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HASSETT-PIRUTKA-TSCHINKEL AND SCHREIEDER

JEAN-LOUIS COLLIOT-THÉLÈNE

Hassett, Pirutka and Tschinkel [13] gave the first examples of families
X→B of smooth, projective, connected, complex varieties having some ra-
tional fibres and some other fibres which are not even stably rational. This
used the specialisation method of Voisin, as extended by Pirutka and my-
self. Under specific circumstances, a simplified version of the specialisation
method was produced by Schreieder [18, 19], leading to a simpler proof of
the HPT example (no explicit resolution of singularities). In the following
note I describe the method in its simplest form. For further developments,
the reader is invited to read [2], which offers a different look at [13] as well
as some generalizations, [3], and the papers [18, 19, 20] by Schreieder.

I thank Asher Auel for remarks on the typescript.
These notes were written on the occasion of the conference Quadratic

Forms in Chile 2018, held at IMAFI, Universitad de Talca, 8-12 January
2018. They were further developed on the occasion of the School Birational
geometry of hypersurfaces, Palazzo Feltrinelli, Gargnano del Garda, 19–23
March 2018.

1. Basics on the Brauer group and on the Chow group of
zero-cycles

Grothendieck defined the Brauer group Br(X) of a schemeX as the second
étale cohomology group H2

ét(X,Gm) of X with values in the sheaf Gm,X on
X. This is a contravariant functor with respect to arbitrary morphisms of
schemes.

If X = Spec(K) is the spectrum of a field, then Br(X) = Br(K), the more
classical cohomological Brauer group H2(Gal(Ks/K),K∗s ). Assume 2 ∈ K∗.
To the quaternion algebra (a, b) one associates a class (a, b) ∈ Br(K)[2].
The quaternion algebra is isomorphic to a matrix algebra M2(K) if and only
(a, b) = 0 ∈ Br(K), if and only if the diagonal quadratic form < 1,−a,−b >
has a nontrivial zero over K, if and only if the diagonal quadratic form
< 1,−a,−b, ab > has a nontrivial zero over K.

Proposition 1.1. If X is an integral regular scheme and K(X) is its field
of rational functions, then the natural map Br(X)→Br(K(X)) is injective.
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Proposition 1.2. For R a discrete valuation ring with perfect residue field
κ and field of fractions K, there is a natural exact sequence

0→Br(R)→Br(K)→H1(κ,Q/Z)→0.

The map ∂R : Br(K)→H1(κ,Q/Z) is the residue map.

Let R be a discrete valuation ring with perfect residue field κ and field of
fractions K. Suppose 2 ∈ R∗. Given a, b ∈ K∗ we may consider the element
(a, b) ∈ Br(K)[2] associated to the quaternion algebra (a, b). Let v : K∗→Z
be the valuation map. The quotient av(b)/bv(a) ∈ K∗ belongs to R∗. Let

cl((av(b)/bv(a)) denote its class in κ∗/κ∗2. One shows :

∂R((a, b)) = (−1)v(a).v(b)cl((av(b)/bv(a))) ∈ κ∗/κ∗2 = H1(κ,Z/2) ⊂ H1(κ,Q/Z).

Proposition 1.3. Let R ⊂ S be a local inclusion of discrete valuation rings,
inducing an inclusion of fields K ⊂ L and an inclusion of residue fields
κ ⊂ λ. Assume char(κ) = 0. Let e be the ramification index. Then there is
a commutative diagram

Br(K) → H1(κ,Q/Z)
↓ ↓

Br(L) → H1(λ,Q/Z)

where H1(κ,Q/Z)→H1(λ,Q/Z) is e.Resκ,λ.

Let K be a field and X an algebraic variety over K, i.e. a separated
K-scheme of finite type. The group of zero-cycles Z0(X) is the free abelian
group on closed points of X. Given any K-morphism f : Y→X of K-
varieties, one defines f∗ : Z0(Y )→Z0(X) as the map sending a closed point
M ∈ Y with image the closed point N = f(M) ∈ X to the zero cycle
[K(M) : K(N)]N ∈ Z0(X).

Given a normal, connected curve C over K, and a rational function g ∈
K(C)∗, on associates to it its divisor divC(g) ∈ Z0(C). Given a morphism
f : C→X, one may then consider the zero-cycle f∗(divC(g)) ∈ Z0(X).

One then defines the Chow group CH0(X) of zero-cycles on X as the
quotient of Z0(X) by the subgroup spanned by all f∗(divC(g)), for f : C→X
a proper K-morphism from a normal, integral K-curve to X and g ∈ K(C)∗.

If φ : X→Y is a proper morphism of K-varieties, there is an induced map
φ∗ : CH0(X)→CH0(Y ). In particular, if X/K is proper, the structural map
X→Spec(K) induces a degree map CH0(X)→Z.

If φ : U→X is an open embedding of K-varieties, the natural restriction
map Z0(X)→Z0(U) which forgets closed points outside of U induces a map
CH0(X)→CH0(U).

Let X be a K-variety. There is a natural bilinear pairing

Z0(X)× Br(X)→Br(K)
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which sends a pair (P, α) with P a closed point of X and α ∈ Br(X) to
CoresK(P )/K(α(P )). If X/K is proper, this pairing induces a bilinear pair-
ing

CH0(X)× Br(X)→Br(K).

See [1, Prop. 3.1].
This pairing satisfies an obvious functoriality property with respect to

(proper) K-morphisms of proper K-varieties.

2. Quadric surfaces over a field

The following proposition is classical. See [21], [10], [4, Thm. 3.1].

Proposition 2.1. Let K be a field, char(K) 6= 2, and let X ⊂ P3
K be a

smooth quadric surface. It is defined by a quadratic form q, which one may
assume to be in diagonal form q =< 1,−a,−b, abd >, with a, b, d ∈ K∗. The
class of d in K∗/K∗2 is the discriminant, it does not depend on the choice
of the quadratic form q defining the quadric X.

The natural map Br(K)→Br(X) is surjective.
(a) If d /∈ K∗2, the map Br(K)→Br(X) is an isomorphism.
(b) If d ∈ K∗2, the map Br(K)→Br(X) is surjective, and its kernel is of

order at most 2, spanned by the class of the quaternion algebra (a, b), which
is nontrivial if and only if X(K) = ∅.

3. A special quadric surface over P2
C

Reference : [13], [17].
Let F (x, y, z) = x2 + y2 + z2 − 2(xy + yz + zx).
Let X ⊂ P3

C × P2
C be the family of 2-dimensional quadrics over P2

C given
by the bihomogeneous equation

yzU2 + zxV 2 + xyW 2 + F (x, y, z)T 2 = 0.

This family is smooth over the open set of P2
C whose complement is the octic

curve defined by the determinant equation

∆ = x2.y2.z2.F (x, y, z) = 0.

Note that this is the union of the smooth conic F = 0 and (twice) three
tangents to this conic. The family is flat over P2

C (all fibres are quadrics).
The total space is not smooth.

Part (a) of the following proposition is a result of Hassett, Pirutka, Tschinkel
[13, Prop. 11].

Part (b) is a special case of the general statement [19, Prop. 7], the proof
of which builds upon results of Pirutka ([17, Thm. 3.17], [19, Thm. 4]), for
which material is offered in Appendix B below.

As we shall see, the proof given for (a) in [13, Prop. 11] is easily modified
to simultaneously give a proof of (b).

The proposition suffices for the special case described in this note; it
dispenses us with the recourse to Appendix B.
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Proposition 3.1. Let X̃→X be a projective desingularisation of X. Let
α = (x/z, y/z) ∈ Br(C(P2)).

(a) The image β of α under the inverse map p∗2 : Br(C(P2))→Br(C(X))

is nonzero and lies in the subgroup Br(X̃).

(b) For each codimension 1 subvariety Y of X̃ which does not lie over the

generic point of P2
C, the element β ∈ Br(X̃) maps to 0 ∈ Br(C(Y )).

Proof The equation is symmetrical in (x, y, z). The class α = (x/z, y/z)
is given by (x, y) in the open set z 6= 0, by (x/z, 1/z) = (x, z) in the open
set y 6= 0 and by (1/z, y/z) = (y, z) in the open set x 6= 0. In view of the
symmetry between (x, y, z) in the equation, we may restrict attention to the
open set A2

C of P2
C defined by z 6= 0. From now on we use affine coordinates

(x, y). In affine coordinates, the quaternion algebra (x, y) has nontrivial
residues along x = 0 and y = 0.

Let K = C(P2). Let Xη/K be the (smooth) generic quadric. The dis-
criminant of the quadratic form q =< y, x, xy, F (x, y, 1) > in K∗ is not a
square. Thus the map Br(K)→Br(Xη) is an isomorphism (see §2). Since
the quaternion algebra α = (x, y) ∈ Br(C(P2)) has some nontrivial residues,
it is nonzero in Br(C(P2)). Thus its image β ∈ Br(C(X)) is nonzero.

Let v be a discrete valuation of rank one on L := K(X), let S be its
valuation ring. Let κv denote the residue field. If K ⊂ S, then (x, y) is
unramified. Suppose S ∩K = R is a discrete valuation ring (of rank one).
The image of the closed point of Spec(R) in P2

C is then either a point m of
codimension 1 or a (complex) closed point m of P2

C. By symmetry, for the
argument we may assume that these points are in A2

C.
Consider the first case. If the codimension 1 point m does not belong

to xy = 0, then α = (x, y) ∈ Br(K) is unramified at m on A2
C hence also

in Br(L) at v. Moreover, the evaluation of β in Br(κv) is just the image
under Br(C(m))→Br(κv) of the image of α in Br(C(m)), hence vanishes
since Br(C(m)) = 0 (Tsen).

Suppose m is a generic point of a component of xy = 0. By symmetry, it
is enough to examine the affine case where the point m of codimension 1 is
the generic point of x = 0. In the function field L, we have an identity

yU2 + xV 2 + xyW 2 + F (x, y, 1) = 0

with yU2 + xV 2 6= 0. In the completion of K at the generic point of x = 0,
F (x, y, 1) is a square, because F (x, y, 1) modulo x is equal to (y − 1)2, a
nonzero square. Thus in the completion Lv we have an equality (with some
other elements U, V,W ∈ Lv).

yU2 + xV 2 + xyW 2 + 1 = 0.

This gives (x, y)Lv = 0 ∈ Br(Lv). Hence (x, y)L is unramified at v, thus
belongs to Br(R) and has image 0 in Br(κv).

Suppose we are in the second case, i.e. m is a closed point of A2
C. There

is a local map OA2
C,m
→S which induces a map C→κv. If x 6= 0, then x
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becomes a nonzero square in the residue field C hence in κv, and the residue
of (x, y)L at v is trivial. The analogous argument holds if y 6= 0. It remains
to discuss the case x = y = 0. We have F (0, 0, 1) = 1 ∈ C∗. Thus F (x, y, 1)
reduces to 1 in κv, hence is a square in the completion Lv. As above, in the
completion Lv we have an equality

yU2 + xV 2 + xyW 2 + 1 = 0,

which implies (x, y)Lv = 0 ∈ Br(Lv). Hence (x, y)L is unramified at v, thus
belongs to Br(S) and has image 0 in Br(κv). �

As in the reinterpretation [6] of the Artin–Mumford examples, the in-
tuitive idea behind the above result is that the quadric bundle X→P2

C is
ramified along x.y.z.F (x, y, z) = 0 on P2

C and that the ramification of the
symbol (x/z, y/z) on P2

C, which is “included” in the ramification of the
quadric bundle X→P2

C disappears over smooth projective models of X :
ramification eats up ramification (Abhyankar’s lemma). Here one also uses
the fact that the smooth conic defined by F (x, y, z) = 0 is tangent to each of
the lines x = 0, y = 0, z = 0, and does not vanish at any of the intersection
of these three lines.

4. The specialisation argument

The following theorem is an improvement by S. Schreieder [18, Prop. 26]
of the specialisation method, as initiated by C. Voisin [22], in the format
later proposed by Colliot-Thélène and Pirutka [7]. The assumptions in [18,
Prop. 26] are more general than the ones given here. The generic fibre need
not be smooth and one only requires that f−1(U)→U be universally CH0-
trivial. There is a more general version which involves higher unramified
cohomology with torsion coefficients. The proof is identical to the one given
here with the Brauer group.

Schreieder’s proof is cast in the geometric language of the decomposition
of the diagonal. I provide a more “field-theoretic” proof. It is well known
that both points of view are equivalent [4, 7]. I add a further, hopefully
simplifying, twist by using specialization of R-equivalence on rational points
instead of Fulton’s specialisation theorem for the Chow group.

Theorem 4.1. Let R be a discrete valuation ring, K its field of fractions,
κ its residue field. Assume κ is algebraically closed and char(κ) = 0. Let K
be an algebraic closure of K. Let X/R be an integral projective scheme over
R, with generic fibre X = XK/K smooth, geometrically integral, and with
special fibre Z/κ geometrically integral. Assume there exists a nonempty

open set U ⊂ Z and a projective, birational desingularisation f : Z̃→Z such
that V := f−1(U)→U is an isomorphism, and such that the complement

Z̃ \ V is a union ∪iYi of smooth irreducible divisors of Z̃. Assume that the

K-variety XK is stably rational. If an element α ∈ Br(Z̃) vanishes on each

Yi, then α = 0 ∈ Br(Z̃).
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Proof To prove the result, one may assume R = κ[[t]] (completion of the
original R) and K = κ((t)). Assume XK is stably rational. Then there

exists a finite extension K1 = κ((t1/d)) of K over which XK1 is K1-stably

rational. We replace X/R by X×Rκ[[t1/d]]. This does not change the special
fibre.

Changing notation once more, we now have X/R an integral projective
scheme whose generic fibre X/K is stably rational over K and whose special
fibre Z/κ is just as in the theorem. Fix m ∈ V (κ), mapping to n ∈ U(κ).

Let L = κ(Z). We have the commutative diagram of exact sequences

⊕iCH0(Yi,L) → CH0(Z̃L) → CH0(VL) → 0
↓ ↓ '

CH0(ZL) → CH0(UL) → 0.

where for each i, the closed embedding ρi = Yi→Z̃ induces

ρi,∗ : CH0(Yi,L)→CH0(Z̃L),

the top exact sequence is the classical localisation sequence for the Chow
group, the map f∗ : CH0(Z̃L)→CH0(ZL) is induced by the proper map

f : Z̃→Z, the map CH0(VL)→CH0(UL) is the isomorphism induced by the
isomorphism1 f : V→U , and the map CH0(ZL)→CH0(UL) is the obvious
restriction map for the open set U ⊂ Z.

Let ξ be the generic point of Z̃ and η the generic point of Z.
Both ηL and nL are smooth points of YL. There exists an extension

R→S of complete dvr inducing κ→L on residue fields. Let F be the field
of fractions of S. By Hensel’s lemma, the points ηL and nL lift to rational
points of the generic fibre of X ×K F/F of XS/S. Since X/K is stably
rational, all points of XF (F ) are R-equivalent ([8, Prop. 10], [14, Cor.
6.6.6]).

It is a well known fact ([15, prop. 3.1], [14, Comments after Thm. 6.6.2])
that for a proper morphism XS→S over a discrete valuation ring S there is
an induced map on R-equivalence classes X(F )/R→Z(L)/R. This implies
ηL − nL = 0 ∈ CH0(ZL). 2

From the above diagram we conclude that

ξL = mL +
∑
i

ρi∗(zi) ∈ CH0(Z̃L)

with zi ∈ CH0(Yi,L).

1Instead of assuming that f−1(U)→U is an isomorphism, it would be enough, as in
[18], to assume that this morphism is a universal CH0-isomorphism.

2Alternatively, one could argue as follows. Since X is stably rational over K, over any
field F containing K, the degree map CH0(XF )→Z is an isomorphism (for a simple proof,
see [7, Lemme 1.5]). One could then invoke Fulton’s specialisation theorem for the Chow
group of a proper scheme over a dvr [12, §2, Prop. 2.6], to get ηL − nL = 0 ∈ CH0(ZL).
Fulton’s specialisation theorem is a nontrivial theorem. The argument via R-equivalence
(cf. [7, Remarque 1.19]) looks simpler.
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For the proper variety Z̃L, there is a natural bilinear pairing

CH0(Z̃L)× Br(Z̃)→Br(L).

For the smooth, proper, integral variety Z̃, on the generic point ξ ∈ Z̃L(L),

this pairing induces the embedding Br(Z̃) ↪→ Br(κ(Z)). Suppose α ∈ Br(Z̃)
vanishes in each Br(Yi) (which follows from the vanishing in Br(κ(Yi)) be-
cause Yi is smooth). The evaluation of α on mL is just the image of
α(m) ∈ Br(κ) = 0. The above equality implies α(ξ) = 0 ∈ Br(L), hence

α = 0 ∈ Br(Z̃). �

5. Stable rationality is not constant in smooth projective
families

We now complete the simplified proof of the theorem of Hassett, Pirutka
and Tschinkel [13].

Theorem 5.1. There exist a smooth projective family of complex 4-folds
f : X→T parametrized by an open set T of the affine line A1

C and points
m,n ∈ T (C) such that the fibre Xn is rational and the fibre Xm is not stably
rational.

Proof One considers the universal family of quadric bundles over P2
C given

in P3
C × P2

C by a bihomogenous form of bidegree (2, 2). This is given by a
symmetric (4, 4) square matrix with entries ai,j(x, y, z) homogeneous qua-
dratic forms in three variables (x, y, z). If its determinant is nonzero, it is a
homogeneous polynomial of degree 8.

We thus have a parameter space B given by a projective space of dimen-
sion 59 (the corresponding vector space being given by the coefficients of 10
quadratic forms in three variables). We have the map X→B whose fibres
Xm are the various quadric bundles Xm→P2

C, for Xm ⊂ P3
C × P2

C given by
the vanishing of a nonzero complex bihomogeneous form of bidegree (2, 2).

Using Bertini’s theorem, one shows that there exists a nonempty open set
B0 ⊂ B such that the fibres of X→B over points of m ∈ B0 are flat quadric
bundles Xm→P2

C which are smooth as C-varieties.
Using Bertini’s theorem, one also shows that there exist points m ∈ B0

with the property that the corresponding quadric bundle has a1,1 = 0, which
implies that the fibration Xm→P2

C has a rational section (given by the point
(1, 0, 0, 0)), hence that the generic fibre of Xm→P2

C is rational over C(P2),
hence that the C-variety Xm is rational over C. [Warning : this Bertini
argument uses the fact that we consider families of quadric surfaces over
P2
C. It does not work for families of conics over P2

C.]
These Bertini arguments are briefly described in [18, Lemma 20 and Thm.

47] and are tacitly used in [19, Page 3].
By Proposition 3.1, the special example in §3 defines a point P0 ∈ B(C)

whose fibre is Z = XP0 and which admits a projective birational desingu-

larisation f : Z̃→Z satisfying :
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(a) there exists a nonempty open set U ⊂ Z, such that the induced map
V := f−1(U)→U is an isomorphism;

(b) the complement Z̃ \ V is a union ∪iYi of smooth irreducible divisors

of Z̃;
(c) there is a nontrivial element α ∈ Br(Z̃) which vanishes on each Yi.
Theorem 4.1 then implies that the generic fibre of X→B is not geomet-

rically stably rational. There are various ways to conclude from this that
there are many points m ∈ B0(C) such that the fibre Xm is not stably
rational.

Take one such point m ∈ B0(C) and a point n ∈ B0(C) such that Xn is
rational. Over an open set of the line joining m and n we get a projective
family of smooth varieties with one fibre rational and with one fibre not
stably rational. �

The proof by Hassett, Pirutka and Tschinkel [13] uses an explicit desin-
gularisation of the variety Z in §3, with a description of the exceptional
divisors appearing in the process. Schreieder’s improvement of the speciali-
sation method enables one to bypass this explicit desingularisation.

Note that [13] and [19] contain many more results on families of quadrics
surfaces over P2 than Theorem 5.1.

6. Appendix A. Conics over a discrete valuation ring

Let R be a dvr with residue field k of characteristic not 2. Let K be the
fraction field. A smooth conic over K admits a regular model X given in
P2
R either by an equation

x2 − ay2 − bz2 = 0

with a, b ∈ R∗ (case (I)) or a regular model X given by an equation

x2 − ay2 − πz2 = 0

with a ∈ R∗ and π a uniformizing parameter (case (II)). Moreover, in the
second case one may assume that a is not a square in the residue field κ.

Proposition 6.1. Let R be a dvr with residue field k of characteristic not
2. Let K be the fraction field. Let W→Spec(R) be a proper flat morphism
with W regular and connected. Assume that the generic fibre is a smooth
conic over K. Then :

(a) The natural map Br(R)→Br(W ) is onto.
(b) For Y ⊂W an integral divisor contained in the special fibre of W→Spec(R),

and β ∈ Br(W ), the image of β under restriction Br(W )→Br(Y ) belongs to
the image of Br(κ)→Br(Y ).

Proof By purity for the Brauer group of a 2-dimensional regular scheme,
to prove (a), one may assume that W = X as above. Let X = X ×R K. It
is well known that the map Br(K)→Br(X) is onto, with kernel spanned by
the quaternion symbol (a, b)K in case (I) and by (a, π)K in case (II).
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Let β ∈ Br(X ) ⊂ Br(X). Let α ∈ Br(K) be some element with image
βK . We have the exact sequence

0→Br(R){2}→Br(K){2}→H1(κ,Q2/Z2)

Comparison of residues on Spec(R) and on X shows that the residue δR(α)
is either 0 or is equal to the nontrivial class in H1(k(

√
a)/k,Z/2), and this

last case may happen only in case (II). In the first case, we have α ∈ Br(R),
hence β − αX = 0 in Br(X) hence also in Br(X ) since X is regular. In the
second case, we have

δR(α) = δR((a, π))

hence α = (a, π) + γ with γ ∈ Br(R). We then get

β = (a, π)K(X) + γK(X) ∈ Br(K(X)).

But (a, π)K(X) = 0. Thus β − γX ∈ Br(X ) ⊂ Br(K(X)) vanishes, hence
β = γX ∈ Br(X ). The map Br(R)→Br(X ) is thus surjective. This gives (a)
for X hence for W , and (b) immediately follows. �

Exercise Artin-Mumford type examples are specific singular conic bundles
X in the total space of a rank 3 projective bundle over P2

C whose unramified
Brauer group is non trivial. Using Proposition 6.1 and Theorem 4.1, deform
such examples into conic bundles of the same type with smooth ramification
locus and whose total space is not stably rational. As in Section 3, there is
no need to compute an explicit resolution of singularities of X.

7. Appendix B. Quadric surfaces over a discrete valuation ring

The following section was written up to give details on some tools and
results used in [19, Thm. 4]. As demonstrated above, this section turns out
not to be necessary to vindicate the HPT example. But it is useful for more
general examples.

References : [21], [9, §3], [10, Thm. 2.3.1], [17, Thm. 3.17].

Let R be a discrete valuation ring, K its fraction field, π a uniformizer,
κ = R/(π) the residue field. Assume char(κ) 6= 2.

LetX ⊂ P3
K be a smooth quadric, defined by a nondegenerate 4-dimensional

quadratic form q. Up to scaling and changing of variables, there are four
possibilities.

(I) q =< 1,−a,−b, abd > with a, b, d ∈ R∗.
(II) q =< 1,−a,−b, π > with a, b ∈ R∗ and π a uniformizing parameter

of R.
(III) q =< 1,−a, π,−π.b > with a, b ∈ R∗ and π a uniformizing parameter

of R. The class of a.b ∈ R∗ represents the discriminant of the quadratic form.
Its image a.b ∈ κ∗ is a square if and only if the discriminant of q is a square
in the completion of K for the valuation defined by R.

Let X ⊂ P3
R be the subscheme cut out by q. Let Y/κ be the special fibre.

In case (I), X/R is smooth.
In case (II), X is regular, the special fibre Y is a cone over a smooth conic.
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In case (III), the special fibre is given by the equation x2 − ay2 = 0 in
P3
κ. If a is a square, this is the union of two planes intersecting along the

line x = y = 0. If If a is not a square, this is an integral scheme which over
κ(
√
a) breaks up as the union of two planes. In both cases, the scheme X is

singular at the points x = y = 0, z2 − dt2 = 0. See [21, §2].

Proposition 7.1. Let us assume char(κ) = 0.
In case (III), let W→X be a projective, birational desingularisation of X .
In case (I), the map Br(R)→Br(X ) is onto. If d ∈ R is not a square,

it is an isomorphism. If d is a square, the kernel is spanned by the class
(a, b) ∈ Br(R).

In case (II), the map Br(R)→Br(X ) is an isomorphism.
In case (III), assume a.b is not a square in κ. Then Br(R)→Br(W ) is

onto.
In case (III), if either a or b is a square, or if a.b is not a square, then

Br(R)→Br(W ) is onto. An element of Br(K) whose image in Br(X) lies in
Br(W ) belongs to Br(R).

In case (III), assume a.b is a square in κ. Then the image of (a, π) ∈
Br(K) in Br(X) belongs to Br(W ). It spans the quotient of Br(W ) by the
image of Br(R). If moreover a is not a square in κ, then it does not belong
to the image of Br(R).

Proof Let x be a codimension 1 regular point on X or on W , lying above
the closed point of Spec(R). Let ex denote its multiplicity in the fibre. We
have a commutative diagram

Br(K) → H1(κ,Q/Z)
↓ ↓

Br(X) → H1(κ(x),Q/Z)

The kernel of Br(K)→H1(κ,Q/Z) is Br(R).
In case (I) and (III), the special fibre Y is geometrically integral over κ,

the multiplicity is 1, the map H1(κ,Q/Z)→H1(κ(x),Q/Z) is thus injective.
This is enough to prove the claim.

Let us consider case (III). The map Br(K)→Br(X) is onto. Let α ∈
Br(K). Let ρ ∈ H1(κ,Q/Z) be its residue. On the (singular) normal
model given by q =< 1,−a, π,−π.b > over R, if a ∈ κ is a square, the
fibre Y contains geometrically integral components of multiplicity 1 given
by the components of x2 − ay2 = 0. By the above diagram, ρ = 0 ∈
H1(κ,Q/Z). We can also use the model given by q =< 1,−b, π,−π.a >.
If b ∈ κ is a square, we conclude that ρ = 0 ∈ H1(κ,Q/Z). Let us as-
sume that ρ 6= 0 ∈ H1(κ,Q/Z). Thus a and b are nonsquares. On the
first model, the kernel of H1(κ,Q/Z)→H1(κ(Y ),Q/Z) coincides with the
kernel of H1(κ,Q/Z)→H1(κ(

√
a,Q/Z), which is the Z/2-module spanned

by the class of a in κ∗/κ∗2 = H1(κ,Z/2). On the second model, the ker-
nel of H1(κ,Q/Z)→H1(κ(Y ),Q/Z) is the Z/2-module spanned by the class
of b in κ∗/κ∗2 = H1(κ,Z/2). We thus conclude that a.b is a square in κ,
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and that the residue of α coincides with a, i.e. is equal to the residue of
(a, π) ∈ Br(K) (or to the residue of (b, π)).

It remains to show that if a.b is a square in κ, then (a, π) has trivial
residues on W and more generally with respect to any rank one discrete
valuation v on the function field K(X) of X. One may restrict attention to
those v which induce the R-valuation on K. Let S ⊂ K(X) be the valuation
ring of v and let λ be its residue field. There is an inclusion κ ⊂ λ. In K(X)
we have an equality

(x2 − ay2) = π.(z2 − b),
where both sides are nonzero. Thus in Br(K(X)), we have the equality

(a, π) = (a, x2 − ay2) + (a, z2 − b) = (a, z2 − b),

where the last equality comes from the classical (a, x2 − ay2) = 0. To
compute residues, we may go over to completions. In the completion of R,
a.b is a square. It is thus a square in the completion of K(X) at v. But then
in this completion (a, z2 − b) = (b, z2 − b) = 0 Hence the residue of (a, π) at
v is zero. �

Proposition 7.2. Assume char(κ) = 0. Let X ⊂ P3
R be as above, and let

W→X be a proper birational map with W regular. Let β ∈ Br(W ) and let
Y ⊂W be an integral divisor contained in the special fibre of W→Spec(R).
Then the image of β in Br(κ(Y )) belongs to the image of Br(κ)→Br(κ(Y )).

Proof In case (I) and (II), and in case (III) when a.b is a square in κ, this
is clear since then the map Br(R)→Br(W ) is onto.

Suppose we are in case (III). To prove the result, we may make a base
change from R to its henselisation. Then ab is square in R. The group
Br(W ) is spanned by the image of Br(R) and the image of the class (a, π).
The equation of the quadric may now be written

X2 − aY 2 + πZ2 − aπT 2 = 0.

This implies that (a,−π) vanishes in the Brauer group of the function field
κ(W ) of W . Since W is regular, the map Br(W )→Br(κ(W )) is injective.
Since (a,−π)κ(W ) belongs to Br(W ) and spans Br(W ) modulo the image of
Br(R), this completes the proof. �

One may rephrase the above results in a simpler fashion.

Proposition 7.3. Assume char(κ) = 0. Let X ⊂ P3
R be as above, and let

W→X be a proper birational map with W regular.
(i) If R is henselian, then the map Br(R)→Br(W ) is onto.
(ii) For any element β ∈ Br(W ) and Y ⊂ W an integral divisor con-

tained in the special fibre of W→Spec(R), the image of β under restriction
Br(W )→Br(Y ) belongs to the image of Br(κ)→Br(Y ).

Upon use of Merkurjev’s geometric lemmas [16, §1], and use of Tsen’s
theorem, one then gets [19, Prop. 7] of Schreieder.



12 JEAN-LOUIS COLLIOT-THÉLÈNE

8. Appendix C. A remark on the vanishing of unramified
elements on components of the special fibre

The following proposition, found in June 2017, gives some partial expla-
nation for the vanishing on components of the special fibre which occurs in
[18, Prop. 6, Prop. 7] [19, Prop. 7] or in Proposition 3.1 above. Unfortu-
nately the proof requires that the component be of multiplicity one in the
fibre. Since this was written, in the case of quadric bundles, S. Schreieder
[20, §9.2] has managed to use arguments as in [9, §3] to get information on
what happens with the other components.

Proposition 8.1. Let A ↪→ B be a local homomorphism of discrete valua-
tion rings and let K ⊂ L be the inclusion of their fraction fields. Let κ ⊂ λ
be the induced inclusion on their residue fields.

Let ` be a prime invertible in A.
Let i ≥ 2 be an integer and let α ∈ H i(K,µ⊗i` ).
Assume:
(i) B is unramified over A.
(ii) The image of α in H i(L, µ⊗i` ) is unramified, and in particular is the

image of a (well defined) element β ∈ H i(B,µ⊗i` ).

Then β(λ) ∈ H i(λ, µ⊗i` ) is in the image of H i(κ, µ⊗i` )→H i(λ, µ⊗i` ).

Proof We may assume that A and B are henselian. Then the residue

map ∂A : H i(K,µ⊗i` )→H i−1(κ, µ
⊗(i−1)
` ) is part of a split exact sequence ([5,

Appendix B], [11, Cor. 6.8.8])

0→H i(A,µ⊗i` )→H i(K,µ⊗i` )→H i−1(κ, µ
⊗(i−1)
` )→0,

and all reduction maps Hj(A,µ⊗i` )→Hj(κ, µ⊗i` ), denoted ρ 7→ ρ(κ), are
isomorphisms. We have the analogous split exact sequence

0→H i(B,µ⊗i` )→H i(L, µ⊗i` )→H i−1(λ, µ
⊗(i−1)
` )→0,

Let π ∈ A be a uniformizer. Given α ∈ H i(K,µ⊗i` ), the residue ∂A(α) ∈
H i−1(κ, µ

⊗(i−1)
` ) is the image of some unique γ ∈ H i−1(A,µ

⊗(i−1)
` ). Let us

denote by (π) the class of π in K∗/K∗` = H1(K,µ`). Then α − (π) ∪ γ ∈
H i(K,µ⊗i` ) has trivial residue. Thus there exists ζ ∈ H i(A,µ⊗i` ) such that

α = ζ + (π) ∪ γ ∈ H i(K,µ⊗i` ).

By hypothesis, the restriction β of α to L is unramified. Thus (π) ∪ γ ∈
H i(L, µ⊗i` ) is unramified. Since B is unramified over A, the uniformizer π
is also a uniformizer of B. Thus

0 = ∂B((π) ∪ γ) = γλ ∈ H i−1(λ, µ
⊗(i−1)
` )

hence γ = 0 ∈ H i−1(B,µ
⊗(i−1)
` ), from which follows β = ζ ∈ H i(B,µ⊗i` )

and β(λ) ∈ H i(λ, µ⊗i` ) is the image of ζ(κ) ∈ H i(κ, µ⊗i` ). �
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