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Diophantine sets in a field

k a field
A subset D ⊂ k is called diophantine if there exists X algebraic
variety over k and φ : X → A1

k a k-morphism such that
D = φ(X (k)).

• Stable under finite union, finite intersection (use fibre product),
addition, multiplication, composition with k-morphism A1

k → A1
k .

Thus k×n is diophantine.
• Stable under deleting or adding finite number of elements of k
• If K/k finite field extension, D ⊂ K is diophantine =⇒
D ∩ k ⊂ k is diophantine (use Weil restriction of scalars)



There are concrete cases where one would like to understand the
structure of diophantine sets.
One parameter families of conics.
One parameter families of curves of genus one.
One parameter families of ellipic curves with generic fibre of rang
zero and all sections taken away.

There is a motivation from logic : Were Z ⊂ Q diophantine, then
Hilbert’s 10th problem over the rationals would have a negative
answer (using Matijasevich’s theorem over Z).

Let us here mention the astonishing
Theorem (Königsmann 2010). The complement of Z in Q is
diophantine: There exists a Q-morphism f : X → A1

Q, with X/Q
affine of finite type, with f (X (Q)) = Q \ Z.



k a number field, v a finite place of k , kv completion, Ov ⊂ kv
ring of integers
Proposition (Rumely, Poonen, Eisenträger, Königsmann)
(i) k ∩ Ov ⊂ k is diophantine
(ii) For n ≥ 1 integer, k ∩ k×nv ⊂ k is diophantine
(iii) For n ≥ 1 integer, the complement of k ∩ k×nv ⊂ k in k is
diophantine.

Idea for (i) : For D/k a quaternion algebra ramified only at v and
w 6= v , one considers the image of NrdD(x) = 1 under the reduced
trace map from D to k. This produces (many) elements of k
which are integral at v and w . On then uses two distinct w ’s and
add the two images. This essentially gives k ∩ Ov ⊂ k.
(ii) and (iii) then follow using Hensel’s lemma, density of k in kv ,
finiteness of k×v /k×nv .



Theorem (CT + Van Geel, 2014)
Let k be a number field and n ∈ N, n > 1. The complement of
k×n in k is diophantine.

Easy reduction to the case n = p prime and µp ⊂ k .
The case n = 2 : Poonen (2009). Alternative proof for n = 2,
k = Q : Königsmann (2010).
The case n = p prime : Várilly-Alvarado and Viray (2011), proof
conditional on Schinzel’s hypothesis (generalisation of twin primes
conjecture).



Recall : k number field, exact sequence (generalized quadratic
reciprocity)

0→ Br(k)→ ⊕vBr(kv )→ Q/Z→ 0.

X/k smooth projective variety, pairing

X (Ak)× Br(X )→ Q/Z.

X (Ak)Br(X ) ⊂ X (Ak), left kernel of this pairing.

Proposition (Manin 1970). X (k) ⊂ X (Ak) lies in X (Ak)Br(X ).



Key tool for Poonen, VA-V, CT-VanGeel : Use of varieties X for
which the Brauer-Manin obstruction to the Hasse principle for
rational points is the only obstruction : X (Ak)Br(X ) 6= ∅ implies
X (k) 6= ∅.

For n = 2, Poonen uses surfaces y2 − az2 = P(x)Q(x) with
deg(P)=deg(Q)=2 and a result of CT, Coray, Sansuc 1980
(generalized in CT, Sansuc, Swinnerton-Dyer 1987).

For n = p prime, the conditional result of VA-V uses k with
ζp ∈ k, K = k(d1/p), variety X with affine model
NormK/k(Ξ) = P(x)Q(x), with deg(P)=deg(Q)=p and results
conditional on Schinzel’s hypothesis in CT-SwD 1994,
CT-Skorobogatov-SwD 1998 (extending CT-Sansuc 1982, Serre
91, Sw-D 91).



For p prime, the unconditional result of CT-Van Geel, to be
discussed here, uses (other) results of the same papers CT-SwD
1994 and CT-Sk-SwD 1998, +ε.
These results are obtained by a technique initiated by Salberger
(1988).
One proves an analogue of

X (Ak)Br(X ) 6= ∅ =⇒ X (k) 6= ∅

for zero-cycles of degree one instead of rational points.

As also remarked by Wittenberg 2012, the proof in CT-SwD 1994
and CT-Sk-SwD 1998 may be adapted to show :



Theorem A (CT, SwD, Sk + ε). Let k be a number field, p a
prime, µp ⊂ k. Let P(x) and Q(x) be two distinct monic
irreducible polynomials of degree p. Let c ∈ k×. Let K = k(d1/p)
be a cyclic extension of fields. Let X/k be a smooth, projective
model of the affine variety with equation

NormK/k(Ξ) = cP(x)Q(x).

If X (Ak)Br(X ) 6= ∅, then there exists an extension L/k of degree
2p + 1 such that X (L) 6= ∅.

Under the assumption X (Ak)Br(X ) 6= ∅, we thus have
(Sym2p+1X )(k) 6= ∅.



As in the work of Poonen and of VA-V, one uses a specific
counterexample to the Hasse principle. In the present work, we
check that we also have an obstruction to the existence of a
zero-cycle of degree one.

Proposition B (an example). Let k be a number field, p a prime,
µp ⊂ k. There exist a cyclic extension K = k(d1/p) (d ∈ k×),
c ∈ k×, P(x) and Q(x) two distinct monic irreducible polynomials
of degree p such that for any smooth projective model X of the
affine variety defined by NormK/k(Ξ) = cP(x)Q(x) one has
X (Ak) 6= ∅, and for any field extension L/k with degree prime to
p, X (AL)Br(XL) = ∅, hence X (L) = ∅.

Note : There exist smooth projective varieties Y /k with
Y (Ak)Br(Y ) = ∅, but with a zero-cycle of degree 1 over k .



The obstruction comes from the class A = (K/k ,P(x)) ∈ Br(X ).
One produces d , c ,P(x),Q(x) and a ∈ k× such that there exists a
place v0 of k with the following properties
(a) (K/k , a)v0 6= 0 ∈ Z/p
(b) For any finite field extension L/k, for any w place of L and any
Mw ∈ X (Lw )
A(Mw ) = 0 ∈ Z/p if w does not lie over v0
A(Mw ) = (K/k, a)w ∈ Z/p if w lies over v0.



For each u ∈ k× we denote by Xdu a smooth projective model of
the affine variety defined by Normk((du)1/p)/k(Ξ) = cP(x)Q(x).

As experience teaches, counterexamples to the Hasse principle are
scarce. The following statement is due to Poonen for p = 2.

Proposition C (finiteness of exceptions). The set of u ∈ k× such
that Xdu(Ak) 6= ∅ and Xdu(Ak)Br(Xdu) = ∅ falls into finitely many
classes in k×/k×p.

This finiteness statement is similar to a classical finiteness
statement (Kneser) : for a given integral, indefinite ternary
quadratic form q over Z, the integers n which are represented by q
over each Zp but are not represented over Z fall into finitely many
classes in Q×/Q×2.



Proof of Proposition C.
The Xdu’s, for varying u, all contain the common curve Γ given by
zp = cP(x)Q(x).
One shows : there exists a finite set S of places depending only on
c , d ,P(x),Q(x) such that for v /∈ S0, for any u ∈ k× with
v(u) 6= 0 mod p, (k((du)1/p),P(x)) takes all values in Z/p on
Γ(kv ).
One then produces a finite set S containing S0, all bad reduction
wrt to ∞, the prime p, c , d , P(x), Q(x), and such that Γ(kv ) 6= ∅
for v /∈ S . If v /∈ S , u ∈ k× and v(u) 6= 0 mod p, if Xdu(Ak) 6= ∅
then Xdu(Ak)Br(Xdu) 6= ∅.



Theorem (CT + Van Geel)
Let k be a number field, p a prime, µp ⊂ k. The complement of
k×p in k is diophantine.
Proof.
Let c, d ,P(x),Q(x) and the Xdu be as above. Let S be a finite set
of places of k as above. We consider the following subsets of k×,
all stable under multiplication by k×p.
For v ∈ S , let Nv ⊂ k× be the complement of k×pv ∩ k. This is a
diophantine set.
Let D1 ⊂ k× be the set of u ∈ k× such that
Sym2p+1(Xdu)(k) 6= ∅. This is a diophantine set given by the
k-morphism Sym2p+1(Xdu)→ Speck[u, u−1].



For u in the complement of
⋃

v∈S Nv , we have Xdu(Ak) 6= ∅ by the
definition of S (we have Γ(kv ) 6= ∅ for v /∈ S and
Xdu(kv ) = Xd(kv ) for v ∈ S .)
For u in the complement of D1 ∪

⋃
v∈S Nv , by theorem A (CT,

SwD, Sk + ε), we have Xdu(Ak)Br(Xdu) = ∅.
Proposition C (finiteness) then shows that the complement of
D1 ∪

⋃
v∈S Nv consists of finitely many cosets of k×p in k×. By

Proposition B (example), this complement contains the coset of 1,
i.e. k×p.
Thus the complement of k×p in k× is the union of D1 ∪

⋃
v∈S Nv

and finitely many cosets of k×p, hence is a diophantine set.


