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Abstract. Ghosh and Sarnak have studied integral points on surfaces defined by an equation
x2 + y2 + z2 − xyz = m over the integers. For these affine surfaces, we systematically study
the Brauer group and the Brauer-Manin obstruction to the integral Hasse principle. We prove
that strong approximation for integral points on any such surface, away from any finite set of
places, fails, and that, for m 6= 0, 4, the Brauer group does not control strong approximation.

1. Introduction

Fix m ∈ Z. Let d := m−4. Let Um ⊂ A3
Z be the affine scheme over Z defined by the equation

x2 + y2 + z2 − xyz = m. (1.1)

It is equivalently defined by the equation

(2z − xy)2 − 4d = (x2 − 4)(y2 − 4), (1.2)

by the equation
(x− y − z + 2)2 − d = (x+ 2)(y − 2)(z − 2), (1.3)

as well as similar ones obtained by permutation of coordinates.
The surface Um = Um ×Z Q over Q is called a Markoff surface. Unless otherwise mentioned,

we assume m 6= 0 and d 6= 0. These are the conditions for Um to be smooth.
In [10], A. Ghosh and P. Sarnak have studied the set Um(Z) of integral solutions of such

equations. A key tool is the action of the automorphism group Γ generated by the following
three types of elements

(a) the Vieta involution: (x, y, z) 7→ (yz − x, y, z).
(b) the sign change: (x, y, z) 7→ (−x,−y, z).
(c) the permutations of x, y, z.
We denote Um(AZ) =

∏
p Um(Zp), where p runs through all primes and∞, and Z∞ = R. Let

Um(AZ)• =
∏
p<∞

Um(Zp)× π0(Um(R))

where π0(Um(R)) is the set of connected components of Um(R). Let

Um(AZ)Br
• ⊂ Um(AZ)•
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be the subset consisting of elements which are orthogonal to Br(Um) for the Brauer-Manin
pairing

Um(AZ)• × Br(Um)→ Q/Z

(see [6, §1]). This is called the (reduced) Brauer-Manin set of Um.

Here are some of the main results from [10].
(0) Um(AZ) = ∅ if and only if m ≡ 3 mod 4 or m ≡ ±3 mod 9. Other values of m are called

“admissible”.
(1) For m admissible and “generic” ([10, p. 3], see Proposition 6.1 below), following Markoff,

Hurwitz and Mordell, Ghosh and Sarnak develop a reduction theory : there exists a bounded
fundamental domain in R3 for integral solutions. In particular the set Um(Z)/Γ is finite.

(2) Suppose that m is not a square. Then Um(Z) is Zariski dense in Um if and only if Um(Z)
is not empty [10, (1.5)]. Zariski density still holds if m is a square and contains an odd prime
factor congruent to 1 modulo 4 [10, final comment in §5.2.1].

(3) Strong approximation need not hold, i.e. Um(Z) need not be dense in Um(AZ)• (see [10,
p. 21]). This uses the quadratic reciprocity law.

(4) There are infinitely many m’s such that Um does not satisfy the integral Hasse principle.
The examples in [10] are all of the shape d = r.v2, with r = ±2, r = 12, r = 20, and specific
properties for the primes dividing v. The arguments use quadratic reciprocity. They are in the
same spirit as earlier examples [6, 7] accounted for by the integral Brauer-Manin obstruction.
From a historical point of view, it is interesting to note that examples very close to those of
[10] are already given in Mordell’s 1953 paper [17, §3].

(5) For “generic” values of m, reduction theory leads to examples where Um(AZ) 6= ∅ but
Um(Z) = ∅. On the basis of intensive numerical experiments, Ghosh and Sarnak suggest that
there are many such examples that cannot be explained by a reciprocity argument, i.e. for
which, in our language, Um(AZ)Br

• 6= ∅. More precisely they predict a count for the set of m’s
with local solutions and no global solution which is much higher than what their families of
counterexamples produce.

The cubic surface Xm ⊂ P3
Q given by the homogeneous equation t(x2 + y2 + z2)− xyz = mt3

is smooth as soon as m 6= 0, 4. The surface Um = Um ⊗Z Q is the complement in Xm of the
hyperplane section H defined by plane section t = 0. Its geometric fundamental group is trivial
(Prop. 4.1). Thus Um, or rather the pair (Xm, H), is in a strong sense a log K3 surface [11,
Definition 2.4].

The search for integral points on Um bears some analogy with the search for rational points
on smooth, projective K3-surfaces W . For this latter situation, Skorobogatov has put forward
the conjecture : The closure of the setW (Q) in the adelic setW (AQ)• is just the Brauer-Manin
set W (AQ)Br

• . One may wonder whether there is a similar result for integral points on log K3
surfaces U . Here some restriction must be made. It may indeed happen that the set U(Z) is
not empty but not Zariski dense in U (Harpaz [11, Theorem 1.4]; Jahnel and Schindler [13,
Theorem 2.6]).

Here are some questions raised by the paper of Ghosh and Sarnak.
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(A) A first problem is to check that all counterexamples in [10] are of Brauer-Manin type,
and to search for as many families of counterexamples as possible.

This problem is best handled by solving problems (B) and (C) :
(B) For arbitrary m, can one determine Br(Um)/Br(Q) ? Is this quotient finite ?
(C) For arbitrary m, can one determine Um(AZ)Br

• ?
(D) When (how often) is the closure of Um(Z) equal to the Brauer-Manin set Um(AZ)Br

• ?
Here are the main results of our paper.
(a) We solve Problem (A), i.e. we check that the counterexamples to the integral Hasse

principle based on the quadratic reciprocity law in [10] are of Brauer-Manin type, and we
produce more families of counterexamples of the same kind.

(b) We solve Problem (B) for all values of m. This in principle solves Problem (C).
(c) Over an arbitrary ground field, we give generators for the algebraic part of the Brauer

group of U , and we systematically study the “transcendental part” of the Brauer group of U .
(d) We get a satisfactory answer to Problem (D). More precisely, we prove (see Theorem

6.2):

Theorem 1.1. Let m ∈ Z be any integer. Suppose Um(AZ) 6= ∅. For any finite set S of primes
the image of the natural map Um(Z)→

∏
p/∈S Um(Zp) is not dense.

The proof of this theorem does not involve the Brauer group, it only uses reduction theory.
It should be compared with the statement at the bottom of page 2 of [10], with reference to
[3], that if d = m− 4 > 0 is a square, then Um “satisfies a form of strong approximation”. See
Remark 6.4 below.

As a corollary, one gets (see Corollary 6.6)

Corollary 1.2. Suppose m 6= 0, 4 and Um(AZ)Br
• 6= ∅. Then Um(Z) is not dense in Um(AZ)Br

• .

Since there are infinitely many m 6= 0, 4 such that Um(Z) is Zariski dense in Um by [10, §5.2],
we obtain infinitely many log K3 surfaces where integral points are Zariski dense but are not
dense in the integral Brauer-Manin sets (see Corollary 6.7).

Such a behaviour had not been yet observed, even in the context of rational points. If one
allows discussion of density in the real locus, one may only compare this with the examples of
smooth projective surfaces X/Q with the property that the closure of X(Q) in X(R) does not
coincide with a union of connected components of the real locus X(R) [5, §5].

This work was started in Beijing in November 2017 and posted on arXiv in August 2018.
In a preprint posted on arXiv in July 2018, D. Loughran and V. Mitankin [15] have made an
independent study. With the restrictions m, d,md not squares, they independently solve prob-
lem (B). Their paper also solves Problem (A), produces some more types of counterexamples,
and gives an asymptotic lower bound for the number of integers m giving rise to such coun-
terexamples. Our stock of counterexamples enables us to produce a slightly better asymptotic
lower bound than [15, Theorem 1.5].

With the same restriction that m, d,md are not squares, towards Problem (C), Loughran
and Mitankin establish the beautiful result that the only possible examples with Um(AZ) 6= ∅
and Um(AZ)Br = ∅ satisfy that the class of d = m− 4 in Q∗/Q∗2 lies in the subgroup spanned
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by ±1, 2, 3, 5. This finiteness result, which is in the spirit of the finiteness of exceptional spinor
classes in the study of the representation of an integer by a ternary quadratic form (see [6,
Remark 7.11]), explains why the examples in [10] based on the quadratic reciprocity law were
of a rather special type. It is used in [15] to show that there are indeed far less values of
m with Brauer-Manin counterexamples than the number of values of m predicted by [10] for
counterexamples to the integral Hasse principle.

Notation Let k be a field and k a separable closure of k. We let g = gk = Gal(k/k) be the
absolute Galois group. A k-variety is a separated k-scheme of finite type. If X is a k-variety,
we write X = X×k k. We let k[X] = H0(X,OX) and k[X] = H0(X,OX). If X is an integral k-
variety, we let k(X) denote the function field of X. If X is a geometrically integral k-variety, we
let k(X) denote the function field of X. We let Pic(W ) = H1

Zar(W,Gm) = H1
ét(W,Gm) denote

the Picard group of a scheme W . We let Br(W ) = H2
ét(W,Gm) denote the Brauer group of a

scheme W . Suppose W is a smooth integral k-variety. The natural map Br(W ) → Br(k(W ))
is injective, hence Br(W ) is a torsion group. An element of Br(k(W )) whose order is prime to
the characteristic of k belongs to Br(W ) if and only its residues at all codimension 1 points of
W vanish. We let

Br1(X) = Ker[Br(X)→ Br(X)]

denote the algebraic Brauer group of a k-variety X and we let Br0(X) ⊂ Br1(X) denote the
image of Br(k) → Br(X). The image of Br(X) → Br(X) is sometimes referred to as the
“transcendental Brauer group” of X.

Given a field F of characteristic zero containing a primitive n-th root of unity ζ = ζn, we
have H2(F, µ⊗2

n ) = H2(F, µn) ⊗ µn. The choice of ζn then defines an isomorphism Br(F )[n] =
H2(F, µn) ∼= H2(F, µ⊗2

n ). Given two elements f, g ∈ F×, they have classes (f) and (g) in
F×/F×n = H1(F, µn). One denotes (f, g)ζ ∈ Br(F )[n] = H2(F, µn) the class corresponding to
the cup-product (f) ∪ (g) ∈ H2(F, µ⊗2

n ). Suppose F/E is a finite Galois extension with Galois
group G. Given σ ∈ G and f, g ∈ F×, we have σ((f, g)ζn) = (σ(f), σ(g))σ(ζn) ∈ Br(F ). In
particular, if ζn ∈ E, then σ((f, g)ζn) = (σ(f), σ(g))ζn . For all this, see [9, §4.6, §4.7] and in
particular [9, Prop. 4.7.1].

Let R be a discrete valuation ring with field of fractions F and residue field κ. Let v denote
the valuation F× → Z. Let n > 1 be an integer invertible in R. Assume F contains a primitive
n-th root of unity ζ. For f, g,∈ F×, we have the residue map

∂R : H2(F, µn)→ H1(κ,Z/n) ∼= H1(κ, µn) = κ×/κ×n,

where H1(κ,Z/n) ∼= H1(κ, µn) is induced by the isomorphism Z/n ' µn sending 1 to ζ. This
map sends the class of (f, g)ζ ∈ Br(F )[n] = H2(F, µn) to

(−1)v(f)v(g) class(gv(f)/f v(g)) ∈ κ×/κ×n. (1.4)

For a proof of these well known facts, see [9]. Here are precise references. Residues in Galois
cohomology with finite coefficients are defined in [9, Construction 6.8.5]. Comparison of residues
in Milnor K-Theory and Galois cohomology is given in [9, Prop. 7.5.1]. The explicit formula
for the residue in Milnor’s group K2 of a discretely valued field is given in [9, Example 7.1.5].
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Structure of the paper
Let k be a field of characteristic zero. Let m ∈ k. Assume m(m− 4) 6= 0. Let Xm ⊂ P3

k be
the smooth cubic surface defined by the projective equation

t(x2 + y2 + z2)− xyz = mt3.

Let U = Um ⊂ Xm be the smooth affine cubic surface defined by the affine equation

x2 + y2 + z2 − xyz = m.

In §2, we study the Galois modules Pic(Xm),Pic(Um),Br(Um). We show Br(Um) ' Q/Z(−1).
In §3, we compute Br(Xm) = Br1(Xm) and the algebraic part Br1(Um) of Br(Um). In §4, we
compute the transcendental part of Br(Um), namely the quotient Br(Um)/Br1(Um). We then
turn to the case k = Q and m is an integer. In §5, we show how to compute the integral
Brauer-Manin obstruction for the affine scheme Um over Z defined by x2 + y2 + z2 − xyz = m.
We then show that the counterexamples to the integral Hasse principle for Um in [10] may
all be explained by a combination of integral Brauer-Manin obstruction and reduction theory.
We increase the stock of such counterexamples, thus leading to an improvement on a counting
result in [15]. In §6, we prove that strong approximation never holds for Markoff type surfaces.
Section §7 is an appendix giving the structure of the real locus Um(R) depending on the value
of m ∈ R.

2. Computation of Brauer groups I, general setting

Proposition 2.1. Let X be a smooth, projective, geometrically rational surface over a field k of
characteristic zero. Suppose that U is an open subset of X such that X \U is the union of three
distinct k-lines, by which we mean a smooth projective curve isomorphic to P1

k. Suppose any
two lines intersect each another transversely in one point, and that the three intersection points
are distinct. Let L be one of the three lines and V ⊂ L be the complement of the 2 intersection
points of L with the other two lines. Then the residue map

∂L : Br(k̄(X))→ H1(k̄(L),Q/Z)

induces a g-isomorphism

Br(U)
∼=−→ H1(V ,Q/Z) ' H1(Gm,Q/Z) ' Q/Z(−1).

Proof. Since X is smooth, the homology of the Bloch-Ogus complex

H2(k̄(X),Q/Z(1))→ ⊕
x∈X(1)H1(k̄(x),Q/Z)→ ⊕

x∈X(2)H0(k̄(x),Q/Z(−1))

at the second term is H1
Zar(X,H2

X
(Q/Z(1))) by [2, (6.1) Theorem]. The spectral sequence

Ep,q
2 = Hp

Zar(X,H
q

X
(Q/Z(1)))⇒ Hp+q

ét (X,Q/Z(1))

in [2, (6.3) Corollary] implies that H1
Zar(X,H2

X(Q/Z(1))) is a subgroup of H3
ét(X,Q/Z(1)).

Since
H1

ét(X,µn) = Pic(X)[n] = 0
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for all n > 0 by the Kummer sequence, one has

H3
ét(X,Q/Z(1)) = lim−→

n

H3
ét(X,µn) = 0

by Poincaré duality. Therefore the above Bloch-Ogus complex is exact.
Since X is a smooth, projective, geometrically rational surface, Br(X) = 0 and the following

diagram of exact sequences

Br(X) = 0 // H2(k̄(X),Q/Z(1)) //

'
��

⊕
x∈X(1)H1(k̄(x),Q/Z)

��
0 // Br(U) // H2(k̄(U),Q/Z(1)) // ⊕

x∈U(1)H1(k̄(x),Q/Z)

commutes by [4, (3.9)]. Let {L1, L2, L3} be the set of three lines in X \ U and let {P1, P2, P3}
be the set of three intersection points of L1, L2 and L3 such that Pi 6∈ Li for 1 ≤ i ≤ 3. Set

Vi = Li \ {Pj}j 6=i 'k Gm

for 1 ≤ i ≤ 3. Combining the above diagram with the above Bloch-Ogus exact sequence yields
the following exact sequence, where the maps are given by the residues

0→ Br(U)→ ⊕3
i=1H

1
ét(V i,Q/Z)→ ⊕3

i=1H
0(k̄(Pi),Q/Z(−1)).

For each i, we have Vi ' Gm. The residue map induces the following short exact sequence

0→ H1
ét(V i,Q/Z)→ ⊕j 6=iH0

ét(k̄(Pj),Q/Z(−1))

∑
j 6=i−−−→ Q/Z→ 0.

After twisting by roots of unity, this simply follows from the exact sequence

1→ k
× → k[Gm]× → Z⊕ Z→ Z→ 0

induced by the map sending a rational function on Gm to its divisor at 0 and at ∞. One thus
has g-isomorphisms

Br(U) ' H1
ét(V i,Q/Z) ' H1(Gm,Q/Z) ' Q/Z(−1)

for 1 ≤ i ≤ 3. �

For cubic surfaces over an algebraically closed field k, one has the following result.

Proposition 2.2. Let X ⊂ P3
k be a smooth, projective, cubic surface over a field k of character-

istic zero. Suppose a plane P2
k ⊂ P3

k cuts out on X̄ three lines L1, L2, L3 over k̄. Let U ⊂ X be
the complement of this plane. Then the natural map k̄× → k̄[U ]× is an isomorphism of Galois
modules and the natural map

0→ ⊕3
i=1ZLi → Pic(X)→ Pic(U)→ 0

is an exact sequence of Galois lattices.
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Proof. We may assume k = k̄. Let

aL1 + bL2 + cL3 = 0 ∈ Pic(X)

with a, b, c ∈ Z. By the assumption that (Li.Li) = −1 and (Li.Lj) = 1 for i 6= j, one has

−a+ b+ c = 0, a− b+ c = 0, a+ b− c = 0.

This implies that a = b = c = 0.
To complete the proof, one only needs to show that Pic(U) is torsion free.
Let e1, e2, · · · , e6 and l be given by [12, Chapter V, Proposition 4.8].
Suppose that one of L1, L2 and L3 is in {e1, · · · , e6}. Say that L1 = e1. Consider the two

disjoint sets of classes of lines on X :

{l − e1 − ei : 2 ≤ i ≤ 6} and {2l −
∑
k 6=i

ek : 2 ≤ i ≤ 6}.

By inspecting the intersection property of L1, L2, L3, one sees that L2 is in one of these sets,
and L3 is in the other one. Without loss of generality, one can assume that L2 = l − e1 − e2.
Then

L3 = 2l −
∑
k 6=2

ek.

By [12, Chapter V, Proposition 4.8], one concludes that Pic(X)/(⊕3
i=1ZLi) is free.

Otherwise, all L1, L2 and L3 are in {l − ei − ej : 1 ≤ i < j ≤ 6}. Say
L1 = l − e1 − e2, L2 = l − e3 − e4 and L = l − e5 − e6.

Then Pic(X)/(⊕3
i=1ZLi) is free by [12, Chapter V, Proposition 4.8].

Alternative completion of the proof The first argument shows that L1, L2, L3 are linearly
independent. It also shows that k× = k[U ]×. Since the determinant of the system of equations
is ±4, and Pic(X) is torsion free, the only torsion that could exist in Pic(U) is 2-primary. Let
us show there is no 2-torsion in Pic(U). If there was, there would exist a principal divisor on X
of the shape 2D+L1, or 2D+L1 +L2, or 2D+L1 +L2 +L3. By the well known configuration
of the 27 lines on a cubic surface, there exists a line L on X which meets L1 in one point and
does not meet L2 or L3. Intersection with L rules out the three possibilities. �

The following corollary applies to number fields and more generally to function fields of
varieties over a number field.

Corollary 2.3. Let k be a field of characteristic zero such that in any finite field extension there
are only finitely many roots of unity. Let X ⊂ P3

k be a smooth, projective, cubic surface over
k. Suppose a plane cuts out on X three nonconcurrent lines. Let U ⊂ X be the complement of
the plane section. Then the quotient Br(U)/Br0(U) is finite.

Proof. Let g = Gal(k/k) where k is an algebraic closure of k. Since k× = k[U ]×, we have an
exact sequence

Br(k)→ Ker[Br(U)→ Br(U)g]→ H1(g,Pic(U))

by [6, Lemma 2.1]. Since Pic(U) is free of finite rank by Proposition 2.2, H1(g,Pic(U)) is finite.
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LetK ⊂ k be a field over which one of the three lines, call it L, is defined. Let gK = Gal(k/K).
The isomorphism

Br(U)
∼=−→ Q/Z(−1)

attached to the line L is gK-equivariant. We thus have

Br(U)g ⊂ Br(U)gK ' Q/Z(−1)gK

Since there are finitely many roots of unity in K, the group Q/Z(−1)gK is finite (use Lemma
2.4). Thus Br(U)g is finite. The result now follows from the above exact sequence. �

Lemma 2.4. Let k be a field of characteristic 0. Let g = Gal(k/k). Let µ∞(k) = Q/Z(1) be
the subgroup of roots of unity in k

×
. Then Q/Z(−1)g is (noncanonically) isomorphic to µ∞(k),

the group of roots of unity in k.

Proof. We only need to show: Z/n ⊂ Q/Z(−1)g holds if and only if µn ⊂ k.
If µn ⊂ k, obviously Z/n ⊂ Q/Z(−1)g. On the other hand, let a ∈ Q/Z(−1) be of order

n. For any σ ∈ g, then σ(a) = χ(σ)−1a, here χ is the cyclotomic character. Therefore, if a
is a fixed point, then (χ(σ) − 1)a = 0 for any σ ∈ g, i.e., χ(σ) − 1 ≡ 0 mod n. This implies
µn ⊂ k. �

3. Computation of Brauer groups II, algebraic parts

For Markoff surfaces, one can further compute the algebraic part of Brauer groups explicitly
by using the equations.

Lemma 3.1. Let k be a field of characteristic zero and k an algebraic closure of k. Let m ∈ k
and d = m− 4. Let Xm ⊂ P3

k be defined by the equation

t(x2 + y2 + z2)− xyz = mt3.

Then Xm is smooth over k if and only if md 6= 0. If md 6= 0, fix a square root
√
m ∈ k and

a square root
√
d ∈ k. Then the 27 lines on Xm are defined over k(

√
m,
√
d) by the following

equations
L1 : x = t = 0; L2 : y = t = 0; L3 : z = t = 0

and 

l1(ε, δ) : x = 2εt, y − εz = δ
√
dt

l2(ε, δ) : y = 2εt, z − εx = δ
√
dt

l3(ε, δ) : z = 2εt, x− εy = δ
√
dt

l4(ε, δ) : x = ε
√
mt, y = 1

2
(ε
√
m+ δ

√
d)z

l5(ε, δ) : y = ε
√
mt, z = 1

2
(ε
√
m+ δ

√
d)x

l6(ε, δ) : z = ε
√
mt, x = 1

2
(ε
√
m+ δ

√
d)y

with ε = ±1 and δ = ±1. Moreover, the intersection numbers satisfy

(li(ε, δ).lj(ε, δ)) = 0

for any fixed pair (ε, δ), whenever 1 ≤ i 6= j ≤ 6.
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Proof. For m = 4, the singular points are
(x : y : z : t) = (2ε : 2η : 2εη : 1)

with ε = ±1, η = ±1. For m = 0, there is only one singular point, namely (0 : 0 : 0 : 1).
Assume m 6= 0, 4. Any line L on Xm which is not in the plane t = 0 meets this plane in one
point, and that point must be on one of the lines L1, L2, L3. Say it is L1. The plane containing
L and L1 is one of the planes through L1 which intersects Xm in three lines. Writing down the
planes through each Li with this property (there are 5 such planes for each Li) produces all
lines on Xm, which are indeed 27 in number. �

For the sake of simplicity, wherever there is no ambiguity, for each i = 1, . . . , 6 we shall write
li = li(1, 1) .

Proposition 3.2. Let k be a field of characteristic zero and m ∈ k \ {0, 4}. Set d = m− 4. Let
Xm ⊂ P3

k be defined by the equation

t(x2 + y2 + z2)− xyz = mt3. (3.1)

If [k(
√
m,
√
d) : k] = 4, then

Br(Xm)/Br0(Xm) = Br1(Xm)/Br0(Xm) ∼= Z/2
with a generator

{((x
t

)2 − 4, d) = ((
y

t
)2 − 4, d) = ((

z

t
)2 − 4, d)}

over t 6= 0.
If d 6∈ k×2 and m ∈ k×2, then

Br(Xm)/Br0(Xm) = Br1(Xm)/Br0(Xm) ∼= (Z/2)2

with two generators
{((x

t
)2 − 4, d), ((

√
m− x

t
)(
x

t
+ 2), d)}

over t 6= 0.
If d ∈ k×2 or d ·m ∈ k×2, then Br(k) = Br1(Xm) = Br(Xm)

Proof. For ease of notation, we set X = Xm. Since X is geometrically rational, one has
Br(X) = Br1(X). One clearly has X(k) 6= ∅. By the Hochschild-Serre spectral sequence (see
[6, Lemma 2.1]), one has an isomorphism

Br1(X)/Br0(X) ' H1(k,Pic(X)). (3.2)

By Lemma 3.1, the six lines li, i = 1, . . . , 6 on the cubic surface X are skew to one another,
hence may be simultaneously blown down to P2 (see [12, Chapter V, Proposition 4.10]). The
class ω of the canonical bundle on X is equal to −3l +

∑6
i=1 li, where l is the inverse image of

the class of lines in P2. We have the following intersection properties: (l.l) = 1 and (l.li) = 0
for 1 ≤ i ≤ 6. The classes l and li, i = 1, . . . , 6 form a basis of Pic(X).

Since

(Lj.li) =

{
1 i− j ≡ 0 or 3 mod 6

0 otherwise
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where Lj are the lines in Lemma 3.1 with 1 ≤ j ≤ 3 and 1 ≤ i ≤ 6, one concludes that

Lj = l − lj − lj+3 (3.3)

in Pic(X) for 1 ≤ j ≤ 3 by [12, Chapter V, Proposition 4.8 (e)].

(1) Suppose d 6∈ k×2 and md 6∈ k×2.
There is σ ∈ Gal(k(

√
d,
√
m)/k) such that

σ(
√
d) = −

√
d and σ(

√
m) =

√
m.

Since the intersection numbers

(σlj(1, 1).li(1, 1)) = (lj(1,−1).li(1, 1)) =

{
0 i = j + 3

1 i 6= j + 3
(3.4)

and

(σl3+j(1, 1).li(1, 1)) = (l3+j(1,−1).li(1, 1)) =

{
0 i = j

1 i 6= j
(3.5)

for 1 ≤ j ≤ 3, one obtains

σlj = 2l −
∑
i 6=j+3

li and σl3+j = 2l −
∑
i 6=j

li (3.6)

in Pic(X) by [12, Chapter V, Theorem 4.9] for 1 ≤ j ≤ 3. This implies that

σl = 5l − 2
6∑
i=1

li (3.7)

by (3.3). Then

ker(1 + σ) = 〈(l − l1 − l2 − l3), (l1 − l4), (l2 − l5), (l3 − l6)〉 (3.8)

and

(1− σ)Pic(X) = 〈2(l− l1− l2− l3), (l1− l4 + l3− l6), (l2− l5− l3 + l6), (l2− l5 + l3− l6)〉 (3.9)

by (3.6), (3.7).

Given a finite cyclic group G = 〈σ〉 and a G-module M , recall that we have isomorphisms
H1(G,M) ∼= Ĥ−1(G,M), where the latter group is the quotient of Nσ(M), the set of elements
of M of norm 0, by its subgroup (1− σ)M .

(1a) Suppose d /∈ k×2 and m ∈ k×2. Then

H1(k,Pic(X)) = H1(〈σ〉,Pic(X)) ' Ĥ−1(〈σ〉,Pic(X)) ∼= (Z/2)2

by [18, (1.6.6) and (1.6.12) Proposition] and (3.8) and (3.9).

(2) Suppose m 6∈ k×2 and md 6∈ k×2.
There is τ ∈ Gal(k(

√
d,
√
m)/k) such that

τ(
√
m) = −

√
m and τ(

√
d) =

√
d.
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Since the intersection numbers

(τ lj+3(1, 1).li(1, 1)) = (lj+3(−1, 1).li(1, 1)) =

{
0 1 ≤ i ≤ 3 and i = j + 3

1 4 ≤ i ≤ 6 and i 6= j + 3
(3.10)

for 1 ≤ j ≤ 3, one obtains
τ lj+3 = l −

∑
4≤i 6=j+3≤6

li (3.11)

in Pic(X) by [12, Chapter V, Theorem 4.9] for 1 ≤ j ≤ 3. This implies that

τ l = 2l −
6∑
i=4

li (3.12)

by (3.3). Then

ker(1 + τ) = 〈l − l4 − l5 − l6〉 and ker(1− τ) = 〈l1, l2, l3, (l − l4), (l − l5), (l − l6)〉 (3.13)

and
(1− τ)Pic(X) = 〈l − l4 − l5 − l6〉 (3.14)

by (3.11), (3.12).

(2a) If m /∈ k×2 and d ∈ k×2, then

H1(k,Pic(X)) = H1(〈τ〉,Pic(X)) ' Ĥ−1(〈τ〉,Pic(X)) = 0

by [18, (1.6.6) and (1.6.12) Proposition] and (3.13) and (3.14).
If d ∈ k×2 and m ∈ k×2, then we also have H1(k,Pic(X)) = 0. Indeed, in that case all 27

lines are defined over k and the action of the Galois group on Pic(X) is the trivial action.

(3) Suppose that none of d, m, dm is a square, that is [k(
√
m,
√
d) : k] = 4.

Then
H1(k,Pic(X)) = H1(G,Pic(X))

by [18, (1.6.6) Proposition], where G = Gal(k(
√
m,
√
d)/k). Let σ, τ ∈ G be as above. Then

one has the following exact sequence

0→ H1(〈σ〉,Pic(X)〈τ〉)→ H1(G,Pic(X))→ H1(〈τ〉,Pic(X)) = 0

by [18, (1.6.6) and (1.6.12) Proposition] and (3.13) and (3.14). Since

ker(1 + σ) ∩ Pic(X)〈τ〉 = 〈(l − l4 − l2 − l3), (l − l5 − l1 − l3), (l − l6 − l1 − l2)〉
by (3.8), (3.13) and

(1− σ)Pic(X)〈τ〉 = [(1− σ)Pic(X)] ∩ Pic(X)〈τ〉

= 〈(2l − l1 − 2l2 − l3 − l4 − l6), (l2 − l3 − l5 + l6), (2l − 2l1 − l2 − l3 − l5 − l6)〉
by (3.6), (3.7), (3.9), (3.13) and (3.14), one concludes that

H1(k,Pic(X)) = [ker(1 + σ) ∩ Pic(X)〈τ〉]/[(1− σ)Pic(X)〈τ〉] ∼= Z/2.

(4) Suppose m, d /∈ k×2 and md ∈ k×2, i.e. k(
√
m) = k(

√
d) 6= k.
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Let ρ be the generator of Gal(k(
√
m)/k). Computing the intersection numbers

(ρlj+3(1, 1).li(1, 1)) = (lj+3(−1,−1).li(1, 1)) =

{
1 1 ≤ i 6= j ≤ 3

0 otherwise

for 1 ≤ j ≤ 3, one obtains
ρlj+3 = l −

∑
1≤i 6=j≤3

li (3.15)

for 1 ≤ j ≤ 3. Then

ρl = 4l −
3∑
i=1

li −
6∑
i=1

li (3.16)

by (3.6) and (3.15). Since

ker(1 + ρ) = (1− ρ)Pic(X) = 〈(l − l2 − l3 − l4), (l − l1 − l3 − l5), (l − l1 − l2 − l6)〉
by (3.6), (3.15) and (3.16), one concludes that

H1(k,Pic(X)) = H1(〈ρ〉,Pic(X)) ∼= Ĥ−1(〈ρ〉,Pic(X)) = 0.

Now we produce concrete generators in Br1(X) for Br1(X)/Br(k) ∼= H1(k,Pic(X)). If d ∈
k×2 or md ∈ k×2, we have just seen that Br1(X)/Br(k) = 0. Let us consider the other cases.

Let U be the open subset of X defined by t 6= 0. Then equation (3.1) is equivalent to

(2z − xy)2 − 4d = (x2 − 4)(y2 − 4) (3.17)
for U . Since

{x± 2 = 0} ∩ {((x∓ 2)(y2 − 4) = 0}
is a closed subset of codimension ≥ 2 on U , one obtains that (x± 2, d) ∈ Br1(U). This implies
that

B = (x2 − 4, d) = (y2 − 4, d) = (z2 − 4, d) ∈ Br1(U).

The residues of B at the lines L1, L2 and L3 which form the complement of U in X (cf. Lemma
3.1) are easily seen to be trivial. One thus has B ∈ Br1(X).

If m ∈ k×2, equation (3.1) is equivalent to

(2y −
√
mz)2 − dz2 = 4(x−

√
m)(yz − x−

√
m)

for U . Then (
√
m− x, d) ∈ Br1(U) by the same argument as above. This implies that

M = ((x+ 2)(
√
m− x), d) ∈ Br1(U).

Then M ∈ Br1(X) by computing the residues of M at L1, L2 and L3 as above.

To show that these elements B and M are not constant, one uses the conic fibration
π : U → A1; (x, y, z) 7→ x.

The generic fibre Uη
πη−→ η induces

π∗η : Br(η)→ Br(Uη) with ker(π∗η) = (x2 − 4,m− x2)
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by [9, Theorem 5.4.1].

If [k(
√
m,
√
d) : k] = 4, then the residue of (x2 − 4, d) at (x2 −m) is different from that of

(x2− 4,m− x2). This implies that π∗η(x2− 4, d) is not constant by the Faddeev exact sequence
(see [9, Corollary 6.4.6]). Since π∗η(x2− 4, d) is the pull-back of B by the natural map Uη → U ,
one concludes that B is not constant, hence B generates Br1(X)/Br(k) = Z/2.

If d 6∈ k×2 and m ∈ k×2, then we have the residues

∂P (x2 − 4, d) =

{
d ∈ k×/k×2 if P ∈ {(x± 2)}
1 ∈ k×/k×2 otherwise

and

∂P ((
√
m− x)(x+ 2), d) =

{
d ∈ k×/k×2 if P ∈ {(x+ 2), (x−

√
m)}

1 ∈ k×/k×2 otherwise
and

∂P (x2 − 4,m− x2) =

{
d ∈ k×/k×2 if P ∈ {(x± 2), (x±

√
m)}

1 ∈ k×/k×2 otherwise

for all closed points P of P1. Then

π∗η(x
2 − 4, d), π∗η((

√
m− x)(x+ 2), d) and π∗η((x

2 − 4, d) · ((
√
m− x)(x+ 2), d))

are not constant by the Faddeev exact sequence. Therefore B and M have independent classes
in Br1(X)/Br(k) ∼= (Z/2)2, hence generate that group. �

Remark 3.3. If d ∈ k×2, then Xm contains two skew k-rational lines, e.g. l1 and l2. If
d ·m ∈ k×2, then Xm contains the two lines l4(1, 1) and l4(−1,−1) defined over the quadratic
field extension k(

√
m), which are conjugate to each other and do not meet. As for any smooth

projective cubic surface with this property, this implies that Xm is k-birational to projective
space P2

k. This general fact goes back to L. Euler in the case of the diagonal cubic surface
x3 + y3 + z3 + t3 = 0 and a generalisation is due to B. Segre. Segre’s result was completed by
Swinnerton-Dyer’s paper [21]. Therefore Br(X) = Br(k). We keep this part of the computation
in Proposition 3.2 because some intermediate results will later be used.

Theorem 3.4. Let k be a field of characteristic zero and let m ∈ k \ {0, 4} and d = m− 4. Let
Um be the affine k-variety defined by (1.1).

If [k(
√
m,
√
d) : k] = 4 then

Br1(Um)/Br0(Um) ∼= (Z/2)3

with the generators {(x− 2, d), (y − 2, d), (z − 2, d)}.
If d /∈ k×2 and dm ∈ k×2 then

Br1(Um)/Br0(Um) ∼= (Z/2)2

with the generators {(x− 2, d), (y − 2, d)}.
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If d /∈ k×2 and m ∈ k×2, then

Br1(Um)/Br0(Um) ∼= (Z/2)4

with the generators {(x− 2, d), (y − 2, d), (z − 2, d), (x−
√
m, d)}.

Otherwise, i.e. if d ∈ k×2, then Br1(Um) = Br0(Um).

Proof. We keep notation as in Lemma 3.1. For ease of notation, we set U = Um. Let l ∈ Pic(X)
as in the proof of Proposition 3.2. Then Pic(U) is given by the following quotient group

((⊕6
i=1Zli)⊕ Zl)/(l − lj − lj+3 : 1 ≤ j ≤ 3) ∼= ⊕4

i=1Z[li] (3.18)

by Proposition 2.2 and formula (3.3). Here given a divisor D on X we denote by [D] the image
in Pic(U) of its class in Pic(X). By Proposition 2.2 we have k× = k[U ]×. The Hochschild-Serre
spectral sequence (see [6, Lemma 2.1]) then gives an injective homomorphism

Br1(U)/Br0(U) ↪→ H1(k,Pic(U)). (3.19)

In fact, it is an isomorphism since the smooth compactification X of U has rational points,
hence also U (any smooth cubic surface over an infinite field k is k-unirational as soon as it has
a k-rational point).
• Case [k(

√
m,
√
d) : k] = 4. Let G = Gal(k(

√
m,
√
d)/k). Let σ and τ be the generators of

Gal(k(
√
m,
√
d)/k) satisfying

σ(
√
d) = −

√
d, σ(

√
m) =

√
m; τ(

√
d) =

√
d, τ(

√
m) = −

√
m.

Then in Pic(U) we have the following equalities

σ([li]) = −[li] (3.20)

for 1 ≤ i ≤ 4 by (3.6), τ([li]) = [li] for 1 ≤ i ≤ 3 and

τ([l4]) = −[l1] + [l2] + [l3]− [l4] (3.21)

by (3.11). Since Pic(U) is free and Gal(k̄/k(
√
m,
√
d)) acts on Pic(U) trivially, one obtains that

H1(G,Pic(U)) ∼= H1(k,Pic(U))

by [18, (1.6.6) Proposition]. Let H be the subgroup of G generated by σ. Then

Pic(U)H = 0

by the equation (3.20). Therefore

H1(G,Pic(U)) ∼= H1(H,Pic(U))G/H

by [18, (1.6.6) Proposition]. Since

H1(H,Pic(U)) ∼= Ĥ−1(〈σ〉,Pic(U)) ∼= ⊕4
i=1(Z/2)[li]

by [18, (1.6.12) Proposition] and the equation (3.20), one concludes

H1(k,Pic(U)) ∼= H1(H,Pic(U))G/H ∼= ⊕3
i=1(Z/2)[li]

by (3.21).
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• Case k(
√
m) = k(

√
d) 6= k. Let ρ be the generator of Gal(k(

√
m)/k). Since (3.6) is still

available, one has ρ([li]) = −[li] for 1 ≤ i ≤ 3. By (3.15), one obtains

ρ([l4]) = [l1]− [l2]− [l3] + [l4].

Therefore

H1(k,Pic(U)) = H1(〈ρ〉,Pic(U)) ∼= Ĥ−1(〈ρ〉,Pic(U)) ∼= ⊕2
i=1(Z/2)[li].

• Case k(
√
d) 6= k(

√
m) = k. Let σ be the generator of Gal(k(

√
d)/k). Since the intersection

formulae (3.4) and (3.5) are still available, one has σ([li]) = −[li] for 1 ≤ i ≤ 4. Then

H1(k,Pic(U)) = H1(〈σ〉,Pic(U)) ∼= Ĥ−1(〈σ〉,Pic(U)) ∼= ⊕4
i=1(Z/2)[li].

• The remaining case is d ∈ k×2. If also m ∈ k×2, then the Galois action on the lattice Pic(U)
is trivial, hence H1(k,Pic(U)) = 0. Supposem /∈ k×2. Let τ be the generator of Gal(k(

√
m)/k).

Since
ker(1 + τ) = 〈[l1]− [l2]− [l3] + 2[l4]〉

and
(1− τ)([l4]) = [l1]− [l2]− [l3] + 2[l4]

by (3.21), one concludes that H1(k,Pic(U)) = 0.

Let us now produce concrete elements in Br1(U). Using equation (1.2) one sees that the
quaternion class (x ± 2, d) is in Br1(U) by the same argument as that in Proposition 3.2.
Similar equations give the same result for (y ± 2, d) and (z ± 2, d).

The plane t = 0 cuts out the three lines (L1, L2, L3), each with multiplicity 1. The plane
x ± 2t = 0 cuts out L1 and two lines each defined over k(

√
d). From this we compute the

residues:

∂Li((x± 2t)/t, d) =

{
1 ∈ k×/(k×)2 i = 1

d ∈ k×/(k×)2 i = 2 and 3.
Similarly, one has

∂Li((y ± 2t)/t, d) =

{
1 ∈ k×/(k×)2 i = 2

d ∈ k×/(k×)2 i = 1 and 3

and

∂Li((z ± 2t)/t, d) =

{
1 ∈ k×/(k×)2 i = 3

d ∈ k×/(k×)2 i = 1 and 2.
This computation of residues will enable us to establish independence modulo 2 of various
classes in Br1(U)/Br0(U).

Using equation (1.3) one gets

((x− 2)(y − 2)(z − 2), d) = (x2 − 4, d). (3.22)

When [K : k] = 4, the quaternion (x2 − 4, d) is not constant by Proposition 3.2. Therefore
{(x− 2, d), (y − 2, d), (z − 2, d)} is a set of generators of Br1(U)/Br0(U) ∼= (Z/2)3.
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When k(
√
d) = k(

√
m) 6= k, then {(x−2, d), (y−2, d)} is a set of generators of Br1(U)/Br0(U) ∼=

(Z/2)2.

When m ∈ k×2 and d 6∈ k×2, equation (1.1) can be written as

(2y −
√
mz)2 − dz2 = 4(x−

√
m)(yz − x−

√
m).

Then (x−
√
m, d) ∈ Br1(U) by the same argument as that in Proposition 3.2. Since (x−

√
m, d)

has the same residues as (x− 2, d) at Li for 1 ≤ i ≤ 3, the class (x−
√
m, d) in Br1(U)/Br0(U)

is different from (x− 2, d), (y − 2, d) and (z − 2, d) by Proposition 3.2. Since

((x−
√
m)(y − 2)(z − 2), d) = ((x−

√
m)(x+ 2), d)

is not a constant element by (1.3) and Proposition 3.2, one concludes that

{(x− 2, d), (y − 2, d), (z − 2, d), (x−
√
m, d)}

is a set of generators of Br1(U)/Br0(U) ∼= (Z/2)4. �

Remark 3.5. Note that the classes {(x + 2, d), (y + 2, d), (z + 2, d)} in Br1(Um)/Br0(Um) in
Theorem 3.4 are not independent because (1.1) can also be written as

(x+ y + z + 2)2 − d = (x+ 2)(y + 2)(z + 2). (3.23)

4. Computation of Brauer groups III, transcendental parts

Let k be a field of characteristic zero, and m ∈ k \ {0, 4}. Let d = m − 4 6= 0. Let X ⊂ P3
k

be the smooth cubic surface defined by the equation

t(x2 + y2 + z2)− xyz = mt3.

Let U be the affine open sub-variety of X given by t 6= 0, i.e. by the affine equation

x2 + y2 + z2 − xyz = m.

By Proposition 2.1, we have Br(U) ' Q/Z. In this section, we determine the transcendental
Brauer group Br(U)/Br1(U) ⊂ Br(U) of U .

We here set
li = li(1, 1) and l−i = li(1,−1).

For computational reasons, in this section we contract X to P2
k̄
over k̄ by sending the 6 lines

l−i to 6 points. The 3 lines {Li}3
i=1 correspond to three lines in P2

k̄
by this contraction and each

of these three corresponding lines passes through one pair among the 6 points by [12, Chapter
V, Theorem 4.9]. We let l− ∈ Pic(X) be the inverse of the class of a line in P2

k̄
. The contraction

induces an isomorphism

V := U \ {
6⋃
i=1

l−i } ' Gm ×k̄ Gm

over k̄.

Though this will not be used in the paper, it is worth noticing the following consequence.

Proposition 4.1. The (Grothendieck) geometric fundamental group π1(U) is trivial.
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Proof. Recall char(k) = 0. Since V is open in U , the group π1(U) is a quotient of π1(V ). The
group π1(Gm ×k̄ Gm) = Ẑ2 is abelian. From the above isomorphism we conclude that π1(U) is
abelian. It is thus isomorphic to the profinite completion of the system of groups H1(U,Z/n).
By Proposition 2.2, k× ' k[U ]× and Pic(U) is torsion free. The Kummer sequence then gives
H1(U,Z/n) ' Pic(U)[n] = 0. �

Using Proposition 2.2 and Lemma 3.1, we get:

Pic(U) = ((⊕6
i=1Zl−i )⊕ Zl−)/(l− − l−j − l−j+3 : 1 ≤ j ≤ 3) ∼= ⊕4

i=1Z[l−i ]. (4.1)

More precisely, the composite θ of the natural maps

⊕4
i=1Z[l−i ]→ Pic(X)→ Pic(U)

is an isomorphism. Under the inverse isomorphism θ−1, the classes of l−i in Pic(U) for i =
1, 2, 3, 4 are sent to [l−i ], the class of l−5 is sent to [l−1 ]− [l−2 ] + [l−4 ], and the class of l−6 is sent to
[l−1 ]− [l−3 ] + [l−4 ]. The composite map

Z[l−]⊕⊕6
i=1Z[l−i ] = Pic(X)→ Pic(U)→ ⊕4

i=1Z[l−i ] = Z4

is given by

(χ0, χ1, · · · , χ6) 7→ (χ0 + χ1 + χ5 + χ6, χ2 − χ5, χ3 − χ6, χ0 + χ4 + χ5 + χ6). (4.2)

As we shall see below, the restriction map Br(U) → Br(V ) is an isomorphism. At least
over some field extension of k one may thus compute the transcendental elements in Br(U) by
pull-back of Br(Gm ×k̄ Gm) ' Q/Z.

Theorem 4.2. Let n be a positive integer and ζ ∈ k̄ be a primitive n-th root of unity. Keep
notation as in Lemma 3.1 and Theorem 3.4. Then the unique cyclic group of order n in Br(U)
is generated by the cyclic algebra Rn = (f

g
, u
v
)ζ of dimension n2, where

f = 1
2
(
√
m−

√
d− 2)xz +

√
dxt+ (2−

√
m)yt+

√
dzt−

√
m ·
√
dt2

g = 1
2
(
√
m+

√
d− 2)yz −

√
dyt+ (2−

√
m)xt−

√
dzt+

√
m ·
√
dt2

u = 1
2
(
√
m−

√
d− 2)xy +

√
dyt+ (2−

√
m)zt+

√
dxt−

√
m ·
√
dt2

v = 1
2
(
√
m+

√
d− 2)xz −

√
dzt+ (2−

√
m)yt−

√
dxt+

√
m ·
√
dt2

.

Proof. By Bezout’s theorem (see [12, Chapter I, Theorem 7.7]), one has
{f = 0} ∩X = L1 + L3 + l1(1,−1) + l3(1, 1) + l4(1,−1) + l6(1, 1)

{g = 0} ∩X = L2 + L3 + l2(1,−1) + l3(1, 1) + l5(1,−1) + l6(1, 1)

{u = 0} ∩X = L1 + L2 + l1(1, 1) + l2(1,−1) + l4(1, 1) + l5(1,−1)

{v = 0} ∩X = L1 + L3 + l1(1, 1) + l3(1,−1) + l4(1, 1) + l6(1,−1)

where Li with 1 ≤ i ≤ 3 and lj(ε, δ) with 1 ≤ j ≤ 6, ε = ±1 and δ = ±1 are given by Lemma
3.1. For instance, one checks that each of the lines appearing on the right hand side of the
first formula is contained in the projective quadric defined by f = 0. Since the degree of f is
2 and that of the cubic surface is 3, Bezout’s theorem implies that the multiplicity of each line
in {f = 0} ∩X is 1.
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This implies:{
div(f

g
) = L1 − L2 + l1(1,−1)− l2(1,−1) + l4(1,−1)− l5(1,−1)

div(u
v
) = L2 − L3 + l2(1,−1)− l3(1,−1) + l5(1,−1)− l6(1,−1).

(4.3)

Let us first prove that the restriction map Br(U) → Br(V ) is an isomorphism. Indeed, the
lines l−i = li(1,−1) are skew to one another, and each of them intersects the plane t = 0 in just
one point, call it Pi. Let mi := l−i \ {Pi} ∼= A1

k̄
. We thus have an exact sequence

0→ Br(U)→ Br(V )→ ⊕6
i=1H

1
ét(mi,Q/Z).

But H1
ét(mi,Q/Z) = H1

ét(A1
k̄
,Q/Z) = 0. We thus have Rn ∈ Br(U).

The line L1 does not appear in the divisor of u/v. In the divisor of f/g it appears with valua-
tion 1. The residue of Rn at the generic point of L1 is thus given by the class in k(L1)×/k(L1)×n

of the rational function induced by u/v on L1.The divisor of that function is a linear combina-
tion of points which in particular contains L3 ∩L1 with multiplicity −1. Thus the order of the
residue is n, and Rn itself is of order n, hence generates Br(U)[n]. �

The 27 lines are defined over any field E containing k(
√
d,
√
m). Over such a field E, we

may consider the complement V/E of the 6 lines l−i . The same localisation argument together
with the property H1

ét(E,Q/Z) ' H1
ét(A1

E,Q/Z) yields an exact sequence

0→ Br(UE)→ Br(V )→ ⊕6
i=1H

1(E,Q/Z).

We are interested in the computation of the transcendental Brauer group over the ground
field. For this, an explicit computation of residues at the generic points of the lines l−i seems
necessary.

Since f, g, u, v and each of the curves D = l−i are defined over K = k(
√
d,
√
m), using formula

(1.4) we can compute the residues ∂D(Rn) over any field E containing K and µn in

H1(E(D),Z/n) ' E(D)×/E(D)×n.

These residues, as explained above, actually take their values in E×/E×n.

Proposition 4.3. With notation as above :
For D = l−2 , ∂D(Rn) =

√
m+
√
d−2√

m−
√
d−2

= −1
2
(
√
d+
√
m) ∈ E×/E×n

For D = l−5 , ∂D(Rn) =
√
m−
√
d

2
·
√
m+
√
d−2√

m−
√
d−2

= −1 ∈ E×/E×n.

∂D(Rn) =

{
−1 ∈ E×/E×n D ∈ {l−1 , l−3 )}
√
d−
√
m

2
∈ E×/E×n D ∈ {l−4 , l−6 }

Proof. In the course of our computations, we shall make tacit use of the equality

(

√
d−
√
m

2
).(

√
d+
√
m

2
) = −1 (4.4)

.
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Let us compute ∂D(Rn) for D = l−2 . Since

g = [
1

2
(
√
m+

√
d− 2)y −

√
d](z − x+

√
d) + (y − 2)[

1

2
(
√
m+

√
d− 2)x− 1

2

√
d(
√
m+

√
d)]

and
u = (2−

√
m)(z − x+

√
d) + (y − 2)[

1

2
(
√
m−

√
d− 2)x+

√
d],

one has

g

u
=

[1
2
(
√
m+

√
d− 2)y −

√
d]( z−x+

√
d

y−2
) + [1

2
(
√
m+

√
d− 2)x− 1

2

√
d(
√
m+

√
d)]

(2−
√
m)( z−x+

√
d

y−2
) + [1

2
(
√
m−

√
d− 2)x+

√
d]

.

Since
z − x+

√
d

y − 2
=

xz − y − 2

z − x−
√
d

by (1.1), one obtains that

∂D(Rn) = −v
u
· g
f

= −v
f
·

(
√
m− 2) · x(x−

√
d)−4

−2
√
d

+ 1
2
(
√
m+

√
d− 2)x− 1

2

√
d(
√
m+

√
d)

(2−
√
m) · x(x−

√
d)−4

−2
√
d

+ 1
2
(
√
m−

√
d− 2)x+

√
d

=
v

f
· (
√
m− 2)[x(x−

√
d)− 4]− (

√
m+

√
d− 2)

√
dx+ d(

√
m+

√
d)

(
√
m− 2)[x(x−

√
d)− 4] + (

√
m−

√
d− 2)

√
dx+ 2d

.

Since

f |D =
1

2
(
√
m−

√
d− 2)x2 +

√
d[3− 1

2
(
√
m−

√
d)]x+ 2(2−

√
m)− d−

√
m ·
√
d

and

v|D =
1

2
(
√
m+

√
d− 2)x2 −

√
d[1 +

1

2
(
√
m+

√
d)]x+ d+ 2(2−

√
m) +

√
m ·
√
d,

one concludes that

∂D(Rn) =

√
m+

√
d− 2

√
m−

√
d− 2

= −1

2
(
√
d+
√
m) ∈ E(D)×/E(D)×n.

For D = l−5 , one has

g = [
1

2
(
√
m+

√
d− 2)y −

√
d] · [z − 1

2
(
√
m−

√
d)x] + (y −

√
m)[

1

2
(2 +

√
d−
√
m)x−

√
d]

and
u = (2−

√
m)[z − 1

2
(
√
m−

√
d)x] + (y −

√
m)[

1

2
(
√
m−

√
d− 2)x+

√
d].

Since
z − 1

2
(
√
m−

√
d)x

y −
√
m

=
xz − y −

√
m

z − 1
2
(
√
m+

√
d)x
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by (1.1), one obtains that

∂D(Rn) = −v
f
·

1
2
(
√
m+

√
d)(
√
m− 2) · (

√
m−
√
d)x2−4

√
m

−2
√
dx

+ 1
2
(2 +

√
d−
√
m)x−

√
d

(2−
√
m) · (

√
m−
√
d)x2−4

√
m

−2
√
dx

+ 1
2
(
√
m−

√
d− 2)x+

√
d

=
v

f
· (
√
m−

√
d)(
√
m− 2)x2 − 2dx+ 2

√
m(
√
m+

√
d)(
√
m− 2)

(2
√
m− 4)x2 − 2dx+ 4

√
m(
√
m− 2)

=
v

f
· (
√
m−

√
d)x2 − 2(

√
m+ 2)x+ 2

√
m(
√
m+

√
d)

2x2 − 2(
√
m+ 2)x+ 4

√
m

.

Since

f |D =

√
m−

√
d− 2

√
m+

√
d
· x2 +

√
d

2
(
√
m−

√
d+ 2)x+

√
m(2−

√
m−

√
d)

and

v|D =

√
m+

√
d− 2

√
m+

√
d

x2 −
√
d[1 +

1

2
(
√
m−

√
d)]x+

√
m(
√
d−
√
m+ 2),

one concludes that

∂D(Rn) =

√
m−

√
d

2
·
√
m+

√
d− 2

√
m−

√
d− 2

= −1 ∈ E(D)×/E(D)×n.

The other residues are

∂D(Rn) =

{
−1 ∈ E(D)×/E(D)×n D ∈ {l−1 , l−3 }√
d−
√
m

2
∈ E(D)×/E(D)×n D ∈ {l−4 , l−6 }

by (4.3) and straightforward computations. �

Lemma 4.4. Let K = k(
√
m,
√
d) ⊂ k̄. Then

Br(UK)/Br1(UK) ⊃ (Z/n) if and only if µn ⊂ K and − 1,

√
d−
√
m

2
∈ K×n.

In this case, the element Rn ∈ Br(V ) as defined in Theorem 4.2 belongs to Br(UK) ⊂ Br(V ),
is of order n, and generates the n-torsion subgroup of Br(UK)/Br1(UK) ⊂ Br(Ū).

Proof. Note that under the hypothesis −1 ∈ K×n, formula (4.4) shows that the condition√
d−
√
m

2
∈ K×n is independent of the choice of the square roots of d and m in k̄.

If µn ⊂ K and −1, (
√
d −
√
m)/2 ∈ K×n, then Rn ∈ Br(UK) by Proposition 4.3 and it has

image of order n in Br(U) ' Q/Z by Theorem 4.2. This proves one implication.

Let us prove the converse statement. Assume (Z/n) ⊂ Br(UK)/Br1(UK). The isomorphism
Br(U) ∼= (Q/Z)(−1) given by Proposition 2.1 is Galois equivariant. From Lemma 2.4, we then
get µn ⊂ K.
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Since the lines l−i in Lemma 3.1 are defined over K ⊂ k̄ for 1 ≤ i ≤ 6, the open subset

V = UK \ {
6⋃
i=1

l−i }

is defined over K. It satisfies Pic(Vk̄) = 0 since Vk̄ ∼= G2
m,k̄

. One has the following commutative
diagram of exact sequences

0 // Br(K) = Br1(UK) //

��

Br1(V )
∂K //

��

⊕6
i=1H

1(K,Q/Z)l−i

=

��
0 // Br(UK) // Br(V )

∂K // ⊕6
i=1H

1(K,Q/Z)l−i

(4.5)

by [4, Theorem 3.4.1, Remark 3.3.2], [20, Lemma 6.1] and Theorem 3.4 (which gives Br(K) =
Br1(UK)). From Prop. 2.2 we know that k̄× = k̄[U ]× and that Pic(U) is a lattice. From the
exact sequence of lattices with trivial Galois action

1→ k̄[V ]×/k̄×
div−→ ⊕6

i=1Zl−i
ψ−→ Pic(U)→ 1,

Galois cohomology gives the long exact sequence

0 = H1(K,Pic(U))→ H2(K, k̄[V ]×/k̄×)
div−→ ⊕6

i=1H
2(K,Z)l−i → H2(K,Pic(U)).

That H1(K,Pic(U)) = 0 follows from the fact that Pic(U) is a lattice with trivial Gal(k̄/K)
action. The following diagram

H2(K, k̄[V ]×)
' //

div
��

Br1(V )

∂K
��

⊕6
i=1H

2(K,Z)l−i ⊕6
i=1H

1(K,Q/Z)l−i
'oo

commutes up to sign by [4, Remark 3.3.2] and [6, Lemma 2.1].
Since V has K-points, the exact sequence

1→ k̄× → k̄[V ]× → k̄[V ]×/k̄× → 1

splits as a sequence of Galois modules. From identification (4.1) one gets

H2(K,Pic(U)) ' ⊕4
i=1H

1(K,Q/Z)[l−i ].

One then obtains the following exact sequence

0→ Br(K)→ Br1(V )
∂K−→ ⊕6

i=1H
1(K,Q/Z)l−i

φ−→ ⊕4
i=1H

1(K,Q/Z)[l−i ] (4.6)

which extends the first line of (4.5). Here φ is induced by ψ. By (4.2), it is given on
(χ1, · · · , χ6) ∈ ⊕6

i=1H
1(K,Q/Z)l−i by the formula

φ(χ1, · · · , χ6) = (χ1 + χ5 + χ6, χ2 − χ5, χ3 − χ6, χ4 + χ5 + χ6).
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By Proposition 4.3, one has

∂K(Rn) = (−1,−1

2
(
√
d+
√
m),−1,

√
d−
√
m

2
,−1,

√
d−
√
m

2
) ∈ ⊕6

i=1K
×/K×n.

We now get:

φ(∂K(Rn)) = (

√
d−
√
m

2
,

√
d+
√
m

2
,

√
d+
√
m

2
,−(

√
d−
√
m

2
)2) ∈ ⊕4

i=1K
×/K×n.

By Theorem 4.2, the class Rn ∈ Br(V )[n] is of order n, since it is of order n by going over
to k̄. By hypothesis, we have Z/n ⊂ [Br(UK)/Br1(UK)][n] ⊂ Br(U)[n] ' Z/n. The restriction
map Br(U)[n]→ Br(Vk̄)[n] is an isomorphism, and the last group is spanned by the class of Rn,
which comes from Rn ∈ Br(V ). Thus there exists B ∈ Br(UK) such that Rn and B have the
same image in Br(U). Since Rn,B are both contained in Br(V ), one concludes Rn−B ∈ Br1(V ).
Then

φ(∂K(Rn − B)) = φ(∂K(Rn))

= (

√
d−
√
m

2
,

√
d+
√
m

2
,

√
d+
√
m

2
,−(

√
d−
√
m

2
)2) ∈ ⊕4

i=1K
×/K×n

is trivial. This implies −1 and (
√
d−
√
m)/2 ∈ K×n. �

Lemma 4.5. Let K = k(
√
m,
√
d). Suppose that Rn = (f, g)ζn belongs to Br(UK). Suppose

µn ⊂ k. Then the image of B := CorK/k(Rn) ∈ Br(U) in Br(U)/Br1(U) ⊂ (Z/n) generates a
cyclic group of order n1 = n/gcd(n, [K : k]).

Proof. In Br(U), one has

Resk/k̄(B) = Resk/k̄ ◦ CorK/k(Rn) =
∑
σ

Rσ
n,

where σ runs through the embeddings of K into k̄. Since µn ⊂ k, one has Rσ
n = Rn. Therefore

Resk/k̄(B) = [K : k] ·Rn in Br(U), and the proof is completed. �

Lemma 4.6. Let K = k(
√
m,
√
d). Suppose µn ⊂ k. Let n1 = n/gcd(n, [K : k]).

1) Assume −1 ∈ K×n and (
√
d−
√
m)/2 ∈ K×n. Then the element B := CorK/k(Rn) belongs

to Br(U) and generates the cyclic subgroup of order n1 of Br(U)/Br1(U).
2) Suppose n is odd. Then Br(U)/Br1(U) ⊃ (Z/n) if and only if (

√
d −
√
m)/2 ∈ K×n. In

that case, the element B := CorK/k(Rn) belongs to Br(U)[n] and generates the cyclic subgroup
of order n of Br(U)/Br1(U).

Proof. 1) Suppose −1 and (
√
d −
√
m)/2 ∈ K×n, then Rn ∈ Br(UK) by the computation of

residues in Proposition 4.3. By Lemma 4.5, the image of B ∈ Br(U) in Br(U)/Br1(U) is cyclic
of order n1.

2) Suppose n is odd. Then n = n1 and −1 ∈ K×n. The sufficiency follows from 1). The
converse follows from

Z/n ⊂ Br(U)/Br1(U) ⊂ Br(UK)/Br1(UK) ⊂ Br(U).

and Lemma 4.4. �
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Lemma 4.7. Let F = k(
√
d) and G = Gal(F/k). Then the natural map Br(U) → Br(UF )G is

surjective.

Proof. We may assume that F/k is of degree 2. We know that F× = H0(UF ,Gm) by Proposition
2.2. This implies

H3(G,H0(UF ,Gm)) = H3(G,F×) = H1(G,F×) = 0

by periodicity of the cohomology of cyclic groups and by Hilbert’s theorem 90. The spectral
sequence

Ep,q
2 = Hp(G,Hq(UF ,Gm))⇒ Hp+q(U,Gm).

then gives an exact sequence

Br(U)→ Br(UF )G → H2(G,Pic(UF )),

which by periodicity of the cohomology of cyclic groups for Tate cohomology groups reads

Br(U)→ Br(UF )G → Ĥ0(G,Pic(UF )).

a) Suppose F 6= k(
√
m). Since k[U ]× = k

×, the natural map Pic(UF ) ↪→ Pic(U)gF is
injective (in fact, it is an isomorphism since U(F ) 6= ∅). This implies that Pic(UF )G ↪→ Pic(U)g

is injective. Since
Pic(U)g = Pic(UK)Gal(K/k) = 0

with K = F (
√
m) by (3.20) in the proof of Theorem 3.4, one has Pic(UF )G = 0, hence

Ĥ0(G,Pic(UF )) = 0.
b) Suppose F = k(

√
m). Let ρ be the generator of G. By the computation in Theorem 3.4

for the case k(
√
d) = k(

√
m) 6= k, the group Pic(UF )G is generated by

2[l4] + [l1]− [l2]− [l3] = (1 + ρ)[l4],

hence Ĥ0(G,Pic(UF )) = 0. �

Let K = k(
√
d,
√
m). Define

I = {n ∈ N : µn ⊂ k and − 1,

√
d−
√
m

2
∈ K×n}. (4.7)

If p, q are coprime integers, then µpq ⊂ k if and only if µp ⊂ k and µq ⊂ k. Similarly, for p and
q coprime integers, and ρ ∈ K×, one has ρ ∈ K×pq if and only if ρ ∈ K×p and ρ ∈ K×q. Going
over to primary components, one concludes that if p, q are integers in I, then the least common
multiple [p, q] of p and q is in I. Therefore I is a directed set with respect to divisibility. The
following theorem is the main result of this section.

Theorem 4.8. Let K = k(
√
d,
√
m). Let

I = {n ∈ N : µn ⊂ k and − 1,

√
d−
√
m

2
∈ K×n}.

Then
Br(U)/Br1(U) ∼= lim−→

n∈I
Z/n.
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In particular, if I is finite, for instance if k is a number field, then

Br(U)/Br1(U) ∼= Z/N
where N is the biggest integer in I.

Proof. One has Br(U)/Br1(U) ⊂ Q/Z(−1)g by Proposition 2.1. Hence Br(U)/Br1(U) is a
subgroup of the abelian group Q/Z. We thus only need to show:

Z/n ⊂ Br(U)/Br1(U) if and only if n ∈ I (4.8)

and we only need to show this for n a power of a prime number.
Suppose Br(U)/Br1(U) ⊃ Z/n. Then µn ⊂ k by Proposition 2.1 and Lemma 2.4. We have

Br(U)/Br1(U) ⊂ Br(UK)/Br1(UK) ⊂ Br(U).

Thus Z/n ⊂ Br(U)/Br1(U) implies Z/n ⊂ Br(UK)/Br1(UK). Then n ∈ I follows from Lemma
4.4. This establishes one direction of the equivalence (4.8).

Suppose n ∈ I is an odd integer. Lemma 4.6 gives the reverse direction in (4.8) in a very
precise form, namely the image of the element CorK/k(Rn) ∈ Br(U)[n] generates the cyclic
subgroup of order n of Br(U)/Br1(U).

To complete the proof of the theorem, it is now enough to prove:

n = 2s and n ∈ I =⇒ Br(U)/Br1(U) ⊃ Z/n. (4.9)

Since −1 ∈ K×n, one concludes that µ2n ⊂ K. Fix a primitive 2n-th root of unity ζ2n ∈ K.
Essentially the same computations as in Proposition 4.3 give:

∂D(
f

g
,−u

v
)ζ2n =



√
d+
√
m

2
∈ K(D)×/K(D)×2n D = l−2

−1 ∈ K(D)×/K(D)×2n D = l−3√
m−
√
d

2
∈ K(D)×/K(D)×2n D = l−4√

d−
√
m

2
∈ K(D)×/K(D)×2n D = l−6

1 ∈ K(D)×/K(D)×2n D ∈ {l−1 , l−5 }

(4.10)

Let F = k(
√
d). If K/F is of degree 2, let τ be the generator of Gal(K/F ). If F/k is of

degree 2, let σ denote the generator of Gal(F/k). We break up the discussion according to
the structure of the field extension K/k. In each case, we shall produce an explicit element
B ∈ Br(UF ) which is of order n over the algebraic closure and which is invariant under Gal(F/k).
Lemma 4.7 will then ensure that it comes from a class in Br(U) whose image in Br(U)/Br1(U)
is of order n.

• Suppose [K : k] = 4. Let

B = CorK/F (
f

g
,−u

v
)ζ2n + CorK/F (

u1

v1

,

√
d−
√
m

2
)ζ2n ∈ Br(F (X))

where u1 = y − 2t and v1 = x+ 1
2
(
√
d−
√
m)y − z +

√
mt. Since

{u1 = 0} ∩X = L2 + l−2 + l2
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{v1 = 0} ∩X = l−6 + τ(l−4 ) + l2

by Bezout’s theorem, one obtains that

∂D(
u1

v1

,

√
d−
√
m

2
)ζ2n =

√
d−
√
m

2
∈ K(D)×/K(D)×2n (4.11)

for D ∈ {l−2 , τ(l−4 ), l−6 }. Since (
√
d−
√
m)/2 ∈ K×n, we have

−1 = NK/F ((
√
d−
√
m)/2) ∈ F×n and µ2n ⊂ F.

When D is defined over F , the corestriction map

H1(K(D),Z/2n) = K(D)×/K(D)×2n
CorK/F−−−−→ H1(F (D),Z/2n) = F (D)×/F (D)×2n

is given by norm. Since the residue maps commute with corestriction, the residues of B at
D ∈ {l−i }3

i=1 are trivial by (4.10) and (4.11).
Suppose we have D ∈ {l−i } with i ∈ {4, 5, 6}. Then D is not defined over F . One can identify

K(D) with F (D) where D is the integral divisor on XF which is the image of the divisor D
on XL via the projection map XL → XF . We shall say that D is below D. Then τ induces an
isomorphism from K(τD) to F (D).

For D below l−4 , one has

∂D(B) =

√
m−

√
d

2
· (
√
d+
√
m

2
)−1 = (

√
m−

√
d

2
)2 ∈ F (D)×/F (D)×2n

by (4.10), (4.11) and the above identification. For D below l−6 , one has

∂D(B) = 1 ∈ F (D)×/F (D)×2n

by (4.10), (4.11) and the above identification. Since
√
d−
√
m

2
∈ K×n ⊂ K(D)×n = F (D)×n,

the class ∂D(B) is trivial in H1(F (D),Z/2n). We thus get

B ∈ Br(UF ). (4.12)

Note that µ2n ⊂ F . Then B is of order n in Br(U) by Lemma 4.5 (replacing k by F ).
Since we have µn ⊂ k, Proposition 2.1 shows that the Galois group Gal(k/k) acts trivially

on the unique subgroup of order n in Br(U). This implies that B − Bσ ∈ Br1(UF ), and
Br1(UF ) = Br(F ) by Theorem 3.4. Let A = B−Bσ ∈ Br(F ). We shall prove that A = 0, hence
B = Bσ.

We need to distinguish two subcases.
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Subcase a). Suppose µ2n ⊂ k. By evaluating B and Bσ at the special point (−2, 0,
√
d) in

U(F ), one obtains

A =CorK/F (
−2
√
d(
√
m−

√
d)

−m+
√
md+ 2

√
m
,
−
√
m√

d− 2
)ζ2n − CorK/F (

−2
√
d√

d−
√
m+ 2

,
2

√
m−

√
d

)ζ2n

+ CorK/F (
2√

d−
√
m+ 2

,

√
d−
√
m

2
)ζ2n − CorK/F (

2√
d−
√
m+ 2

,
−
√
d−
√
m

2
)ζ2n

in Br(F ). Since (α, β)ζ2n = (α−1, β−1)ζ2n in Br(K) for α, β ∈ K×, and ((1− α)−1, α)ζ2n = 0 for
any α 6= 0, 1 in K, one has

(
−2
√
d(
√
m−

√
d)

−m+
√
md+ 2

√
m
,
−
√
m√

d− 2
)ζ2n = (−

√
m(
√
m+

√
d− 2)

4
√
d

,−
√
d− 2√
m

)ζ2n

= (−
√
m(
√
m+

√
d− 2)

4
√
d

· (1 +

√
d− 2√
m

)−1,−
√
d− 2√
m

)ζ2n = (− m

4
√
d
,−
√
d− 2√
m

)ζ2n

in Br(K).
Similarly, one has

(
−2
√
d√

d−
√
m+ 2

,
2

√
m−

√
d

)ζ2n = (

√
d−
√
m+ 2

−2
√
d

,

√
m−

√
d

2
)ζ2n

= (

√
d−
√
m+ 2

−2
√
d

· (1−
√
m−

√
d

2
)−1,

√
m−

√
d

2
)ζ2n = (

−1√
d
,

√
m−

√
d

2
)ζ2n .

Therefore

A =CorK/F (− m

4
√
d
,−
√
d− 2√
m

)ζ2n − CorK/F (
−1√
d
,

√
m−

√
d

2
)ζ2n

+ CorK/F (
2√

d−
√
m+ 2

, (

√
d−
√
m

2
)2)ζ2n

=(− m

4
√
d
,
m− 4

√
d

−m
)ζ2n + (− 1√

d
,−1)ζ2n .

Since (α,−α)ζ2n = 0 in Br(F ) for any α ∈ F×, one has

(− m

4
√
d
,
m− 4

√
d

−m
)ζ2n = (− m

4
√
d
,
m

4
√
d
· m− 4

√
d

−m
)ζ2n = (− m

4
√
d
, 1− m

4
√
d

)ζ2n

= (−1, 1− m

4
√
d

)ζ2n = (−1,
(
√
d− 2)2

−4
√
d

)ζ2n = (−1,
1

−4
√
d

)ζ2n = (−1,− 1√
d

)ζ2n .

One concludes that A = 0.

Subcase b). Suppose µ2n 6⊂ k. Since µ2n ⊂ F and [F : k] = 2, one has F = k(ζ2n). Note
that µn ⊂ k, one gets ζσ2n = ζ1+n

2n . Considering the action of Galois group on the cyclic algebra
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(a, b)ζ2n for a, b ∈ K(U)×, one has

(a, b)σζ2n = (aσ, bσ)ζσ2n .

Since the character given by bσ and ζσ2n is the (n+ 1)-th power of the character given by bσ and
ζ2n, one concludes

(aσ, bσ)ζσ2n = (n+ 1)(aσ, bσ)ζ2n
in Br(K(U)).

By evaluating B and Bσ at the special point (−2, 0,
√
d) in U(F ), one concludes

A =CorK/F (
−2
√
d(
√
m−

√
d)

−m+
√
md+ 2

√
m
,
−
√
m√

d− 2
)ζ2n − (1 + n)CorK/F (

−2
√
d√

d−
√
m+ 2

,
2

√
m−

√
d

)ζ2n

+ CorK/F (
2√

d−
√
m+ 2

,

√
d−
√
m

2
)ζ2n − (1 + n)CorK/F (

2√
d−
√
m+ 2

,
−
√
d−
√
m

2
)ζ2n

in Br(F ). Since
2

√
m−

√
d
,
−
√
d−
√
m

2
∈ K×n,

one obtains

n(
−2
√
d√

d−
√
m+ 2

,
2

√
m−

√
d

)ζ2n = n(
2√

d−
√
m+ 2

,
−
√
d−
√
m

2
)ζ2n = 0

in Br(K). Therefore the computation in Subcase a) is still available and A = 0.
We have thus proved B ∈ Br(UF )G. By Lemma 4.7, this implies that B is in the image of

Br(U)→ Br(UF ).

• Suppose m ∈ k×2 and d /∈ k×2. Then F = K. Let B = Rn as in Theorem 4.2. Then
B ∈ Br(UF ) by Lemma 4.4. By Proposition 2.1, we have Rσ

n−Rn ∈ Br1(UF ). By Theorem 3.4,
we have Br(F ) = Br1(UF ). Thus Rσ

n = Rn +A ∈ Br(F (U)) with A ∈ Br(F ). By evaluating Rn

and Rσ
n at the special point (−

√
m, 0, 0), one concludes that A = 0. Therefore Rn ∈ Br(UF )G

and the result again follows from Lemma 4.7.

• Suppose d ∈ k×2 and m /∈ k×2. Let

B = CorK/k(
f

g
,−u

v
)ζ2n + CorK/k(

u1

v1

,

√
d−
√
m

2
)ζ2n

where
u1 = y − 2 and v1 = x+

1

2
(
√
d−
√
m)y − z +

√
m.

The result follows from (4.12) and F = k.

• Suppose md ∈ k×2 and d /∈ k×2. Recall that n = 2s > 1. By the definition of I, one has√
d−
√
m

2
= (α+β

√
d)2 where α, β ∈ k×. Therefore we have α2 +dβ2 = 0. This implies

√
−d ∈ k.

Therefore F = k(
√
d) = k(

√
−1) 6= k, hence

√
−1 6∈ k, so n = 2 by the definition of I.
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Let B = R2 in Theorem 4.2. Then B ∈ Br(UF ) by Lemma 4.4. Let ρ be the generator of
Gal(F/k). By Proposition 2.1 and Theorem 3.4, there exists

A ∈ Br1(UF ) = Br(F ) such that Rρ
2 = R2 + A.

By evaluating R2 and Rσ
2 at the special point (−2, 0,

√
d) and a similar computation as in

case [K : k] = 4, one concludes

A =− (
−2
√
d(
√
m−

√
d)

−m+
√
md+ 2

√
m
,

√
m√

d− 2
)−1 + (

−2
√
d√

d+
√
m+ 2

,
2

√
m+

√
d

)−1

=− (
−2
√
d(
√
m−

√
d)

−m+
√
md+ 2

√
m
,
−
√
m√

d− 2
)−1 + 0 = −(− m

4
√
d
,−
√
d− 2√
m

)−1

=− (− m

4
√
d
,
(
√
d− 2)2

m
)ζ4 = −(− m

4
√
d
,
m− 4

√
d

m
)ζ4 = (−4

√
d

m
, 1− 4

√
d

m
)ζ4

=(−1, 1− 4
√
d

m
)ζ4 = (−1,

(
√
d− 2)2

m
)ζ4

in Br(F ), where ζ4 is a primitive 4-th root of unity. Note that
√
−1,
√
m ∈ F . Thus we have

A = 0. Therefore R2 ∈ Br(UF )G and the result follows from Lemma 4.7.

• The case K = k follows from Lemma 4.4. �

Corollary 4.9. Suppose that k is a field with an ordering. Then Br(U)/Br1(U) ⊂ Z/2. If d is
positive in that ordering, then Br1(U) = Br(U).

Proof. Let n ∈ I. By (the easy part of the proof of) Theorem 4.8, we have µn ⊂ k and
−1 ∈ K×2. If k can be ordered, this implies n ∈ {1, 2}. If d is positive with respect to an
ordering, then d and m = d + 4 are both positive in the real closure R of k with respect to
this ordering. There is an embedding K ⊂ R. Thus −1 is not a square in K. This implies
I = {1}. �

Corollary 4.10. Let k be a field of characteristic zero. If −1 /∈ k×2 and −d /∈ k×2, then
the quotient Br(U)/Br1(U) has no 2-primary part. If moreover k admits an ordering then
Br1(U) = Br(U).

Proof. The hypothesis is equivalent to
√
−1 6∈ k(

√
d). Suppose 2 ∈ I. By (the easy part of the

proof of) Theorem 4.8, we then have
√
−1 ∈ K× and

√
d−
√
m

2
∈ K×2

with K = k(
√
m,
√
d). Since

√
−1 6∈ k(

√
d), one has k(

√
d) 6= K and

√
m 6∈ k(

√
d). Therefore

−1 = NK/k(
√
d)(

√
d−
√
m

2
) ∈ k(

√
d)×2

which contradicts −d /∈ k×2. �

Remark 4.11. In the case k = Q, we find that Br1(U) = Br(U) as soon as −d /∈ Q×2.
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Remark 4.12. Suppose −1 /∈ k×2. There exist γ, δ ∈ k× be such that γ2 + δ2 = 1 and γ 6= ±δ.
Set u = 4γδ and v = 2(δ2 − γ2). Then u2 + v2 = 4. Let d = −u2 and m = 4 − u2 = v2. Fix
i :=
√
−1 ∈ k̄. Then K = k(

√
d,
√
m) = k(i) is of degree 2 over k, contains

√
−1 and we have:

(
√
d−
√
m)/2 = (ui− v)/2 = γ2 − δ2 + 2γδi = (γ + δi)2 ∈ K×2.

For U = Um, the hard part of the proof of Theorem 4.8 then gives Z/2 ⊂ Br(U)/Br1(U). If
k = Q, it then gives Br(U)/Br1(U) = Z/2.

Remark 4.13. Suppose m ∈ k×2 and d /∈ k×2, so that K = k(
√
d) 6= k. Suppose n ∈ I is a

power of 2. If n = 2, assume µ4 ⊂ k. Then we can write down an explicit element in Br(U)
whose image generates the cyclic subgroup of order n of Br(U)/Br1(U).

Indeed, by assumption we have µn ⊂ k and −1, α ∈ K×n where α = (
√
d−
√
m)/2. Let

χ1 ∈ H1(Gal(k(µ4n)/k),Q/Z) and χ2 ∈ H1(Gal(k(
√
d, 2n
√
α)/k),Q/Z)

be such that the restrictions of χ1 and χ2 to

Gal(K(µ4n)/K) and Gal(k(
√
d, 2n
√
α)/k(

√
d))

are respective generators of these groups. Then the element

B = CorK/k(
f

g
,
u

v
)ζ2n + ((x− 2)(y −

√
m)(z − 2), χ1) + ((x−

√
m)(y − 2)(z −

√
m), χ2)

is in Br(U)[2n], where ζ2n is a primitive 2n-th root of unity. Under the assumption µ4 ⊂ k if
n = 2, the image of B is of order n in Br(U).

5. Failure of the integral Hasse principle

In this section, we explain that all examples which do not satisfy the Hasse principle in [10]
can be accounted for by integral Brauer-Manin obstruction or by the combination of integral
Brauer-Manin obstruction with the reduction theory.

Given a scheme U over Z, and U := U ×ZQ, we let U(AZ) =
∏

p U(Zp), where p runs through
all primes and ∞, and Z∞ = R. We let

U(AZ)• =
∏
p<∞

U(Zp)× π0(U(R))

where π0(U(R)) is the set of connected components of U(R). We have the Brauer-Manin pairing

U(AZ)• × Br(U)→ Q/Z.

The (reduced) Brauer-Manin set is the left kernel of this pairing. Note that the Legendre
symbol takes values in ±1 but the Hilbert symbols used below take values 0 or 1/2 in Q/Z.
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5.1. Integral Brauer-Manin obstructions. Let m 6= 0, 4 be an integer and d = m− 4. Let
Um be the scheme over Z defined by equation (1.1) and Um = Um ×Z Q.

Lemma 5.1. If p is an odd prime with (p, d) = 1, then each element in the following set

{(x± 2, d), (y ± 2, d), (z ± 2, d)} ⊂ Br(Um)

vanishes over Um(Zp) and (x2−4, d) = (y2−4, d) = (z2−4, d) vanishes over Um(Qp). If d > 0,
these elements vanish over Um(R).

Proof. One only needs to consider the case that (d
p
) = −1. Since (1.1) is equivalent to (1.2),

over Z, one concludes that
ordp(x

2
p − 4) = ordp(y

2
p − 4) = 0

for all Mp = (xp, yp, zp) ∈ Um(Zp). By symmetry, one further obtains

ordp(x
2
p − 4) = ordp(y

2
p − 4) = ordp(z

2
p − 4) = 0

for all Mp = (xp, yp, zp) ∈ Um(Zp). This implies that the elements (x± 2, d), (y± 2, d), (z± 2, d)
vanish over Um(Zp).

If (xp, yp, zp) ∈ Um(Qp) \ Um(Zp), one of xp, yp, zp ∈ Qp \ Zp. Without loss of generality, we
assume that xp ∈ Qp\Zp. Then ordp(x2

p−4) is even and (x2
p−4, d)p = 0. The result follows. �

Lemma 5.2. If m < 0, then |x| > 2, |y| > 2, |z| > 2 for any (x, y, z) ∈ Um(R).

Proof. Let (x, y, z) ∈ Um(R). Suppose |x| ≤ 2. Then

m = (y − xz/2)2 + (1− x2/4)z2 + x2 ≥ 0

which contradicts m < 0. So |x| > 2. Similarly |y| > 2, |z| > 2. �

Remark 5.3. Let f : Um → A2 be the morphism defined by projecting (x, y, z) to (x, y).
Therefore the image of Um(R) by f is the subset

W := {(x, y) ∈ R2 : (x2 − 4)(y2 − 4) + 4(m− 4) ≥ 0} ⊂ R2.

The connected components of Um(R) are just the preimages of connected components of W by
f . The four lines x = ±2 and y = ±2 divide the plane R2 into nine parts. Considering the
signature of (x2 − 4)(y2 − 4) on the nine parts, we have

#π0(Um(R)) = #π0(W ) =


1 if m ≥ 4

5 if 0 ≤ m < 4

4 if m < 0.

All connected components of Um(R) are unbounded except the connected component defined
by |x|, |y| < 2 when 0 ≤ m < 4, and the bounded connected component becomes a single point
(0, 0, 0) when m = 0. If m < 4, Γ permutes the four unbounded components transitively. Full
details are given in section 7.
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Let B1 = (x− 2, d), B2 = (y− 2, d), B3 = (z− 2, d) in Br1(Um). By Theorem 3.4, for m not a
square, these three elements generate Br1(Um)/Br0(Um). Let B = (B1,B2,B3). One can define
the evaluation of B over Um(Zp) by

B(Mp) = (B1(Mp),B2(Mp),B3(Mp)) ∈ (Q/Z)3

for Mp ∈ Um(Zp) and

B(Um(Zp)) = {B(Mp) : Mp ∈ Um(Zp)} ⊂ (Q/Z)3

for p ≤ ∞. By the symmetry of the coordinates of (1.1), the symmetric group S3 acts on
B(Um(Zp)) by coordinate permutation.

Lemma 5.4. If m ≡ 1 mod 8, then

B(Um(Z2)) = {(1/2, 1/2, 0), (1/2, 0, 1/2), (0, 1/2, 1/2)}.

Proof. Since m ≡ 1 mod 8, one obtains that d ≡ 5 mod 8 and by (1.1) there is one and only
one coordinate of any point in Um(Z2) belonging to Z×2 .

The remaining two coordinates belong to 4Z2 by (1.1). The result follows from the straight-
forward computation of the Hilbert symbols and the symmetry of the coordinates. �

Lemma 5.5. If p = 3 or p = 5 and ordp(d) is odd, then

B(Um(Zp)) =


{(1/2, 0, 0), (0, 1/2, 0), (0, 0, 1/2)} for p = 3 and ord3(d) = 1

(1
2
Z/Z)3 for p = 3 and ord3(d) ≥ 3

(1
2
Z/Z)3 \ (0, 0, 0) for p = 5 and ord5(d) = 1

(1
2
Z/Z)3 for p = 5 and ord5(d) ≥ 3.

Proof. • Assume p = 3 and ord3(d) = 1. Since (1.1) is equivalent to equation (1.2) and its
variants by coordinate permutations, any point in U(Z3) must have two coordinates in 3Z3 and
the remaining coordinate in Z×3 by (1.2). Without loss of generality, we assume x, y ∈ 3Z3 and
z ∈ Z×3 . Therefore

(x− 2, d)3 = (y − 2, d)3 = 0 and (x+ 2, d)3 = 1/2.

By (3.22), one has (z − 2, d)3 = 1/2, hence B((x, y, z)) = (0, 0, 1/2). The result follows by
permutation of the coordinates.
• Assume p = 3 and ord3(d) ≥ 3. Let d = 32n+1d0 with d0 ∈ Z×3 and n ≥ 1.
By Hensel’s lemma, there is ξ ∈ Z×3 such that

4ξ + 32n+1ξ2 = d0.

This implies:

(32n+1ξ, d)3 = (3ξ, d)3 = (3d0, d)3 = (3d0, 3d0)3 = (−1, 3d0)3 = 1/2.

Then for M3 = (0, 0, 2 + 32n+1ξ) ∈ Um(Z3) we have B(M3) = (0, 0, 1/2).
By Hensel’s lemma, for any a ∈ Z×3 , there is ξ ∈ Z×3 such that

ξ2 − (4a+ 3a2)ξ = 32n−1d0.
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This implies:
ξ ∈ a(Z×3 )2 and (3ξ, d)3 = (3a, d)3 = (−ad0, 3d0)3.

Take
M3 = (2 + 3ξ, 2 + 3a, 2 + 3a) ∈ Um(Z3).

Then

B(M3) =

{
(0, 0, 0) if ad0 ∈ 2 + 3Z3

(1/2, 1/2, 1/2) if ad0 ∈ 1 + 3Z3 .

Since there is ξ ∈ Z×3 such that

ξ2 + d0(4− 3d0)ξ = 32n−1d0

by Hensel’s lemma, one obtains:

−ξ ∈ d0(Z×3 )2 and (3ξ, d)3 = (−3d0, 3d0)3 = 0.

Then

M3 = (−2 + 3d0,−2 + 3d0, 2 + 3ξ) ∈ Um(Z3) and B(M3) = (1/2, 1/2, 0).

The result follows by permutation of the coordinates.
• Assume p = 5 and ord5(d) = 1. One can use the lifting of smooth points of Um(Z/5) as in

[15, Proposition 5.7] to show that B can take all possible values over Um(Z5) except (0, 0, 0).
We prove (0, 0, 0) 6∈ B(Um(Z5)).

By (1.2), there is at most one coordinate of a point in Um(Z5) which is congruent to 3 mod 5.
If that is the case, the sum of the two remaining coordinates is congruent to 0 mod 5 as one
sees by reducing (1.1) over Z/5. By inspecting cases, one sees that B cannot take the value
(0, 0, 0) over such points.

By (1.2), there is at most one coordinate of a point in Um(Z5) which is congruent to 2 mod 5.
If that is the case, both remaining coordinates are congruent to 1 or 4 mod 5 simultaneously
as one sees by reducing (1.1) over Z/5. One only needs to show that B cannot take the value
(0, 0, 0) when both remaining coordinates are congruent to 1 mod 5. Without loss of generality,
we assume that (x5, y5, z5) ∈ Um(Z5) satisfies x5 ≡ y5 ≡ 1 mod 5 and z5 ≡ 2 mod 5. Since
(x5 − 2, d)5 = (y5 − 2, d)5 = 0, one obtains that (z5 + 2, d)5 = 0 by (1.3). By Proposition 3.2,
one has

(x2
5 − 4, d)5 = (y2

5 − 4, d)5 = (z2
5 − 4, d)5 = 1/2.

This implies (z5 − 2, d)5 = 1/2.
The only remaining possibility which one needs to consider is that all coordinates of the

points in Um(Z5) are congruent to 1 mod 5. This is impossible as one sees by reducing (1.1)
over Z/5.
• Assume p = 5 and ord5(d) ≥ 3. One only needs to show (0, 0, 0) ∈ B(Um(Z5)). Let

d = 52n+1d0 with (d0, 5) = 1 and n ≥ 1. There is ξ ∈ Z×5 such that

ξ2 + d0(4− 5d0)ξ = 52n−1d0

by Hensel’s lemma. This implies that ξ ≡ −d0 mod 5 and (5ξ, d)5 = (−5d0, 5d0)5 = 0. Then

M5 = (2 + 5ξ,−2 + 5d0,−2 + 5d0) ∈ Um(Z5) and B(M5) = (0, 0, 0)
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as required. �

The following Proposition extends [10, Prop.8.1(i) and Prop. 8.2], propositions which only
involve elements in Br(X).

Proposition 5.6. Let U be the scheme over Z given by

x2 + y2 + z2 − xyz = 4 + rv2 (5.1)

where r ∈ Z is one of 2,−2,−3, 12,−12 and all prime factors of v are congruent to

±1 mod 8 when r = 2

±1 mod 12 and v2 ≡ 25 mod 32 when r = 12

1 or 3 mod 8 when r = −2

1 mod 3 when r = −3

1 mod 3 when r = −12

and v 6= ±1 when r = −2,−3. Let

B = (x2 − 4, r) = (y2 − 4, r) = (z2 − 4, r) ∈ Br1(U)

with U = U ×Z Q. Then
U(AZ)B = ∅.

Proof. When r = ±2, for anyM2 = (x2, y2, z2) ∈ U(Z2), one of x2, y2, z2 is a unit of Z2 by (5.1).
For example, if x2 is a unit, then

x2
2 − 4 ≡ 5 mod 8 and (x2

2 − 4,±2)2 = 1/2.

Under the assumption v 6= ±1 when r = −2, by Lemma 5.2, (x2
∞ − 4,±2)∞ = 0. For Mp ∈

U(Zp), one has

B(Mp) =

{
1/2 if p = 2,

0 otherwise
by Lemma 5.1 and the given condition for v. This implies∑

p≤∞

B(Mp) = 1/2 6= 0,

hence
U(AZ)B = ∅.

Suppose r = −3,±12. For any local solution M3 = (x3, y3, z3) ∈ U(Z3), there is at least
one coordinate of M3 belonging to 3Z3. Otherwise, suppose x3 and y3 are in Z×3 . Then
(x2

3−4)(y2
3−4) ∈ 9Z3. A contradiction is derived by (5.1). Since (α2−4, r)3 = 1/2 for α ∈ 3Z3,

one concludes that B(M3) = 1/2.
When r = 12, then B = (x2− 4, 3) = (y2− 4, 3) = (z2− 4, 3). Since (3

p
) = (−1)

1
2

(p−1)(p
3
) = 1

for any p ≡ ±1 mod 12 by the quadratic reciprocity law, by Lemma 5.1, one only needs to
consider p = 2. Similarly, for r = −3,−12, since (−3

p
) = (p

3
) = 1 for p ≡ 1 mod 3, by Lemma

5.2 one reduces to the computation for p = 2.
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We claim that for any local solutionM2 = (x2, y2, z2) ∈ U(Z2), there is at least one coordinate
of M2 in Z×2 when for r = −3,±12. This is clear for r = −3 since v is odd. Suppose r = ±12,
otherwise, we can write x2 = 2ξ, y2 = 2η and z2 = 2δ with ξ, η, δ ∈ Z2 and obtain the following
equation

(ξ2 − 1)(η2 − 1) = (δ − ξη)2 − rv2/4 (5.2)

by (5.1). Since ±3 6∈ Z×2
2 , one concludes that ξ and η are in 2Z2 by (5.2). Similarly, δ ∈ 2Z2.

Suppose r = −12. The left hand side of (5.2) is ≡ 1 mod 4, but the right hand side is
≡ 3 mod 4, which is impossible. So there is at least one coordinate of M2 in Z×2 .

Suppose r = 12. Write ξ = 2ξ1, η = 2η1 and δ = 2δ1 with ξ1, η1, δ1 ∈ Z2. One obtains that

(4ξ2
1 − 1)(4η2

1 − 1) = 4(δ1 − 2ξ1η1)2 − 3v2. (5.3)

If all ξ1, η1 and δ1 are in 2Z2, then −3 ∈ Z×2
2 by (5.3), which is impossible.

If two of {ξ1, η1, δ1} are in 2Z2 and the remaining one is in Z×2 , we can write

ξ1 = 2a, η1 = 2b with a, b ∈ Z2

and δ1 ∈ Z×2 by symmetry. Then

4− 3v2 ≡ (16a2 − 1)(16b2 − 1) ≡


1 mod 32 when a ∈ 2Z2, b ∈ 2Z2

−15 mod 32 when ab ∈ 2Z2

152 mod 32 when ab ∈ Z×2
by (5.3). This implies

v2 ≡


1 mod 32 when a ∈ 2Z2, b ∈ 2Z2

17 mod 32 when ab ∈ 2Z2

1 mod 32 when ab ∈ Z×2
which contradicts the assumption on v.

If two of {ξ1, η1, δ1} are in Z×2 and the remaining one is in 2Z2, we can assume δ1 ∈ 2Z2 and
ξ1, η1 ∈ Z×2 by symmetry. This implies that −3 ∈ (Z×2 )2 by (5.3), which is impossible.

If all ξ1, η1 and δ1 are in Z×2 , then 3 · 3 ≡ 4− 3v2 mod 32 by (5.3). Therefore v2 ≡ 9 mod 32
which contradicts the assumption on v.

Therefore the above claim follows, i.e., there is at least one coordinate of M2 in Z×2 . Since
(α2

2 − 4,±3)2 = (−3,±3)2 = 0 for α2 ∈ Z×2 , one concludes that B vanishes over U(Z2). For
Mp ∈ U(Zp), one has

B(Mp) =

{
1/2 if p = 3,

0 otherwise.

This implies ∑
p≤∞

B(Mp) = 1/2 6= 0,

hence U(AZ)B = ∅. �
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Remark 5.7. The element B = (x2 − 4, r) ∈ Br(U) actually belongs to Br(X). Let S be the
finite set of primes which divide 2d = 2rv2. For a prime p /∈ S, the element B vanishes not only
on U(Zp) but also on U(Qp) (Lemma 5.1). From m > 4 and m < 0 we get that B vanishes on
U(R) (Lemma 5.1 and Lemma 5.2). The above proof then shows that

[
∏
p∈S

U(Zp)×
∏
p/∈S

U(Qp)]
B

is empty. In particular, assuming there are Qp-points everywhere locally, we get that U(Q) does
not meet the open subset of

∏
p∈S U(Zp) which is orthogonal to the element B. This represents

a lack of weak approximation – which is a stronger result than the same statement for U(Z).
On the other hand, for m 6= 0, 4, it is a special case of a theorem of Salberger and Skoroboga-

tov [19] that the smooth cubic surface given by t(x2 + y2 + z2) − xyz = mt3 satisfies weak
approximation with Brauer–Manin obstruction.

Remark 5.8. There is an error in the proof of [10, Proposition 8.1 (i)]. A contradiction is
derived from the fact that q ≡ ±5 mod 8 and {±2} is a quadratic residue modulo q. However,
when q ≡ 3 mod 8, −2 is a quadratic residue modulo q and this is not a contradiction.
The corresponding result should be modified. Moreover, the additional requirement that v ∈
{0,±3,±4} mod 9 can be replaced by the local condition in [10, Proposition 6.1].

Proposition 8.3 in [10] can be improved as follows.

Proposition 5.9. Let v be an integer all prime factors of which are congruent to ±1 mod 5.
Let U be the scheme over Z given by the equation

x2 + y2 + z2 − xyz = m = 4 + 20v2

and let U = U ×Z Q. Then U(AZ)Br1(U) = ∅.

The smallest positive such v is v = 11, which gives m = 4 + 20v2 = 2424.

Proof. We only consider the following subset A of Br1(U)

{(x± 2, 5), (y ± 2, 5), (z ± 2, 5)}.
Then each element β ∈ A vanishes over U(Zp) for p 6= 2, 5 by Lemma 5.1 and the property
(5
p
) = (p

5
) = 1 for p ≡ ±1 mod 5.

Let M5 = (x5, y5, z5) ∈ U(Z5). By permutation of the coordinates and reduction of the
equation

(x2 − 4)(y2 − 4) = (2z − xy)2 − 80v2

modulo 25, one sees that there is at most one coordinate of M5 which is congruent ±2 mod 5.
We consider

V = (x2
5 − 4, 5)5 = (y2

5 − 4, 5)5 = (z2
5 − 4, 5)5.

We have two possibilities.
a5) At least one of the coordinates is ±1 mod 5, then V = 1/2. Therefore half of the elements

in A vanish at M5 and the other half do not vanish.
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b5) Two coordinates of M5 are in 5Z5 and the remaining one is ±2 mod 5. In this case,
V = 0. Without loss of generality, we assume x5, y5 ∈ 5Z5. Then z2

5 ≡ 4 + 20 mod 25 by the
given equation. This implies that z5 ≡ ±7 mod 25. Therefore

(x5 ± 2, 5)5 = (y5 ± 2, 5)5 = 1/2 and (z5 ± 2, 5)5 = 0.

Thus for any point M5 ∈ U(Z5) at most 3 of the elements in A vanish at M5.

Let now M2 = (x2, y2, z2) ∈ U(Z2). Recall that (2, 5)2 = 1/2 and (u, 5)2 = 0 for any u ∈ Z×2 .
a2) If one coordinate, say x2, belongs to Z×2 , then each of x2±2 is in Z×2 hence (x2±2, 5)2 = 0.

From the given equation we immediately see that if M2 has one coordinate in Z×2 , then it has
at least 2. This then implies that at least 4 elements in A vanish at M2.

b2) If no coordinate of M2 is in Z×2 , then one can write

x2 = 2ξ, y2 = 2η, z2 = 2δ with ξ, η, δ ∈ Z2

and the equation gives
(ξ2 − 1)(η2 − 1) = (δ − ξη)2 − 5v2.

Since 5 6∈ Z×2
2 , one concludes that ξ and η are in 2Z2. Similarly, δ ∈ 2Z2. For each element in

the set
{(x± 2, 5), (y ± 2, 5), (z ± 2, 5)}

the value it takes on M2 is of the shape (2u, 5)2 with u ∈ Z×2 . We see that all elements in A
take the value 1/2 at M2.

It is then an easy matter to see that in whichever combination of one of a5), b5) with one
of a2), b2), there exists an element β ∈ B such that β(M5) + β(M2) 6= 0. Hence for any adèle
{Mp} ∈ U(AZ) there exists an element β ∈ A with the property∑

p

β(Mp) 6= 0 ∈ Q/Z.

�

5.2. Combination of Brauer-Manin obstruction with the reduction theory.

Lemma 5.10. Suppose m 6= 0, 4 and d = m − 4. Let p be an odd prime such that ordp(d) is
even and positive. Then there is a point (xp, yp, zp) ∈ Um(Zp) such that

(xp − 2, d)p = (yp − 2, d)p = (zp − 2, d)p = 0.

Proof. For any odd prime p and a 6= ±2 in the finite field Fp, the point (a, a, 2) is a smooth
point of the affine variety over Fp defined by x2 + y2 + z2−xyz = 4. By Hensel’s Lemma, there
exists a point (xp, yp, zp) ≡ (a, a, 2) mod p in Um(Zp). Therefore

(xp + 2, d)p = (xp − 2, d)p = (yp − 2, d)p = 0.

By (3.22), one has (zp − 2, d)p = 0. �

The following proposition points out that [10, Proposition 8.1 ii)] cannot be explained only
by Brauer-Manin obstruction.
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Proposition 5.11. Let U be the scheme over Z given by

x2 + y2 + z2 − xyz = 4 + 2l2w2 (5.4)

where w is an odd integer and l is a prime with l ≡ ±3 mod 8.
If lw ≡ ±4 mod 9, then U(AZ)Br 6= ∅.

Proof. By [10, Proposition 6.1], the condition lw ≡ ±4 mod 9 implies
∏

p≤∞ U(Zp) 6= ∅. Since
lw is odd, the integer 4 + 2l2w2 is not a square. Therefore, by Corollary 4.9 and Theorem 3.4,
the quotient Br(U)/Br0(U) is generated by

{(x− 2, 2), (y − 2, 2), (z − 2, 2)} (5.5)

By Lemma 5.1, for p - 2lw, the three elements in (5.5) vanish over U(Zp). By Lemma 5.10,
there is a Zp-point Mp at which all three elements in (5.5) vanish for any p | w and p 6= l. We
fix such points.

We shall construct suitable local points Mp = (xp, yp, zp) for p = 2, l.
For p = 2, we take x2 = y2 = 1. By Hensel’s Lemma, there is z2 ∈ Z×2 satisfying

z2 − z = 2 + 2l2w2 (5.6)

. Then (x2 − 2, 2)2 = (y2 − 2, 2)2 = 0 and

(z2 − 2, 2)2 = (−1− r, 2)2 =
1

2
,

where r is the other root of (5.6) with ord2(r) = ord2(2 + 2l2w2) = 2.
Over the finite field Fl, we can choose (a, b, c) ∈ Fl × F×l × F×l satisfying a2 − 4bc = 2w2.

Obviously a− b− c 6= 0, otherwise we have (b− c)2 = 2w2, which is impossible since (2
l
) = −1.

Therefore (b, c, a− b− c) is a solution of the equation

(x′ + y′ + z′)2 − 4x′y′ = 2w2 mod l

with x′y′z′ 6= 0, hence by Hensel’s lemma there is a solution (αl, βl, γl) of the equation

(x′ + y′ + z′)2 − x′y′(4 + l · z′) = 2w2

over Zl with γl ∈ Z×l . Then

(xl, yl, zl) = (−2 + αll,−2 + βll, 2 + γll) ∈ Um(Zl)

with
(xl − 2, 2)l = (yl − 2, 2)l = 0 and (zl − 2, 2)l = 1/2.

One concludes that
(xp, yp, zp)p≤∞ ∈ U(AZ)Br

as desired. �

If w = 1 in Proposition 5.11 and l is a sufficiently large prime, one can still prove the equation
(5.4) has no integral solutions by combining Brauer-Manin obstruction with the reduction
theory as given in [10, Proposition 8.1 ii)]. In fact, we produce more counterexamples.
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Proposition 5.12. The equation

x2 + y2 + z2 − xyz = 4 + rl2

has no integral solution in each of the following cases:
i) r = 2 and l ≥ 13 is a prime with l ≡ ±4 mod 9;
ii) r = 12 and l ≥ 37 is a prime, l2 ≡ 25 mod 32 and 1 + 3l2 is not a sum of two squares

(e.g. l = 37, 43, ...);
iii) r = −2 and l ≥ 13 is a prime;
iv) r = −3 and l ≥ 17 is a prime;
v) r = −12 and l ≥ 37 is a prime.

Proof. Let us first check that in each of the above cases, m = 4 + rl2 is “generic” as defined
in [10], i.e. there is no integral solution with one of the coordinates of absolute value 0, 1 or
2. This is automatic for m < 0, hence in cases (iii), (iv), (v). In case i), see the proof of [10,
Proposition 8.1]. In case ii), u2 + 3v2 = 4(m− 1) = 4(3 + 12l2) is not solvable over Z because

(−3, 4(3 + 12l2))3 = (−3, 1 + 4l2)3 = (−3, 5)3 = 1/2.

By our assumption, u2 +v2 = 4+12l2 is not solvable over Z. Since 12l2 is not a square, 4+12l2

is generic.
Let us now suppose that one of the given equations has an integral solution.
In the cases i) and ii), by the reduction theory ([10, Theorem 1.1]), there is an integral

solution (x0, y0, z0) satisfying

3 ≤ |x0| ≤ |y0| ≤ |z0| and |x0| ≤ (4 + rl2)
1
3 .

Suppose r = 2 and l ≥ 13, or r = 12 and l ≥ 37. We have |x0| + 2 < l. This implies that
x2

0 − 4 has no l-factor. We therefore have (x2
0 − 4, r)l = 0.

By the purely local computations in Proposition 5.6, if r = 2, we have (x2
0 − 4, r)2 = 1/2.

Then we have

(x2
0 − 4, r)p =

{
0 if p 6= 2

1/2 if p = 2;

Similarly, by the purely local computations in Proposition 5.6, if r = 12, we have

(x2
0 − 4, r)2 = 0 and (x2

0 − 4, r)3 = 1/2.

Therefore

(x2
0 − 4, r)p =

{
0 if p 6= 3

1/2 if p = 3.

This contradicts the Hilbert reciprocity law.

In the cases iii), iv) and v), by the reduction theory ([10, Theorem 1.1]), there is an integral
solution (x0, y0, z0) satisfying

3 ≤ x0 ≤ y0 ≤ z0 ≤
1

2
x0y0.
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We claim x0 < l − 2. Otherwise, we would have

−rl2 − 4 =x0y0z0 − x2
0 − y2

0 − z2
0 ≥ x0y0z0 − x2

0 − y2
0 −

1

2
x0y0z0

=
1

2
x0y0z0 − x2

0 − y2
0 ≥

1

2
(l − 2)y2

0 − 2y2
0

=
1

2
(l − 6)y2

0 ≥
1

2
(l − 6)(l − 2)2.

If r = −2 and l ≥ 13, or r = −3 and l ≥ 17, or r = −12 and l ≥ 37. This is impossible. This
implies that x2

0 − 4 has no l-factor and thus (x2
0 − 4, 2)l = 0.

By the purely local computations in Proposition 5.6, if r = −2, we have (x2
0 − 4, r)2 = 1/2.

Then

(x2
0 − 4, r)p =

{
0 if p 6= 2

1/2 if p = 2.

This contradicts the Hilbert reciprocity law.
By the purely local computations in Proposition 5.6, if r = −3,−12, one has

(x2
0 − 4, r)2 = 0 and (x2

0 − 4, r)3 = 1/2.

So

(x2
0 − 4, r)p =

{
0 if p 6= 3

1/2 if p = 3.

This contradicts the Hilbert reciprocity law. �

The following Lemma is an extension of the previous proposition. One needs this extension
in order to get the lower bound in Theorem 5.14.

Lemma 5.13. Let r = 2,−2,−3,−12. Let a > 0 be an integer and l be a prime. Let m =
4 + ra2l2. Suppose a > 0 is prime to r and that the Hilbert symbol (p, r)p = 0 for any prime
divisor p of a. In the case r = 2, suppose moreover al ≡ ±4 mod 9.

Then there exists a positive constant θr > 0 only depending on r, such that, if a < θrl
1/2 and

l is large enough (depending on θr), then the equation

x2 + y2 + z2 − xyz = 4 + ra2l2

has no integral solution.

Proof. Assume there is an integral solution.
i) Suppose r = 2. By the last part of the proof of [10, Proposition 8.1], it is clear that

4+ra2l2 is "generic". By the reduction theory ([10, Theorem 1.1]), there is an integral solution
(x0, y0, z0) satisfying

3 ≤ |x0| ≤ |y0| ≤ |z0| and |x0| ≤ (4 + 2a2l2)
1
3 .

If θ2 < 1/
√

2, then

|x0| ≤ (4 + 2a2l2)
1
3 < (4 + 2θ2

2l
3)1/3 < l − 2,
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the last inequality holds for l large enough. This implies that x2
0− 4 has no l-factor. Therefore

(x2
0 − 4, 2)l = 0. By similar purely local computations as in Proposition 5.12, we conclude that

the integral Brauer-Manin set of the equation

x2 + y2 + z2 − xyz = 4 + ra2l2

is empty, hence this equation has no integral solution.
ii) Suppose r = −2,−3,−12. By the reduction theory ([10, Theorem 1.1]), there is an integral

solution (x0, y0, z0) satisfying
3 ≤ x0 ≤ y0 ≤ z0 ≤ x0y0/2.

We have

−ra2l2 − 4 =x0y0z0 − x2
0 − y2

0 − z2
0 ≥ x0y0z0/2− x2

0 − y2
0

≥(x0/2− 1)y2
0 − x2

0 ≥ x0 · x2
0/2− x2

0 − x2
0 = x3

0/2− 2x2
0.

If we choose 0 < θr < 1/
√
−2r, then x0 < l−2 for l large enough. Therefore (x2

0−4, r)l = 0. By
purely local computations as in Proposition 5.12, we conclude that the integral Brauer-Manin
set of the equation

x2 + y2 + z2 − xyz = 4 + ra2l2

is empty, hence this equation has no integral solution. �

The following result improves upon the lower bound
√
N(logN)−1 in [15, Theorem 1.5].

Theorem 5.14. Let Um be the affine scheme over Z defined by the equation

x2 + y2 + z2 − xyz = m.

We have

#{m ∈ Z : 0 < m < N, Um(AZ)Br 6= ∅ but Um(Z) = ∅} �
√
N(logN)−1/2;

#{m ∈ Z : −N < m < 0, Um(AZ)Br 6= ∅ but Um(Z) = ∅} �
√
N(logN)−1/2

as N → +∞.

Proof. a) To prove the first asymptotic inequality, we restrict attention to positive integers
m = 4 + 2a2l2 with l a prime, l ≡ 19 mod 72 and a an odd positive integer satisfying

(∗) : a ≡ ±4 mod 9 and all prime divisors of a are congruent to ±1 mod 8 .

Fix θ2 < 1/
√

2 as in the proof of Lemma 5.13. By this lemma, if a < θ2l
1/2 and l is large

enough, then the equation
x2 + y2 + z2 − xyz = 4 + 2a2l2

has no integral solution. By Proposition 5.11, we have Um(AZ)Br 6= ∅ for the above values of
m.

Let
NB = #{m ∈ Z : 0 < m < N, Um(AZ)Br 6= ∅ but Um(Z) = ∅}.
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By Lemma 5.13, one obtains

NB ≥
∑

l<
√
N, l≡19 mod 72

#{a : a < θ2

√
l, a <

√
N/l, a satisfies (∗)}

≥
∑

θ
−2/3
2 N1/3<l<N1/2, l≡19 mod 72

#{a : a <
√
N/l, a satisfies (∗)}

≥
∑

θ
−2/3
2 N1/3<l<N5/12, l≡19 mod 72

#{a : a <
√
N/l, a satisfies (∗)}

By a well known lemma (e.g., [15, §5.8]), one has

#{a < N : a satisfies (∗)} ∼ cN(logN)−1/2 as N → +∞
where c > 0 is a constant. Using [1, p.156, Ex. 6], we obtain

NB �
∑

θ
−2/3
2 N1/3<l<N5/12, l≡19 mod 72

√
N(log

√
N − log l)−1/2l−1

≥
√
N(logN)−1/2

∑
θ
−2/3
2 N1/3<l<N5/12, l≡19 mod 72

l−1

�
√
N(logN)−1/2(log log(N5/12)− log log(N1/3)− log(1− 2 log(θ2)

logN
) +O((logN)−1))

=
√
N(logN)−1/2(log(5/4) +O((logN)−1))�

√
N(logN)−1/2

as N → +∞
b) To prove the second asymptotic inequality, we now restrict attention to integers m =

4−2a2l2 and apply Lemma 5.13 to the case r = −2. Since
√
−1 6∈ Q(

√
d) = Q(

√
−2), Corollary

4.10 gives Br(Um) = Br1(Um). The result follows from an argument entirely analogous to the
previous one. �

6. Strong approximation always fails

Let Um be the scheme over Z defined by the equation

x2 + y2 + z2 − xyz = m. (6.1)

The following proposition complements [10, Theorem 1.1 (i)] (see also the discussion below [10,
Lemma 2.1]), which goes back to Markoff, Hurwitz, Mordell. Theorem 1.1(i) of [10] contains
the further information that if m ∈ Z is “generic”, i.e. there no point on Um(Z) with x = 0, 1, 2,
then Γ acts transitively on the solutions and it describes an explicit fundamental set for the set
of integral solutions.

Proposition 6.1. If m > 0, then any integral point in Um(Z) is Γ-equivalent to an integral
point (x0, y0, z0) ∈ Um(Z) such that

3 ≤ x0 ≤ y0 ≤ −z0 or x0 = 0, 1, 2. (6.2)
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Proof. For a given integral point, if its Γ-orbit contains an integral point with the coordinate
x = 0, 1, 2, then the proof is completed. Therefore, we may assume there is no integral point
in the Γ-orbit with x = 0, 1, 2. By changing sign of two coordinates and permutation of the
coordinates, one only needs to consider the generic case, i.e. Γ-orbits of integral points such
that for any point (x, y, z) in the orbit we have

min{|x|, |y|, |z|} ≥ 3.

By changing sign of two coordinates simultaneously, we only need to consider the following
two cases: two coordinates of (x, y, z) are positive and the remaining one is negative; or all
coordinates of (x, y, z) are positive.

Suppose that there is an integral point (x, y, z) ∈ Um(Z) such that two coordinates of (x, y, z)
are positive and the remaining one is negative. Then the result follows from changing sign of
two coordinates so that all of them are negative, permutation of the coordinates so as to get
|x| ≤ |y| ≤ |z| and then change of sign of x and y.

Now we consider an integral point (x, y, z) ∈ Um(Z) such that 3 ≤ x ≤ y ≤ z.
If z ≤ 1

2
xy, then one obtains

z =
1

2
(xy −

√
x2y2 − 4(x2 + y2 −m))

by solving (1.1) for z. This implies√
x2y2 − 4(x2 + y2 −m) = xy − 2z ≤ xy − 2y.

Therefore one has
(x− 2)y2 ≤ x2 −m

by squaring. From x ≥ 3 and m > 0 one concludes y2 < x2. A contradiction is derived.
For any integral point (x, y, z) ∈ Um(Z) with 3 ≤ x ≤ y ≤ z, we thus have z > 1

2
xy. Applying

the Vieta involution, one obtains a new integral point (x, y, xy − z) which satisfies xy − z < z.
If xy−z ≤ 2, since we are in the generic case we must have xy−z ≤ −3, so we have a situation
with two coordinates positive and one negative, and we conclude as above. Suppose xy−z ≥ 3.
We obtain a new integral point (x1, y1, z1) in the Γ-orbit of (x, y, z) with positive coordinates
and x1 + y1 + z1 < x + y + z. This process must stop, that is we reach a situation with two
coordinates positive and one negative. �

The main result of this section is the following theorem.

Theorem 6.2. Let m be any integer. Suppose Um(AZ) 6= ∅. For any finite set S of primes, the
image of the natural map Um(Z)→

∏
p/∈S Um(Zp) is not dense.

Proof. For any sets of primes S1 ⊃ S2, if Um(Z) is not dense in
∏

p 6∈S1
Um(Zp), then Um(Z) is

not dense in
∏

p 6∈S2
Um(Zp). One can thus enlarge S if necessary.

i) Suppose m 6= 0. We may assume S contains 2 and ∞. Let S ′ = {p prime : p | m} and
R =

∏
p∈S\S′ p. Let a be a positive integer prime to m such that

a2R2 − 2aR−m ≥ 0 and aR >
√
|m|+ 9. (6.3)

Let d′ = a2R2 −m and e′p = ordp(d
′).
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Denote

Vε,1,d′ :=
∏
p|d′
{(xp, yp, zp) ∈ Um(Zp) : (xp, yp, zp) ≡ (εaR, 0, 0) mod pe

′
p},

Vε,2,d′ :=
∏
p|d′
{(xp, yp, zp) ∈ Um(Zp) : (xp, yp, zp) ≡ (0, εaR, 0) mod pe

′
p},

Vε,3,d′ :=
∏
p|d′
{(xp, yp, zp) ∈ Um(Zp) : (xp, yp, zp) ≡ (0, 0, εaR) mod pe

′
p},

where ε = ±1. Let

Vε,d′ =
3⋃
i=1

⋃
ε=±1

Vε,i,d′ .

It is clear that Vε,d′ is Γ-invariant, where Γ is the group defined in §1. Since d′ has no prime
factor in S ∪ S ′, we can take the local point (x′p, 0, 0) of Um(Zp) with x′p ≡ aR mod pe

′
p for any

p | d′ by Hensel’s lemma. Obviously,
∏

p|d′(x
′
p, 0, 0) ∈ V1,1,d′ . Therefore Vε,d′ is a non-empty

open subset of
∏

p|d′ Um(Zp).
a) Suppose m > 0. Assume that Um(Z) is dense in

∏
p/∈S Um(Zp). Then Um(Z) ∩ Vε,d′ 6= ∅.

By Proposition 6.1, there is an integral point (x0, y0, z0) ∈ Um(Z) ∩ Vε,d′ such that

3 ≤ x0 ≤ y0 ≤ −z0 or x0 = 0, 1, 2. (6.4)

Since (x0, y0, z0) ∈ Vε,d′ , we have

(x0, y0, z0) ≡ (±aR, 0, 0), (0,±aR, 0) or (0, 0,±aR) mod d′.

If x0 > 0, then
x0 ≥ min{d′, d′ − aR, aR} = aR >

√
m+ 9 > 3 (6.5)

by (6.3). Hence 3 ≤ x0 ≤ (m− 27)1/3 by (6.1) and (6.4). We have
√
m+ 9 > (m− 27)1/3. By

(6.5) a contradiction is derived. Therefore

x0 = 0, y2
0 + z2

0 = m and (y0, z0) ≡ (±aR, 0) or (0,±aR) mod d′,

which is impossible by (6.3). Therefore Um(Z) is not dense in
∏

p|d′ Um(Zp), hence is not dense
in

∏
p/∈S Um(Zp).

b) Suppose m < 0. Assume that Um(Z) is dense in
∏

p/∈S Um(Zp). Then Um(Z) ∩ Vε,d′ 6= ∅.
By [10, Theorem 1.1 (ii)], there is an integral point (x0, y0, z0) ∈ Um(Z) ∩ Vε,d′ such that

3 ≤ x0 ≤ y0 ≤ z0 ≤ x0y0/2.

By [10, Lemma 2.2], one has 3 ≤ x0 ≤
√
|m|+ 9. Since (x0, y0, z0) ∈ Vε,d′ , we have

(x0, y0, z0) ≡ (±aR, 0, 0), (0,±aR, 0) or (0, 0,±aR) mod d′,

Since x0 > 0, then
x0 ≥ min{d′, d′ − aR, aR} = aR >

√
m+ 9

by (6.3), which contradicts x0 ≤
√
|m|+ 9. Therefore Um(Z) is not dense in

∏
p|d′ Um(Zp),

hence is not dense in
∏

p/∈S Um(Zp).
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ii) Suppose m = 0.
We can choose a prime l /∈ S and l ≡ 1 mod 4. Then we may take δ ∈ Z×l such that δ2 = −1.

Therefore (δl, l, 0) ∈ U0(Zl). If U0(Z) is dense in
∏

p/∈S U0(Zp), then there is an integral point
(x0, y0, z0) ≡ (δl, l, 0) mod l2. Therefore (x0, y0, z0) 6= (0, 0, 0) and x0, y0, z0 are all divisible by
l. Since U0(Z) has just two orbits (0, 0, 0) and (3, 3, 3) (see [10, §3.1]), (x0, y0, z0) is contained
in the orbit (3, 3, 3). One has l | 3 since x0, y0, z0 are all divisible by l, which is impossible.
Therefore U0(Z) is not dense in

∏
p/∈S U0(Zp). The proof is completed. �

We can ask for a lighter version of strong approximation: could it be that the reduction
map Um(Z)→ Um(Z/l) is surjective for almost all primes l? For m not a square, the following
proposition gives a conditional negative answer. Indeed it is a special case of Schinzel’s conjec-
ture that under this hypothesis on m the polynomial x2 −m ∈ Z[x] represents infinitely many
primes as x varies in Z.

Proposition 6.3. Assume that m is not a square and that the polynomial x2 − m ∈ Z[x]
represents infinite many primes. Then there exist infinitely many primes l for which there is a
point in Um(Z/l) of the shape (x, 0, 0) with x 6= 0 which is not in the image of Um(Z)→ Um(Z/l).

Proof. Let l be a prime of the shape l = a2 −m with m ∈ Z and a is a positive integer prime
to m, such that

a2 − 2a−m ≥ 0 and a >
√
|m|+ 9. (6.6)

By the above conjecture, there exists infinitely many such pairs (l, a). Denote

Vl := {(±a, 0, 0), (0,±a, 0), (0, 0,±a)} ⊂ (Z/l)3,

here a is the image of a in Z/l. It is clear that Vl ⊂ Um(Z/l) is Γ-invariant.
We will assume m > 0 (the case m < 0 can be proved similarly). Assume that the map
Um(Z)→ Um(Z/l) is surjective. Then there is an integral point ~x ∈ Um(Z)∩Vl. By Proposition
6.1 ([10, Theorem 1.1 (ii) and Lemma 2.2] for m < 0), there is an integral point (x0, y0, z0) ∈
Um(Z) ∩ Vl such that

3 ≤ x0 ≤ y0 ≤ −z0, or x0 = 0, 1, 2.

Since (x0, y0, z0) ∈ Vl, we have

(x0, y0, z0) ≡ (±a, 0, 0), (0,±a, 0) or (0, 0,±a) mod l,

hence, if x0 > 0,
x0 ≥ min{l, l − a, a} = a >

√
m+ 9 (6.7)

by (6.6). Since
√
m+ 9 > 3, one has x0 6= 1, 2. If 3 ≤ x0 ≤ y0 ≤ −z0, hence 3 ≤ x0 ≤ (m−27)1/3

by (6.1). But (x0, y0, z0) ∈ Vl, one has x0 >
√
m+ 9 > (m − 27)1/3 by (6.7), which is a

contradiction to x0 ≤ (m− 27)1/3. Therefore

x0 = 0, y2
0 + z2

0 = m and (y0, z0) ≡ (±a, 0) or (0,±a) mod l.

Then
(y0, z0) ≡ (±a, 0) or (0,±a) mod l

implies |y0| or |z0| ≥ min{l− a, a} = a, hence a2 ≤ m, which is impossible by (6.6). Therefore
Um(Z)→ Um(Z/l) is not surjective. �
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Remark 6.4. When comparing the above results with [3], one should note that the failures of
strong approximation described here correspond to points (xp, yp, zp) ∈ Um(Zp) whose reduction
modulo p has two coordinates equal to 0, hence which geometrically lift to points whose Γ-orbit
is finite.

Lemma 6.5. Let k be a number field. Let U be a smooth geometrically connected variety
over k such that Br(U)/Br0(U) is finite. Let v run through the places of k. Suppose U is an
integral model of U over ok with U(Aok)

Br 6= ∅, here U(Aok) =
∏

v|∞ U(kv)×
∏

v<∞ U(ov). Let
prf : U(Aok)→

∏
v<∞ U(ov) be the natural projection.

If U(ok) is dense in prf (U(Aok)
Br), then there exists a finite set S of places containing ∞k

such that the natural map U(ok)→
∏

v/∈S Um(ov) has dense image.

Proof. Suppose B1, · · · ,Bn generate Br(U)/Br0(U). Then, there exists a finite set S of places
containing ∞k such that B1, · · · ,Bn vanish on U(ov) for any v /∈ S. Since U(Aok)

Br 6= ∅, the
natural projection U(Aok)

Br →
∏

v/∈S U(ov) is surjective. So, if U(ok) is dense in prf (U(Aok)
Br),

then U(ok) is dense in
∏

v/∈S U(ov). �

The above lemma is the exact analogue of the well known statement: if X is projective over
a number field k and Br(X)/Br(k) is finite, and X(k) is dense in X(Ak)

Br nonempty, then weak
weak approximation holds for X.

Corollary 6.6. Supposem 6= 0, 4 and Um(AZ)Br 6= ∅. Then Um(Z) is not dense in prf (Um(AZ)Br),
where prf : Um(AZ)→

∏
p<∞ Um(Zp) is the natural projection.

Proof. By Theorem 3.4 and 4.8, Br(Um)/Br0(Um) is finite. The proof follows from Theorem 6.2
and Lemma 6.5. �

Corollary 6.7. Let prf : Um(AZ) →
∏

p<∞ Um(Zp) be the natural projection. Assume that
Um(Z) 6= ∅.

If m > 4 is not a square, or m is a square with a prime factor congruent to 1 mod 4, or
m < 0, then Um(Z) is Zariski dense but is not dense in prf (Um(AZ)Br).

Proof. By [10, §5.2], Um(Z) is Zariski dense. The result follows from Corollary 6.6. �

Let X be a smooth, projective and geometrically connected variety over a number field k
such that Br(X)/Br0(X) is finite and the Brauer-Manin set of X is not empty. It is well known
that X(k) is Zariski dense in X if X(k) is dense in its Brauer-Manin set. Indeed this then
follows from weak weak approximation. Let S ⊃ ∞k be a finite subset of Ωk, oS the ring of
S-integers of k. Let U be a smooth geometrically connected variety U over k, U an integral
model over oS. We denote

U(AoS) =
∏
v∈S

U(kv)×
∏
v 6∈S

U(ov)

where kv and ov are the completion of k and oS with respect to v ∈ Ωk respectively. One has
the following integral analogy.

Proposition 6.8. Let U be a smooth geometrically connected variety over a number field k such
that Br(U)/Br0(U) is finite. Suppose U is an integral model of U over oS with U(AoS)Br 6= ∅.
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If U(oS) is dense in prS(U(AoS)Br) where prS : U(AoS)→
∏

v 6∈S U(ov) is the natural projection,
then U(oS) is Zariski dense in U .

Proof. Let N be a non-empty Zariski open subset of U and fix a finite set B ⊂ Br(U) generating
Br(U)/Br0(U). There is a sufficiently large finite subset S ′ ⊃ S of Ωk such that N (ov) 6= ∅, N
is smooth over ov and each element in B vanishes over U(ov) for all v 6∈ S ′.

Take v0 6∈ S ′. Then the open subset

N (ov0)×
∏

v 6∈(S∪{v0})

U(ov) ⊂ prS(U(AoS)Br)

has non-empty intersection with U(oS) by the assumption. This implies that

U(ov0) ⊃ U(oS) ∩N (ov0) 6= ∅.

Therefore N ∩ U(oS) 6= ∅ as desired. �

As we have seen in this section, the converse of Proposition 6.8 does not hold.

7. Appendix: the real locus

We here provide details for Remark 5.3. The following lemma should be well known. We
provide the proof for convenience of the reader.

Lemma 7.1. Let X be a topological space with a covering {Xi} of connected subsets of X.
Assume that for any two elements Y and Z in {Xi}, there are X1, · · · , Xk in {Xi} satisfying

Y ∩X1 6= ∅, X1 ∩X2 6= ∅, · · · , Xk−1 ∩Xk 6= ∅, Xk ∩ Z 6= ∅

where Y ,X1, · · · , Xk, Z are the topological closures of Y,X1, · · · , Xk, Z in X respectively. Then
X is connected.

Proof. Suppose that X is not connected. Then X contains a non-empty, open and closed subset
D 6= X. Since {Xi} is a covering of X, there is Z in {Xi} such that Z 6⊂ D.

On the other hand, one has

D ∩Xi = ∅ or Xi ⊂ D (7.1)

for each element Xi in {Xi} by the connectedness of Xi. Since D is not empty, there is Y in
{Xi} such that Y ⊂ D by (7.1). By the assumption, there are X1, · · · , Xk in {Xi} satisfying

Y ∩X1 6= ∅, X1 ∩X2 6= ∅, · · · , Xk−1 ∩Xk 6= ∅, Xk ∩ Z 6= ∅.

Therefore X1 ⊂ D by (7.1). Applying (7.1) repeatedly, one gets

X2 ⊂ D, · · · , Xk ⊂ D.

Finally, one concludes that Z ⊂ D by (7.1). A contradiction is derived. �

Recall that Um is the affine scheme over R defined by the equation

x2 + y2 + z2 − xyz = m. (7.2)
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Proposition 7.2. For m ∈ R, the number of connected components of Um(R) is given by

#π0(Um(R)) =


1 for m ≥ 4

5 for 0 ≤ m < 4

4 for m < 0.

More precisely,
When m < 0, the connected components of Um(R) are

{(x, y, z) ∈ Um(R) : x ≥ 2, y ≥ 2}
{(x, y, z) ∈ Um(R) : x ≤ −2, y ≥ 2}
{(x, y, z) ∈ Um(R) : x ≤ −2, y ≤ −2}
{(x, y, z) ∈ Um(R) : x ≥ 2, y ≤ −2}.

They are unbounded and transitively permuted by Γ.
When 0 ≤ m < 4, the connected components of Um(R) are

{(x, y, z) ∈ Um(R) : x ≥ 2, y ≥ 2}
{(x, y, z) ∈ Um(R) : x ≤ −2, y ≥ 2}
{(x, y, z) ∈ Um(R) : x ≤ −2, y ≤ −2}
{(x, y, z) ∈ Um(R) : x ≥ 2, y ≤ −2}
{(x, y, z) ∈ Um(R) : −2 ≤ x ≤ 2, −2 ≤ y ≤ 2}.

The first four components are unbounded and Γ permutes them transitively. The last component
is bounded and reduced to the point (0, 0, 0) if m = 0.

When 4 ≤ m, then Um(R) is connected and unbounded.

Proof. Since (7.2) is equivalent to

(2z − xy)2 = (x2 − 4)(y2 − 4) + 4(m− 4),

one concludes that the following closed subsets of Um(R)

D1 = {(x, y, z) ∈ Um(R) : x ≥ 2, y ≥ 2}
D2 = {(x, y, z) ∈ Um(R) : −2 ≤ x ≤ 2, y ≥ 2}
D3 = {(x, y, z) ∈ Um(R) : x ≤ −2, y ≥ 2}
D4 = {(x, y, z) ∈ Um(R) : x ≤ −2, −2 ≤ y ≤ 2}
D5 = {(x, y, z) ∈ Um(R) : x ≤ −2, y ≤ −2}
D6 = {(x, y, z) ∈ Um(R) : −2 ≤ x ≤ 2, y ≤ −2}
D7 = {(x, y, z) ∈ Um(R) : x ≥ 2, y ≤ −2}
D8 = {(x, y, z) ∈ Um(R) : x ≥ 2, −2 ≤ y ≤ 2}
D9 = {(x, y, z) ∈ Um(R) : −2 ≤ x ≤ 2, −2 ≤ y ≤ 2}

are connected with Um(R) =
⋃9
i=1 Di.

When m ≥ 4, then D9 ∩Di 6= ∅ for 1 ≤ i ≤ 8. Therefore Um(R) is connected by Lemma 7.1.
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When m < 4, then D2 = D4 = D6 = D8 = ∅. Moreover D9 = ∅ if and only if m < 0.
In this case, one obtains that D1, D3, D5, D7 are the connected components of Um(R), which
are unbounded. Using (x, y, z) 7→ (−x,−y, z) and (x, y, z) 7→ (−x, y,−z) one sees that Γ
transitively permutes these 4 components. For 0 ≤ m < 4, one has D9∩Di = ∅ for i = 1, 3, 5, 7.
Therefore D9 is a bounded connected component of Um(R). �
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