ([77]). Soit T une triangulation infinie du plan. Alors, de deux choses
l’une :

1. soit il existe un empilement de cercles P de support D dont le graphe de tangence
est T ,

2. soit il existe un empilement de cercles P de support C dont le graphe de tangence
est T .

Dans le premier cas, on dit que la triangulation T est hyperbolique, et parabo-
lique dans le second. À beaucoup d’égards, ce théorème peut être considéré comme
un analogue du théorème d’uniformisation pour les surfaces de Riemann. Par exemple,
sous l’hypothèse d’une borne uniforme sur les degrés des sommets du graphe, parabo-
licité est équivalente à récurrence pour la marche aléatoire simple 12. Ce lien profond
[77] entre empilements de cercles et récurrence/transience de la marche aléatoire est la
charnière de [21] : il « suffit » de montrer que des limites au sens de dloc de cartes pla-
naires uniformément enracinées sont paraboliques. Ceci est loin d’être trivial et repose
essentiellement sur la notion d’enracinement uniforme [21, Lemma 2.3].

1.3.4 Dimension supérieure (Chap. 4 ou [16])
Les résultats présentés dans cette section et détaillés dans le Chapitre 4

sont tirés de [16] et ont été obtenus en collaboration avec Itai Benjamini.
Les graphes planaires sont exceptionnels 13 et la théorie analogue en dimension

plus grande que trois est un sujet de recherche actuellement grandement ouvert. Par
exemple, un des problèmes majeur consiste à prouver que le nombre de tétraèdran-
gulations 3D (un simplexe de dimension trois homéomorphe à la sphère S3 de R4,
dont tous les facettes sont des triangles et les simplexes de dimension trois des tétra-
èdres) à n arêtes croît au plus exponentiellement avec n, voir [14]. Cependant nous
avons réussi à généraliser le résultat de [21] aux dimensions supérieures. Le théorème
de Koebe−Andreev−Thurston n’étant disponible que dans le cas planaire, nous avons
dû nous restreindre à des graphes dont on sait qu’il existe une représentation comme
graphe de tangence d’un empilement de sphères en dimension d.

En outre, la connexion qui existe en dimension deux entre empilements de cercles
et marches aléatoires se fait au travers de la théorie du potentiel �2 sur le graphe. La
généralisation de cette théorie en dimension supérieure, la théorie du potentiel �d, n’a
pas d’interprétation probabiliste aussi claire. Notre résultat principal n’est donc pas

12. C’est ici que l’hypothèse de degrés bornés devient essentielle : il existe des triangulations para-
boliques mais transientes pour la marche aléatoire simple [77, Theorem 8.2].

13. Voir par exemple l’article “Why are planar graphs so exceptional ?” sur mathoverflow :
http ://mathoverflow.net/questions/7114/why-are-planar-graphs-so-exceptional
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facile à exprimer sans introduire de notations et nous préfèrerons plutôt donner un de
ses corollaires géométriques :
Corollaire 7 ([16]).
Soit G le graphe de tangence d’un empilement de sphères M -uniforme dans Rd. On
suppose que G est infini, on a alors l’alternative suivante :

– soit G a une constante de Cheeger positive i.e.

inf
A⊂G

� |∂A|
|A| , A ⊂ G , |A| <∞

�
> 0

– soit, pour tout ε > 0, il existe des sous-graphes Wde G de taille arbitrairement
grande tels que

|∂W | � |W | d−1
d +ε.

La condition M -uniforme est une condition locale de l’empilement de sphères, qui
stipule que deux sphères tangentes ont un rapport de rayons plus petit que M > 0.

1.3.5 Invariance de long de la marche aléatoire (Chap. 5 ou [17])
Les résultats présentés dans cette section et détaillés dans le Chapitre 5

sont tirés de [17] et ont été obtenus en collaboration avec Itai Benjamini.
Dans cette partie, la planarité ne joue plus aucun rôle. Les objets que nous considé-

rerons seront des graphes enracinés (avec une arête orientée distinguée). En particulier,
on étend (aisément) les Définitions 5 et 6 au cas des graphes enracinés. On conservera
la notation dloc pour la métrique de la convergence locale de graphes enracinés.

Graphes Stationnaires

Soit G un graphe aléatoire enraciné. Conditionnellement à G, on considère une
marche aléatoire simple démarrant de l’extrémité de l’arête racine, et on note ( �Ei)i�1

les arêtes orientées traversées par la marche aléatoire 14.

Définition 8. Un graphe aléatoire enraciné G est dit stationnaire si pour tout i � 1,
le graphe G re-enraciné en �Ei a la même loi que le graphe G.

En particulier, tout graphe transitif enraciné en n’importe quelle arête orientée est
stationnaire. Un exemple un peu moins trivial est donné par les graphes aléatoires
uniformément enracinés. Il est également facile de voir que si (Gn) est une suite de
graphes aléatoires enracinés et stationnaires, convergeant vers G pour dloc, alors G
est également stationnaire. En particulier, le graphe enraciné obtenu en oubliant la
structure planaire de l’UIPQ ou de l’UIPT est stationnaire. C’est une propriété clé de
l’UIPT/Q qui a déjà été utilisée à maintes reprises [11, 49, 90].

14. on imagine que la marche aléatoire traverse les arêtes du graphe, car on rappelle que les graphes
peuvent avoir des arêtes multiples et des boucles
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Théorème 9 ([17]).
Soit G un graphe aléatoire stationnaire de croissance sous-exponentielle, c’est-à-dire,

n−1E [log (# Ball(G,n))] −−−→
n→∞

0,

où # Ball(G, r) est le nombre de sommets à distance plus petite que r de l’origine de
la racine dans G. Alors G est presque sûrement Liouville.

On rappelle qu’un graphe est dit Liouville s’il n’admet pas de fonction harmonique
bornée non-constante. La preuve repose sur l’utilisation de la notion d’entropie de
la marche aléatoire [13, 83]. Le théorème précédent est très robuste et permet, par
exemple, de prouver le corollaire suivant.

Corollaire 10 ([17]).
L’UIPQ est presque sûrement Liouville.

Remarque : On peut se demander si l’ajout de la planarité du graphe dans
les hypothèses du Théorème 9 permet de prouver la récurrence du graphe
aléatoire stationnaire ? Il n’en est rien et nous construisons dans [17] un
exemple de graphe stationnaire, planaire, de croissance sous-exponentielle
mais transient 15. Ce graphe n’est bien entendu pas de degré borné [21].

Graphes réversibles

Un graphe aléatoire enraciné G est dit réversible si il est stationnaire et si le graphe
Gobtenu à partir de G en retournant l’arête racine a la même loi que G. Il existe des

graphes stationnaires mais non réversibles, le plus connu est probablement le graphe
du grand-père, voir Fig. 1.9

Figure 1.9 – Le graphe du grand-père est obtenu
de la façon suivante. On démarre avec un arbre
ternaire complet (lignes pleines) puis l’on choisit
une branche infinie donnant une direction «∞ »
au graphe ; on ajoute ensuite toutes les arêtes
entre petits-fils et grand-pères à l’arbre (lignes
pointillées). Pour l’enraciner de façon aléatoire, on
commence par choisir un point (le graphe est tran-
sitif) puis une arête orientée uniforme parmi les 8

arêtes pointant depuis ce sommet. Avec probabi-
lité 3/4 l’arête orientée s’éloigne de l’∞, donc le
graphe n’est pas réversible.

Le graphe du grand-père est à croissance exponentielle. Nous avons montré que cela
est nécessaire pour avoir un graphe non-réversible :

15. Merci à Omer Angel pour la discussion qui a conduit à ce contre-exemple !
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Théorème 11 ([17]).
Soit G un graphe aléatoire enraciné stationnaire de degré presque sûrement borné et
de croissance sous-exponentielle (au sens du théorème précédent) alors G est également
réversible.

La notion de graphe stationnaire (et réversible) est reliée à beaucoup de concepts,
comme la théorie ergodique [54], le « Mass−Transport−Principle » [7, 18] ou les rela-
tions d’équivalences mesurées discrètes [122]. Par exemple, pour prouver le théorème
précédent nous avons emprunté et ré-interprété une notion très connue dans la théorie
des relations d’équivalence mesurées : le cocycle de Radon-Nikodym.

1.3.6 L’UIPQ vue de l’infini (Chap. 6 ou [49])
Les résultats présentés dans cette section et détaillés dans le Chapitre 6 sont
tirés de [49] et ont été obtenus en collaboration avec Laurent Ménard et
Grégory Miermont.
À lire avant utilisation : Le travail [49] est encore en cours. Sa forme n’est donc
pas définitive. Nous avons tout de même décidé de l’intégrer dans ce manuscrit
comme preuve que les différentes théories présentées dans cette introduction
(limite d’échelle, limite locale, graphe stationnaire) peuvent être mêlées dans
l’étude d’un seul et même objet : l’UIPQ.

Motivés par les conjectures de Krikun [90], nous avons étendu la bijection CVS
pointée présentée en Section 1.2.1 au cas de l’UIPQ. Par rapport au travail effectué
par Chassaing et Durhuus [42], nous avons choisi de travailler avec des étiquettes non
conditionnées à rester positives. Décrivons la construction.

On note T∞ l’arbre de Galton-Watson critique de loi de reproduction
géométrique, conditionné à survivre. Cet objet a pour la première fois été
introduit par Harry Kesten dans [85]. Brièvement, T∞ est un arbre infini
plan, obtenu à partir d’une colonne vertébrale à laquelle on accroche de part
et d’autre des arbres de Galton-Watson indépendants de loi de reproduction

géométrique de paramètre 1/2.

GW GW GW GW GW GW

GW GW GW GW GW GW

racine

Figure 1.10 – Une représentation de l’arbre T∞.

Conditionnellement à T∞ on considère un étiquetage aléatoire

� : T∞ −→ Z,
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obtenu en spécifiant l’étiquette de la racine �(∅) = 0, et tel que les différences d’éti-
quettes au travers chaque arête de T∞ sont indépendantes et de loi uniforme sur
{−1, 0,+1}. On étend ensuite la construction de la Section 1.2.1 à l’arbre étiqueté
(T∞, �) de manière évidente : chaque coin d’étiquette i est relié au premier coin d’éti-
quette i − 1 rencontré dans la suite du contour de T∞ dans le sens des aiguilles d’une
montre. La carte planaire aléatoire Q∞ obtenue par cette procédure est une quadrangu-
lation. Elle est enracinée en l’arête émanant du coin racine de l’arbre T∞, son orientation
étant donnée par une variable aléatoire de Bernoulli indépendante de (T∞, �).

0

1

1

0

0 -1

-2 -1

-1

0

0 0 -1

-2

-3

0 1

1

0

-1

∞

Figure 1.11 – Extension de la construction de CVS : on relie (arêtes pleines) chaque
coin à son successeur dans le contour de l’arbre infini (en pointillé).

Théorème 12 ([49]).
La quadrangulation Q∞ construite ci-dessus a la même loi que l’UIPQ. De plus les
étiquettes (�(u))u∈T∞ peuvent p.s. être retrouvées, à constante additive près, à partir de
la quadrangulation par la formule 16

�(u)− �(v) = lim
z→∞

�
d
Q∞
gr (z, u)− d

Q∞
gr (z, v)

�
, (1.9)

où z →∞ signifie que la distance entre z et la racine de Q∞ tend vers +∞.

Remarque : Ce théorème donne donc une troisième construction de la
quadrangulation infinie uniforme après la construction originale de Krikun
[89] et celle de Chassaing & Durhuus [42, 111].

16. en identifiant les sommets de la quadrangulation avec ceux de T∞.
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Géodésiques dans l’UIPQ

Le fait que le membre de droite de (1.9) admette presque sûrement une limite a été
démontré par Krikun [90]. Notre preuve est disjointe et repose sur un phénomène de
coalescence des géodésiques, réminiscent du travail de Le Gall sur les géodésiques dans
la carte brownienne [99].

Théorème 13 ([49]).
Presque sûrement, pour tout sommet u ∈ Q∞ , il existe une suite de sommets (P u

1
, P u

2
, . . .)

telle que toute géodésique infinie partant de u passe par P u
1
, P u

2
, . . ..

u Pu
1 Pu

2 Pu
3

Figure 1.12 – L’ensemble des géodésiques émanant d’un point dans l’UIPQ ressemble
à un chapelet de saucisses.

Symétrie

La formule (1.9) montre que l’étiquetage �, a priori hérité de la construction à
partir de (T∞, �), peut être retrouvé, modulo une constante additive, à partir de la
seule quadrangulation Q∞ sans la donnée de son arête racine. Cet étiquetage de Q∞,
vu à constante additive près, est suffisant pour reconstruire l’arbre T∞ : c’est une simple
extension de la construction inverse de Schaeffer, voir par exemple [43]. Ainsi, l’arbre
T∞ est une fonction mesurable de Q∞ qui ne dépend pas de l’arête racine de Q∞. Voici
un corollaire issu de ces remarques et de la stationnarité de l’UIPQ :

Corollaire 14 ([49]).
Soit (Xn)n�0 la suite de sommets visités par la marche aléatoire simple sur Q∞ démar-
rée en l’extrémité de l’arête racine. Alors le processus (�(Xn))n�0 est p.s. récurrent.

Relation avec la carte brownienne

L’utilisation d’étiquettes non-conditionnées permet de faire des calculs très facile-
ment sur l’arbre (T∞, �). Si τ est un arbre planaire et h ∈ {0, 1, . . .}, notons [τ ]h le sous
arbre de τ formé par les h premières générations. Si Tn est un arbre plan uniforme à n
arêtes et hn est une suite d’entiers telle que hn = o(

√
n), il est possible, à l’aide de cal-

culs explicites élémentaires, de montrer que la distance en variation totale entre [T∞]hn

et [Tn]hn tend vers 0 quand n→∞. Voici un corollaire en termes de quadrangulations.
Rappelons que Ball(q, r) représente la boule de rayon r autour de la racine dans une
quadrangulation enracinée q, et Qn est une quadrangulation enracinée uniforme à n
faces.
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Corollaire 15 ([49]).
Soit (rn)n�0 une suite d’entiers telle que rn = o(n1/4

). Alors la distance en variation
totale entre Ball(Q∞, rn) et Ball(Qn, rn) tend vers 0 quand n→∞.

Ce « principe de comparaison » entre les grandes quadrangulations uniformes et
l’UIPQ permet de transformer des informations acquises sur les limites d’échelle de
quadrangulations uniformes en propriétés asymptotiques sur l’UIPQ. Par exemple, le
théorème d’homéomorphisme de Le Gall & Paulin [102] nous a permis de résoudre une
conjecture de Krikun [89] sur les cycles séparants dans l’UIPQ, voir Chapitre 6 et [49].
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Racine de 17 moins 3 sur 2.

2.1 Théorie des fragmentations
2.1.1 Présentation

La théorie des fragmentations, comme son nom l’indique, est une modélisation ma-
thématique du comportement d’une particule qui se morcelle. Nous l’utiliserons ici
pour comprendre certains modèles combinatoires où une fragmentation (plus ou moins
évidente) intervient. Nous nous contenterons en particulier de la théorie des « frag-
mentations de masses, binaires, et de mesure de dislocation finie ». Nous conseillons la
lecture de l’excellent ouvrage [24] à tous ceux qui veulent en savoir plus.

On note S↓ l’ensemble des suites décroissantes de réels positifs dont la somme est
plus petite que 1,

S↓ =

�
s = (si)i�1 : s1 � s2 � . . . � 0 :

�
si � 1

�
.

Dans toute la suite, ν est une mesure de probabilité sur S↓ et α ∈ R+. On construit un
processus markovien F à valeurs dans S↓ de la manière suivante. On démarre avec une
particule de masse 1 que l’on représente comme (1, 0, 0, . . .). Après un temps exponentiel
de paramètre 1

α
= 1, on scinde la particule initiale en un nuage de particules de

masse s1, s2, . . . avec probabilité ν(ds). Chaque particule vit alors indépendamment
des autres et subit le même sort que la particule initiale à un changement de temps
près : une particule de masse m vit un temps exponentiel de paramètre mα avant de se
fragmenter en particules de masses m ·s1,m ·s2, . . . avec probabilité ν(ds). Le processus
de fragmentation F (t) au temps t est le ré-arrangement décroissant des masses des
particules présentes au temps t. Il est appelé processus de fragmentation autosimilaire
de paramètre α et de mesure de dislocation ν.

Si la mesure de dislocation vérifie ν({s :
�
si = 1}) = 1, alors la masse totale des

particules est conservée, dans ce cas ν est dit conservative. Elle est dissipative dans le
cas contraire.

36
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2.1.2 Martingale Malthusienne

Dans le cas conservatif, la masse totale des particules est conservée. Il
est également possible, dans le cas dissipatif, d’avoir une quantité stochasti-
quement conservée : c’est la somme des masses des particules à une certaine
puissance β∗ appelé exposant malthusien 1 de la fragmentation.

Dans la suite nous nous intéresserons uniquement au cas où
– α � 0, les particules les plus grosses se fragmentent le plus vite,
– ν({s : 0 < s1 < 1}) = 1, il n’y a pas de fragmentation triviale,
– ν({s : s2 > 0}) > 0, il y a création d’au moins deux particules avec probabilité

positive ...
– ν({s : s3 = 0}) = 1, ... mais au plus deux,
– il existe un a > 0 tel que

�
dν(s) s−a

2
<∞.

Avec ces hypothèses sur ν, il est facile de voir qu’il existe un unique β∗ ∈ (0, 1] appelé
exposant malthusien de ν tel que

�

S↓
dν(s)

�
sβ
∗

1
+ sβ

∗

2

�
= 1,

où l’on pose par convention 0
0

= 0. Il est aisé de vérifier que si l’on note F (t) =

(s1(t), s2(t), . . .), alors le processus

Mt =

∞�

i=1

si(t)
β∗ (2.1)

est une martingale positive, qui converge presque sûrement vers sa valeur terminale
notéeM∞. Cette quantité est d’un grand intérêt comme le montre le théorème suivant.

Théorème ([25]). Notons F (t) = (s1(t), s2(t), . . .), on a pour tout β � 0

t
β−β∗
α

∞�

i=1

si(t)
β L2
−−−→
t→∞

Kν(α,β) ·M∞, (2.2)

où Kν(α,β) est une constante dépendant de α,β et ν, et M∞ est la
valeur terminale de la martingale introduite précédemment.

J. Bertoin (gauche)
A. Gnedin (droite)

En particulier, si l’on applique le théorème précédent avec β = 0, on voit que le
nombre de particules dans la fragmentation F à l’instant t est approximativement tβ∗/α,
et qu’une fois renormalisé par ce facteur, il converge au sens L2 vers un multiple de
M∞. C’est ce corollaire que nous avons utilisé dans les deux modèles décrits dans les
sections suivantes.

1. Malthus a dit : “The power of population is indefinitely greater than the power in the earth to
produce subsistence for man".
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2.2 Triangulations récursives (Chap. 7 ou [47])
Les résultats présentés dans cette section et détaillés dans le Chapitre 7

sont tirés de [47] et ont été obtenus en collaboration avec Jean-François
Le Gall.

Dans cette partie, β∗ =

√
17− 3

2
.

Poursuivant l’approche d’Aldous [5, 6], nous avons étudié des triangulations infinies
du disque D qui apparaissent comme limite de différents modèles de triangulations du
n-gone discret. Au lieu d’étudier des triangulations uniformes [5, 6] qui sont à la limite
très intimement au CRT, nous nous sommes concentré sur des modèles de triangulations
dites récursives qui exhibent un tout autre comportement. Décrivons un de ces modèles
pour présenter nos résultats.

On considère une suite U1, V1, U2, V2, . . . de variables aléatoires indépendantes et
identiquement distribuées sur le cercle S1. On construit ensuite par récurrence une
suite de fermés L1, L2, . . . du disque fermé D. On définit pour commencer L1 = [U1V1]

la corde (euclidienne) d’extrémités U1 et V1. Pour n � 2 on distingue deux cas. Soit la
corde [UnVn] n’intersecte pas Ln−1 et dans ce cas on pose Ln = Ln−1 ∪ [UnVn], sinon
on pose Ln = Ln−1. On vérifie aisément que Ln est une union disjointe de cordes.

Figure 2.1 – Une illustration du processus (Ln)n�1. On a dessiné les cordes en géomé-
trie hyperbolique pour des raisons esthétiques.

On définit alors

L∞ =

∞�

n=1

Ln.

Théorème 16 ([47]).
L’ensemble fermé aléatoire L∞ est presque sûrement une triangulation du disque D de
dimension de Hausdorff

dim(L∞) = 1 +

√
17− 3

2
.

Par triangulation du disque nous entendons que les composantes connexes de D\L∞
sont toutes des triangles euclidiens.
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Figure 2.2 – Le fermé aléatoire L∞ avec cordes euclidiennes.

Le théorème précédent a principalement deux parties essentiellement disjointes. La
première consiste à établir que la dimension de Hausdorff de L∞ est p.s. 1 + β∗. Cela
passe par l’étude d’un processus annexe et requiert la théorie des fragmentations. La
deuxième partie, c’est-à-dire le fait que L∞ soit une triangulation du disque, nécessite
l’introduction et l’étude d’un analogue d’une marche branchante sur l’arbre binaire
complet.

2.2.1 Processus de hauteur

Notons N(Ln) le nombre de cordes dans Ln. Pour x, y ∈ S1, on définit la hauteur
entre x et y dans Ln, notée Hn(x, y), comme le nombre de cordes de Ln qu’intersecte
la corde [xy].

Théorème 17 ([47]).
(i) On a

n−1/2N(Ln)
p.s.−−−→
n→∞

√
π.

(ii) Il existe un processus aléatoire (M∞(x), x ∈ S1) Hölder d’exposant β∗− ε pour tout
ε > 0, tel que pour tout x ∈ S1,

n−β
∗
/2Hn(1, x)

(P)−−−→
n→∞

M∞(x),

où (P)−→ signifie convergence en probabilité.

Quelques mots sur la preuve. Ce résultat utilise très fortement la convergence (2.2).
Il est en effet assez facile de relier le processus N(Ln) à un processus de fragmentation
conservatif : il suffit de considérer le cercle S1 comme une particule de masse 1 qui
est fragmentée par les cordes de Ln. Les particules crées par Ln sont représentées par
les composantes connexes de D\Ln et leurs masses sont données par la mesure de
Lebesgue normalisée de leurs frontières en commun avec S1. Pour qu’une particule se
fragmente, disons à la n-ième étape, il faut que les deux points Un et Vn appartiennent
à sa frontière, ce qui arrive avec probabilité la masse de la particule au carré. Une
version en temps continu du processus précédent donne exactement un processus de
fragmentation conservatif de paramètre d’autosimilarité 2, d’où l’exposant 1/2 dans la
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première convergence 2.
En ce qui concerne la deuxième convergence, on montre tout d’abord qu’une version
en temps continu de Hn(1, U), où U est uniforme sur [0, 1] et indépendant de (Ln)n�0,
compte exactement le nombre particules dans un certain processus de fragmentation. Ce
processus est formé par les composantes connexes de D\Ln qui intersectent le segment
[1U ]. Les masses de ses particules sont également données par la mesure de Lebesgue
normalisée de leurs frontières avec S1. Ce processus de fragmentation est dissipatif car
toutes les composantes connexes de D\Ln n’intersectent par forcément [1U ]. Sa mesure
de dislocation νD est donnée par
�

[0,1]2
νD(ds1, ds2)F (s1, s2) = 2

�
1

0

du u2F (u, 0) + 4

�
1

1/2

du u(1− u)F (u, 1− u).

pour tout fonction borélienne F . On calcul aisément son exposant malthusien β∗ =√
17−3

2
, et son paramètre d’autosimilarité est 2 comme dans le cas précédent. On ap-

plique alors (2.2) pour obtenir la convergence en probabilité de n−β∗/2Hn(1, U) quand
n→∞. La version à x fixé à la place de U découle d’un argument d’absolue continuité
assez délicat. Enfin, le caractère Höldérien du processus M∞ provient d’estimées fines
sur les moments E[M∞(x)p] obtenues à l’aide d’équations intégrales vérifiées par les
moments de M∞(.). Le calcul de la dimension de Hausdorff de L∞ est très relié au
caractère β∗ − ε Hölder de M∞.

2.2.2 Triangulation

Un fragment de Ln est par définition une composante connexe de D\Ln. Ces frag-
ments ont une structure généalogique aisément descriptible. Le premier fragment est D
que l’on note ∅. Puis la première corde [U1V1] découpe D en deux fragments, qui sont
vus comme les descendants de ∅. On les ordonne aléatoirement : avec probabilité 1/2
le premier enfant de ∅, noté 1, est le plus grand fragment, et le second enfant, noté 0,
est l’autre fragment. Avec probabilité 1/2 c’est le contraire. On itère cette procédure et
tous les fragments apparaissant dans le processus (Ln)n�1 sont étiquetés par un élément
de l’arbre binaire complet

T2 =

�

n�0

{0, 1}n où {0, 1}0 = ∅.

Si F est un fragment, on appelle bout de F toute composante connexe de F ∩ S1. Pour
des raisons qui vont devenir claires, D est vu comme un fragment avec 0 bout. Ainsi,
on peut associer à chaque élément u ∈ T2 un nombre �0(u) ∈ {0, 1, 2, 3, . . .}, qui
correspond au nombre de bouts du fragment associé. On peut vérifier (Lemme 5.5
de [47]) que l’étiquetage ainsi obtenu sur T2 peut être décrit par le mécanisme de
branchement suivant. Pour tout u ∈ T2 d’étiquette m � 0, on choisit uniformément
m1 ∈ {0, 1, . . . ,m} et l’on étiquette ses deux enfants avec les valeurs 1+m1 et 1+m−m1.

2. la convergence presque sûre est alors obtenue en utilisant les résultats de Brennan et Durrett sur
les processus de fragmentations conservatifs [36, 37]
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Figure 2.3 – Les 7 premières cordes du processus (Ln)n�1 et l’étiquetage de l’arbre
binaire complet associé.

L’étiquetage de T2 que l’on obtient avec le mécanisme de branchement décrit ci-
dessus, mais en commencant avec une valeur a � 0 à l’origine ∅, est noté (�a(u))u∈T2 .
Pour u = (u1, u2, . . .) ∈ T2 ∪ {0, 1}N, on note [u]k = (u1, u2, . . . , uk) pour tout k � 0.
Le fait que L∞ est une triangulation du disque est intimement lié à la proposition
suivante :

Proposition 18 ([47]).
Presque sûrement, il n’existe pas de lignée infinie dans T2 telle que toutes les étiquettes
pour �4 soit plus grande que 4,

P
�
∃u ∈ {0, 1}N : �4([u]k) � 4,∀k � 0

�
= 0.

Nous avons même récemment, et en collaboration avec Yuval Peres, obtenu une
version quantitative de la proposition précédente réminiscente des célèbres estimées de
Kolmogorov sur les processus de Galton-Watson critiques de variance finie. Ces résultats
sont détaillés dans le Chapitre 8.

Théorème 19 ([50]).
Soit Gn =

�
u ∈ {0, 1}n : �4([u]k) � 4,∀k ∈ {0, 1, . . . , n}

�
l’ensemble des chemins dans

T2 liant l’origine à la nième génération le long desquels les étiquettes pour �4 restent
plus grandes que 4. Alors on a

E [#Gn] −−−→
n→∞

4

e2 − 1
. (2.3)

De plus, il existe des constantes 0 < c1 < c2 <∞ telles que pour n � 1

c1
n

� P
�
Gn �= ∅

� � c2
n
. (2.4)
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Le fait que L∞ est une triangulation n’est pas anecdotique et est primordial pour
montrer la convergence d’autres modèles discrets vers l’objet L∞, voir [47]

2.3 Quadtrees (Chap. 9 ou [46])
Les résultats présentés dans cette section et détaillés dans le Chapitre 9

sont tirés de [46] et ont été obtenus en collaboration avec Adrien Joseph.

Ici aussi, β∗ =

√
17− 3

2
.

Le modèle du quadtree a été introduit en informatique par Finkel
et Bentley [66] comme un algorithme de stockage et de recherche de
données. L’étude de ce modèle (en particulier la présence du même
exposant

√
17−3

2
) nous a été suggérée par Philippe Flajolet à la confé-

rence ALEA 2009. Merci encore !

Décrivons le modèle en dimension 2. Soit P1, P2, . . . une suite de variables indépen-
dantes uniformément distribuées sur le carré [0, 1]

2. Les points tombent les uns après
les autres, et, à chaque fois qu’un point tombe, il divise le rectangle qui le contient
en quatre sous-rectangles par rapport à l’abscisse et l’ordonnée de ce point. On note
Quad(P1, . . . , Pn) l’ensemble des 3n + 1 rectangles formés par les n premiers points.
Voir Fig.2.4.

1
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4
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6

7

0 0.2 0.4 0.6 0.8 1

0
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0.4

0.6

0.8

1

Figure 2.4 – Deux quadtrees. L’un avec 7 points l’autre avec 100.

En particulier nous nous sommes intéressés au « Partial Match Query » : Fixons
x ∈ [0, 1], et notons Nn(x) le nombre de rectangles de Quad(P1, . . . , Pn) qui intersectent
la ligne verticale [(x, 0), (x, 1)]. Notre principal résultat est le suivant.
Théorème 20 ([46]).
Pour tout x ∈ [0, 1], on a la convergence suivante

n−β
∗E
�
Nn(x)

�
−−−→
n→∞

K0

�
x(1− x)

�β∗/2
,

où β∗ =

√
17− 3

2
, et K0 =

Γ (2β∗ + 2) Γ(β∗ + 2)

2Γ3(β∗ + 1)Γ2

�
β∗

2
+ 1

� .
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La convergence du théorème précédent est d’abord établie lorsque x est remplacé
par une variable aléatoire U uniforme sur [0, 1] et indépendante des (Pi)i�1. Ce cas avait
été traité précédemment [67] par des méthodes analytiques. Nous avons proposé une
nouvelle approche avec la théorie des fragmentations, en remarquant que l’espérance
de Nn(U) (dans une version en temps continu) est égale à l’espérance du nombre de
particules dans un processus de fragmentation de paramètre d’autosimilarité 1 et de
mesure de dislocation νQ donnée par

�

S↓
νQ(ds1,ds2)F (s1, s2) = 4

�
1

0

dx
�

1

1/2

dy xF (xy, x(1− y)),

pour toute fonction borélienne F . En particulier l’exposant malthusien de cette frag-
mentation est β∗. La preuve du Théorème 20 repose sur la convergence sus-dite, un
argument de couplage et une méthode de point fixe pour des équations intégrales. Des
progrès sont en cours (communication personnelle de Nicolas Broutin, Ralph Neininger
et Henning Sulzbach) pour la convergence en loi de (Nn(x))x∈[0,1] en tant que processus.
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Cartes Planaires Aléatoires
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The Brownian Cactus

Les résultats de ce chapitre ont été obtenus en collaboration avec

Jean-François Le Gall et Grégory Miermont ont été soumis pour publi-

cation.

The cactus of a pointed graph is a discrete tree associated with this graph. Similarly,
with every pointed geodesic metric space E, one can associate an R-tree called the
continuous cactus of E. We prove under general assumptions that the cactus of
random planar maps distributed according to Boltzmann weights and conditioned
to have a fixed large number of vertices converges in distribution to a limiting space
called the Brownian cactus, in the Gromov-Hausdorff sense. Moreover, the Brownian
cactus can be interpreted as the continuous cactus of the so-called Brownian map.

3.1 Introduction
In this work, we associate with every pointed graph a discrete tree called the cactus

of the graph. Assuming that the pointed graph is chosen at random in a certain class of
planar maps with a given number of vertices, and letting this number tend to infinity,
we show that, modulo a suitable rescaling, the associated cactus converges to a universal
object, which we call the Brownian cactus.

In order to motivate our results, let us recall some basic facts about planar maps. A
planar map is a proper embedding of a finite connected graph in the two-dimensional
sphere, viewed up to orientation-preserving homeomorphisms of the sphere. The faces
of the map are the connected components of the complement of edges, and the degree
of a face counts the number of edges that are incident to it, with the convention that
if both sides of an edge are incident to the same face, this edge is counted twice in
the degree of the face. Special cases of planar maps are triangulations, where each
face has degree 3, quadrangulations, where each face has degree 4 and more generally
p-angulations where each face has degree p. Since the pioneering work of Tutte [142],
planar maps have been thoroughly studied in combinatorics, and they also arise in
other areas of mathematics : See in particular the book of Lando and Zvonkin [93] for
algebraic and geometric motivations. Large random planar graphs are of interest in
theoretical physics, where they serve as models of random geometry [9].

A lot of recent work has been devoted to the study of scaling limits of large ran-
dom planar maps viewed as compact metric spaces. The vertex set of the planar map is

47
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equipped with the graph distance, and one is interested in the convergence of the (suita-
bly rescaled) resulting metric space when the number of vertices tends to infinity, in the
sense of the Gromov-Hausdorff distance. In the particular case of triangulations, this
problem was stated by Schramm [129]. It is conjectured that, under mild conditions on
the underlying distribution of the random planar map, this convergence holds and the
limit is the so-called Brownian map. Despite some recent progress [110, 109, 98, 33, 99],
this conjecture is still open, even in the simple case of uniformly distributed quadran-
gulations. The main obstacle is the absence of a characterization of the Brownian map
as a random metric space. A compactness argument can be used to get the existence
of sequential limits of rescaled random planar maps [98], but the fact that there is no
available characterization of the limiting object prevents one from getting the desired
convergence.

In the present work, we treat a similar problem, but we replace the metric space
associated with a planar map by a simpler metric space called the cactus of the map.
Thanks to this replacement, we are able to prove, in a very general setting, the existence
of a scaling limit, which we call the Brownian cactus. Although this result remains far
from the above-mentioned conjecture, it gives another strong indication of the universa-
lity of scaling limits of random planar maps, in the spirit of the papers [43, 109, 114, 119]
which were concerned with the profile of distances from a particular point.

Let us briefly explain the definition of the discrete cactus (see subsection 3.2.1 for
more details). We start from a graph G with a distinguished vertex ρ. Then, if a and
b are two vertices of G, and if a0 = a, a1, . . . , ap = b is a path from a to b in the graph
G, we consider the quantity

dgr(ρ, a) + dgr(ρ, b)− 2 min
0�i�p

dgr(ρ, ai)

where dgr stands for the graph distance in G. The cactus distance d
G
Cac(a, b) is then

the minimum of the preceding quantities over all choices of a path from a to b. The
cactus distance is in fact only a pseudo-distance : We have d

G
Cac(a, b) = 0 if and only

if dgr(ρ, a) = dgr(ρ, b) and if there is a path from a to b that stays at distance at least
dgr(ρ, a) from the point ρ. The cactus Cac(G) associated with G is the quotient space
of the vertex set of G for the equivalence relation � defined by putting a � b if and
only if d

G
Cac(a, b) = 0. The set Cac(G) is equipped by the distance induced by d

G
Cac.

It is easy to verify that Cac(G) is a discrete tree (Proposition 3.2). Although much
information is lost when going from G to its cactus, Cac(G) still has a rich structure,
as we will see in the case of planar maps.

A continuous analogue of the cactus can be defined for a (compact) geodesic metric
space E having a distinguished point ρ. As in the discrete setting, the cactus distance
between two points x and y is the infimum over all continuous paths γ from x to y of
the difference between the sum of the distances of x and y to the distinguished point
ρ and twice the minimal distance of a point of γ to ρ. Again this is only a pseudo-
distance, and the continuous cactus Kac(E) is defined as the corresponding quotient
space of E. One can then check that the mapping E −→ Kac(E) is continuous, and
even Lipschitz, with respect to the Gromov-Hausdorff distance between pointed metric
spaces (Proposition 3.7). It follows that if a sequence of (rescaled) pointed graphs Gn
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converges towards a pointed space E in the Gromov-Hausdorff sense, the (rescaled)
cactuses Cac(Gn) also converge to Kac(E). In particular, this implies that Kac(E) is
an R-tree (we refer to [63] for the definition and basic properties of R-trees).

The preceding observations yield a first approach to the convergence of rescaled
cactuses associated with random planar maps. Let p � 2 be an integer, and for every
n � 2, let mn be a random planar map that is uniformly distributed over the set of
all rooted 2p-angulations with n faces (recall that a planar map is rooted if there is a
distinguished edge, which is oriented and whose origin is called the root vertex). We
view the vertex set V (mn) of mn as a metric space for the graph distance dgr, with a
distinguished point which is the root vertex of the map. According to [98], from any
given strictly increasing sequence of integers, we can extract a subsequence along which
the rescaled pointed metric spaces (V (mn), n−1/4

dgr) converge in distribution in the
Gromov-Hausdorff sense. As already explained above, the limiting distribution is not
uniquely determined, and may depend on the chosen subsequence. Still we call Brownian
map any possible limit that may arise in this convergence. Although the distribution
of the Brownian map has not been characterized, it turns out that the distribution of
its continuous cactus is uniquely determined. Thanks to this observation, one easily
gets that the suitably rescaled discrete cactus of mn converges in distribution to a
random metric space (in fact a random R-tree) which we call the Brownian cactus :
See Corollary 3.15 below.

Let us give a brief description of the Brownian cactus. The random R-tree known
as the CRT, which has been introduced and studied by Aldous [2, 4] is denoted by
(Te,de). The notation Te refers to the fact that the CRT is conveniently viewed as the
R-tree coded by a normalized Brownian excursion e = (et)0�t�1 (see Section 3.3 for
more details). Let (Za)a∈Te be Brownian labels on the CRT. Informally, we may say
that, conditionally on Te, (Za)a∈Te is a centered Gaussian process which vanishes at
the root of the CRT and satisfies E[(Za − Zb)2

] = de(a, b) for every a, b ∈ Te. Let a∗
be the (almost surely unique) vertex of Te with minimal label. For every a, b ∈ Te, let
[[a, b]] stand for the geodesic segment between a and b in the tree Te, and set

dKAC(a, b) = Za + Zb − 2 min
c∈[[a,b]]

Zc.

Then dKAC is a pseudo-distance on Te. The Brownian cactus KAC is the quotient space
of the CRT for this pseudo-distance. As explained above, it can also be viewed as the
continuous cactus associated with the Brownian map (here and later, we abusively
speak about “the” Brownian map although its distribution may not be unique).

The main result of the present work (Theorem 3.20) states that the Brownian cac-
tus is also the limit in distribution of the discrete cactuses associated with very general
random planar maps. To explain this more precisely, we need to discuss Boltzmann
distributions on planar maps. For technical reasons, we consider rooted and pointed
planar maps, meaning that in addition to the root edge there is a distinguished vertex.
Let q = (q1, q2, . . .) be a sequence of non-negative weights satisfying general assump-
tions (we require that q has finite support, that qk > 0 for some k � 3, and that q

is critical in the sense of [109, 114] – the latter property can always be achieved by
multiplying q by a suitable positive constant). For every rooted and pointed planar
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map m, set
Wq(m) =

�

f∈F (m)

qdeg(f)

where F (m) stands for the set of all faces of m and deg(f) is the degree of the face f .
For every n, choose a random rooted and pointed planar map Mn with n vertices, in
such a way that P(Mn = m) is proportional toWq(m) (to be precise, we need to restrict
our attention to those integers n such that there exists at least one planar map m with
n vertices such that Wq(m) > 0). View Mn as a graph pointed at the distinguished
vertex of Mn. Then Theorem 3.20 gives the existence of a positive constant Bq such
that

Bqn
−1/4 · Cac(Mn)

(d)−→
n→∞

KAC

in the Gromov-Hausdorff sense. Here the notation λ · E means that distances in the
metric space E are multiplied by the factor λ. This result applies in particular to
uniformly distributed p-angulations with a fixed number of faces (by Euler’s formula
the number of vertices is then also fixed), and thus for instance to triangulations. In
contrast with the first approach described above, we do not need to restrict ourselves
to the bipartite case where p is even.

As in much of the previous work on asymptotics for large random planar maps, the
proof of Theorem 3.20 relies on the existence [32] of “nice” bijections between planar
maps and certain multitype labeled trees. It was observed in [109] (for the bipartite
case) and in [114] that the tree associated with a random planar map following a Boltz-
mann distribution is a (multitype) Galton-Watson tree, whose offspring distributions
are determined explicitly in terms of the Boltzmann weights, and which is equipped
with labels that are uniformly distributed over admissible choices. This labeled tree can
be conveniently coded by the two random functions called the contour process and the
label process (see the end of subsection 3.4.3). In the bipartite case, where qk = 0 if k
is odd, one can prove [109] that the contour process and the label process associated
with the random planar map Mn converge as n → ∞, modulo a suitable rescaling,
towards the pair consisting of a normalized Brownian excursion and the (tip of the)
Brownian snake driven by this excursion. This convergence is a key tool for studying
the convergence of rescaled (bipartite) random planar maps towards the Brownian map
[98]. In our general non-bipartite setting, it is not known whether the preceding conver-
gence still holds, but Miermont [114] observed that it does hold if the tree is replaced
by a “shuffled” version. Fortunately for our purposes, although the convergence of the
coding functions of the shuffled tree would not be effective to study the asymptotics of
rescaled planar maps, it gives enough information to deal with the associated cactuses.
This is one of the key points of the proof of Theorem 3.20 in Section 3.4.

The last two sections of the present work are devoted to some properties of the
Brownian cactus. We first show that the Hausdorff dimension of the Brownian cactus
is equal to 4 almost surely, and is therefore the same as that of the Brownian map
computed in [98]. As a tool for the calculation of the Hausdorff dimension, we derive
precise information on the volume of balls centered at a typical point of the Brownian
cactus (Proposition 3.24). Finally, we apply ideas of the theory of the Brownian cactus
to a problem about the geometry of the Brownian map. Precisely, given three “typical”
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points in the Brownian map, we study the existence and uniqueness of a cycle with mi-
nimal length that separates the first point from the second one and visits the third one.
This is indeed a continuous version of a problem discussed by Bouttier and Guitter [34]
in the discrete setting of large quadrangulations. In particular, we recover the explicit
distribution of the volume of the connected components bounded by the minimizing
cycle, which had been derived in [34] via completely different methods. The results of
this section strongly rely on the study of geodesics in the Brownian map developed in
[99].

The subsequent paper [94] derives further results about the Brownian cactus and in
particular studies the asymptotic behavior of the number of “branches” of the cactus
above level h that hit level h + ε, when ε goes to 0. In terms of the Brownian map,
if B(ρ, h) denotes the open ball of radius h centered at the root ρ and Nh,ε denotes
the number of connected components of the complement of B(ρ, h) that intersect the
complement of B(ρ, h + ε), the main result of [94] states that ε3Nh,ε converges as ε
goes to 0 to a nondegenerate random variable. This convergence is closely related to
an upcrossing approximation for the local time of super-Brownian motion, which is of
independent interest.

The paper is organized as follows. In Section 3.2, we give the definitions and main
properties of discrete and continuous cactuses, and establish connections between the
discrete and the continuous case. In Section 3.3, after recalling the construction and
main properties of the Brownian map, we introduce the Brownian cactus and show that
it coincides with the continuous cactus of the Brownian map. Section 3.20 contains
the statement and the proof of our main result Theorem 3.20. As a preparation for
the proof, we recall in subsection 3.4.1 the construction and main properties of the
bijections between planar maps and multitype labeled trees. Section 3.5 is devoted to
the Hausdorff dimension of the Brownian cactus, and Section 5.15 deals with minimizing
cycles in the Brownian map. An appendix gathers some facts about planar maps with
Boltzmann distributions, that are needed in Section 3.4.
Acknowledgement. We thank Itai Benjamini for the name cactus as well as for sug-
gesting the study of this mathematical object.

3.2 Discrete and continuous cactuses
3.2.1 The discrete cactus

Throughout this section, we consider a graph G = (V, E), meaning that V is a finite
set called the vertex set and E is a subset of the set of all (unordered) pairs {v, v�} of
distinct elements of V .

If v, v� ∈ V , a path from v to v� in G is a finite sequence γ = (v0, . . . , vn) in V , such
that v0 = v, vn = v� and {vi−1, vi} ∈E , for every 1 � i � n. The integer n � 0 is called
the length of γ. We assume that G is connected, so that a path from v to v� exists for
every choice of v and v�. The graph distance d

G

gr(v, v
�
) is the minimal length of a path

from v to v� in G. A path with minimal length is called a geodesic from v to v� in G.
In order to define the cactus distance we consider also a distinguished point ρ in V .

The triplet G = (V, E , ρ) is then called a pointed graph. With this pointed graph we
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associate the cactus (pseudo-)distance defined by setting for every v, v� ∈ V ,

d
G
Cac(v, v

�
) := d

G

gr(ρ, v) + d
G

gr(ρ, v
�
)− 2 max

γ:v→v�
min
a∈γ

d
G

gr(ρ, a),

where the maximum is over all paths γ from v to v� in G.

Proposition 3.1. The mapping (v, v�)→ d
G
Cac

(v, v�) is a pseudo-distance on V taking
integer values. Moreover, for every v, v� ∈ V ,

d
G

gr(v, v
�
) � d

G
Cac(v, v

�
). (3.1)

and
d

G
Cac(ρ, v) = d

G

gr(ρ, v). (3.2)

Démonstration. It is obvious that d
G
Cac

(v, v) = 0 and d
G
Cac

(v, v�) = d
G
Cac

(v�, v). Let us
verify the triangle inequality. Let v, v�, v�� ∈ V and choose two paths γ1 : v → v� and
γ2 : v� → v�� such that mina∈γ1 d

G

gr(ρ, a) is maximal among all paths γ : v → v� in G and
a similar property holds for γ2. The concatenation of γ1 and γ2 gives a path γ3 : v → v��
and we easily get

d
G
Cac(v, v

��
) � d

G

gr(ρ, v) + d
G

gr(ρ, v
��
)− 2 min

a∈γ3
d
G

gr(ρ, a) � d
G
Cac(v, v

�
) + d

G
Cac(v

�, v��).

In order to get the bound (3.1), let v, v� ∈ V , and choose a geodesic path γ from v to
v�. Let w be a point on the path γ whose distance to ρ is minimal. Then,

d
G

gr(v, v
�
) = d

G

gr(v, w) + d
G

gr(w, v
�
) � d

G

gr(ρ, v) + d
G

gr(ρ, v
�
)− 2 d

G

gr(ρ, w)

= d
G

gr(ρ, v) + d
G

gr(ρ, v
�
)− 2 min

a∈γ
d
G

gr(ρ, a)

� d
G
Cac(v, v

�
).

Property (3.2) is immediate from the definition.

As usual, we introduce the equivalence relation G� defined on V by setting v G� v� if
and only d

G
Cac

(v, v�) = 0. Note that v G� v� if and only if d
G

gr(ρ, v) = d
G

gr(ρ, v
�
) and there

exists a path from v to v� that stays at distance at least d
G

gr(ρ, v) from ρ.
The corresponding quotient space is denoted by Cac(G) = V /

G�. The pseudo-
distance d

G
Cac

induces a distance on Cac(G), and we keep the notation d
G
Cac

for this
distance.

Proposition 3.2. Consider the graph G◦ whose vertex set is V ◦ = Cac(G) and whose
edges are all pairs {a, b} such that d

G
Cac(a, b) = 1. Then this graph is a tree, and the

graph distance d
G
◦

gr on V ◦ coincides with the cactus distance d
G
Cac

on Cac(G).

Démonstration. Let us first verify that the graph G◦ is a tree. If u ∈ V we use the
notation u for the equivalence class of u in the quotient Cac(G). We argue by contra-
diction and assume that there exists a (non-trivial) cycle in Cac(G). We can then find
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an integer n � 3 and vertices x0, x1, x2, . . . , xn ∈ V such that





x0 = xn,
d

G
Cac(xi, xi+1) = 1, for every 0 � i � n− 1,
x0, x1, . . . , xn−1 are distinct.

Without loss of generality, we may assume that d
G

gr(ρ, x0) = max{dGgr(ρ, xi), 0 �
i � n}. By (3.2), we have |dGgr(ρ, x0) − d

G

gr(ρ, x1)| � d
G
Cac(x0, x1) = 1. If d

G

gr(ρ, x0) =

d
G

gr(ρ, x1) then it follows from the definition of d
G
Cac that d

G
Cac(x0, x1) is even and thus

different from 1. So we must have

d
G

gr(ρ, x1) = d
G

gr(ρ, x0)− 1.

Combining this equality with the property d
G
Cac(x0, x1) = 1, we obtain that there exists

a path from x0 to x1 that stays at distance at least d
G

gr(ρ, x1) from ρ.
Using the same arguments and the equality d

G
Cac(x0, xn−1) = 1, we obtain similarly

that d
G

gr(ρ, xn−1) = d
G

gr(ρ, x0) − 1 = d
G

gr(ρ, x1) and that there exists a path from xn−1

to x0 that stays at distance at least d
G

gr(ρ, x1) from ρ.
Considering the concatenation of the two paths we have constructed, we get that

d
G
Cac(x1, xn−1) is equal to 0 or equivalently x1 = xn−1. This gives the desired contra-

diction, and we have proved that G◦ is a tree.
We still have to verify the equality of the distances d

G
◦

gr and d
G
Cac on Cac(G). The

bound d
G
Cac � d

G
◦

gr is immediate from the triangle inequality for d
G
Cac and the existence

of a geodesic between any pair of vertices of G◦. Conversely, let a, b ∈ Cac(G). We can
find a path (y0, y1, . . . , yn) in G such that y0 = a, yn = b and

d
G
Cac(a, b) = d

G

gr(ρ, y0) + d
G

gr(ρ, yn)− 2 min
0�j�n

d
G

gr(ρ, yj).

Put m = min0�j�n d
G

gr(ρ, yj), p = d
G

gr(ρ, y0) and q = d
G

gr(ρ, yn) to simplify notation.
Then set, for every 0 � i � p−m,

ki = min{j ∈ {0, 1, . . . , n} : d
G

gr(ρ, yj) = p− i}

and, for every 0 � i � q −m,

�i = max{j ∈ {0, 1, . . . , n} : d
G

gr(ρ, yj) = q − i}.

Then yk0 , yk1 , . . . , ykp−m = y�q−m , y�q−m−1 , . . . , y�1 , y�0 is a path from a to b in G◦. It
follows that

d
G
◦

gr (a, b) � p+ q − 2m = d
G
Cac(a, b),

which completes the proof.

Remark 3.3. The notion of the cactus associated with a pointed graph strongly de-
pends on the choice of the distinguished point ρ.
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In the next sections, we will be interested in rooted planar maps, which will even
be pointed in Section 3.4. With such a planar map, we can associate a pointed graph
in the preceding sense : just say that V is the vertex set of the map, E is the set of
all pairs {v, v�} of distinct points of V such that there exists (at least) one edge of the
map between v and v�, and the vertex ρ is either the root vertex, for a map that is
only rooted, or the distinguished point for a map that is rooted and pointed. Note that
the graph distance corresponding to this pointed graph (obviously) coincides with the
usual graph distance on the vertex set of the map. Later, when we speak about the
cactus of a planar map, we will always refer to the cactus of the associated pointed
graph. In agreement with the notation of this section, we will use bold letters m,M to
denote the pointed graphs associated with the planar maps m,M .

0
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3

2
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4

4
4
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ρ

ρ
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In a recent work [LG09], Le Gall completely described the geodesics toward a distinguished point
and the description is independent of the Brownian map considered. Motivated by a question of
Benjamini, a forthcoming paper by Curien, Le Gall and Miermont, show the convergence (without
taking any subsequence) of the so-called “Cactus” associated to mn.

Problems and extensions

Uniqueness. Although we know that Brownian maps share numerous properties, they do not seem
sufficient to identify the law and thus prove (1)...
Computations. The law of mutual distances between p-points is sufficient to characterize the law
of a random metric space. For p = 2, the distance in any Brownian map between two random
independent points can be expressed in terms of ISE. Recently the physicists Bouttier and Guitter
[BG08] solved the case p = 3. Unfortunately their techniques do not seem to extend to four points...
Universality. As Brownian motion is the scaling limit of various random paths under mild assump-
tion, it is believed that Brownian map(s) is (are) the scaling limit of various type of maps. Work in
this direction has been done by Marckert, Miermont and Weill see [MM07], [MW08].
Stable maps. Let us push the analogy with random paths further: when the step distribution of a
random path does not possess second moment, the limit process is not the Brownian motion anymore
but a Stable Process. In our context, the scaling limit of maps allowed to have very big faces will
not be the Brownian map anymore but a “Stable Map” introduced and studied very recently by Le
Gall and Miermont [LGM09].
Higher Genus. Planar maps are by definition drawn on S2. In [Mie08], Miermont has studied
scaling limit of maps drawn on surfaces with genus g � 1.
[Kri04]
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Figure 3.1 – A planar map and on the right side the same planar map represented
so that the height of every vertex coincides with its distance from the distinguished
vertex ρ. We see a tree structure emerging from this picture, which corresponds to the
associated cactus.

3.2.2 The continuous cactus
Let us recall some basic notions from metric geometry. If (E, d) is a metric space

and γ : [0, T ] −→ E is a continuous curve in E, the length of γ is defined by :

L(γ) = sup
0=t0<···<tk=T

k−1�

i=0

d
�
γ(ti), γ(ti+1)

�
,

where the supremum is over all choices of the subdivision 0 = t0 < t1 < · · · < tk = T
of [0, T ]. Obviously L(γ) � d(γ(0), γ(T )).

We say that (E, d) is a geodesic space if for every a, b ∈ E there exists a continuous
curve γ : [0, d(a, b)] −→ E such that γ(0) = a, γ(d(a, b)) = b and d(γ(s), γ(t)) = t − s
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for every 0 � s � t � d(a, b). Such a curve γ is then called a geodesic from a to b in E.
Obviously, L(γ) = d(a, b). A pointed geodesic metric space is a geodesic space with a
distinguished point ρ.

Let E = (E, d, ρ) be a pointed geodesic compact metric space. We define the (conti-
nuous) cactus associated with (E, d, ρ) in a way very similar to what we did in the
discrete setting. We first define for every a, b ∈ E,

d
E
Kac(a, b) = d(ρ, a) + d(ρ, b)− 2 sup

γ:a→b

�
min

0�t�1

d(ρ, γ(t))
�
,

where the supremum is over all continuous curves γ : [0, 1] −→ E such that γ(0) = a
and γ(1) = b.

The next proposition is then analogous to Proposition 3.1.

Proposition 3.4. The mapping (a, b) −→ d
E
Kac(a, b) is a pseudo-distance on E. Fur-

thermore, for every a, b ∈ E,
d

E
Kac(a, b) � d(a, b)

and
d

E
Kac(ρ, a) = d(ρ, a).

The proof is exactly similar to that of Proposition 3.1, and we leave the details to
the reader. Note that in the proof of the bound d

E
Kac(a, b) � d(a, b) we use the existence

of a geodesic from a to b.
If a, b ∈ E, we put a E� b if d

E
Kac(a, b) = 0. We define the cactus of (E, d, ρ) as the

quotient space Kac(E) := E /
E�, which is equipped with the quotient distance d

E
Kac.

Then Kac(E) is a compact metric space, which is pointed at the equivalence class of ρ.

Remark 3.5. It is natural to ask whether the supremum in the definition of d
E
Kac(a, b)

is achieved, or equivalently whether there is a continuous path γ from a to b such that

d
E
Kac(a, b) = d(ρ, a) + d(ρ, b)− min

0�t�1

d(ρ, γ(t)).

We will return to this question later.

3.2.3 Continuity properties of the cactus

Let us start by recalling the definition of the Gromov-Hausdorff distance between
two pointed compact metric spaces (see [75] and [40, Section 7.4] for more details).

Recall that if A and B are two compact subsets of a metric space (E, d), the Haus-
dorff distance between A and B is

d
E

H(A,B) := inf{ε > 0 : A ⊂ Bε and B ⊂ Aε},

where Xε := {x ∈ E : d(x,X) � ε} denotes the ε-neighborhood of a subset X of E.
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Definition 3.6. If E = (E, d, ρ) and E
�

= (E, d�, ρ�) are two pointed compact metric
spaces, the Gromov-Hausdorff distance between E and E

� is

dGH(E,E�) = inf
�

d
F

H(φ(E),φ�(E�)) ∨ δ(φ(ρ),φ�(ρ�))
�
,

where the infimum is taken over all choices of the metric space (F, δ) and the isometric
embeddings φ : E → F and φ� : E� → F of E and E� into F .

The Gromov-Hausdorff distance is indeed a metric on the space of isometry classes
of pointed compact metric spaces. An alternative definition of this distance uses corres-
pondences. A correspondence between two pointed metric spaces (E, d, ρ) and (E�, d�, ρ�)
is a subset R of E × E� containing (ρ, ρ�), such that, for every x1 ∈ E, there exists at
least one point x2 ∈ E� such that (x1, x2) ∈ R and conversely, for every y2 ∈ E�,
there exists at least one point y1 ∈ E such that (y1, y2) ∈ R. The distortion of the
correspondence R is defined by

dis(R) := sup
�
|d(x1, y1)− d�(x2, y2)| : (x1, x2), (y1, y2) ∈ R

�
.

The Gromov-Hausdorff distance can be expressed in terms of correspondences by the
formula

dGH(E,E�) =
1

2
inf
�

dis(R)
�
, (3.3)

where the infimum is over all correspondences R between E and E
�. See [40, Theorem

7.3.25] for a proof in the non-pointed case, which is easily adapted.

Proposition 3.7. Let E and E
� be two pointed geodesic compact metric spaces. Then,

dGH(Kac(E),Kac(E
�
)) � 6 dGH(E,E�).

Démonstration. It is enough to verify that, for any correspondence R between E and
E
� with distortion D, we can find a correspondence R between Kac(E) and Kac(E

�
)

whose distortion is bounded above by 6D. We define R as the set of all pairs (a, a�)
such that there exists (at least) one representative x of a in E and one representative
x� of a� in E�, such that (x, x�) ∈ R.

Let (x, x�) ∈ R and (y, y�) ∈ R. We need to verify that

|dE
Kac(x, y)− d

E�
Kac(x

�, y�)| � 6D.

Fix ε > 0. We can find a continuous curve γ : [0, 1] −→ E such that γ(0) = x, γ(1) = y
and

d(ρ, x) + d(ρ, y)− 2 min
0�t�1

d(ρ, γ(t)) � d
E
Kac(x, y) + ε.

By continuity, we may find a subdivision 0 = t0 < t1 < · · · < tp = 1 of [0, 1] such that
d(γ(ti), γ(ti+1)) � D for every 0 � i � p− 1. For every 0 � i � p, put xi = γ(ti), and
choose x�

i
∈ E� such that (xi, x�i) ∈ R. We may and will take x�

0
= x� and y�

0
= y�. Now

note that, for 0 � i � p− 1,

d�(x�i, x
�
i+1) � d(xi, xi+1) +D � 2D.
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Since E
� is a geodesic space, we can find a curve γ� : [0, 1] −→ E� such that γ�(ti) = x�

i
,

for every 0 � i � p, and any point γ�(t), 0 � t � 1 lies within distance at most D from
one of the points γ�(ti). It follows that

min
0�t�1

d�(ρ�, γ�(t)) � min
0�i�p

d�(ρ�, γ�(ti))−D � min
0�i�p

d(ρ, γ(ti))− 2D.

Hence,

d
E�
Kac(x

�, y�) � d�(ρ�, x�) + d�(ρ�, y�)− 2 min
0�t�1

d�(ρ�, γ�(t))

� d(ρ, x) + d(ρ, y)− 2 min
0�t�1

d(ρ, γ(t)) + 6D

� d
E
Kac(x, y) + 6D + ε

The desired result follows since ε was arbitrary and we can interchange the roles of E

and E
�.

3.2.4 Convergence of discrete cactuses
Let G = (V, E , ρ) be a pointed graph (and write G = (V, E) for the non-pointed

graph as previously). We can identify G with the pointed (finite) metric space (V,dGgr, ρ).
For any real r > 0, we then denote the “rescaled graph” (V, r d

G

gr, ρ) by r ·G.
Similarly, we defined Cac(G) as a pointed finite metric space. The space r ·Cac(G)

is then obtained by multiplying the distance on Cac(G) by the factor r.

Proposition 3.8. Let (Gn)n�0 be a sequence of pointed graphs, and let (rn)n�0 be a
sequence of positive real numbers converging to 0. Suppose that rn ·Gn converges to a
pointed compact metric space E, in the sense of the Gromov-Hausdorff distance. Then,
rn ·Cac(Gn) also converges to Kac(E), in the sense of the Gromov-Hausdorff distance.

Remark 3.9. The cactus Kac(E) is well defined because E must be a geodesic space.
The latter property can be derived from [40, Theorem 7.5.1], using the fact that the
graphs rn ·Gn can be approximated by geodesic spaces as explained in the forthcoming
proof.

Démonstration. This is essentially a consequence of Proposition 3.7. We start with some
simple observations. Let G = (V, E , ρ) be a pointed graph. By considering the union
of a collection (I{u,v}){u,v}∈E of unit segments indexed by E (such that this union is a
metric graph in the sense of [40, Section 3.2.2]), we can construct a pointed geodesic
compact metric space (Λ(G), dΛ(G), ρ̃), such that the graph G (viewed as a pointed
metric space) is embedded isometrically in Λ(G), and the Gromov-Hausdorff distance
between G and Λ(G) is bounded above by 1.

A moment’s thought shows that Cac(G) is also embedded isometrically in Kac(Λ(G)),
and the Gromov-Hausdorff distance between Cac(G) and Kac(Λ(G)) is still bounded
above by 1.

We apply these observations to the graphs Gn. By scaling, we get that the Gromov-
Hausdorff distance between the metric spaces rn ·Gn and rn ·Λ(Gn) is bounded above
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by rn, so that the sequence rn ·Λ(Gn) also converges to E in the sense of the Gromov-
Hausdorff distance. From Proposition 3.7, we now get that Kac(rn ·Λ(Gn)) converges to
Kac(E). On the other hand, the Gromov-Hausdorff distance beween Kac(rn ·Λ(Gn)) =

rn ·Kac(Λ(Gn)) and rn · Cac(Gn) is bounded above by rn, so that the convergence of
the proposition follows.

Corollary 3.10. Let E be a pointed geodesic compact metric space. Then Kac(E) is a
compact R-tree.

Démonstration. As a simple consequence of Proposition 7.5.5 in [40], we can find a
sequence (rn)n�0 of positive real numbers converging to 0 and a sequence (Gn)n�0 of
pointed graphs, such that the rescaled graphs rn ·Gn converge to E in the Gromov-
Hausdorff sense. By Proposition 3.8, rn ·Cac(Gn) converges to Kac(E) in the Gromov-
Hausdorff sense. Using the notation of the preceding proof, it also holds that rn ·
Λ(Cac(Gn)) converges to Kac(E). Proposition 3.2 then implies that rn · Λ(Cac(Gn))

is a (compact) R-tree. The desired result follows since the set of all compact R-trees is
known to be closed for the Gromov-Hausdorff topology (see e.g. [64, Lemma 2.1]).

3.2.5 Another approach to the continuous cactus
In this section, we present an alternative definition of the continuous cactus, which

gives a different perspective on the previous results, and in particular on Corollary 3.10.
Let E = (E, d, ρ) be a pointed geodesic compact metric space, and for r � 0, let

B(r) = {x ∈ E : d(ρ, x) < r} , B(r) = {x ∈ E : d(ρ, x) � r} ,

be respectively the open and the closed ball of radius r centered at ρ. We let Kac
�
(E)

be the set of all subsets of E that are (non-empty) connected components of the closed
set B(r)c, for some r � 0 (here, Ac denotes the complement of the set A). Note that
all elements of Kac

�
(E) are themselves closed subsets of E.

For every C ∈ Kac
�
(E), we let

h(C) = d(ρ, C) = inf{d(ρ, x) : x ∈ C} .

Since E is path-connected, h(C) is also the unique real r � 0 such that C is a connected
component of B(r)c.

Note that Kac
�
(E) is partially ordered by the relation

C � C � ⇐⇒ C � ⊆ C

and has a unique minimal element E. Every totally ordered subset of Kac
�
(E) has a

supremum, given by the intersection of all its elements. To see this, observe that if
(Ci)i∈I is a totally ordered subset of Kac

�
(E) then we can choose a sequence (in)n�1

taking values in I such that the sequence (h(Cin))n�1 is non-decreasing and converges
to rmax := sup{h(Ci) : i ∈ I}. Then the intersection

∞�

n=1

Cin
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is non-empty, closed and connected as the intersection of a decreasing sequence of
non-empty closed connected sets in a compact space, and it easily follows that this
intersection is a connected component of B(rmax)

c and coincides with the intersection
of all Ci, i ∈ I. At this point, it is crucial that elements of Kac

�
(E) are closed, and this

is one of the reasons why one considers complements of open balls in the definition of
Kac

�
(E).

In particular, for every C,C � ∈ Kac
�
(E) , the infimum C ∧ C � makes sense as the

supremum of all C �� ∈ Kac
�
(E) such that C �� � C and C �� � C �, and h(C ∧ C �) is the

maximal value of r such that C and C � are contained in the same connected component
of B(r)c.

Moreover, if C ∈ Kac
�
(E), the set {C � ∈ Kac

�
(E) : C � � C} is isomorphic as an

ordered set to the segment [0, h(C)], because for every t ∈ [0, h(C)] there is a unique
C � ∈ Kac

�
(E) with h(C �) = t and C ⊂ C �.

Finally, h : Kac
�
(E)→ R+ is an increasing function, inducing a bijection from every

segment of the partially ordered set Kac
�
(E) to a real segment. It follows from general

results (see Proposition 3.10 in [65]) that the set Kac
�
(E) equipped with the distance

d
E
Kac

�(C,C �) = h(C) + h(C �)− 2h(C ∧ C �)

is an R-tree rooted at E = B(0)
c. Note that d

E
Kac

�(E,C) = h(C) for every C ∈ Kac
�
(E).

Proposition 3.11. The spaces Kac
�
(E) and Kac(E) are isometric pointed metric

spaces.

Démonstration. We consider the mapping from E to Kac
�
(E), which maps x to the

connected component Cx of B(d(ρ, x))c containing x. This mapping is clearly onto :
if C ∈ Kac

�
(E), we have C = Cx for any x ∈ C such that d(ρ, x) = d(ρ, C). Let us

show that this mapping is an isometry from the pseudo-metric space (E,dE
Kac) onto

(Kac
�
(E),dE

Kac
�).

Let x, y ∈ E be given, and γ : [0, 1] → E be a path from x to y. Let t0 be
such that d(ρ, γ(t0)) � d(ρ, γ(t)) for every t ∈ [0, 1]. Then the path γ lies in a single
path-connected component of B(d(ρ, γ(t0)))

c, entailing that x and y are in the same
connected component of this set. Consequently, h(Cx ∧ Cy) � d(ρ, γ(t0)), and since
obviously h(Cx) = d(x, ρ),

d
E
Kac

�(Cx, Cy) � d(ρ, x) + d(ρ, y)− 2 inf
t∈[0,1]

d(ρ, γ(t)) .

Taking the infimum over all γ gives

d
E
Kac

�(Cx, Cy) � d
E
Kac(x, y) . (3.4)

Let us verify that the reverse inequality also holds. If h(Cx∧Cy) > 0 and ε ∈ (0, h(Cx∧
Cy)), the infimum Cx∧Cy is contained in some connected component of B(h(Cx∧Cy)−
ε)c. Since the latter set is open, and E is a geodesic space, hence locally path-connected,
we deduce that this connected component is in fact path-connected, and since it contains
x and y, we can find a path γ from x to y that remains in B(h(Cx ∧ Cy) − ε)c. This
entails that

d
E
Kac(x, y) � d

E
Kac

�(Cx, Cy) + ε ,
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and letting ε → 0 yields the bound d
E
Kac

�(Cx, Cy) � d
E
Kac(x, y). The latter bound

remains true when h(Cx∧Cy) = 0, since in that case Cx∧Cy = E and d
E
Kac

�(Cx, Cy) =

h(Cx) + h(Cy) = d(ρ, x) + d(ρ, y).
From the preceding observations, we directly obtain that x �→ Cx induces a quotient

mapping from Kac(E) onto Kac
�
(E), which is an isometry and maps (the class of) ρ to

E.

1

1

1

1
2

ρ

Figure 3.2 – An example of a geodesic compact metric space E, such that the comple-
ment of the open ball of radius 1 centered at the distinguished point ρ is connected but
not path-connected. Here E is a compact subset of R3 and is equipped with the intrinsic
distance associated with the L∞-metric δ((x1, x2, x3), (y1, y2, y3)) = sup{|xi − yi|, i =

1, 2, 3}. For this distance, the sphere of radius 1 centered at ρ, which coincides with the
complement of the open ball of radius 1, consists of the union of the bold lines at the
top of the figure.

Remark 3.12. The discrete cactus of a graph can be defined in an analogous way
as above, using the notion of graph connectedness instead of connectedness in metric
spaces.

Let us return to Remark 3.5 about the existence, for given x, y ∈ E, of a minimizing
path γ : [0, 1]→ E going from x to y, such that

d
E
Kac(x, y) = d(ρ, x) + d(ρ, y)− 2 min

0�t�1

d(ρ, γ(t)).

With the notation of the previous proof, it may happen that the closed set Cx ∧ Cy is
connected without being path-connected : Fig.2 suggests an example of this phenome-
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non. In that event, if x and y cannot be connected by a continuous path that stays in
Cx ∧ Cy, there exists no minimizing path.

3.3 The Brownian cactus
In this section, we define the Brownian cactus and we show that it is the continuous

cactus associated with the (random) compact metric space called the Brownian map.
The Brownian map has been studied in [98] as the limit in distribution, along suitable
sequences, of rescaled 2p-angulations chosen uniformly at random. We first recall some
basic facts about the Brownian map.

We let e = (et)0�t�1 be a Brownian excursion with duration 1. For our purposes it
is crucial to view e as the coding function for the random continuous tree known as the
CRT. Precisely, we define a pseudo-distance de on [0, 1] by setting for every s, t ∈ [0, 1],

de(s, t) = es + et − 2 min
s∧t�r�s∨t

er

and we put s ∼e t iff de(s, t) = 0. The CRT is defined as the quotient metric space
Te := [0, 1] /∼e, and is equipped with the induced metric de. Then (Te,de) is a random
(compact) R-tree. We write pe : [0, 1] −→ Te for the canonical projection, and we
define the mass measure (or volume measure) Vol on the CRT as the image of Lebesgue
measure on [0, 1] under pe. For every a, b ∈ Te, we let [[a, b]] be the range of the geodesic
path from a to b in Te : This is the line segment between a and b in the tree Te. We
will need the following simple fact, which is easily checked from the definition of de.
Let a, b ∈ Te, and let s, t ∈ [0, 1] be such that pe(s) = a and pe(t) = b. Assume for
definiteness that s � t. Then [[a, b]] exactly consists of the points c that can be written
as c = pe(r), with r ∈ [s, t] satisfying

er = max

�
min
u∈[s,r]

eu, min
u∈[r,t]

eu

�
.

Conditionally given e, we introduce the centered Gaussian process (Zt)0�t�1 with
continuous sample paths such that

cov(Zs, Zt) = min
s∧t�r�s∨t

er.

It is easy to verify that a.s. for every s, t ∈ [0, 1] the condition s ∼e t implies that
Zs = Zt. Therefore we may and will view Z as indexed by the CRT Te. In fact, it
is natural to interpret Z as Brownian motion indexed by the CRT. We will write
indifferently Za = Zt when a ∈ Te and t ∈ [0, 1] are such that a = pe(t).

We set
Z := min

t∈[0,1]

Zt.

One can then prove [110, 103] that a.s. there exists a unique s∗ ∈ [0, 1] such that
Zs∗ = Z. We put

a∗ = pe(s∗).
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We now define an equivalence relation on the CRT. For every a, b ∈ Te, we put
a ≈ b if and only if there exist s, t ∈ [0, 1] such that pe(s) = a, pe(t) = b, and

Zr � Zs = Zt , for every r ∈ [s, t].

Here and later we make the convention that when s > t, the notation r ∈ [s, t] means
r ∈ [s, 1] ∪ [0, t].

It is not obvious that ≈ is an equivalence relation. This follows from Lemma 3.2 in
[102], which shows that with probability one, for every distinct a, b ∈ Te, the property
a ≈ b may only hold if a and b are leaves of Te, and then p−1

e (a) and p−1
e (b) are both

singletons.
The Brownian map is now defined as the quotient space

m∞ := Te /≈

which is equipped with the quotient topology. We write Π : Te −→ m∞ for the canonical
projection, and we put ρ∗ = Π(a∗). We also let λ be the image of Vol under Π, and we
interpret λ as the volume measure on m∞. For every x ∈ m∞, we set Zx = Za, where
a ∈ Te is such that Π(a) = x (this definition does not depend on the choice of a).

A key result of [98] states the Brownian map, equipped with a suitable metric D,
appears as the limit in distribution of rescaled random 2p-angulations. More precisely,
let p � 2 be an integer, and for every n � 1, let mn be uniformly distributed over the
class of all rooted 2p-angulations with n faces. Write V (mn) for the vertex set of mn,
which is equipped with the graph distance d

mn
gr , and let ρn denote the root vertex of

mn. Then, from any strictly increasing sequence of positive integers we can extract a
suitable subsequence (nk)k�1 such that the following convergence holds in distribution
in the Gromov-Hausdorff sense,

�
V (mnk),

�
9

4p(p− 1)

�1/4

(nk)
−1/4

d
mnk
gr , ρnk

�
(d)−→
k→∞

(m∞, D, ρ∗) (3.5)

where D is a metric on the space m∞ that satisfies the following properties :
1. For every a ∈ Te,

D(ρ∗,Π(a)) = Za − Z.

2. For every a, b ∈ Te and every s, t ∈ [0, 1] such that pe(s) = a and pe(t) = b,

D(Π(a),Π(b)) � Zs + Zt − 2 min
r∈[s,t]

Zr .

3. For every a, b ∈ Te,

D(Π(a),Π(b)) � Za + Zb − 2 min
c∈[[a,b]]

Zc .

Notice that in Property 2 we make the same convention as above for the notation
r ∈ [s, t] when s > t. The preceding statements can be found in Section 3 of [98] (see in
particular [98, Theorem 3.4]), with the exception of Property 3. We refer to Corollary
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3.2 in [99] for the latter property. By the argument in Remark 3.9, the metric space
(m∞, D) is a geodesic space a.s.

The limiting metric D in (3.5) may depend on the integer p and on the choice of
the subsequence (nk). However, we will see that the cactus of the Brownian map is well
defined independently of p and of the chosen subsequence, and in fact coincides with
the Brownian cactus that we now introduce.

Definition 3.13. The Brownian cactus KAC is the random metric space defined as
the quotient space of Te for the equivalence relation

a � b iff Za = Zb = min
c∈[[a,b]]

Zc

and equipped with the distance induced by

dKAC(a, b) = Za + Zb − 2 min
c∈[[a,b]]

Zc , for every a, b ∈ Te.

We view KAC as a pointed metric space whose root is the equivalence class of a∗.

It is an easy matter to verify that dKAC is a pseudo-distance on Te, and that � is
the associated equivalence relation.

We write m∞ for the pointed metric space (m∞, D, ρ∗) appearing in (3.5).

Proposition 3.14. Almost surely, Kac(m∞) is isometric to KAC.

Démonstration. We first need to identify the pseudo-distance d
m∞
Kac

(see subsection
3.2.2). Let x, y ∈ m∞ and choose a, b ∈ Te such that x = pe(a) and y = pe(b). If
γ : [0, 1] −→ m∞ is a continuous path such that γ(0) = x and γ(1) = y, Proposition
3.1 in [99] ensures that

min
0�t�1

Zγ(t) � min
c∈[[a,b]]

Zc.

Using Property 1 above, it follows that

min
0�t�1

D(ρ∗, γ(t)) � min
c∈[[a,b]]

(Zc − Z).

Since this holds for any continuous curve γ from x to y inm∞, we get from the definition
of d

m∞
Kac

that

d
m∞
Kac

(x, y) � (Za − Z) + (Zb − Z)− 2 min
c∈[[a,b]]

(Zc − Z) = dKAC(a, b).

The corresponding upper bound is immediately obtained by letting γ be the image
under Π of the (rescaled) geodesic path from a to b in the tree Te. Note that the resulting
path from x to y in m∞ is continuous because the projection Π is so. Summarizing, we
have obtained that, for every a, b ∈ Te,

d
m∞
Kac

(Π(a),Π(b)) = dKAC(a, b). (3.6)

In particular, the property a � b holds if and only if Π(a)
m∞� Π(b). Hence, the composi-

tion of the canonical projections from Te ontom∞ and fromm∞ onto Kac(m∞) induces
a one to-one mapping from KAC = Te/ � onto Kac(m∞). By (3.6) this mapping is an
isometry, which completes the proof.
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Recall the notation mn for a random planar map uniformly distributed over the set
of all rooted 2p-angulations with n faces, and ρn for the root vertex ofmn. As explained
at the end of subsection 3.2.1, we can associate a pointed graph with mn, such that the
distinguished point of this graph is ρn. We write mn for this pointed graph.

Corollary 3.15. We have
�

9

4p(p− 1)

�1/4

n−1/4 · Cac(mn)
(d)−→
n→∞

KAC

in the Gromov-Hausdorff sense.

In contrast with (3.5), the convergence of the corollary does not require the extrac-
tion of a subsequence.

Démonstration. It is sufficient to prove that, from any strictly increasing sequence of
positive integers we can extract a subsequence (nk) such that the desired convergence
holds along this subsequence. To this end, we extract the subsequence (nk) so that (3.5)
holds. By Proposition 3.8, we have then

�
9

4p(p− 1)

�1/4

(nk)
−1/4 · Cac(mnk)

(d)−→
k→∞

Kac(m∞).

By Proposition 3.14, the limiting distribution is that of KAC, independently of the
subsequence that we have chosen. This completes the proof.

In the next section, we will see that the convergence of the corollary holds for much
more general random planar maps.

3.4 Convergence of cactuses associated with random planar maps
3.4.1 Planar maps and bijections with trees

We denote the set of all rooted and pointed planar maps byMr,p. As in [114], it is
convenient for technical reasons to make the convention thatMr,p contains the “vertex
map”, denoted by †, which has no edge and only one vertex “bounding” a face of degree
0. With the exception of †, a planar map inMr,p has at least one edge. An element of
Mr,p other than † consists of a planar map m together with an oriented edge e (the
root edge) and a distinguished vertex ρ. We write e− and e+ for the origin and the
target of the root edge e. Note that we may have e− = e+ if e is a loop.

As previously, we denote the graph distance on the vertex set V (m) of m by d
m

gr. We
say that the rooted and pointed planar map (m, e, ρ) is positive, respectively negative,
respectively null if d

m

gr(ρ, e+) = d
m

gr(ρ, e−) + 1, resp. d
m

gr(ρ, e+) = d
m

gr(ρ, e−) − 1, resp.
d
m

gr(ρ, e+) = d
m

gr(ρ, e−). We make the convention that the vertex map † is positive. We
writeM+

r,p, resp.M−r,p, resp.M0
r,p for the set of all positive, resp. negative, resp. null,

rooted and pointed planar maps. Reversing the orientation of the root edge yields an
obvious bijection between the setsM+

r,p and M−r,p, and for this reason we will mainly
discussM+

r,p andM0
r,p in what follows.
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We will make use of the Bouttier-Di Francesco-Guitter bijection [32] betweenM+
r,p∪

M0
r,p and a certain set of multitype labeled trees called mobiles. In order to describe

this bijection, we use the standard formalism for plane trees, as found in Section 1.1 of
[97] for instance. In this formalism, vertices are elements of the set

U =

∞�

n=0

Nn

of all finite sequences of positive integers, including the empty sequence ∅ that serves
as the root vertex of the tree. A plane tree τ is a finite subset of U that satisfies the
following three conditions :

1. ∅ ∈ τ .
2. For every u = (i1, . . . , ik) ∈ τ \ {∅}, the sequence (i1, . . . , ik−1) (the “parent” of
u) also belongs to τ .

3. For every u = (i1, . . . , ik) ∈ τ , there exists an integer ku(τ) � 0 (the “number
of children” of u) such that the vertex (i1, . . . , ik, j) belongs to τ if and only if
1 � j � ku(τ).

The generation of u = (i1, . . . , ik) is denoted by |u| = k. The notions of an ancestor
and a descendant in the tree τ are defined in an obvious way.

We will be interested in four-type plane trees, meaning that each vertex is assigned
a type which can be 1, 2, 3 or 4.

We next introduce mobiles following the presentation in [114], with a few minor
modifications. We consider a four-type plane tree τ satisfying the following properties :

(i) The root vertex ∅ is of type 1 or of type 2.
(ii) The children of any vertex of type 1 are of type 3.
(iii) Each individual of type 2 and which is not the root vertex of the tree has exactly

one child of type 4 and no other child. If the root vertex is of type 2, it has exactly
two children, both of type 4.

(iv) The children of individuals of type 3 or 4 can only be of type 1 or 2.
Let τ(1,2) be the set of all vertices of τ at even generation (these are exactly the vertices
of type 1 or 2). An admissible labeling of τ is a collection of integer labels (�u)u∈τ(1,2)
assigned to the vertices of type 1 or 2, such that the following properties hold :

a. �∅ = 0.
b. Let u be a vertex of type 3 or 4, let u(1), . . . , u(k) be the children of u (in lexico-

graphical order) and let u(0) be the parent of u. Then, for every i = 0, 1, . . . , k,

�u(i+1) � �u(i) − 1

with the convention u(k+1) = u(0). Moreover, for every i = 0, 1, . . . , k such that
u(i+1) is of type 2, we have

�u(i+1) � �u(i) .
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By definition, a mobile is a pair (τ, (�u)u∈τ(1,2)) consisting of a four-type plane tree
satisfying the preceding conditions (i)–(iv), and an admissible labeling of τ . We let T+

be the set of all mobiles such that the root vertex of τ is of type 1. We also let T0 be
the set of all mobiles such that the root vertex is of type 2.

Remark 3.16. Our definition of admissible labelings is slightly different from the ones
that are used in [114] or [119]. To recover the definitions of [114] or [119], just subtract
1 from the label of each vertex of type 2. Because of this difference, our construction of
the bijections between maps and trees will look slightly different from the ones in [114]
or [119].

The Bouttier-Di Francesco-Guitter construction provides bijections between the set
T+ and the set M+

r,p on one hand, between the set T0 and the set M0
r,p on the other

hand. Let us describe this construction in the first case.
We start from a mobile (τ, (�u)u∈τ(1,2)) ∈ T+. In the case when τ = {∅}, we decide

by convention that the associated planar map is the vertex map †. Otherwise, let p � 1

be the number of edges of τ (p = #τ − 1). The contour sequence of τ is the sequence
v0, v1, . . . , v2p of vertices of τ defined inductively as follows. First v0 = ∅. Then, for
every i ∈ {0, 1, . . . , 2p− 1}, vi+1 is either the first child of vi that has not yet appeared
among v0, v1, . . . , vi, or if there is no such child, the parent of vi. It is easy to see
that this definition makes sense and v2p = ∅. Moreover all vertices of τ appear in the
sequence v0, v1, . . . , v2p, and more precisely the number of occurences of a vertex u of τ
is equal to the multiplicity of u in τ . In fact, each index i such that vi = u corresponds
to one corner of the vertex u in the tree τ : We will abusively call it the corner vi. We
also introduce the modified contour sequence of τ as the sequence u0, u1, . . . , up defined
by

ui = v2i , ∀i = 0, 1, . . . , p.

By construction, the vertices appearing in the modified contour sequence are exactly
the vertices of τ(1,2). We extend the modified contour sequence periodically by setting
up+i = ui for i = 1, . . . , p. Note that the properties of labels entail �ui+1 � �ui − 1 for
i = 0, 1, . . . , 2p− 1.

To construct the edges of the rooted and pointed planar map (m, e, ρ) associated
with the mobile (τ, (�u)u∈τ(1,2)) ∈ T+ we proceed as follows. We first embed the tree τ
in the plane in a way consistent with the planar order. We then add an extra vertex of
type 1, which we call ρ. Then, for every i = 0, 1, . . . , p− 1 :

(i) If
�ui = min

0�k�p
�uk

we draw an edge between the corner ui and ρ.
(ii) If

�ui > min
0�k�p

�uk

we draw an edge between the corner ui and the corner uj , where j = min{k ∈
{i+ 1, . . . , i+ p− 1} : �uk = �ui − 1}. Because of property b. of the labeling, the
vertex uj must be of type 1.
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0

-1 1 1 -1 1 0 -1

0 -1 0

ρ

Figure 3.3 – A mobile (τ, (�u)u∈τ(1,2)) in T+ and its image m under the BDG bijection.
Vertices of type 1 are represented by big circles, vertices of type 2 by lozanges, vertices
of type 3 by small circles and vertices of type 4 by small black disks. The edges of the
tree τ are represented by thin lines, and the edges of the planar map m by thick curves.
In order to get the planar map m one needs to erase the vertices of type 2 and, for each
of these vertices, to merge its two incident edges into a single one. The root edge is at
the bottom left.

The construction can be made in such a way that edges do not intersect, and do not
intersect the edges of the tree τ . Furthermore each face of the resulting planar map
contains exactly one vertex of type 3 or 4, and both the parent and the children of this
vertex are incident to this face. See Fig.2 for an example.

The resulting planar map is bipartite with vertices either of type 1 or of type 2.
Furthermore, the fact that in the tree τ each vertex of type 2 has exactly one child, and
the labeling rules imply that each vertex of type 2 is incident to exactly two edges of the
map, which connect it to two vertices of type 1, which may be the same (these vertices
of type 1 will be said to be associated with the vertex of type 2 we are considering).
Each of these edges corresponds in the preceding construction to one of the two corners
of the vertex of type 2 that we consider. To complete the construction, we just erase all
vertices of type 2 and for each of these we merge its two incident edges into a single edge
connecting the two associated vertices of type 1. In this way we get a (non-bipartite in
general) planar map m. Finally we decide that the root edge e of the map is the first
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edge drawn in the construction, oriented in such a way that e+ = ∅, and we let the
distinguished vertex of the map be the vertex ρ. Note that vertices of the map m that
are different from the distinguished vertex ρ are exactly the vertices of type 1 in the
tree τ . In other words, the vertex set V (m) is identified with the set τ(1) ∪ {ρ}, where
τ(1) denotes the set of all vertices of τ of type 1.

The mapping (τ, (�u)u∈τ(1,2)) −→ (m, e, ρ) that we have just described is indeed a
bijection from T+ ontoM+

r,p. We can construct a similar bijection from T+ ontoM−r,p
by the same construction, with the minor modification that we orient the root edge in
such a way that e− = ∅.

Furthermore we can also adapt the preceding construction in order to get a bijection
from T0 onto M0

r,p. The construction of edges of the map proceeds in the same way,
but the root edge is now obtained as the edge resulting of the merging of the two
edges incident to ∅ (recall that for a tree in T0 the root ∅ is a vertex of type 2 that
has exactly two children, hence also two corners). The orientation of the root edge is
chosen according to some convention : For instance, one may decide that the “half-edge”
coming from the first corner of ∅ corresponds to the origin of the root edge.

In all three cases, distances in the planar map m satisfy the following key property :
For every vertex u ∈ τ(1), we have

d
m

gr(ρ, u) = �u −min �+ 1 (3.7)

where min � denotes the minimal label on the tree τ . In the left-hand side u is viewed
as a vertex of the map m, in agreement with the preceding construction.

The three bijections we have described are called the BDG bijections. In the remai-
ning part of this section, we fix a mobile (τ, (�u)u∈τ(1,2)) belonging to T+ (or to T0) and
its image (m, e, ρ) under the relevant BDG bijection.

Remark 3.17. We could have defined the BDG bijections without distinguishing bet-
ween types 3 and 4. However, this distinction will be important in the next section
when we consider random planar maps and the associated (random) trees. We will see
that these random trees are Galton-Watson trees with a different offspring distribution
for vertices of type 3 than for vertices of type 4.

If u, v ∈ τ(1,2), we denote by [[u, v]] the set of all vertices of type 1 or 2 that lie on
the geodesic path from u to v in the tree τ .

Proposition 3.18. For every u, v ∈ V (m)\{ρ} = τ(1), and every path γ = (γ(0), γ(1),
. . . , γ(k)) in m such that γ(0) = u and γ(k) = v, we have

min
0�i�k

d
m

gr(ρ, γ(i)) � min
w∈[[u,v]]

�w −min �+ 1.

Démonstration. We may assume that the path γ does not visit ρ, since otherwise the
result is trivial. Using (3.7), the statement reduces to

min
0�i�k

�γ(i) � min
w∈[[u,v]]

�w.

So we fix w ∈ [[u, v]] and we verify that �γ(i) � �w for some i ∈ {0, 1, . . . , k}. We may
assume that w �= u and w �= v. The removal of the vertex w (and of the edges incident to
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w) disconnects the tree τ in several connected components. Write C for the connected
component containing v, and note that this component does not contain u. Then let
j � 1 be the first integer such that γ(j) belongs to C. Thus γ(j − 1) /∈ C, γ(j) ∈ C
and the vertices γ(j − 1) and γ(j) are linked by an edge of the map m. From (3.7), we
have |�γ(j)− �γ(j−1)| � 1. Now we use the fact that the edge between γ(j − 1) and γ(j)
is produced by the BDG bijection. Suppose first that γ(j− 1) and γ(j) have a different
label. In that case, noting that the modified contour sequence must visit w between
any visit of γ(j − 1) and any visit of γ(j), we easily get that min{�γ(j), �γ(j−1)} � �w
(otherwise our construction could not produce an edge from γ(j−1) to γ(j)). A similar
argument applies to the case when γ(j − 1) and γ(j) have the same label. In that
case, the edge between γ(j − 1) and γ(j) must come from the merging of two edges
originating from a vertex of τ of type 2. This vertex of type 2 has to belong to the set
[[γ(j − 1), γ(j)]] (which contains w), because otherwise the two associated vertices of
type 1 could not be γ(j − 1) and γ(j). It again follows from our construction that we
must have min{�γ(j), �γ(j−1)} � �w. This completes the proof.

In the next corollary, we write m for the graph associated with the map m (in the
sense of subsection 3.2.1), which is pointed at the distinguished vertex ρ. The notation
d

m
Cac then refers to the cactus distance for this pointed graph.

Corollary 3.19. Suppose that the degree of all faces of m is bounded above by D � 1.
Then, for every u, v ∈ V (m)\{ρ}, we have

��� dm
Cac(u, v)−

�
�u + �v − 2 min

w∈[[u,v]]

�w
���� � 2D + 2.

Démonstration. From the definition of the cactus distance d
m
Cac and the preceding pro-

position, we immediately get the lower bound

d
m
Cac(u, v) � d

m

gr(ρ, u) + d
m

gr(ρ, v)− 2

�
min
w∈[[u,v]]

�w −min �+ 1

�

= �u + �v − 2 min
w∈[[u,v]]

�w,

by (3.7). In order to get a corresponding upper bound, let η(0) = u, η(1), . . . , η(k) = v
be the vertices of type 1 or 2 belonging to the geodesic path from u to v in the tree τ ,
enumerated in their order of appearance on this path. Put η̃(i) = η(i) if η(i) is of type
1, and if η(i) is of type 2, let η̃(i) be one of the two (possibly equal) vertices of type
1 that are associated with η(i) in the BDG bijection. Then the properties of the BDG
bijection ensure that, for every i = 0, 1, . . . , k− 1, the two vertices η(i) and η(i+ 1) lie
on the boundary of the same face of m (the point is that, in the BDG construction,
edges of the map m are drawn in such a way that they do not cross edges of the tree τ).
From our assumption we have thus d

m

gr(η̃(i), η̃(i+ 1)) � D for every i = 0, 1, . . . , k − 1.
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Hence, we can find a path γ in m starting from u and ending at v, such that

min
j

d
m

gr(ρ, γ(j)) � min
0�i�k

d
m

gr(ρ, η̃(i))−D

= min
0�i�k

�η̃(i) −min �+ 1−D

� min
0�i�k

�η(i) −min �−D .

It follows that

d
m
Cac(u, v) � d

m

gr(ρ, u) + d
m

gr(ρ, v)− 2

�
min
w∈[[u,v]]

�w −min �−D
�

= �u + �v − 2 min
w∈[[u,v]]

�w + 2D + 2 .

This completes the proof.

3.4.2 Random planar maps
Following [109] and [114], we now discuss Boltzmann distributions on the space

Mr,p. We consider a sequence q = (q1, q2, . . .) of non-negative real numbers. We assume
that the sequence q has finite support (qk = 0 for all sufficiently large k), and is such
that qk > 0 for some k � 3. We will then split our study according to the following two
possibilities :
(A1) There exists an odd integer k such that qk > 0.
(A2) The sequence q is supported on even integers.
If m ∈Mr,p, we define

Wq(m) =

�

f∈F (m)

qdeg(f)

where F (m) stands for the set of all faces of m and deg(f) is the degree of the face f .
In the case when m = †, we make the convention that q0 = 1 and thus Wq(†) = 1.

By multiplying the sequence q by a suitable positive constant, we may assume that
this sequence is regular critical in the sense of [114, Definition 1] under assumption (A1)
or of [109, Definition 1] under assumption (A2). We refer the reader to the Appendix
below for details. In particular, the measure Wq is then finite, and we can define a
probability measure Pq onMr,p by setting

Pq = Z−1

q Wq,

where Zq =Wq(Mr,p).
For every integer n such that Wq(#V (m) = n) > 0, we consider a random planar

map Mn distributed according to the conditional measure

Pq(· ∩{#V (m) = n})
Pq(#V (m) = n)

.

Throughout the remaining part of Section 3.4, we restrict our attention to values of
n such that Wq(#V (m) = n) > 0, so that Mn is well defined. We write ρn for the
distinguished vertex of Mn.
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We now state the main result of this section. In this result, Mn stands for the graph
(pointed at ρn) associated with Mn, as explained at the end of subsection 3.2.1.

Theorem 3.20. There exists a positive constant Bq such that

Bq n
−1/4 · Cac(Mn)

(d)−→
n→∞

KAC

in the Gromov-Hausdorff sense.

The proof of Theorem 3.20 relies on the asymptotic study of the random trees
associated with planar maps distributed under Boltzmann distributions via the BDG
bijection. The distribution of these random trees was identified in [109] (in the bipartite
case) and in [114]. We set

Z+

q =Wq(M+

r,p) � 1 , Z0

q =Wq(M0

r,p) .

Note that, under Assumption (A2),Wq is supported on bipartite maps and thus Z0
q = 0.

We also set

P+

q = Pq(· | M+

r,p) , P
−
q = Pq(· | M−r,p) , P 0

q = Pq(· | M0

r,p).

Note that the definition of P 0
q only makes sense under Assumption (A1).

The next proposition gives the distribution of the tree associated with a random
planar map distributed according to P+

q . Before stating this proposition, let us recall
that the notion of a four-type Galton-Watson tree is defined analogously to the case
of a single type. The distribution of such a random tree is determined by the type of
the ancestor, and four offspring distributions νi, i = 1, 2, 3, 4, which are probability
distributions on Z4

+ ; for every i = 1, 2, 3, 4, νi corresponds to the law of the number of
children (having each of the four possible types) of an individual of type i ; furthermore,
given the numbers of children of each type of an individual, these children are ordered
in the tree with the same probability for each possible ordering. See [114, Section 2.2.1]
for more details, noting that we consider only the case of “uniform ordering” in the
terminology of [114].

Proposition 3.21. Suppose that M+ is a random planar map distributed according
to P+

q , and let (θ, (Lu)u∈θ(1,2)) be the four-type labeled tree associated with M+ via
the BDG bijection between T+ and M+

r,p. Then the distribution of (θ, (Lu)u∈θ(1,2)) is
characterized by the following properties :

(i) The random tree θ is a four-type Galton-Watson tree, such that the root ∅ has
type 1 and the offspring distributions ν1, . . . , ν4 are determined as follows :
• ν1 is supported on {0}×{ 0}× Z+ × {0}, and for every k � 0,

ν1(0, 0, k, 0) =
1

Z+q

�
1− 1

Z+q

�k
.

• ν2(0, 0, 0, 1) = 1.
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• ν3 and ν4 are supported on Z+ × Z+ × {0} ×{ 0}, and for every integers
k, k� � 0,

ν3(k, k�, 0, 0) = cq (Z+

q )
k
(Z0

q)
k
�
/2

�
2k + k� + 1

k + 1

��
k + k�

k

�

q2+2k+k�

ν4(k, k�, 0, 0) = c�q (Z+

q )
k
(Z0

q)
k
�
/2

�
2k + k�

k

��
k + k�

k

�

q1+2k+k�

where cq and c�q are the appropriate normalizing constants.
(ii) Conditionally given θ, (Lu)u∈θ(1,2) is uniformly distributed over all admissible

labelings.

Remark 3.22. The definition of ν4 does not make sense under Assumption (A2) (be-
cause Z0

q = 0 in that case, ν4(k, k�, 0, 0) can be nonzero only if k� = 0, but then
q1+2k+k� = 0). This is however irrelevant since under Assumption (A2) the property
Z0

q = 0 entails that ν3 is supported on Z+×{0}×{0}×{0}, and thus the Galton-Watson
tree will have no vertices of type 2 or 4.

We refer to [114, Proposition 3] for the proof of Proposition 3.21 under Assumption
(A1) and to [109, Proposition 7] for the case of Assumption (A2). In fact, [114] assumes
that qk > 0 for some odd integer k � 3, but the results in that paper do cover the
situation considered in the present work.

In the next two subsections, we prove Theorem 3.20 under Assumption (A1). The
case when Assumption (A2) holds is much easier and will be treated briefly in subsection
3.4.5.

3.4.3 The shuffling operation
As already mentioned, we suppose in this section that Assumption (A1) holds. We

consider the random four-type labeled tree (θ, (Lv)v∈θ(1,2)) associated with the planar
map M+ via the BDG bijection, as in Proposition 3.21.

Our goal is to investigate the asymptotic behavior, when n tends to∞, of the labeled
tree (θ, (Lv)v∈θ(1,2)) conditioned to have n − 1 vertices of type 1 (this corresponds
to conditioning M+ on the event {#V (M+

) = n}). As already observed in [114],
a difficulty arises from the fact that the label displacements along the tree are not
centered, and so the results of [115] cannot be applied immediately. To overcome this
difficulty, we will use an idea of [114], which consists in introducing a “shuffled” version
of the tree θ. In order to explain this, we need to introduce some notation.

Let τ be a plane tree and u = (i1, . . . , ip) ∈ τ . The tree τ shifted at u is defined by

Tuτ := {v = (j1, . . . , j�) : (i1, . . . , ip, j1, . . . , j�) ∈ τ}.

Let k = ku(τ) be the number of children of u in τ , and, for every 1 � i � k, write u(i)

for the i-th child of u. The tree τ reversed at vertex u is the new tree τ∗ characterized
by the properties :
• Vertices of τ∗ which are not descendants of u are the same as vertices of τ which

are not descendants of u.
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• u ∈ τ∗ and ku(τ∗) = ku(τ) = k.
• For every 1 � i � k, Tu(i)τ

∗
= Tu(k+1−i)τ .

Our (random) shuffling operation will consist in reversing the tree τ at every ver-
tex of τ at an odd generation, with probability 1/2 for every such vertex. We now
give a more formal description, which will be needed in our applications. We keep on
considering a (deterministic) plane tree τ . Let Uo stand for the set of all u ∈ U such
that |u| is odd. We consider a collection (εu)u∈Uo of independent Bernoulli variables
with parameter 1/2. We then define a (random) mapping σ : τ −→ U by setting, if
u = (i1, i2, . . . , ip),

σ(u) = (j1, j2, . . . , jp)

where, for every 1 � � � p,
• if � is odd, j� = i�,
• if � is even,

j� =

�
i� if ε(i1,...,i�−1) = 0 ,
k(i1,...,i�−1)(τ) + 1− i� if ε(i1,...,i�−1) = 1 .

Then τ̃ = {σ(u) : u ∈ τ} is a (random) plane tree, called the tree derived from τ by
the shuffling operation. If τ is a four-type tree, we also view τ̃ as a four-type tree by
assigning to the vertex σ(u) of τ̃ the type of the vertex u in τ .

For our purposes it is very important to note that the bijection σ : τ −→ τ̃ preserves
the genealogical structure, in the sense that u is an ancestor of v in τ if and only if
σ(u) is an ancestor of σ(v) in τ̃ . Consequently, if u and v are any two vertices of τ(1,2),
[[σ(u),σ(v)]] is the image under σ of the set [[u, v]].

We can apply this shuffling operation to the random tree θ (of course we assume
that the collection (εu)u∈Uo is independent of (θ, (Lv)v∈θ(1,2))). We write θ̃ for the four-
type tree derived from θ by the shuffling operation and we use the same notation σ as
above for the “shuffling bijection” from θ onto θ̃. We assign labels to the vertices of
θ̃(1,2) by putting for every u ∈ θ(1,2),

L̃σ(u) = Lu.

Note that the random tree θ̃ has the same distribution as θ, and is therefore a four-
type Galton-Watson tree as described in Proposition 3.21. On the other hand, the
labeled trees (θ, (Lv)v∈θ(1,2)) and (θ̃, (L̃v)v∈θ̃(1,2)

) have a different distribution because
the admissibility property of labels is not preserved under the shuffling operation. We
can still describe the distribution of the labels in the shuffled tree in a simple way. To
this end, write tp(u) for the type of a vertex u. Then conditionally on θ̃, for every vertex
u of θ̃ such that |u| is odd, if u(1), . . . , u(k) are the children of u in lexicographical order,
and if u(0) is the parent of u, the vector of label increments

(L̃u(1) − L̃u(0) , . . . , L̃u(k) − L̃u(0))

is with probability 1/2 uniformly distributed over the set

A := {(i1, . . . , ik) ∈ Zk : ij+1 � ij − 1{tp(u(j+1))=1} , for all 0 � j � k},
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and with probability 1/2 uniformly distributed over the set

A� := {(i1, . . . , ik) ∈ Zk : ij � ij+1 − 1{tp(u(j))=1} , for all 0 � j � k}.

In the definition of both A and A� we make the convention that i0 = ik+1 = 0 and
u(k+1) = u(0). Furthermore the vectors of label increments are independent (still condi-
tionally on θ̃) when u varies over vertices of θ̃ at odd generations.

The preceding description of the distribution of labels in the shuffled tree is easy
to establish. Note that the set A corresponds to the admissibility property of labels,
whereas A� corresponds to a “reversed” version of this property.

For every u ∈ θ̃(1,2), set

L̃�u = L̃u −
1

2
1{tp(u)=2}.

If we replace L̃u by L̃�u, then the vectors of label increments in θ̃ become centered. This
follows from elementary arguments : See [114, Lemma 2] for a detailed proof. As in
[114] or in [119], the fact that the label increments are centered allows us to use the
asymptotic results of [115], noting that these results will apply to L̃u as well as to L̃�u
since the additional term 1

2
1{tp(u)=2} obviously plays no role in the scaling limit. Before

we state the relevant result, we need to introduce some notation.
For n � 2, let (θ̃n, (L̃nv )v∈θ̃n(1,2)

) be distributed as the labeled tree (θ̃, (L̃v)v∈θ̃(1,2)
)

conditioned on the event {#θ̃(1) = n − 1} (recall that we restrict our attention to
values of n such that the latter event has positive probability). Let pn = #θ̃n − 1

and let un
0

= ∅, un
1
, . . . , unpn = ∅ be the modified contour sequence of θ̃n. The contour

process Cn = (Cn
i

)0�i�pn is defined by

Cni = |uni |

and the label process V n = (V n
i

)0�i�pn by

V ni = L̃nuni .

We extend the definition of both processes Cn and V n to the real interval [0, pn] by
linear interpolation.

Recall the notation (e, Z) from Section 3.3.

Proposition 3.23. There exist two positive constants Aq and Bq such that

�
Aq
Cn(pns)

n1/2
, Bq
V n(pns)

n1/4

�

0�s�1

(d)−→
n→∞

(es, Zs)0�s�1 (3.8)

in the sense of weak convergence of the distributions on the space C([0, 1],R2
).

This follows from the more general results proved in [115] for spatial mutitype
Galton-Watson trees. One should note that the results of [115] are given for variants of
the contour process and the label process (in particular the contour process is replaced
by the so-called height process of the tree). However simple arguments show that the
convergence in the proposition can be deduced from the ones in [115] : See in particular
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Section 1.6 of [97] for a detailed explanation of why convergence results for the height
process imply similar results for the contour process. Proposition 3.23 is also equivalent
to Theorem 3.1 in [119], where the contour and label processes are defined in a slightly
different way.

3.4.4 Proof of Theorem 3.20 under Assumption (A1)
We keep assuming that Assumption (A1) holds. Let M+

n be distributed according
to the probability measure P+

q (· | #V (m) = n), or equivalently as M+ conditionally
on the event {#V (M+

) = n}. As above, ρn stands for the distinguished point of M+
n ,

and we will write M
+
n for the pointed graph associated with M+

n . Let (θn, (Lnv )v∈θn(1,2)
)

be the random labeled tree associated with M+
n via the BDG bijection between T+

and M+
r,p. Notice that (θn, (Lnv )v∈θn(1,2)

) has the same distribution as (θ, (Lv)v∈θ(1,2))

conditional on {#θ(1) = n− 1}.
We write (θ̃n, (L̃nv )v∈θ̃n(1,2)

) for the tree derived from (θn, (Lnv )v∈θn(1,2)
) by the shuf-

fling operation, and σn for the shuffling bijection from θn onto θ̃n. The notation
(θ̃n, (L̃nv )v∈θ̃n(1,2)

) is consistent with the end of the preceding subsection, since condi-
tioning the tree on having n− 1 vertices of type 1 clearly commutes with the shuffling
operation.

As previously, un
0

= ∅, un
1
, . . . , unpn denotes the modified contour sequence of θ̃n. For

every j ∈ {0, 1, . . . , pn}, we put vn
j

= σ−1
n (un

j
). Recall that by construction the type of

un
j

(in θ̃n) coincides with the type of vn
j

(in θn).
Using the Skorokhod representation theorem, we may assume that the convergence

(3.8) holds almost surely. We will then prove that the convergence

Bq n
−1/4 · Cac(M

+

n ) −→
n→∞

KAC (3.9)

also holds almost surely, in the Gromov-Hausdorff sense.
We first define a correspondence R0

n between Te and V (M+
n ) by declaring that

(a∗, ρn) belongs to R0
n, and, for every s ∈ [0, 1] :

• if vn
[pns]

is of type 1, (pe(s), vn
[pns]

) belongs to R0
n ;

• if vn
[pns]

is of type 2, then if w is any of the two (possibly equal) vertices of type
1 associated with vn

[pns]
, (pe(s), w) belongs to R0

n.
We then write Rn for the induced correspondence between the quotient spaces KAC =

Te /� and Cac(M
+
n ). A pair (x,α) ∈ KAC×Cac(M

+
n ) belongs to Rn if and only if

there exists a representative a of x in Te and a representative u of α in V (M+
n ) such

that (a, u) ∈ R0
n.

Thanks to (3.3), the convergence (3.9) will be proved if we can verify that the
distortion of Rn, when KAC is equipped with the distance dKAC and Cac(M

+
n ) is

equipped with Bq n−1/4
d

M+
n

Cac
, tends to 0 as n → ∞, almost surely. To this end, it is

enough to verify that

lim
n→∞

sup
0�s�1

��� dKAC(a∗, pe(s))−Bq n
−1/4

d
M+
n

Cac
(ρn, �vn[pns])

��� = 0 , a.s. (3.10)
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and

lim
n→∞

sup

s,t∈[0,1]

��� dKAC(pe(s), pe(t))−Bq n
−1/4

d
M+
n

Cac
(�vn

[pns]
, �vn

[pnt]
)

��� = 0 , a.s. (3.11)

In both (3.10) and (3.11), �vn
[pns]

= vn
[pns]

if vn
[pns]

is of type 1, whereas, if vn
[pns]

is of type
2, �vn

[pns]
stands for one of the vertices of type 1 associated with vn

[pns]
(obviously the

validity of (3.10) and (3.11) does not depend on the choice of this vertex).
The proof of (3.10) is easy. Note that

dKAC(a∗, pe(s)) = Zpe(s) − Za∗ = Zs − Z

and, by (3.7),

d
M+
n

Cac
(ρn, �vn[pns]) = d

M
+
n

gr (ρn, �vn[pns]) = Ln�vn[pns]
−minLn + 1

so that
|dM+

n
Cac

(ρn, �vn[pns])− (Lnvn[pns] −minLn)| � 1.

Since Ln
v
n
[pns]
− minLn = L̃n

u
n
[pns]
− min L̃n = V n

[pns]
− minV n, our claim (3.10) follows

from the (almost sure) convergence (3.8).
It remains to establish (3.11). It suffices to prove that almost surely, for every choice

of the sequences (sn) and (tn) in [0, 1], we have

lim
n→∞

��� dKAC(pe(sn), pe(tn))−Bq n
−1/4

d
M+
n

Cac
(�vn

[pnsn]
, �vn

[pntn]
)

��� = 0.

We will prove that the preceding convergence holds for all choices of the sequences (sn)
and (tn), on the set of full probability measure where the convergence (3.8) holds. From
now on we argue on the latter set.

By a compactness argument, we may assume that the sequences (sn) and (tn)
converge to s and t respectively as n→∞. The proof then reduces to checking that

lim
n→∞
Bq n

−1/4
d

M+
n

Cac
(�vn

[pnsn]
, �vn

[pntn]
) = dKAC(pe(s), pe(t)) = Zs + Zt − 2 min

c∈[[pe(s),pe(t)]]

Zc .

From Corollary 3.19 (and the fact that the sequence q is finitely supported), this will
follow if we can verify that

lim
n→∞
Bq n

−1/4
�
Ln�vn[pnsn]

+Ln�vn[pntn]
−2 min
w∈[[�vn[pnsn],�vn[pntn]]]

Lnw
�

= Zs+Zt−2 min
c∈[[pe(s),pe(t)]]

Zc .

Observe that
|Ln�vn[pnsn]

− Lnvn[pnsn]
| � 1

and Ln
v
n
[pnsn]

= L̃n
u
n
[pnsn]

. From the convergence (3.8), we have

lim
n→∞
Bq n

−1/4 Ln�vn[pnsn]
= lim
n→∞
Bq n

−1/4 L̃nun[pnsn]
= lim
n→∞
Bq n

−1/4 V n
[pnsn]

= Zs
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and similarly if the sequence (sn) is replaced by (tn). Finally, we need to verify that

lim
n→∞

�
Bq n

−1/4
min

w∈[[�vn[pnsn],�vn[pntn]]]
Lnw
�

= min
c∈[[pe(s),pe(t)]]

Zc . (3.12)

In proving (3.12), we may replace �vn
[pnsn]

and �vn
[pntn]

by vn
[pnsn]

, and vn
[pntn]

respectively.
The point is that if u is a vertex of θn of type 2 and v is an associated vertex of type 1,
our definitions imply that minw∈[[u,v]] Lnw = Lnv . Without loss of generality we can also
assume that s � t.

Since [[un
[pnsn]
, un

[pntn]
]] is the image under σn of [[vn

[pnsn]
, vn

[pntn]
]], (3.12) will hold if

we can prove that

lim
n→∞

�
Bq n

−1/4
min

w∈[[u
n
[pnsn],u

n
[pntn]]]

L̃nw
�

= min
c∈[[pe(s),pe(t)]]

Zc . (3.13)

Let us first prove the upper bound

lim sup
n→∞

�
Bq n

−1/4
min

w∈[[u
n
[pnsn],u

n
[pntn]]]

L̃nw
�

� min
c∈[[pe(s),pe(t)]]

Zc . (3.14)

Let us pick c ∈ [[pe(s), pe(t)]]. We may assume that c �= pe(s) and c �= pe(t) (otherwise
the desired lower bound immediately follows from the convergence (3.8)). Then, we can
find r ∈ (s, t) such that c = pe(r) and either

eu > er , for every u ∈ [s, r)

or
eu > er , for every u ∈ (r, t].

Consider only the first case, since the second one can be treated in a similar manner.
The convergence of the rescaled contour processes then guarantees that we can find a
sequence (kn) of positive integers such that kn/pn −→ r as n→∞, and

Cnk > C
n

kn
, for every k ∈ {[pnsn], [pnsn] + 1, . . . , kn − 1}

for all sufficiently large n. The latter property, and the construction of the contour
sequence of the tree θn, ensure that un

kn
∈ [[un

[pnsn]
, un

[pntn]
]], for all sufficiently large n.

However, by the convergence of the rescaled label processes, we have

lim
n→∞
Bq n

−1/4 L̃nunkn = Zr = Zc.

Consequently,
lim sup
n→∞

�
Bq n

−1/4
min

w∈[[u
n
[pnsn],u

n
[pntn]]]

L̃nw
�

� Zc

and since this holds for every choice of c the upper bound (3.14) follows.
Let us turn to the lower bound

lim inf
n→∞

�
Bq n

−1/4
min

w∈[[u
n
[pnsn],u

n
[pntn]]]

L̃nw
�

� min
c∈[[pe(s),pe(t)]]

Zc . (3.15)
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For every n, let wn ∈ [[un
[pnsn]
, un

[pntn]
]] be such that

min
w∈[[u

n
[pnsn],u

n
[pntn]]]

L̃nw = L̃nwn .

We can write wn = un
jn

where jn ∈ {[pnsn], [pnsn] + 1, . . . , [pntn]} is such that

Cnjn = min
[pnsn]�j�jn

Cnj , (3.16)

or
Cnjn = min

jn�j�[pntn]

Cnj . (3.17)

We need to verify that

lim inf
n→∞

Bq n
−1/4 L̃nwn � min

c∈[[pe(s),pe(t)]]

Zc .

We argue by contradiction and suppose that there exist ε > 0 and a subsequence (nk)
such that, for every k,

Bq n
−1/4

k
L̃nkwnk � min

c∈[[pe(s),pe(t)]]

Zc − ε.

By extracting another subsequence if necessary, we may assume furthermore that
jnk/pnk −→ r ∈ [s, t] as k → ∞, and that (3.16) holds with n = nk for every k
(the case when (3.17) holds instead of (3.16) is treated in a similar manner). Then,
from the convergence of rescaled contour processes, we have

er = min
s�u�r

er ,

which implies that pe(r) ∈ [[pe(s), pe(t)]]. Furthermore, from the convergence of rescaled
label processes,

Zpe(r) = Zr = lim
k→∞
Bq n

−1/4

k
L̃nkwnk � min

c∈[[pe(s),pe(t)]]

Zc − ε.

This contradiction completes the proof of (3.15) and of the convergence (3.9).
In order to complete the proof of Theorem 3.20 under Assumption (A1), it suffices

to verify that the convergence (3.9) also holds (in distribution) if M+
n is replaced by a

random planar map M−n distributed according to P−q (· | #V (m) = n), or by a random
planar map M0

n distributed according to P 0
q(· | #V (m) = n). The first case is trivial

since M−n can be obtained from M+
n simply by reversing the orientation of the root

edge. The case of M0
n is treated by a similar method as the one we used for M+

n . We
first need an analogue of Proposition 3.21, which is provided by the last statement
of Proposition 3 in [114]. In this analogue, the random labeled tree associated with a
planar map distributed according to P 0

q is described as the concatenation (at the root
vertex) of two independent labeled Galton-Watson trees whose root is of type 2, with
the same offspring distributions as in Proposition 3.21. The results of [115] can be used
to verify that Proposition 3.23 still holds with the same constants Aq and Bq, and the
remaining part of the argument goes through without change. This completes the proof
of Theorem 3.20 under Assumption (A1).
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3.4.5 The bipartite case
In this section, we briefly discuss the proof of Theorem 3.20 under Assumption (A2).

In that case, since Wq(M0
r,p) = 0, it is obviously enough to prove the convergence of

Theorem 3.20 with Mn replaced by M+
n . The proof becomes much simpler because

we do not need the shuffling operation. As previously, we introduce the labeled tree
(θn, (Lnv )v∈θn(1,2)

) associated with M+
n via the BDG bijection, but we now define un

0
=

∅, un
1
, . . . , unpn = ∅ as the modified contour sequence of θn (instead of θ̃n). We then

define the contour process Cn
i

= |un
i
| and the label process V n

i
= Ln

u
n
i
, for 0 � i � pn.

Proposition 3.7 then holds in exactly the same form, as a consequence of the results of
[109]. The reason why we do not need the shuffling operation is the fact that the label
increments of (θn, (Lnv )v∈θn(1,2)

) are centered in the bipartite case.
Once the convergence (3.8) is known to hold, it suffices to repeat all steps of the

proof in subsection 3.4.4, replacing θ̃n by θn and vn
i

by un
i

wherever this is needed. We
leave the details to the reader.

3.5 The dimension of the Brownian cactus
In this section, we compute the Hausdorff dimension of the Brownian cactus KAC.

We write p : Te −→ KAC = Te /� for the canonical projection. The uniform measure
µ on KAC is the image of the mass measure Vol on the CRT (see Section 3.3) under p.
For every x in KAC and every δ � 0, we denote the closed ball of center x and radius δ
in KAC by BKAC(x, δ). The following theorem gives information about the µ-measure
of these balls around a typical point of KAC.

Proposition 3.24. (i) We have

E
��
µ(dx)µ

�
BKAC(x, δ)

��
=

2
5/4 Γ(1/4)

3
√
π

δ3 + o(δ3),

as δ → 0.
(ii) For every ε > 0,

lim sup
δ→0

µ
�
BKAC(x, δ)

�

δ4−ε
= 0 , µ(dx) a.e., a.s.

Remark 3.25. Let U be uniformly distributed over [0, 1], so that pe(U) is distributed
according to Vol and X = p ◦ pe(U) is distributed according to µ. Assertion (i) of
the theorem says that the mean volume of the ball BKAC(X, δ) is of order δ3, whereas
assertion (ii) shows that almost surely the volume of this ball will be bounded above by
δ4−ε when δ is small. This difference between the mean and the almost sure behavior is
specific to the Brownian cactus. In the case of the Brownian map, results from Section 6
of [99] show that δ4 is the correct order both for the mean and the almost sure behavior
of the volume of a typical ball of radius δ.

In relation with this, we see that in contrast with the CRT or the Brownian map, the
Brownian cactus is not invariant under re-rooting according to the “uniform” measure
µ. This means that KAC re-rooted at X does not have the same distribution as KAC.
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Indeed, since d
E
Kac(ρ, x) = d(ρ, x) for every pointed geodesic space E = (E, d, ρ), the

previous considerations, and Proposition 3.14, entail that µ(BKAC(ρ, δ)) is of order δ4
both in the mean and in the a.s. sense.

Démonstration. (i) Fix δ > 0. Let U and U � be two independent random variables that
are uniformly distributed over [0, 1] and independent of (e, Z). By the very definition
of µ, we have

E
��
µ(dx)µ

�
BKAC(x, δ)

��
= P
�
dKAC(pe(U), pe(U �)) � δ� .

The value of dKAC(pe(U), pe(U �)) is determined by the labels Za for a ∈ [[pe(U), pe(U �)]].
Write (gU,U �(t), 0 � t � de(U,U �)) for the geodesic path from pe(U) to pe(U �) in the
tree Te (so that [[pe(U), pe(U �)]] is the range of gU,U �). Then, conditionally on the triplet
(e, U, U �) the process �

ZgU,U� (t) − Zpe(U)

�

0�t�de(U,U �)
,

is a standard linear Brownian motion. Hence if (Bt)t�0 is a linear Brownian motion
independent of (e, U, U �), we have

P
�
dKAC(pe(U), pe(U �)) � δ� = P

�
BL − 2 min

0�s�L
Bs � δ

�
,

where L = de(U,U �). Pitman’s theorem [123, Theorem VI.3.5] implies that, for every
fixed l � 0,Bl−2 min0�s�lBs has the same distribution asB(3)

l
, where (B(3)

t
)t�0 denotes

a three-dimensional Bessel process started from 0. From the invariance under uniform
re-rooting of the distribution of the CRT (see for example [103]), the variable de(U,U �)
has the same distribution as de(0, U) = eU , which has density 4l e−2l

2 . Consequently,
we can explicitly compute

P
�
dKAC(U,U �) � δ� = 4

� ∞

0

dl le−2l
2P
�
B(3)

l
� δ
�
,

= 4

� ∞

0

dl le−2l
2
�

R3
dz (2πl)−3/2 e−|z|

2
/2l

1{|z|�δ},

= 4

�
2

π

� ∞

0

dl l−1/2e−2l
2
� δ

0

du u2 e−u
2
/2l,

= 4

�
2

π

� δ

0

du u2

� ∞

0

dl l−1/2
exp

�
−2l2 − (u2/2l)

�
.

The desired result follows since

lim
u→0

� ∞

0

dl l−1/2
exp

�
−2l2 − (u2/2l)

�
=

� ∞

0

dl l−1/2
exp

�
−2l2
�

= 2
−5/4 Γ(1/4).

(ii) Let us fix r ∈]0, 1[. For every u ∈ [0, er], set

Ge(r, u) = max{s ∈ [0, r] : es = er − u},
De(r, u) = min{s ∈ [r, 1] : es = er − u}.
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Then pe(Ge(r, u)) = pe(De(r, u)) is a point of [[pe(0), pe(r)]], and more precisely the
path u −→ pe(Ge(r, u)), 0 � u � er is the geodesic from pe(r) to pe(0) in the tree Te.
As a consequence, conditionally on e, the process

M (r)

u := Zr −min{Zv : v ∈ [[pe(Ge(r, u)), pe(r)]]} , 0 � u � er

has the same distribution as

− min
0�v�u

Bv , 0 � u � er

where B is as above. By classical results (see e.g. Theorem 6.2 in [79]), we have, for
every ε ∈]0, 1/2[,

lim
u→0
u−1/2−εM (r)

u =∞ , a.s. (3.18)

On the other hand, if t ∈ [0, 1]\]Ge(r, u), De(r, u)[, we have mint∧r�s�t∨r es � er − u,
which implies that the segment [[pe(t), pe(r)]] contains [[pe(Ge(r, u)), pe(r)]], and there-
fore

dKAC(pe(t), pe(r)) �M (r)

u .

Using (3.18), it follows that, for every fixed ε ∈]0, 1/2[, we have a.s. for all u > 0 small
enough

BKAC(pe(r), u1/2+ε
) ⊂
�

KAC \ p ◦ pe ([0, Ge(r, u)] ∪ [De(r, u), 1])

�
,

and in particular

µ(BKAC(pe(r), u1/2+ε
)) � De(r, u)−Ge(r, u).

However, the same standard results about Brownian motion that we already used to
derive (3.18) imply that

lim
u→0
u−2+ε

(De(r, u)−Ge(r, u)) = 0 , a.s.

We conclude that, for every ε ∈]0, 1/2[,

lim
u→0
u−2+εµ(BKAC(pe(r), u1/2+ε

)) = 0 , a.s.

and property (ii) follows, in fact in a slightly stronger form than stated in the theorem.

Corollary 3.26. Almost surely, the Hausdorff dimension of KAC is 4.

Démonstration. Classical density theorems for Hausdorff measures show that the exis-
tence of a non-trivial measure µ satisfying the property stated in part (ii) of Proposition
3.24 implies the lower bound dim(KAC) � 4. To get the corresponding upper bound,
we first note that the mapping [0, 1] � t −→ Zt is a.s. Hölder continuous with exponent
1/4− ε, for any ε ∈]0, 1/4[. Observing that [[pe(t), pe(t�)]] ⊂ pe([t ∧ t�, t ∨ t�]), for every
t, t� ∈ [0, 1], it readily follows that the composition p ◦ pe defined on [0, 1] and with
values in KAC, is a.s. Hölder continuous with exponent 1/4 − ε, for any ε ∈]0, 1/4[.
Hence, the Hausdorff dimension of KAC, which is the range of p ◦ pe, must be bounded
above by 4.
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3.6 Separating cycles
In this section, we study the existence and properties of a cycle with minimal length

separating two points of the Brownian map, under the condition that this cycle contains
a third point. This is really a problem about the Brownian map, but the cactus distance
plays an important role in the statement. Our results in this section are related to the
work of Bouttier and Guitter [34] for large random quadrangulations of the plane.

We consider the Brownian map as the random pointed compact metric space (m∞, D, ρ∗)
that appears in the convergence (3.5) for a suitable choice of the sequence (nk). Recall
that the metric D may depend on the choice of the sequence, but the subsequent results
will hold for any of the possible limiting metrics. We set p = Π ◦ pe, which corresponds
to the canonical projection from [0, 1] onto m∞. If U is uniformly distributed over [0, 1],
the point p(U) is distributed according to the volume measure λ on m∞.

A loop in m∞ is a continuous path γ : [0, T ] −→ m∞, where T > 0, such that
γ(0) = γ(T ). If x and y are two distinct points of m∞, we say that the loop γ separates
the points x and y if x and y lie in distinct connected components ofm∞\{γ(t) : 0 � t �
T}. It is known [102] that (m∞, D) is homeomorphic to the 2-sphere, so that separating
loops do exist. We denote by S(x, y, ρ∗) the set of all loops γ such that γ(0) = ρ∗ and
γ separates x and y. Recall from subsection 3.2.2 the definition of the length of a curve
in a metric space.

Theorem 3.27. Let U1 and U2 be independent and uniformly distributed over [0, 1].
Then almost surely there exists a unique loop γ∗ ∈ S(p(U1),p(U2), ρ∗) with minimal
length, up to reparametrization and time-reversal. This loop is obtained as the conca-
tenation of the two distinct geodesic paths from Π(β) to ρ∗, where β is the a.s. unique
point of [[pe(U1), pe(U2)]] such that

Zβ = min
a∈[[pe(U1),pe(U2)]]

Za.

In particular, the length of γ∗ is

L(γ∗) = 2D(ρ∗,Π(β)) = D(ρ∗,p(U1)) +D(ρ∗,p(U2))− 2 dKAC(pe(U1), pe(U2)).

The complement in m∞ of the range of γ∗ has exactly two components C1 and C2, such
that p(U1) ∈ C1 and p(U2) ∈ C2, and the pair (λ(C1),λ(C2)) is distributed according
to the beta distribution with parameters (

1

4
, 1

4
) :

E [f(λ(C1),λ(C2))] =
Γ(1/2)

Γ(1/4)2

�
1

0

dt
�
t(1− t)

�−3/4
f(t, 1− t),

for any non-negative Borel function f on R2
+.

Démonstration. We first explain how the loop γ∗ is constructed. As in the previous
section, write (gU1,U2(r))0�r�de(U1,U2) for the geodesic path from pe(U1) to pe(U2) in
the tree Te, whose range is the segment [[pe(U1), pe(U2)]]. We already noticed that,
conditionally on the triplet (e, U1, U2) the process

�
ZgU1,U2 (r) − Zpe(U1)

�

0�r�de(U1,U2)

,
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is a standard linear Brownian motion. Hence this process a.s. attains its minimal value
at a unique time r0 ∈]0, de(U1, U2)[, and we put β = gU1,U2(r0). Since there are only
countably many values of r ∈]0, de(U1, U2)[ such that gU1,U2(r) has multiplicity 3 in Te,
it is also clear that β has multiplicity 2 in Te, a.s. Write C◦

1
and C◦

2
for the two connected

components of Te\{β}, ordered in such a way that pe(U1) ∈ C◦
1

and pe(U2) ∈ C◦
2
, and

set C1 = C◦
1
∪{β}, C2 = C◦

2
∪{β}. Then Π(C1) and Π(C2) are closed subsets of m∞ whose

union is m∞. Furthermore, the discussion at the beginning of Section 3 of [99] shows
that the boundary of Π(C1), or equivalently the boundary of Π(C2), coincides with the
set Π(C1) ∩ Π(C2) of all points x ∈ m∞ that can be written as x = Π(a1) = Π(a2) for
some a1 ∈ C1 and a2 ∈ C2. In particular, the interiors of Π(C1) and of Π(C2) are disjoint.
Notice that p(U1) belongs to the interior of Π(C1), and p(U2) belongs to the interior
of Π(C2), almost surely : To see this, observe that for almost every (in the sense of the
volume measure Vol) point a of Te, the equivalence class of a for ≈ is a singleton, and
thus Π−1

(p(U1)) and Π−1
(p(U2)) must be singletons almost surely.

Since β has multiplicity 2 in Te, Theorem 7.6 in [99] implies that there are exactly
two distinct geodesic paths from ρ∗ to Π(β), and that these paths are simple geodesics
in the sense of [99, Section 4]. We denote these geodesic paths by φ1 and φ2. From the
definition of simple geodesics, one easily gets that φ1(s) = φ2(s) for every 0 � s � s0,
where

s0 := max

�
min
a∈C1
Za,min
a∈C2
Za
�
− Z.

Note that {φ1(s) : 0 � s < s0} is contained in the interior of Π(Ci), where i ∈ {1, 2}
is determined by the condition a∗ ∈ Ci. Furthermore, the definition of simple geodesics
shows that

Π(C1) ∩Π(C2) = {φ1(s) : s0 � s � D(ρ∗,Π(β))} ∪{ φ2(s) : s0 � s � D(ρ∗,Π(β))}.

We define γ∗ by setting

γ∗(t) =

�
φ1(t) if 0 � t � D(ρ∗,Π(β)),
φ2(2D(ρ∗,Π(β))− t) if D(ρ,Π(β)) � t � 2D(ρ∗,Π(β)).

Then γ∗ is a loop starting and ending at ρ∗. Furthermore γ∗ separates p(U1) and p(U2),
since any continuous path in m∞ starting from p(U1) will have to hit the boundary of
Π(C1) before reaching p(U2). Finally the length of γ∗ is

L(γ∗) = 2D(ρ∗,Π(β)) = 2(Zβ − Z)

= D(ρ∗,p(U1)) +D(ρ∗,p(U2))− 2 dKAC(pe(U1), pe(U2)).

We next verify that γ∗ is the unique loop in S(p(U1),p(U2), ρ∗) with minimal length.
Let γ be a path in S(p(U1),p(U2), ρ∗) indexed by the interval [0, T ]. The image under
Π of the path gU1,U2 is a continuous path from p(U1) to p(U2), which must intersect
the range of γ. Hence the range of γ contains at least one point y such that y = Π(a)
for some a ∈ [[pe(U1), pe(U2)]]. Since γ(0) = γ(T ) = ρ∗, we have

L(γ) � 2D(ρ∗, y) = 2(Za − Z)
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using property 1 of the distance D in Section 3.3. Since Za � Zβ, we thus obtain that
L(γ) � L(γ∗).

Let τ ∈ [0, T ] be such that y = γ(τ). The preceding considerations show that the
equality L(γ) = L(γ∗) can hold only if a = β and if furthermore the paths (γ(τ−t), 0 �
t � τ) and (γ(τ + t), 0 � t � T − τ) have length D(ρ∗,Π(β)), so that these paths must
coincide (up to reparametrization) with geodesics from Π(β) to ρ∗. We conclude that
any minimizing path γ coincides with γ∗, up to reparametrization and time-reversal.

In order to complete the proof of the theorem, we first need to identify the connected
components of the complement of the range of γ∗ in m∞. Consider the case when a∗
belongs to C1, and set

R := {φ1(s) : 0 � s < s0} ⊂ Π(C1).

Write Int(Π(Ci)) for the interior of Π(Ci), for i = 1, 2. Then the connected components
of the complement of the range of γ∗ in m∞ are

C1 = Int(Π(C1))\R , C2 = Int(Π(C2)).

This easily follows from the preceding considerations : Note for instance that Int(Π(C2))

is the image under Π of a connected subset of C2, and is therefore connected. From this
identification, we get

λ(C1) = Vol(C1) , λ(C2) = Vol(C2) = 1−Vol(C1), (3.19)

using the fact that the range of γ∗ has zero λ-measure (this can be seen from the
uniform estimates on the measure of balls found in Section 6 of [99]). Clearly the same
identities (3.19) remain valid in the case when a∗ belongs to C2.

To complete the proof, we need to compute the distribution of Vol(C1). To this end
it will be convenient to use the invariance of the law of Te under uniform re-rooting (see
e.g. [103]). Let U be a random variable uniformly distributed over [0, 1], and let α be
the (almost surely unique) vertex of [[pe(0), pe(U)]] such that Zα = mina∈[[pe(0),pe(U)]] Za.
Then, if C◦ is the connected component of Te\{α} containing pe(U), the invariance of
the CRT under uniform re-rooting implies that

Vol(C1)
(d)

= Vol(C◦).

Now notice that conditionally on the pair (e, U), the random variable H = de(pe(0),α)

is distributed according to the arc-sine law on [0, eU ], with density
1

π
�
s(eU − s)

.

Moreover,
Vol(C◦) = De(U, eU −H)−Ge(U, eU −H)

where we use the same notation as in the preceding section, for r ∈]0, 1[ and u ∈ [0, er],

Ge(r, u) = max{s � r : es = er − u},
De(r, u) = min{s � r : es = er − u}. (3.20)
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From the previous remarks, we have, for any non-negative measurable function g on
[0, 1],

E [g(Vol(C1))] = E [g(Vol(C◦))] = E
��

1

0

ds
� es

0

dh

π
�
h(es − h)

g(De(s, h)−Ge(s, h))

�

.

(3.21)
In order to compute the right-hand side, it is convenient to argue first under the Itô
measure n(de) of positive excursions of linear Brownian motion (see e.g. Chapter XII of
[123], where the notation n+(de) is used). Let σ(e) denote the duration of excursion e,
and define De(r, u) and Ge(r, u), for r ∈]0,σ(e)[ and 0 � u � e(r), in a way analogous
to (3.20). Also write

qh(t) =
h√
2πt3

exp−h
2

2t

for the density of the hitting time of h > 0 by a standard linear Brownian motion.
Then, an application of Bismut’s decomposition of the Itô measure, in the form stated
in [95, Lemma 1], gives for every non-negative measurable function f on R2

+,
�
n(de)

� σ(e)

0

ds
�
e(s)

0

dh

π
�
h(e(s)− h)

f (σ(e), De(s, h)−Ge(s, h))

=

� ∞

0

du
�
u

0

dh

π
�
h(u− h)

� ∞

0

dt q2h(t)
� ∞

0

dt� q2(u−h)(t
�
) f(t+ t�, t)

=
1

π

� ∞

0

dh√
h

� ∞

0

dh�√
h�

� ∞

0

dt q2h(t)
� ∞

0

dt� q2h�(t
�
) f(t+ t�, t)

=
1

π

� ∞

0

dt
� ∞

0

dt� f(t+ t�, t)
� � ∞

0

dh√
h
q2h(t)

�� � ∞

0

dh�√
h�
q2h�(t

�
)

�
. (3.22)

We easily compute
� ∞

0

dh√
h
q2h(t) = 2

−3/4
(2π)−1/2Γ(3/4) t−3/4.

Hence, using also the identity Γ(1/4)Γ(3/4) = π
√

2, we see that the right-hand side of
(3.22) is equal to

2
−3/2

Γ(1/4)2

� ∞

0

d�
� �

0

dt f(�, t) (t(�− t))−3/4.

We can condition the resulting formula on {σ = 1}, using the fact that the density of
σ(e) under n(de) is equal to 1

2
(2π�3)

−1/2, and we conclude that

E
��

1

0

ds
� es

0

dh

π
�
h(es − h)

g(De(s, h)−Ge(s, h))

�

= n
� � σ(e)

0

ds
�
e(s)

0

dh

π
�
h(e(s)− h)

g (De(s, h)−Ge(s, h))
��� σ = 1

�

=

√
π

Γ(1/4)2

�
1

0

dt (t(1− t))−3/4 g(t).

We now see that the last assertion of the theorem follows from (3.21).
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3.7 Appendix
This section is devoted to the proof of the fact, mentioned in Section 3.20, that if

q = (q1, q2, . . .) is a sequence with finite support, such that qk > 0 for some k � 3,
then there exists a constant a > 0 such that aq = (aq1, aq2, . . .) is regular critical in
the sense of [109, 114]. We briefly discuss case (A2), which is easier. Following [109],
we define

fq(x) =

�

k�0

xk
�

2k + 1

k

�

q2k+2 , x � 0 .

By [109, Proposition 1], the Boltzmann measure Wq defined in Section 3.20 is a finite
measure if and only if the equation

fq(x) = 1− 1

x
, x > 1. (3.23)

has a solution. Since qk > 0 for some k � 3, the function fq is a strictly convex
polynomial, so there can be either one or two solutions to this equation. In the first
situation, the graphs of fq and x �→ 1−1/x are tangent at the unique solution, in which
case q is said to be critical in the sense of [109, Definition 1] (it will even be regular
critical in our case since fq(x) is finite for every x > 0). It is then trivial that there
exists a unique a = ac > 0 such that the graphs of faq and x �→ 1− 1/x intersect at a
tangency point, and then acq is regular critical.

Let us turn to case (A1), which is more delicate. For every x, y � 0, we set

f•q(x, y) =

�

k,k��0

xkyk
�
�

2k + k� + 1

k + 1

��
k + k�

k

�

q2+2k+k�

f�q(x, y) =

�

k,k��0

xkyk
�
�

2k + k�

k

��
k + k�

k

�

q1+2k+k� ,

defining two convex polynomials in the variables x and y. Proposition 1 of [114] asserts
that the Boltzmann measure Wq is finite (then q is said to be admissible) if and only
if the equations 




f•q(x, y) = 1− 1

x
, x > 1

f�q(x, y) = y , y > 0

(3.24)

have a solution (x, y), such that the spectral radius of the matrix

M(x, y) =




0 0 x− 1

x

y
∂xf�q(x, y) ∂yf�q(x, y) 0

x
2
x−1
∂xf•q(x, y) xy

x−1
∂yf•q(x, y) 0





is at most 1. Moreover, a solution (x, y) with these properties is then unique.
If the spectral radius of M(x, y) (for this unique solution (x, y)) equals 1, then we

say that q is critical. It is here even regular critical in the terminology of [114], since
the functions f•q, f�q are everywhere finite in our case. Note that the matrixM(x, y) has
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nonnegative coefficients, and the Perron-Frobenius theorem ensures that the spectral
radius of M(x, y) is also the largest real eigenvalue of M(x, y). Thus, assuming that
q is admissible, and letting (x, y) be the unique solution of (3.24) such that M(x, y)
has spectral radius bounded by 1, we see that q is regular critical if and only if 1 is
an eigenvalue of M(x, y), which holds if and only if the determinant of Id−M(x, y)
vanishes.

For every x, y > 0, set

G(x, y) = f•q(x, y)− 1 + 1/x and H(x, y) = f�q(x, y)− y .

Then G and H are convex functions on (0,∞)
2. A pair (x, y) ∈ (0,∞)

2 satisfies (3.24)
if and only if G(x, y) = H(x, y) = 0 (notice that the condition G(x, y) = 0 forces
x > 1). The set {G = 0}, resp. {H = 0} is the boundary of the closed convex set
CG = {G � 0}, resp. of CH = {H � 0}, in (0,∞)

2.

Lemma 3.28. (i) The set CG is contained in (1,∞)× (0, A), for some A > 0.
(ii) The set CH is bounded.
(iii) If (x, y) ∈ CG then (x, y�) ∈ CG for every y� ∈ (0, y). If (x, y) ∈ CH then (x�, y) ∈
CH for every x� ∈ (0, x). There exists ε > 0 such that CH does not intersect [1,∞) ×
(0, ε).
(iv) For every a > 0, let Ga, resp. Ha, be the function analogous to G, resp. to H,
when q is replaced by aq. Then CHa ⊂ (0, 1] × (0,∞) for every large enough a > 0.
Consequently CHa ∩ CGa = ∅ for every large enough a > 0.

Démonstration. (i) This is obvious since f•q(x, y) � C y� for every x, y > 0, for some
constant C > 0 and some integer � � 3.
(ii) Suppose first that there exists an odd integer � � 3 such that q� > 0. Then, the
definition of f�q shows that there is a positive constant c such that

f�q(x, y) � c(x(�−1)/2
+ y�−1

),

and it readily follows that CH is bounded. Consider then the case when there is an
even integer � � 4 such that q� > 0. Then there is a positive constant c such that

f�q(x, y) � c(x(�−2)/2y + y�−1
),

and again this implies that CH is bounded.
(iii) The first property is clear since y �→ G(x, y) is non-decreasing, for every y > 0.
Similarly, the second property in (iii) follows from the fact that x �→ H(x, y) is non-
decreasing, for every x > 0. The last property is also clear since we can find ε > 0 such
that f�q(x, y) > ε for every x � 1 and y > 0 (we use the fact that q is not supported
on even integers).
(iv) Suppose first that there there exists an odd integer � � 3 such that q� > 0. Using the
same bound as in the proof of (ii), and noting that f�aq = a f�q, we see that Ha(x, y) � 0

can only hold if
x(�−1)/2

+ y�−1 � y
ca
.
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It is elementary to check that this implies x � 1 as soon as a is large enough. The
case when there is an even integer � � 4 such that q� > 0 is treated similarly using
the bound stated in the proof of (ii). Finally the last assertion in (iv) follows by using
(i).

Recall that f•q and f�q are polynomials. It follows that the set {G = 0} is either
empty or a smooth curve depending on whether the set {G � 0} is empty or not (a
priori it could happen that {G = 0} = {G � 0} is a singleton, but assertion (iii) in the
previous lemma shows that this case does not occur). Similar properties hold for the
set {H = 0}. A simple calculation also shows that

det(Id−M(x, y)) = x2
det(∇G(x, y),∇H(x, y)). (3.25)

Consequently, if we assume that (x, y) satisfies (3.24), the condition det(Id−M(x, y)) =

0 will hold if and only if the curves CG and CH are tangent at (x, y).

CGaCHa

CHac

CGac

1 xa

ya

xac

yac

y

x

Figure 3.4 – Illustration of the sets CGa and CHa for 0 < a < ac and for a = ac

Proposition 3.29. Under Assumption (A1), there exists a unique positive real ac such
that acq is regular critical.

Démonstration. For every a > 0, writeMa(x, y) for the analogue of the matrixM(x, y)
when q is replaced by aq. Simple counting arguments (using for instance the BDG
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bijections and the fact that the sequence q has finite support, so that the degrees of
faces in maps m such thatWq(m) > 0 are bounded) show that the Boltzmann measure
Waq is finite for a > 0 small enough. Consequently we can fix a0 > 0 small enough so
that a0q is admissible. By previous observations, there exists a pair (xa0 , ya0) belonging
to the intersection of the curves {Ga0 = 0} and {Ha0 = 0} and such that the spectral
radius of the matrix Ma0(xa0 , ya0) is bounded above by 1. If the curves {Ga0 = 0} and
{Ha0 = 0} are tangent at (xa0 , ya0), then (3.25) shows that this spectral radius is equal
to 1, and thus a0q is regular critical.

Suppose that the curves {Ga0 = 0} and {Ha0 = 0} are not tangent at (xa0 , ya0).
Then, convexity arguments, using properties (i)–(iii) in Lemma 3.28, show that the
intersection of {Ga0 = 0} and {Ha0 = 0} consists of exactly two points (xa0 , ya0) and
(x�a0 , y

�
a0). By (3.25) and the fact that the spectral radius of Ma0(xa0 , ya0) is bounded

above by 1, we have

det(∇Ga0(xa0 , ya0),∇Ha0(xa0 , ya0)) > 0,

and simple geometric considerations show that (xa0 , ya0) must be the “first” intersection
point of {Ga0 = 0} and {Ha0 = 0}, in the sense that xa0 � x�a0 and ya0 � y�a0 .

Note that both sets Ga and Ha are decreasing functions of a, and vary continuously
with a (as long as they are non-empty). Geometric arguments, together with property
(iv) of Lemma 3.28, show that there exists a critical value ac > a0 such that for
a0 � a < ac the curves {Ga = 0} and {Ha = 0} intersect at exactly two points,
denoted by (xa, ya) and (x�a, y

�
a), such that xa � x�a and ya � y�a, and furthermore

the curves {Gac = 0} and {Hac = 0} are tangent at a point denoted by (xac , yac).
Moreover the mapping a �→ (xa, ya) is continuous on [a0, ac]. It follows that the spectral
radius of Ma(xa, ya) remains bounded above by 1 for a ∈ [a0, ac) : If this were not the
case, this spectral radius would take the value 1 at some a1 ∈ (a0, ac) but then by
(3.25) the curves {Ga1 = 0} and {Ha1 = 0} would be tangent at (xa1 , ya1), which is a
contradiction. Finally by letting a ↑ ac we get that the spectral radius of Mac(xac , yac)
is bounded above by 1, hence equal to 1 by (3.25) and the fact that {Gac = 0} and
{Hac = 0} are tangent at (xac , yac). We conclude that acq is regular critical.

The uniqueness of ac is clear since we can start the previous argument from an
arbitrarily small value of a0 and since the curves {Ga = 0} and {Ha = 0} will not
intersect when a > ac.



✐
✐

“theseavec” — 2011/5/24 — 15:45 — page 90 — #90 ✐
✐

✐
✐

✐
✐



✐
✐

“theseavec” — 2011/5/24 — 15:45 — page 91 — #91 ✐
✐

✐
✐

✐
✐

On limits of Graphs Sphere Packed in Euclidean Space

and Applications

Les résultats de ce chapitre ont été obtenus en collaboration avec

Itai Benjamini et ont été acceptés pour publication dans European Journal
of Combinatorics.

The core of this note is the observation that links between circle packings of graphs
and potential theory developed in [21] and [77] can be extended to higher dimen-
sions. In particular, it is shown that every limit of finite graphs sphere packed in Rd
with a uniformly-chosen root is d-parabolic. We then derive few geometric corolla-
ries. E.g. every infinite graph packed in Rd has either strictly positive isoperimetric
Cheeger constant or admits arbitrarily large finite sets W with boundary size which
satisfies |∂W | � |W | d−1

d +o(1). Some open problems and conjectures are gathered at
the end.

4.1 Introduction
The theory of random planar graphs, also known as two-dimensional quantum gra-

vity in the physics literature, has been rapidly developing for the last ten years, see
[15] for a survey. The analogous theory in higher dimension is notoriously hard and not
much established so far, this is due in particular to the fact that enumeration techniques
and bijective representations are missing, see for instance [14].
However there are a couple of two dimensional results that are not depending on enu-
meration. E.g. in [21], circle packing theory is used to show that limits (see Definition
4.2.3) of finite random planar graphs of bounded degree with a uniformly-chosen root
are almost surely recurrent. The goal of this note is to extend this result into higher
dimensions and to draw some consequences and conjectures.
We recall that recurrence means that the simple random walk on the graph returns to
the origin almost surely, or in a potential theory terminology that the graph is para-
bolic. A graph is parabolic if and only if it supports no flow with one source of flux
1, no sinks, and with gradient in L2. Replacing 2 by d � 3 yields to the concept of
d-parabolicity, see [133] and Section 4.2.2.
The analogous of circle packing theory in dimension d is easy to describe. A graph
is sphere packable in Rd if and only if it is the tangency graph of a collection of d-
dimensional balls with disjoint interiors : the balls of the packing correspond to the

91
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vertices of the graph and the edges to tangent balls, see Section 4.2.1. The theory of
circle packings of planar graphs is well developed and its relation to conformal geometry
is well established, see the beautiful survey [126]. The higher dimensional version is not
as neat. First, although all finite planar graphs (without loops nor multiple edges) can
be realized as the tangency graph of a circle packing in R2 (see below), yet there are
no natural families of graph packed in Rd for d � 3. Second, circle packings relates to
L2 potential theory while in higher dimension the link is to d-potential theory, which
is less natural and where the probabilistic interpretation is lacking. Still useful things
can be proved and conjectured. Indeed the main observation of this note is that links
between circle packings of graphs and potential theory over the graph (see [77]) can be
extended to higher dimensions, leading in particular to a generalization of [21, Theo-
rem 1.1] and suggests many problems for further research. For a precise formulation
of our main theorem (Theorem 4.9) we must introduce several technical notions and
definitions in the coming sections.

We hope that this minor contribution will open the doors for three and higher di-
mensional theory of sphere packing and quantum gravity. The proofs essentially follow
that of [21] and [77] with the proper modifications followed by a report on some new
geometric applications. For example we prove under a local bounded geometry assump-
tion defined in the next section that a sequence of k-regular graphs with growing girth
can not be all packed in a fixed dimension and that every infinite graph packed in Rd
either has strictly positive isoperimetric Cheeger constant or admits arbitrarily large
finite sets W with boundary size which satisfies |∂W | � |W | d−1

d +o(1).

Note that very recently the isoperimetric criterion of Proposition 4.14 was used in
[88] to prove that acute triangulations of the space Rd do not exist for d � 5.

4.2 Notations and terminology
In the following, unless indicated, all graphs are locally finite and connected.

4.2.1 Packings
Definition 4.1. A d-dimensional sphere packing or shortly d-sphere packing is a col-
lection P = (Bv, v ∈ V ) of d-dimensional balls of centers Cv and radii rv > 0 with
disjoint interiors in Rd. We associated to P an unoriented graph G = (V,E) called
tangency graph, where we put an edge between two vertices u and v if and only if the
balls Bu and Bv are tangent.

An accumulation point of a sphere packing P is an accumulation point of the centers
of the balls of P . Note that the name “sphere packing” is unfortunate since it deals
with balls. However this terminology is common and we will use it. The 2-dimensional
case is well-understood, thanks to the following Theorem.

Theorem 4.2 (Circle Packing Theorem). A finite graph G is the tangency graph of a
2-sphere packing if and only if G is planar and contains no multiple edges nor loops.
Moreover if G is a triangulation then this packing is unique up to Möbius transforma-
tions.
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This beautiful result has a long history, we refer to [137] and [126] for further
information. When d = 3, very little is known. Although some necessary conditions
for a finite graph to be the tangency graph of a 3-sphere packing are provided in
[92] (for a related higher dimensional result see [8]), the characterization of 3-sphere
packable graphs is still open (see last section). For packing of infinite graphs see [22].
To bypass the lack of a result similar to the last theorem in dimension 3 or higher, we
will restrict ourselves to packable graphs, that are graphs which admit a sphere packing
representation. One useful lemma in circle packing theory is the so-called “Ring lemma”
that enables us to control the size of tangent circles under a bounded-degree assumption.

Lemma 4.3 (Ring Lemma, [125]). There is a constant r > 0 depending only on n ∈ Z+

such that if n circles surround the unit disk then each circle has radius at least r.

Here also, since we have no analogous of the Ring Lemma in high dimensions, we
will required an additional property on the packings.

Definition 4.4. Let M > 0. A d-sphere packing P = (Bv, v ∈ V ) is M -uniform if, for
any tangent balls Bu and Bv of radii ru and rv we have

ru
rv

�M.

A graph G is M -uniform in dimension d, if it is a tangency graph of a M -uniform
sphere packing in Rd.

Remark 4.5. Note that an M -uniform graph in dimension d has a maximal degree
bounded by a constant depending only on M and d.

Remark 4.6. By the Ring Lemma, every planar graph of bounded degree without loops
nor multiple edges is M -uniform in dimension 2, where M only depends of the maximal
degree of the graph. The same holds in dimension 3 provided that the complex generated
by the centers of the spheres is a tetrahedrangulation (that is all simplexes of dimension
3 are tetrahedrons), see [144].

4.2.2 d-parabolicity
The classical theory of electrical networks and 2-potential theory is long studied

and well understood, in particular due to the connection with simple random walk
(see for example [57] for a nice introduction). On the other hand, non-linear potential
theory is much more complicated and still developing, for background see [133]. A key
concept for d-potential theory is the notion of extremal length and its relations with
parabolicity (extremal length is common in complex analysis and was imported in the
discrete setting by Duffin [58]). We present here the basic definitions that we use in the
sequel.
Let G = (V,E) be a locally finite connected graph. For v ∈ V we let Γ(v) be the set of
all semi-infinite self-avoiding paths in G starting from v. If m : V → R+ is assigning
length to vertices, the length of a path γ in G :

Lengthm(γ) :=

�

v∈γ
m(v).
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If m ∈ Ld(V ), we denote by �m�d the usual Ld norm (
�
v
m(v)d)1/d. The graph G is

d-parabolic if the d-vertex extremal length of Γ(v),

d -VEL(Γ)(v) := sup

m∈Ld
inf
γ∈Γ(v)

Lengthm(γ)d

�m�d
d

is infinite. It is easily seen that this definition does not depend upon the choice of v ∈ V .
This natural extension of VEL parabolicity from [77] can be found earlier in [22].

Remark 4.7. In the context of bounded degree graphs, 2-parabolicity is equivalent to
recurrence of the simple random walk on the graph, see [77] and the references the-
rein. In general, 2-VEL is closely related to discrete conformal structures such as circle
packings and square tilings, see [20, 39, 128].

4.2.3 Limit of graphs
A rooted graph (G = (V,E), o ∈ V ) is isomorphic to (G� = (V �, E�), o� ∈ V �) if there

is a graph-isomophism of G onto G� which takes o to o�. We can define (as introduced
in [21]) a distance ∆ on the space of isomorphism classes of locally finite rooted graphs
by setting

∆
�
(G, o), (G�, o�)

�
=

�
1 + sup

�
k : BallG(o, k) isomorphic to BallG�(o

�, k)
� �−1

,

where BallG(o, k) is the closed combinatorial ball of radius k around o in G for the graph
distance. In this work, limits of graph should be understood as referring to ∆. It is easy
to see that the space of isomorphism classes of rooted graphs with maximal degree less
than M is compact with respect to ∆. In particular every sequence of random rooted
graphs of degree bounded by M admits weak limits.

Definition 4.8. A random rooted graph (G, o) is unbiased if (G, o) is almost surely
finite and conditionally on G, the root o is uniform over all vertices of G.

We are now ready to state our main result. The case d = 2 is [21, Theorem 1].

Theorem 4.9. Let M � 0 and d ∈ {2, 3, ...}. Let (Gn, on)n�0 be a sequence of unbiased
random rooted graphs such that, almost surely, for all n � 0, Gn is M -uniform in
dimension d. If (Gn, on) converges in distribution towards (G, o) then G is almost surely
d-parabolic.

Applications of Theorem 4.9 will be discussed in Section 4.

4.3 Proof of Theorem 4.9
We follow the structure of the proof of [21, Theorem 1] :

1. We first construct a limiting random packing whose tangency graph contains the
limit of the finite graphs.

2. The main step consists in showing that this packing has at most one accumulation
point (for the centers) in Rd , almost surely.



✐
✐

“theseavec” — 2011/5/24 — 15:45 — page 95 — #95 ✐
✐

✐
✐

✐
✐

Cartes planaires aléatoires 95

3. Finally we conclude by quoting a theorem relating packing in Rd and d-parabolicity.
Let (Gn, on)n�0 be a sequence of unbiased, M -uniform in dimension d, random rooted
graphs converging to a random rooted graph (G, o). Given Gn, let Pn be a deterministic
M -uniform packing of Gn in Rd. We can assume that on is independent of Pn.

Suppose that C ⊂ Rd is a finite set of points (in the application below, C will
be the set of centers of balls in Pn). When w ∈ C, we define its isolation radius as
ρw := inf

�
|v − w| : v ∈ C \ {w}

�
. Given δ ∈ (0, 1), s > 0 and w ∈ C, following [21]

we say that w is (δ, s)-supported if in the ball of radius δ−1ρw centered at w, there are
more than s points of C outside of every ball of radius δρw ; that is, if

inf
p∈Rd

���C ∩ BallRd(w, δ
−1ρw) \ BallRd(p, δρw)

��� ≥ s .

w ρw

Figure 1: Illustration of the definition of (δ, s)-supported. Here, the point w is (0.5, 7)-

supported.

are M -uniform, the centers Cv and radii rv of sphere Sv corresponding to vertices

v ∈ Vi such that dgr(oi, v) � k are in a compact space:

dgr(oi, v) � k ⇒
�

rv ∈ [M−k,Mk
]

cv ∈ BRd(0,Mk+1
+ 1).

Hence, by compactness, we can assume that along a subsequence, the packing’s P̃j

converge (in a certain sense) in distribution to some random d-sphere packing P in

Rd
. It is easy to see that this convergence implies weak convergence of the random

rooted tangency graphs. We can assume with no loss of generality that there is no

need to pass to a subsequence.

Step 2:
If P is a d-sphere packing, an accumulation point of P is an accumulation point for

the centers of the spheres of P .

Proposition 3.1. Almost surely, P has at most one accumulation point.

To show this proposition, we mimic [3, Proposition 2.2, Lemma 2.3]. Suppose

that C ⊂ Rd
is a finite set of points. (In the application below, C will be the

set of centers of balls in Pj .) When w ∈ C, we define its isolation radius as

ρw := inf
�
|v−w| : v ∈ C \ {w}

�
. Given δ ∈ (0, 1), s > 0 and w ∈ C, we say that w

is (δ, s)-supported if in the ball of radius δ−1ρw, there are more than s points of C
outside of every ball of radius δρw; that is, if

inf
p∈Rd

���C ∩BRd(w, δ−1ρw) \ BRd(p, δρw)

��� ≥ s .

Remark 3.2. This definition is invariant under translation and dilatation of the
set C ⊂ Rd.

Lemma 3.3. Let d � 2. For every δ ∈ (0, 1) there is a constant c = c(δ, d) such
that for every finite C ⊂ Rd and every s ≥ 2 the set of (δ, s)-supported points in C
has cardinality at most c|C|/s.

4

Fig. 1 : Illustration of the definition of (δ, s)-supported. Here, the point w is
(0.5, 10)-supported

Lemma 4.10 ([21]). Let d � 2. For every δ ∈ (0, 1) there is a constant c(δ, d) such
that for every finite set C ⊂ Rd and every s ≥ 2 the set of (δ, s)-supported points in C
has cardinality at most c(δ, d)|C|/s.

Lemma 2.3 in [21] deals with the case d = 2, but the proof when d � 2 is the same
and is therefore omitted.

Now, thanks to this lemma and to the fact that the point on has been chosen
independently of the packing Pn, for any δ > 0 and any n � 0, the probability that the
center of the ball Bon is (δ, s)-supported in the centers of Pn goes to 0 as s → ∞. Let
P̃n be the image of Pn under a linear mapping so that the ball Bon is the unit ball in
Rd. Since the definition of (δ, s)-supported is invariant under dilations and translations,
we have

P
�
0 is (δ, s)-supported in the centers of P̃n

�
−→
s→∞

0. (4.1)
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Let P̃n be the union of the spheres of the packing P̃n and C̃n be the union of the
centers of the spheres of P̃n. By definition, P̃n and C̃n are random closed subsets of Rd.
The topology of Hausdorff convergence on every compact of Rd is a compact topology
for closed subsets of Rd. Hence, we can assume that along a subsequence we have the
following convergence in distribution

�
(Gn, on), P̃n, C̃n

�
−→
n→∞

�
(G, o),P,C

�
, (4.2)

related to ∆ for the first component and to the Hausdorff convergence on every compact
of Rd for the second and third ones. Without loss of generality we can suppose that
there is no need to pass to a subsequence and by Skorhokhod representation theorem
that the convergence (4.2) is almost sure.

Proposition 4.11. The random closed set P is almost surely the closure of a sphere
packing in Rd whose centers have at most one accumulation point in Rd. Furthermore,
the tangency graph associated to P almost surely contains (G, o) as a subgraph.

Démonstration. We begin with the second claim of the proposition. By definition of
P̃n we know P contains the unit sphere of Rd that corresponds to o ∈ G. Since the
packings P̃n are M -uniform, any vertex neighbor of on in Gn corresponds to ball in the
packing whose radius is in [M−1,M ] and tangent to the unit ball of Rd. This property
passes to the limit and by (4.2) we deduce that any neighbor of o in G corresponds to
a sphere of P of radius in [M−1,M ] and tangent to the unit sphere of Rd. A similar
argument shows that P almost surely contains tangent spheres whose tangency graph
contains G. Note that in the set P new connections can occur (non tangent spheres in
P̃n can become tangent at the limit).
The first part of the proposition reduces to showing that C almost surely has at most
one accumulation point in Rd. We argue by contradiction and we suppose that with
probability bigger than ε, there exist two accumulation points A1 and A2 in C such
that |A1 − A2| � ε and |A1|, |A2| � ε−1. This implies, by (4.2), that for any s � 0

with a probability asymptotically bigger than ε the point 0 is (ε/2, s)-supported in C̃n.
Which contradicts (4.1).

Since every subgraph of a d-parabolic graph is itself d-parabolic (obvious from the
definition), the following extension of [77, Theorem 3.1 (1)] together with the last
proposition enables us to finish to proof of the Theorem 4.9.

Theorem 4.12 ([22, Theorem 7]). Let G be a graph of bounded degree. If G is packable
in Rd and if the packing has finitely many accumulation points in Rd, then G is d-
parabolic.

Remark 4.13. In order to be totally accurate, the d-parabolicity notion defined in [22]
corresponds to the definitions of Section 4.2.2 when the function m is defined on the
edges of the graph. But these two notions easily coincide in the bounded degree case.
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4.4 Geometric applications
4.4.1 Isoperimetric inequalities and alternative

If W is a subset of a graph G, we recall that ∂W is the set of vertices not in W
but neighbor with some vertex in W . We begin with an isoperimetric consequence of
d-parabolicity which is an extension of [77, Theorem 9.1(1)]. The proof is similar.

Proposition 4.14. Let G = (V,E) be a locally finite, infinite, connected graph. Let
o ∈ V , and g : R+ → R∗+ be some nondecreasing function.
(1) Suppose that G is d-parabolic. If for every finite set W containing o ∈W , we have
|∂W | � g(|W |) then

∞�

n=1

g(n)−
d
d−1 =∞. (4.3)

(2) If g satisfies (4.3) and if |∂Wk| � g(|Wk|), for (Wk)k�0 defined recursively by

W0 = {o} and Wk+1 =Wk ∪ ∂Wk for k � 0,

then G is d-parabolic.

Démonstration. We know by assumption that d -VEL(Γ(o)) =∞. This implies that we
can find functions mi : V → R+ such that �mi�d = 2

−i and infγ∈Γ(o) Lengthmi
(γ) � 1.

Hence m :=
�∞
i=0
mi defines a function on V such that

�m�d � 1 and inf
γ∈Γ(o)

Lengthm(γ) =∞.

Without loss of generality we will suppose that m(v) > 0 for all vertices v ∈ V . The
function m ∈ Ld(V ) defines a function V × V → R+ by setting

dm(v, v�) := inf{Lengthm(γ), γ : v → v�}.

The idea is to explore the graph G in a continuous manner according to dm and to use
the isoperimetric inequality provided by g. For each v ∈ V let

Iv := [dm(o, v)−m(v),dm(o, v)].

For h ∈ R+, we define sv(h) :=
Leb(Iv∩[0,h])

m(v)
. Intuitively, water flows in the graph

G starting from o, m(v) is the time that water needs to wet v before flowing to its
neighbors. A vertex v ∈ V begin to get wet at h = min Iv and is completely wet
at h = max Iv. The function sv(h) represents the percentage of water in v. We set
s(h) :=

�
v∈V sv(h). Since dm(o,∞) = ∞, for every h ∈ R+ there are only finitely

many v ∈ V such that sv(h) �= 0 and then s(h) is piecewise linear. We denote Wh :=

{v ∈ V , h � max Iv} the set of vertices that are totaly wet at time h and Gh := {v ∈
V , dm(o, v)−m(v) � h < dm(o, v)} the set of vertices that are getting wet at time h.
Clearly Gh = ∂Wh. Let

f(x) = min

�
g
�
x

2

�
,
x

2

�
.
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If |Gh| � s(h)/2 then
|Gh| � f(s(h)), (4.4)

otherwise |Gh| < s(h)/2, then the number of completely wet vertices is at least s(h)/2
(because sv(h) � 1) and consequently |Gh| � g(s(h)/2). Thus (4.4) always holds.
At points where h �→ s(h) is differentiable we have

ds

dh
(h) =

�

v∈Gh
s�v(h) =

�

v∈Gh

1

m(v)
.

Writing 1 = m(v)(d−1)/dm(v)−(d−1)/d and using Hölder inequality with p = d we get




�

v∈Gh
1



 �



�

v∈Gh

1

m(v)





d−1
d



�

v∈Gh
m(v)d−1




1/d

,

and thus using (4.4) :

ds

dh
(h) � |Gh|

d
d−1

��
v∈Ghm(v)d−1

� 1
d−1

� f(s(h))
d
d−1

��
v∈Ghm(v)d−1

� 1
d−1
,

therefore ds

f(s(h))
d
d−1

� dh
��
v∈Ghm(v)d−1

� 1
d−1
.

Integrating for 0 < a < h < b <∞ and using Hölder with p = d we get

�
s(b)

s(a)

ds

f(s)
d
d−1

�
�
b

a

dh
��
v∈Ghm(v)d−1

� 1
d−1

� (b− a)d/(d−1)

��
b

a

��
v∈Ghm(v)d−1

�
dh
�

1/(d−1)
.

Remark that
�∞

0

��
v∈Ghm(v)d−1

�
dh =

�
v∈V m(v)d < ∞, and that s(b) → ∞ when

b → ∞. We conclude that the integral of f(.)−
d
d−1 diverges and the same conclusion

holds for g(.)−
d
d−1 . Since g(.) is non-decreasing, a comparison series-integral ends the

proof of the first part of the proposition.
For the second part, set nk = |Wk| and define for N ∈ N∗ a function m : V → R+ on
G by

m(v) =

�
g(nk)

− 1
d−1 for v ∈ ∂Wk and k � N,

0 otherwise.

Then we have inf{Lengthm(γ) : γ ∈ Γ(o)} ��N
k=0
g(nk)

− 1
d−1 and

�m�dd �
N�

k=0

|∂Wk|
g(nk)d/(d−1)

�
N�

k=0

g(nk)
− 1
d−1 .
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By definition of the extremal length, it suffices to show that
�∞
k=0
g(nk)

− 1
d−1 = ∞.

Note that nk+1 � nk + g(nk), thus by monotonicity of g, we obtain

1

g(nk)
1
d−1

� 1

nk+1 − nk

nk+1−1�

n=nk

1

g(n)
1
d−1

�
nk+1−1�

n=nk

1

g(nk)

1

g(n)
1
d−1

�
nk+1−1�

n=nk

1

g(n)d/(d−1)
.

Which implies
∞�

k=0

g(nk)
− 1
d−1 �

∞�

n0

g(n)−d/(d−1)
=∞.

Let us recall the definition of the Cheeger constant of a infinite graph G :

Cheeger(G) := inf

� |∂W |
|W | :W ⊂ G, |W | <∞

�
.

The following corollary generalizes a theorem regarding planar graphs indicated by
Gromov and proved by several authors. See Bowditch [35] for a very short proof and
references for previous proofs.

Corollary 4.15. Let G be an infinite locally finite connected graph which admits a
M -uniform packing in Rd. Then we have the following alternative :

– either G has a positive Cheeger constant,
– or for any ε > 0, there are arbitrarily large subsets W of G such that

|∂W | � |W | d−1
d +ε.

Démonstration. Let G be a infinite connected graph which is the tangency graph of a
M -uniform packing in Rd (in particular G has bounded degree). If Cheeger(C) = 0,
then we can find a sequence of subsets Ai ⊂ G such that

|∂Ai|
|Ai|

−→
i→∞

0.

Remark that the A�
i
s are not necessarily connected subgraphs. For each i � 0, we

pick a vertex oi uniformly at random among the vertices of Ai and denote C(oi, Ai)
the connected component of Ai connecting oi. By a compactness argument (see the
discussion before Definition 4.8) we deduce that along a subsequence we have the weak
convergence for ∆

�
C(Ai, oi), oi

� (d)−→
i→∞

(A, o),

where (A, o) is a random rooted graph. We assume that there is no need to pass to a
subsequence. Therefore the sequence of rooted random graphs (C(Ai, oi), oi)i�1 satisfies
all the hypotheses of Theorem 4.9, in particular (A, o) is almost surely d-parabolic. By
Proposition 4.14, for any δ, ε > 0, there exists a.s. a random subset W ⊂ A containing
o and satisfying

|∂W | � δ|W | d−1
d +ε.
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In particular |W | � δ−1/(
d−1
d +ε). We claim that there exists an isomorphic copy of W

and its boundary already contained in G. Indeed for any k � 0, the bounded degree
assumption combined with the fact that |∂Ai||Ai| → 0 imply that

P (oi is at a graph distance less than k from ∂Ai) −−−→
i→∞

0.

Hence, almost surely for any k � 0, the ball of radius k around o in A is a subgraph of
some Ai’s and thus of G. This finishes the proof of the corollary.

4.4.2 Non existence of M -uniform packing

As a consequence of the last corollary, the graph Zd+1 cannot beM -uniform packed
in Rd for some M � 0. This is a weaker result compared to [22] where it is shown
that Zd+1 cannot be sphere packed in Rd using non-existence of bounded non constant
d-harmonic functions on Zd.

The parabolic index of a graph G (see [135]) is the infimum of all d � 0 such that G
is d-parabolic (with the convention that inf ∅ =∞). For example, Maeda [108] proved
that the parabolic index of Zd is d. It is easy to see that the parabolic index of a regular
tree is infinite, leading to the following consequence.

Corollary 4.16. Let Gn be a deterministic sequence of finite graphs. If there exists
f(n) −→

n→∞
∞ and k ∈ {2, 3, ...} such that

#{v ∈ Gn,BallGn(v, f(n)) = k-regular tree up to level f(n)}
|Gn|

−→
n→∞

1,

then for all M � 0, Gn eventually cannot be M -uniform packed in Rd.

Démonstration. Note that any unbiased weak limit of Gn is the k-regular tree and
apply Theorem 4.9.

That is, if for a sequence of k-regular graphs, k > 2, the girth grows to infinity then
only finitely many of the graphs can beM -uniform packed in any fixed dimension. The
same holds if the limit is some other nonamenable graph.

4.5 Open problems
Several necessary conditions are provided in this paper for a graph to be (M -

uniform) packed in Rd. The first two questions are related to existence of packable
graphs in Rd.

Question 2. 1. Find necessary and sufficient conditions for a graph to be (M -
uniform) packable in Rd.

2. Exhibit a natural family of graphs which are (M -uniform) packable in Rd.
3. Show that the number of tetrahedrangulations in R3 with n vertices grows to in-

finity.
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Question 3. It is of interest to understand what is the analogue of packing of a graph
and the results above in the context of Riemannian manifolds. Is packable in the discrete
context of graphs analogous to conformally flat ?

Question 4. Show that the Cayley graph of Heisenberg group H3(Z) generated by

A =




1 1 0

0 1 0

0 0 1



 and B =




1 0 0

0 1 1

0 0 1



 ,

is not packable in Rd though is known to be 4-parabolic, see e.g. [133].

The two following questions deal with the geometry of the accumulation points (of
centers) of packing in Rd.

Question 5. Does there exist a graph G packable in Rd in two manners P1 and P2

such that the set of accumulation points in Rd ∪ {∞} for P1 is a point but not for P2 ?

Question 6 ([22]). Show that any packing of Z3 in R3 has at most one accumulation
point in Rd ∪ {∞}.

Question 7 (Parabolicity for edges). What is left of Theorem 4.9 in the context of edge
parabolicity (where the function m of Section 4.2.2 is defined on the edges of the graph)
without the bounded degree assumption ? For instance, is it the case that every limit of
unbiased random planar graphs is 2-edge-parabolic (which means SRW is recurrent) ?

Question 8 (Diffusivity). Let G be a d-parabolic graph. Consider (Si)i�0 a simple
random walk on G. Do we have

lim inf
n→∞

dgr(S0, Sn)√
n

<∞ ?

Question 9 (Mixing time). Let G be a finite graph packable in Rd with bounded degree.
Show that mixing time is bigger than Cd diameter(G)

2. In particular the planar d = 2

case is still open.

Acknowledgments : Part of this work was done during visit of the second author to
Weizmann Institute. The second author thanks his hosts for this visit. We are indebted
to Steffen Rohde and to James T. Gill for pointing out several inaccuracies in a first
version of this work. Thanks for the referee for a very useful report.
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Stationary Random Graphs

Les résultats de ce chapitre ont été obtenus en collaboration avec

Itai Benjamini et ont été soumis pour publication.

A stationary random graph is a random rooted graph whose distribution is invariant
under re-rooting along the simple random walk. We adapt the entropy technique de-
veloped for Cayley graphs and show in particular that stationary random graphs of
subexponential growth are almost surely Liouville, that is, admit no non constant
bounded harmonic function. Applications include the uniform infinite planar qua-
drangulation and long-range percolation clusters.

5.1 Introduction
A stationary random graph (G, ρ) is a random rooted graph whose distribution

is invariant under re-rooting along a simple random walk started at the root ρ (see
Section 5.1.1 for a precise definition). The entropy technique and characterization of
the Liouville property for groups, homogeneous graphs or random walk in random
environment [80, 81, 83, 84] are adapted to this context. In particular we have

Theorem 5.1. Let (G, ρ) be a stationary random graph of subexponential growth in
the sense that

n−1
E

�
log
�
#BG(ρ, n)

��
−→
n→∞

0, (5.1)

where #BG(ρ, n) is the number of vertices within distance n from the root ρ, then
(G, ρ) is almost surely Liouville.

Recall that a function from the vertices of a graph to R is harmonic if and only if
the value of the function at a vertex is the average of the value over its neighbors, for
all vertices of the graph. We call graphs admitting no non constant bounded harmonic
functions Liouville. In the case of graphs of bounded degree, Corollary 5.13 characterizes
stationary non-Liouville random graphs as those on which the simple random walk is
ballistic.

The motivation of this work lies in the study of the Uniform Infinite Planar Qua-
drangulation (abbreviated by UIPQ) introduced in [89] (following the pionneer work
of [11]). The UIPQ is a random infinite planar graph whose faces are all squares
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which is stationary. This object is very natural and of special interest for unders-
tanding two dimensional quantum gravity and has triggered a lot of work, see e.g.
[10, 11, 42, 49, 101, 111]. One of the fundamental questions regarding the UIPQ, is to
prove recurrence or transience of simple random walk on this graph. Unfortunately, the
degrees in the UIPQ are not bounded thus the techniques of [21] fail to apply. Never-
theless it has been conjectured in [11] that the UIPQ is a.s. recurrent. As an application
of Theorem 5.1, we deduce a step in this direction,

Corollary 5.2. The Uniform Infinite Planar Quadrangulation is almost surely Liou-
ville.

See also the very recent work of Steffen Rohde and James T. Gill [71] proving that
the conformal type of the Riemann surface associated to the UIPQ is parabolic. Ano-
ther application concerns a question of Berger [23] proving that certain long range
percolation clusters are Liouville (see Section 5.2).

The notion of stationary random graph generalizes the concept of Cayley and tran-
sitive graph where the homogeneity of the graph is replaced by an invariant distribution
along the simple random walk. This notion is very closely related to the ergodic theory
notions of unimodular random graphs of [7] and measured equivalence relations see
e.g. [82]. Roughly speaking, unimodular random graphs correspond, after biasing by
the degree of the root, to stationary and reversible random graphs (see Definition 5.3).
Using ideas from measured equivalence relations theory we are able to prove (Theorem
5.18) that if a stationary random graph of bounded degree (G, ρ) is non reversible then
the simple random walk on G is ballistic, thus improving Theorem A of [122] and ex-
tending [134] in the case of transitive graphs.

In a forthcoming work, the authors also use the notion of stationary and unimodular
random graph in order to show that the simple random walk on Zd indexed by T∞, the
critical geometric Galton-Watson tree conditioned to survive [85], is recurrent if and
only if d � 4.

The paper is organized as follows. The remaining of this section is devoted to a
formal definition of stationary and reversible random graphs. Section 2 recalls the
links between these concepts, unimodular random graphs and measured equivalence
relations. The entropy technique is developed in Section 3. In Section 4 we explore
under which conditions a stationary random graph is not reversible. The last section
is devoted to applications and open problems. It also contains (Proposition 5.22) a
construction of a stationary and reversible random graph of subexponential growth
which is planar and transient.

Acknowledgments : We are grateful to Pierre Pansu, Frederic Paulin and Damien
Gaboriau for many stimulating lessons on measured equivalence relations. We thank
Russell Lyons for comments and enlightening discussions and Jean-François Le Gall for
a careful reading of a first version of this paper. We are also indebted to Omer Angel
for a discussion that led to Proposition 5.22.
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5.1.1 Definitions

A graph G = (V(G),E(G)) is a pair of sets, V(G) representing the set of vertices
and E(G) the set of (unoriented) edges. In the following, all the graphs considered are
countable, connected and locally finite. We also restrict ourself to simple graphs, that
is, without loop nor multiple edge. Two vertices x, y ∈ V(G) linked by an edge are
called neighbors in G and we write x ∼ y. The degree deg(x) of x is the number of
neighbors of x in G. For any pair x, y ∈ G, the graph distance d

G

gr(x, y) is the minimal
length of a path joining x and y in G. For every r ∈ Z+, the ball of radius r around x
in G is the subgraph of G spanned by the vertices at distance less than or equal to r
from x in G, it is denoted by BG(x, r).

A rooted graph is a pair (G, ρ) where ρ ∈ V(G) is called the root vertex. An isomor-
phism between two rooted graphs is a graph isomorphism that maps the roots of the
graphs. Let G• be the set of isomorphism classes of locally finite rooted graphs (G, ρ),
endowed with the distance dloc defined by

dloc

�
(G1, ρ1), (G2, ρ2)

�
= inf

�
1

r + 1
: r � 0 and (BG1(ρ1, r), ρ1) � (BG2(ρ2, r), ρ2)

�
,

where � stands for the rooted graph equivalence. With this topology, G• is a Polish
space (see [21]). Similarly, we define G•• (resp. �G) be the set of isomorphism classes
of bi-rooted graphs (G, x, y) that are graphs with two distinguished ordered points
(resp. graphs (G, (xn)n�0) with an semi-infinite path), where the isomorphisms consi-
dered have to map the two distinguished points (resp. the path). These two sets are
equipped with variants of the distance dloc and are Polish with the induced topologies.
Formally elements of G•,G•• and �G are equivalence classes of graphs, but we will not
distinguish between graphs and their equivalence classes and we use the same termi-
nology and notation. One way to bypass this identification is to choose once for all a
canonical representant in each class, see [7, Section 2].

Let (G, ρ) be a rooted graph. For x ∈ V(G) we denote the law of the simple random
walk (Xn)n�0 on G starting from x by P

G
x and its expectation by E

G
x . It is easy to

check that when (G, ρ) is an equivalence class of rooted graphs the distribution of
(G, (Xn)n�0) ∈ �G when (Xn) starts from ρ is well-defined. We speak of “the simple
random walk of law P

G
ρ conditionally on (G, ρ)”. It is easy to check that all the quantities

we will use in the paper do not depend of a choice of a representative of (G, ρ).
A random rooted graph (G, ρ) is a random variable taking values in G•. In this work

we will use P and E for the probability and expectation referring to the underlying
random graph. If conditionally on (G, ρ), (Xn)n�0 is the simple random walk started
at ρ, we denote the distribution of (G, (Xn)n�0) ∈ �G by P, and the corresponding
expectation by E. The following concept is quite standard.

Definition 5.3. Let (G, ρ) be a random rooted graph. Conditionally on (G, ρ), let
(Xn)n�0 be the simple random walk on G starting from ρ. The graph (G, ρ) is called
stationary if

(G, ρ) = (G,Xn) in distribution, for all n � 1, (5.2)
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or equivalently for n = 1. In words a stationary random graph is a random rooted
graph whose distribution is invariant under re-rooting along a simple random walk on
G. Furthermore, (G, ρ) is called reversible if

(G,X0, X1) = (G,X1, X0) in distribution. (5.3)

Clearly any reversible random graph is stationary.

Example 5.1. Any Cayley graph rooted at any vertex is stationary and reversible. Any
transitive graph G (i.e. whose isomorphism group is transitive on V(G)) is stationary.
For examples of transitive graphs which are not reversible, see [18, Examples 3.1 and
3.2]. E.g. the “grandfather” graph (see Fig. below) is a transitive (hence stationary)
graph which is not reversible.

If conditionally on (G, ρ), (Xn)n�0 is the simple random walk started at ρ, we denote the
distribution of (G, (Xn)n�0) ∈ �G by P, and by E the respective expectation.

Definition 1.3. Let (G, ρ) be a random rooted graph. Conditionally on (G, ρ), let (Xn)n�0 be
the simple random walk on G starting from ρ. The graph (G, ρ) is called stationary if

(G, ρ) = (G,Xn) in distribution, for all n � 1, (2)

or equivalently for n = 1. In words a stationary random graph is a random rooted graph whose
distribution is invariant under re-rooting along a simple random walk on G. Furthermore, (G, ρ)
is called reversible if

(G,X0,X1) = (G,X1,X0) in distribution. (3)

Clearly any reversible random graph is stationary.

Example 1. Any Cayley graph rooted at any vertex is stationary and reversible. Any transitive
graph G (i.e. whose isomorphism group is transitive on V(G)) is stationary. For examples of
transitive graphs which are not reversible, see [6, Examples 3.1 and 3.2]. E.g. the “grandfather”
graph (see Fig. below) is a transitive (hence stationary) graph which is not reversible.

∞

Fig.: The “grandfather” graph is obtained from the 3-regular tree by choosing a point at
Infinity that orientates the graph and adding all the edges from grand sons to grand-father.

Example 2. [8, Section 3.2] Let G be a finite connected graph. Pick a vertex ρ ∈ V(G) with a
probability proportional to its degree (normalized by

�
u∈V(G) deg(u)). Then (G, ρ) is a reversible

random graph.

Example 3 (Augmented Galton-Watson tree). Consider two independent Galton-Watson trees
with offspring distribution (pk)k�0. Link the roots vertices of the two trees by an edge and root
the obtained graph at the root of the first tree. The resulting random rooted graph is stationary
and reversible, see [22, 23, 16].

2 Connections with other notions

As we will see, the concept of stationary random graph can be linked to various notions. In the
context of bounded degree, stationary random graphs generalize unimodular random graphs [1].
Stationary random graphs are closely related to graphed equivalence relation with an harmonic
measure, see [25]. We however think that the probabilistic Definition 1.3 is more natural and
shed some additional light on the concept.

3

Fig. : The “grandfather” graph is obtained from the 3-regular tree by choosing a point
at infinity that orientates the graph and adding all the edges from grand sons to

grand-fathers.

Example 5.2. [21, Section 3.2] Let G be a finite connected graph. Pick a vertex ρ ∈
V(G) with a probability proportional to its degree (normalized by

�
u∈V(G)

deg(u)). Then
(G, ρ) is a reversible random graph.

Example 5.3 (Augmented Galton-Watson tree). Consider two independent Galton-
Watson trees with offspring distribution (pk)k�0. Link the root vertices of the two trees
by an edge and root the obtained graph at the root of the first tree. The resulting random
rooted graph is stationary and reversible, see [82, 106, 107].

5.2 Connections with other notions
As we will see, the concept of stationary random graph can be linked to various

notions. In the context of bounded degree, stationary random graphs generalize uni-
modular random graphs [7]. Stationary random graphs are closely related to graphed
equivalence relations with an harmonic measure, see [122]. We however think that the
probabilistic Definition 5.3 is more natural for our applications.
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5.2.1 Ergodic theory
We formulate the notion of stationary random graphs in terms of ergodic theory.

We can define the shift operator θ on �G by θ
�
(G, (xn)n�0)

�
=
�
G, (xn+1)n�0

�
, and the

projection π : �G → G• by π
�
(G, (xn)n�0)

�
= (G, x0).

Recall from the last section that if P is the law of (G, ρ) we write P for the distri-
bution of (G, (Xn)n�0) where (Xn)n�0 is the simple random walk on G starting at ρ.
The following proposition is a straightforward translation of the notion of a stationary
random graph into that of a θ-invariant probability measure on �G.

Proposition 5.4. Let P a probability measure on G• and P the associated probability
measure on �G. Then P is stationary if and only if P is invariant under θ.

As usual, we will say that P (and by extension P or directly (G, ρ)) is ergodic if P
is ergodic for θ. Proposition 5.4 enables us to use all the powerful machinery of ergodic
theory in the context of stationary random graphs. For instance, the classical theorems
on the range and speed of a random walk on a group are valid :

Theorem 5.5. Let (G, ρ) be a stationary and ergodic random graph. Conditionally
on (G, ρ) denote (Xn)n�0 the simple random walk on G starting from ρ. Set Rn =

#{X0, . . . , Xn} and Dn = d
G

gr(X0, Xn) for the range and distance from the root of the
random walk at time n. There exists a constant s � 0 such that we have the following
almost sure and L1 convergences for P,

Rn
n

a.s. L1
−→
n→∞

P




�

i�1

{Xi �= ρ}



 , (5.4)

Dn
n

a.s. L1
−→
n→∞

s. (5.5)

Remark 5.6. In particular a stationary and ergodic random graph is transient if and
only if the range of the simple random walk on it grows linearly.

Démonstration. The two statements are straightforward adaptations of [54]. See also
[7, Proposition 4.8].

5.2.2 Unimodular random graphs
The Mass-Transport Principle has been introduced by Häggström in [76] to study

percolation and was further developed in [18]. A random rooted graph (G, ρ) obeys the
Mass-Transport principle (abbreviated by MTP) if for every Borel positive function
F : G•• → R+ we have

E




�

x∈V(G)

F (G, ρ, x)



 = E




�

x∈V(G)

F (G, x, ρ)



 . (5.6)

The name comes from the interpretation of F as an amount of mass sent from ρ to
x in G : the mean amount of mass that ρ receives is equal to the mean quantity it
sends. The MTP holds for a great variety of random graphs, see [7] where the MTP is
extensively studied.
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Definition 5.7. [7, Definition 2.1] If (G, ρ) satisfies (5.6) it is called unimodular (See
[7] for explanation of the terminology).

Let us explain the link between unimodular random graphs and reversible random
graphs. Suppose that F : G•• → R+ is a Borel positive function such that

F (G, x, y) = F (G, x, y)1x∼y. (5.7)

Applying the MTP to a unimodular random graph (G, ρ) with the function F we get

E

�
�

x∼ρ
F (G, ρ, x)

�

= E

�
�

x∼ρ
F (G, x, ρ)

�

,

or equivalently

E

�

deg(ρ)
1

deg(ρ)

�

x∼ρ
F (G, ρ, x)

�

= E

�

deg(ρ)
1

deg(ρ)

�

x∼ρ
F (G, x, ρ)

�

.

In other words, if (G̃, ρ̃) is distributed according to (G, ρ) biased by deg(ρ) (assuming
that E [deg(ρ)] < ∞) and if conditionally on (G̃, ρ̃), X1 is a one-step simple random
walk starting on ρ̃ in G̃ then we have the following equality in distribution

(G̃, ρ̃, X1)
(d)

= (G̃,X1, ρ̃). (5.8)

The graph (G̃, ρ̃) is thus reversible hence stationary. Reciprocally, if (G̃, ρ̃) is reversible
we deduce that the graph (G, ρ) obtained after biasing by deg(ρ)−1 obeys the MTP
with functions of the form F (G, x, y)1x∼y. By [7, Proposition 2.2] this is sufficient to
imply the full mass transport principle. Let us sum-up.

Proposition 5.8. There is a correspondence between unimodular random graphs such
that the expectation of the degree of the root is finite and reversible random graphs :

(G, ρ) unimodular and E[deg(ρ)] <∞
bias by deg(ρ)

�
bias by deg(ρ)−1

(G, ρ) reversible.

5.2.3 Measured equivalence relations
In this section we recall the link between random graphs and measured graphed

equivalence relations. This notion will not be used in the rest of the paper.

Let (B,µ) be a standard Borel space with a probability measure µ and let E ⊂ B2

be a symmetric Borel set. We denote the smallest equivalence relation containing E
by R. Under mild assumptions (see below) the triplet (B,µ,E) is called a measured
graphed equivalence relation (MGER). The set E induces a graph structure on B by
setting x ∼ y ∈ B if (x, y) ∈ E or (y, x) ∈ E. For x ∈ B, one can interpret the equiva-
lence class of x as a graph with the edge set given by E, which we root at the point x.
If x is sampled according to µ, any measured graphed equivalence relation can be seen
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as a random rooted graph.
Here are the mild conditions to require for (B,µ,E) to be a measured graphed equivalence relation. We
suppose that R ⊂ B2 is Borel, that each equivalence class is at most countable and that the R-satured
of any Borel set of µ measure zero is still of µ measure zero. We also assume that the applications
o : (x, y) ∈ E �→ x ∈ B and r : (x, y) ∈ E �→ (y, x) ∈ E are Borel and that #o−1(x) is finite for µ-
almost every x. We can define a probability measure ν on E by ν(f) =

�
B
dµ(x) 1

#o−1(x)
�
x∼y f((x, y)).

If ν and its push-forward r∗ν by r are mutually absolutely continuous then the triple (B,µ,E) is called
a measured graphed equivalence relation.

Reciprocally, the set G• can be equipped with a symmetric Borel set E where
((G, ρ), (G�, ρ�)) ∈ E if (G, ρ) and (G�, ρ�) represent the same isomorphism class of
non-rooted graphs but are rooted at two different neighboring vertices. Denote R the
smallest equivalence relation on G• that contains E. Thus a random rooted graph (G, ρ)
of distribution P gives rise to (G•,P, E) which, under mild assumptions on (G, ρ) is a
MGER.

Remark however that the measured graphed equivalence relation we obtain with
this procedure can have a graph structure on equivalence classes very different from the
graph (G, ρ). Consider for example the (random) graph Z2 rooted at (0, 0). Since Z2 is a
transitive graph, the measure obtained on G• by the above procedure is concentrated on
the singleton corresponding to the isomorphism class of (Z2, (0, 0)). Hence the random
graph associated to this MGER is the rooted graph with one point, which is quite
different from Z2 !

There are two ways to bypass this difficulty : considering rigid graphs (that are
graphs without non trivial isomorphisms see [82, Section 1E]) or add independent uni-
form labels ∈ [0, 1] on the graphs (see [7, Example 9.9]). Both procedures yield a MGER
whose graph structure is that of (G, ρ).

In particular we have the following dictionary between the notions of harmonic
MGER [122, Definition 1.11], totally invariant MGER [122, Definition 1.12], measure
preserving MGER [70, Section 8] or [7, Example 9.9] and the corresponding analogous
for random rooted graphs.

measured graphed equivalence relation random rooted graph
harmonic stationary

totally invariant reversible
measure preserving unimodular

5.3 The Liouville property
In this section, we extend a well-known result on groups first proved in [13] relating

Poisson boundary to entropy of a group. Here we adapt the proof which was given in [83,
Theorem 1] in the case of groups (see also [84] in the case of homogeneous graphs). We
basically follow the argument of [83] using expectation of entropy. The stationarity of
the underlying random graph together with the Markov property of the simple random
walk will replace homogeneity of the graph. We introduce the mean entropy of the
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random walk and prove some useful lemmas. Then we derive the main results of this
section.

In the following (G, ρ) is a stationary random graph. Recall that conditionally on
(G, ρ), P

G
x is the law of the simple random walk (Xn)n�0 on G starting from x ∈ V(G).

For every integer 0 � a � b < +∞, the entropy of the simple random walk started at
x ∈ V(G) between times a and b is

Hba(G, x) =

�

xa,xa+1,...,xb

ϕ
�
P
G

x (Xa = xa, . . . , Xb = xb)
�
,

where ϕ(t) = −t log(t). To simplify notation we write Ha(G, x) = Haa (G, x). Recalling
that (G, ρ) is a random graph we set

hba = E

�
Hba(G, ρ)

�
and ha = E [Ha(G, ρ)] .

Proposition 5.9. If (G, ρ) is a stationary random graph then (hn)n�0 is a subadditive
sequence.

Démonstration. Let n,m � 0. We have

Hn+m(G, ρ) =

�

xn+m

ϕ
�
P
G

ρ (Xn+m = xn+m)

�
.

Applying the Markov property at time n, we get

Hn+m(G, ρ) =

�

xn+m

ϕ

�
�

xn

P
G

ρ (Xn = xn)P
G

xn
(Xm = xn+m)

�

.

Since ϕ is concave and ϕ(0) = 0 we have ϕ(x + y) � ϕ(x) + ϕ(y),for every x, y � 0.
Hence we obtain

Hn+m(G, ρ) �
�

xn+m

�

xn

ϕ
�
P
G

ρ (Xn = xn)P
G

xn
(Xm = xn+m)

�

= Hn(G, ρ) +

�

xn

P
G

ρ (Xn = xn)Hm(G, xn).

Taking expectations one has using (5.2)

hn+m � hn + E

�
�

xn

P
G

ρ (Xn = xn)Hm(G, xn)

�

= hn + E [Hm(G,Xn)] = hn + hm.

The subadditive lemma then implies that
hn
n
−→
n→∞

h � 0. (5.9)

This limit is called the mean entropy of the stationary random graph (G, ρ). It plays the
role of the (deterministic) entropy of a random walk on a group. The following theorem
generalizes the well-known connection between Liouville property and entropy.
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Theorem 5.10. Let (G, ρ) be a stationary random graph. The following conditions are
equivalent :

– the tail σ-algebra associated to the simple random walk on G started from ρ is
almost surely trivial (in particular (G, ρ) is almost surely Liouville),

– the mean entropy h of (G, ρ) is null.

Before doing the proof, we start with a few lemmas.

Lemma 5.11. For every 0 � a � b < ∞ we have hba = ha + (b − a)h1. In particular
for k � 1 we have hk

1
= kh1.

Démonstration. Let 0 � a � b <∞. An application of the Markov property at time a
leads to

Hba(G, ρ) = −
�

xa,...,xb

P
G

ρ (Xa = xa, . . . , Xb = xb) log

�
P
G

ρ (Xa = xa, . . . , Xb = xb)
�

= −
�

xa

P
G

ρ (Xa = xa) log

�
P
G

ρ (Xa = xa)
�

+

�

xa

P
G

ρ (Xa = xa)H
b−a
1

(G, xa).

Taking expectations we get hba = ha + hb−a
1

. An iteration of the argument proves the
lemma.

If (G, ρ) is fixed and (Xn)n�0 is distributed according to P
G
ρ , we denote

Fn(G, ρ) = σ(X1, . . . , Xn),

Fn(G, ρ) = σ(Xn, . . .),

F∞(G, ρ) =

�

n�0

Fn(G, ρ).

The last σ-algebra consists of tail events. By classical results of entropy theory, for
all k � 0, the conditional entropy H(Fk(G, ρ) | Fn(G, ρ)) increases as n → ∞ and
converges to H(Fk(G, ρ) | F∞(G, ρ)). Furthermore, we have

H(Fk(G, ρ) | F∞(G, ρ)) � H(Fk(G, ρ)),

with equality if and only if Fk(G, ρ) and F∞(G, ρ) are independent.

Lemma 5.12. For 1 � k � n � m < +∞ we have E [H(X1, . . . , Xk | Xn, . . . , Xm)] =

kh1 + hn−k − hn.

Démonstration. We have by definition

H(X1, . . . , Xk | Xn, . . . , Xm)

= −
�

x1,...,xk
xn,...,xm

P
G

ρ (Xi = xi, 1 � i � k and n � i � m)

× log

�
P
G
ρ (Xi = xi, 1 � i � k and n � i � m)

PGρ (Xi = xi, n � i � m)

�

.
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Applying the Markov property at time k one gets

= Hk1 (G, ρ)−Hmn (G, ρ) +

�

xk

P
G

ρ (Xk = xk)H
m−k
n−k (G, xk),

and taking expectations using (5.2), the right-hand side becomes hk
1
− hmn + hm−k

n−k . An
application of Lemma 5.11 completes the proof.

In particular we see that the expected value of H(X1, . . . , Xk | Xn, . . . , Xm) does not
depend upon m (this is also true without taking expectation and follows from Markov
property at time n). If we let m → ∞ in the statement of the last lemma, we get by
monotonicity of conditional entropy and monotone convergence

E [H(Fk(G, ρ) | Fn(G, ρ))] = kh1 + hn−k − hn. (5.10)

Proof of Theorem 5.10. Using again the monotonicity of conditional entropy

H(F1(G, ρ) | Fn(G, ρ)) � H(F1(G, ρ) | Fn+1
(G, ρ))

and the equality (9.6.2) for k = 1, we deduce that (hn+1 − hn)n�0 is decreasing and
converges towards h̃ � 0. By (5.9) and Cesaro’s Theorem, we deduce that h̃ = h. Thus
letting n→∞ in (9.6.2) we get by monotone convergence

E [H(Fk(G, ρ) | F∞(G, ρ))] = k(h1 − h).

Comparing the last display with Lemma 5.11 (note that H(Fk(G, ρ)) = Hk
1
(G, ρ)), it

follows that h = 0 if and only if almost surely, for all k � 0, F∞(G, ρ) is independent
of Fk(G, ρ). In this case the classical Kolmogorov’s 0 − 1 law implies that F∞(G, ρ)
is almost surely trivial, in particular (G, ρ) is Liouville. This completes the proof of
Theorem 5.10.

Proof of Theorem 5.1. Let (G, ρ) be a stationary random graph of subexponential growth
that is E[log(#BG(ρ, n))] = o(n), as n → ∞. Thanks to Theorem 5.10, we only have
to prove that the mean entropy of G is zero. But by a classical inequality we have
Hn(G, ρ) � log(#BG(ρ, n)), taking expectations and using (5.9) yield the result.

In the preceding theorem we saw that subexponential growth plays a crucial role.
In the case of transitive or Cayley graphs, all the graphs considered have at most an
exponential growth. But that there are stationary graphs with superexponential growth,
here is an example.

Example 5.4. Let (G, ρ) be an augmented Galton-Watson tree (see Example 5.3) with
offspring distribution (pk)k�1 such that

�
k�1
kpk =∞. We have

lim inf
n→∞

E[log (BG(ρ, n))]

n
=∞.
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Corollary 5.13. Let (G, ρ) be a stationary and ergodic random graph of degree almost
surely bounded by M > 0. Conditionally on (G, ρ), let (Xn)n�0 be the simple random
walk on G starting from ρ. We denote the speed of the random walk by s and the
exponential volume growth of G by v, namely

s = lim sup
n→∞

n−1E
�
d
G

gr(X0, Xn)
�
,

v = lim sup
n→∞

n−1
E [log(#BG(ρ, n))] .

Then the mean entropy h of (G, ρ) satisfies

s2

2
� h � vs.

In particular h = 0 ⇐⇒ s = 0 and if s or v is null then (G, ρ) is almost surely
Liouville.

Remark 5.14. This is an extension of the “fundamental inequality” for groups [145,
Theorem 1], see also [84, Theorem 5.3.] for homogeneous graphs.

Démonstration. Since (G, ρ) is ergodic, we know from Theorem 5.5(5.5) that n−1
d
G

gr(X0, Xn)
converges almost surely and in L1

(P) towards s � 0. In particular if s > 0, for every
ε ∈]0, s[ we have

P
�
(s− ε)n � d

G

gr(X0, Xn) � (s+ ε)n
�
−→
n→∞

1. (5.11)

Lower bound. We suppose s > 0 otherwise the lower bound is trivial. We have

Hn(G, ρ) �
�

xn

d
G
gr(ρ,xn)�(s−ε)n

ϕ(P
G

ρ (Xn = xn))

= −
�

xn

d
G
gr(ρ,xn)�(s−ε)n

P
G

ρ (Xn = xn) log

�
P
G

ρ (Xn = xn)
�

At this point we use the Varopoulos-Carne estimates (see [107, Theorem 12.1]), for the
probability inside the logarithm. Hence,

Hn(G, ρ) � −
�

xn

d
G
gr(ρ,xn)�(s−ε)n

P
G

ρ (Xn = xn) log

�

2

√
M exp

�

−(s− ε)2n

2

��

= log

�

2

√
M exp

�

−(s− ε)2n

2

��

P
G

ρ

�
d
G

gr(X0, Xn) � (s− ε)n
�
. (5.12)

Now, we take expectation with respect to E, divide by n and let n→∞. Using (5.11)
and (5.9) we have h � (s−ε)2

2
.
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Upper bound. Fix ε > 0. To simplify notation, we write Bs for BG(ρ, (s+ ε)n) and Bcs
for BG(ρ, n)\BG(ρ, (s+ ε)n). We decompose the entropy Hn(G, ρ) as follows

Hn(G, ρ) =

�

xn∈Bs
ϕ(P

G

ρ (Xn = xn)) +

�

xn∈Bcs

ϕ(P
G

ρ (Xn = xn))

�



�

xn∈Bs
P
G

ρ (Xn = xn)



 log

�
#Bs�

xn∈Bs PGρ (Xn = xn)

�

+




�

xn∈Bcs

P
G

ρ (Xn = xn)



 log

�
#(Bcs)�

xn∈Bcs PGρ (Xn = xn)

�

.

We used the concavity of ϕ for the inequalities on the sums of the right-hand side.
Using the uniform bound on the degree, we get the crude upper bound #(Bcs) �
#BG(ρ, n) �Mn. Taking expectation we obtain (using the easy fact that for x ∈ [0, 1]

one has −x log(x) � e−1)

hn � 2e−1
+ E [log (#BG(ρ, (s+ ε)n))] + P

�
d
G

gr(X0, Xn) � (s+ ε)n
�
n log(M).

Divide the last quantities by n and let n → ∞, then (5.9) and (5.11) show that h �
(s+ ε)v.

5.4 The Radon-Nikodym Cocycle
In this part we borrow and reinterpret in probabilistic terms a notion coming from

the measured equivalence relation theory, the Radon-Nikodym cocycle, in order to
deduce several properties of stationary non reversible graphs, (see e.g. [82] for another
application). This notion will play the role of the modular function in transitive graphs,
see [134]. In the remaining of this section, (G, ρ) is a stationary random graph whose
degree is almost surely bounded by a constant M > 0.

Conditionally on (G, ρ) of law P, let (Xn)n�0 be a simple random walk of law
P
G
ρ . Let µ→ and µ← be the two probability measures on G•• such that µ→ is the law

of (G,X0, X1) and µ← that of (G,X1, X0). It is easy to see that the two probability
measures µ→ and µ← are mutually absolutely continuous. To be precise, for any Borel
set A ⊂ G••, we have

P ((G,X0, X1) ∈ A) = P ((G,X1, X2) ∈ A)

� P ((G,X1, X0) ∈ A , X2 = X0)

� M−1P ((G,X1, X0) ∈ A) .

We used the stationarity for the first equation. Thus the Radon-Nikodym derivative of
(G,X1, X0) with respect to (G,X0, X1), given for any (g, x, y) ∈ G•• such that x ∼ y
by

∆(g, x, y) :=
dµ←
dµ→

(g, x, y),
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can be chosen such that

M−1 � ∆(g, x, y) �M. (5.13)

Note that the function ∆ is defined up to a set of µ→-measure zero, and in the following
we fix an arbitrary representative satisfying (5.13) and we keep the notation ∆ for this
function. Since ∆ is a Radon-Nikodym derivative we obviously have E[∆(G,X0, X1)] =

1 and Jensen’s inequality yields

E
�

log
�
∆(G,X0, X1)

�� � 0, (5.14)

with equality if and only if ∆(G,X0, X1) = 1 almost surely. In this latter case the
two random variables (G,X0, X1) and (G,X1, X0) have the same law, that is (G, ρ) is
reversible.

Lemma 5.15. With the above notation, let A be a Borel subset of G•• of µ→-measure
zero. Then for P-almost every rooted graph (g, ρ) and every x, y ∈ V(g) such that x ∼ y
we have (g, x, y) /∈ A.

Démonstration. By stationary, for any n � 0 the variable (G,Xn, Xn+1) has the same
distribution as (G,X0, X1). Thus we have

0 =

�

n�0

P ((G,Xn, Xn+1) ∈ A) = E




�

n�0

1(G,Xn,Xn+1)∈A





= E




�

x∼y∈G
1(G,x,y)∈A




�

n�0

P
G

ρ (Xn = x,Xn+1 = y)







 .

Let x ∼ y in G. Since G is connected, there exists values of n such that the proba-
bility that Xn = x and Xn+1 = y is positive. Thus the sum between parentheses in the
last display is positive. This proves the lemma.

Note that the function (g, x, y)→ ∆(g, y, x) is also a version of the Radon-Nikodym
derivative dµ→

dµ←
, hence we have ∆(g, x, y) = ∆(g, y, x)−1 for µ→-almost every bi-rooted

graphs in G••. By the above lemma we also have ∆(g, x, y) = ∆(g, y, x)−1 for P-almost
every rooted graph (g, ρ) and every vertices x, y ∈ V(g) such that x ∼ y.

Lemma 5.16. For P-almost every (g, ρ), and every cycle ρ = x0 ∼ x1 ∼ . . . ∼ xn = ρ
in g we have

n−1�

i=0

∆(g, xi, xi+1) = 1. (5.15)

Démonstration. In the measured equivalence relation theory this proposition is known
as the cocycle property of the so-called Radon-Nikodym derivative of the equivalence
relation, see [122, Lemme 1.16]. However we give a probabilistic proof of this fact.
By a standard calculation on the simple random walk, conditionally on (G, ρ) and on
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{ρ = X0 = Xn}, the path (X0, X1, . . . , Xn−1, Xn) has the same distribution as the
reversed one (Xn, Xn−1, . . . , X1, X0). In other words, for any positive Borel function
F : R+ → R+ we have

E
�

F

�
n−1�

i=0

∆(G,Xi, Xi+1)

�

1Xn=X0

�

= E
�

F

�
n−1�

i=0

∆(G,Xi+1, Xi)

�

1Xn=X0

�

= E
�

F

�
n−1�

i=0

∆(G,Xi, Xi+1)
−1

�

1Xn=X0

�

.

Where we used the fact that for P-almost every (g, ρ) and for any neighboring vertices
x, y ∈ V(g), we have ∆(g, x, y) = ∆(g, y, x)−1. Since for every (g, ρ) ∈ G• and any cycle
ρ = x0 ∼ x1 ∼ . . . ∼ xn = ρ we have PGρ (X0 = x0, X1 = x1, . . . , Xn = xn) > 0 the
desired result easily follows.

Suppose that the above Lemma holds, then we can extend the definition of ∆ to
an arbitrary (isomorphism class of) bi-rooted graph (g, x, y) without assuming x ∼ y
(compared with [122, Proof of Théorème 1.15 ]). If x, y ∈ g, let x = x0 ∼ x1 ∼ . . . ∼
xn = y be a path in g between x and y, and set

∆(g, x, y) :=

n−1�

i=0

∆(g, xi, xi+1), (5.16)

and by convention ∆(g, x, x) = 1. This definition does not depend on the path chosen
from x to y by the last lemma and is well founded for P-almost every graph (g, ρ) and
every x, y ∈ V(g). We can now rephrase Theorem 1.15 of [122].

Theorem 5.17 ([122]). Let (G, ρ) be a stationary ergodic random graph. Assume that
(G, ρ) is not reversible. Then almost surely the function

x ∈ V(G) �→ ∆(G, ρ, x),

is positive harmonic and non constant.

Démonstration. We follow the proof of [122]. By the stationarity of (G, ρ), for any Borel
function F : G• → R+ we have

E [F (G,X0)] = E [F (G,X1)] = E [F (G,X0)∆(G,X0, X1)] .

We thus get deg(ρ)−1
�
ρ∼x∆(G, ρ, x) = 1 almost surely. It follows from Lemma 5.15,

that almost surely, for any x ∈ V(G) we have
1

deg(x)

�

x∼y
∆(G, x, y) = 1.

One gets from the previous display and the definition of ∆, that x �→ ∆(G, ρ, x) is
almost surely harmonic. By ergodicity if x �→ ∆(G, ρ, x) has a positive probability to
be constant then it is almost surely constant, and this constant equals 1. This case is
excluded because (G, ρ) is not reversible.
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Theorem 5.18. Let (G, ρ) be a stationary and ergodic random graph of degree almost
surely bounded by M > 0. If (G, ρ) is non reversible, then the speed s (see (5.5)) of the
simple random walk on (G, ρ) is positive.

Démonstration. We consider the random process (log(∆(G,X0, Xn)))n�0. By Proposi-
tion 5.16 we almost surely have for all n � 0

log
�
∆(G,X0, Xn)

�
=

n−1�

i=0

log
�
∆(G,Xi, Xi+1)

�
. (5.17)

By (5.13) we have E[| log(∆(G,X0, X1))|] < ∞ and the ergodic theorem implies the
following almost sure and L1 convergence with respect to P

log
�
∆(G,X0, Xn)

�

n
−→
n→∞

E[log(∆(G,X0, X1))]. (5.18)

By computing ∆(G,X0, Xn) as in (5.16) along a geodesic path from X0 to Xn in G
and using (5.13) we deduce that a.s. for every n � 0

| log(∆(G,X0, Xn))| � log(M) d
G

gr(X0, Xn).

If (G, ρ) is not reversible, we already noticed that the inequality (5.14) is strict. Thus
combining (5.5),(5.18) and the last display we get s � |E[log(∆(G,X0, X1))]| log(M)

−1

which is strictly positive. This is the desired result.

Remark 5.19. By Corollary 5.13, subexponential growth in the sense of (5.1) implies
s = 0 for stationary and ergodic random graphs of bounded degree, so in particular
such random graphs are reversible. This fact also holds without the bounded degree
assumption (Russell Lyons, personal communication).

5.5 Applications
5.5.1 The Uniform planar quadrangulation

A planar map is an embedding of a planar graph into the two-dimensional sphere
seen up to continuous deformations. A quadrangulation is a planar map whose faces
all have degree four. The Uniform Infinite Planar Quadrangulation (UIPQ) introduced
by Krikun in [89] is the weak local limit (in a sense related to dloc) of uniform qua-
drangulations with n faces with a distinguished oriented edge (see Angel and Schramm
[11] for previous work on triangulations). We will not discuss the subtleties of planar
maps nor the details of the construction of the UIPQ and refer the interested reader to
[89, 101, 111].

The UIPQ is an random infinite graph Q∞ (which is viewed as embedded in the
plane) given with a distinguished oriented edge �e. We will forget the planar structure
of the UIPQ and get a random rooted graph (Q∞, ρ), which is rooted at the origin ρ
of �e. One of the main open questions about this random infinite graph is its conformal
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type, namely is it (almost surely) recurrent or transient ? It has been conjectured in
[11] (for the related Uniform Infinite Planar Triangulation) that Q∞ is almost surely
recurrent. Although we know that the conformal type of the Riemann surface obtained
from the UIPQ by gluing squares along edges is parabolic [71] (see [11] for related result
on the Circle Packing), yet the absence of the bounded degree property prevents one
from using the results of [21] to get recurrence of the simple random walk on the UIPQ.
Corollary 5.2 may be seen as providing a first step towards the proof recurrence.

Proof of Corollary 5.2. The random rooted graph (Q∞, ρ) is a stationary random graph.
A proof of this fact can be found in [90, Section 1.3] or [49]. By virtue of Theorem 5.1,
we just have to show that (Q∞, ρ) is of subexponential growth. To be completely accu-
rate, we have to note that the graph (Q∞, ρ) is not simple, that is contains loops and
multiple edges. However, it is easy to check that Theorem 5.1 still holds in this more
general setting. Thanks to [111], we know that the random infinite quadrangulation
investigated in [42] has the same distribution as the UIPQ. Hence, the volume estimate
of [42] can be translated into

E [#BQ∞(ρ, n)] = Θ(n4
). (5.19)

Hence Jensen’s inequality proves that the UIPQ is of subexponential growth in the
sense of (5.1) which finishes the proof of the corollary.

This corollary does not use the planar structure of UIPQ but only the invariance
with respect to SRW and the subexponential growth. We believe that the result of Co-
rollary 5.2 also holds for the UIPT. A detailed proof could be given along the preceding
lines but would require an extension of the estimates (5.19) (Angel [10] provides almost
sure estimates that are closely related to (5.19) for the UIPT).

5.5.2 Long range percolation clusters

Consider the graph obtained from Zd by adding an edge between each pair of distinct
vertices x, y ∈ Zd with probability px,y independently of the other pairs. Assume that

px,y = β|x− y|−s,

for some β > 0 and s > 0. This model is called long range percolation. Berger [23]
proved in dimensions d = 1 or d = 2 that if d < s < 2d, then conditionally on 0

being in an infinite cluster, this cluster is almost surely transient. In the same paper
the following question [23, (6.3)] is addressed :

Question 1. Are there nontrivial harmonic functions on the infinite cluster of long
range percolation with d < s < 2d ?

We answer negatively this question for bounded harmonic functions.

Démonstration. First we remark that by a general result (see [7, Example 9.4]), condi-
tionally on the event that 0 belongs to an infinite cluster C∞, the random rooted graph
(C∞, 0) is a unimodular random graph. Furthermore, since s > d the expected degree
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of 0 is finite. Hence, by Proposition 5.8, the random graph (C̃∞, 0̃) obtained by biasing
(C∞, 0) with the degree of 0 is stationary. By Theorem 5.1 it suffices to show that the
graph C̃∞ is of subexponential growth in the sense of (5.1). For that purpose, we use
the estimates given in [29, Theorem 3.1]. For x ∈ C∞, denote the graph distance from 0

to x in C∞ by d
C∞
gr (0, x). Then for each s� ∈ (d, s) there are constants c1, c2 ∈ (0,+∞)

such that, for δ� = 1/ log2(2d/s�),

P

�
d
C∞
gr (0, x) � n

�
� c1



e
c2n1/δ�

|x|




s
�

.

In particular, we deduce that

E [#BC∞(0, n)] � κ1 exp

�
κ2n

1/δ�
�
, (5.20)

where κ1 and κ2 are positive constants. Remark that δ� > 1. Thus we have, if deg(0)

denotes the degree of 0 in C∞,

E
�
log(#BC̃∞(0̃, n))

�
=

1

E[deg(0)]
E
�
deg(0) log(#BC∞(0, n))

�

� 1

E[deg(0)]

�
E[deg(0)2]E[log

2
(#BC∞(0, n))], (5.21)

by the Cauchy-Schwarz inequality. Since s > d it is easy to check that the second
moment of deg(0) is finite. Furthermore, the function x �→ log

2
(x) is concave on ]e,∞[

so by Jensen’s inequality we have

E

�
log

2
(#BC∞(0, n))

�
� log

2
(E [#BC∞(0, n)] + 2) .

Hence, combining the last display with (7.7) and (7.8) we deduce that (C̃∞, 0) is of
subexponential growth in the sense of (5.1).

Remark 5.20. It is also possible to derive this corollary from [80, Theorem 4], however
we preferred to stick to the context of unimodular random graphs.

Note that by similar considerations, clusters of any invariant percolation on a group,
in which the clusters have subexponential volume growth are Liouville, see [18] for
many examples. This holds in particular for Bernoulli percolation on Cayley graphs of
subexponential growth, e.g. on Zd.

5.5.3 Planarity
Simply connected planar Riemannian surfaces are either conformal to the Euclidean

or to the hyperbolic plane. Thus they are either recurrent for Brownian motion or admit
non constant bounded harmonic functions. The same alternative holds for planar graphs
of bounded degree. They are either recurrent for the simple random walk or admit non
constant bounded harmonic functions [19]. Combining Theorem 5.1 with these results
related to planarity yields :
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Corollary 5.21. Let (G, ρ) be a stationary random graph with subexponential growth
in the sense of (5.1). Suppose furthermore that almost surely (G, ρ) is planar and has
bounded degree. Then (G, ρ) is almost surely recurrent.

Démonstration. We already know by Theorem 5.1 that (G, ρ) is almost surely Liouville.
In [19] it is shown that a transient planar graph with bounded degree admits non
constant bounded harmonic functions. ThereforeGmust be recurrent almost surely.

Note that without the bounded degree assumption it is easy to construct planar
transient Liouville graphs, see [19]. However these graphs are not stationary. The fol-
lowing construction shows that the bounded degree assumption is needed in the last
corollary : We construct a stationary and reversible random graph that is of subexpo-
nential growth but transient.
We consider the sequence �1, ..., �n, ... ∈ {1, 2} defined recursively as follows. Start with
�1 = 1, if �1, ..., �k are constructed we let ξk =

�
k

i=1
�k, and set �k+1 = 1 if ξk > k4

and �k+1 = 2 otherwise. Clearly there exists a constant 0 < c < C < ∞ such that
ck4 � ξk � Ck4 for every k � 1. We now consider the tree Tn of height n, starting from
an initial ancestor at height 0 such that each vertex at height 0 � k � n− 1 has �n−k
children. Hence the tree Tn has only simple or binary branchings. The depth D(u) of a
vertex u in Tn is n minus its height. For example the leaves of Tn have depth 0. The
depth of an edge is the maximal depth of its ends. If u is a leaf of Tn then for every
0 � r � n, the ball of radius r around u in Tn is contained in the set of descendants of
the ancestor of u at depth r. This subtree has precisely

�
r

i=0
ξr/ξr−i vertices (with the

convention ξ0 = 1) so we deduce that

#BTn(u, r) �
r�

i=0

ξr
ξr−i

� C �r4, (5.22)

for some C � independent of r. It is easy to see that the last bound still holds for any
vertex u ∈ Tn (not necessarily a leaf) provided that we replace C � by 3C �. We also
introduce the tree T∞ which is composed of an infinite number of vertices at depth
0, 1, 2, 3, ... such that each vertex at depth k is linked to �k+1 vertices at depth k − 1.
Now we consider the graphs TRn and TR∞ obtained from Tn and T∞ by replacing each
edge at depth k by k2 parallel edges. The graph TR∞ is obviously a tree with multiple
edges that has only one end. Furthermore the number of parallel edges along an infinite
geodesic in TR∞ grows sufficient fast enough so that the simple random walk on TR∞ is
transient.
We transform these deterministic graphs into random ones. The root ρn is chosen among
all vertices of TRn proportionally to the degree. This boils down to picking an oriented
edge uniformly at random in TRn and consider its starting point ρn.

Proposition 5.22. We have the convergence in distribution for dloc

(TRn , ρn) −→
n→∞

(TR∞, ρ), (5.23)

for a particular choice of a random root ρ ∈ TR∞. In particular (TR∞, ρ) is a planar
transient stationary and reversible random graph of subexponential growth.
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Démonstration. It is enough to show that D(ρn) converges in distribution to a non
degenerate random variable denoted by D as n → ∞. Indeed if we choose a random
root ρ ∈ TR∞ with depth given by D, since the r-neighborhood of a vertex at depth k in
TRn and in TR∞ are the same when n � r+ k, we easily deduce the weak convergence of
(TRn , ρn) to (TR∞, ρ) for dloc. Furthermore since the random rooted graphs (TRn , ρn) are
stationary and reversible (see Example 5.2), the same holds for (TR∞, ρ) as weak limit
of stationary and reversible graphs in the sense of dloc.
Let k � 0. The probability that D(ρn) = k is exactly the proportion of oriented edges
whose origin is a vertex of depth k. Thus with the convention ξ0, ξ−1 = 1 we have

P(D(ρn) = k) =

�
k2
ξn
ξk−1

+ (k + 1)
2
ξn
ξk

��

2ξn
n−1�

i=0

(i+ 1)
2

ξi

�−1

.

Since ξk � ck4, clearly the series
�
i2ξ−1

i
converges. Hence, the probabilities in the last

display converge when n→∞, thus proving the convergence in distribution of D(ρn).
Furthermore, using (5.22) and the following remark following it, it is easy to see that
#BT∞(ρ, r) � 3C �r4, hence TR∞ is of subexponential growth.

Questions

• In the preceding construction, the degree of ρ in TR∞ has a polynomial tail. Is it
possible to construct a planar stationary and reversible graph of subexponential growth
such that the degree of the root vertex has an exponential tail for which the SRW is
transient ?

• Let (G, ρ) be a limit in distribution of finite planar stationary graphs for dloc (see
[21]). Is it the case that (G, ρ) is almost surely Liouville 1 ? Does SRW on (G, ρ) have
zero speed ?

• In [16] a generalization of limits of finite planar graphs to graphs associated to sphere
packings in Rd was studied. Extend the preceding questions to these graphs.

1. There are local limits of finite planar graphs with exponential growth. For example local limit of
full binary trees up to level n with the root picked according to the degree
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The UIPQ seen from ∞

Disclaimer : The results of this chapter are taken from a work in progress
with Laurent Ménard and Grégory Miermont.

We introduce a new construction of the Uniform Infinite Planar Quadrangulation
(UIPQ). Our approach is based on an extension of the Cori-Vauquelin-Schaeffer
mapping in the context of infinite trees. We release the positivity constraint on the
labels of trees which was imposed in previous work [42, 101, 111], this leads to a
considerable simplification of the calculations. This approach allows us to prove the
conjectures of Krikun [89, 90] and to derive new results about the UIPQ, among
which a fine study of infinite geodesics in the UIPQ and a comparison principle
linking the UIPQ with large finite quadrangulations.

6.1 Introduction
In this work, a new approach to the Uniform Infinite Planar Quadrangulation

(UIPQ) is developed. We show that the UIPQ can be constructed from a random
infinite labeled tree by extending a bijection due to Cori, Vauquelin and Schaeffer bet-
ween labeled trees and rooted and pointed quadrangulations. In contrast with previous
works [42, 101, 111], the labels of the random infinite tree that we consider are not
conditioned to stay non-negative. This simplifies the computations and enable us to
derive new results easily.
A planar map is a proper embedding of a finite connected graph in the two-dimensional
sphere, viewed up to orientation-preserving homeomorphisms of the sphere. The faces
are the connected components of the complement of the union of the edges. A map is
a triangulation (respectively a quadrangulation) if all its faces have degree three (res-
pectively four). A map is rooted if one has distinguished an oriented edge called the
root edge. Planar maps are basic objects in combinatorics and have been extensively
studied since the work of Tutte in the sixties [142]. They also popped out in various
areas, such as algebra and geometry [93], random matrices [147] and theoretical physics
where they have been used as a model of random geometry [9]. Although triangulations
seem more natural than quadrangulations, we will focus on quadrangulations. We do
so mainly because of the existence of a very nice bijection between, on the one hand,
rooted planar quadrangulations with n faces, and on the other hand, labeled planar
trees with n edges and non-negative labels. This bijection is due to Cori and Vauquelin

123
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[45] and was later generalized and popularized by Schaeffer [127]. See Section 6.2.3.

In a pioneer work [11], Angel and Schramm introduced the Uniform Infinite Planar
Triangulation (UIPT) as the limit of non-rescaled large random rooted triangulations.
Later Krikun [89] defined a similar object, the Uniform Infinite Planar Quadrangulation
(UIPQ), in the setting of quadrangulations. Let us describe quickly the point of view
of Krikun. If q, q� are two rooted quadrangulations, the local distance between q and q�
is

dQ(q, q�) =
�
1 + sup{r � 0 : BQ,r(q) = BQ,r(q

�
)}
�−1
,

where BQ,r(q) denotes the map formed by the faces of q that have at least one vertex
at graph distance smaller than or equal to r from the origin of the root edge in q. If
Qn is a random rooted quadrangulation uniformly distributed over the set of all rooted
quadrangulations with n faces, then we have [89]

Qn
(d)−−−→
n→∞

Q∞,

in distribution in the sense of dQ. The objet Q∞ is a random infinite rooted quadrangu-
lation called the Uniform Infinite Planar Quadrangulation (UIPQ), see Section 6.2.2 for
more details. The UIPQ and its brother the UIPT are fundamental objects in random
geometry and have triggered a lot of work [10, 11, 15, 89, 90, 91].
Extending the Cori-Vauquelin-Schaeffer bijection, Chassaing and Durhuus [42] intro-
duced another construction of the UIPQ (shown to be equivalent to Krikun’s approach
in [111]) based on a random infinite labeled tree with non-negative labels. In this ap-
proach the labels in the random infinite tree correspond to distances from the origin
of the root edge in the quadrangulation, and thus information about the labels can
be used to derive geometric properties such as volume growth around the root in the
UIPQ [42, 101, 111]. In this work, we release the positivity constraint on the labels
and give another construction of the UIPQ. Though the labels no longer correspond
to distances from the root of the UIPQ, yet they still have a metric interpretation as
“distances seen from infinity”. Let us briefly describe our construction.
We denote by T∞ the critical geometric Galton-Watson tree conditioned to survive.
This random infinite planar tree with one end has been introduced by Kesten [85]
and can be built from a semi-infinite line of vertices x0 − x1 − x2 − . . . together with
independent critical geometric Galton-Watson trees grafted to the left-hand side and
right-hand side of each vertex xi for i � 0, see Section 6.2.4. Conditionally on T∞, we
consider a sequence of independent variables (de)e∈E(T∞) indexed by the edges of T∞
which are uniformly distributed over {−1, 0,+1}. We then assign to every vertex u of
T∞ a label �(u) corresponding to the sum of the numbers de along the ancestral path
from u to the root x0 of T∞. Given an extra Bernoulli variable η ∈ {0, 1} independent
of (T∞, �), it is then possible to extend the classical Schaeffer’s construction to define
a quadrangulation Φ((T∞, �), η) from (T∞, �) and η, see Section 6.2.3. The only role
of η is to prescribe the orientation of the root edge in Φ((T∞, �), η). The random in-
finite rooted quadrangulation Q∞ = Φ((T∞, �), η) has the distribution of the UIPQ,
see Theorem 6.9. Moreover, the vertices of Q∞ correspond to those of T∞ and via this
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identification, Theorem 6.9 gives a simple interpretation of the labels : Almost surely,
for any pair of vertices u, v of Q∞

�(u)− �(v) = lim
z→∞

�
d
Q∞
gr (u, z)− d

Q∞
gr (v, z)

�
. (∗)

The fact that the limit exists as z →∞ in (∗) means that the right-hand side is constant
everywhere but on a finite subset of vertices of Q∞. Theorem 6.9 and its corollaries also
answer positively the three conjectures raised by Krikun in [90]. Note that the existence
of the limit in (∗) was shown in [90]. It also follows from our fine study of the geodesics
and their coalescence properties in the UIPQ, see Proposition 6.10 and Theorem 6.13.
Let us discuss another way to look at large random planar maps, which is parallel to
the theory of local limit of random maps and the UIPQ or UIPT. Following ideas of
Chassaing and Schaeffer [43], one would like to understand the global geometry of Qn,
a large random rooted quadrangulation with n faces, as opposed to the local geometry
captured by the UIPQ. The vertex set V (Qn) of Qn is equipped with the graph distance
d
Qn
gr (., .) and one is interested in showing the convergence in distribution for the Gromov-

Hausdorff distance of the rescaled maps

�
V (Qn), n

−1/4
d
Qn
gr (., .)

� ?−−−→
n→∞

(M∞,D), (∗∗)

the rescaling factor n−1/4 corresponding roughly to the inverse of the diameter of Qn,
as shown in [43]. The (conjectured) limiting random compact metric space (M∞,D)

is the called the “Brownian Map”. Though the convergence (∗∗) is still unproved, it
has been shown [98] that it holds along certain subsequences, and that the Brownian
maps share common properties [48, 102, 99]. In Section 6.4.1 we compare scaling li-
mits of large balls BQ,r(Q∞) in the UIPQ with scaling limits of large random planar
quadrangulations. Our comparison principle enables us to transfer know results about
the Brownian Map to the UIPQ and conversely. For example, we settle a conjecture
of Krikun [89] on separating cycles in the UIPQ as a corollary of the homeomorphism
theorem for the Brownian Map due to Le Gall & Paulin [102].

The paper is organized as follows. In Section 2 we introduce the construction of the
UIPQ based on a random infinite labeled tree and present our main theorem. Section
3 is devoted to the proof of Theorem 6.9, which goes through an analysis of discrete
geodesics in the UIPQ. In particular, we establish a confluence property of geodesic
towards the root (Proposition 6.10) and a certain uniqueness property of geodesic rays
towards infinity (Theorem 6.13). The last section, which is devoted to applications,
contains the comparison principle with the Brownian Map.

Acknowledgments : We deeply thank Jean-François Le Gall for fruitful discussions
and a careful reading of a first version of this article.
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6.2 Random trees and the UIPQ
6.2.1 Spatial trees

Throughout this work we will use the standard formalism for planar trees as found
in [121]. Let

U =

∞�

n=0

Nn

where N = {1, 2, . . .} and N0
= {∅} by convention. An element u of U is thus a finite

sequence of positive integers. If u, v ∈ U , uv denotes the concatenation of u and v. If v
is of the form uj with j ∈ N, we say that u is the parent of v or that v is a child of u.
More generally, if v is of the form uw, for u,w ∈ U , we say that u is an ancestor of v
or that v is a descendant of u. A rooted planar tree τ is a (finite or infinite) subset of
U such that

1. ∅ ∈ τ (∅ is called the root of τ),
2. if v ∈ τ and v �= ∅, the parent of v belongs to τ
3. for every u ∈ U there exists ku(τ) � 0 such that uj ∈ τ if and only if j � ku(τ).

A rooted planar tree can be seen as a graph, in which an edge links two vertices u, v
such that u is the parent of v or vice-versa. This graph is of course a tree in the graph-
theoretic sense, and has a natural embedding in the plane, in which the edges from a
vertex u to its children u1, . . . , uku(τ) are drawn from left to right.

We let |u| be the length of the word u. The number H(τ) = maxu∈τ |u| is called the
height of τ . The integer |τ | denotes the number of edges of τ and is called the size of τ .
A spine in a tree τ is an infinite sequence u0, u1, u2, . . . in τ such that u0 = ∅ and ui
is the parent of ui+1 for every i � 0. If a and b are two vertices of a tree τ , we denote
the set of vertices along the unique geodesic line going from a to b in τ by [[a, b]].

A rooted labeled tree (or spatial tree) is a pair θ = (τ, (�(u))u∈τ ) that consists of a
rooted planar tree τ and a collection of integer labels assigned to the vertices of τ , such
that if u, v ∈ τ and v is a child of u, then |�(u)− �(v)| � 1. For every l ∈ Z, we denote
by T

(l) the set of spatial trees for which �(∅) = l, and T
(l)

∞ , resp. T
(l)

f
, resp. T

(l)

n , are
the subsets of T

(l) consisting of the infinite trees, resp. finite trees, resp. trees with n
edges. If θ = (τ, �) is a labeled tree, |θ| = |τ | is the size of θ and H(θ) = H(τ) is the
height of θ.

If θ is a spatial tree and h � 0 is an integer, we denote the labeled subtree of θ
consisting of all vertices of θ and their labels up to height h by BT,h(θ). For every pair
θ, θ� of spatial trees define

dT(θ, θ�) =
�
1 + sup

�
h : BT,h(θ) = BT,h(θ

�
)
� �−1

One easily checks that dT is a distance on the set of all spatial trees, which turns this
set into a separable and complete metric space.

In the rest of this work we will mostly be interested in the following set of infinite
trees. We let S be the set of all labeled trees (τ, �) in T

(0)

∞ such that
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– τ has exactly one spine, which we denote by ∅ = Sτ (0),Sτ (1),Sτ (2), . . .
– infi�0 �(Sτ (i)) = −∞.

Contour functions. A finite spatial tree θ = (τ, �) can be encoded by a pair (Cθ, Vθ),
where Cθ = (Cθ(t))0�t�2|θ| is the contour function of τ and Vθ = (Vθ(t))0�t�2|θ| is
the spatial contour function of θ. To define these contour functions, let us consider a
particle which, starting from the root, traverses the tree along its edges at speed one.
When leaving a vertex, the particle moves towards the first non visited child of this
vertex if there is such a child, or returns to the parent of this vertex. Since all edges will
be crossed twice, the total time needed to explore the tree is 2|θ|. For every t ∈ [0, 2|θ|],
Cθ(t) denotes the distance from the root of the position of the particle at time t. In
addition if t ∈ [0, 2|θ|] is an integer, Vθ(t) denotes the label of the vertex that is visited
at time t. We then complete the definition of Vθ by interpolating linearly between
successive integers. See Figure 6.1 for an example. A finite spatial tree is uniquely
determined by its pair of contour functions. It will sometimes be convenient to define
the functions Cθ and Vθ for every t � 0, by setting Cθ(t) = 0 and Vθ(t) = Vθ(0) for
every t � 2|θ|.

2 1

−1 1 1

0 2

1

Vθ(t)Cθ(t)

0

1

2

3

−1

0

1

2

t

t

t∅

1 2

11 12 13

121 122

Figure 6.1 – A spatial tree θ and its pair of contour functions (Cθ, Vθ).

A tree θ ∈ S can obviously be coded by two pairs of contour functions,
�
C(L)

θ , V
(L)

θ

�
: R+ → R+ × R and

�
C(R)

θ , V
(R)

θ

�
: R+ → R+ × R,

each pair coding one side of the spine. Note that to define the pair (C(L)

θ , V
(L)

θ ), we
follow the contour of the tree (starting from the root) from the left to the right as
before, but in order to define (C(R)

θ , V
(R)

θ ) we follow the contour from right to the left.
The definition of these contour functions should be clear from Fig. 6.2.

6.2.2 Finite and infinite quadrangulations
Consider a proper embedding of a finite connected graph in the sphere S2 (loops

and multiple edges are allowed). A finite planar map m is an equivalence class of such
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Figure 6.2 – A tree θ ∈ S and its contour functions
�
C(L)

θ , V
(L)

θ

�
,
�
C(R)

θ , V
(R)

θ

�
.

embeddings modulo orientation preserving homeomorphisms of the sphere. Let −→E (m)

be the set of all oriented edges of m (each edge corresponds to exactly two oriented
edges). A planar map is rooted if it has a distinguished oriented edge e∗ ∈ −→E (m), which
is called the root edge. If e is an oriented edge of a map we write e− and e+ for its
origin and target vertices and ←−e for the reversed edge.

The set of vertices of a map m is denoted by V (m). We will equip V (m) with the
graph distance : If v and v� are two vertices, d

m

gr(v, v
�
) is the minimal number of edges

on a path from v to v� in m. If v ∈ V (m), the degree of v is the number of oriented
edges pointing towards v and is denoted by deg(v).

The faces of the map are the connected components of the complement of the union
of its edges. The degree of a face is the number of edges that are incident to it, where
it should be understood that an edge lying entirely in a face is incident twice to this
face. A finite planar map is a quadrangulation if all its faces have degree 4, that is 4

incident edges. A planar map is a quadrangulation with holes if all its faces have degree
4, except for a number of distinguished faces which can be of arbitrary even degrees.
We call these faces the holes, or the boundaries of the quadrangulation.

Infinite quadrangulations and their planar embeddings

Let us introduce infinite quadrangulations using the approach of Krikun [89], see also
[11, 21]. For every integer n � 1, we denote by Qn the set of all rooted quadrangulations
with n faces. For every pair q, q� ∈ Qf =

�
n�1

Qn we define

dQ
�
q, q�
�

=
�
1 + sup

�
r : BQ,r(q) = BQ,r(q

�
)
� �−1

where, for r � 1, BQ,r(q) is the planar map whose edges (resp. vertices) are all edges
(resp. vertices) incident to a face of q having at least one vertex at distance strictly
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smaller than r from the root vertex e∗−, and sup ∅ = 0 by convention. Note that BQ,r(q)
is a quadrangulation with holes.

The pair (Qf , dQ) is a metric space, we let (Q, dQ) be the completion of this space.
We call infinite quadrangulations the elements of Q that are not finite quadrangulations
and we denote the set of all such quadrangulations by Q∞. Note that one can extend
the function q ∈ Qf �→ BQ,r(q) to a continuous function BQ,r on Q.

Infinite quadrangulations of the plane. An infinite quadrangulation q defines a unique
infinite graph G with a root edge, together with a consistent family of planar embed-
dings (BQ,r(q), r � 1) of the combinatorial balls of G centered at the root vertex.

Conversely, any sequence q1, q2, . . . of rooted quadrangulations with holes, such that
qr = BQ,r(qr+1) for every r � 1, specifies a unique infinite quadrangulation q whose
ball of radius r is qr for every r � 1.

Definition 6.1. An infinite quadrangulation q ∈ Q∞ is called a quadrangulation of
the plane if it has one end, that is, if for any r � 0 the graph q\BQ,r(q) has only one
infinite connected component.

It is not hard to convince oneself that quadrangulations of the plane also coincide
with equivalence classes of certain proper embeddings of infinite graphs in the plane
R2, viewed up to orientation preserving homeomorphisms. Namely these are the proper
embeddings χ of locally finite planar graphs such that

– every compact subset of R2 intersects only finitely many edges of χ,
– the connected components of the complement of the union of edges of χ in R2

are all bounded topological quadrangles.

Remark 6.2. Note that a generic element of Q∞ is not necessarily a quadrangulation
of the plane. See [11, 42, 111] and the Appendix below for more details about this
question.

The Uniform Infinite Planar Quadrangulation

Now, let Qn be a random variable with uniform distribution on Qn. Then as n→∞,
the sequence (Qn)n�1 converges in distribution to a random variable with values in Q∞.

Theorem 6.3 ([89]). For every n � 1, let νn be the uniform probability measure on
Qn. The sequence (νn)n�1 converges to a probability measure ν, in the sense of weak
convergence in the space of probability measures on (Q, dQ). Moreover, ν is supported
on the set of infinite rooted quadrangulations of the plane.

The probability measure ν is called the law of the uniform infinite planar qua-
drangulation (UIPQ). This result was shown by Krikun [89], following an idea initially
developed by Angel and Schramm [11] for triangulations.
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6.2.3 The Schaeffer correspondence
One of the main tools for studying random quadrangulations is a bijection due

to Cori & Vauquelin [45] and popularized by Schaeffer [127]. It establishes a one-to-
one correspondence between rooted and pointed quadrangulations with n faces, and
pairs consisting of a spatial tree of T

(0)

n and an element of {0, 1}. Let us describe this
correspondence and its extension to infinite quadrangulations.

From trees to quadrangulations

A rooted and pointed quadrangulation is a pair q = (q, ρ) where q is a rooted
quadrangulation and ρ is a distinguished vertex of q. We write Q

•
n for the set of all

rooted and pointed quadrangulations with n faces. We first describe the mapping from
spatial trees to quadrangulations.

Let θ = (τ, �) be an element of T
(0)

n . We view τ as embedded in the plane. A corner
of a vertex in τ is an angular sector formed by two consecutive edges in clockwise order
around this vertex. Note that a vertex of degree k in τ has exactly k corners. If c is a
corner of τ , V(c) denotes the vertex incident to c. By extension, the label of a corner c
is the label of V(c).

We consider the sequence (c0, c1, c2, . . . , c2n−1) of corners visited during the contour
process of τ , starting from the corner c0 incident to ∅ that is located to the left of the
oriented edge going from ∅ to 1 in τ . We extend this sequence of corners to a sequence
(ci, i � 0) by periodicity, letting ci+2n = ci. For i ∈ Z+, the successor S(ci) of ci is the
first corner cj in the list ci+1, ci+2, ci+3, . . . such that the label �(cj) of cj is equal to
�(ci) − 1, if such a corner exists. In the opposite case, the successor of ci is an extra
element ∂, not in {ci, i � 0}.

Finally, we construct a new graph as follows. Add an extra vertex ρ in the plane, that
does not belong to (the embedding of) τ . For every corner c, draw an arc between c and
its successor if this successor is not ∂, or draw an arc between c and ρ if the successor
of c is ∂. The construction can be made in such a way that the arcs do not cross. After
the interior of the edges of τ has been removed, the resulting embedded graph, with
vertex set τ ∪ {ρ} and edges given by to the newly drawn arcs, is a quadrangulation
q. In order to root this quadrangulation, we consider some extra parameter η ∈ {0, 1}.
If η = 0, the root of q is the arc from c0 to its successor, oriented in this direction.
If η = 1 then the root of q is the same edge, but with opposite orientation. We let
q = Φ(θ, η) ∈ Q

•
n (q comes naturally with the distinguished vertex ρ).

Theorem 6.4 (Theorem 4 in [43]). The mapping Φ : T
(0)

n ×{0, 1} −→ Q
•
n is a bijection.

If q = Φ((τ, �), η) then for every vertex v of q not equal to ρ, one has

d
q

gr(v, ρ) = �(v)−min
u∈τ
�(u) + 1 , (6.1)

where we recall that every vertex of q not equal to ρ is identified to a vertex of τ .

Note that (6.1) can also be rewritten as

�(v) = d
q

gr(v, ρ)− d
q

gr(e
∗
±, ρ) , v ∈ V (q) , (6.2)
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where
e∗± = ∅ =

�
e∗− if d

q

gr(e
∗
−, ρ)− d

q

gr(e
∗
+, ρ) = −1

e∗+ if d
q

gr(e
∗
−, ρ)− d

q

gr(e
∗
+, ρ) = 1

Hence, these labels can be recovered from the pointed quadrangulation (q, ρ). This is
of course not surprinsing since the function Φ : T

(0)

n × {0, 1} → Q
•
n is invertible (see

the next section for the description of the inverse mapping).

Infinite case. We now aim at extending the construction of Φ to elements of S . Let
(τ, (�(u))u∈τ ) ∈ S . Again, we consider an embedding of τ in the plane, with isolated
vertices. This is always possible (since τ is locally finite). The notion of a corner remains
the same in this setting. We consider the sequence (c(L)

0
, c(L)

1
, c(L)

2
, . . .) of corners visited

by the contour process of the left side of the tree, and similarly we denote the sequence of
corners visited on the right side by (c(R)

0
, c(R)

1
, c(R)

2
, . . .). Notice that c(L)

0
= c(R)

0
denotes

the corner where the tree has been rooted. We now concatenate these two sequences
into a unique sequence indexed by Z, by letting, for i ∈ Z,

ci =

�
c(L)

i
if i � 0

c(R)

−i if i < 0 .

For any i ∈ Z, the successor S(ci) of ci is the first corner cj in the list ci+1, ci+2, ci+3, . . .
such that the label �(cj) of cj is equal to �(ci)−1. From the assumption that inf �(Sτ (i))

is equal to −∞, and since all the vertices of the spine appear in the sequence (c(L)

i
)i�0,

it holds that each corner has exactly one successor. We can associate with (τ, (�(u))u∈τ )
an embedded graph q by drawing an arc between every corner and its successor. See
Fig. 6.2.3. Note that, in contrast with the above description of the Schaeffer bijection
on T

(0)

n × {0, 1}, we do not have to add an extra distinguished vertex ρ in this context.
In a similar way as before, the embedded graph q is rooted at the edge emerging

from the distinguished corner c0 of ∅, that is, the edge between c0 and its successor
S(c0). The direction of the edge is given by an extra parameter η ∈ {0, 1}, similarly as
above.

Proposition 6.5. The resulting embedded graph q is an infinite quadrangulation of the
plane, and the extended mapping Φ : S ∪T

(0)

f
→ Q is continuous.

Démonstration. We first check that every corner in τ is the successor of only a finite
set of other corners. Indeed, if c is such a corner, say c = ci for i ∈ Z, then from the
assumption that infj �(Sτ (j)) = −∞, there exists a corner cj with j < i such that
the vertex incident to cj belongs to the spine {Sτ (0),Sτ (1), . . .}, and minj�k�i �(ck) <
�(ci)− 1. Therefore, for every k � j, the successor of ck is not ci.

This shows that the embedded graph q is locally finite, in the sense that every vertex
is incident to a finite number of edges. The fact that every face of q is a quadrangle is
then a consequence of the construction of the arcs, as proved e.g. in [43]. It remains to
show that q can be properly embedded in the plane, that is, has one end. This comes
from the construction of the edges and the fact that τ has only one end. The details
are left to the reader.
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∞

Figure 6.3 – Illustration of the Schaeffer correspondence. The tree is represented in
dotted lines and the quadrangulation in solid lines.

To prove the continuity of Φ, let θn = (τn, �n) be a sequence in S ∪ T
(0)

f
converging

to θ = (τ, �) ∈ S ∪ T
(0)

f
. If θ ∈ T

(0)

f
then θn = θ for every n large enough, so the

fact that Φ(θn) → Φ(θ) is obvious. So let us assume that θ ∈ S , with spine vertices
Sτ (0),Sτ (1), . . .. Let R > 0 be an integer, and let l(R) be the minimal label of a vertex
in BT,R(θ). Since inf(�(Sτ (i))) = −∞, we can define f(R) > R as the first i � 1 such
that �(Sτ (i)) = l(R) − 2. If c is a corner in the subtree of τ above Sτ (f(R)), then the
successor of c cannot be in BT,R(θ). Indeed, if �(c) � l(R) − 1 then the successor of
c has to be also in the subtree of τ above Sτ (f(R)), while if �(c) < l(R) − 1, then
this successor also has label < l(R) − 1, and thus cannot be in BT,R(θ) by definition.
Similarly, c cannot be the successor of any corner in BT,R(θ), as these successors are
necessarily in the subtree of τ below Sτ (f(R)).

Now, for every n large enough, it holds that BT,f(R)(θn) = BT,f(R)(θ), from which
we obtain that the maps formed by the arcs incident to the vertices of BT,R(θ) =

BT,R(θn) are the same, and moreover, no extra arc constructed in θn or θ is incident
to a vertex of BT,R(θ) = BT,R(θn). Letting r > 0 and choosing R so that all the
edges of BQ,r(Φ(θ)) appear as arcs incident to vertices of BT,R(θ), we obtain that
BQ,r(Φ(θ)) = BQ,r(Φ(θn)) for n large enough. Therefore, we get that Φ(θn) → Φ(θ),
as desired.
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The vertex set of q is precisely τ , so that the labels � on τ induce a labeling of
the vertices of q. In the finite case, we saw earlier in (6.2) that these labels could be
recovered from the pointed quadrangulation obtained from a finite labeled tree. In our
infinite setting, this is much less obvious : Intuitively the distinguished vertex ρ of the
finite case is “lost at infinity”.

We will see later that when the infinite labeled tree has a special distribution cor-
responding via the Schaeffer correspondence Φ to the UIPQ, then the labels have a
natural interpretation in terms of distances in the infinite quadrangulation. In general
if an infinite quadrangulation q is constructed from a labeled tree θ = (τ, �) in S , every
pair {u, v} of neighboring vertices in q satisfies |�(u) − �(v)| = 1 and thus for every
a, b ∈ q linked by a geodesic a = a0, a1, . . . , adqgr(a,b) = b we have the crude bound

d
q

gr(a, b) =

d
q
gr(a,b)�

i=1

|�(ai)− �(ai−1)| �
������

d
q
gr(a,b)�

i=1

�(ai)− �(ai−1)

������
= |�(a)− �(b)|. (6.3)

From quadrangulations to trees

We saw that the Schaeffer mapping T
(0)

n × {0, 1} −→ Q
•
n is in fact a bijection. We

now describe the reverse construction. The details can be found in [43]. Let (q, ρ) be a
finite rooted quadrangulation given with a distinguished vertex ρ ∈ V (q). We define a
labeling � of the vertices of the quadrangulation by setting

�(v) = d
q

gr(v, ρ), v ∈ V (q).

Since the map q is bipartite, if u, v are neighbors in q then |�(u) − �(v)| = 1. Thus
the faces of q can be decomposed into two subsets : The faces such that the labels of
the vertices listed in clockwise order are (i, i + 1, i, i + 1) for some i � 0 or those for
which these labels are (i, i+ 1, i+ 2, i+ 1) for some i � 0. We then draw on top of the
quadrangulation an edge in each face according to the rules given by the figure below.

i i + 1

i + 2i + 1

i i + 1

ii + 1

Figure 6.4 – Rules for the reverse Schaeffer construction.

The graph τ formed by the edges added in the faces of q is a spanning tree of q\{ρ},
see [43, Proposition 1]. This tree comes with a natural embedding in the plane, and we
root τ according to the following rules (see Fig.6.5) :

– If �(e∗−) > �(e∗+) then we root τ at the corner incident to the edge e∗ on e∗−,
– otherwise we root τ at the corner incident to the edge e∗ on e∗+,
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Finally, we shift the labeling of τ inherited from the labeling on V (q)\{ρ} by the label
of the root of τ ,

�̃(u) = �(u)− �(∅), u ∈ T.

Then we have [43, Proposition 1]

Φ−1
�
(q, ρ)

�
=
�
(τ, �̃),1�(e∗+)>�(e∗−)

�
.

0

1

1

1

2

2

3

3

4

0

1

0

−1

−1

−2 −2

−2

0

1

1

1

2

2

3

3

4

0

1

2

1

0

−1
−1

−1

{η = 0} {η = 1}

Figure 6.5 – Illustration of the rooting of the plane tree τ

Infinite case. If q is a (possibly infinite) quadrangulation and � : V (q) −→ Z, is a
labeling of the vertices of q such that for any neighboring vertices u, v we have |�(u)−
�(v)| = 1, then a graph can be associated to (q, �) by the device we described above.
This graph could contain cycles and is not a tree in the general case.
However, suppose that the infinite quadrangulation q is constructed as the image under
Φ of a labeled tree θ = (τ, �) ∈ S and an element of {0, 1}. Then, with the usual
identification of V (q) with τ , the labeling of V (q) inherited from the labeling � of τ
satisfies |�(u) − �(v)| = 1 for any u, v ∈ V (q). An easy adaptation of the argument of
[42, Property 6.2] then shows that the faces of q are in one-to-one correspondence with
the edges of τ and that the edges constructed on top of each face of q following the
rules of Fig.6.4 exactly correspond to the edges of τ . In other words, provided that q is
constructed from θ = (τ, �) then the graph constructed on top of q using the labeling �
is exactly τ . The rooting of τ is also recovered from q and � by the same procedure as
in the finite case.



✐
✐

“theseavec” — 2011/5/24 — 15:45 — page 135 — #135 ✐
✐

✐
✐

✐
✐

Cartes planaires aléatoires 135

6.2.4 The uniform infinite labeled tree
Let θ = (τ, �) ∈ S . Recall the notation Sτ (n) for the nth vertex of the spine of θ.

The trees attached to Sτ (n) respectively on the left side and the right side of the spine
are denoted by

Ln(θ) = {v ∈ U : Sτ (n)v ∈ τ,Sτ (n)v ≺ Sτ (n+ 1)}
Rn(θ) = {v ∈ U : Sτ (n)v ∈ τ,Sτ (n+ 1) ≺ Sτ (n)v} ∪{∅} ,

where u ≺ v denotes the lexicographical order on U .
For every integer l > 0 we denote by ρl the law of the Galton-Watson tree with

geometric offspring distribution with parameter 1/2, labeled according to the following
rules. The root has label l and every other vertex has a label chosen uniformly in {m−
1,m,m+ 1} where m is the label of its parent, these choices being made independently
for every vertex. Then, for every tree θ ∈ T

(l), ρl(θ) =
1

2
12
−|θ|.

Definition 6.6. Let θ = (T∞, (�(u))u∈T∞) be a random variable with values in (T
(0), dT)

whose distribution µ is described by the following almost sure properties
1. θ belongs to S ,
2. the process (�(ST∞(n)))n�0 is a random walk with independent uniform steps in
{−1, 0, 1},

3. conditionally given (�(ST∞(n)))n�0 = (xn)n�0, the sequence (Ln(θ))n�0 of sub-
trees of θ attached to the left side of the spine and the sequence (Rn(θ))n�0 of
subtrees attached to the right side of the spine form two independent sequences of
independent labeled trees distributed according to the measures ρxn.

In other words, if θ = (T∞, �) is distributed according to µ then the structure of the
tree T∞ is given by an infinite spine and independent critical geometric Galton-Watson
trees grafted on the left and right of each vertex of the spine. Conditionally on T∞ the
labeling is given by independent variables uniform over {−1, 0,+1} assigned to each
edge of T∞, which represent the label increments along the different edges, together
with the boundary condition �(∅) = 0.

The random infinite tree T∞, called the critical geometric Galton-Watson tree condi-
tioned to survive, was constructed in [85, Lemma 1.14] as the limit of critical geometric
Galton-Watson conditioned to survive up to level n, as n→∞. To make the link bet-
ween the classical construction of T∞ (see e.g. [107, Chapter 12]) and the one provided
by the last definition, note the following equality in distribution

1 +G+G�
(d)

= Ĝ,

where G,G�, Ĝ are independent random variables such that G,G� are geometric of
parameter 1/2 and Ĝ is a size-biaised geometric 1/2 variable, that is P

�
Ĝ = k

�
=

kP [G = k] = k2−(n+1).
The law µ can also be seen as the law of a uniform infinite element of S , as

formalized by the following statement.
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Theorem 6.7. For every n � 1, let µn be the uniform probability measure on T
(0)

n .
Then the sequence (µn)n∈N converges weakly to µ in the space of Borel probability
measures on

�
T

(0), dT
�
.

Démonstration. By a standard result, the distribution of a uniformly chosen planar tree
Tn with n edges is the same as the distribution of a critical Galton-Watson tree with
geometric offspring distribution conditioned on the total progeny to be n− 1, see [97].
The convergence in distribution of Tn towards T∞ in the sense of dT then follows from
[85, Lemma 1.14], see also [107]. An analogous result holds for the uniform labeled trees
since the labeling is given by independent variables uniform over {−1, 0,+1} assigned
to each edge of the trees.

Remark 6.8. Theorem 6.7 will also follow from the quantitative local convergence of
Proposition 6.21.

6.2.5 The main result
We are now ready to state our main result. Recall that ν is the law of the UIPQ

as defined in Theorem 6.3. Let also B(1/2) be the Bernoulli law (δ0 + δ1)/2, and recall
the Schaeffer correspondence Φ : S × {0, 1}→ Q. In the following statement, if q is an
element of Q∞, and f : V (q)→ R is a function on V (q), we say that limz→∞ f(z) = l
if for every ε > 0, there exists r � 1 such that for every vertex z of q that does not
belong to BQ,r(q), it holds that |f(z) − l| � ε. If f takes its values in a discrete set,
this just means that f is equal to l everywhere but on a finite subset of V (q).

Theorem 6.9. The probability measure ν is the image of µ⊗B(1/2) under the mapping
Φ :

ν = Φ∗
�
µ⊗ B(1/2)

�
(6.4)

Moreover, if (θ = (T∞, �), η) has distribution µ⊗ B(1/2) and Q∞ = Φ(θ, η), then, with
the usual identification of the vertices of Q∞ with the vertices of θ, one has, almost
surely,

�(u)− �(v) = lim
z→∞

�
d
Q∞
gr (u, z)− d

Q∞
gr (v, z)

�
, ∀u, v ∈ V (Q∞) . (6.5)

Let us make some comments about this result. The first part of the statement is
easy : Since Φ is continuous from (S ∪T

(0)

f
)×{0, 1} to Q and since, if νn is the uniform

law on Qn, one has
νn = Φ

�
µn ⊗ B(1/2)

�
,

and one obtains (6.4) simply by passing to the limit n → ∞ in this identity using
Theorems 6.3 and 6.7. To be completely accurate, the mapping Φ in the previous display
should be understood as taking values in Qn rather than Q

•
n, simply by “forgetting”

the distinguished vertex arising in the construction of Schaeffer’s bijection.
The rest of the statement is more subtle, and says that the labels, inherited on the

vertices of Q∞ in its construction from a labeled tree (T∞, �) distributed according to µ,
can be recovered as a measurable function of Q∞. This is not obvious at first, because
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a formula such as (6.2) is lacking in the infinite setting. It should be replaced by the
asymptotic formula (6.5), which specializes to

�(u) = lim
z→∞

�
d
Q∞
gr (z, u)− d

Q∞
gr (z, e∗±)

�
, u ∈ V (Q∞) , (6.6)

where

e∗± =

�
e∗− if limz→∞(d

Q∞
gr (e∗−, z)− d

Q∞
gr (e∗+, z)) = −1

e∗+ if limz→∞(d
Q∞
gr (e∗−, z)− d

Q∞
gr (e∗+, z)) = 1

. (6.7)

Of course, the fact that the limits in (6.5) and (6.7) exist is not obvious and is part of
the statement. This was first observed by Krikun in [90], and will be derived here by
different methods. Note that the vertex e∗± corresponds to the root vertex ∅ of T∞ in
the natural identification of vertices of Q∞ with vertices of T∞.

In particular, the fact that the labels are measurable with respect to Q∞ entails
that (θ, η) can be recovered as a measurable function of Q∞. Indeed, by the discussion
at the end of Section 6.2.3, the tree T∞ can be reconstructed from Q∞ and the labeling
�. The Bernoulli variable η is also recovered by (6.7). This settle the three conjectures
proposed by Krikun in [90].

The proof of (6.5) depends on certain properties of geodesics in the UIPQ that we
derive in the next section.

6.3 Geodesics in the UIPQ
Geodesics. If G = (V,E) is a graph, a chain or path in G is a (finite or infinite)
sequence of vertices γ = (γ(0), γ(1), . . .) such that for every i � 0, the vertices γ(i) and
γ(i+ 1) are linked by an edge of the graph. Such a chain is called a geodesic if for every
i, j � 0, the graph distance d

G

gr between γ(i) and γ(j) is equal to |j− i|. A geodesic ray
emanating from x is an infinite geodesic starting at x ∈ V .

We will establish two properties of the geodesics in the UIPQ : A confluence property
towards the root (Section 6.3.1) and a confluence towards infinity (Section 6.3.2). These
two properties are reminiscent of the work of Le Gall on geodesics in the Brownian Map
[99]. Put together they yield the last part (6.5) of Theorem 6.9.

6.3.1 Confluent geodesics to the root
Let Q∞ be distributed according to ν (see Theorem 6.3) and x be a vertex in Q∞.

For every R � 0, we want to show that (with probability 1) it is possible to find R� � R
and a family of geodesics γz

R
, z /∈ BQ,R�(Q∞) linking x to z respectively, such that for

every z, z� /∈ BQ,R�(Q∞),

γzR(i) = γz
�
R (i) , for every i ∈ {0, 1, . . . , R} .

In other words, all of these geodesics start with a common initial segment, independently
of the target vertex z.
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To this end, we need another construction of the UIPQ that can be found in [42],
which we briefly recall. Let l � 1 and set T

(l) be the subset of T
(l) consisting of those

trees θ = (τ, �) such that �(v) � 1 for every v ∈ τ . Elements of T
(l) are called l-well-

labeled tree, and just well-labeled tree if l = 1. We let T
(l)

n (resp. T
(l)

∞) be the set of all
l-well-labeled trees with n edges (resp. of infinite l-well-labeled trees).

Let µn be the uniform distribution on T
(1)

n . Let also S be the set of all trees
θ = (τ, �) ∈ T

(1)

∞ such that
– the tree τ has a unique spine, and
– for every R ∈ N, the set {v ∈ τ : �(v) � R} is finite.

Proposition 6.10 ([42]). The sequence (µn)n�1 converges weakly to a limiting proba-
bility law µ, in the space of Borel probability measures on (T

(1), dT). Moreover, we have
µ(S ) = 1.

The exact description of µ is not important for our concerns, and can be found in
[42]. The Schaeffer correspondence Φ can be defined on S . Let us describe quickly this
correspondence. Details can be found in [42], see also [101, 111].

Let θ = (τ, �) be an element of S . We start by embedding τ in the plane in such a
way that there are no accumulation points (which is possible since τ is locally finite).
We add an extra vertex ∂ in the plane, not belonging to the embedding of τ . Then, we
let (c(L)

i
, i � 0) and (c(R)

i
, i � 0) be the sequence of corners visited in contour order on

the left and right sides, starting with the root corner of τ . We let, for i ∈ Z,

ci =

�
c(L)

i
if i � 0

c(R)

−i if i < 0
.

We now define the notion of successor. If the label of V(ci) is 1, then the successor of
the corner ci is ∂. Otherwise, the successor of ci is the first corner cj in the infinite
list {ci+1, ci+2, . . .} ∪ {. . . , ci−2, ci−1} such that �(cj) = �(ci) − 1. The successor of any
corner ci with �(ci) � 2 exists because of the labeling constraints, and the definition of
S .

The end of the construction is as above : We draw an edge between each corner and
its successor and then remove all the edges of the embedding of τ . The new edges can
be drawn in such a way that the resulting embedded graph is proper and represent an
infinite quadrangulation of the plane. We denote this quadrangulation by Φ(θ) and root
it at the arc from ∂ to c0. Note that in this construction, we do not need to introduce an
extra parameter η to determine the orientation of the root. Moreover the non-negative
labels � have the following interpretation in terms of distances. For every u ∈ τ ,

�(u) = d
Φ(θ)
gr (∂, u), (6.8)

with the identification of the vertices of Φ(θ) with τ ∪ {∂}.

Proposition 6.11 ([42],[111]). It holds that

ν = Φ∗µ ,
that is, the UIPQ follows the distribution of Φ(θ), where θ is random with distribution
µ.
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It is worth noting that the mapping Φ : S → Q is injective. Its inverse function
Φ−1

: Φ(S ) → T
(1) is described in a similar manner as in Section 6.2.3 : Given the

quadrangulation q = Φ(τ, �), we recover the labeling � over V (q)\{∂} by (6.8) and
�(∂) = 0. Note that ∂ is always the origin of the root edge of q. We then apply the
same device as for Φ−1, that is, separating the faces of q into two kinds and adding
an edge on top of them according to Fig. 6.4. The resulting graph is τ and is rooted
at the corner incident to the root edge of q. One can check that the mapping Φ−1 is
continuous. Thus if Q∞ is distributed according to µ, one can define a labeled tree (τ, �)
distributed according to µ as a measurable function of Q∞ such that Q∞ = Φ(τ, �).

From this construction, it is possible to specify a particular infinite geodesic (or
geodesic ray) starting from e∗−. Namely, if (ci)i∈Z is the contour sequence of τ , for every
i � 1, let

d(i) = min{j � 0 : �(cj) = i} .

Then there is an arc between cd(i+1) and cd(i) for every i � 1, as well as an arc from cd(1)

to ∂, and the path (∂,V(cd(1)),V(cd(2)), . . .) is a geodesic ray. We call it the distinguished
geodesic ray of Q∞, and denote it by Γ, see Fig. 6.6.

Lemma 6.12. For every R � 0, there exists R� � R such that every z ∈ V(Q∞) \
BQ,R�(Q∞) can be joined to ∂ by a geodesic chain γ such that γ(i) = Γ(i) for every
i ∈ {0, 1, 2, . . . , R}.

Démonstration. Let Q∞ be distributed according to ν and set (τ, �) = Φ−1
(Q∞). Fi-

nally define Γ as above. With the notation introduced before the lemma define

R� = max
d(R)�i�g(R)

�(ci) ,

where d(R) is defined above, and

g(i) = max{j � 0 : �(cj) = i} .

Let z be a vertex of Q∞, not in BQ,R�(Q∞), and let cj be any corner incident to z.
Then j cannot be in [d(R), g(R)] since by definition �(cj) = d

Q∞
gr (∂, z) > R� � �(ci) for

any i ∈ [d(R), g(R)]. Now, let γ be the geodesic defined as the path starting at cj , and
following the arcs from cj to its successor corner, then from this corner to its successor,
and so on until it reaches ∂. These geodesics have the desired property, see Fig. 6.6.
Note that if j > 0, that is, if cj lies on the left side of τ , then necessarily all corners in
the geodesic γ with label less than or equal to R have to lie on the right-hand side of
τ . See Fig. 6.6.

6.3.2 Coalescence of proper geodesics rays to infinity
With the notation of Theorem 6.9, let (θ = (T∞, �), η) be distributed according to

µ⊗ B(1/2), and let Q∞ be the image of (θ, η) by the Schaeffer correspondence Φ. The
construction of Q∞ from θ allows to specify another class of geodesic rays in Q∞, which
are defined as follows. These geodesic rays are emanating from the root vertex ∅ of θ



✐
✐

“theseavec” — 2011/5/24 — 15:45 — page 140 — #140 ✐
✐

✐
✐

✐
✐

Cartes planaires aléatoires 140

1

1

2

3

4

4

5

2 3

5 6

∂

6

5

Γ

4

∞

Figure 6.6 – Illustration of the proof of Lemma 6.12. The tree is represented in dotted
lines. Every vertex marked by a circled integer corresponds to the last occurrence of
this integer along either the left or the right side of the tree. The distinguished geodesic
Γ is represented by a thick line.

(which can be either e∗− or e∗+, depending on the value of η). Consider any infinite path
(u0, u1, u2, . . .) in Q∞ starting from ∅ = u0, and such that �(ui) = −i for every i. Then
necessarily, such a chain is a geodesic ray emanating from ∅, because from (6.3) we
have d

Q∞
gr (ui, uj) � |i− j| for every i, j � 0, and the other inequality is obviously true.

We call such a geodesic a proper geodesic ray emanating from ∅. We will see later
that all geodesic rays emanating from ∅ are in fact proper. The main result of this
section shows the existence of cut-points which every infinite proper geodesic has to
visit.

Theorem 6.13. Let (θ = (T∞, �), η) be distributed according to µ ⊗ B(1/2), and let
Q∞ be the image of (θ, η) by the Schaeffer correspondence Φ. Almost surely, there exists
an infinite sequence of distinct vertices (p1, p2, . . .) such that every proper geodesic ray
emanating from e∗+ or e∗− passes through p1, p2, . . ..

The maximal and minimal geodesics

To prove Theorem 6.13 we need to introduce two specific proper geodesic rays that
are in a sense extremal. Recall that if θ = (τ, �) is a labeled tree in S with contour
sequence (ci)i∈Z, for every j ∈ Z the successor S(cj) of cj is the first corner among
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cj+1, cj+2, . . . with label �(cj)− 1.

Definition 6.14 (maximal geodesic). Let θ = (τ, �) ∈ S . For every corner c of θ, the
maximal geodesic γcmax emanating from c in θ is given by the chain of vertices attached
to the iterated successors of c,

γcmax(i) := V
�
S(i)

(c)
�
, i � 0,

where S(i) is the ith fold composition of the successor application.

Using (6.3) again, we deduce that the maximal geodesics are indeed geodesic chains
in the quadrangulation associated to θ. When c = c0 is the root corner of τ we drop
c0 in the notation γmax and call it the maximal geodesic. The maximal geodesic is a
proper geodesic.

We now also introduce the notion of the minimal geodesic starting from the root.
We consider only the left part of an infinite label tree (τ, �). The sequence of corners in
the clockwise contour of this part of the tree, is denoted by (c0, c1, c2, . . .). We define
the minimal geodesic γmin inductively : We start from the root ∅ of τ . Suppose that
the first n steps (∅ = γmin(0), . . . , γmin(n)) of γmin have been constructed. Let cj be
the last corner among c0, c1, . . . that is incident to the vertex γmin(n). We then set

γmin(n+ 1) := V
�
S(cj)

�
.

One can check inductively that �(γmin(i)) = −i, thus γmin is a proper geodesic ray
emanating from ∅ in Q∞. We restrict the definition of the minimal geodesic to the left
part of the tree in order to prescribe the behavior of the path when it hits the spine of
the tree. Roughly speaking, the minimal geodesic cannot cross the spine of τ .

0

-1
-1

0

1

0

1

-1

-1

-2

0 0

0

-1

1

0

-1

-1

-2

0 -1 -3

-1
-2

-1
-2

0

0 1

-2

Figure 6.7 – The maximal (is solid line) and minimal (in dotted line) geodesics starting
from the root corner of the tree θ.

It is clear from the construction of γmin and γmax that γmax only visits vertices of
subtrees that are attached to γmin. To be precise, for i � 0, denote by Ai the labeled tree
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consisting of γmin(i) and its descendants in the left side of the tree τ (γmin(i) might be
on the spine). Note that this tree may consist only of the single labeled vertex γmin(i).
It is clear by construction that (A0, A1, . . .) is an element of

�∞
i=0

T
(−i).

Lemma 6.15. The distribution of (A0, A1, . . .) under µ is
∞�

i=0

ρ−i.

Proof (Sketch). Let k � 0 be an integer and write Ck for the subtree of T∞ between
the spine and the first k steps of γmin, that is

Ck =

�
u ∈ T∞ : ∅ � u � γmin(k) and u not a strict descendant of γmin(i) for 0 � i � k

�
.

From the definition of the minimal geodesic, one checks that (γ0, γ1, . . . , γk) is a function
of the labeled tree (Ck, �). Let (τ0, �0) be a labeled tree such that (Ck, �) = (τ0, �0) with
positive probability. Using the definition of the labeling � and standard properties of
Galton-Watson trees, it is easy to see that conditionally on {(Ck, �) = (τ0, �0)} the
labeled trees A0, A1, . . . , Ak are distributed according to

�
k

i=0
ρ−i.

Proof of Theorem 6.13

Let θ = (τ, �) be a spatial tree. We set

∆−(θ) = min{�(u)− �(∅) : u ∈ θ},
∆(θ) = max{|�(u)− �(∅)| : u ∈ θ}.

Before proceeding to the proof of Theorem 6.13 we give a useful lemma which bounds
the labels of a tree sampled from ρ0.

Lemma 6.16. Let l ∈ Z and let θ = (T, �) be distributed according to ρl. There exist
two constants c, C > 0 such that for every integer y � 1

P (∆(θ) � y) � Cy−2, (6.9)
P
�
∆−(θ) � −y� � cy−2. (6.10)

Démonstration. Since we are subtracting the label of the root in the definition of ∆ and
∆−, one can assume without loss of generality that θ = (T, �) is distributed according
to ρ0. Let y � 1 be an integer. We start with (6.9) and condition on the size |θ| of θ,

P(∆(θ) � y) =

∞�

n=0

P(∆(θ) � y | |θ| = n)P (|θ| = n)

=

∞�

n=0

P
�

∆(θ)

(8n/9)1/4
� y
�

8n

9

�−1/4
����� |θ| = n

�
Cat(n)

2 · 4n ,

where we recall the formula P(T = τ) = 2
−1−2|τ | and Cat(n) =

1

n+1

�
2n

n

�
is the number

of planar trees with n edges. At this point, we use the estimate [43, Proposition 4] to
get that the conditional probabilities in the sum are bounded by some constant times
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exp(−yn−1/4
). Using the asymptotic behavior of Cat(n) as n → ∞, we get that for

some constant C1 > 0 we have

P (∆(θ) � y) � C1

∞�

n=1

e−yn
−1/4
n−3/2.

Using a comparison series-integral one shows that the sum in the right-hand side boun-
ded by C2y−2 as y →∞, which yields (6.9).
Let us turn to (6.10). By Kolmogorov’s estimate [87], there exists c1 > 0 such that for
every y � 0 we have P(H(T ) � y2) � c1y−2. Conditionally on the event {H(T ) � y2},
let u0 be the first vertex of T for the contour order such that |u0| = y2. By the definition
of the distribution of ρ0, the label �(u0) is given by an y2-step random walk with uni-
form increments over {−1, 0,+1}. Thus by standard properties of random walks, there
exists c2 > 0 such that for every y � 0 we have P(�(u0) � −y | H(T ) � y2) > c2. Hence
P (min{�(u) : u ∈ T} � −y) � c2c1y−2. This completes the proof of the lemma.

Proof of Theorem 6.13. Let θ = (T∞, �) be distributed according to µ and let η be an
independent Bernoulli variable with parameter 1/2. We assume that Q∞ is constructed
from (θ, η). Note that whatever the value of η, the proper geodesic rays emanating from
e∗+ or e∗− are part of proper geodesic rays emanating from ∅, so it suffices to prove the
statement for proper geodesic rays emanating from ∅.
As a first step, we start by proving that γmin and γmax meet each other infinitely often,
almost surely. Recall from the construction of the minimal and maximal geodesics that
γmax visits some of the labeled trees (Ai)i�0 (but not all) grafted on top of γmin. We
write 0 = φ(0) < φ(1) < φ(2) < . . . for the increasing sequence of integers such that
A0 = Aφ(0), Aφ(1), Aφ(2), . . . are the trees visited by γmax. The last vertex of Aφ(k) (for
the contour order) visited by γmax is denoted by Pk.

Lemma 6.17. The process

Dk = −φ(k)− �(Pk) , k � 0,

is a homogeneous Markov chain with state space {0, 1, 2, . . .}. Furthermore for every
y � 1 and m � 0 we have

P
�Dk+1 � y

�� Dk = m
� � C(m+ 1)y−2, (6.11)

where C > 0 is the constant introduced in (6.9). In particular the Markov chain (Dk)k�0

is recurrent.

If k � 0 is such that Dk = 0 then the geodesics γmin and γmax meet each other
at γmin(φ(k)). Indeed, by the construction of the maximal geodesic, the labels of the
points in Aφ(k) that are visited by γmax are smaller than or equal to −φ(k), with
equality only possible when γmax visits the root of Aφ(k), in which case we must have
γmax(φ(k)) = γmin(φ(k)) = Root(Aφ(k)). The lemma shows that Dk = 0 infinitely often
a.s., and thus γmin and γmax meet infinitely often, almost surely. This completes the
first step.
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Proof of Lemma 6.17. Suppose that Dk = m and condition on φ(k) and on the subtrees
A0, A1, A2, . . . , Aφ(k). Recall that the last point visited by γmax in Aφ(k) is Pk. The label
of Pk is −m− φ(k), and −φ(k) is the label of the root of Aφ(k). By the construction of
the maximal geodesic, the next point after Pk in γmax must belong to one of the subtrees
{Aφ(k)+1, . . . , Aφ(k)+m+1}, because the label of the root of Aφ(k)+m+1 is �(Pk) − 1. In
other words we have

φ(k + 1)− φ(k) � Dk + 1. (6.12)

Conditionally on φ(k) and A0, A1, . . . , Aφ(k), the trees (Aφ(k)+1, . . . , Aφ(k)+m+1) are
distributed according to ρ−φ(k)−1⊗ . . .⊗ρ−φ(k)−m−1 by Lemma 6.15. Let B1, . . . , Bm+1

be distributed according to ρ−1⊗ . . .⊗ρ−m−1. We denote the first index i ∈ {1, . . . ,m+

1} such that min{�(u) : u ∈ Bi} � −m− 1 by I and set P̃ be the last vertex of BI (for
the contour order) with minimal label among vertices ofBI . It is plain that conditionally
on {Dk = m}, on φ(k) and on A0, A1, . . . , Aφ(k), Dk+1 has the same distribution as the
label of P̃ minus I. In particular (Dk) is a Markov chain. As a corollary of (6.12) we
get that Dk+1 is less than the maximal displacement of the labels with respect to the
root in the trees {Aφ(k)+1, . . . , Aφ(k)+m+1},

Dk+1 � max
1�i�m+1

∆(Aφ(k)+i).

This inequality combined with (6.9) easily yields (6.11). Let us now use these estimates
on the transition probabilities of (Dk) to show that this chain is recurrent. Let L be
the smallest integer such that L4/3 > C(L+ 1) where C is the constant introduced in
(6.9), note that L � 1. Suppose that D0 = m and denote the least integer k � 0 such
that m(2/3)

k � L+ 1 by k0. We consider the event

{Dk � m(2/3)
k
,∀k = 0, 1, . . . , k0},

which is of probability bounded from below by

k0−1�

i=0

�
1− C(m(2/3)

i
+ 1)m−2(2/3)

i+1�
.

The last product is bounded away from 0 independently of m. In particular, whatever
the starting value D0 = m, the Markov chain (Dk) has a probability greater than some
fixed constant c3 > 0 to make only negative steps until it reaches a level smaller than
or equal to L+ 1. Since the chain is irreducible, this implies that (Dk) is recurrent.

Let us go back to the proof of Theorem 6.13. Recall that the spine of T∞ is de-
noted by (ST∞(0),ST∞(1), . . . ,ST∞(n), . . .) and the labeled subtree grafted on the left,
resp. right, of ST∞(i) is denoted by Li(θ), resp.Ri(θ). Let λ � 3 be such that

c

(5/2)2
− C

(λ− 1/2)2
> 0, (6.13)
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where c and C were introduced in (6.9) and (6.10), and define the event En where the
following four conditions hold :

min
�
� (ST∞(i)) : 0 � i � 2n2

�
∈ [−n, 0] (6.14)

min
�
�(v) : v ∈ Ri(θ), 0 � i � n2

�
∈ [−n, 0], (6.15)

min
�
�(v) : v ∈ Li(θ), 0 � i � n2

�
∈ [−λn,−2n], (6.16)

min
�
�(v) : v ∈ Li(θ), n2

+ 1 � i � 2n2
�
∈ ]−∞,−2λn]. (6.17)

Proposition 6.18. We have infn�1 P(En) > 0.

Proof of Proposition 6.18. We begin with condition (6.14), which is easily satisfied.
Indeed by standard properties of random walks, the event {�(ST∞(i)) ∈ [−n/2, n/2] :

0 � i � 2n2} has a probability bounded away from 0 independently of n. We now
condition on {�(ST∞(i)) ∈ [−n/2, n/2] : 0 � i � 2n2} and on the values (�(ST∞(i)) :

0 � i � 2n2
), so that the trees L0(θ), R0(θ), L1(θ), R1(θ), . . . , L2n2(θ), R2n2(θ) are

conditionally independent. The distribution of Ri(θ), resp.Li(θ), is ρ�(ST∞ (i)). Condition
(6.15) is satisfied if ∆(Ri(θ)) � n/2 for all 0 � i � n2, by (6.9) this event is of
probability at least (1 − 4C

n2 )
n

2
+1 which is bounded away from 0 independently of n.

Condition (6.16) is satisfied if there exists i0 ∈ {0, 1, . . . , n2} such that

−(λ− 1/2)n � ∆−(Li0) � −5n/2 (6.18)

and if all trees Li(θ) for i ∈ {0, 1, . . . , n2}\{i0} are such that ∆(Li(θ)) � n. Using (6.9)
and (6.10) this probability is at least

(n2
+ 1)

n2

�
c

(5/2)2
− C

(λ− 1/2)2

��
1− C
n2

�n2

,

which is bounded away from 0 because of (6.13). A similar statement holds for condition
(6.17). Since conditionally on {�(ST∞(i)) ∈ [−n/2, n/2] : 0 � i � 2n2} and on the
values (�(ST∞(i)))0�i�2n2 , the events (6.15),(6.16) and (6.17) are independent we get
that P(En) is bounded away from 0 independently of n.

We also let Fn be the event that the maximum displacement of the labels of the
subtrees (Ai, 0 � i � 2λn) is less than n2/3,

Fn = {∆(Ai) � n2/3
: 0 � i � 2λn}.

By (6.9) and Lemma 6.15, the probability of Fn converges to 1 as n→∞. Note that on
the event Fn, since Dk � ∆(Aφ(k)) equation (6.12) implies φ(k + 1)− φ(k) � n2/3

+ 1

for every k such that φ(k) � 2λn. Finally, we set

Gn = {∃i : (λ+ 1)n � i � (λ+ 2)n, γmin(i) = γmax(i)}.

A slight adaptation of the calculation at the end of the proof of Lemma 6.17 shows that
P(Fn ∩Gn)→ 1 as n→∞.

From now on we argue on En ∩ Fn ∩Gn which is an event of probability bounded
away from 0 uniformly in n. Consider the last vertex dn visited by the maximal geodesic
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in {Li(θ), 0 � i � n2}. This vertex dn has a label which is minimal among labels of
vertices in {Li(θ), 0 � i � n2} and belongs to a subtree Ain for a certain integer in � 0.
By (6.16) we know that −λn � �(dn) � −2n, and since Fn holds we deduce that

−λn � −in = �(γmin(in)) � −2n+ n2/3.

By (6.14) the labels of the vertices ST∞(n2
), . . . ,ST∞(2n2

) are larger than or equal to
−n. Consequently γmin does not hit these vertices. Thanks to this observation the last
vertex in {ST∞(0),ST∞(1), . . . ,ST∞(2n2

)} visited by γmin belongs to {ST∞(0),ST∞(1),
. . . ,ST∞(n2

)}. We denote this vertex by γmin(jn).
Note that if γmax visits a tree Ai then γmin also visits it. Using this, conditions

(6.16), (6.17), and the definition of Fn, one shows that if there exists an integer kn > jn
such that γmin(kn) is on the spine then necessarily kn � 2λn− n2/3.
We write c for the last corner of γmin(jn) in the contour of the right-hand side of T∞.
This corner thus belongs to the right-hand side of T∞. Now, let γcmax be the maximal
geodesic starting from c : This maximal geodesic "surrounds" the trees {Ri(θ), 0 � i �
ln} where ST∞(ln) = γmin(jn). Condition (6.15) implies that γcmax and γmax coalesce
before the point dn. Because we argue on Gn, there exists a meeting point p1∅ of γmin

and γmax between (λ+ 1)n and (λ+ 2)n steps along these proper geodesics.
A simple geometric argument then shows that every proper geodesic starting from

∅ lies between γcmax and γmin during its first 2λn− n2/3 steps. In particular all proper
geodesic rays are contained in the gray region represented on Fig. 6.8. The point p1∅ is
thus a cut-point for all the proper geodesics emanating from ∅, that is a point that
every proper geodesic starting from ∅ has to visit.

γc
max

γmax

γmin

dn

ST∞(n2) ST∞(2n2)

γmin(in)

p1
∅

γmax = γc
max

∅ γmin(jn)

γmin(3n)

γmin(kn)

Figure 6.8 – Illustration of the proof of Theorem 6.13. The minimal geodesic γmin is
in dotted line. Every proper geodesic emanating from ∅ has to stay in the gray region
for the first 2λn− n2/3 steps.

Summing-up we proved that on the event En ∩ Fn ∩ Gn which is of probability
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bounded away from 0 uniformly in n, there exists a cut-point at a distance between
(λ+ 1)n and (λ+ 2)n from ∅ for all the proper geodesics emanating from ∅.

Although the events (En)n�0 are not independent they are asymptotically inde-
pendent, that is for every i0 ∈ {0, 1, 2, . . .}

|P(Ei0 ∩ En)− P(Ei0)P(En)| −−−→
n→∞

0.

Using the last display and the fact that P(Fn ∩ Gn) → 1 as n goes to ∞, one shows
that almost surely En ∩ Fn ∩ Gn occurs infinitely often. We leave the details to the
reader.

We propose the following question. A positive answer would simplify the proof of Theo-
rem 6.13.

Question 10. Is it true that a.s. γmin(n) does not belong to the spine for all large
enough n ?

Question 11 (Presumably easier). Is it true that a.s. γmax(n) does not belong to the
spine for all large enough n ?

6.3.3 End of the proof of Theorem 6.9

Lemma 6.19. Almost surely, the function z �→ d
Q∞
gr (z, e∗−)− d

Q∞
gr (z, e∗+) from V (Q∞)

to {−1, 1} is almost constant., i.e. is constant except for finitely many z ∈ Q∞.

Démonstration. This statement is a property of the UIPQ, but for the purposes of
the proof, we will assume that Q∞ is constructed from a tree θ = (T∞, �) with law µ
and an independent parameter η with B(1/2) distribution, by applying the Schaeffer
correspondence Φ. This allows to specify the class of proper geodesic rays among all
geodesic rays.

First, let us assume that ∅ = e∗−, meaning that η = 0. Let γmax be the maximal
geodesic so that γmax(0) = ∅ = e∗−, and γmax(1) = e∗+. It is also a proper geodesic ray,
so that �(γmax(i)) = −i for every i.

Note that if γ is a geodesic from ∅ to γmax(i) for some i � 0, then necessarily
�(γ(j)) = −j for every j ∈ {0, 1, 2, . . . , i}, the reason being that the labels of two
neighboring vertices in Q∞ differ by at most 1.

Now let Γ be the distinguished geodesic ray which starts from e∗− = ∅ constructed
from Q∞ by first recovering the Chassaing-Durhuus tree (τ, �) = Φ−1

(Q∞) and then
constructing Γ as we did just before Lemma 6.12, and let R � 0. Applying Lemma
6.12, we obtain the existence of R� � R such that the vertex γmax(R� + 1), which does
not belong to BQ,R�(Q∞), can be linked to ∅ by a geodesic γ such that γ(i) = Γ(i) for
i ∈ {0, 1, . . . , R}. Since �(γ(R� + 1)) = �(γmax(R� + 1)) = −(R� + 1), we deduce from
the above discussion that �(γ(i)) = −i for every i ∈ {0, 1, . . . , R�}, so in particular,
�(Γ(i)) = −i for every i ∈ {0, 1, . . . , R}. Since R was arbitrary, we deduce that the
distinguished geodesic Γ is proper.

By Theorem 6.13, we get that Γ and γmax meet infinitely often. In particular, for
every α ∈ (0, 1), we can find R = R(α) such that with probability at least 1− α, there
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exists I ∈ {1, 2, . . . , R} such that Γ(I) = γmax(I). From now on we argue on this event.
Applying Lemma 6.12 again, we can findR� such that for every z ∈ V (Q∞)\BQ,R�(Q∞),
one can link ∅ to z by a geodesic γ whose R first steps coincide with those of Γ. But
since Γ(I) = γmax(I), we can replace the first I steps of γ by those of γmax, and obtain
a new geodesic from ∅ to z, whose first step goes from e∗− to e∗+. Since this holds for
any z at distance at least R� + 1 from e∗−, we obtain that d

Q∞
gr (z, e∗−)− d

Q∞
gr (z, e∗+) = 1

for every z at distance at least R� + 1 from e∗−. Since α was arbitrary, we obtain the
desired result in the case η = 0.

To treat the case η = 1, we use the obvious fact that if ←−Q∞ is the same quadran-
gulation as Q∞, but where the root edge has the reverse orientation, then ←−Q∞ has the
same distribution as Q∞. Moreover, ←−Q∞ = Φ(θ, 1− η) so on the event {η = 1} we are
back to the situation η = 0 by arguing on ←−Q∞ instead of Q∞.

From this, it is easy to prove (6.5), which will complete the proof of Theorem
6.9. Indeed, if x and y are neighboring vertices in Q∞ we can pick an edge e such
that e− = x and e+ = y. By Proposition 6.26 below, the quadrangulation Q(e)

∞ re-
rooted at e has the same almost sure properties as Q∞. In particular, almost surely
the function z �→ d(x, z) − d(y, z) is almost constant. But by reasoning on every step
of a chain from x to y, the same holds for any x, y ∈ Q∞. This constant has to be
�(x)− �(y). Indeed let us consider γx and γy two maximal geodesics emanating from a
corner associated to x resp. y. From properties of the Schaeffer construction, these two
geodesics merge at some point x = γx(i) = γy(i+ �(y)− �(x)) for some i ∈ {0, 1, 2, . . .},
and γx(j) = γy(j + �(y)− �(x)) for every j � i. Hence

lim
z→∞

d
Q∞
gr (x, z)− d

Q∞
gr (y, z) = lim

z→∞
z∈γx∩γy

d
Q∞
gr (x, z)− d

Q∞
gr (y, z) = �(x)− �(y).

Corollary 6.20. Every geodesic ray emanating from ∅ is proper.

Démonstration. Let γ be a geodesic ray and let i0 � 1 fixed. Applying (6.6) we get

�(γ(i0)) = lim
z→∞

�
d
Q∞
gr (γ(i0), z)− d

Q∞
gr (∅, z)

�

= lim
i→∞

�
d
Q∞
gr (γ(i0), γ(i))− d

Q∞
gr (∅, γ(i))

�
.

On the other hand, since γ is a geodesic, for i � i0 we have d
Q∞
gr (γ(i0), γ(i)) = i − i0,

which implies that �(γ(i0)) = −i0. This allows to conclude since i0 was arbitrary.

6.4 Applications
In this section, we use the representation of the UIPQ given by Theorem 6.9 in order

to deduce new results on this object. In particular, the comparison of scaling limits of
the UIPQ with the Brownian map [98, 102] enables us to solve a question of Krikun
about separating cycles in the UIPQ. In the last section, we study simple random walk
on the UIPQ through the labeling �.
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6.4.1 Local limit versus scaling limit

In order to compare large balls in the UIPQ with balls in large uniform random
quadrangulations, we first establish a quantitative version of the convergence of Theo-
rem 6.7. Roughly speaking, for any h � 0 the tree BT,h(T∞) formed by the first h
generations in the tree T∞ becomes close in distribution to BT,h(T�λh2�) when λ→∞,
where T�λh2� is uniformly distributed over the set of all planar trees with �λh2� edges.
This comparison is easier to handle if we deal with pointed trees.

Quantitate convergence of trees

A pointed tree is a pair (τ, o) where τ is a rooted planar tree and o is a vertex of τ .
For any 0 < h < |o| we denote by P(τ, o, h) the subtree of τ consisting of all vertices
u such that the common ancestor of u and o is at height strictly less than h, together
with the ancestor o(h) of o at height exactly h. We then define the pointed tree

P
•
(τ, o, h) =

�
P(τ, o, h), o(h)

�
.

o

o(h)

h

∅

o(h)

∅

Figure 6.9 – A pruned rooted tree (τ, o) and the resulting pruned tree P•(τ, o, h).

By convention when h � |o|, the pointed tree P•(τ, o, h) is ({∅},∅). If τ ∈ S ,
recall that we denote the vertices forming the spine of τ by Sτ (0),Sτ (1), . . .. We add an
extra point Sτ (∞) to τ which roughly speaking corresponds to a point at the extremity
of the spine of τ . We then extend the definition of P(τ, o, h) to any tree τ ∈ S and
o = Sτ (∞) : P(τ,Sτ (∞), h) is the subtree of τ consisting of the spine Sτ (0), . . . , Sτ (h)
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up to height h and the subtrees Li(τ) and Ri(τ) for 0 � i � h − 1. We also set
P•(τ,Sτ (∞), h) = (P(τ,Sτ (∞), h), Sτ (h)).

In the following, Tn is uniformly distributed over the set of all rooted planar trees
with n edges, and conditionally on Tn, on is a vertex of Tn chosen uniformly at random.
In particular if t0 is a fixed tree with n edges and o a vertex of t0, we have

P
�
(Tn, on) = (t0, o)

�
=

1

Cat(n)(n+ 1)
=

�
2n

n

�

(n+ 1)2
.

Let T∞ be a uniform infinite planar tree. The following proposition relates Tn to T∞.

Proposition 6.21. For any ε > 0 there exist δ > 0 and n0 � 0 such that for n � n0

we have
����P
�
P
•
�
Tn, on, �δn1/2�

�
∈ A
�
− P
�
P
•
�
T∞,ST∞(∞), �δn1/2�

�
∈ A
����� � ε,

for any finite set A of pointed trees. Consequently, if kn = o(n1/2
) then the total varia-

tion distance between P• (Tn, on, kn) and P• (T∞,ST∞(∞), kn) goes to 0 as n goes to
∞.

Remark 6.22. This theorem implies the local convergence of Tn towards T∞.

Remark 6.23. Note that a similar result has been proved by Aldous [2, Theorem 2]
for Poisson Galton-Watson trees.

Démonstration. Let h � 1 be an integer. We first identify the distribution of the variable
P•(T∞,ST∞(∞), h). Recall that P(T∞,ST∞(∞), h) consists of by the fragment of the
spine in τ up to height h, together with the subtrees grafted to the left and to the right
of it up to level h−1. This tree is pointed at ST∞(h). Let (t0, o) be a pointed tree where
o is a vertex of t0 at height h without children (of the form of the right-hand side of
Fig. 6.9). Using the fact that the subtrees grafted on the spine of τ are independent
Galton-Watson trees with geometric offspring distribution of parameter 1/2 we easily
get

P
�
P
•

(T∞,ST∞(∞), h) = (t0, o)
�

= 4
−|t0|. (6.19)

We also get that the number |P(T∞,ST∞(∞), h)| of edges of the random pointed tree
P•(T∞,ST∞(∞), h) is given by the sum of 2h independent variables

N0,l,N0,r, . . . ,Nh−1,l,Nh−1,r,

where Ni,l, resp. Ni,r, is the number of edges in the subtree grafted on the left, resp. right,
of the ith node of the spine plus 1/2 (to take into account the edges on the spine up to
level h). In particular for each i � 0, Ni,l − 1/2 is distributed according to the size of a
Galton-Watson tree with geometric offspring distribution of parameter 1/2. It follows
that for n � 0,

P (N0,l = n+ 1/2) =
1

2
Cat(n)4−n ∼

n→∞
n−3/2

2
√
π
. (6.20)
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Standard facts about domains of attractions (see for example [28, p. 343-350]) imply
that n−2|P(T∞,ST∞(∞), n)| converges in distribution towards a multiple of a stable
law with parameter 1/2. It follows that there exists C3 > 0 such that for n large enough

P
�
C−1

3
n �
��P(T∞,ST∞(∞), �

√
n�)
�� � C3n

�
� 1− ε. (6.21)

We now compute the distribution of P•(Tn, on, h). Fix a tree t0 distinct from {∅} with
less than n − 1 edges and a vertex o at height h in t0 with no offspring. The event
{P•(Tn, on, h) = (t0, o)} holds if and only if the tree Tn is obtained from the tree t0
by grafting at o a subtree t having n− |t0| edges. Furthermore, the distinguished point
on of Tn must lie in t but should be different from its root. Hence a direct counting
argument shows that

P
�
P
•
(Tn, on, h) = (t0, o)

�
=

Cat(n− |t0|)(n− |t0|)
Cat(n)(n+ 1)

∼
n−|t0|→∞
|t0|→∞

4
−|t0|
�

1− |t0|
n

�−1/2

(6.22)

We deduce from (6.19) and (6.22) that if n is large enough then for every pointed tree
(t0, o) such that C−1

3
n � |t0| � C3n, then for every integer κ � 2C3 and m � κn we

have �
1− 2C3

κ

�1/2

� P
�
P•(T∞,∞, �

√
n�) = (t0, o)

�

P
�
P•(Tm, om, �

√
n�) = (t0, o)

� � 1.

Fix ε > 0 and choose κ ∈ Z+ such that (1 − 2C3/κ)1/2 � 1 − ε. The inequality in the
last display, together with (6.21), shows that for every n sufficiently large and every
m � κn, we have for every set of pointed trees A

����P
�
P
• �Tm, om, �

√
n�
�
∈ A
�
− P
�
P
• �T∞,ST∞(∞), �

√
n�
�
∈ A
����� � 4ε,

which completes the proof of the proposition.

Quantitative convergence of maps

The last proposition has a corollary in terms of maps. Let Qn be uniformly distri-
buted over the set of rooted quadrangulations with n edges and Q∞ be the uniform
infinite planar quadrangulation. Recall that we denote the combinatorial ball of radius
r � 0 around the origin e∗− of the distinguished edge of a rooted quadrangulation q by
BQ,r(q).

Corollary 6.24. For any ε > 0, there exist δ > 0 and n0 � 0 such that for n � n0 we
have ����P

�
BQ,�δn1/4�(Qn) ∈ A

�
− P
�
BQ,�δn1/4�(Q∞) ∈ A

� ���� � ε,

for any finite set A of quadrangulations with holes. Consequently, if kn = o(n1/4
) then

the total variation distance between BQ,kn(Qn) and BQ,kn(Q∞) goes to 0 when n→∞.



✐
✐

“theseavec” — 2011/5/24 — 15:45 — page 152 — #152 ✐
✐

✐
✐

✐
✐

Cartes planaires aléatoires 152

Proof of Corollary 6.24. Let θn = (Tn, (�n(u))u∈Tn) be uniform over T
(0)

n and let θ∞ =

(T∞, (�(u))u∈T∞) be distributed according to µ. Fix η ∈ {0, 1}. We writeQ∞ = Φ(θ∞, η)
and Qn for the rooted quadrangulation with n faces obtained from Φ(θn, η) after forget-
ting the pointed vertex. Conditionally on (Tn, �) pick a uniform vertex on of Tn. Finally,
let ε > 0 and choose δ > 0 and n0 � 0 such that the first assertion of Proposition 6.21
holds.

If ST∞(0),ST∞(1), . . . denotes the spine of T∞, let mn ∈ {0, 1, . . . , �δn1/2�} be such
that

�(ST∞(mn)) = min
�
�(ST∞(i)), 0 � i � �δn1/2�

�
.

We also set Mn = −�(ST∞(mn)). We claim that there exists δ� > 0 small enough so
that for large all sufficiently large n

P(Mn � �δ�n1/4�+ 4) � 1− ε. (6.23)

Indeed, −Mn is the minimal value of a one dimensional random walk starting from 0

with increments uniform in {−1, 0,+1} and stopped at �δn1/2�. Then (6.23) follows
from standard properties of random walks.

Let us assume that Mn � 4, which holds with a probability tending to 1 as n→∞.
We denote the first corner associated with the vertex ST∞(mn) in the left, resp. right,
contour of the tree T∞ by c1, resp. c2. The corner c1 belongs to the left part of T∞ and
the corner c2 belongs to the right part of T∞. Consider the two maximal geodesics γc1max

and γc2max starting respectively from c1 and c2. Then γc1max and γc2max eventually coalesce.
Notice that every vertex of γc1max∪γc2max has a label smaller than −Mn thus is at distance
greater thanMn from ∅ by (6.3). A simple geometric argument using Jordan’s theorem
shows that any path in Q∞ joining ∅ to a vertex u ∈ T∞\P(T∞,ST∞(∞), �δn1/2�) has
to meet γc1max ∪ γc2max, in particular d

Q∞
gr (∅, u) � Mn. Since we have d

Q∞
gr (∅, e∗−) � 1,

every vertex u ∈ T∞\P(T∞,ST∞(∞), �δn1/2�) satisfies d
Q∞
gr (u, e∗−) � Mn − 1. Hence-

forth, all the edges of the map BQ,Mn−4(Q∞) are arcs drawn between two vertices of
P(T∞,ST∞(∞), �δn1/2�) which implies that BQ,Mn−4(Q∞) is a function of the labeled
tree (P(T∞,ST∞(∞), �δn1/2�), �). By comparing the constructions of Qn, resp.Q∞,
from the trees θn, resp. θ∞, and η ∈ {0, 1} we deduce that if

�
P
•
(T∞,ST∞(∞), �δn1/2�), �

�
=
�
P
•
(Tn, on, �δn1/2�), �n

�

then

BQ,Mn−4(Q∞) = BQ,Mn−4(Qn).

The corollary is then a consequence of the above discussion, (6.23) and Proposition
6.21 which is easily extended to labeled trees.

Separating cycles

The last corollary enables us to connect the large scale properties of the UIPQ to
properties of large random maps. As an application we deduce the non-existence of
sub-linear separating cycles in the UIPQ from the homeomorphism theorem of Le Gall
and Paulin [102]. This was conjectured by Krikun in [89].
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Recall that a cycle in a graph G is a chain C of neighboring vertices x0, x1, . . . , xp =

x0 in G. The length L(C) of C is the number of vertices of C. In the case of the UIPQ,
we say that a cycle C separates the origin from infinity, if e∗− lies in a finite component
of Q∞\C. Krikun has proved [89, Section 3.5] that for every integer n � 1, there exists
a cycle Cn separating the origin from infinity satisfying

– n � inf
�

d
Q∞
gr (e∗−, v) : v ∈ Cn

� � sup
�

d
Q∞
gr (e∗−, v) : v ∈ Cn

� � 2n,
– n−1E[L(Cn)]→ 11 as n→∞.

Corollary 6.25. Let κ > 1 and let θ : N → R+ be a function such that θ(n) = o(n)
as n→∞. The probability that there exists an injective cycle Cn separating the origin
from infinity in Q∞ such that

– n � inf
�

d
Q∞
gr (e∗−, v) : v ∈ Cn

� � sup
�

d
Q∞
gr (e∗−, v) : v ∈ Cn

� � κn,
– L(Cn) � θ(n),

tends to 0 as n→∞.

Démonstration. Fix ε > 0, and let 0 < δ < 1 be small enough so that Corollary 6.24
holds. Set m = �

�
2κn
δ

�
4

�. For large values of n the total variation distance between the
distribution of the ball of radius 2κn around the origin in a rooted quadrangulation
uniform over Qm and the distribution of the ball of radius 2κn around the origin in
Q∞ is smaller than or equal to ε. In particular, the probability that there exists an
injective cycle Cn in Q∞ such that

– L(Cn) � θ(n),
– n � inf

�
d
Q∞
gr (e∗−, v) : v ∈ Cn

� � sup
�

d
Q∞
gr (e∗−, v) : v ∈ Cn

� � κn,
– every component of BQ,2κn(Q∞)\Cn has diameter larger than n,

is within distance ε of the similar probability involving Qm. Note that the third condi-
tion is always fulfilled in the case of Q∞. The upper bound on the distance from the
root of a cycle imposed in the second condition implies that, in the case of Qm, the third
condition can be checked by looking only at BQ,2κn(Qm). Thanks to [102, Corollary
1.2] (see also [116]) the last probability goes to 0 as n→∞. This completes the proof
of the corollary.

We can also ask for a stronger version of the last result where the direct comparison
principle with the Brownian Map does not work as easily.

Question 12. Let θ : N → R+ be a function such that θ(n) = o(n) as n → ∞. Does
the probability that there exists an injective cycle Cn separating the origin from infinity
in Q∞ such that

– n � inf
�

d
Q∞
gr (e∗−, v) : v ∈ Cn

�
,

– L(Cn) � θ(n),
tends to 0 as n→∞ ?

6.4.2 Random walk on the UIPQ

Invariance under re-rooting along the random walk

Let q be a rooted quadrangulation, which can be finite or infinite. We consider the
nearest-neighbor random walk on q starting from e∗+. Rather than the random sequence
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of vertices visited by this walk, we really want to emphasize the sequence of edges
that are visited. Formally, we consider a random infinite sequence of oriented edges
(E0, E1, E2, . . .) starting with the root edge E0 = e∗ and defined recursively as follows.
Conditionally given (Ei, 0 � i � j), we let Ej+1 be a random edge pointing from (Ej)+,
chosen uniformly among the deg((Ej)+) possible ones. The sequence ((E1+i)−, i � 0)

is then the usual nearest-neighbor random walk on V (q), starting from e∗+.
We let Pq be the law of the sequence (Ei, i � 0)

1. Also, for any oriented edge e
of the map q, we let q(e) be the map q re-rooted at e. Finally, if λ is a probability
distribution on Q, let Θ(r)

(λ) be the probability distribution defined by

Θ(r)
(λ)(A) =

�

Q
λ(q. )
�
Pq(d(e0, e1, e2, . . .))1q(er)∈A,

for any Borel subset A of Q. The probability measure Θ(r)
(λ) is the distribution of a

random map with distribution λ, re-rooted at the rth step of the random walk.

Proposition 6.26. The law ν of the UIPQ is invariant under re-rooting along a simple
random walk, in the sense that for every r � 0, one has Θ(r)

(ν) = ν.
Moreover, if A is an event of the Borel σ-algebra of (Q, dQ) such that ν(A) = 1,

then
ν
��
q ∈ Q : ∀ e ∈ −→E (q), q(e) ∈ A

��
= 1 .

See [7, 17] for a general study of random graphs that are invariant under re-rooting
along the simple random walk. In the case of the UIPQ, the first assertion of Proposition
6.26 appears in [90, Section 1.3], see also [11, Theorem 3.2] for a similar result in the
case of the UIPT. We provide a detailed proof for the sake of completeness.

Démonstration. It is easy to see that the function Θ(r) on the set P(Q) of Borel pro-
bability measures on (Q, dQ) coincides with the r-fold composition of Θ = Θ(1) with
itself. Therefore, it suffices to show the result for r = 1.

Let us check that Θ is continuous when P(Q) is endowed with the topology of weak
convergence. Indeed, if λn converges weakly to λ as n → ∞, then by the Skorokhod
representation theorem, we can find a sequence (Qn, n � 0) of random variables in
Q with respective laws (λn, n � 0), that converges a.s. to a random variable Q with
law λ. For every fixed R > 0, it then holds that BQ,R(Qn) = BQ,R(Q) for every n
large enough a.s.. Now, we can couple in an obvious way the random walks with laws
PQn and PQ, in such a way that the first step E1 is the same edge in Qn and Q
on the event where BQ,1(Qn) = BQ,1(Q). For such a coupling, we then obtain that
BQ,R−1(Q(E1)

n ) = BQ,R−1(Q(E1)
) for every n large enough. Since R is arbitrary, this

shows that Q(E1)

n converges a.s. to Q(E1), so that Θ(λn) converges weakly to Θ(λ), as
desired.

1. Recall that a map is an equivalence class of embedded graphs, so the last definition does not
really make sense but the reader can check that all quantities computed in the sequel do not depend
on a representative embedded graph of the the map.
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Since we know by Theorem 6.3 that the uniform law νn on Qn converges to ν,
it suffices to show that Θ(νn) = νn. Now consider the law of the doubly-rooted map
(q, e∗, e1) under the law νn(q. )Pq((.ei)i�0). The probability that (q, e∗, e1) equals a par-
ticular doubly-rooted map (q, e�, e��) with e�+ = e��− is equal to (#Qn deg(e�+))

−1, from
which it immediately follows that (q, e∗, e1) has the same distribution as (q,←−e 1,

←−e ∗),
still under νn(q. )Pq((.ei)i�0). Hence (q,←−e 1) under νn(q. )Pq((.ei)i�0) has the same law νn
as (q, e∗). Since νn is obviously invariant under the reversal of the root edge, we get
that (q, e1) has law νn. But by definition, it also has law Θ(νn), which gives the first
assertion of Proposition 6.26.

Let us now prove the last part of the statement of the proposition. By the first part,
we have

�

Q
ν(dq)Eq

� ∞�

n=0

1Ac(q
(en)

)

�

= 0.

Thus, ν(dq) a.s. , Eq[
�∞
n=0

1Ac(q(en)
)] = 0. But

Eq

� ∞�

n=0

1Ac(q
(en)

)

�

�
�

e∈−→E (q)

Pq(∃n � 0 : en = e)1Ac(q
(e)

),

and Pq(∃n � 0 : en = e) > 0 for every e ∈ −→E (q) because q is connected. This completes
the proof.

Remark 6.27. It can seem a little unnatural to fix the first step of the random walk to
be equal to e∗, hence to be determined by the rooted map q rather than by some external
source of randomness. In fact, we could also first re-root the map at some uniformly
chosen random edge incident to e∗−, and start the random walk with this new edge.
Since the first re-rooting leaves the laws νn, ν invariant, as is easily checked along the
same lines as the previous proof, the results of Proposition 6.26 still hold with the new
random walk.

On recurrence

Let Q∞ be the uniform infinite planar quadrangulation. Conditionally on Q∞,
(Ek)k�0 denotes the random sequence of oriented edges with E0 = e∗ traversed by
a simple random walk on Q∞ as discussed at the beginning of Section 6.4.2. We write
Xk = (Ek)− for the sequence of vertices visited along the walk. For k � 0, we denote
the quadrangulation Q∞ re-rooted at the oriented edge Ek by Q(k)

∞ . Proposition 6.26
shows that Q(k)

∞ has the same distribution as Q∞.

Question 13 ([11]). Is the simple random walk (Xk)k�0 on Q∞ almost surely recur-
rent ?

A similar question for UIPT arose when Angel & Schramm [11] introduced this
infinite random graph. These questions are still open. Steffen Rohde and James T. Gill
[72] proved that the Riemann surface obtained from the UIPQ by gluing squares along
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edges is recurrent for Brownian motion. The first author and Itai Benjamini also proved
that the UIPQ is almost surely Liouville [17]. However the lack of a bounded degree
property for the UIPQ prevents one from deducing recurrence from these results (see
also [21]). Our new construction of the UIPQ however leads to some new information
suggesting that the answer to the above Question should be positive.

Theorem 6.28. The process (�(Xn))n�0 is a.s. recurrent, i.e. visits every integer infi-
nitely often.

Démonstration. For every k � 0, one can consider the labeling (�(k)(u))u∈Q∞ of the
vertices of Q∞ that corresponds to the labeling given by Theorem 6.9 applied to the
rooted infinite planar quadrangulation Q(k)

∞ . On the one hand, it is straightforward to
see from (6.5) that �(k)(u) − �(k)(v) = �(u) − �(v) for every u, v ∈ Q∞. On the other
hand, applying Proposition 6.26 we deduce that the process (�(k)(Xk+i)− �(k)(Xk))i�0

has the same distribution as (�(Xi) − �(X0))i�0. Gathering up the pieces, we deduce
that for every integer k � 0 we have

�
�(Xi)− �(X0)

�
i�0

(d)

=
�
�(Xk+i)− �(Xk)

�
i�0
. (6.24)

Hence the increments (�(Xi+1)− �(Xi))i�0 form is a stationary sequence. Furthermore,
we have |�(X1) − �(X0)| = 1, and since the distribution of Q∞ is preserved when
reversing the orientation of the root edge we deduce

�(X1)− �(X0)
(d)

= �(X0)− �(X1)
(d)

= B(1/2).

In particular the increments of �(Xn) have zero mean. Suppose for an instant that the
increments of �(Xn) were also ergodic, then Theorem 3 of [53] would directly apply and
give the recurrence of �(Xn). Although the UIPQ is ergodic, a proof of this fact would
take us to far, so we will reduce the problem to the study of ergodic components.

By standard facts of ergodic theory, the law ξ of the sequence of increments (�(Xi+1)−
�(Xi))i�0 can be expressed as a barycenter of ergodic probability measures in the sense
of Choquet, namely for every A ⊂ B(R)

⊗N we have

ξ(A) =

�
ζ(A)dm(ζ), (6.25)

wherem is a probability measure on the set of all probability measures on (RN,B(R)
⊗N,P)

that are ergodic for the shift. In our case, it suffices to show that m-almost every ζ
satisfies the assumption of [53, Theorem 3]. Specializing (6.25) with A1 = {(yi)i�0 :

|yi+1 − yi| � 1,∀i � 0} we deduce that m-almost every ζ, we have ζ(A1) = 1, in par-
ticular the increments under ζ are integrable. It remains to show that they have zero
mean.

Lemma 6.29. Almost surely we have

lim
n→∞

�(Xn)

n
= 0.
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Démonstration. In [42, Theorem 6.4] it is shown that E[#BQ,r(Q∞)] � C3r4 where
C3 > 0 is independent of r � 1. Using the Borel-Cantelli lemma we easily deduce that

lim
r→∞
r−6

#BQ,r(Q∞) = 0, a.s. (6.26)

We now use the classical Varopoulos-Carne upper bound (see for instance Theorem
13.4 in [107]) : we have

pn(e
∗
+, x) � 2

�
deg(x)

deg(e∗+)
exp

�

−
d
Q∞
gr (e∗+, x)

2

2n

�

, (6.27)

where conditionally on Q∞, pn(., .) is the n-step transition probability of the simple
random walk started from e∗+ in Q∞. Conditionally on Q∞, using a crude bound
deg(x) � #BQ,n+1(Q∞) on the degree of a vertex x ∈ BQ,n(Q∞), we have using
(6.27)

PQ∞(Xn /∈ BQ,n2/3(Q∞)) � 2 exp

�

−n
1/3

2

�
�
#BQ,n+1(Q∞)

�3/2
.

Hence on the event {limr→∞ r−6
#BQ,r(Q∞) = 0}, an easy application of the Borel-

Cantelli lemma shows that n−1
d
Q∞
gr (Xn,∅)→ 0 as n→∞. Since |�(Xn)| � d

Q∞
gr (Xn,∅),

the above discussion together with (6.26) completes the proof of the lemma.

Let us complete the proof of Theorem 7.16. We can specialize formula (6.25) to A2 =

{(yi)i�0 : lim i−1|yi| = 0}, to obtain that m-a.e ζ we have ζ(A2) = 1. Using the ergodic
theorem that means that the increments under ζ are centered. We can thus apply
Theorem 3 of [53] to get that for m-almost every ζ, the process whose increments are
distributed according to ζ is recurrent, hence (�(Xn)) is almost surely recurrent.

Appendix
Embeddings

In this section, we explain how the elements of Q∞ can be seen as infinite quadran-
gulations of a certain non-compact surface.

Recall that an element q of Q∞ is a sequence of compatible maps with holes
(q1, q2, . . .), in the sense that qr = BQ,r(qr+1). This sequence defines a unique cell
complex Sq up to homeomorphism, with an infinite number of 2-cells, which are qua-
drangles. This cell complex is an orientable, connected, separable topological surface,
and every compact connected sub-surface is planar.

It is known [124] that the topology of Sq is characterized by its ends space, which
is a certain totally disconnected compact space. Roughly speaking, the ends space
determines the different “points at infinity” of the surface. More precisely, following
[124], we define a boundary component of Sq as a sequence (U1, U2, . . .) of subsets of
Sq, such that

– for every i � 1, the set Ui is unbounded, open, connected and with compact
boundary,
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– for every i � 1, it holds that Ui+1 ⊂ Ui,
– for every bounded subset A ⊂ Sq, Ui ∩A = ∅ for every i large enough.

Two boundary components (Ui, i � 1), (U �
i
, i � 1) are called equivalent if for every i � 1

there exists i� � 1 such that U �
i� ⊂ Ui, and vice-versa. An end is an equivalence class of

boundary components. For every U ⊂ Sq with compact boundary, we let VU be the set
of all ends whose corresponding boundary components are sequences of sets which are
eventually included in U . The topological space having the sets VU as a basis is called
the ends space, and denoted by Eq.

Conversely, it is plain that every rooted quadrangulation of an orientable, connec-
ted, separable, non-compact planar surface, defines an element of Q∞, by taking the
sequence of the balls centered at the root vertex, with the same definition as in Section
6.2.2. The separability ensures that the collection of balls exhausts the whole surface.
Thus we have :

Proposition 6.30. The elements of Q∞ are exactly the quadrangulations of orien-
table, connected, separable, non-compact planar surfaces, and considered up to homeo-
morphisms that preserve the orientation.

To understand better what the ends space is in our context, note that there is a
natural tree structure Tq associated with q ∈ Q∞. The vertices v of this tree are the
holes of q1, q2, q3, . . ., and an edge links the vertices v and v� if there exists an r � 1

such that v is a hole of qr, v� is a hole of qr+1, and v� is included in the face determined
by v. Furthermore, all the holes in q1 are linked by an edge to an extra root vertex.

It is then easy to see that Eq is homeomorphic to the ends space ∂Tq which is defined
as follows : ∂Tq is just the set of infinite injective paths (spines) in Tq starting from the
root, and a basis for its topology is given by the sets Wv made of the spines that pass
through the vertex v of Tq. (This is consistent, since it is easy and well-known that the
ends space of trees with finite degrees is a compact totally disconnected space.)

In particular, when Tq has a unique spine, then Eq is reduced to a point, which
means that the topology of Sq is that of the plane R2.

Gromov compactification

Let (X, d) be a locally compact metric space. The set C(X) of real-valued continuous
functions on X is endowed with the topology of uniform convergence on every compact
set of X. One defines an equivalence relation on C(X) by declaring two functions equal
if they differ by a constant and the associated quotient space endowed with the quotient
topology is denoted by C(X)/R. Following [74], one can embed the original space X in
C(X)/R using the mapping

i : x ∈ X �−→ dx = d(x, .) ∈ C(X) �−→ dx ∈ C(X)/R.

The Gromov compactification of X is then the closure of i(X) in C(X)/R. The boun-
dary ∂X of X is composed of the points in C�(i(X))\i(X), where C�(.) denotes the
closure in C(X)/R. The points in ∂X are called horofunctions, see [74].
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In the case where (X, d) is a locally finite countable graph G endowed with the graph
distance d

G

gr(., .), the above description is a bit easier and still makes sense. Theorem
6.9 can be rephrased in this context :

Theorem 6.31. Almost surely, the Gromov boundary ∂Q∞ of the UIPQ consists of
only one point which is �, the equivalence class of � up to additive constants.
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Racine de dix-sept moins

trois sur deux
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The Random Recursive Triangulation of the Disk via
Fragmentation Theory

Les résultats de ce chapitre ont été obtenus en collaboration avec

Jean-François Le Gall et ont été acceptés pour publication dans The
Annals of Probability.

We introduce and study an infinite random triangulation of the unit disk that arises
as the limit of several recursive models. This triangulation is generated by throwing
chords uniformly at random in the unit disk and keeping only those chords that do
not intersect the previous ones. After throwing infinitely many chords and taking the
closure of the resulting set, one gets a random compact subset of the unit disk whose
complement is a countable union of triangles. We show that this limiting random
set has Hausdorff dimension β∗ + 1, where β∗ = (

√
17 − 3)/2, and that it can be

described as the geodesic lamination coded by a random continuous function which
is Hölder continuous with exponent β∗−ε, for every ε > 0. We also discuss recursive
constructions of triangulations of the n-gon that give rise to the same continuous
limit when n tends to infinity.

7.1 Introduction
In this work, we use fragmentation theory to study an infinite random triangulation

of the unit disk that arises as the limit of several recursive models. Let us describe a
special case of these models in order to introduce our main object of interest. We consi-
der a sequence U1, V1, U2, V2, . . . of independent random variables, which are uniformly
distributed over the unit circle S1. We then construct inductively a sequence L1, L2, . . .
of random closed subsets of the (closed) unit disk D. To begin with, L1 just consists of
the chord with endpoints U1, and V1, which we denote by [U1V1]. Then at step n+1, we
consider two cases. Either the chord [Un+1Vn+1] intersects Ln, and we put Ln+1 = Ln.
Or the chord [Un+1Vn+1] does not intersect Ln, and we put Ln+1 = Ln ∪ [Un+1Vn+1].
Thus, for every integer n � 1, Ln is a disjoint union of random chords. We then let

L∞ =

∞�

n=1

Ln

be the closure of the (increasing) union of the sets Ln. See Fig.1 below for a simulation
of the set L∞.

163
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The closed set L∞ is a geodesic lamination of the unit disk, in the sense that it is
a closed union of non-crossing chords (here we say that two chords do not cross if they
do not intersect except possibly at their endpoints). We refer to [30] for the general
notion of a geodesic lamination of a surface in the setting of hyperbolic geometry. We
may also view L∞ as an infinite triangulation of the unit disk, in the same sense as in
Aldous [6]. Precisely, L∞ is a closed subset of D, which has zero Lebesgue measure and
is such that any connected component of D\L∞ is a triangle whose vertices belong to
the circle S1. The latter properties are not immediate, but will follow from forthcoming
statements.

In order to state our first result, let us introduce some notation. We denote by
N(Ln) the number of chords in Ln. Then, for every x, y ∈ S1, we let Hn(x, y) be the
number of chords in Ln that intersect the chord [xy]. We also set

β∗ =

√
17− 3

2
.

Theorem 7.1. (i) We have

n−1/2N(Ln)
a.s.−→
n→∞

√
π.

(ii) There exists a random process (M∞(x), x ∈ S1), which is Hölder continuous with
exponent β∗ − ε, for every ε > 0, such that, for every x ∈ S1,

n−β
∗
/2Hn(1, x)

(P)−→
n→∞

M∞(x),

where (P)−→ denotes convergence in probability.

Part (i) of the theorem is a rather simple consequence of the results in [36, 37],
but part (ii) is more delicate and requires different tools. Here we prove (more general
versions of) the convergences in (i) and (ii) by using fragmentation theory. To this end,
we consider continuous-time models where non-crossing chords are thrown at random
in the unit disk according to the following device : At time t, the existing chords bound
several subdomains of the disk, and a new chord is created in one of these subdomains
at a rate which is a given power of the Lebesgue measure of the portion of the circle
that is adjacent to this subdomain. It is not hard to see that the random closed subset
of D obtained by taking the closure of all chords created in this process has the same
distribution as L∞, and moreover the case when the power is the square is very closely
related to the discrete-time model described above.

In this continuous-time model, the ranked sequence of the Lebesgue measures of
the portions of S1 corresponding to the subdomains bounded by the existing chords
at time t forms a conservative fragmentation process, in the sense of [24]. A general
version of the convergence (i) can then be obtained as a consequence of asymptotics
for fragmentation processes. Similarly, if U is a random point uniformly distributed on
S1 and if we look only at subdomains that intersect the chord [1U ], we get another
(dissipative) fragmentation process, and known asymptotics give the convergence in
(ii), provided that x is replaced by the random point U . An extra absolute continuity
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Figure 7.1 – The random set L∞.

argument is then needed to get the desired result for a deterministic point x : See
Theorem 7.25 and its proof.

The most technical part of the proof of Theorem 7.1 is the derivation of the Hölder
continuity properties of the limiting process (M∞(x), x ∈ S1). To this end, we need to
obtain precise bounds for the moments of increments of this process. In order to derive
these bounds, we rely on integral equations for the moments, which follow from the
recursive construction.

Our second theorem shows that the random geodesic lamination L∞ is coded by
the process M∞, in the sense of the following statement. For every x, y ∈ S1\{1},
we let Arc(x, y) denote the closed subarc of S1 with endpoints x and y that does not
contain the point 1. For every x ∈ S1\{1}, we let Arc(1, x) = Arc(x, 1) be the closed
subarc of S1 going from 1 to x in counterclockwise order, and we set Arc(1, 1) = {1}
by convention.

Theorem 7.2. The following properties hold almost surely. The random set L∞ is the
union of the chords [xy] for all x, y ∈ S1 such that

M∞(x) = M∞(y) = min
z∈Arc(x,y)

M∞(z) . (7.1)

Moreover, L∞ is maximal for the inclusion relation among geodesic laminations.

It is relatively easy to see that property (7.1) holds for any chord [xy] that arises
in our construction of L∞. The difficult part of the proof of the theorem is to show the
converse, namely that any chord [xy] such that (7.1) holds will be contained in L∞.
This fact is indeed closely related to the maximality property of L∞.

The coding of geodesic laminations by continuous functions is discussed in [102],
and is closely related to the coding of R-trees by continuous functions (see e.g. [61]).
A particular instance of this coding had been discussed earlier by Aldous [6], who
considered the case when the coding function is the normalized Brownian excursion. In
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that case, the associated R-tree is Aldous’ CRT. Moreover, the Hausdorff dimension of
the corresponding lamination is 3/2. This may be compared to the following statement,
where dim(A) stands for the Hausdorff dimension of a subset A of the plane.

Theorem 7.3. We have almost surely

dim(L∞) = β∗ + 1 =

√
17− 1

2
.

The lower bound dim(L∞) � β∗+1 is a relatively easy consequence of the fact that
L∞ is coded by the function M∞ (Theorem 7.2) and of the Hölder continuity properties
of this function (Theorem 7.1). In order to get the corresponding upper bound, we use
explicit coverings of the set L∞ that follow from our recursive construction. To evaluate
the sum of the diameters of balls in these coverings raised to a suitable power, we again
use certain asymptotics from fragmentation theory.

The random set L∞ also occurs as the limit in distribution of certain random
recursive triangulations of the n-gon. For every n � 3, we consider the n-gon whose
vertices are the n-th roots of unity

xnk = exp(2iπ
k

n
) , k = 1, 2, . . . , n.

A chord of S1 is called a diagonal of the n-gon if its vertices belong to the set {xn
k

:

1 � k � n} and if it is not an edge of the n-gon. A triangulation of the n-gon is the
union of n − 3 non-crossing diagonals of the n-gon (then the connected components
of the complement of this union in the n-gon are indeed triangles). The set Tn of all
triangulations of the n-gon is in one-to-one correspondence with the set of all planar
binary trees with n− 1 leaves (see e.g. Aldous [6]).

For every fixed integer n � 4, we construct a random element of Tn as follows.
Denote by Dn the set of all diagonals of the n-gon. Let c1 be chosen uniformly at
random in Dn. Then, conditionally given c1, let c2 be a chord chosen uniformly at
random in the set of all chords in Dn that do not cross c1. We continue by induction
and construct a finite sequence of chords c1, c2, . . . , cn−3 : For every 1 < k � n − 3,
ck is chosen uniformly at random in the set of all chords in Dn that do not cross
c1, c2, . . . , ck−1. Finally we let Λn be the union of the chords c1, c2, . . . , cn−3.

Let us also introduce a slightly different model, which is closely related to [52].
Let σ be a uniformly distributed random permutation of {1, 2, . . . , n}. With σ, we
associate a collection of diagonals of the n-gon, which is constructed recursively as
follows. For every integer 0 � k � n we define a set Mk of disjoint diagonals of the
n-gon, and a set Fk of “free” vertices. We start with M0 = F0 = ∅. Then, at step
k ∈ {1, . . . , n}, either there is a (necessarily unique) free vertex x ∈ Fk−1 such that
[xxnσ(k)

] is a diagonal of the n-gon that does not intersect the chords in Mk−1, and we
set Mk = Mk−1 ∪ {[xxnσ(k)

]} and Fk = Fk−1\{x} ; or there is no such vertex and we
set Mk =Mk−1 and Fk = Fk−1 ∪ {xnσ(k)

}. We let �Λn be the union of the chords in Mn
(note that �Λn is not a triangulation of the n-gon).
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Theorem 7.4. We have
Λn

(d)−→
n→∞

L∞,

and
�Λn

(d)−→
n→∞

L∞.

In both cases, the convergence holds in distribution in the sense of the Hausdorff distance
between compact subsets of D.

Theorem 7.4 should be compared with the results of Aldous [6] (see also [5]). Aldous
considers a triangulation of the n-gon that is uniformly distributed over Tn, and then
proves that this random triangulation converges in distribution as n→∞ towards the
geodesic lamination coded by the normalized Brownian excursion (see Theorem 7.10
below for a more precise statement). Our random recursive constructions give rise to
a limiting geodesic lamination which is “bigger” than the one that appears in Aldous’s
work, in the sense of Hausdorff dimension.

Triangulations of convex polygons are also interesting from the geometric and com-
binatorial point of view : see e.g. [132]. In [55], Devroye, Flajolet, Hurtado, Noy and
Steiger studied some features of triangulations sampled uniformly from Tn. Their proofs
are based on combinatorial and enumeration techniques. Recursive triangulations of the
type studied in the present work have been used in physics as greedy algorithms for
computing folding of RNA structure (see [120]). In these models, the polymer is repre-
sented by a discrete cycle and diagonals correspond to liaisons of RNA bases. See [120],
[52] and [51] for certain results related to our work, and in particular to the asymptotics
of Theorem 7.1.

As a final remark, this work deals with “Euclidean” geodesic laminations consis-
ting of unions of chords. As in [102], we may consider instead the hyperbolic geodesic
laminations obtained by replacing each chord by the hyperbolic line with the same
endpoints in the hyperbolic disk. It is immediate to verify that our main results remain
valid after this replacement.

The paper is organized as follows. Section 2 recalls basic facts about geodesic lami-
nations, and introduces the random processes (Sα(t))t�0 describing random recursive
laminations, which are of interest in this work. Section 3 studies the connections bet-
ween these random processes and fragmentation theory, and derives general forms of
the asymptotics of Theorem 7.1. Section 4 is devoted to the continuity properties of the
process M∞. Theorem 7.2 characterizing L∞ as the lamination coded by M∞ is proved
in Section 5. The Hausdorff dimension of L∞ is computed in Section 6, and Section 7
discusses the discrete models of Theorem 7.4. Finally, Section 8 gives some extensions
and comments.

7.2 Random geodesic laminations
7.2.1 Laminations

Let us briefly recall the notation which was already introduced in Section 1. The
open unit disk of the complex plane C is denoted by D = {z ∈ C : |z| < 1}, and S1 is
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the unit circle. As usual, the closed unit disk is denoted by D. If x, y are two distinct
points of S1, the chord of feet x and y is the closed line segment [xy] ⊂ D. We also
use the notation ]xy[ for the open line segment with endpoints x and y. By convention,
[xx] is equal to the singleton {x}, and is viewed as a degenerate chord, with ]xx[= ∅.

We say that two chords [xy] and [x�y�] do not cross if ]xy[∩]x�y�[= ∅.

Definition 7.5. A geodesic lamination L of D is a closed subset L of D which can
be written as the union of a collection of non-crossing chords. The lamination L is
maximal if it is maximal for the inclusion relation among geodesic laminations of D.

For simplicity, we will often say lamination instead of geodesic lamination of D. In
the context of hyperbolic geometry [30], geodesic laminations of the disk are defined as
closed subsets of the open (hyperbolic) disk. Here we prefer to view them as compact
subsets of the closed disk, mainly because we want to discuss convergence of laminations
in the sense of the Hausdorff distance. Notice that a maximal lamination necessarily
contains the unit circle S1.

As the next lemma shows, the concept of a maximal lamination is a continuous
analogue of a discrete triangulation.

Lemma 7.6. Let L be a geodesic lamination of D. Then L is maximal if and only if
the connected components of D\L are open triangles whose vertices belong to S1.

We leave the easy proof to the reader.

7.2.2 Figelas and associated trees
The simplest examples of laminations are finite unions of non-crossing chords. Define

a figela S (from finite geodesic lamination) as a finite set of (unordered) pairs of distinct
points of S1 :

S = {{x1, y1}, ..., {xn, yn}},

such that the union of the n chords {[xiyi]}1�i�n forms a lamination, which is then
denoted by LS . If {x, y} ∈ S, we will say that [xy] is a chord of the figela S. We denote
the set

�
n

i=1
{xi, yi} of all feet of the chords of S by Feet(S).

Let u, v ∈ S1\Feet(S). The height between u and v in S is the number of chords of
S crossed by the chord [uv] :

HS(u, v) = #{1 � i � n : [xiyi] ∩ [uv] �= ∅}.

The next proposition follows from simple geometric considerations.

Proposition 7.7 (Triangle inequality). Let S be a figela. For every x, y, z ∈ S1\Feet(S)

we have
HS(x, z) � HS(x, y) +HS(y, z). (7.2)

Let S = {{x1, y1}, ..., {xn, yn}} be a figela. We define an equivalence relation on
S1\Feet(S) by setting, for every u, v ∈ S1\Feet(S),

u � v if and only if HS(u, v) = 0.
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In other words, two points of S1\Feet(S) are equivalent if and only if they belong to
the same connected component of D\ ∪n

i=1
[xiyi]. Then HS induces a distance on the

quotient set TS := (S1\Feet(S))/ �. The finite metric space TS can be viewed as a
graph by declaring that there is an edge between a and b if and only if HS(a, b) = 1.
This graph is indeed a tree, and HS(., .) coincides with the usual graph distance. The
tree TS can be rooted at the equivalence class of 1 (we assume that 1 is not a foot of S,
which will always be the case in our examples). As a result of this discussion, we can
associate a plane (rooted ordered) tree TS to S. See Fig. 2 for an example from which
the definition of the tree TS should be clear.

The n + 1 connected components of D\ ∪n
i=1

[xiyi] are called the fragments of the
figela S. With each fragment R, we associate its mass

m(R) = λ(R ∩ S1),

where λ denotes the uniform probability measure on S1.

4

The quotient of S1\Feet(S) with respect to � endowed with the quotient distance HS(., .) is a

finite metric space denoted by (TS ,HS(., .)). We view TS as a graph by putting an edge between a

and b in TS if HS(a, b) = 1. Then TS is a tree and HS(., .) coincides with the usual graph distance

on it. Furthermore TS inherits an orientation from the planarity of S and can be rooted at the

equivalence class of 1 (assuming that 1 is not a foot of S). Consequently we can associate a rooted

oriented tree TS to S, see Fig. 2. The n + 1 connected components R1, ..., Rn+1 of D\∪n
i=1 [xiyi]

are called fragments of the figela S. We associate two parameters with each fragment:

(1) its mass m(R) =
Leb(R ∩ S1)

2π
, where Leb is the Lebesgue measure on S1,

(2) its number of ends e(R) = #{connected components of R ∩ S1}.

1

TS

Fig. 2. A figela and its associated rooted oriented tree (in dotted lines on the left picture). We drew arches in a
curved way for better visibility. In this example, S is composed of 7 arches and 8 fragments. Notice that each

fragment of S corresponds to one vertex of the tree TS.

2.3. Coding by continuous functions. Let g : [0, 1] → R+ be a continuous function such that

g(0) = g(1) = 0. We define a pseudo distance on [0, 1] by

dg(x, y) = g(x) + g(y)− 2 min
s∈[x,y]

g(s),

for every x and y in [0, 1]. We associate an equivalence relation to dg by setting for x, y ∈ [0, 1],

x
g∼ y if dg(x, y) = 0. We can define an R-tree and a lamination coded by g.

Proposition 2.4 ([DLG02]). The quotient set Tg of [0, 1] with respect to g∼ endowed with
the quotient distance dg is an R-tree called the tree coded by the function g.

Proposition 2.5 ([LGP08]). The set

Lg =

�

x
g∼y

�
e
2iπx

e
2iπy

�
,

is a lamination called lamination coded by the function g. Moreover, Lg is maximal if and only
if the local minima of g are distinct.

In [LGP08], the authors deal with laminations of the unit disk endowed with the hyperbolic

metric. However, the last proposition only requires minor adaptations, that we omit here. Lami-

nations have a well-know close relationship with trees, indeed a lamination carrying a transverse

measure can be seen as an R-tree. We refer to [Bon98, p. 12] for the definition of a transverse

measure, and to [LP97] for details of the construction. We end this section by reformulating a

result of Aldous within this formalism.

imsart-aop ver. 2010/04/27 file: English-triangulation-corrected.tex date: May 30, 2010

Figure 7.2 – A figela and its associated plane tree (in dotted lines on the left side). We
drew chords as curved lines for better visibility. In this example, S has 7 chords and 8

fragments. Notice that each fragment of S corresponds to a vertex of the tree TS .

7.2.3 Coding by continuous functions
Let g : [0, 1] → R+ be a continuous function such that g(0) = g(1) = 0. We define

a pseudo-distance on [0, 1] by

dg(s, t) = g(s) + g(t)− 2 min
r∈[s∧t,s∨t]

g(r),

for every s, t ∈ [0, 1]. The associated equivalence relation on [0, 1] is defined by setting
s
g∼ t if and only if dg(s, t) = 0, or equivalently g(s) = g(t) = minr∈[s∧t,s∨t] g(r).

Proposition 7.8 ([61]). The quotient set Tg := [0, 1]/
g∼ endowed with the distance dg

is an R-tree called the tree coded by the function g.

We refer to [63] for an extensive discussion of R-trees in probability theory.
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In order to introduce the lamination coded by g, we need some additional notation.
For s ∈ [0, 1], we let clg(s) be the equivalence class of s with respect to the equivalence
relation g∼ . Then, for s, t ∈ [0, 1], we set s

g

≈ t if at least one of the following two
conditions holds :

– s g∼ t and g(r) > g(s) for every r ∈]s ∧ t, s ∨ t[.
– s g∼ t and s ∧ t = min clg(s), s ∨ t = max clg(s).

In particular, s
g

≈ s, and s
g

≈ t holds if and only if t
g

≈ s. Note however that
g

≈ is in
general not an equivalence relation. It is an elementary exercise to check that the graph
{(s, t) : s

g

≈ t} is a closed subset of [0, 1]
2.

Proposition 7.9. The set
Lg :=

�

s
g
≈t

�
e2iπse2iπt

�
, (7.3)

is a geodesic lamination of D called the lamination coded by the function g. Furthermore,
Lg is maximal if and only if, for every open subinterval ]s, t[ of [0, 1], the infimum of g
over ]s, t[ is attained at at most one point of ]s, t[.

We leave the proof to the reader. See [102, Proposition 2.1] for a closely related
statement. This proposition is stated under the assumption that the local minima of
g are distinct, which is slightly stronger than the condition in the second assertion of
Proposition 7.9. Note that the latter condition is equivalent to saying that the relations
g∼ and

g

≈ coincide, or that
g

≈ is an equivalence relation.
We end this section by reformulating in this formalism a theorem of Aldous which

was already mentioned in the introduction. Recall our notation Tn for the set of all
triangulations of the n-gon. An element of Tn is just a geodesic lamination consisting
of n− 3 chords whose feet belong to the set of n-th roots of unity.

Theorem 7.10 ([6],[5]). Let (et)0�t�1 be a normalized Brownian excursion, and let
∆n be uniformly distributed over Tn. Then we have

∆n
(d)−→
n→∞

Le,

in the sense of the Hausdorff distance between compact subsets of D. Moreover the
Hausdorff dimension of Le is almost surely equal to 3/2.

A detailed argument for the calculation of the Hausdorff dimension of Le is given
in [102] (the proof in [6] is only sketched).

7.2.4 Random recursive laminations
Let α � 0 be a positive real number. We define a Markov jump process (Sα(t), t � 0)

taking values in the space of all figelas, and increasing in the sense of the inclusion order.
Let us describe the construction of this process. We introduce a sequence of random

times 0 = τ0 < τ1 < τ2 < . . . such that Sα(t) is constant over each interval [τn, τn+1[,
and Sα(τn) has exactly n chords (in particular Sα(0) is the empty figela). We define the
pairs (τn, Sα(τn)) for every n � 1 recursively as follows. In order to describe the joint
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distribution of (τn+1, Sα(τn+1)) given the σ-field Fn = σ(τ0, ..., τn, Sα(τ1), ..., Sα(τn)),
we write Rn

1
, ..., Rn

n+1
for the n+1 fragments of the figela Sα(τn), and we let e1, ..., en+1

be n+ 1 independent exponential variables with parameter 1 that are also independent
of Fn. Then, for 1 � j � n+ 1, we set Ej = m(Rn

j
)
−αej and we let j0 be the a.s. unique

index such that Ej0 = min{Ej : 1 � j � n+ 1}. Conditionally given Fn and (e1, ..., en),
we sample two independent random variables Xn+1, and Yn+1 uniformly distributed
over Rj0 ∩ S1. Then conditionally on Fn, the pair (τn+1, Sα(τn+1)) has the same distri-
bution as (τn + Ej0 , Sα(τn) ∪ {{Xn+1, Yn+1}}).

Note that τn → ∞ a.s. when n → ∞. Indeed, it is enough to see this when α = 0,
and then τn+1 − τn is exponential with parameter n+ 1. Therefore the processes Sα(t)
are well-defined for every t � 0.

If R is a fragment of Sα(t), then independently of the past up to time t, a new
chord is added in R at rate m(R)

α. The preceding construction can thus be interpreted
informally : The first chord is thrown in D uniformly at random (the two endpoints
of the chord are chosen independently and uniformly over S1) at an exponential time
with parameter 1, and divides it into two fragments R0 and R1. These two fragments
can be identified with two disks if we contract the first chord (the boundaries of these
disks are then identified respectively with Ri∩S1 for i ∈ {0, 1}). Then the process goes
on independently inside each of these disks provided that we rescale time by the mass
of the corresponding fragment to the power α.

The process (Sα(t), t � 0) will be called the figela process with autosimilarity pa-
rameter α.

Remark 7.11. Let {(ti, (xi, yi))}i∈N be the atoms of a Poisson point measure on R+×
S1 × S1 with intensity dt ⊗ λ ⊗ λ, where we recall that λ is the uniform probability
measure on S1. We suppose that the atoms of the Poisson measure are ordered so that
0 < t1 < t2 < · · · , and we also set t0 = 0. We construct a figela-valued jump process
(S (t), t � 0) using the following device. We start from S (0) = ∅, and the process may
jump only at times t1, t2, . . .. For every i � 1, we take S (ti) = S (ti−1) ∪ {{xi, yi}}
if the chord of feet xi and yi does not cross any chord of S (ti−1), and otherwise
we take S (ti) = S (ti−1). It follows from properties of Poisson measures that this
process has the same law as our process (S2(t), t � 0). Moreover, the discrete-time
process (LS (tn), n � 0) has the same distribution as the process (Ln, n � 0) discussed
in Section 1. Thanks to this observation, and to the fact that n−1tn tends to 1 a.s.,
forthcoming results about asymptotics of the processes (Sα(t), t � 0) will carry over to
the process (Ln, n � 0).

Remark 7.12 (Rotational invariance). Let (Sα(t))t�0 be a figela process with para-
meter α. For every z ∈ S1, set

Szα(t) = {{zx, zy} : {x, y} ∈ Sα(t)} .

Then (Szα(t), t � 0) has the same distribution as (Sα(t), t � 0).

It will be important to construct simultaneously the processes (Sα(t))t�0 for all
values of α � 0, in the following way. We set

T =

�

n�0

{0, 1}n (7.4)
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where {0, 1}0 = {∅}. We consider a collection (�u)u∈T of independent exponential
variables with parameter 1. The first chord then appears at time �∅. If R0 and R1 are
the two fragments created at this moment, a new chord will appear in R0, resp. in R1,
at time �∅ + m(R0)

−α�0, resp. at time �∅ + m(R1)
−α�1. We continue the construction

by induction. If we use the same random choices of the new chords independently of
α (so that the same fragments will also appear), we get a coupling of the processes
(Sα(t))t�0 for all α � 0.

This coupling is such that a.s. for every t � 0 and for every α� � α � 0, there exists
a finite random time Tt,α,α� � t such that

Sα�(t) ⊂ Sα(t) ⊂ Sα�(Tt,α,α�).

In the remaining part of this work, we will always assume that the processes
(Sα(t))t�0 are coupled in this way. Hence, the increasing limit S(∞) = lim ↑ Sα(t)
as t ↑ ∞ does not depend on α, and the same holds for the random closed subset of D
defined by

L∞ =

�

{x,y}∈S(∞)

[xy].

By the discussion in Remark 7.11, this is consistent with the definition of L∞ in Section
1. We note that L∞ is a (random) geodesic lamination. To see this, write S∗(∞) for
the closure in S1 × S1 of the set of all (ordered) pairs (x, y) such that {x, y} belongs to
S(∞). Then a simple argument shows that

L∞ =

�

(x,y)∈S∗(∞)

[xy],

and moreover if (x, y) and (x�, y�) belong to S∗(∞) the chords [xy] and [x�y�] either
coincide or do not cross.

7.3 Random fragmentations
7.3.1 Fragmentation theory

In this subsection, we briefly recall the results from fragmentation theory that we
will use, in the particular case of binary fragmentation which is relevant to our appli-
cations. For a more detailed presentation, we refer to Bertoin’s book [24].

We consider a probability measure ν on [0, 1]
2. We assume that ν is supported on

the set {(s1, s2) : 1 > s1 � s2 � 0, s1 + s2 � 1}, and satisfies the following additional
properties :

(H)
(i) ν({s2 > 0}) > 0,
(ii) ν({s1 = 0}) = 0.

Such a measure is a special case of a dislocation measure. Furthermore, if ν({s1+s2 =

1}) = 1, then ν is said to be conservative. It is called non-conservative or dissipative
otherwise.

Let S↓ be the set of all real sequences (s1, s2, ...) such that 1 � s1 � s2 � .... � 0

and
�∞
i=1
si � 1. A fragmentation process with autosimilary parameter α � 0, and
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dislocation measure ν is a Markov process (X(α)
(t), t � 0) with values in S↓ whose evo-

lution can be described informally as follows (see [24] for a more rigorous presentation).
Let X(α)

(t) = (s1(t), s2(t), ...) be the state of the process at time t � 0. For each i � 1,
si(t) represents the mass of the i-th particle at time t (particles are ranked according
to decreasing masses). Conditionally on the past up to time t, the i-th particle lives
after time t during an exponential time of parameter (si(t))α, then dies and gives birth
to two particles of respective masses R1si(t) and R2si(t), where the pair (R1, R2) is
sampled from ν independently of the past.

Remark 7.13. We will not be interested in the case α < 0, which is not relevant for
our applications.

We can construct simultaneously the processes (X(α)
(t))t�0 starting fromX(α)

(0) =

(1, 0, . . .), for all values of α � 0 in the following way. Consider first the process X(0)

corresponding to α = 0. We represent the genealogy of this process by the infinite
binary tree T defined in (7.4). Each u ∈ T thus corresponds to a “particle” in the
fragmentation process. We denote the mass of u by ξu and the lifetime of u by ζ(0)

u . Since
we are considering the case α = 0, the random variables (ζ(0)

u )u∈T are independent and
exponentially distributed with parameter 1. If we now want to construct (X(α)

(t))t�0

for a given value of α, we keep the same values ξu for the masses of particles, but we
replace the lifetimes by ζ(α)

u = (ξu)−αζ
(0)

u , for every u ∈ T. See [24, Corollary 1.2] for
more details.

In the remaining part of this subsection, we assume that the processes (X(α)
(t))t�0

starting from X(α)
(0) = (1, 0, . . .) are defined for every α � 0 and coupled as explained

above.
We set for every real p � 0,

κν(p) =

�

[0,1]2
(1− (sp

1
+ sp

2
)) ν(ds1, ds2),

where by convention 0
0

= 0. Then κν is a continuous increasing function. Under As-
sumption (H), κν(0) < 0 and κν(+∞) = 1, and therefore there exists a unique p∗ > 0,
called the Malthusian exponent of ν, such that

κν(p
∗
) = 0.

The Malthusian exponent allows us to introduce the so-called Malthusian martingale,
which is discussed in part (i) of the next theorem.

Theorem 7.14. Write X(α)
(t) = (s(α)

1
(t), s(α)

2
(t), . . . ) for every t � 0 and α � 0.

Then :
(i) For every α � 0, the process

M
(α)

(t) :=

∞�

i=1

�
s(α)

i
(t)
�p∗
, t � 0,

is a uniformly integrable martingale and converges almost surely to a limiting
random variable M∞, which does not depend on α. Moreover M∞ > 0 a.s., and
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M∞ satisfies the following identity in distribution

M∞
(d)

= Σp
∗

1
M
�
∞ + Σp

∗

2
M
��
∞ (7.5)

where (Σ1,Σ2) is distributed according to ν, and M �
∞ and M ��

∞ are independent
copies of M∞, which are also independent of the pair (Σ1,Σ2). This identity in
distribution characterizes the distribution of M∞ among all probability measures
on R+ with mean 1. Furthermore, we have E [M q

∞] <∞ for every real q � 1.
(ii) For every real p � 0, the process

etκν(p)

∞�

i=1

(s(0)

i
(t))p, t � 0,

is a martingale and converges a.s. to a positive limiting random variable.
(iii) Let α > 0. Assume that

�
s−a

2
ν(ds1, ds2) <∞ for some a > 0. Then for every

p � 0,

t
p−p∗
α

∞�

i=1

(s(α)

i
(t))p

L2
−→
t→∞
Kν(α, p)M∞,

where Kν(α, p) is a positive constant depending on α, p and ν, and the limiting
variable M∞ is the same as in (i).

Démonstration. The fact that M (α)
(t) is a uniformly integrable martingale follows from

[24, Proposition 1.5]. This statement also shows that the almost sure limit M∞ of this
martingale coincides with the limit of the so-called intrinsinc martingale, and therefore
does not depend on α. By uniform integrability, we have E [M∞] = E[M (α)

(0)] = 1. The
property M∞ > 0 a.s. follows from [24, Theorem 1.1]. The identity in distribution (7.5)
is a special case of (1.20) in [24]. The fact that the distribution of M∞ is characterized
by this identity (and the property E [M∞] = 1) follows from Theorem 1.1 in [104]. The
property E [M q

∞] < ∞ for every q � 1 is a consequence of Theorem 5.1 in the same
article.

Then, assertion (ii) follows from Corollary 1.3 and Theorem 1.4 in [24]. Finally,
assertion (iii) can be found in [25, Corollary 7] under more general assumptions.

Remark 7.15. In the conservative case, we immediately see that p∗ = 1 and M∞ = 1.

7.3.2 The number of chords in the figela process

Let νC be the probability measure on [0, 1]
2 defined by

�
νC(ds1, ds2)F (s1, s2) = 2

�
1

1/2

duF (u, 1− u),

for every nonnegative Borel function F . Clearly νC satisfies the assumptions of the
previous subsection.
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Proposition 7.16. Fix α � 0. We denote by Rα
1
(t), Rα

2
(t), . . . the fragments of the

figela Sα(t), ranked according to decreasing masses. Then the process

Xα(t) =
�

m(Rα1 (t)),m(Rα2 (t)), . . .
�
,

is a fragmentation process with parameters (α, νC).

Démonstration. From the construction of the figela processes, we see that, when a chord
appears in a fragment R of the figela, it divides this fragment into two new fragments
of respective masses U m(R) and (1 − U) m(R) where U is uniformly distributed over
[0, 1]. The ranked pair of these masses is thus distributed as (s1 m(R), s2 m(R)) under
νC(ds1, ds2). Furthermore a fragment R splits at rate m(R)

α. The desired conclusion
easily follows. We leave details to the reader.

Remark 7.17. The coupling of (Sα(t), t � 0) for all α � 0 yields a coupling of the
associated fragmentation processes (Xα(t), t � 0). This is indeed the same coupling
that was already discussed in the previous subsection.

By combining Proposition 7.16 with Theorem 7.14, we already get detailed infor-
mation about the asymptotic number of chords in the figela processes (Sα(t))t�0.

Corollary 7.18. We have the following convergences.
(i) If α = 0, e−t#S0(t)

a.s.−→
t→∞

E , where E is exponentially distributed with parameter
1.

(ii) If α > 0, t−1/α
#Sα(t)

a.s.−→
t→∞

Γ(1/α)

Γ(2/α)
.

Démonstration. (i) The case p = 0 in assertion (ii) of Theorem 7.14 gives the almost
sure convergence of the martingale e−t#S0(t). In fact, (#S0(t))

t�0
is a Yule process of

parameter 1, which allows us to identify the limit law, see [12, p127-130].
(ii) We first observe that νC is conservative and thus M∞ = 1 in the notation

of Theorem 7.14. The L2-convergence of t−1/α
#(Sα(t)) towards a constant KνC (α, 0)

follows from Theorem 7.14 (iii) with p = 0. From [37, Corollary 7], there is even almost
sure convergence and the constant KνC (α, 0) is given by KνC (α, 0) = Γ(1/α)/Γ(2/α).

A dissymmetry appears between the cases α = 0 and α > 0. When α = 0, the num-
ber of chords grows exponentially with a random multiplicative factor, but when α > 0

the number of chords only grows like a power of t, with a deterministic multiplicative
factor.

7.3.3 Fragments separating 1 from a uniform point
Let V be uniformly distributed over S1 and independent of (Sα(t), t � 0,α � 0).

Almost surely for every α, t � 0, the points 1 and V do not belong to Feet(Sα(t)). Our
goal is to establish a connection between HSα(t)(1, V ) (the height between 1 and V in
Sα(t)) and a certain fragmentation process.

To this end, we first discuss the behavior of the figela process after the appearance of
the first chord. We briefly mentioned that the two fragments created by the first chord
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of the figela process can be viewed as two new disks by contracting the chord and that,
after the time of appearance of the first chord, the process will behave, independently
in each of these two disks, as a rescaled copy of the original process. Let us explain this
in a more formal way. We fix α � 0.

Let [ab] be the first chord of the figela process (Sα(t))t�0, which appears after an
exponential time τ with parameter 1. We may write a = e2iπU1 , b = e2iπU2 , where the
pair (U1, U2) has density 2 · 1{0<u1<u2<1} with respect to Lebesgue measure on [0, 1]

2.
Let

M = 1− (U2 − U1),

be the mass of the fragment of Sα(τ) containing the point 1. Define two mappings
ψU1,U2 : [0, U1] ∪ [U2, 1]→ [0, 1] and φU1,U2 : [U1, U2]→ [0, 1] by setting

ψU1,U2(r) =






r

M
if 0 � r � U1,

r − (U2 − U1)

M
if U2 � r � 1.

φU1,U2(r) =
r − U1

U2 − U1

if U1 � r � U2.

Also let Ψa,b and Φa,b be the mappings corresponding to ψU1,U2 and φU1,U2 when S1 is
identified to [0, 1[ :

Ψa,b(exp(2iπr)) = exp(2iπψU1,U2(r)), if r ∈ [0, U1] ∪ [U2, 1],

Φa,b(exp(2iπr)) = exp(2iπφU1,U2(r)), if r ∈ [U1, U2].

The first chord [ab] creates two fragments. Let R� the fragment (of massM) contai-
ning 1 and let R�� be the other fragment. For t � τ , we let S(R

�
)

α (t) (resp. S(R
��

)

α (t)) be
the subset of Sα(t)\{{a, b}} consisting of all pairs {x, y} such that the corresponding
chord is contained in R� (resp. in R��).

Lemma 7.19. Let α � 0. Conditionally on (τ, U1, U2), the pair of processes
��

Ψa,b
�
S(R

�
)

α (τ + t)
��

t�0
,
�
Φa,b
�
S(R

��
)

α (τ + t)
��

t�0

�

has the same distribution as
��
S�α(M

αt)
�
t�0
,
�
S��α((1−M)

αt)
�
t�0

�

where S�α and S��α are two independent copies of the process Sα.

This follows readily from our recursive construction of the figela process.

Definition 7.20. Let S be a figela, and x, y ∈ S1\Feet(S). We call fragments separating
x from y in S, the fragments of S that intersect the chord [xy]. These fragments are
ranked according to decreasing masses and denoted by

R(x,y)

1
(S), R(x,y)

2
(S), R(x,y)

3
(S), . . .
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11
Definition 3.9. Let S be a figela, and x, y ∈ S1\Feet(S). We call separating fragments of

x and y in S, the fragments of S

R(x,y)
1 (S), R(x,y)

2 (S), R(x,y)
3 (S), ...

that intersect the arch [xy]. These fragments are ordered by decreasing masses. See Fig.4.

1

x

R1

R2

R3

R4

Fig. 4. The representation of a figela with 4 fragments R1, R2, R3, R4 separating 1 and exp(2iπx) ordered by
decreasing masses.

Proposition 3.10. Let V be a random variable uniformly distributed over S1 and indepen-
dent of (Sα(t), t � 0,α � 0). The sequence of masses of the fragments separating 1 from V in
Sα(t), namely

Xα(t) =
�
m

�
R(1,V )

1 (Sα(t))
�

,m
�
R(1,V )

2 (Sα(t))
�

, ...
�

,

is a fragmentation process with parameters (α, νD).

Remark 3.11. Similarly as in Remark 3.2, the coupling of the processes (Sα(t), t � 0) for
α � 0 induces a coupling of the processes (Xα(t), t � 0) for α � 0.

Proof. We use the notation of Section 3.3. Two cases may occur.

1. The point V belongs to the fragment R1, see Fig. 5. Note that, conditionally on the first
arch [ab] and on {V ∈ R1}, ψU1,U2(V ) is uniformly distributed over [0, 1]. Futhermore, the
future evolution of the process Xα(t) after time τ only depends on those arches that fall
in the fragment R1 (and not on arches that fall in R2). So conditionally on the first arch
and on the event {V ∈ R1}, the process (Xα(t))t�0 has the same distribution as the initial
process (Xα(t))t�0 rescaled in time by the factor Mα and in space by the factor M , to
account for the fact that we consider arches that fall in a disk of mass M . To summarize,
conditionally on the event {V ∈ R1}, we have

(Xα(t))t�0 = (MXα(Mαt))t�0,

where (Xα((t))t�0 has the same distribution as (Xα(t))t�0 and is independent of the pair
(τ,M).

2. The point V belongs to the fragment R2, see Fig. 6. For t � τ , the fragments separating V
from 1 in Sα(t) will be either fragments in the disk obtained by contraction of the first arch
from R1 separating 1 from ψU1,U2(U1), or fragments in the disk obtained by contraction

imsart-aop ver. 2010/04/27 file: English-triangulation-corrected.tex date: May 30, 2010

Figure 7.3 – A figela with 4 fragments R1, R2, R3, R4 separating 1 from x.

See Fig.3 for an example.
In order to state the main result of this subsection, we need one more definition.

We let νD be the probability measure on [0, 1]
2 defined by

�

[0,1]2
νD(ds1, ds2)F (s1, s2) = 2

�
1

0

du u2F (u, 0) + 4

�
1

1/2

du u(1− u)F (u, 1− u).

for every nonnegative Borel function F .
The measure νD is interpreted as follows. Let U,X1 and X2 be independent and

uniformly distributed over [0, 1]. The point U splits the interval [0, 1] in two parts,
[0, U [ and ]U, 1]. We keep each of these parts if and only if it contains at least of of
the two points X1 or X2. Then νD corresponds to the distribution of the masses of the
remaining parts ranked in decreasing order.

Proposition 7.21. Let V be a random variable uniformly distributed over S1 and
independent of (Sα(t), t � 0,α � 0). The sequence of masses of the fragments separating
1 from V in Sα(t), namely

Xα(t) =

�
m

�
R(1,V )

1
(Sα(t))

�
,m
�
R(1,V )

2
(Sα(t))

�
, . . .
�
,

is a fragmentation process with parameters (α, νD).

Remark 7.22. Similarly as in Remark 7.17, the coupling of the processes (Sα(t), t � 0)

for α � 0 induces the corresponding coupling of the processes (Xα(t), t � 0) for α � 0.

Démonstration. We use the notation of the beginning of this subsection. Two cases may
occur.
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1. The point V belongs to the fragmentR�. Note that, conditionally on the first chord
[ab] and on {V ∈ R�}, Ψa,b(V ) is uniformly distributed over S1. Furthermore,
the future evolution of the process Xα(t) after time τ only depends on those
chords that fall in the fragment R� (and not on chords that fall in R��). More
precisely, with the notation of Lemma 7.19, the masses of the fragments of Sα(τ+

t) separating 1 from V will be the same, up to the mutiplicative factor M , as
the masses of the fragments of Ψa,b(S(R

�
)

α (τ + t)) separating 1 from Ψa,b(V ). By
Lemma 7.19, conditionally on the event {V ∈ R�} and on the pair (τ,M), the
process (Xα(τ + t))t�0 has the same distribution as

(MXα(M
αt))t�0,

where (Xα(t))t�0 is a copy of (Xα(t))t�0, which is independent of the pair (τ,M).

2. The point V belongs to the fragment R�� (see Fig. 4). For t � τ , the fragments
separating V from 1 in Sα(t) will correspond either to fragments in the disk
obtained from R� by contracting the first chord [ab], provided these fragments
separate 1 from Ψa,b(a), or to fragments in the disk obtained from R�� by contrac-
ting the first chord, provided these fragments separate Φa,b(a) = 1 from Φa,b(V ).
An easy calculation shows that, conditionally on {V ∈ R��} and on (τ,M), the
points Ψa,b(a) and Φa,b(V ) are independent and uniformly distributed over S1.
Using Lemma 7.19 once again, we get that the sequence of the masses of sepa-
rating fragments contained in R� at time τ + t has, as a process in the variable
t, the same distribution as (MXα(Mαt))t�0, where Xα is an independent copy
of Xα. A similar observation holds for the separating fragments in R��. Conse-
quently, conditionally on the event {V ∈ R��} and on the pair (τ,M), the process
(Xα(τ + t))t�0 has the same distribution as

�
MXα(M

αt) ∪̇ (1−M)X
�
α((1−M)

αt)
�

t�0

,

where (Xα(t))t�0 and (X �
α(t))t�0 are independent copies of (Xα(t))t�0. Here the

symbol ∪̇ means that we take the decreasing arrangement of the union of the two
sequences.

Elementary calculations show that case 1 occurs with probability 2/3 and that condi-
tionally on this event the mass M of the fragment containing 1 and V is distributed
with density 3m2 on [0, 1]. Case 2 occurs with probability 1/3 and conditionally on
that event the mass of the largest fragment has density 12m(1 −m) on [1/2, 1]. The
preceding considerations then show that (Xα(t))t�0 is a fragmentation process with
autosimilarity index α and dislocation measure νD given as above.

In order to apply Theorem 7.14 to the fragmentation process of Proposition 9.4, we
must first calculate the Malthusian exponent associated to νD. From the definition of
νD, we have for every p � 0,

κνD(p) = 1− 2

�
1

0

du up+2 − 4

�
1

1/2

du u(1− u) (up + (1− u)p) =
p2 + 3p− 2

p2 + 5p+ 6
.
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1

Ψa,b(a)

a

b 1

V

1

Φa,b(V )

Fig. 6. Illustration of the proof. The first arch is represented as a continuous line and the subsequent arches as
dotted lines.

for the sum of the β∗th powers of the masses of the fragments separating x from y in Sα(t).

In order to simplify notation, we write M
(α)
t (x) for M

(α)
t (1, x). For every z ∈ S1, rotational

invariance implies that the two processes (M
(α)
t (x, y))t�0 and (M

(α)
t (xz, yz))t�0 have the same

distribution. In particular, if U and U
�
are independent random variables uniformly distributed

over S1 and independent of (Sα(t))t�0 then

�
M

(α)
t (U,U

�
)

�

t�0,α�0

(d)
=

�
M

(α)
t (U)

�

t�0,α�0
.

By applying Theorem 3.5 to the fragmentation process Xα(t) of Proposition 3.10 and using the

preceding identity in distribution we get:

Corollary 3.12. Let U be a random variable uniformly distributed over S1 and independent
of (Sα(t), t � 0,α � 0) then,

(i) The process M
(α)
t (U) is a martingale for its own filtration and converges almost surely and

in Lp for every p � 1 towards an almost surely positive random variable M∞(U) which is
independent of α � 0.

(ii) For every α > 0, there exists a constant KνD(α) such that

t
−β∗/α

HSα(t)(1, U)
L2

−→
t→∞

KνD(α)M∞(U).

(iii) When α = 0, for every p � 0 there exists an almost surely positive random variable Hp(U)

such that

e
tκνD (p)

∞�

i=0

m

�
R

(1,U)
i (S0(t))

�p a.s.−→
t→∞

Hp(U).

Proof. The various assertions of the corollary follow from Proposition 3.10 and Theorem

3.5.

3.4. Convergence at a fixed point. We now aim at an analogue of the last corollary when

HSα(t)(1, U) is replaced by HSα(t)(1, x) for a fixed point x in S1. Here is the main result.
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Figure 7.4 – Illustration of the proof in the case V ∈ R��.

Consequently, the only positive real β∗ such that κνD(β∗) = 0 is

β∗ =

√
17− 3

2
.

We also have κνD(0) = −1/3.
Let x ∈ S1. From now on, we will write

M
(α)

t
(x) =

∞�

i=1

m

�
R(1,x)

i
(Sα(t))

�β∗
,

for the sum of the β∗-th powers of masses of the fragments of Sα(t) separating x from
1. This makes sense since both 1 and x a.s. do not belong to Feet(Sα(t)).

By applying Theorem 7.14 to the fragmentation process Xα(t), we get :

Corollary 7.23. Let V be a random variable uniformly distributed over S1 and inde-
pendent of (Sα(t), t � 0,α � 0). Then :

(i) The process M
(α)

t
(V ) is a uniformly integrable martingale and converges almost

surely towards a random variable M V
∞ which does not depend on α � 0. Moreover

M V
∞ > 0 a.s., and E

�
(M V
∞)
q

�
<∞ for every real q � 1.

(ii) For every α > 0, there exists a constant KνD(α) such that

t−β
∗
/αHSα(t)(1, V )

L2
−→
t→∞
KνD(α)M

V

∞.
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(iii) There exists a positive random variable H V
0

such that

e−t/3HS0(t)(1, V )
a.s.−→
t→∞

H
V

0 .

More generally, for every p � 0, there exists a positive random variable H V
p such

that
etκνD (p)

∞�

i=0

m

�
R(1,V )

i
(S0(t))

�p a.s.−→
t→∞

H
V

p .

Remark 7.24. The convergence in (ii) can be reinforced in the following way. For
every δ ∈ ]0, 1[,

lim
t→∞

E
�

sup
δt�s�t

���s−β
∗
/αHSα(s)(1, V )−KνD(α)M

V

∞

���
2

�

= 0. (7.6)

To see this, fix ε ∈ ]0, 1[ and choose a subdivision δ = δ0 < δ1 < · · · < δk = 1 of
[δ, 1] such that (δi+1/δi)β

∗
/α < 1 + ε for every 0 � i � k − 1. Since the function

s �→ HSα(s)(1, V ) is non-decreasing, we have

sup
δt�s�t

�
s−β

∗
/αHSα(s)(1, V )−KνD(α)M

V

∞

�

� sup
0�i�k−1

�
(δit)

−β∗/αHSα(δi+1t)(1, V )−KνD(α)M
V

∞

�

� (1 + ε) sup
0�i�k−1

�
(δi+1t)

−β∗/αHSα(δi+1t)(1, V )−KνD(α)M
V

∞

�
+ εKνD(α)M

V

∞.

Similar manipulations give

sup
δt�s�t

�
KνD(α)M

V

∞ − s−β
∗
/αHSα(s)(1, V )

�

� sup
0�i�k−1

�
KνD(α)M

V

∞ − (δi+1t)
−β∗/αHSα(δit)(1, V )

�

� (1− ε) sup
0�i�k−1

�
KνD(α)M

V

∞ − (δit)
−β∗/αHSα(δit)(1, V )

�
+ εKνD(α)M

V

∞.

It follows that

sup
δt�s�t

���s−β
∗
/αHSα(s)(1, V )−KνD(α)M

V

∞

���

� 2 sup
0�i�k

���(δit)−β
∗
/αHSα(δit)(1, V )−KνD(α)M

V

∞

���+ εKνD(α)M
V

∞.

Using property (ii) in Corollary 7.23, we now get

lim sup
t→∞

E
�

sup
δt�s�t

���s−β
∗
/αHSα(s)(1, V )−KνD(α)M

V

∞

���
2

�

� 2 ε2KνD(α)
2 E
�
(M
V

∞)
2
�
,

and (7.6) follows since ε was arbitrary.
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7.3.4 Fragments separating 1 from a deterministic point

We now aim at an analogue of the last corollary when V is replaced by a determinis-
tic point x in S1. We will use the position of the first chord to provide the randomness
that we need to reduce the proof to the statement of Corollary 7.23. We start by com-
puting explicitly the distributions of certain quantities that arise when describing the
evolution of the process after the creation of the first chord. We use the notation of the
beginning of the previous subsection.

We fix r ∈]0, 1[ and write x = e2iπr. Consider first the case when x ∈ R��, or
equivalently U1 < r < U2. We then set Y1 = ψU1,U2(U1) =

U1
M

, which represents the
position of the distinguished point, corresponding to the endpoints of the first chord,
in the disk obtained from R� by contracting the first chord. Similarly, Y2 = φU1,U2(r) =
r−U1
1−M gives the position of the distinguished point corresponding to x in the the disk
obtained from R�� by the same contraction.

In the case when r ∈ ]0, U1[∪]U2, 1[ (or equivalently x ∈ R�), we take Y2 = 0 and
we let Y1 = ψU1,U2(r) be the position of the point corresponding to x in the new disk
obtained from R� by contracting the first chord.

We first evaluate the density of the pair (Y1, Y2) on the event {x ∈ R��} = {U1 <
r < U2}. We have, for any nonnegative measurable function f on [0, 1]

2,

E
�
f(Y1, Y2) 1{U1<r<U2}

�

= 2

��

[0,1]2
du1du2 1{u1<r<u2} f

� u1

1− (u2 − u1)
,
r − u1

u2 − u1

�

= 2r(1− r)
�

1

0

�
1

0

ds1ds2f
� rs1
rs1 + (1− r)(1− s2)

,
r(1− s1)

r(1− s1) + (1− r)s2

�
.

From the obvious change of variables and after tedious calculations, we get

E
�
f(Y1, Y2) 1{U1<r<U2}

�
= 2

��

Dr

dr1dr2
|r1 − r||r2 − r|
|r1 − r2|3

f(r1, r2), (7.7)

where Dr is the set Dr = ([r, 1]× [0, r]) ∪ ([0, r]× [r, 1]). Also note that, on the event
{U1 < r < U2}, we have MY1 + (1−M)Y2 = r, and thus M =

r−Y2
Y1−Y2

.
We can similarly compute the distribution of Y1 on the event {U1 < U2 < r}. For

any nonnegative measurable function f on [0, 1],

E
�
f(Y1) 1{U1<U2<r}

�
= 2

��

[0,1]2
du1du2 1{u1<u2<r} f

�r − (u2 − u1)

1− (u2 − u1)

�
(7.8)

= 2r2
�

1

0

�
1

0

ds1ds2 1{s1<s2} f
�r(1− (s2 − s1))

1− r(s2 − s1)

�

= 2(1− r)2

�
r

0

dr1
r1

(1− r1)3
f(r1).

Also notice that M =
1−r

1−Y1
on the event {U1 < U2 < r}.
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A similar calculation, or a symmetry argument, shows that the distribution of Y1

on the event {r < U1 < U2} is given by

E
�
f(Y1) 1{r<U1<U2}

�
= 2r2

�
1

r

dr1
1− r1
r3

1

f(r1). (7.9)

Note that M =
r

Y1
on {r < U1 < U2}.

We can now state and prove the main result of this section.

Theorem 7.25. Let x ∈ S1\{1}.
(i) For every α � 0, the process M

(α)

t
(x) converges almost surely towards a random

variable M∞(x) which does not depend on α.
(ii) We have M∞(x) > 0 a.s. and E [M∞(x)q] <∞ for every q � 1.
(iii) For every α > 0, we have

t−β
∗
/αHSα(t)(1, x)

(P)−→
t→∞
KνD(α)M∞(x),

where the constant KνD(α) is the same as in Corollary 7.23.
(iv) There exists a positive random variable H0(x) such that

e−t/3HS0(t)(1, x)
a.s.−→
t→∞

H0(x).

More generally, for every p � 0, there exists a positive random variable Hp(x)
such that

etκνD (p)

∞�

i=0

m

�
R(1,x)

i
(S0(t))

�p a.s.−→
t→∞

Hp(x).

Démonstration. As previously, we write x = e2iπr, where r ∈ ]0, 1[. To simplify notation,
we also set, for every t � 0, and every α � 0,

X xα (t) =

�
m

�
R(1,x)

1
(Sα(t))

�
,m
�
R(1,x)

2
(Sα(t))

�
, ...
�
.

Fix α � 0. Consider first the case when x belongs to R�. After time τ , the fragments
separating 1 from x will correspond to fragments separating 1 from Ψa,b(x) in the disk
obtained from R� by contracting the first chord. If F is a nonnegative measurable
function on the Skorokhod space D([0,∞[,S↓), Lemma 7.19 gives

E
�
F ((X xα (τ + t))t�0) 1{x∈R�}

�
= E
�
F
�
(M �XΨa,b(x)

α (Mαt))t�0

�
1{x∈R�}

�
, (7.10)

where, for every y ∈ S1\{1}, the process ( �X yα(t))t�0 is defined from an independent
copy ( �Sα(t))t�0 of (Sα(t))t�0, in the same way as (X yα(t))t�0 is defined from (Sα(t))t�0.
Note that Ψa,b(x) = exp(2iπY1) in the notation introduced before the theorem. From
formulas (7.8) and (7.9) and the relations between M and Y1, we get

E
�
F ((X xα (τ + t))t�0) 1{x∈R�}

�

= 2(1− r)2

�
r

0

dr1
r1

(1− r1)3
E
�

F

���
1− r
1− r1

�
�X exp(2iπr1)

α

��
1− r
1− r1

�α
t
��

t�0

��

+ 2r2
�

1

r

dr1
1− r1
r3

1

E
�

F

��� r
r1

�
�X exp(2iπr1)

α

�� r
r1

�α
t
��

t�0

��

.
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Let U be uniformly distributed over [0, 1] and independent of ( �Sα(t))t�0. By the prece-
ding display, the conditional distribution of (X xα (τ+t))t�0 given that x ∈ R� is absolutely
continuous (even with a bounded density) with respect to that of the process

�
1{U<r}

1− r
1− U

�X exp(2iπU)

α

��
1− r
1− U

�α
t
�

+ 1{U>r}
r

U
�X exp(2iπU)

α

�� r
U

�α
t
��

t�0

.

Since V = exp(2iπU) is uniformly distributed on S1 and independent of ( �Sα(t))t�0, we
can apply Corollary 7.23 to get asymptotics for the process in the last display. It follows
that the almost sure convergences in parts (i) and (iv) of the proposition hold on the
event {x ∈ R�}. Moreover the variable M∞(x) obtained as the almost sure limit of
M

(α)

t
(x) (only on the event {x ∈ R�} for the moment) does not depend on the choice of

α � 0. To see this, note that if we fix two values α � 0 and α� � 0, the preceding absolute
continuity property holds in a similar form for the pair ((X xα (τ+t))t�0, (X xα�(τ+t))t�0).
Then it suffices to use the fact that the limiting variable M V

∞ in Corollary 7.23 (i) does
not depend on the choice of α � 0.

The justification of property (iii) of the proposition (still on the event {x ∈ R�}) is
a bit trickier because we do not have almost sure convergence in Corollary 7.23 (ii). We
need the reinforced version of Corollary 7.23 (ii) provided by Remark 7.24. We observe
that, if U > r, the quantity (r/U)

α is bounded above by 1 and bounded below by rα,
so that (7.6) gives

t−β
∗
/αH�Sα((r/U)αt)

(1, exp(2iπU))
(L2

)−→
t→∞

� r
U

�β∗
KνD(α) M̃

V

∞

on the event {U > r} (with an obvious notation for M̃ V
∞). A similar observation

holds for the asymptotics of H�Sα(((1−r)/(1−U))αt)
(1, exp(2iπU)) on the event {U < r}.

By combining both asymptotics and using the absolute continuity relation mentioned
above, we get that the convergence in probability in assertion (iii) of the proposition
holds on the event {x ∈ R�}.

Let us turn to the case where x belongs to R��. From Lemma 7.19, we have

E
�
F ((X xα (τ + t))t�0) 1{x∈R��}

�
(7.11)

= E
�
F
��
M �XΨa,b(a)

α (Mαt) ∪̇ (1−M)X̄Φa,b(x)
α ((1−M)

αt)
�

t�0

�
1{x∈R��}

�
,

where �Xyα and X̄yα are defined in terms of two independent copies �Sα and S̄α of Sα (and
the notation ∪̇ has the same meaning as in the proof of Proposition 9.4).

Using now formula (7.7), we obtain

E
�
F ((X xα (τ + t))t�0) 1{x∈R��}

�

= 2

� �

Dr

dr1dr2
|r1 − r| |r2 − r|
|r1 − r2|3

× E
�

F

��� r − r2
r1 − r2

�
�X exp(2iπr1)

α

�� r − r2
r1 − r2

�α
t
�
∪̇
� r1 − r
r1 − r2

�
X̄ exp(2iπr2)

α

�� r1 − r
r1 − r2

�α
t
��

t�0

��

.
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Hence, if U and U � are two independent variables uniformly distributed over [0, 1] and
independent of ( �Sα, S̄α), the distribution of (X xα (τ + t))t�0 knowing that x ∈ R�� is
absolutely continuous with respect to the distribution of

�� r − U �

U − U �
�
�X exp(2iπU)

α

�� r − U �

U − U �
�α
t
�
∪̇
� U − r
U − U �

�
X̄ exp(2iπU �)
α

�� U − r
U − U �

�α
t
��

t�0

conditionally on (U − r)(U � − r) < 0. As in the case x ∈ R�, we see that the almost
sure convergences in assertions (i) and (iv) of the proposition, on the event {x ∈ R��},
follow from the analogous convergences in Corollary 7.23. By the same argument as in
the case x ∈ R�, the almost sure limit M∞(x) in (i) does not depend on the choice of
α � 0.

To get the convergence in probability in assertion (iii), we again use Remark 7.24.
The point is that the quantities ((r − U �)/(U − U �))α and ((U − r)/(U − U �))α, which
are bounded above by 1 (recall that we condition on (U − r)(U � − r) < 0), are also
bounded below by δ > 0 except on a set of small probability. As in the case x ∈ R�, the
desired result follows from (7.6).

It remains to prove (ii). The property M∞(x) > 0 a.s. is immediate from the
analogous property in Corollary 7.23 and our absolute continuity argument. Then, by
applying formulas (7.10) and (7.11) with a suitable choice of the function F , we get,
for every nonnegative measurable function f on R+,

E [f(M∞(x))]

= E
�
f(M∞(x))1{x∈R�}

�
+ E
�
f(M∞(x))1{x∈R��}

�

= E
�
f(Mβ

∗
M̃∞(e2iπY1))1{x∈R�}

�
+ E
�
f(Mβ

∗
M̃∞(e2iπY1) + (1−M)

β∗
M̄∞(e2iπY2))1{x∈R��}

�
,

where M̃∞ and M̄∞ are the obvious analogues of M∞ when Sα is replaced by �Sα and
S̄α respectively. Set M∞(1) = 0. We have obtained the identity in distribution

M∞(x)
(d)

= Mβ
∗
M

�
∞(e2iπY1) + (1−M)

β∗
M

��
∞(e2iπY2), (7.12)

where M �
∞ and M ��

∞ are two independent copies of M∞ and the pair (M �
∞,M

��
∞) is

also independent of (Y1, Y2). However, from the explicit formulas (7.7), (7.8) and (7.9),
it is easy to verify that both the density of the law of Y1 and the density of the law
of Y2 conditional on {Y2 �= 0} are bounded above by a constant depending on x. By
Corollary 7.23 we know that, if U is uniformly distributed over [0, 1] and independent
of the figela process, we have E

�
M∞(e2iπU )

q

�
< ∞ for every q � 1. The analogous

property for M∞(x) then follows from (7.12) and the preceding observations.

Remark 7.26. By rotational invariance of the model, the point 1 can be replaced by
any point of S1 in Theorem 7.25.



✐
✐

“theseavec” — 2011/5/24 — 15:45 — page 185 — #185 ✐
✐

✐
✐

✐
✐

Racine de 17 moins 3 sur 2 185

7.4 Estimates for moments and the continuity of the height process
7.4.1 Estimates for moments

We first state a proposition giving estimates for the moments of the increments
of the process M∞(x). These estimates will allow us to apply Kolmogorov’s continuity
criterion in order to get information on the Hölder continuity properties of this process.
Recall that we take M∞(1) = 0 by convention.

Proposition 7.27. For every ε > 0 and every integer p � 1, there exists a constant
Mε,p � 0 such that, for every u ∈ [0, 1] we have

E
�
M∞(e2iπu)p

�
�Mε,p(u(1− u))pβ

∗−ε.

In the special case p = 1, we have

E
�
M∞(e2iπu)

�
=

Γ(2 + 2β∗)

Γ(1 + β∗)2
(u(1− u))β∗ .

The proof of the proposition is given in the next two subsections. This proof relies
on the identity in distribution (7.12) derived in the preceding proof. Using this identity
and formulas (7.7), (7.8) and (7.9), we will obtain integral equations for the moments
of (M∞(x), x ∈ S1). We can explicitly solve the integral equation corresponding to
the first moment. We then use Gronwall’s lemma to investigate the behavior of higher
moments when x ∈ S1 is close to 1.

For every integer p � 1 and every r ∈ [0, 1], we set

mp(r) = E
�
M∞(e2iπr)p

�
.

7.4.2 The case p = 1

Let r ∈ ]0, 1[. Thanks to the identity in distribution (7.12) and to formulas (7.7),
(7.8) and (7.9), we obtain the integral equation

m1(r) = 2(1− r)2

�
r

0

dr1
r1

(1− r1)3

�
1− r
1− r1

�β∗
m1(r1) + 2r2

�
1

r

dr1
1− r1
r3

1

�
r

r1

�β∗
m1(r1)

(7.13)

+ 2

��

Dr

dr1dr2
|r1 − r||r2 − r|
|r1 − r2|3

��
r − r2
r1 − r2

�β∗
m1(r1) +

�
r1 − r
r1 − r2

�β∗
m1(r2)

�

.

We can rewrite the first two terms in the sum of the right-hand side in the form

2

�
r

0

dr1
�

1

1− r1
− 1

��
1− r
1− r1

�β∗+2

m1(r1) + 2

�
1

r

dr1
�

1

r1
− 1

�� r
r1

�β∗+2

m1(r1).
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As for the third term, we observe that
�
r

0

dr1

�
1

r

dr2
(r − r1)(r2 − r)

(r2 − r1)3

�
r2 − r
r2 − r1

�β∗
m1(r1)

=

�
r

0

dr1m1(r1)(r − r1)

�
1

r

dr2

�
1

r2 − r1

�
2
�
r2 − r
r2 − r1

�β∗+1

=

�
r

0

dr1m1(r1)
1

β∗ + 2

�
1− r
1− r1

�β∗+2

,

where we made the change of variables u =
r2−r
r2−r1 to compute the integral in dr2. It

follows that the third term in the right-hand side of (7.13) is equal to

4

β∗ + 2

��
r

0

dr1

�
1− r
1− r1

�β∗+2

m1(r1) +

�
1

r

dr1

�
r

r1

�β∗+2

m1(r1)

�

.

Summarizing, we obtain that the function (m1(r), r ∈ ]0, 1[) solves the integral equation

m1(r) =

�
1

0

du gr(u)m1(u) (7.14)

where, for every r ∈ ]0, 1[,

gr(u) = 1{0<u<r}

�
1− r
1− u

�
2+β∗ �

2

1− u −
2β∗

β∗ + 2

�
+ 1{r�u<1}

�
r

u

�
2+β∗ �

2

u
− 2β∗

β∗ + 2

�
,

is a positive function on ]0, 1[. Elementary calculations, using the fact that (β∗)2
+

3β∗ − 2 = 0, show that
�

1

0
gr(u) dr = 1, for every u ∈ ]0, 1[.

Let N be the operator that maps a function f ∈ L1
(]0, 1[, dr) to the function

N(f)(r) =

�
1

0

du gr(u)f(u).

Then N is a contraction : If f1, f2 ∈ L1
(]0, 1[, dr), we have

�
1

0

dr |N(f1)(r)−N(f2)(r)| �
�

1

0

dr
�

1

0

du gr(u)|f1(u)− f2(u)| =
�

1

0

du |f1(u)− f2(u)|.

The first inequality in the last display is strict unless f1− f2 has a.e. a constant sign. It
follows that there can be at most one nonnegative function f ∈ L1

(]0, 1[, dr) such that�
1

0
dr f(r) = 1 and f is a fixed point of N .
By (7.14), m1 is a fixed point of N . Furthermore, if V is uniformly distributed over

S1 and independent of M∞, we know from Corollary 7.23 that M∞(V ) is the limit of
the uniformly integrable martingale M

(α)

t
(V ) (for any choice of α � 0) and therefore

E [M∞(V )] = 1. Hence,
�

1

0

drm1(r) =

�
1

0

drE
�
M∞(e2iπr)

�
= E [M∞(V )] = 1.
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We conclude that the function f = m1 is the unique nonnegative function in L1
(]0, 1[, dr)

such that
�

1

0
dr f(r) = 1 and f is a fixed point of N . On the other hand, elementary

calculus shows that the function r �→ (r(1− r))β
∗

is also a fixed point of N . Indeed,
noting that 2β∗/(β∗ + 2) = 1− β∗ and using two integration by parts, we get

�
r

0

�
1− r
1− u

�
2+β∗ �

2

1− u −
2β∗

β∗ + 2

�
(u(1− u))β∗ du = r1+β∗

(1− r)β∗

and similarly,
�

1

r

�
r

u

�
2+β∗ �

2

u
− 2β∗

β∗ + 2

�
(u(1− u))β∗ du = rβ

∗
(1− r)β∗+1.

Therefore, the function

eβ∗(r) :=
Γ(2 + 2β∗)

Γ(1 + β∗)2
(r(1− r))β

∗

is also a fixed point of N such that
�

1

0
dr eβ∗(r) = 1. Consequently we have m1(r) =

eβ∗(r) a.e. The equality is in fact true for every r ∈ ]0, 1[ since the integral equation
(7.14) implies that m1 is continuous on ]0, 1[. This completes the proof of Proposition
7.27 in the case p = 1.

7.4.3 The case p � 2
From the Hölder inequality, and the case p = 1, we have for every integer p � 1 and

every r ∈ ]0, 1[,

mp(r) �
�Γ(2 + 2β∗)

Γ(1 + β∗)2

�p
(r(1− r))pβ∗ . (7.15)

We prove by induction on k � 1, that for every ε ∈ ]0, 1/2[, there exists a constant
Mε,k > 0 such that for every r ∈]0, 1[,

mk(r) �Mε,k(r(1− r))kβ
∗−ε. (7.16)

We assume that (7.16) holds for k = 1, 2, . . . , p− 1, and we prove that this bound also
holds for k = p.

Similarly as in the case p = 1, we can use the identity in distribution (7.12) to get
the following integral equation for the functions mp :

mp(r) =

�
r

0

du
�

1− r
1− u

�
2+pβ∗ �

2

1− u −
2pβ∗

pβ∗ + 2

�
mp(u) (7.17)

+

�
1

r

du
�
r

u

�
2+pβ∗ �

2

u
− 2pβ∗

pβ∗ + 2

�
mp(u)

+ 2

p−1�

k=1

�
p

k

���

Dr

dr1dr2
|r1 − r|1+(p−k)β∗ |r2 − r|1+kβ∗

|r1 − r2|3+pβ∗
mk(r1)mp−k(r2).

The derivation of (7.17) from (7.12) is exactly similar to that of (7.14), and we leave
details to the reader. Note that, in contrast with the case p = 1, we now get “interaction
terms” involving the products mk(r)mp−k(r). We start with some crude estimates.
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Lemma 7.28. For every p � 1, the function mp is bounded over ]0, 1[. Moreover, for
every u, r ∈ ]0, 1/2[, we have

mp(u) � 2
p−1

(mp(u+ r) +mp(r)). (7.18)

Démonstration. For every r, u ∈ ]0, 1[, we set

gp,r(u) = 1{0<u<r}

�
1− r
1− u

�
2+pβ∗ �

2

1− u −
2pβ∗

pβ∗ + 2

�
+1{r<u<1}

�
r

u

�
2+β∗ �

2

u
− 2pβ∗

β∗ + 2

�
.

From (7.17), we have

mp(r) �
�

1

0

du gp,r(u)mp(u).

On the other hand, by using (7.12) and the inequality (a + b)p � 2
p−1

(ap + bp) for
a, b � 0, we get

mp(r) � 2
p−1
�
E
�
Mpβ

∗
M
�
∞(e2iπY1)

p
�
+E
�
(1−M)

pβ∗
M
��
∞(e2iπY2)

p
� �

= 2
p−1

�
1

0

du gp,r(u)mp(u),

where the last equality again follows from calculations similar to those leading to (7.14).
From the explicit form of the function gp,r, we see that, for every δ ∈ ]0, 1/2[, there

exist positive constants cδ,p and Cδ,p such that for all r ∈]δ, 1− δ[,

cδ,p

�
1

0

mp(u)du � mp(r) � Cδ,p
�

1

0

mp(u)du. (7.19)

If U is uniformly distributed over [0, 1], Corollary 7.23 shows that
�

1

0
mp(u)du =

E [M∞(U)
p
] < ∞. We thus get that the function mp is bounded over every compact

subset of ]0, 1[.
To get information about the values of the function mp in the neighborhood of 0

(or of 1), we use the triangle inequality for figelas. Let α > 0. For every r, u ∈ ]0, 1/2[

and every t � 0, Proposition 7.7 gives

HSα(t)(1, e
2iπu

) � HSα(t)(1, e
2iπ(u+r)

) +HSα(t)(e
2iπu, e2iπ(u+r)

).

Furthermore, rotational invariance shows that the process (HSα(t)(e
2iπu, e2iπ(u+r)

))t�0

has the same distribution as the process (HSα(t)(1, e
2iπr

))t�0. We thus deduce from
Theorem 7.25 (iii) that

M∞(e2iπu) � M∞(e2iπ(u+r)
) + M̃∞(e2iπr),

where M̃∞(e2iπr) has the same distribution as M∞(e2iπr). The bound (7.18) now follows
by using the inequality (a+ b)p � 2

p−1
(ap + bp) for a, b � 0.

Since we already know that the function mp is bounded over compact subsets of
]0, 1[, and sincemp(r) = mp(1−r) by an obvious symmetry argument, the bound (7.18)
implies that mp is bounded over ]0, 1[.
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We come back to the proof of (7.16) with k = p. We fix ε ∈ ]0, 1/8[. We start from the
integral equation (7.17) and first discuss the interaction terms. Fix k ∈ {1, 2, . . . , p−1}
and set, for every r ∈ ]0, 1[,

Tp,k(r) =

��

Dr

dr1dr2
|r1 − r|1+(p−k)β∗ |r2 − r|1+kβ∗

|r1 − r2|3+pβ∗
mk(r1)mp−k(r2).

By the induction hypothesis, there exists a constant Mp,k,ε such that, for r ∈ ]0, 1[,

Tp,k(r) �Mp,k,ε
��

Dr

dr1dr2
|r1 − r|1+(p−k)β∗ |r2 − r|1+kβ∗

|r1 − r2|3+pβ∗
rkβ

∗−ε
1

r(p−k)β
∗−ε

2
.

Consider the integral over [0, r] × [r, 1]. From the change of variables r1 = rs1 and
r2 = rs2, we see that this integral is equal to

rpβ
∗
+1−2ε

�
1

0

ds1

�
1/r

1

ds2
(1− s1)

1+(p−k)β∗
(s2 − 1)

1+kβ∗

(s2 − s1)3+pβ∗
skβ

∗−ε
1

s(p−k)β
∗−ε

2
� K rpβ∗+1−2ε,

where

K =

�
1

0

ds1

� ∞

1

ds2
(1− s1)

1+(p−k)β∗
(s2 − 1)

1+kβ∗

(s2 − s1)3+pβ∗
s(p−k)β

∗−ε
2

<∞.

We get a similar bound for the integral over [r, 1] × [0, r] and, using the fact that
mp(r) = mp(1 − r), we conclude that the “interaction terms” in the integral equation
(7.17) are bounded above by a constant times (r(1− r))pβ∗+1/2. By (7.15) these terms
are negligible in comparison with mp(r) when r → 0.

Thus for r sufficiently close to 0, say 0 < r � r0 � 1/4, we can write

mp(r) � (1 + ε)
�
r

0

du
�

1− r
1− u

�
2+pβ∗ �

2

1− u −
2pβ∗

pβ∗ + 2

�
mp(u)

+ (1 + ε)
�

1

r

du
�
r

u

�
2+pβ∗ �

2

u
− 2pβ∗

pβ∗ + 2

�
mp(u).

The first term in the right-hand side is easily bounded by 6
�
r

0
dump(u), and we have,

for 0 < r � r0,

mp(r) � 6

�
r

0

dump(u) + (1 + ε)
�

1

r

du
�
r

u

�
2+pβ∗ �

2

u
− 2pβ∗

pβ∗ + 2

�
mp(u). (7.20)

However, by the inequality (7.18), we have for 0 < r � r0,
�
r

0

dump(u) � 2
p−1

�
rmp(r) +

�
2r

r

dump(u)
�
. (7.21)

By (7.17), we have also

mp(r) �
�

2r

r

du
�
r

u

�
2+pβ∗ �

2

u
− 2pβ∗

pβ∗ + 2

�
mp(u)
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and since 2

u
tends to infinity as u→ 0, this bound shows that

�
2r

r
dump(u) is negligible

in comparison with mp(r) when r → 0. Therefore, from the bound (7.21) and by
choosing r0 smaller if necessary, we can assume that, for 0 < r � r0,

6

�
r

0

dump(u) �
�
1− 1 + ε

1 + 2ε

�
mp(r).

By substituting this estimate in (7.20), we get for 0 < r � r0,

mp(r) � (1 + 2ε)
�

1

r

du
�
r

u

�
2+pβ∗ �

2

u
− 2pβ∗

pβ∗ + 2

�
mp(u).

Consequently, there exists a positive constant K = K(r0, p, ε) such that for 0 < r � r0,

mp(r)

r2+pβ∗
� K + 2(1 + 2ε)

�
r0

r

du

u

mp(u)

u2+pβ∗
.

A straightforward application of Gronwall’s lemma to the function r → r−2−pβ∗mp(r)
gives for 0 < r � r0,

mp(r)

r2+pβ∗
� K

�r0
r

�2(1+2ε)
,

or equivalently
mp(r) � K r2(1+2ε)

0
rpβ

∗−4ε.

Since ε ∈ ]0, 1/8[ was arbitrary, and since we have mp(r) = mp(1 − r) for r ∈ ]0, 1[,
we have obtained the desired bound (7.16) at order p. This completes the proof of
Proposition 7.27.

7.4.4 Proof of Theorem 7.1
The asymptotics in Theorem 7.1 are consequences of the more general results obtai-

ned in Corollary 7.18 (ii) and in Theorem 7.25 (iii), using also Remark 7.11. It remains
to verify that the process (M∞(x), x ∈ S1) has a Hölder continuous modification. Let
x and y be two distinct points of S1\{0}, and let α > 0. By the triangle inequality in
Proposition 7.7, we have for every t � 0,

|HSα(t)(1, x)−HSα(t)(1, y)| � HSα(t)(x, y)

and HSα(t)(x, y) has the same distribution as HSα(t)(1, x
−1y) by rotational invariance.

We can let t→∞ and using Theorem 7.25 (iii), we get the following stochastic inequa-
lity

|M∞(e2iπr)−M∞(e2iπs)|
(d)

� M∞(e2iπ(r−s)
). (7.22)

for every 0 � s < r < 1.
By Proposition 7.27, we have then for every integer p � 1 and every 0 � s < r < 1,

E
�
|M∞(e2iπr)−M∞(e2iπs)|p

�
�Mε,p(r − s)pβ

∗−ε.
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Kolmogorov’s continuity criterion (see [123, Theorem 1.8]) shows that the process
(M∞(x), x ∈ S1) has a continuous modification, which is even (β∗ − ε)-Hölder conti-
nuous, for every ε > 0. �

From now on, we only deal with the continuous modification of the process (M∞(x),
x ∈ S1). Recall the notation TS for the plane tree associated with a figela S, and also
recall that HS corresponds to the graph distance on this tree. One may ask about the
convergence of the (suitably rescaled) trees TSα(t) in the sense of the Gromov-Hausdorff
distance. Recall the notation Tg for the R-tree coded by a function g (see subsection
7.2.3).

Conjecture. Set g∞(r) = M∞(e2iπr) for every r ∈ [0, 1]. The convergence in
distribution �

TSα(t), t
−β∗/αHSα(t)

�
(d)−→
t→∞

(Tg∞ ,KνD(α) dg∞)

holds in the sense of the Gromov-Hausdorff distance.

It would suffice to establish the following convergence in distribution
�
t−β

∗
/αHSα(t)(1, e

2iπr
)

�

r∈[0,1]

(d)−→
t→∞

�
KνD(α)M∞(e2iπr)

�

r∈[0,1]

in the Skorokhod sense (the mapping r �→ HSα(t)(1, e
2iπr

) is not defined when e2iπr
is a foot of Sα(t), but we can choose a suitable convention so that this mapping is
defined and càdlàg over [0, 1]). Proving that this convergence holds would require more
information about the process (HSα(t)(1, x))x∈S1,t�0.

7.5 Identifying the limiting lamination
7.5.1 Preliminaries

The next proposition is the first step towards the proof of Theorem 7.2. We recall
the notation introduced at the beginning of subsection 7.3.3 : a = e2iπU1 and b = e2iπU2

are the feet of the first chord, with 0 < U1 < U2 < 1, and M = 1− (U2 − U1).

Proposition 7.29. Conditionally on the pair (U1, U2), we have
�
M∞(e2iπ(U1+(U2−U1)r)

)−M∞(e2iπU1)

�

r∈[0,1]

(d)

=

�
(1−M)

β∗
M̃∞(e2iπr)

�

r∈[0,1]

where M̃∞ is copy of M∞ independent of M . Moreover, we have

M∞(e2iπU1) > 0 , a.s.

Démonstration. This is essentially a consequence of Lemma 7.19. Fix α > 0 and r ∈
]0, 1[. Using the notation introduced before this lemma, we have on the event {U1 <
r < U2}, for every t � 0,

HSα(τ+t)(1, e
2iπr

) = 1 +H
S

(R�)
α (τ+t)

(1, e2iπU1) +H
S

(R��)
α (τ+t)

(e2iπU1 , e2iπr).
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From Lemma 7.19, we now get on the event {U1 < r < U2} that conditionally on
(U1, U2),
�
HSα(τ+t)(1, e

2iπr
)

�

t�0

(d)

=

�
1 +HS�α(Mαt)(1,Ψa,b(a)) +HS��α((1−M)αt)(1,Φa,b(e2iπr))

�

t�0

.

We multiply each side by t−β∗/α and pass to the limit t → ∞, using Theorem 7.25
(iii), and we get with an obvious notation that, on the event {U1 < r < U2} and
conditionally on (U1, U2),

M∞(e2iπr)
(d)

= Mβ
∗
M
�
∞(Ψa,b(a)) + (1−M)

β∗
M
��
∞(e2iπφU1,U2 (r)

).

This identity in distribution is immediately extended to a finite number of values of
r by the same argument. Noting that φU1,U2(U1 + (U2 − U1)r) = r, we thus get that,
conditionally on (U1, U2),
�
M∞(e2iπ(U1+(U2−U1)r)

)

�

r∈[0,1]

(d)

=

�
Mβ

∗
M
�
∞(Ψa,b(a)) + (1−M)

β∗
M
��
∞(e2iπr)

�

r∈[0,1]

.

In particular M∞(e2iπU1)
(d)

= Mβ
∗
M �
∞(Ψa,b(a)) > 0 a.s. by Theorem 7.25 (ii), and the

identity in distribution of the proposition also follows from the previous display.

Recall the notation S(∞), S∗(∞) from the end of Section 2.

Lemma 7.30. For every x ∈ S1, P [∃y ∈ S1\{x} : (x, y) ∈ S∗(∞)] = 0.

Démonstration. Let ε > 0. It is enough to prove that, for every x ∈ S1,

P [∃y ∈ S1 : |y − x| > ε and (x, y) ∈ S∗(∞)] = 0.

Thanks to rotational invariance, this will follow if we can verify that

E
��

m(dx) 1{∃y∈S1:|y−x|>ε and (x,y)∈S∗(∞)}

�
= 0.

Note that if (x, y) ∈ S∗(∞) the chord [xy] does not cross any of the (other) chords of
S(∞).

We can find an integer n (depending on ε) and n points z1, . . . , zn of S1 such that
the following holds. Whenever x, y ∈ S1 are such that |y− x| > ε, there exists an index
j ∈ {1, . . . , n} such that zj belongs to one of the two open subarcs with endpoints x
and y, and −zj belongs to the other subarc. If we assume also that (x, y) ∈ S∗(∞), it
follows that x belongs to the boundary of a fragment of S0(t) separating zj from −zj ,
for every t � 0.

Thanks to these observations, we have for every t � 0,
�

m(dx) 1{∃y∈S1:|y−x|>ε and (x,y)∈S∗(∞)} �
n�

j=1

�
�

i

m(R
zj ,−zj
i

(S0(t)))

�

with the notation introduced in Definition 7.20. From Theorem 7.25 (iv) and the fact
that κνD(1) > 0, the right-hand side tends to 0 almost surely as t→∞, which completes
the proof.
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Recall our notation g∞(r) = M∞(e2iπr) for every r ∈ [0, 1]. Notice that g = g∞
satisfies the assumptions of subsection 7.2.3.

Corollary 7.31. Almost surely, for every r, s ∈ [0, 1] such that {e2iπr, e2iπs} ∈ S(∞),
we have r

g∞≈ s.

Démonstration. If c, d are two distinct points of S1\{1}, write Arc
∗
(c, d) for the open

subarc of S1 with endpoints c and d not containing 1. As an immediate consequence of
Proposition 7.29, we have M∞(x) � M∞(a) = M∞(b) > 0, for every x ∈ Arc

∗
(a, b).

This property is easily extended by induction (using Lemma 7.19 once again) to any
chord appearing in the figela process. We have almost surely for every {c, d} ∈ S(∞),

M∞(x) � M∞(c) = M∞(d) > 0, for every x ∈ Arc
∗
(c, d). (7.23)

We can in fact replace the weak inequality M∞(x) � M∞(c) by a strict one. To
see this, we first note that, by Lemma 7.30, 1 is not an endpoint of a (non-degenerate)
chord of S∗(∞). By an easy argument, this implies that almost surely, for every ε > 0,
there exist r ∈ ] − ε, 0[ and s ∈ ]0, ε[ such that the chord [e2iπre2iπs] belongs to S(∞).
It follows that �

{c,d}∈S(∞)

Arc
∗
(c, d) = S1\{1} , a.s.

From (7.23) we now get that M∞(x) > 0, for every x ∈ S1\{1}, a.s.
We can apply this property to the process M̃∞ in Proposition 7.29, and we get that

M∞(x) >M∞(a) = M∞(b) , for every x ∈ Arc
∗
(a, b), a.s. Again, this property of the

first chord is easily extended by induction to any chord in the figela process, and we
obtain that, almost surely for every {c, d} ∈ S(∞),

M∞(x) >M∞(c) = M∞(d), for every x ∈ Arc
∗
(c, d). (7.24)

The statement of Corollary 7.31 now follows from the definition of
g∞≈ .

If (x, y) ∈ S∗(∞) we can write (x, y) = lim(xn, yn) where {xn, yn} ∈ S(∞) for every
n. Write x = e2iπr, y = e2iπs and xn = e2iπrn , yn = e2iπsn , where r, s, rn, sn ∈ [0, 1].
By Corollary 7.31, we have rn

g∞≈ sn for every n. Since the graph of the relation
g∞≈ is

closed, it follows that r
g∞≈ s. We have thus proved that

L∞ ⊂ Lg∞ .

The reverse inclusion will be proved in the next subsection.

7.5.2 Maximality of the limiting lamination

The proof of Theorem 7.2 will be completed thanks to the following proposition.

Proposition 7.32. Almost surely, L∞ is a maximal lamination of D.
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Before proving Proposition 7.32, we need to establish a preliminary lemma. This
lemma is concerned with the genealogical tree of fragments appearing in the figela
process, which we construct as follows. We consider the fragments created by S0(t) as
time increases. The first fragment is R∅ = D. At the exponential time τ , the first chord
splits D into two fragments, which are viewed as the offspring of ∅. We then order
these fragments in a random way : with probability 1/2, we call R0 the fragment with
the largest mass and R1 the other one, and with probability 1/2 we do the contrary.
We then iterate this device. Then each fragment that appears in the figela process is
labeled by an element of the infinite binary tree

T =

�

n�0

{0, 1}n.

For every integer n, we also set

Tn :=

n�

k=0

{0, 1}k.

At every time t, we have a (finite) binary tree corresponding to the genealogy of the
fragments present at time t. See Fig. 5 below.

18

1

t3

t4

t1

t2

∅

0 1

00 01

000 001

10 11

t1

t2

t3

t4

R10R11

R001

R000

R01

R000 R001 R01 R10 R11

Fig. 7. Arches are drawn with their appearing times 0 < t1 < t2 < t3 < t4. On the right side the genealogical

tree of the fragments R000, ..., R11 at time t4. E.g. R000 and R001 are brothers and their father is R00 which is

the union of R000,R001 and of the arch appeared at time t4.

conditionally on {#P0 = k}, the set of k + 1 points {C0} ∪
�

i∈P0
{xi} is distributed as the set

of k + 1 independent uniform points on R0 ∩ S1 and similarly for Ru1.

Therefore, if we associate the number e(Ru) with each vertex u of the genealogical tree with

we obtain a branching random walk on the complete binary tree with displacement law satisfying

for every u ∈
�

n�1{0, 1},

P [e(Ru1) = k, e(Ru2) = n + 2− k| e(Ru) = n]

=

� 1

0
du

�
n

k − 1

�
uk−1

(1− u)
n−k+1

=
1

n + 1
,

for every 1 � k � n + 1. In other words, each fragment with N � 1 ends gives birth to two

fragments with respectively k and N +2−k ends where k ∈ {1, 2, . . . ,N +1} is chosen uniformly

at random. Note that the fragment D with 0 ends gives birth to two fragments with 1 end.

Proof of the Lemma 5.2. Consider the preceding branching random walk on the complete

binary tree with initial label e(∅) = 4. We only need to prove that almost surely, there is no

infinite ray starting from the root along which all the labels are strictly larger than 3. Consider

a fixed ray in the tree, say ∅, 1, 11, 111, . . . and let Xn be the label of the nth vertex in the

sequence. Note that Xn is a Markov chain with transition kernel p given by

p(k, l) =
1

k + 1
11�l�k+1,

for every k, l � 1. Write (Fn)n�0 for the filtration generated by the process. We have

E [Xn+1|Fn] =
1

Xn + 1
(1 + 2 + · · · + (Xn + 1)) =

Xn

2
+ 1.

Hence Mn = 2
n
(Xn−2) is a martingale starting from 2. For i � 1 we let Ti be the stopping time

Ti = inf{n � 0,Xn = i}, and let T = T1∧T2∧T3. We easily have Xn � n+4, because the process

increases by at most one at each step. We deduce that P [T1 > n + 1|T1 > n] � 1− 1
4+n , hence T

imsart-aop ver. 2010/04/27 file: English-triangulation-corrected.tex date: May 30, 2010

Figure 7.5 – Chords are represented on the left side with their respective creation
times. On the right side the genealogical tree of the fragments R000, ..., R11 present at
time t4.

If R is a fragment, we call end of R any connected component of R∩S1. We denote
the number of ends of a fragment R by e(R). For reasons that will be explained later,
the full disk D is viewed as a fragment with 0 end.

Lemma 7.33. In the (infinite) genealogical tree of fragments, almost surely, there is
no ray along which all fragments have eventually strictly more than 3 ends.
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Proof of Lemma 7.33. Let n � 0 and u ∈ {0, 1}n, and consider the fragment Ru.
Let yu be one endpoint (chosen at random) of the first chord that will fall inside
Ru. Note that, conditionally on Ru, yu is uniformly distributed over Ru ∩ S1. Let
ϕu : [0,m(Ru)[−→ Ru ∩ S1 be defined by requiring that the measure of the intersection
of Ru ∩ S1 with the arc (in counterclockwise order) between yu and ϕu(t) is equal
to t, for every t ∈ [0,m(Ru)[. This definition is unambiguous if we also impose that
ϕu is right-continuous. Then ϕu has exactly e(Ru) discontinuity times corresponding
to the chords that lie in the boundary of Ru (indeed the left and right limits of ϕu
at a discontinuity time are the endpoints of a chord adjacent to Ru). We claim that,
conditionally given (m(Ru), e(Ru)), the set of discontinuity times of ϕu is distributed
as the collection of e(Ru) independent points chosen uniformly over [0,m(Ru)[.

This claim can be checked by induction on n. For n = 0 there is nothing to prove.
Assume that the claim holds up to order n. Recalling that yu is one endpoint of the first
chord that will fall in Ru, the other endpoint zu will be chosen uniformly over Ru ∩ S1,
so that ϕ−1

u (zu) will be uniform over [0,m(Ru)[. We have then e(Ru0) = K + 1 and
e(Ru1) = e(Ru) + 1−K (or the contrary with probability 1/2), where K is the number
of discontinuity times of ϕu in [0,ϕ−1

u (zu)]. Using our induction hypothesis, we see
that conditionally on K and on ϕ−1

u (zu) the latter discontinuity times are independent
and uniformly distributed over [0,ϕ−1

u (zu)], and that a similar property holds for the
discontinuity times that belong to [ϕ−1

u (Zu),m(Ru)]. It follows that the desired property
will still hold at order n+ 1.

The preceding arguments also show that, conditionally on Ru, e(Ru0) is distributed
as K + 1, where K is obtained by throwing e(Ru) + 1 uniform random variables in
[0,m(Ru)] and counting how many among the e(Ru) first ones are smaller than the last
one. By an obvious symmetry argument, we have, for any integers p � 0, k ∈ {0, . . . , p}
and any a ∈ ]0, 1],

P [e(Ru0) = k + 1| e(Ru) = p,m(Ru) = a] =
1

p+ 1
.

Notice that the preceding conditional probability does not depend on a, which could
have been seen from a scaling argument.

Modulo some technical details that are left to the reader, we get that the distribution
of the tree-indexed process (e(Ru), u ∈ T) can be described as follows. We start with
e(∅) = 0 and we then proceed by induction on n to define e(Ru) for every u ∈ {0, 1}n.
To this end, given the values of e(Ru) for u ∈ Tn, we choose independently for every
v ∈ {0, 1}n a random variable kv uniform over {0, . . . , e(Rv)} and we set e(Rv0) = kv+1,
e(Rv1) = e(Rv)− kv + 1.

Consider a tree-indexed process (fu, u ∈ T) that evolves according to the preceding
rules but starts with f∅ = 4 (instead of e(R∅) = 0). In order to get the statement of
the lemma, it is enough to prove that almost surely, there is no infinite ray starting
from the root along which all the values of fu are strictly larger than 3. Consider a fixed
infinite ray in the tree, say ∅, 0, 00, 000, . . . and let X0 = f∅, X1 = f0, X2 = f00, . . .
be the values of our process along the ray. Note that (Xn)n�0 is a Markov chain with
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values in N, with transition kernel given by

qk� =
1

k + 1
1{1�l�k+1},

for every k, � � 1. Write (Fn)n�0 for the filtration generated by the process (Xn)n�0.
We have

E [Xn+1|Fn] =
1

Xn + 1
(1 + 2 + · · ·+ (Xn + 1)) =

Xn
2

+ 1.

Hence Mn = 2
n
(Xn − 2) is a martingale starting from 2. For i � 1 we let Ti be the

stopping time Ti = inf{n � 0 : Xn = i}, and T = T1 ∧ T2 ∧ T3.
Note that P [Xk � 4, for every 0 � k � n] = P [T > n], and that the preceding dis-

cussion applies to the values of fu along any infinite ray starting from the root.
By the stopping theorem applied to the martingale (Mn)n�0, we obtain for every

n � 0,

2 = E [Mn∧T ] = E
�
−2
T11{T1=T�n}

�
+ 0 + E

�
2
T31{T3=T�n}

�
+ E
�
2
n
(Xn − 2)1{T>n}

�
.

From the transition kernel of the Markov chain (Xn)n�0 it is easy to check that for
every k � 1, P [T1 = T = k] = P [T2 = T = k] = P [T3 = T = k] . Hence, the equality in
the last display becomes

2 = E
�
2
n
(Xn − 2)1{T>n}

�
,

or equivalently
2 = 2

nP [T > n] E [Xn − 2 | T > n] .

Since obviously E [Xn − 2 | T > n] � 2, we get 2
n P [T > n] � 1.

For every u = (u1, . . . , un) ∈ {0, 1}n, and every j ∈ {0, 1, . . . , n}, set [u]j =

(u1, . . . , uj), and if j � 1, also set [u]∗
j

= (u1, . . . , uj−1, 1− uj). Let

Gn = {u ∈ {0, 1}n : f [u]j
� 4 , ∀j ∈ {0, 1, . . . , n}}.

Clearly
E [#Gn] = 2

n P [T > n] � 1. (7.25)
In order to get the statement of the lemma, it is enough to verify that P [#Gn � 1] −→ 0

as n→∞. Note that the sequence P [#Gn � 1] is monotone non-increasing. We argue
by contradiction and assume that there exists η > 0 such that P [#Gn � 1] � η for
every n � 1. By a simple coupling argument, the same lower bound will remain valid
if we start the tree-indexed process with f∅ = m, for any m � 4, instead of f∅ = 4.

Fix ε ∈ ]0, η[, and choose an integer � � 1 such that 1/� � ε/2. Choose another
integer k � 1 such that, if Bk,η denotes a binomial B(k, η) random variable, we have
P [Bk,η � �] � ε/2. Finally set

G�n = {u ∈ Gn : #{j ∈ {0, 1, . . . , n− 1} : f [u]j+1 � f [u]j
−2} � k},

G��n = Gn\G�n.

We first evaluate P [G��n �= ∅]. We have

P
�
G��n �= ∅

� � P
�
G��n �= ∅,#Gn � ��+ P [#Gn > �] .
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By (7.25) and our choice of �, we have P [#Gn > �] � �−1E [#Gn] � ε/2. On the other
hand,

P
�
G��n �= ∅,#Gn � �� � E

�
#G��n 1{#Gn��}

�

=

�

u∈{0,1}n
P
�
u ∈ G��n, #Gn � ��

=

�

u∈{0,1}n
P
�
u ∈ G��n

�
P
�
#Gn � � | u ∈ G��n

�

Fix u ∈ {0, 1}n. We argue conditionally on the values of f [u]j
for 0 � j � n, and note

that the values of f [u]
∗
j+1

for 0 � j � n − 1 are then also determined by the condition
f [u]j+1 + f [u]

∗
j+1

= f [u]j
+2. Moreover, on the event {u ∈ G��n}, there are at least k values

of j ∈ {0, 1, . . . , n− 1} such that f [u]j+1 � f [u]j
−2. For these values of j, we must have

f [u]
∗
j+1

� 4. Furthermore, for each such value of j, there is (conditional) probability
at least η that one of the descendants of [u]∗

j+1
at generation n, say v, is such that

f [v]i
� 4 for every i ∈ {j + 1, . . . , n}, and consequently v ∈ Gn. Summarizing, we see

that conditionally on the event {u ∈ G��n}, #Gn is bounded below in distribution by a
binomial B(k, η) random variable. Hence, using our choice of k,

P
�
#Gn � � | u ∈ G��n

� � P [Bk,η � �] � ε
2
.

We thus get

P
�
G��n �= ∅,#Gn � �� � ε

2

�

u∈{0,1}n
P
�
u ∈ G��n

�
=
ε

2
E
�
#G��n

� � ε
2
,

by (7.25). It follows that
lim sup
n→∞

P
�
G��n �= ∅

� � ε.

We will now verify that P [G�n �= ∅] tends to 0 as n→∞. Since ε <η , this will give
a contradiction with our assumption P [#Gn � 1] � η for every n � 1, thus completing
the proof. We in fact show that E [#G�n] tends to 0 as n → ∞. To this end, we first
write, for n � k,

E
�
#G�n

�
= 2
n P [T > n, #{j ∈ {0, . . . , n− 1} : Xj+1 � Xj − 2} � k] (7.26)

� 2
n nk sup

A⊂{0,1,...,n−1},#A=k

P [Xj+1 � (Xj − 1) ∨ 4 , ∀j ∈ {0, 1, . . . , n− 1}\A]

We thus need to bound the quantity

P [Xj+1 � (Xj − 1) ∨ 4 , ∀j ∈ {0, 1, . . . , n− 1}\A] ,

for every choice of A ⊂ {0, 1, . . . , n − 1} such that #A = k. For every subset A of
{0, 1, . . . , n− 1}, we set

NAn = #{j ∈ {0, 1, . . . , n− 1}\A : Xj = 5}.
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With a slight abuse of notation, write Pi for a probability measure under which the
Markov chain X starts from i. We prove by induction on n that for every choice of
A ⊂ {0, 1, . . . , n− 1} and m ∈ {0, 1, . . . , n−#A}, we have for every i � 1,

Pi
�
Xj+1 � (Xj − 1) ∨ 4 , ∀j ∈ {0, 1, . . . , n− 1}\A; NAn = m

�
�
�

1

2

�m�3

7

�n−m−#A

.

(7.27)
If n = 0 (then necessarily m = 0 and A = ∅) there is nothing to prove. Assume that
the desired bound holds at order n − 1. In order to prove that it holds at order n, we
apply the Markov property at time 1. We need to distinguish three cases.

If 0 ∈ A, then the left-hand side of (7.27) is equal to
�

i�
qii� Pi�

�
Xj+1 � (Xj − 1) ∨ 4 , ∀j ∈ {0, 1, . . . , n− 2}\A�; NA�n−1 = m

�
,

where A� = {j − 1 : j ∈ A, j > 0}. Since #A� = #A− 1 in that case, an application of
the induction hypothesis gives the result.

If 0 /∈ A and i �= 5, then the left-hand side of (7.27) is equal to
�

i��(i−1)∨4

qii� Pi�
�
Xj+1 � (Xj − 1) ∨ 4 , ∀j ∈ {0, 1, . . . , n− 2}\A�; NA�n−1 = m

�

�
�

i��(i−1)∨4

qii�
�

1

2

�m�3

7

�n−1−m−#A
�

,

and we just have to observe that
�

i��(i−1)∨4

qii� �
3

7

when i �= 5.
Finally, if 0 /∈ A and i = 5, the left-hand side of (7.27) is equal to
�

i��4

q5i� Pi�
�
Xj+1 � (Xj − 1) ∨ 4 , ∀j ∈ {0, 1, . . . , n− 2}\A�; NA�n−1 = m− 1

�

�
��

i��4

q5i�
��

1

2

�m−1�3

7

�(n−1)−(m−1)−#A
�

=

�
1

2

�m�3

7

�n−m−#A

,

using the fact that
�
i��4
q5i� = 1/2. This completes the proof of (7.27).

Fix δ ∈ ]0, 1[. By summing over possible values of m, we get for n large, for all
choices of A ⊂ {0, 1, . . . , n− 1} such that #A = k

P [Xj+1 � (Xj − 1) ∨ 4 , ∀j ∈ {0, 1, . . . , n− 1}\A]

�
n−�δn��

m=0

�
1

2

�m�3

7

�n−m−k
+ P
�
NAn > n− �δn�

�

� n
�

1

2

�n−�δn��3

7

��δn�−k
+ P
�
NAn > n− �δn�

�
.
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Note that NAn � N∅
n . Crude estimates, using the fact that supi�1 qi5 = 1/5, show that

we can fix δ such that

2
nnk+1P

�
N∅
n > n− �δn�

�
−→
n→∞

0.

It then follows that the right-hand side of (7.26) tends to 0 as n→∞, which completes
the proof.

Remark 7.34. For every integer k � 1, let (f
(k)

u , u ∈ T) be a tree-indexed process that
evolves according to the same rules as (fu, u ∈ T) but starts with f

(k)

∅ = k. Let pk be
the probability that there exists no infinite ray starting from ∅ along which all labels
f
(k)

u are strictly greater than 3. By conditioning on the values of f
(k)

0
and f

(k)

1
, we see

that (pk)k�1 satisfies the properties





p1 = p2 = p3 = 1,

pk =
1

k + 1
(p1pk+1 + p2pk + ...+ pkp2 + pk+1p1), if k � 4 .

(7.28)

It follows that the values of pk for k � 5 are determined recursively from the value
of p4. Numerical simulations suggest that there exists no sequence (pk)k�1 satisfying
(7.28) such that p4 < 1 and 0 � pk � 1 for every k � 1. A rigorous verification of this
fact would provide an alternative more analytic proof of Lemma 7.33.

Proof of Proposition 7.32. First note that it is easy to verify that L∞∩S1 is dense in S1

and thus S1 ⊂ L∞ since L∞ is closed. We argue by contradiction and suppose that L∞
is not a maximal lamination. Then there exists a (non-degenerate) chord [xy] which is
not contained in L∞ and is such that L∞∪ [xy] is still a lamination, which implies that
]xy[ does not intersect any chord of S(∞). There is a unique infinite ray ∅, �1, �1�2, . . .
in T such that ]xy[⊂ R�1...�n for every integer n � 0. We claim that for all n sufficiently
large R�1...�n has at least 4 ends. To see this, denote by Ixn the end of R�1...�n whose
closure Ixn contains x, and define Iyn similarly. Note that the maximal length of an end
of a fragment at the n-th generation tends to 0 a.s., and that this applies in particular
to Ixn and Iyn. It follows that, almost surely for all n sufficiently large, there is no chord
of S(∞) between a point of Ixn and a point of Iyn (otherwise, the pair (x, y) would be
in S∗(∞) and the chord [xy] would be contained in L∞). Hence, for all n sufficiently
large, the boundary of R�1...�n contains at least 4 different chords, and therefore at least
4 ends. This contradicts Lemma 7.33, and this contradiction completes the proof.

Proof of Theorem 7.2. Since L∞ is a maximal lamination and L∞ ⊂ Lg∞ , we must
have L∞ = Lg∞ and in particular Lg∞ is a maximal lamination. Thus, the function g∞
must satisfy the necessary and sufficient condition for maximality given in Proposition
7.9. Under this condition however, the relations

g∞≈ and g∞∼ coincide. Recalling that
M∞(x) > 0 = M∞(1) for every x ∈ S1\{1}, we see that property (7.1) written with
x = e2iπr and y = e2iπs is equivalent to saying that r g∞∼ s. Theorem 7.2 then follows
from the fact that L∞ = Lg∞ .
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Remark 7.35. It is not hard to see that L∞ has zero Lebesgue measure a.s. (this
follows from the upper bound on the Hausdorff dimension proved in the next section).
By a simple argument, it follows that a chord [xy] is contained in L∞ if and only if
x
g∞≈ y, and this condition is also equivalent to (x, y) ∈ S∗(∞).

7.6 The Hausdorff dimension of L∞
In this section, we prove Theorem 7.3. We let I be the countable set of all pairs

(I, J) where I and J are two disjoint closed subarcs of S1 with nonempty interior and
endpoints of the form exp(2iπr) with rational r. For each (I, J) ∈ I, we set

L(I,J) =

�

(y,z)∈S∗(∞)∩(I×J)

[yz] ⊂ L∞.

Clearly,
dimL∞ = sup

(I,J)∈I
dim(L(I,J)). (7.29)

Upper bound. We prove that, for every (I, J) ∈ I,

dim(L(I,J)) �
√

17− 1

2
= β∗ + 1, a.s.

By rotational invariance, we may assume without loss of generality that 1 /∈ I ∪ J .
We pick a point x ∈ S1\(I ∪ J) such that 1 and x belong to different components of
S1\(I ∪ J). We also fix γ > β∗ + 1 and set β = γ − 1 > β∗.

We consider the figela process (S0(t), t � 0) with autosimilarity parameter α = 0.
We fix t > 0 for the moment and denote the maximal number of ends in a fragment of
S0(t) by E(t).

Recall that R(1,x)

i
(S0(t)), 1 � i � HS0(t)(1, x) + 1 are the fragments of S0(t) separa-

ting 1 from x. Any chord [yz] with (y, z) ∈ S∗(∞) ∩ (I × J) must be contained in the
closure of one of these fragments (otherwise this chord would cross one of the chords
of S0(t), which is impossible). Consequently, the sets

(I ∩R(1,x)

i
(S0(t)))× (J ∩R(1,x)

i
(S0(t))), 1 � i � HS0(t)(1, x) + 1

form a covering of S∗(∞)∩(I×J). We get a finer covering by considering the sets C×D,
where C varies over the connected components of I∩R(1,x)

i
(S0(t)) and D varies over the

connected components of J ∩R(1,x)

i
(S0(t)). We denote these connected components by

Cik, 1 � k � ki and Di�, 1 � � � �i respectively. Note that ki+�i � 2 e(R(1,x)

i
(S0(t))) �

2 E(t). Summarizing the preceding discussion, we have

L(I,J) ⊂
�HS0(t)(1,x)+1�

i=1

ki�

k=1

�i�

�=1

Cik,�
�

(7.30)

where Ci
k,� stands for the union of all chords [yz] for y ∈ Cik and z ∈ Di�.
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For every 1 � i � HS0(t)(1, x) + 1 , let

ηi(t) = 2π m(R(1,x)

i
(S0(t)))

be the length of R(1,x)

i
(S0(t)) ∩ S1. Obviously the length of any of the arcs Cik, Di� is

bounded above by ηi(t). Consequently, we can cover each set Ci
k,� by at most 10 ηi(t)−1

disks of diameter 2ηi(t). From this observation and (7.30), we get a covering of L(I,J)

by disks of diameter at most 2 max{ηi(t) : 1 � i � HS0(t)(1, x) + 1}, such that the sum
of the γ-th powers of the diameters of disks in this covering is bounded above by

100 2
2+γ

E(t)2

HS0(t)(1,x)+1�

i=1

ηi(t)
β. (7.31)

We then need obtain a bound for E(t). In the genealogical tree of fragments, the
number of ends of a given fragment is at most the number of ends of its “parent” plus 1.
Consequently E(t) is smaller than the largest generation of a fragment of S0(t). In our
case α = 0, the genealogy of fragments is described by a standard Yule process (indeed,
each fragment gives birth to two new fragments at rate 1). Easy estimates show that
E(t) � t2 for all large enough t, almost surely. On the other hand, Theorem 7.25 (iv)
implies that

lim sup
t→∞

�
exp (κνD(β)t)

HS0(t)(1,x)+1�

i=1

ηi(t)
β
�
<∞ , a.s.

Since β > β∗ we have κνD(β) > 0. From the preceding display and the bound E(t) � t2
for t large, we now deduce that the quantity (7.31) tends to 0 as t → ∞. The upper
bound dimL(I,J) � γ follows. By (7.29) we have also dimL∞ � γ and since γ > β∗+ 1

was arbitrary, we conclude that dimL∞ � β∗ + 1.
Lower bound. For (I, J) ∈ I, let A(I,J) be the set of all y ∈ I such that there exists

z ∈ J with (y, z) ∈ S∗(∞). By [102, Proposition 2.3 (i)], we have

dim(L∞) � dim(A(I,J)) + 1

for every (I, J) ∈ I ([102] deals with hyperbolic geodesics instead of chords, but the
argument is exactly the same). For any rational δ ∈ ]0, 1/4[, set Iδ = {e2iπr : δ � r �
1

2
− δ}. Also set J0 = {e2iπr :

1

2
� r � 1}. We will prove that almost surely, for all δ

sufficiently small, we have
dim(A(Iδ ,J0)) � β∗. (7.32)

The desired lower bound for dim(L∞) will then immediately follow.
In order to get the lower bound (7.32), we construct a suitable random measure

on A1

(Iδ ,J0)
. We define a finite random measure µδ on [δ, 1

2
− δ] by setting, for every

r, s ∈ [δ, 1

2
− δ] with r � s,

µδ([r, s]) = min
u∈[s,

1
2 ]

M∞(e2iπu)− min
u∈[r,

1
2 ]

M∞(e2iπu).
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Clearly, if r belongs to the topological support of µδ, we have

M∞(e2iπr) = min
u∈[r,

1
2 ]

M∞(e2iπu),

and thus there exists s ∈ [
1

2
, 1] such that

M∞(e2iπr) = M∞(e2iπs) = min
u∈[r,s]

M∞(e2iπu).

Therefore, with the notation of the previous section, we have r g∞∼ s and also r
g∞≈ s from

the proof of Theorem 7.2. It follows that (e2iπr, e2iπs) ∈ S∗(∞) and e2iπr ∈ A(Iδ ,J0).
To summarize, if we denote the image of µδ under the mapping r −→ e2iπr by νδ,

the measure νδ is supported on A(Iδ ,J0). From the Hölder continuity properties of the
process M∞, we immediately get that for every ε > 0 there exists a (random) constant
Cε such that the νδ-measure of any ball is bounded above by Cε times the (β∗ − ε)-th
power of the diameter of the ball. The lower bound (7.32) now follows from standard
results about Hausdorff measures, provided that we know that νδ is nonzero for δ > 0

small, a.s. However the total mass of νδ clearly converges to M∞(−1) > 0 as δ → 0.
This completes the proof.

7.7 Convergence of discrete models
In this section, we prove Theorem 7.4. A key tool is the maximality property in

Theorem 7.32. We will also need the following geometric lemma, which considers lami-
nations that are “nearly maximal”.

Lemma 7.36. Let S be a figela and ε ∈ ]0, 1[. Suppose that all fragments of S have
mass smaller than ε/2π and at most 3 ends. Consider an arbitrary lamination

L =

�

i∈I
[xiyi]

where the chords [xiyi] do not cross. Suppose that the chords of the figela S belong to
the collection {[xiyi] : i ∈ I}, and in particular LS ⊂ L. Then any chord [xiyi], i ∈ I
lies within Hausdorff distance less than ε from a chord of the figela S.

We omit the easy proof, which should be clear from Fig. 6.
Let us turn to the proof of Theorem 7.4. We fix ε > 0 and δ ∈ ]0, 1/2[.
We use the genealogical structure of fragments as described in the beginning of the

proof of Theorem 7.32. We first observe that we may fix an integer m sufficiently large
such that with probability at least 1 − δ all the fragments Ru for u ∈ {0, 1}m have
mass less than ε/2π. Then, using Lemma 7.33, or rather the proof of this lemma, we
can choose an integerM � m large enough so that the following holds with probability
greater than 1 − δ : For every u ∈ {0, 1}M , there exists an integer j(u) ∈ {m, . . . ,M}
such that the fragment R[u]j(u) has at most 3 ends.

From now on, we argue on the set where the preceding property holds and where all
the fragments Ru for u ∈ {0, 1}m have mass less than ε/2π. For every u ∈ {0, 1}M , we
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Fig. 9. Proof of lemma 5.5.

fragment of the finite lamination belonging to generation g has mass smaller than ε. Because of

Lemma 5.2, we know that there is no infinite ray starting from a point u1...ug at generation g
such that all the fragments represented by this ray have more than 4 ends. A compacity argument

then implies, that there exists a generation 0 � g � G such that, with probability greater 1− ε,
for every u1, ..., uG ∈ {0, 1} there exists g � k � G such that the fragment Ru1...uk has less than

3 ends. The integers g and G being fixed, it is clear from the definition of the discrete and the

continuous models that the first 2
G

arches of the discrete recursive triangulations converge in

distribution towards the first 2
G

arches of the continuous figela process. Hence, Lemma 5.5, with

probability larger than 1− 2ε, L∞ is contained in the ε-neighborhood of the first 2
G

arches. We

leave details to the reader.

5.3. Hausdorff dimension.

Theorem 5.6. The lamination L∞ is almost surely of Hausdorff dimension

dimH(L∞) =

√
17− 1

2
.

To prove this theorem, following [LGP08, Proposition 2.3] we will first study an auxiliary

closed set. For x and y in S1 we write x ∼ y if and only if [xy] ⊂ L∞. Since L∞ is a maximal

lamination, ∼ is an equivalence relation on S1. In particular, transitivity follows from Lemma

2.2 stated in the Introduction. We denote the collection of all x ∈ S1 whose equivalence class is

not a singleton by A. Intuitively, we have dimH(L∞) = dimH(A) + 1.

Lemma 5.7. The closed set A is almost surely of Hausdorff dimension

dimH(A) =

√
17− 3

2
.

Proof. Consider the figela process (S0(t), t � 0) with autosimilarity parameter α = 0. Let

[X1X2] and [X3X4] be the first two arches of the process. We may assume that X1,X2,X3,X4

are ordered counterclockwise on S1 (see Fig. 10). For x, y ∈ S1 we denote the arc on S1 going from

x to y in counter clockwise sense by Arc(x, y). Let I = Arc(X4,X1) and J = Arc(X2,X3) ⊂ S1

and A(I,J)
= {x ∈ I,∃y ∈ J, x ∼ y} (see Fig 10). Since A is a countable union of sets of the type

A(I,J)
, it is enough to prove that dimH(A(I,J)

) =

√
17−3
2 a.s. Fix to points a ∈ Arc(X1,X2) and

b ∈ Arc(X3,X4).

imsart-aop ver. 2009/12/15 file: English-triangulation-corrected.tex date: March 18, 2010

Figure 7.6 – Illlustration of the proof of lemma 7.36 : The chords [xiyi] have to lie in
the shaded part of the figure.

choose the integer j(u) as small as possible and set v(u) = [u]j(u) to simplify notation.
Then, if u, u� ∈ {0, 1}M , the fragments Rv(u) and Rv(u�) are either disjoint or equal.
From this property, we easily get that there exists a figela L∗ whose fragments are the
sets Rv(u), u ∈ {0, 1}M . By construction, L∗ satisfies the assumptions of Lemma 7.36.
Consequently, every chord appearing in the figela process lies within distance at most
ε from a chord of L∗.

Consider now the discrete-time process (Λn)n�0 of Section 7.1, where feet of chords
belong to the set of n-th roots of unity. In this model we can introduce a labelling of
fragments analogous to what we did in the continuous setting. For instance, Rn

0
and

Rn
1

will be the fragments created by the first chord, ordered in a random way. Then we
look for the first chord that falls in R0 (if any) and call Rn

00
and Rn

01
the new fragments

created by this chord, and so on. In this way we get a collection (Rnu)u∈T(n) , which is
indexed by a random finite subtree T(n) of T. It is easy to verify that, for every integer
p � 0, P[Tp ⊂ T(n)

] tends to 1 as n→∞.
For every u ∈ T, write xu and yu for the feet of the first chord that will split Ru

(again ordered in a random way). Introduce a similar notation xnu and ynu in the discrete
setting (then of course xnu and ynu are only defined when u ∈ T(n) and u is not a leaf of
T(n)). Since feet of chords are chosen recursively uniformly over possible choices, both
in the discrete and in the continuous setting, it should be clear that, for every integer
p � 0,

�
(xnu, y

n

u)

�

u∈Tp

(d)−→
n→∞

�
(xu, yu)

�

u∈Tp
. (7.33)

We apply this convergence with p =M . Using the Skorokhod representation theorem,
we may assume that the preceding convergence holds almost surely. Then almost surely
for n sufficiently large, every chord of the figela L∗ (which must be of the form [xuyu]
for some u ∈ TM ) lies within distance at most ε from a chord of Λn. Recalling the
beginning of the proof, we see that, on an event of probability at least 1 − 2δ, every
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chord appearing in the figela process lies within distance 2ε from a chord of Λn, for all
n sufficiently large.

We still need to prove the converse : We argue on the same event of probability
at least 1 − 2δ and verify that, for n sufficiently large, every chord of Λn lies within
distance 2ε from the set L∞. To this end, we use a symmetric argument. Assuming
that n is large enough so that TM ⊂ T(n), we let Λ∗n be the figela whose fragments
are the sets Rn

v(u)
, u ∈ {0, 1}M . The (almost sure) convergence (7.33) guarantees that

every chord of the figela L∗ is the limit as n→∞ of the corresponding chord of Λ∗n. It
follows that, for n sufficiently large, Λ∗n satisfies the assumptions of Lemma 7.36, and
thus every chord of Λn lies within distance at most ε from a chord of Λ∗n. Taking n even
larger if necessary, we get that every chord of Λn lies within distance at most 2ε from
a chord of L∗. This completes the proof of the first assertion of Theorem 7.4.

The second assertion is proved in a similar manner. Plainly, a uniformly distributed
random permutation of {1, 2, . . . , n} can be generated by first choosing σ(1) uniformly
over {1, . . . , n}, then σ(2) uniformly over {1, . . . , n}\{σ(1)}, and so on. From this simple
remark, we see that the analogue of the convergence (7.33) still holds for the feet of
chords of the figela �Λn. The remaining part of the argument goes through without
change.

7.8 Extensions and comments
7.8.1 Case α = 0

Recall from Theorem 7.25 (iv) the definition of H0(x) as the almost sure limit of
e−t/3HS0(t)(1, x) as t → ∞. Note that H0(x) is an analogue in the homogenous case
α = 0 of M∞(x). In a way similar to what we did for M∞(x), one can verify that
E [H0(x)p] < ∞ for every real p � 1, and derive integral equations for the moments
hp(r) = E

�
H0(e2iπr)p

�
, for 0 � r � 1. In the case p = 1 we get

4

3
h1(r) =

�
r

0

du
�

1− r
1− u

�
2

2h1(u)

1− u +

�
1

r

du
�
r

u

�
2

2h1(u)

u
.

By differentiating this equation three times with respect to the variable r we get

2

3
h
���
1 (r) = h

��
1(r)
�

1

1− r −
1

r

�
,

leading to the explicit formula

h1(r) =
8

π

�
r(1− r).

For higher values of p, we get the following bounds.

Proposition 7.37. For every integer p � 1 and every ε > 0, there exists a constant
K such that for every r ∈ [0, 1],

hp(r) � K(r(1− r))
2p
p+3−ε.
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We omit the proof, which uses arguments similar to the proof of Proposition 7.27.
The bounds of Proposition 7.37 are not sharp. Still they are good enough to apply Kol-
mogorov’s continuity criterion in order to get a continuous modification of the process
(H0(x))x∈S1 .

7.8.2 Recursive self-similarity
Set Zt = M∞(e2iπt) for every t ∈ [0, 1]. A slightly more precise version of Proposition

7.29 shows that the process (Zt)t∈[0,1] satisfies the following remarkable self-similarity
property. Let Z � and Z �� be two independent copies of Z and let (U1, U2) be distributed
according to the density 2 1{0<u1<u2<1} and independent of the pair (Z,Z �). Then the
process ( �Zt)t∈[0,1] defined by

�Zt =






(1− (U2 − U1))
β∗ Z �

t/(1−(U2−U1))
if 0 � t � U1 ,

(1− (U2 − U1))
β∗ Z �

U1/(1−(U2−U1))
+ (U2 − U1)

β∗ Z ��
(t−U1)/(U2−U1)

if U1 � t � U2 ,

(1− (U2 − U1))
β∗ Z �

(t−(U2−U1))/(1−(U2−U1))
if U2 � t � 1 ,

has the same distribution as (Zt)t∈[0,1].
Informally, this means that we can write a decomposition of Z in two pieces accor-

ding to the following device. Throw two independent uniform points U1 and U2 in [0, 1].
Condition on the event U1 < U2 and set M = 1− (U2−U1). Then start from a (scaled)
copy of Z of duration [0,M ] and “insert” at time U1 another independent scaled copy
of Z of duration 1−M . Then the resulting random function has the same distribution
as Z.

In [5], Aldous describes such a decomposition in three pieces for the Brownian
excursion, which is closely related to the random geodesic lamination Le of Theorem
7.10. Aldous also conjectures that there cannot exist a decomposition of the Brownian
excursion in two pieces of the type described above.

It would be interesting to know whether the preceding decomposition of Z (along
with some regularity properties) characterizes the distribution of Z up to trivial scaling
constants. One may also ask whether the scaling exponent β∗ is the only one for which
there can exist such a decomposition in two pieces.
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discussions. We also thank Jean Bertoin, François David and Kay Jörg Wiese for useful
conversations. The second author is indebted to Frédéric Paulin for suggesting the study
of recursive triangulations of the disk.
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Random Laminations and Multitype Branching Pro-
cesses

Les résultats de ce chapitre ont été obtenus en collaboration avec

Yuval Peres et ont été soumis pour publication.

We consider multitype branching processes arising in the study of random lami-
nations of the disk. We classify these processes according to their subcritical or
supercritical behavior and provide Kolmogorov-type estimates in the critical case
corresponding to the random recursive lamination process of [47]. The proofs use
the infinite dimensional Perron-Frobenius theory and quasi-stationary distributions.

8.1 Introduction
In this note we are interested in multitype branching processes that arise in the

study of random recursive laminations. In order to introduce and motivate our results,
let us briefly recall the basic construction of [47]. Consider a sequence U1, V1, U2, V2, . . .
of independent random variables, which are uniformly distributed over the unit circle
S1. We then construct inductively a sequence L1, L2, . . . of random closed subsets of
the closed unit disk D. To start with, L1 is set to be the (Euclidean) chord [U1V1]

with endpoints U1 and V1. Then at step n+ 1, we consider two cases. Either the chord
[Un+1Vn+1] intersects Ln, and we put Ln+1 = Ln. Or the chord [Un+1Vn+1] does not
intersect Ln, and we put Ln+1 = Ln ∪ [Un+1Vn+1]. Thus, for every integer n � 1, Ln is
a disjoint union of random chords. See Fig. 8.1.

Figure 8.1 – An illustration of the process creating the sequence (Ln)n�1. We use
hyperbolic chords rather than Euclidean chords for aesthetic reasons.

207
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A fragment of Ln is a connected component of D\Ln. These fragments have a natural
genealogy that we now describe. The first fragment, D, is represented by ∅. Then the
first chord [U1V1] splits D into two fragments, which are viewed as the offspring of ∅.
We then order these fragments in a random way : With probability 1/2, the first child
of ∅, which is represented by 0, corresponds to the largest fragment and the second
child, which is represented by 1, corresponds to the other fragment. With probability
1/2 we do the contrary. We then iterate this device (see Fig. 8.2) so that each fragment
appearing during the splitting process is labeled by an element of the infinite binary
tree

T2 =

�

n�0

{0, 1}n , where {0, 1}0 = {∅}.

If F is a fragment, we call end of F , any connected component of F ∩ S1. For
convenience, the full disk D is viewed as a fragment with 0 end. Consequently, we can
associate to any u ∈ T2 a label �(u) that corresponds to the number of ends of the
corresponding fragment in the above process. Lemma 5.5 of [47] then entails that this
random labeling of T2 is described by the following branching mechanism : For any
u ∈ T2 labeled m � 0, choose m1 ∈ {0, 1, . . . ,m} uniformly at random and assign the
values 1 +m1 and 1 +m−m1 to the two children of u. This is the multitype branching
process we will be interested in. See Fig. 8.2.

12

3

4

5

6

7

1

2

3

4

5

6

7

1 1

2 1

31

21

2 1

3 1

1 4

0

Figure 8.2 – On the left-hand side, the first 7 chords of the splitting process. On the
right-hand side, the associated branching process corresponding to the number of ends
of the fragments at their creations. Notice that we split the fragments according to the
order of appearance of the chords, thus the binary tree on the right-hand side seems
stretched.

We can also define a random labeling by using the above branching mechanism
but starting with a value a � 0 at the root ∅ of T2, the probability distribution of
this process will be denoted Pa and its relative expectation Ea. A ray is an infinite
geodesic path u = (u1, u2, . . .) ∈ {0, 1}N starting from the root ∅ in T2. For any ray
u = (u1, . . . , un, . . .) or any word of finite length u = (u1, . . . , un), we denote by [u]i or
[u]i the word (u1, . . . , ui) for 1 � i � n, and [u]0 = ∅.
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Theorem ([47, Lemma 5.5]). Almost surely, there exists no ray u along which all the
labels starting from 4 are bigger than or equal to 4,

P4

�
∃u ∈ {0, 1}N : �([u]i) � 4,∀i � 0

�
= 0.

The starting label 4 does not play any special role and can be replaced by any value
bigger than 4. This theorem was proved and used in [47] to study certain properties
of the random closed subset L∞ = ∪Ln, and in particular to prove that it is almost
surely a maximal lamination (roughly speaking that the complement of L∞ is made
of disjoint triangles), see [47, Proposition 5.4]. One of the purposes of this note is to
provide quantitative estimates related to this theorem. Specifically let

Gn =
�
u ∈ {0, 1}n : �([u]i) � 4,∀i ∈ {0, 1, . . . , n}

�

be the set of paths in T2 joining the root to the level n along which the labels are bigger
than or equal to 4.

Theorem 8.1. The expected number of paths starting from the root and reaching level
n along which the labels starting from 4 are bigger than or equal to 4 satisfies

E4 [#Gn] −→
n→∞

4

e2 − 1
. (8.1)

Furthermore, there exist two constants 0 < c1 < c2 < ∞ such that the probability that
Gn �= ∅ satisfies

c1
n

� P4

�
Gn �= ∅

� � c2
n
. (8.2)

Remark 8.2. These estimates are reminiscent of the critical case for Galton-Watson
processes with finite variance σ2 < ∞. Indeed if Hn denotes the number of vertices at
height n in such a process then E [Hn] = 1 and Kolmogorov’s estimate [87] implies that
P [Hn �= 0] ∼ 2

σ2n .

The proof of Theorem 9.6.2 relies on identifying the quasi-stationary distribution of
the labels along a fixed ray conditioned to stay bigger than or equal to 4. This is done
in Section 8.2. In Section 3, we also study analogues of this branching random walk on
the k-ary tree, for k � 3, coming from a natural generalization of the process (Ln)n�0

where we replace chords by triangles, squares... see Fig. 8.3.
We prove in these cases that there is no critical value playing the role of 4 in the

binary case.
Acknowledgments. The first author thanks Microsoft Research and the University

of Washington, where most of this work was done, for their hospitality. We are also
grateful to Jean-François Le Gall for precious comments and suggestions on a first
version of this note.
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Figure 8.3 – Extension of the process (Ln)n�1 where we throw triangles or squares
instead of chords.

8.2 The critical case
8.2.1 A martingale

Fix an arbitrary ray u0 in T2, for example u0 = (0, 0, 0, 0, 0, . . .) and define Xn =

�([u0]n) for n � 0, so that Xn is the value at the n-th vertex on the fixed ray u0 of the
T2-indexed walk � starting from x0 � 4 at the root. Then (Xn)n�0 is a homogeneous
Markov chain with transition probabilities given by

P2(x, y) =
1

x+ 1
11�y�x+1.

We first recall some results derived in [47]. If Fn is the canonical filtration of (Xn)n�0

then a straightforward calculation leads to Ex0 [Xn+1 | Fn] = 1 + Xn/2, hence the
process Mn = 2

n
(Xn − 2) is a martingale starting from x0 − 2. For i � 1, we let Ti be

the stopping time Ti = inf{n � 0 : Xn = i}, and T = T1 ∧ T2 ∧ T3. By the stopping
theorem applied to the martingale (Mn)n�0, we obtain for every n � 0,

x0−2 = Ex0 [Mn∧T ] = Ex0 [−2
T11{T1=T�n}]+ 0 +Ex0 [2

T31{T3=T�n}]+Ex0 [2
n
(Xn−2)1{T>n}].

One can easily check from the transition kernel of the Markov chain (Xn)n�0 that for
every i � 1, Px0 [T1 = T = i] = Px0 [T2 = T = i] = Px0 [T3 = T = i] . Hence, the
equality in the last display becomes

x0 − 2 = Ex0 [2
n
(Xn − 2)1{T>n}],

or equivalently

x0 − 2 = 2
n
Px0 [T > n] Ex0 [Xn − 2 | T > n]. (8.3)

Our strategy here is to compute the stationary distribution of Xn conditionally on the
non extinction event {T > n}, in order to prove the convergence of E4[Xn | T > n]
and finally to get asymptotics for P4[T > n]. Before any calculation, we make a couple
of simple remarks. Obviously Ex0 [Xn − 2 | T > n] � 2, and thus we get 2

n
Px0(T >

n) � x0−2

2
. Since there are exactly 2

n paths joining the root ∅ of T2 to the level n, we
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deduce that the number #Gn of paths joining ∅ to the level n along which the labels
are bigger than or equal to 4 satisfies

Ex0 [#Gn] � x0 − 2

2
. (8.4)

Notice that a simple argument shows that if 4 � x0 � x1 then the chain Xn starting
from x0 and the chain X �n starting from x1 can be coupled in such a way that Xn � X �n
for all n � 0.

8.2.2 The quasi-stationary distribution
We consider the substochastic matrix of the Markov chain Xn killed when it reaches

1, 2 or 3 : This is the matrix (P̃2(x, y))x,y�4 given by

P̃2(x, y) =
1

x+ 1
1y�x+1.

We will show that P̃2 is a 2-recurrent positive matrix, in the sense of [130, Lemma
1]. For that purpose we seek left and right non-negative eigenvectors of P̃2 for the
eigenvalue 1/2. In other words we look for two sequences (g(x))x�4 and (f(x))x�4 of
non-negative real numbers such that f(4) = g(4) = 1 (normalization) and for every
x � 4

g(x) = 2

�

y�4

g(y)P̃2(y, x) = 2

∞�

y=(x−1)∨4

g(y)

y + 1
, (8.5)

f(x) = 2

�

y�4

P̃2(x, y)f(y) =
2

x+ 1

x+1�

y=4

f(y). (8.6)

We start with the left eigenvector g. From (8.5), we get g(5) = g(4) = 0, and g(i) −
g(i+ 1) =

2

i
g(i− 1) for i � 5. Letting

G(z) =

�

i�4

zi+1

i+ 1
g(i), 0 � z < 1,

the last observations lead to the following differential equation for G

2G(z) = z−1
(z − 1)G�(z) + z3,

with the conditionG(z) = z5/5+o(z5). A simple computation yieldsG(z) = 3/4 exp(2z)
×(z−1)

2
+(z3/2+3z2/4−3/4). After normalization, the generating function G1/2(z) =�

i�4
g1/2(i)zi of the unique probability distribution g1/2 which is a left eigenvector for

the eigenvalue 1/2 is given by

G1/2(z) =
z

2

�
exp(2z)(z − 1) + z + 1

�
,

that is
g1/2(i) =

2
i−3

(i− 3)

(i− 1)!
1i�4.
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This left eigenvector is called the quasi-stationary distribution of Xn conditioned on
non-extinction. For the right eigenvector f, a similar approach using generating func-
tions is possible, but it is also easy to check by induction that

f(i) =
i− 2

2
1i�4,

satisfies (8.6). Hence the condition (iii) of Lemma 1 in [130] is fulfilled and the sub-
stochastic matrix P̃2 is 2-recurrent positive. For every x � 4, set qn(x) = P4(Xn = x |
T > n) = P4(T > n)−1P̃n

2
v (x) where v stands for the “vector” (vi)i�4 with v4 = 1 and

vi = 0 if i � 5. Theorem 3.1 of [130] then implies that

qn(x) −→
n→∞

g1/2(x). (8.7)

Unfortunately this convergence does not immediately imply that E4[Xn | T > n] −→
E [X] where X is distributed according to g1/2. But this will follow from the next
proposition.

Proposition 8.3. For every n � 0 the sequence
�
qn(x)

g1/2(x)

�

x�4

is decreasing.

Démonstration. By induction on n � 0. For n = 0 the statement is true. Suppose it
holds for n � 0. By the definition of qn+1, for x � 4 we have

qn+1(x) = P4(Xn+1 = x | T > n+ 1)

=
1

P4(T > n+ 1)

�

z�4

P4(Xn = z , Xn+1 = x , T > n)

=
P4(T > n)

P4(T > n+ 1)

�

z�(x−1)∨4

qn(z)

z + 1
(8.8)

We need to verify that, for every x � 4, we have qn+1(x)g1/2(x+1) � qn+1(x+1)g1/2(x)
or equivalently, using (8.8) and (8.5) with g = g1/2, that



�

z�x∨4

g1/2(z)

z + 1








�

z�(x−1)∨4

qn(z)

z + 1



 �



�

z�(x−1)∨4

g1/2(z)

z + 1








�

z�x∨4

qn(z)

z + 1





For x = 4 this inequality holds. Otherwise, if x > 4, we have to prove that

qn(x− 1)

�

z�x∨4

g1/2(z)

z + 1
� g1/2(x− 1)

�

z�x∨4

qn(z)

z + 1
. (8.9)

Set Ax =
qn(x−1)

g1/2(x−1)
to simplify notation. The induction hypothesis guarantees that

qn(z) � Axg1/2(z) for every z � x, and therefore

�

z�x∨4

qn(z)

z + 1
� Ax

�

z�x∨4

g1/2(z)

z + 1
.

This gives the bound (8.9) and completes the proof of the proposition.
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By Proposition 8.3 we have for every x � 1, qn(x)

g1/2(x)
� qn(4)

g1/2(4)
� C, where C =

supn�0

qn(4)

g1/2(4)
<∞ by (8.7). This allows us to apply dominated convergence to get

E4[Xn|T > n] =

�

x�4

xqn(x) −−−→
n→∞

�

x�4

xg1/2(x) = G�
1/2

(1) =
e2 + 3

2
.

Using (8.3) we then conclude that

2
n
P4[T > n] −−−→

n→∞
4

e2 − 1
. (8.10)

8.2.3 Proof of Theorem 9.6.2
We first introduce some notation. We denote the tree T2 truncated at level n by

T(n)

2
. For every u = (u1, . . . , un) ∈ {0, 1}n, and every j ∈ {0, 1, . . . , n}, recall that

[u]j = (u1, . . . , uj), and if j � 1, also set [u]∗
j

= (u1, . . . , uj−1, 1 − uj). We say that
j ∈ {0, 1, . . . , n− 1} is a left turn (resp. right turn) of u if uj+1 = 0 (resp. uj+1 = 1). A
down step of u is a time j ∈ {0, 1, . . . , n− 1} such that

�([u]j)− �([u]j+1) � 2.

Note that if j is a down step of u then �([u]∗
j+1

) = 2 + �([u]j)− �([u]j+1) � 4. The set
of all j ∈ {0, 1, . . . , n − 1} that are left turns, resp. right turns, resp. down steps, of u
is denoted by L(u), resp. R(u), resp D(u). We endow T2 with the lexicographical order
� , and say that a path u ∈ {0, 1}n is on the left (resp. right) of v ∈ {0, 1}n if u � v
(resp. v � u). A vertex of {0, 1}n will be identified with the path it defines in T(n)

2
. If

u, v ∈ T2 we let u ∧ v be the last common ancestor of u and v.

Proof of Theorem 9.6.2. Lower bound. We use a second moment method. Recall that

Gn =
�
u ∈ {0, 1}n : �([u]i) � 4,∀i ∈ {0, 1, . . . , n}

�

is the set of all paths in T(n)

2
from the root to the level n along which the labels are

bigger than or equal to 4. A path in Gn is called "good". Using (8.10), we can compute
the expected number of good paths and get

E4[#Gn] = 2
n
P4[T > n] −→

n→∞
4

e2 − 1
,

as n → ∞, which proves the convergence (8.1) in the theorem. For u ∈ Gn and j ∈
{0, 1, . . . , n}, we let Right(u, j) be the set of all good paths to the right of u that diverge
from u at level j,

Right(u, j) = {v ∈ Gn : u � v and u ∧ v = [u]j}.

In particular, if j is a right turn for u, that is uj+1 = 1, then Right(u, j) = ∅. Further-
more Right(u, n) = {u}. Let us fix a path u ∈ {0, 1}n, and condition on u ∈ Gn and
on the labels along u. Let j ∈ {0, 1, 2, . . . , n}. Note that the first vertex of a path in



✐
✐

“theseavec” — 2011/5/24 — 15:45 — page 214 — #214 ✐
✐

✐
✐

✐
✐

Racine de 17 moins 3 sur 2 214

Right(u, j) that is not an ancestor of u is [u]∗
j+1

and its label is 2 + �([u]j)− �([u]j+1),
so if we want Right(u, j) to be non-empty, the time j must be a down step of u. If j is
a left turn and a down step for u, the subtree {w ∈ T(n)

2
: w ∧ [u]∗

j
= [u]∗

j
} on the right

of [u]j is a copy of T(n−j−1)

2
, whose labeling starts at �([u]∗

j+1
). Hence thanks to (8.4)

we get

E4[# Right(u, j) | u ∈ Gn , (�([u]i))0�i�n] �
�([u]∗

j+1
)− 2

2
=
�([u]j)− �([u]j+1)

2
.

Since the labels along the ancestral line of u cannot increase by more that one at each
step, if u ∈ Gn we have

�
n−1

i=0
| �([u]i+1) − �([u]i) | 1i∈D(u) � n. Combining these

inequalities, we obtain

E4




n�

j=0

# Right(u, j)
��� u ∈ Gn , (�([u]i))0�i�n



 � n

2
.

We can now bound E4[#G2
n] from above :

E4[#G2

n] � 2E4




�

u∈{0,1}n

�

u�v
1u∈Gn1v∈Gn





= 2

�

u∈{0,1}n
P4(u ∈ Gn)E4




�

u�v
1v∈Gn

��� u ∈ Gn





= 2

�

u∈{0,1}n
P4(u ∈ Gn)E4




n�

j=0

# Right(u, j)
��� u ∈ Gn





� n. (8.11)

The lower bound of Theorem 9.6.2 directly follows from the second moment method :
Using (8.1) and (8.11) we get the existence of c1 > 0 such that

P [#Gn > 0] � E [#Gn]
2

E [(#Gn)2]
� c1
n
. (8.12)

Upper Bound. We will first provide estimates on the number of down steps of a fixed
path u ∈ {0, 1}n. Recall that L(u), R(u) and D(u) respectively denote the left turns,
right turns, and down steps times of u.

Lemma 8.4. There exists a constant c3 > 0 such that, for every n � 0 and every
u0 ∈ {0, 1}n

P4(u0 ∈ Gn , # D(u0) � c3n) � c−1

3
2
−n

exp(−c3n).

Démonstration. We use the notation of Section 8.2.1. For any set A ⊂ {0, 1, . . . , n− 1}
and m ∈ {0, 1, . . . , n−#A}, with the notation NAn = #{j ∈ {0, 1, . . . , n− 1}\A : Xj =

5} we have from [47, formula (27)]

P

�
Xj+1 � (Xj − 1) ∨ 4 , ∀j ∈ {0, 1, . . . , n− 1}\A , NAn = m

�
�
�

1

2

�m�3

7

�n−m−#A

,
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We will first obtain crude estimates forNAn . Note thatNAn � N∅
n and that supi�1 P2(i, 5) =

1

5
, so that for any B ⊂ {0, 1, . . . , n} we have

P [Xi = 5 , ∀i ∈ B] � 5
−#B.

By summing this bound over all choices of B with #B � m we get P
�
N∅
n � m� �

2
n
5
−m for everym ∈ {0, 1, . . . n}. Let κ1 ∈ (0, 1/2) and κ2 ∈ (0, 1) such that κ1+κ2 < 1.

We have

P [u0 ∈ Gn , # D(u0) � κ1n]

� P
�
u0 ∈ Gn , # D(u0) � κ1n , N

∅
n � κ2n

�
+ P
�
N∅
n � κ2n

�

�
�

A⊂{0,1,...,n−1}
#A�κ1n

P

�
Xj+1 � (Xj − 1) ∨ 4, ∀0 � j � n− 1, j /∈ A ;NAn � κ2n

�
+ PN∅

n � κ2n

� (�κ2n�+ 1)

�

A⊂{0,1,...,n−1}
#A�κ1n

�
7

6

��κ2n� �3

7

�
n−�κ1n�

+ P
�
N∅
n � κ2n

�

� n

�
n

�κ1n�

��
7

6

��κ2n� �3

7

�
n−�κ1n�

+ 2
n
5
−�κ2n� (8.13)

Notice that for every A > 1 we can choose κ1 > 0 small enough so that n
�
n

�κ1n�
� � An

for n large enough. Furthermore
�

7

6

��κ2n� �3

7

�
n−�κ1n�

= 2
−n

2
�κ1n�

�
6

7

�
n−�κ1n�−�κ2n�

,

and by choosing κ1 even smaller if necessary we can ensure that the right hand side of
(8.13) is bounded by c−1

3
2
−n

exp(−c3n) for some c3 > 0.

We use the last lemma to deduce that

nP4 (∃u ∈ Gn , # D(u) � c3n) � n

c3
exp(−c3n) −→

n→∞
0. (8.14)

We now argue on the event EL = {∃u ∈ Gn , #(D(u) ∩ L(u)) � c3n/2}. On this event
there exists a path u ∈ Gn with at least c3n/2 down steps which are also left turns.
Conditionally on this event we consider the left-most path P of Gn satisfying these
properties, that is

P = min
�

�
u ∈ Gn , #(D(u) ∩ L(u)) � c3n/2

�
.

A moment’s thought shows that conditionally on P and on the values of the labels along
the ancestral line of P , the subtrees of T(n)

2
hanging on the right-hand side of P , that

are the offsprings of the points [P ]
∗
j+1

for j ∈ L(P ), are independent and distributed as
labeled trees started at �([P ]

∗
j+1

).
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Hence conditionally on P and on the labels ((�([P ]i), 0 � i � n), for any j ∈
L(P )∩D(P ) the expected number of paths belonging to the set Right(P, j) (defined in
the proof of the lower bound) is

E4

�
# Right(P, j)

��� P , (�([P ]i))0�i�n
�

= 2
n−j−1

P�([P ]
∗
j+1) (T > n− j − 1)

� 2
n−j−1

P4(T > n− j − 1)

� κ3 > 0, (8.15)

where κ3 is a positive constant independent of n whose existence follows from (8.10).
Thus we have

E4[#Gn | EL] = E4



E




n�

j=0

# Right(P, j)
��� P , (�([P ]i))0�i�n




��� EL





� κ3E4[#(D(P ) ∩ L(P )) | EL].

� c3κ3

2
n. (8.16)

Since P4(EL) � E4[#Gn]/E4[#Gn | EL] we can use (8.1) to obtain P4(EL) � κ4/n
for some constant κ4 > 0. By a symmetry argument, the same bound holds for the
event ER = {∃u ∈ Gn , #(D(u) ∩R(u)) � c3n/2}. Since {Gn �= ∅} is the union of the
events ER, EL and {∃u ∈ Gn , # D(u) � c3n}, we easily deduce the upper bound of
the theorem from the previous considerations and (8.14).

8.3 Extensions
Fix k � 2. We can extend the recursive construction presented in the introduction

by throwing polygons instead of chords : This will yield an analogue of the multitype
branching process on the full k-ary tree. Formally if x1, . . . , xk are k (distinct) points
of S1 we denote by Pol(x1, . . . , xk) the convex closure of {x1, . . . , xk} in D. Let (Ui,j :

1 � j � k , i � 1) be independent random variables that are uniformly distributed
over S1. We construct inductively a sequence Lk

1
, Lk

2
, . . . of random closed subsets of

the closed unit disk D. To start with, Lk
1

is Pol(U1,1, . . . , U1,k). Then at step n + 1,
we consider two cases. Either the polygon Pn+1 := Pol(Un+1,1, . . . , Un+1,k) intersects
Lkn, and we put Lk

n+1
= Lkn. Or the polygon Pn+1 does not intersect Lkn, and we put

Lk
n+1

= Lkn∪Pk. Thus, for every integer n � 1, Lkn is a disjoint union of random k-gons.
In a way very similar to what we did in the introduction we can identify the genealogy
of the fragments appearing during this process with the complete k-ary tree

Tk =

�

i�0

{0, 1, . . . , k − 1}i, where {0, 1, . . . , k − 1}0 = {∅}.

Then the number of ends of the fragments created during this process gives a labeling
�k of Tk whose distribution can be described inductively by the following branching
mechanism (this is an easy extension of [47, Lemma 5.5]) : For u ∈ Tk with label m � 0

we choose a decompositionm = m1+m2+. . .+mk withm1,m2, . . . ,mk ∈ {0, 1, . . . ,m},
uniformly at random among all

�
m+k−1

k−1

�
possible choices, and we assign the labels
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m1 + 1,m2 + 1, . . . ,mk + 1 to the children of ∅. Again the distribution of the labeling
�k of Tk obtained if we use the above branching mechanism but started from a � 0 at
the root will be denoted by Pa and its expectation by Ea. We use the same notation
as in the binary case and are interested in a similar question : For which a � 0 does
there exist with positive probability a ray u such that �k([u]i) � a for every i � 0 ?
Specifically, the value a is called subcritical for the process (�k(u), u ∈ Tk) when there
exists a constant c > 0 such that

Pa(∃u ∈ {0, 1, . . . , k − 1}n : �k([u]i) � a , ∀i ∈ {0, 1, . . . , n}) � exp(−cn).

It is called supercritical when there exists a constant c > 0 such that we have both




Pa

�
∃u ∈ {0, 1, . . . , k − 1}N : �k([u]i) � a , ∀i ∈ {0, 1, . . .}

�
� c,

Ea[#

�
u ∈ {0, 1, . . . , k − 1}n : �k([u]i) � a , ∀i ∈ {0, 1, . . . , n}

�
] � exp(cn).

Note that a deterministic argument shows that if k � 2 and a = 2, there always exists
a ray with labels greater than or equal to 2, also when k = 2 and a = 3 there exists a
ray with labels greater than 3. The case k = 2 and a = 4 has been treated in our main
theorem. We have the following classification of all remaining cases :

Theorem 8.5. We have the following properties for the process �k,
– for k = 2 and a � 5 the process is subcritical,
– for k = 3 the process is subcritical for a � 4, and supercritical for a = 3,
– for k � 4 and a � 3 the process is subcritical.

Démonstration. Supercritical Case k = 3 and a = 3. We will prove that for k = 3

and a = 3, the process is supercritical. Similarly as in Section 8.2.1 we consider the
tree-indexed process �3 on a fixed ray of T3, say {0, 0, 0, . . .}. Then the process Yn given
by the n-th value of �3 started from 3 along this ray is a homogeneous Markov chain
with transition matrix given by

P3(x, y) =
2(x+ 2− y)

(x+ 1)(x+ 2)
11�y�x+1.

We introduce the stopping times Ti = inf{n � 0, Yn = i} for i = 1, 2 and set T = T1∧T2.
We consider a modification of the process Yn that we denote Y n, which has the same
transition probabilities as Yn on {1, 2, 3, 4} , but the transition between 4 and 5 for Yn is
replaced by a transition from 4 to 4 for Y n. Thus we have Y n � 4 and an easy coupling
argument shows that we can construct Yn and Y n simultaneously in such a way that
Y n � Yn for all n � 0. Hence we have the following stochastic inequality

T � T,

with an obvious notation for T . To evaluate T we consider the subprocess Y
n∧T which

is again a Markov chain whose transition matrix restricted to {3, 4} is
�

1/5 1/10

1/5 1/5

�

.
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The largest eigenvalue λmax of this matrix is greater than 0.34, which implies that

P3T > n � P3(T > n) � κ5(0.34)
n,

for some constant κ5 > 0 independent of n. It follows that the expected number of
paths starting at the root ∅ of T3 that have labels greater than or equal to 3 up to
level n, which is 3

nP [T > n], eventually becomes strictly greater that 1 : There exists
n0 � 1 such that P3(T > n) > 3

−n for n � n0. A simple coupling argument shows that
the process �3 started from a � 3 stochastically dominates the process �3 started from
3. Consequently, if we restrict our attention to the levels that are multiple of n0 and
declare that v is a descendant of u if along the geodesic between u and v the labels
of �3 are larger than 3, then this restriction stochastically dominates a supercritical
Galton-Watson process. Hence the value 3 is supercritical for �3.
Subcritical Case k = 3 and a = 4. As in the binary case we let

P̃3(x, y) =
2(x+ 2− y)

(x+ 1)(x+ 2)
14�y�x+1,

be the substochastic matrix of the process Yn started at 4 and killed when it hits 1, 2
or 3. We will construct a positive vector (h(x))x�4 such that

�
x
h(x) <∞ and

h · P̃3 � λh, (8.17)

for some positive λ < 1/3, where we use the notation h · P̃3(y) =
�
x
h(x)P̃3(x, y). This

will imply that

P [T > n] �
�
x
h(x)

h(4)
λn,

where T is the first hitting time of {1, 2, 3} by the process Yn started at 4. The subcri-
ticality of the case k = 3 and a = 4 follows from the preceding bound since there are 3

n

paths up to level n and λ < 1/3. To show the existence of a positive vector x satisfying
(8.17) we begin by studying the largest eigenvalue of a finite approximation of the in-
finite matrix P̃3. To be precise let P̃ (30)

3
= (P̃3(i, j))4�i,j�30. A numerical computation

with Maple c� gives

λmax := max

�
Eigenvalues(P̃ (30)

3
)

�
� 0.248376642883065 < 1/3.

The vector (h(x))x�4 is then constructed as follows. Let (h(x))4�x�30 be an eigenvec-
tor associated with the largest eigenvalue λmax of P̃ (30)

3
, such that min4�x�30 h(x) =

h(30) = 1. Note that the vector h can be chosen to have positive coordinates by the
Perron-Frobenius theorem and it is easy to verify that x → h(x) is decreasing. For
x � 31 we then let

h(x) = 13
x−30

�
30!

x!

�2

.
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We now verify that this vector satisfies (8.17) with λ slightly greater than λmax. Suppose
first that y ∈ {4, . . . , 30}. In this case

�
4�x�30

h(x)P̃3(x, y) equals λmaxh(y) by defini-
tion, whereas the contribution of

�
x�31
h(x)P̃3(x, y) is less than

�
x�31
h(x) < 0.014,

thus

h · P̃3(y) � 0.263h(y). (8.18)

Now, if y � 31 we have
�

x�y−1

h(x)P̃3(x, y)

� 13
y−30



13
−1P̃3(y − 1, y)

�
30!

(y − 1)!

�2

+ P̃3(y, y)
�

30!

y!

�2

+

�

x�y+1

13
x−y
�

30!

x!

�2





� 13
y−30

�
30!

y!

�2



 2

13

y2

y(y + 1)
+

4

(y + 1)(y + 2)
+

�

i�1

13
i

�
y!

(y + i)!

�2





� 0.3 · h(y)

which proves (8.17).
Other critical cases. The other critical cases are treated in the same way. We
only provide the reader with the numerical values of the maximal eigenvalues of the
truncated substochastic matrices that are very good approximations of the maximal
eigenvalues of the infinite matrices,

max{eigenvalues(P2(i, j))5�i,j�30} � 0.433040861268365 < 1/2,

max{eigenvalues(P4(i, j))3�i,j�30} � 0.231280689028977 < 1/4.
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Partial Match Queries in Two-Dimensional Quadtrees :

A Probabilistic Approach.

Les résultats de ce chapitre ont été obtenus en collaboration avec

Adrien Joseph et ont été acceptés pour publication dans Advances in Applied
Probability.

We analyze the mean cost of the partial match queries in random two-dimensional
quadtrees. The method is based on fragmentation theory. The convergence is gua-
ranteed by a coupling argument of Markov chains, whereas the value of the limit is
computed as the fixed point of an integral equation.

9.1 Introduction
Introduced by Finkel and Bentley [66], the quadtree structure is a comparison based

algorithm designed for retrieving multidimensional data. It is often studied in computer
science because of its numerous applications. The aim of this paper is to study the mean
cost of the so-called partial match queries in random quadtrees. This problem was first
analyzed by Flajolet et al. [67].

Let us briefly describe the discrete model. We choose to focus only on the two-
dimensional case. Let P1, . . . , Pn be n independent random variables uniformly distri-
buted over (0, 1)

2. We shall assume that the points have different x and y coordinates,
an event that has probability 1. We construct iteratively a finite covering of [0, 1]

2

composed of rectangles with disjoint interiors as follows. The first point P1 divides the
original square [0, 1]

2 into four closed quadrants according to the vertical and horizon-
tal positions of P1. By induction, a point Pk divides the quadrant in which it falls into
four quadrants according to its position in this quadrant, see Fig. 1. Hence the n points
P1, . . . , Pn give rise to a covering of [0, 1]

2 into 3n + 1 closed rectangles with disjoint
interiors that we denote by Quad(P1, . . . , Pn).

We are interested in the partial match query. As explained by Flajolet and Sedgewick
[69, Example VII.23.], given x0 ∈ [0, 1], it determines the set of points Pi, i ∈ {1, . . . , n},
with x coordinates equal to x0, regardless of the y coordinates (that set is either empty
or a singleton). Denoting the vertical segment [(x, 0), (x, 1)] by Sx, the cost of this
partial match query is measured by the numberNn(x) of rectangles of Quad(P1, . . . , Pn)
intersecting Sx minus 1 (N0(x) = 0 by convention). We shall study the cost of a fixed
query. Our main result is :

221
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Figure 9.1 – Two splittings of [0, 1]
2 with resp. 8 and 100 points.

Theorem 9.1. For every x ∈ [0, 1], we have the following convergence :

n−β
∗E
�
Nn(x)

�
−→
n→∞

K0

�
x(1− x)

�β∗/2
,

where β∗ =

√
17− 3

2
and K0 =

Γ (2β∗ + 2) Γ(β∗ + 2)

2Γ3(β∗ + 1)Γ2

�
β∗

2
+ 1

� .

Flajolet et al. [67] proved the convergence in mean of the properly rescaled cost of
partial match queries when x is random with the uniform law on [0, 1] and independent
of P1, . . . , Pn. See also Chern and Hwang [44] for a more precise asymptotic behavior.
We shall give another proof of this result using fragmentation theory (see Corollary 9.6
below). As a by-product of our techniques, we shall also prove in Corollary 9.9 below
that, when rescaled by n1−

√
2, Nn(0) converges in L2 (its convergence in mean was

obtained in [67]).
The paper is organized as follows. Section 9.2 introduces the model embedded in

continuous-time and presents the first properties. Section 9.3 is devoted to the link bet-
ween quadtrees and fragmentation theory. Section 9.4, the most technical one, contains
the proof of the convergence at a fixed point x without knowing the limit. The identifica-
tion of the limit is done in Section 9.5 using a fixed point argument for integral equation.

Acknowledgement. We would like to express our gratitude to Philippe Flajolet
who introduced us to the problem of partial match query. We are indebted to Nicolas
Broutin and to Ralph Neininger for fruitful discussions. We also deeply thank Jean
Bertoin for his careful reading of the first versions of this work.

9.2 Notation and first properties
In order to apply probabilistic techniques, we first introduce a continuous-time

version of the quadtree : the points P1, . . . , Pn are replaced by the arrival points of a
Poisson point process over R+× [0, 1]

2 with intensity dt⊗dxdy. All the results obtained
in this model can easily be translated into results for the discrete-time model.
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9.2.1 The continuous-time model
Let Π be a Poisson point process on R+ × [0, 1]

2 with intensity dt ⊗ dxdy. Let
((τi, xi, yi), i � 1) be the atoms of Π ranked in the increasing order of their τ -component.
We define a process (Q(t))t�0 with values in finite covering of [0, 1]

2 by closed rectangles
with disjoint interiors as follows. We first introduce the operation SPLIT : for every
subset R of [0, 1]

2 and for every (x, y) ∈ [0, 1]
2,

SPLIT(R, x, y) =
�
R∩ [0, x]× [0, y], R∩ [0, x]× [y, 1], R∩ [x, 1]× [0, y], R∩ [x, 1]× [y, 1]

�
.

In other words, if R is a rectangle with sides parallel to the x and y axes, then
SPLIT(R, x, y) is the set of the four quadrants in R determined by the point (x, y).
We may now recursively define the process (Q(t))t�0. Let τ0 = 0. For every t ∈ [0, τ1),
define Q(t) = {[0, 1]

2}, and for every t ∈ [τi, τi+1), denoting by R the only element (if
any) of Q(τi−1) such that (xi, yi) is in the interior of the rectangle R, let

Q(t) = SPLIT(R, xi, yi) ∪Q (τi−1) \ {R}.

Observe that a.s., for every i ∈ Z+, there indeed exists a unique rectangle of Q(τi) such
that (xi+1, yi+1) is in its interior, hence the process (Q(t))t�0 is well defined up to an
event of zero probability. In the sequel we shall assume that the points of Π always fall
in the interior of some rectangle of (Q(t))t�0. As explained in the introduction, we are
interested in the number of rectangles of Q(t) intersecting the segment Sx, specifically
we set :

Nt(x) = #
�
R ∈ Q(t) : R ∩ Sx �= ∅

�
− 1,

so that Nt(x) = 0 for every 0 � t < τ1. Recalling that τn is the arrival time of the n-th
point of Π, Q(τn) has the same distribution as the random variable Quad(P1, . . . , Pn)
of the introduction. In particular, for every (n, x) ∈ N× [0, 1], we have Nτn(x) = Nn(x)
in distribution.

9.2.2 Main equations
Let x ∈ [0, 1]. We denote by A the set of words over the alphabet {0, 1},

A =

�

n�0

{0, 1}n,

where by convention {0, 1}0 = {∅}. Thus, if u ∈ A, u is either ∅ or a finite sequence
of 0 and 1. If u and v are elements of A then uv denotes the concatenation of the
two words u and v. We label the rectangles appearing in (Q(t))t�0 whose intersection
with the segment Sx is non-empty by elements of A according to the following rule.
By convention R∅(x) is the unit square [0, 1]

2. The first point (τ1, x1, y1) of Π splits
[0, 1]

2 into four rectangles, a.s. only two of them intersect Sx, we denote the bottom
rectangle by R0(x) and the top one by R1(x). Inductively, for every u ∈ A, a point of
Π eventually falls into Ru(x), dividing it into four rectangles. Almost surely, only two
of them intersect Sx, denote the bottom one by Ru0(x) and the top one by Ru1(x).
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For u ∈ A, we denote the minimal (resp. maximal) horizontal coordinate of Ru(x) by
Gu(x) (resp. Du(x)), and define the place of x in Ru(x) to be

Xu(x) =
x−Gu(x)
Du(x)−Gu(x)

.

If u �= ∅, we denote the parent of u by ←−u which is the word u without its last letter.
We write Mu(x) for the ratio of the (two-dimensional) Lebesgue measure Leb(Ru(x))
of Ru(x) by the measure of R←−u (x),

Mu(x) =
Leb
�
Ru(x)

�

Leb
�
R←−u (x)

� .

We also set for all x ∈ [0, 1], M∅(x) = 1. For u ∈ {0, 1} and t � 0, we introduce the
“subquadtree” Qu,x(t) = {R ∈ Q(t+ τ1) : R ⊂ Ru(x)}. Then, for every t � 0, one has :

Nt(x) = 1t�τ1 + 1t�τ1
�

u∈{0,1}

�
#
�
R ∈ Qu,x(t− τ1) : R ∩ Sx �= ∅

�
− 1

�
. (9.1)

If R is a rectangle with sides parallel to the x and y axes, we denote by ΦR : R2 → R2

the only affine transformation that maps the bottom left vertex of R to (0, 0), the bot-
tom right vertex ofR to (1, 0) and the up left vertex ofR to (0, 1). It should be plain from
properties of Poisson point measures that, conditionally on (Mu(x), Xu(x), Ru(x)), the
process (ΦRu(x)(Qu,x(t)))t�0 has the same distribution as the process (Q̃(Mu(x)t))t�0,
where Q̃ is an independent copy of Q. In particular, conditionally on (Mu(x), Xu(x)),
the number of rectangles in Qu,x that intersect Sx (minus 1), viewed as a process of t,
has the same distribution as the process (ÑMu(x)t(Xu(x)))t�0 where Ñ is defined from
Q̃ is the same way as N is defined from Q. Since M0(x) and M1(x) have the same
distribution, (9.1) yields

E [Nt(x)] = P(t � τ1) + 2E
�
ÑM0(x)(t−τ1)(X0(x))

�
, (9.2)

with the convention Ñt(x) = 0 whenever t < 0. More generally, if we write zk ∈ A for
zk = 0 . . . 0 repeated k times, then for every positive integer k,

E [Nt(x)] = gk(t) + 2
kE
�
ÑMz1 (x)...Mzk (x)t−Fk(Xzk(x))

�
, (9.3)

where gk is a function such that 0 � gk � 2
k − 1 and Fk is a nonnegative random

variable defined by

Fk =

k�

i=1

τ̃i
k�

j=i

Mzj (x),

with (τ̃i)i�1 a sequence of independent exponential variables with parameter 1.
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We now compute the joint distribution of (M0(x), X0(x)) which will be of great use
throughout this work. If f is a nonnegative measurable function, easy calculations yield

E
�
f
�
M0(x), X0(x)

��
=

�
1

0

du
�

1

0

dv
�

1x<uf
�
uv,
x

u

�
+ 1x>uf

�
(1− u)v, x− u

1− u

��

=

�
1

x

dy
y

� x
y

0

dmf(m, y) +

�
x

0

dy
1− y

� 1−x
1−y

0

dmf(m, y) (9.4)

=

�
x

0

dm
�

1

x

dy
y
f(m, y) +

�
1

x

dm
� x
m

x

dy
y
f(m, y)

+

�
1−x

0

dm
�
x

0

dy
1− yf(m, y) +

�
1

1−x
dm
�
x

1− 1−x
m

dy
1− yf(m, y).(9.5)

9.2.3 Depoissonization
The following lemma contains a large deviations argument that will enable us to

shift results from the continuous-time model to the discrete-time one.

Lemma 9.2. For every ε > 0, we have

E
�

sup

x∈[0,1]

��Nτn(x)−Nn(x)
��21τn /∈[n(1−ε),n(1+ε)]

�

−→
n→∞

0.

Démonstration. Note that for every x ∈ [0, 1], t �→ Nt(x) is non-decreasing and that
Nt(x) is at most the number of points fallen so far : Nt(x) � max {i ∈ Z+ : τi � t}. In
particular Nτn(x) � n, thus we have

sup

x∈[0,1]

��Nτn(x)−Nn(x)
��21τn>n(1+ε) � n2

1τn>n(1+ε).

A large deviations argument ensures that n2P(τn > n(1 + ε)) tends to 0 as n→∞. On
the other hand, applying the Cauchy-Schwarz inequality, we obtain

E
�

sup

x∈[0,1]

��Nτn(x)−Nn(x)
��21τn<n(1−ε)

�

�
�

E [(max {i ∈ Z+ : τi � n})4]

�
P
�
τn < n(1− ε)

�
.

As E[(max{i ∈ Z+ : τi � n})4
] = O(n4

), large deviations ensure that the quantity in
the right-hand side tends to 0 as n→∞. Finally, Lemma 9.2 is proved.

9.3 Particular cases and fragmentation theory
We give below the definition of a particular case of fragmentation process. For

more details, we refer to [24]. Let ν be a probability measure on {(s1, s2) : s1 � s2 >
0 and s1+s2 � 1}. A self-similar fragmentation (Ft)t�0 with dislocation measure ν and
index of self-similarity 1 is a Markov process with values in the set S↓ = {(s1, s2, . . . ) :

s1 � s2 � · · · � 0 and
�
i
si � 1} describing the evolution of the masses of particles

that undergo fragmentation. The process is informally characterized as follows : if at
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time t we have F (t) = (s1(t), s2(t), . . . ), then for every i � 1, the i-th “particle” of mass
si(t) lives an exponential time with parameter si(t) before splitting into two particles
of masses r1si(t) and r2si(t), where (r1, r2) has been sampled from ν independently
of the past and of the other particles. In other words, each particle undergoes a self-
similar fragmentation with time rescaled by its mass. In the next section we establish a
link between fragmentation theory and the process Nt(U), where U is a r.v. uniformly
distributed over [0, 1] and independent of (Q(t))t�0. This connection will provide a
new proof of a result of [67] and [44]. See also [47] for another recent application of
fragmentation theory to a combinatorial problem where the exponent

√
17−3

2
appears.

9.3.1 The uniform case
We consider here the case where the point x is chosen at random uniformly over

[0, 1] and independently of (Q(t))t�0.

Proposition 9.3. Let U be a random variable uniformly distributed over [0, 1] and in-
dependent of the quadtree (Q(t))t�0. Let u ∈ A and denote by u0 = ∅, u1, . . . , uk = u its
ancestors. Then Xu(U) is uniform over [0, 1] and independent of (Mu1(U), . . . ,Muk(U)),
which is a sequence of independent random variables all having density 2(1−m)1m∈[0,1].

Démonstration. We prove Proposition 9.3 by induction on k. Let u ∈ A. Denote by
u0 = ∅, u1, . . . , uk = u its ancestors. Integrating (9.4) for x ∈ [0, 1], we deduce that for
every v ∈ {0, 1}, Xv(U) and Mv(U) are independent and distributed according to

1u∈[0,1]du⊗ 1m∈[0,1]2(1−m)dm. (9.6)

Recalling that Qu1,U (t) = {R ∈ Q(t+τ1) : R ⊂ Ru1(U)}, conditionally on (Xu1(U),Mu1(U)),
the process ΦRu1 (U)(Qu1,U ) has the same distribution as (Q̃(Mu1(U)t))t�0, where Q̃

is an independent copy of Q. Since Xu1(U) is uniform over [0, 1], we deduce by in-
duction on the subquadtree Qu1,U that Xu(U) is uniform over [0, 1] and independent
of (Mu2(U), . . . ,Muk(U)) which is a sequence of independent r.v. all having density
2(1−m)1m∈[0,1]. Furthermore it is easy to see that

E
�
(Xui(U),Mui(U))2�i�k

��(Xu1(U),Mu1(U))

�
= E

�
(Xui(U),Mui(U))2�i�k

��Xu1(U)

�
.

Hence by (9.6), Xu(U) is also independent of Mu1(U).

Letting m(t) = E[Nt(U)], (recall that when t < 0, Nt(x) = 0 for all x ∈ [0, 1])
equation (9.2) becomes

m(t) = P(t � τ1) + 2E
�
m(M(t− τ1))

�
, (9.7)

where M is independent of τ1 and has density 2(1−m)1m∈[0,1].

Proposition 9.4. Let U be uniform over [0, 1] and independent of (Q(t))t�0. We have
the following convergence

lim
t→∞
t−β

∗E
�
Nt(U)

�
=

Γ(2(β∗ + 1))

2Γ3(β∗ + 1)
, where β∗ =

√
17− 3

2
.
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Démonstration. We consider an auxiliary fragmentation process (Ft)t�0 with index of
self-similarity 1 and dislocation probability measure ν given by

�
ν(ds1, ds2)f(s1, s2) = E

�
f
�
M1(U) ∨M0(U),M1(U) ∧M0(U)

��
.

In other words, the dislocation measure is given by the law of the decreasing ordering
of {M0(U),M1(U)}. More precisely (Ft)t�0 takes its values in S↓ and satisfies the
following equation in distribution which completely characterizes its law :

(Ft)
(d)

=

�
(1t<τ ) +̇

�
1t�τM0(U) ·F (0)

M0(U)(t−τ)

�

t�0
+̇

�
1t�τM1(U) ·F (1)

M1(U)(t−τ)

�

t�0

�↓
,

with (F
(0)

t
)t�0 and (F

(1)

t
)t�0 two independent copies of (Ft)t�0 also independent of

(M0(U),M1(U), τ) and τ an independent exponential variable with parameter 1. The
symbol +̇ means concatenation of sequences and (.)↓ is the decreasing reordering (and
erasing of zeros). Then, it is straightforward to see that the expectation of the number
#Ft of fragments of Ft minus 1 satisfies the same equation as E[Nt(U)], namely letting
m(t) = E[#Ft − 1] for t � 0, and m(t) = 0 for t < 0 we have

m(t) = P(t � τ1) + 2E
�
m(M(t− τ1))

�
, (9.8)

where M is independent of τ1 and has density 2(1−m)1m∈[0,1]. By (9.7) and (9.8), the
functions m and m satisfy the same integral equation,

f(t) = 1− e−t + 2

�
1

0

dm 2(1−m)

�
t

0

ds e−sf
�
m(t− s)

�
.

Differentiating with respect to t, we see that both m and m are solutions of the Cauchy
problem for the integro-differential equation





∂tf(t) = 1− f(t) +

�
1

0

dm 2(1−m)f(mt),

f(0) = 0.

Uniqueness of solution of this kind of integro-differential equation is known, see e.g. [78].
We deduce that for every t � 0, m(t) = m(t). We now focus on m(t). Following [25,
Section 3], we let for every β > 0, ψ(β) = 1−

�
ν(ds1, ds2)(sβ

1
+sβ

2
). An easy calculation

yields :

ψ(β) =
β2

+ 3β − 2

(β + 1)(β + 2)
.

In particular the Malthusian exponent associated to ν, which is characterized by ψ(β) =

0 (see [24, Section 1.2.2]), is

β∗ =

√
17− 3

2
.

Applying [25, Theorem 1], we get :

lim
t→∞
t−β

∗E[#Ft] =
Γ(1− β∗)
β∗

4

2β∗ + 3

∞�

k=1

�
1− β

∗

k

��
1− β∗

k +
√

17

��
1 +

β∗

k + 1

��
1 +

β∗

k + 2

�
.
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Finally, we use the Weierstrass identity for the gamma function : for every complex
number z ∈ C \ Z−,

Γ(z + 1) = e−γz
∞�

k=1

�
1 +
z

k

�−1

ez/k,

where γ is the Euler–Mascheroni constant. We conclude that

lim
t→∞
t−β

∗E[Nt(U)] =
4

β∗(2β∗ + 3)

Γ(
√

17 + 1)

Γ(
√

17− β∗ + 1)

1

Γ2(β∗ + 2)

1

1 + β∗/2
=

Γ(2(β∗ + 1))

2Γ3(β∗ + 1)
,

which completes the proof of the proposition.

Remark 9.5. One can derive the following equality in distribution from (9.1) :

Nt(U)
(d)

= 1τ1�t +N
(0)

M0(U)(t−τ1)

�
X0(U)

�
+N (1)

M1(U)(t−τ1)

�
X1(U)

�
,

where (N (0)

t
)t�0 and (N (1)

t
)t�0 are independent copies of the process (Nt)t�0. We have

already noticed that X0(U) and X1(U) are also uniform and independent of (N (0)

t
)t�0,

of (N (1)

t
)t�0 and of (M0(U),M1(U)). If X0(U) and X1(U) were independent, then

Nt(U) would satisfy the same distributional equation as (#Ft − 1)t�0. However, this
is not the case since we have X0(U) = X1(U). This explains why we had to work with
expectations.

Corollary 9.6 ([67], [44]). We have

lim
n→∞
n−β

∗E
�
Nn(U)

�
=

Γ(2(β∗ + 1))

2Γ3(β∗ + 1)
.

Démonstration. This is a straightforward application of Lemma 9.2 and Proposition 9.4.

Remark 9.7. Observe that Chern and Hwang [44] obtained a more precise asymptotic
behavior of E[Nn(U)]. They proved that

E
�
Nn(U)

�
=

Γ(2(β∗ + 1))

2Γ3(β∗ + 1)
nβ
∗

+O(1).

9.3.2 Case x = 0
As a further example of the connection with fragmentation theory, we derive asymp-

totics properties for Nt(0). In this case, the sequence of the areas of the rectangles
crossed by S0 is a fragmentation process, enabling us to state a convergence of Nt(0),
once rescaled, in L2. A convergence in mean has already been obtained in [67, Theorem
6] and [68].

Theorem 9.8. The random variable

Mt =

�

u∈A
Leb
�
Ru(0)

�√2−1
1Ru(0)∈Q(t), t � 0,
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is a uniformly integrable martingale which converges almost surely to M∞ as t → ∞.
The distribution of M∞ is characterized by

E[M∞] = 1 and M∞
(d)

= M0(0)

√
2−1M(0)

∞ +M1(0)

√
2−1M(1)

∞ , (9.9)

where M
(0)

∞ and M
(1)

∞ are two independent copies of M∞ also independent of (M0(0),M1(0)).
Furthermore, we have the following convergence in L2 :

t1−
√

2Nt(0) −→
t→∞

Γ(2
√

2)√
2Γ3(
√

2)
M∞.

Démonstration. It is easy to check from properties of Poisson measures that the rear-
rangement in decreasing order of the masses of the rectangles living at time t and
intersecting S0, �

Leb
�
Ru(0)

�
1Ru(0)∈Q(t)

�↓
t�0

,

is a self-similar fragmentation with index 1 and dislocation probability measure given
by the decreasing ordering of {M0(0),M1(0)}. As in the proof of Proposition 9.4, we
introduce for every β > 0, Ψ(β) = 1−E[M0(0)

β
+M1(0)

β
], which is easily computed :

Ψ(β) =
(β + 1)

2 − 2

(β + 1)2
.

Thus the Malthusian exponent p∗ of this fragmentation satisfying Ψ(p∗) = 0 is

p∗ =

√
2− 1.

The first two points of the theorem follow from classical results of fragmentation theory,
see [24, Theorem 1.1]. We refer to [104] for the characterization of the law of M∞ via
the distributional equation (9.9) and to [105] for some of its properties. The last point
comes from [25, Corollary 6] and the Weierstrass identity for the gamma function used
in a similar manner as in the proof of Proposition 9.4.

Corollary 9.9. We have the following convergence in L2 :

n1−
√

2Nτn(0) −→
n→∞

Γ(2
√

2)√
2Γ3(
√

2)
M∞.

Démonstration. This proposition easily derives from Lemma 9.2 and Theorem 9.8.

Remark 9.10. Observe that Corollary 9.9 implies the following convergence in distri-
bution :

n1−
√

2Nn(0) −→
n→∞

Γ(2
√

2)√
2Γ3(
√

2)
M∞.

Remark 9.11. It is worthwhile to notice that the behavior of the cost of the partial
match query in the case x = 0 is drastically different from its behavior in the case when
x is uniform or x is fixed in (0, 1) (see Theorem 9.1 and Proposition 9.4).
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9.3.3 An a priori uniform bound

This section is devoted to the proof of an a priori uniform bound on s−β∗E[Ns(x)]
over (x, s) ∈ (0, 1)× (0,∞) that will be useful in many places.

Lemma 9.12. There exists C <∞ such that

sup

x∈(0,1)

sup
s>0

E
�
s−β

∗
Ns(x)

�
� C. (9.10)

Démonstration. As a warmup, we start by proving that there exists C1 <∞ such that
for every x ∈ (0, 1),

sup
s>0

E
�
s−β

∗
Ns(x)

�
� C1

x ∧ (1− x) . (9.11)

Combining (9.2) with the densities computed in (9.4), we deduce that for every x ∈
(0, 1)

t−β
∗E[Nt(x)] = t−β

∗P(t � τ1) + 2

��
1

x

dy
y

� x
y

0

dmE
�
t−β

∗
Nm(t−τ1)(y)

�

+

�
x

0

dy
1− y

� 1−x
1−y

0

dmE
�
t−β

∗
Nm(t−τ1)(y)

��

. (9.12)

By monotony of t �→ Nt(x) we have E
�
t−β

∗
Nm(t−τ1)(y)

�
� E
�
t−β

∗
Nt(y)

�
. Furthermore,

recalling that β∗ < 1, there exists a constant C � such that for every t > 0, t−β∗P(t �
τ1) � C �. Hence

t−β
∗E[Nt(x)] � C � + 2

��
1

x

xdy
y2

E
�
t−β

∗
Nt(y)

�
+

�
x

0

(1− x)dy
(1− y)2

E
�
t−β

∗
Nt(y)

��

� C � +
2

x ∧ (1− x)

�
1

0

dyE
�
t−β

∗
Nt(y)

�

= C � +
2

x ∧ (1− x)E
�
t−β

∗
Nt(U)

�
.

It has been shown in Proposition 9.4 that E
�
t−β

∗
Nt(U)

�
has a finite limit as t → ∞,

and for every t > 0, E [Nt(U)] � t. Thus the quantity E
�
t−β

∗
Nt(U)

�
is bounded over

(0,∞). The inequality (9.11) follows from these considerations.
Introducing S(x) = sups>0 s

−β∗E[Ns(x)] for every x ∈ [0, 1], we have just shown
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that S(x) � C1(x ∧ (1− x))−1. Using (9.12), we have for every x ∈ (1/2, 1) :

S(x) = sup
t>0

�

t−β
∗P(t � τ1) + 2

��
1

x

dy
y

� x
y

0

dmE
�
t−β

∗
Nm(t−τ1)(y)

�

+

�
x

0

dy
1− y

� 1−x
1−y

0

dmE
�
t−β

∗
Nm(t−τ1)(y)

���

� C � + 2 sup
t>0

��
1

x

dy
y

�
1

0

dmE
�
t−β

∗
Nt(y)

�
+

�
1/2

0

dy
1− y

�
1

0

dmE
�
t−β

∗
Nt(y)

��

+2 sup
t>0

�
x

1/2

dy
1− y

� 1−x
1−y

0

dmmβ∗E
�
(mt)−β

∗
Nmt(y)

�

� C � + 8 sup
t>0

�
1

0

dyE
�
t−β

∗
Nt(y)

�
+ 2

�
x

1/2

dy
1− y

� 1−x
1−y

0

dmmβ∗S(y)

� C2 +
2

β∗ + 1
(1− x)β∗+1

�
x

1/2

dy 1

(1− y)β∗+2
S(y). (9.13)

Let us show that this implies that for every x ∈ (0, 1), S(x) � 100C2. Arguing by
contradiction, suppose that there exists a ∈ (1/2, 1) such that S(a) > 100C2. Let S =

supx∈[1/2,a] S(x). By (9.11), S is finite ; there exists b ∈ [1/2, a] such that S(b) � 0.9S.
In particular, S(b) � 0.9 supx∈[1/2,b] S(x) and S(b) > 90C2. Applying (9.13) at b, we get

S(b) � 90
−1S(b) +

2

β∗ + 1
(1− b)β∗+1

�
b

1/2

dy 1

(1− y)β∗+2
0.9−1S(b)

� 90
−1S(b) +

2 · 0.9−1

(β∗ + 1)2
S(b),

leading to a contradiction since (β∗ + 1)
2 > 2·0.9−1

1−90−1 . Finally, S(x) � 100C2 for every
x ∈ (0, 1).

9.4 The convergence at fixed x ∈ (0, 1)
We prove in this section that when x ∈ [0, 1] is fixed, t−β∗E[Nt(x)] admits a finite

limit as t → ∞. The results of the preceding section do not directly apply since the
place X0(x) of x in the rectangle R0(x) highly depends on x. Recall notation zk for the
word composed of k zeros 0 . . . 0 ∈ A. The guiding idea is that the splittings tend to
make Xzk(x) uniform and independent of Mzk(x).

9.4.1 A key Markov chain
Fix x ∈ (0, 1). To simplify notation, for every k � 1, we write Xk for Xzk(x)

and Mk for Mzk(x). We shall focus on the process (Xk,Mk)k�0, which is obviously a
homogeneous Markov chain starting from (x, 1) whose transition probability is given
by (9.4) or (9.5). Let k � 1. We denote by Fk the filtration generated by (Xi,Mi)1�i�k.
It is easy to see that the transition probability only depends on Xk, that is

E
�
(Xk+i,Mk+i)i�1|Fk

�
= E
�
(Xk+i,Mk+i)i�1|Xk

�
.
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Proposition 9.13. Fix x ∈ (0, 1). There exists a coupling of the chain (Xk,Mk)k�0

with a random time T ∈ Z+ such that for any k � 0, conditionally on {T � k},
the r.v. Xk is uniformly distributed over [0, 1], independent of (Mi)1�i�k and of T .
Furthermore, we have

E
�
1.15

T
�
< +∞.

Démonstration. For any k � 1 we consider the event

Ek = {Mk < Xk−1 ∧ (1−Xk−1)} .

Using the explicit densities (9.4) and (9.5), one sees that conditionally on Fk−1 and on
the event Ek of probability −(Xk−1 ∧ (1−Xk−1)) ln(Xk−1(1−Xk−1)), the conditional
distribution of Xk is

1

− ln
�
Xk−1(1−Xk−1)

�
�

1

1− y1y∈(0,Xk−1) +
1

y
1y∈(Xk−1,1)

�
dy.

In particular, conditionally on Ek and Fk−1, the variable Xk is independent of Mk and
has a density bounded from below by −1/ ln(Xk−1(1−Xk−1)). Thus, we can construct
simultaneously with (Xk,Mk)k�0 a sequence of random variables (Bk)k�0 ∈ {0, 1}Z+ as
follows. Suppose that we have constructed (Xi,Mi, Bi)0�i�k−1. Then independently of
Fk−1, toss a Bernoulli variable of parameter −(Xk−1∧ (1−Xk−1)) ln(Xk−1(1−Xk−1)).
If 0 comes out, we consider that we are on the event Ec

k
, then put Bk = 0 and sample

(Xk,Mk) with the conditional distribution on Ec
k

and Fk−1. If 1 comes out, we consider
that we are on the event Ek and we proceed to the following.

1. First sample Mk from its distribution conditionally on Ek and Fk−1.
2. Then independently ofMk, toss a Bernoulli variableBk of parameter−1/ ln(Xk−1(1−
Xk−1)). IfBk = 1, sampleXk uniformly from [0, 1] and independently of (M1, . . . ,Mk).
Otherwise, sample Xk with density

1

− ln
�
Xk−1(1−Xk−1)

�
− 1

��
1

1− y − 1

�
1y∈(0,Xk−1) +

�
1

y
− 1

�
1y∈(Xk−1,1)

�
dy,

independently of (M1, . . . ,Mk).
The device provides us with a Markov chain (Xk,Mk, Bk)k�0 such that the first two
coordinates have the law of the process introduced before Proposition 9.13. We then
let

T = inf{k � 0, Bk = 1}.

By definition of T , the random variable XT is sampled uniformly over [0, 1] and in-
dependently of (M1, . . . ,MT ). We deduce that the process (XT+i,MT+i)i�1 has the
same distribution as the process (Xzk(U),Mzk(U))k�1 defined in Proposition 9.3, hence
an easy adaptation of Proposition 9.3 shows that for every positive integer i, XT+i is
uniformly distributed over [0, 1] independent of (M1, . . . ,MT+i) and of T . This proves
the first part of Proposition 9.13.
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For the second part, we need to evaluate the tail of the random time T . We introduce
the following variation. Let (X̂k)k�0 be a Markov chain with space state (0, 1) ∪ {∂},
where ∂ is a cemetery point. Informally, this chain is the chain (Xk) until we reach
the time T , then it is killed and sent to the cemetery point. Thanks to the calculation
presented at the beginning of the proof, it should be clear that given Xk−1 and condi-
tionally on {T � k−1}, the probability of the event {T = k} is Xk−1∧(1−Xk−1). Thus
the transition probability for the chain (X̂k) is defined as follows : for every x ∈ (0, 1),

p(x,dy) = x ∧ (1− x)δ∂ +

�
1− x

(1− y)2
1y∈(0,x) +

x

y2
1y∈(x,1) − x ∧ (1− x)

�
dy,

and p(∂,dy) = δ∂ . By construction of this chain, the stopping time T̂ = inf{k � 1 :

X̂k = ∂} has the same distribution as T . In order to estimate T̂ , we define the following
potential function V : (0, 1) ∪ {∂}→ [1,∞] :

V (x) = 1x=∂ +
10√
x

1x∈(0,1/2) +
10√
1− x

1x∈[1/2,1).

Then one can show that for every x ∈ (0, 1) ∪ {∂},
�
p(x,dy)V (y) � 0.85V (x) + 1{∂}(x),

so that [112, Theorem 15.2.5] may be applied : there exists ε > 0 such that for all
x ∈ (0, 1),

E




T̂−1�

k=0

V
�
X̂k
�

1.15
k



 � ε−1
1.15

−1V (x),

from which we deduce that
E
�
1.15

T̂
�
<∞

(note that the last quantity is not uniformly bounded for x ∈ (0, 1)). This completes
the proof of Proposition 9.13.

In the remaining part of this section, x is fixed in (0, 1). Coming back to (9.3) and
writing Mk =M1M2 . . .Mk for the Lebesgue measure of Rzk(x), we have

t−β
∗E [Nt(x)] = t−β

∗�
gk(t) + 2

kE
�
Ñ
Mkt−Fk(Xk)1T>k

�
+ 2
kE
�
Ñ
Mkt−Fk(Xk)1T�k

� �
.(9.14)

We shall treat separately the last two terms of (9.14).

9.4.2 Study of t−β∗2kE[Ñ
Mkt−Fk(Xk)1T>k]

We shall see that t−β∗2kE[Ñ
Mkt−Fk(Xk)1T>k] is arbitrarily small uniformly in t

provided that the integer k is chosen large enough. Observe

t−β
∗
2
kE
�
Ñ
Mkt−Fk(Xk)1T>k

� � t−β
∗
2
kE
�
Ñ
Mkt

(Xk)1T>k
�

= 2
kE
�
M
β∗

k (Mkt)
−β∗Ñ

Mkt
(Xk)1T>k

�

= 2
kE
�
M
β∗

k 1T>kE
�
(Mkt)

−β∗Ñ
Mkt

(Xk)
���σ(Mk, Xk, T )

��
.
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Letting φ be the map (s, u) �→ E[s−β
∗
Ns(u)], we have :

t−β
∗
2
kE
�
Ñ
Mkt−Fk(Xk)1T>k

� � 2
kE
�
M
β∗

k 1T>kφ(Mkt,Xk)
�
.

Thanks to (9.10), φ � C, so that the quantity in the last display is at mostC2
kE
�
M
β∗

k 1T>k

�
.

Hölder’s inequality yields for every p > 1

C2
kE
�
M
β∗

k 1T>k

�
� C2

kE
�
M
β∗p
k

�1/p
E [1T>k]

1−1/p .

The last term is easily treated, by Markov’s inequality we have E [1T>k] � 1.15
−kE[1.15

T
].

Concerning E[M
β∗p
k ] we have

E
�
M
β∗p
k

�
� E

�
Mz2(x)β

∗
p . . .Mzk(x)

β∗p
�

=

�
1

0

f (x)
(y)dyE

�
Mz1(y)β

∗
p . . .Mzk−1(y)β

∗
p
�
,

where f (x) is the density of X1 under P. It is easy to see from (9.4) that f (x) is bounded
from above by (x ∧ (1− x))−1. Hence

E
�
M
β∗p
k

�
� 1

x ∧ (1− x)

�
1

0

dyE
�
Mk−1(y)β

∗
p
�
.

Recall from Proposition 9.3 that when x = U is uniform over [0, 1] and independent
of (Q(t))t�0, then Mz1(U), . . . ,Mzk(U) are independent and distributed according to
1m∈[0,1]2(1−m)dm. In particular

E
�
M0(U)

β∗p
�

=
2

(β∗p+ 1)(β∗p+ 2)

and thus �
1

0

dyE
�
Mk−1(y)β

∗
p
�

=

�
2

(β∗p+ 1)(β∗p+ 2)

�
k−1

.

Gathering all these estimates, we obtain

t−β
∗
2
kE
�
N
Mkt−Fk(Xk)1T>k

�

� C2
k

�
1

x ∧ (1− x)

�
1/p
�

2

(β∗p+ 1)(β∗p+ 2)

�
(k−1)/p

E
�
1.15

T
�

1−1/p

1.15
−k(1−1/p)

= Kp,x

�

2

�
2

(β∗p+ 1)(β∗p+ 2)

�
1/p

1.15
1/p−1

�
k

,

where Kp,x is a constant that only depends on p and x but not on k. Now, one can
easily prove that for p > 1 sufficiently close to 1, the term between brackets in the last
display becomes strictly less than 1. Consequently, letting ε > 0 fixed, there exists an
integer k sufficiently large such that for every t > 0,

t−β
∗
2
kE
�
N
Mkt−Fk(Xk)1T>k

�
� ε. (9.15)
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9.4.3 Conclusion
Observe that we have for every t > 0

t−β
∗
2
kE
�
Ñ
Mkt−Fk(Xk)1T�k

�

= 2
kE
�
1T�kE

�
t−β

∗
Ñ
Mkt−Fk(Xk)

���σ(Mk, Fk, T )

��

= 2
kE
�
1T�k(Mk − t−1Fk)

β∗

+ E
�
(Mkt− Fk)−β

∗

+ Ñ
Mkt−Fk(Xk)

���σ(Mk, Fk, T )

��
,

where y+ denotes y ∨ 0. By Proposition 9.13, on the event {T � k}, the r.v. Xk is
uniformly distributed over [0, 1] and independent of M1, . . . ,Mk thus of Mk. It is also
independent of Fk and T . Hence, letting θ be the map s �→ E[s−β

∗

+ Ns(U)], where U is
a random variable uniformly distributed on (0, 1) independent of N , we have :

t−β
∗
2
kE
�
Ñ
Mkt−Fk(Xk)1T�k

�
= 2

kE
�
1T�k(Mk − t−1Fk)

β∗

+ θ(Mkt− Fk)
�
.

Applying Proposition 9.4, θ(Mkt− Fk) a.s. tends to a finite limit as t→∞. Hence by
dominated convergence t−β∗2kE

�
N
Mkt−Fk(Xk)1T�k

�
has a finite limit as t → ∞. We

deduce from this fact, (9.14) and (9.15) that

lim sup
t→∞

t−β
∗E [Nt(x)]− lim inf

t→∞
t−β

∗E [Nt(x)] � ε.

Since that inequality holds for every ε > 0, t−β∗E[Nt(x)] has a finite limit as t → ∞
which we denote by n∞(x) :

n∞(x) = lim
t→∞
t−β

∗E
�
Nt(x)

�
.

9.5 Identifying the limit
In this section, we show that x �→ n∞(x) is proportional to x �→ (x(1 − x))β∗/2

using a fixed point argument for integral equation (see also [47, Section 4.1] for a
similar application). The normalizing constant will come from the L1-norm of x �→
(x(1− x))β∗/2 and the constant of Proposition 9.4.

Combining (9.2) with the densities computed in (9.4), we deduce that

t−β
∗E[Nt(x)] = t−β

∗P(t � τ1) + 2

��
1

x

dy
y

� x
y

0

dmmβ∗E
�
(mt)−β

∗
Nm(t−τ1)(y)

�

+

�
x

0

dy
1− y

� 1−x
1−y

0

dmmβ∗E
�
(mt)−β

∗
Nm(t−τ1)(y)

��

.

Thanks to Lemma 9.12, we get by dominated convergence

n∞(x) =
2

β∗ + 1

�
xβ
∗
+1

�
1

x

dy 1

yβ∗+2
n∞(y) + (1− x)β∗+1

�
x

0

dy 1

(1− y)β∗+2
n∞(y)

�
.
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In other words, if we define

gx(y) =
2

β∗ + 1

�
xβ
∗
+1

1

yβ∗+2
1x<y<1 + (1− x)β∗+1

1

(1− y)β∗+2
10<y<x

�
,

we have

n∞(x) =

�
1

0

dygx(y)n∞(y).

Let G be the operator that maps a function f ∈ L1
[0, 1] to the function

G(f)(x) =

�
1

0

dygx(y)f(y).

In particular, n∞ is a fixed point of G. It is easy to check that x ∈ (0, 1) �→ gx(.) ∈
L1

[0, 1] is continuous for the L1-norm. Furthermore, Lemma 9.12 ensures that |n∞(x)| �
C for every x ∈ (0, 1). As a consequence, x �→ n∞(x) is continuous over (0, 1). An easy
computation shows that for every y ∈ (0, 1),

�
1

0
dxgx(y) = 1. Let p be another fixed

point of G having the same integral as n∞. Then
�

1

0

dx|n∞(x)− p(x)| =

�
1

0

dx

����
�

1

0

dygx(y)(n∞ − p)(y)
����

�
�

1

0

dx
�

1

0

dygx(y) |n∞(y)− p(y)|

=

�
1

0

dy|n∞(y)− p(y)|,

which shows that the inequality is in fact an equality. Hence n∞−p has a.e. a constant
sign. As we know that the integral of n∞ − p is zero, we deduce that n∞ = p a.e.
Straightforward calculations prove that p0 : x �→ (x(1− x))β∗/2 is also a fixed point of
G of L1-norm, so that

n∞(x) = �n∞�1�p0�−1

1

�
x(1− x)

�β∗/2 a.e.

Since n∞ and p0 are continuous, we can remove the a.e. statement (observe that
n∞(0) = n∞(1) = 0 by Theorem 9.8). Plainly,

�p0�1 =

Γ2

�
β∗

2
+ 1

�

Γ(β∗ + 2)
.

On the other hand, (9.10) and the dominated convergence theorem ensure that �n∞�1 =

limt→∞ t−β
∗E[Nt(U)], which was computed in Proposition 9.4 :

�n∞�1 =
Γ(2(β∗ + 1))

2Γ3(β∗ + 1)
.

Proof of Theorem 9.1. To sum up, we have for every x ∈ [0, 1] :

t−β
∗E
�
Nt(x)

�
−→
t→∞

Γ (2β∗ + 2) Γ(β∗ + 2)

2Γ3(β∗ + 1)Γ2

�
β∗

2
+ 1

�
�
x(1− x)

�β∗/2
.

Applying Lemma 9.2, Theorem 9.1 is shown.
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9.6 Extensions and comments
9.6.1 Various convergences

In this paper, we only proved a convergence in mean of t−β∗Nt(x). We may wonder
whether this quantity also converges in distribution, in probability, or even almost
surely. A more interesting question is the following : does the process ((t−β

∗
Nt(x))x∈[0,1],

t > 0) converge in distribution in the Skorokhod sense to a random function (C(x))x∈[0,1]

as t → ∞ ? Observe that if it does, then there exists a random point U uniformly
distributed over (0, 1) such that C(U) = 0, U corresponding to the point x1 of the first
atom of Π (Nt(x1) is indeed of order t

√
2−1 by Theorem 9.8).

Conjecture 1. We have the functional limit law (t−β
∗
Nt(x))x∈[0,1] → (C(x))x∈[0,1] as

t→∞ in (D([0, 1]), � ·�∞), where C satisfies the distributional fixed point equation

(C(x))x∈[0,1]

(d)

=

�
1x<U0

�
(U0U1)

β∗ C(00)

�
x

U0

�
+ (U0(1− U1))

β∗ C(01)

�
x

U0

��

+1x>U0

�
((1− U0)U1)

β∗ C(10)

�
x− U0

1− U0

�

+ ((1− U0)(1− U1))
β∗ C(11)

�
x− U0

1− U0

���

x∈[0,1]

,

where U0, U1, C(00), C(01), C(10), C(11) are independent, U0 and U1 are uniformly dis-
tributed on [0, 1] and C(00), C(01), C(10), C(11) have all the same distribution as C.

9.6.2 Multidimensional case
The strategy adopted in Section 9.3.1 may be generalized to higher dimensions.

As for the convergence in mean of the number of hyper-rectangles crossed by a fixed
affine subspace having a direction generated by some vectors of the canonical basis, our
approach may also be followed.

9.6.3 Quadtree as a model of random geometry
On top of its numerous applications in theoretical computer science, the model of

random quadtree may be considered as a model of random geometry. More precisely
one can view, for t � 0, the set of rectangles Q(t) as a random graph, assigning length
1 to each edge of the rectangles. We denote this graph by Q̃(t). A natural question
would be to understand the metric behavior of Q̃(t) as t→∞. The study of the graph
distance Lt in Q̃(t) between the upper-left and upper-right corners would be a first step
in understanding the global geometry of Q̃t. Observe that Theorem 9.8 already shows
that Lt is less than the order t

√
2−1.
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