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Abstract

Soit q(x, y, z) une forme quadratique sur un corps de nombres k,
isotrope en une place v, et soit P (t) un polynôme non nul à coeffi-
cients dans k. Si P (t) est séparable, on établit l’approximation forte
en dehors de la place v pour les solutions de q(x, y, z) = P (t). Pour
P (t) quelconque, on montre que sur le lieu lisse de la variété définie
par q(x, y, z) = P (t) l’obstruction de Brauer-Manin entière est la
seule obstruction à l’approximation forte hors de v.

Let q(x, y, z) be a quadratic form over a number field k, isotropic
at a place v, and let P (t) be a nonzero polynomial with coefficients
in k. If P (t) is separable, we show that strong approximation away
from v holds for the solutions of q(x, y, z) = P (t). For P (t) arbitrary,
we show that the integral Brauer-Manin obstruction is the only ob-
struction to strong approximation away from v for the smooth locus
of the variety given by q(x, y, z) = P (t).
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1 Introduction

Let X be a variety over a number field F . For simplicity, let us assume in

this introduction that the set X(F ) of rational points is not empty. Let S

be a finite set of places of F . One says that strong approximation holds for

X off S if the diagonal image of the set X(F ) of rational points is dense

in the space of S-adèles X(AS
F ) (these are the adèles where the places in

S have been omitted) equipped with the adelic topology. If this property

holds for X, it in particular implies a local-global principle for the existence

of integral points on integral models of X over the ring of S-integers of F .

For X projective, X(AS
F ) =

∏
v/∈S X(Fv), and the adelic topology coin-

cides with the product topology. A projective variety satisfies strong ap-

proximation off S if and only if weak approximation for the rational points

holds off S.

For open varieties, strong approximation has been mainly studied for

linear algebraic groups and their homogeneous spaces. A classical case is

m-dimensional affine space Am
F off any nonempty set S, a special case being

the Chinese Remainder Theorem. For a semisimple, almost simple, simply

connected linear algebraic group G such that
∏

v∈S G(Fv) is not compact,

strong approximation off S was established by Eichler, Kneser, Shimura,

Platonov, Prasad.

Strong approximation does not hold for groups which are not simply

connected, but one may define a Brauer-Manin set. In our paper [CTX],

we started the investigation of the Brauer-Manin obstruction to strong ap-

proximation for homogeneous spaces of linear algebraic groups. For such

varieties, this was quickly followed by works of Harari [H], Demarche [D],

Borovoi and Demarche [BD] and Wei and Xu [WX].

Few strong approximation results are known for open varieties which are

not homogeneous spaces. Computations of the Brauer-Manin obstruction

for some such varieties have been recently performed (Kresch and Tschinkel

[KT], Colliot-Thélène et Wittenberg [CTW]).

Just as for problems of weak approximation, it is natural to ask whether

strong approximation holds for the total space of a family f : X → Y

when it is known for the basis Y , for many fibres of f , and some algebraico-

geometric assumption is made on the map f .

In the present paper, we investigate strong approximation for varieties

X/F defined by an equation

q(x1, . . . , xn) = p(t),
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where q is a quadratic form of rank n in n ≥ 3 variables and p(t) is a nonzero

polynomial.

In [Wat], Watson investigated integral points on affine varieties which are

the total space of families of quadrics over affine space Am
F . When restricted

to equations as above, in particular m = 1, and with coefficients in the

ring Z of integers, under a noncompacity assumption, his Theorems 1 and 2

establish the local-global principle for integral points when n ≥ 4 ([Wat,

Thm. 1, Thm. 2]). Under some additional condition, he also establishes a

local-global principle when n = 3 ([Wat, Thm. 3], see Remark 6.6 in the

present paper).

The paper is organized as follows.

In §2 we recall some definitions related to strong approximation and the

Brauer-Manin obstruction.

In §3, we give a simple general method for proving strong approximation

for the total space of a fibration. We apply it to varieties defined by an

equation q(x1, . . . , xn) = p(t), for n ≥ 4.

In §4 we detail results of [CTX] on the arithmetic of affine quadrics

q(x, y, z) = a.

In the purely algebraic §5, we compute the Brauer group of the smooth

locus, and of a suitable desingularisation, of a variety defined by an equation

q(x, y, z) = p(t).

The most significant results are given in §6. The results of §4 and §5
are combined to study the strong approximation property off S for certain

smooth models of varieties defined by an equation q(x, y, z) = p(t), under

the assumption that the form q is isotropic at some place in S. For these

smooth models, when there is no Brauer-Manin obstruction, we establish

strong approximation off S. We give the precise conditions under which

strong approximation fails.

In §7 we give two numerical counterexamples to the local-global princi-

ples for existence of integral points: this represents a drastic failure of strong

approximation in the cases where this is allowed by the results of §6.

Concrete varieties often are singular. In that case the appropriate proper-

ties are “central strong approximation” and its Brauer-Manin variant. This

is shortly discussed in §8.
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2 Basic definitions and properties

Let F be a number field, oF be the ring of integers of F and ΩF be the

set of all primes in F . For each v ∈ ΩF , let Fv be the completion of F at

v. Let ∞F be the set of archimedean primes in F and write v < ∞F for

v ∈ ΩF \∞F . For each v <∞F , let ov be the completion of oF at v and let

πv be a uniformizer of ov. Write ov = Fv for v ∈ ∞F .

For any finite subset S of ΩF , let FS =
∏

v∈S Fv. For any finite subset

S of ΩF containing ∞F , the S-integers are defined to be elements in F

which are integral outside S. The ring of S-integers is denoted by oS. Let

AF ⊂
∏

v∈ΩF
Fv be the adelic group of F with its usual topology. For any

finite subset S of ΩF , one defines AS
F ⊂ (

∏
v 6∈S Fv) equipped with the analo-

gous adelic topology. The natural projection which omits the S-coordinates

defines a homomorphism of rings AF → AS
F . For any variety X over F this

induces a map

prS : X(AF )→ X(AS
F )

which is surjective if
∏

v∈S X(Fv) 6= ∅.

Definition 2.1. Let X be a geometrically integral F -variety. One says that

strong approximation holds for X off S if the image of the diagonal map

X(F )→ X(AS
F )

is dense in prS(X(AF )) ⊂ X(AS
F ).

The statement may be rephrased as:

Given any nonempty open set W ⊂ X(AS
F ), if X(AF ) 6= ∅, then the

diagonal image of X(F ) in X(AF ) meets W ×
∏

v∈S X(Fv).

If X satisfies strong approximation off S, and X(AS
F ) 6= ∅, then we have

X(F ) 6= ∅ and, for any finite set T of places of F away from S, the diagonal

image of X(F ) is dense in
∏

v∈T X(Fv). In other words, X satisfies the Hasse

principle, and X satisfies weak approximation off S.

Proposition 2.2. Assume X(AF ) 6= ∅. If X satisfies strong approximation

off a finite set S of places, then it satisfies strong approximation off any

finite set S ′ with S ⊂ S ′.

Proposition 2.3. Let U ⊂ X be a dense open set of a smooth geometrically

integral F -variety X. If strong approximation off S holds for U , then strong

approximation off S holds for X.
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Proof. This follows from the following statement: for X/F as in the propo-

sition, the image of U(AF ) in X(AF ) is dense. That statement itself fol-

lows from two facts. Firstly, for a given place v, U(Fv) is dense in X(Fv)

(smoothness of X). Secondly, U admits a model U over a suitable oT such

that U(ov) 6= ∅ for all v /∈ T (because U/F is geometrically integral).

As explained in [CTX], one can refine definition 2.1 by using the Brauer–

Manin set. Let X be an F -variety. Let Br(X) = H2
ét(X,Gm) and define

X(AF )Br(X) = {{xv}v∈ΩF
∈ X(AF ) : ∀ξ ∈ Br(X),

∑
v∈ΩF

invv(ξ(xv)) = 0}.

This is a closed subset of X(AF ). Class field theory implies

X(F ) ⊂ X(AF )Br(X) ⊂ X(AF ).

Let

X(AS
F )Br(X) := prS(X(AF )Br(X)) ⊂ X(AS

F ).

Definition 2.4. Let X be a geometrically integral variety over the number

field F . If the diagonal image of X(F ) in (X(AS
F ))Br(X) ⊂ X(AS

F ) is dense,

we say that strong approximation with Brauer-Manin obstruction holds for

X off S.

As above, the statement may be rephrased as :

Given any open set W ⊂ X(AS
F ), if [W ×

∏
v∈S X(Fv)]

Br(X) 6= ∅, then

there is a point of the diagonal image of X(F ) in W×
∏

v∈S X(Fv) ⊂ X(AF ).

Proposition 2.5. Assume X(AF ) 6= ∅. If strong approximation with Brauer-

Manin obstruction holds for X off a finite set S of places, then it holds off

any finite set S ′ with S ⊂ S ′.

Proposition 2.6. Let F be a number field. Let U ⊂ X be a dense open set

of a smooth geometrically integral F -variety X. Assume:

(i) X(AF ) 6= ∅;
(ii) the quotient Br(U)/Br(F ) is finite.

Let S be a finite set of places of F . If strong approximation with Brauer-

Manin obstruction off S holds for U , then it holds for X.

Proof. There exists a finite subgroup B ⊂ Br(U) such that B generates

Br(U)/Br(F ) and B∩Br(X) generates Br(X)/Br(F ). There exists a finite

set T of places of k containing S and all the archimedean places, and smooth

oT -schemes U ⊂ X with geometrically integral fibres over the points of

Spec(oT ) such that
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(a) The restriction U ⊂ X over Spec(F ) ⊂ Spec(oT ) is U ⊂ X.

(b) B ⊂ Br(U).

(c) B ∩ Br(X) ⊂ Br(X).

(d) For each v /∈ T , U(ov) 6= ∅ (this uses the fact that U → Spec(oT ) is

smooth with geometrically integral fibres, the Weil estimates and the fact

that we took T big enough).

To prove the proposition, it is enough to show:

Given any finite set T as above and given, for each place v ∈ T \ S, an

open set Wv ⊂ X(Fv) such that the set

[
∏
v∈S

X(Fv)×
∏
v∈T\S

Wv ×
∏
v/∈T

X(ov)]
Br(X)

is not empty, then this set contains a point of the diagonal image of X(F )

in X(AF ).

Each α ∈ B∩Br(X) vanishes when evaluated on X(ov). For any element

α ∈ Br(X) and any place v, the map X(Fv) → Br(Fv) ⊂ Q/Z given

by evaluation of α is locally constant. Since X is smooth, for each place

v, the set U(Fv) is dense in X(Fv) for the local topology. In particular,

for v /∈ T , the set X(ov) ∩ U(Fv) is not empty. There thus exists a point

{Mv} ∈ X(AF ) which lies in the above set such that Mv ∈ U(Fv) for v ∈ T
and Mv ∈ X(ov) ∩ U(Fv) for v /∈ T .

We now use Harari’s formal lemma in the version given in [CT]. Accord-

ing to the proof of [CT, Théorème 1.4], there exist a finite set T1 of places

of k, T1 ∩ T = ∅, and for v ∈ T1 points Nv ∈ X(ov) ∩ U(Fv), such that∑
v∈T

β(Mv) +
∑
v∈T1

β(Nv) = 0

for each β ∈ B.

For v ∈ T , let Nv = Mv. For v /∈ T ∪ T1, let Nv ∈ U(ov) be an arbitrary

point. The adèle {Nv} of X belongs to

[
∏
v∈S

X(Fv)×
∏
v∈T\S

Wv ×
∏
v/∈T

X(ov)]
Br(X).

It is the image of an adèle of U which lies in

[
∏
v∈S

U(Fv)×
∏
v∈T\S

Wv ∩ U(Fv)×
∏
v∈T1

U(Fv) ∩X(ov)×
∏

v/∈T∪T1

U(ov)]
Br(U).

Using the finiteness of B and the continuity of the evaluation map

U(Fv) → Br(Fv) attached to each element of B, we find that there ex-

ist open sets W ′
v ⊂ U(Fv) for v ∈ T ∪ T1, with W ′

v ⊂ Wv for v ∈ T \S, such
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that the subset

[
∏

v∈T∪T1

W ′
v ×

∏
v/∈T∪T1

U(ov)]
Br(U)

of the adèles of U is nonempty. Since strong approximation with Brauer-

Manin obstruction off S holds for U , hence off T ∪ T1 since S ⊂ T , there

exists a point in the diagonal image of U(F ) in U(AF ) which lies in this set.

Since this set maps into

[
∏
v∈S

X(Fv)×
∏
v∈T\S

Wv ×
∏
v/∈T

X(ov)]
Br(X)

via the inclusion U ⊂ X, this concludes the proof.

Lemma 2.7. Let F be a number field. Let U ⊂ X be a dense open set

of a smooth geometrically integral F -variety X. Assume X(AF ) 6= ∅. Let

α1, . . . , αn ∈ Br(X). Let S be a finite set of places of F . The image of the

evaluation map U(AS
F ) → (Q/Z)n defined by the sum of the invariants of

each αi on the U(Fv) for v /∈ S coincides with the image of the analogous

evaluation map X(AS
F )→ (Q/Z)n.

Proof. There is a natural map U(AS
F ) → X(AS

F ) which is compatible with

evaluation of elements of Br(X), hence one direction is clear. Let {Mv} ∈
X(AS

F ). There exist a finite set T of places containing S and regular integral

models U ⊂ X of U ⊂ X over oT such that αi ∈ Br(X) ⊂ Br(U) for each

i = 1, . . . , n, such that Mv ∈ X(ov) for each v /∈ T , and such that moreover

U(ov) 6= ∅ for v /∈ T . For v ∈ T \ S, let Nv ∈ U(Fv), v ∈ T \ S be close

enough to Mv ∈ X(Fv) that αi(Nv) = αi(Mv) for each i = 1, . . . , n (such

points exist since X is smooth). For v /∈ T , let Nv be an arbitrary point of

U(ov).

Then∑
v/∈S

αi(Mv) =
∑

v∈T,v /∈S

αi(Mv) =
∑

v∈T,v /∈S

αi(Nv) =
∑
v/∈S

αi(Nv).

Proposition 2.8. Let F be a number field. Let U ⊂ X be a dense open set

of a smooth geometrically integral F -variety X. Assume X(AF ) 6= ∅.
(i) Assume Br(X)/Br(F ) finite. If prS(X(AF )Br(X)) is strictly smaller

than X(AS
F ), then prS(U(AF )Br(U)) is strictly smaller than U(AS

F ).

(ii) If Br(X)→ Br(U) is an isomorphism, if prS(U(AF )Br(U)) is strictly

smaller than U(AS
F ), then prS(X(AF )Br(X)) is strictly smaller than X(AS

F ).
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Proof. (i) Let αi ∈ Br(X), i = 1, . . . , n, generate Br(X)/Br(F ).

If prS(X(AF )Br(X)) is strictly smaller than X(AS
F ), then there exists an

adèle {Mv} ∈ X(AS
F ) such that for each {Nv} ∈

∏
v∈S X(Fv) there exists

αi such that ∑
v/∈S

αi(Mv) +
∑
v∈S

αi(Nv) 6= 0 ∈ Q/Z.

In other words, the image of the map
∏

v∈S X(Fv) → (Q/Z)n given by

{Nv} 7→
∑

v∈S αi(Nv) does not contain {−
∑

v/∈S αi(Mv)} ∈ (Q/Z)n. By

Lemma 2.7, there exists an adèle {M ′
v} ∈ U(AS

F ) such that:

{−
∑
v/∈S

αi(M
′
v)} = {−

∑
v/∈S

αi(Mv)} ∈ (Q/Z)n.

Thus for each {N ′v} ∈
∏

v∈S U(Fv) there exists some i such that∑
v/∈S

αi(M
′
v) +

∑
v∈S

αi(N
′
v) 6= 0 ∈ Q/Z.

Hence {M ′
v} ∈ U(AS

F ) does not belong to prS(U(AF )BrU).

(ii) Let {Mv} ∈ U(AS
F ) be an adèle such that for each {Nv} ∈

∏
v∈S U(Fv)

there exists α ∈ Br(U) such that∑
v/∈S

α(Mv) +
∑
v∈S

α(Nv) 6= 0 ∈ Q/Z.

The adèle {Mv} ∈ U(AS
F ) defines an adèle {Mv} ∈ X(AS

F ). By hypothesis

Br(X) = Br(U). For each α ∈ Br(X) = Br(U), the image of the evaluation

map of α ∈ Br(X) on U(Fv) coincides with the image of the evaluation map

on X(Fv). We conclude that for each {Nv} ∈
∏

v∈S X(Fv) there exists an

element α ∈ Br(X) such that∑
v/∈S

α(Mv) +
∑
v∈S

α(Nv) 6= 0 ∈ Q/Z.

3 The easy fibration method

Proposition 3.1. Let F be a number field and f : X → Y be a morphism

of smooth quasi-projective geometrically integral varieties over F . Assume

that all geometric fibres of f are nonempty and integral. Let W ⊂ Y be a

nonempty open set such that fW : f−1(W )→ W is smooth.

Let S be a finite set of places of F . Assume
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(i) Y satisfies strong approximation off S.

(ii) The fibres of f above F -points of W satisfy strong approximation

off S.

(iii) For each v ∈ S the map f−1(W )(Fv)→ W (Fv) is onto.

Then X satisfies strong approximation off S.

Proof. There exist a finite set T of places containing all archimedean places

and a morphism of smooth quasiprojective oT -schemes φ : X → Y which

restricts to f : X → Y over F , and such that:

(a) All geometric fibres of φ are geometrically integral.

(b) For any closed point m of Y , the fibre at m, which is a variety over

the finite field κ(m), contains a smooth κ(m)-point.

(c) For any v /∈ T , the induced map X (ov)→ Y(ov) is onto.

The proof of this statement combines standard results from EGA IV 9

and the Lang-Weil estimates for the number of points of integral varieties

over a finite field. Many variants have already appeared in the literature.

To prove the proposition, it is enough to show:

Given any finite set T as above, with S ⊂ T , and given, for each place

v ∈ T \ S, an open set Uv ⊂ X(Fv) such that the open set∏
v∈S

X(Fv)×
∏
v∈T\S

Uv ×
∏
v/∈T

X(ov)

of X(AF ) is not empty, then this set contains a point of the diagonal image

of X(F ) in X(AF ).

The Zariski open set f−1(W ) ⊂ X is not empty. For each v ∈ T \ S, we

may thus replace Uv by the nonempty open set Uv ∩ f−1(W )(Fv). Since f is

smooth on f−1(W ), f(Uv) ⊂ Y (Fv) is an open set. By hypothesis (i), there

exists a point N ∈ Y (F ) whose diagonal image lies in the open set∏
v∈S

Y (Fv)×
∏
v∈T\S

f(Uv)×
∏
v/∈T

Y(ov)

of Y (AF ). Let Z = XN = f−1(N). The point N comes from a point N

in Y(oT ). The oT -scheme Z := φ−1(N) is thus a model of Z. For v /∈ T ,

statement (c) implies Z(ov) 6= ∅. By assumption (iii), we have Z(Fv) 6= ∅
for each v ∈ S. For v ∈ T \ S, the intersection Uv ∩ Z(Fv) by construction

is a nonempty open set of Z(Fv). Assumption (ii) now guarantees that the

product ∏
v∈S

Z(Fv)×
∏
v∈T\S

Uv ∩ Z(Fv)×
∏
v/∈T

Z(ov)
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contains the diagonal image of a point of Z(F ). This defines a point in X(F )

which lies in the given open set of X(AF ).

Let us recall a well known fact.

Proposition 3.2. Let F be a number field. Let q(x1, . . . , xn) be a nondegen-

erate quadratic form over F and let c ∈ F×. Assume n ≥ 4. Let X be the

smooth affine quadric defined by q(x1, . . . , xn) = c. Suppose X(Fv) 6= ∅ for

each real completion Fv. Then X(F ) 6= ∅. Let v0 be a place of F such that the

quadratic form q is isotropic at v0. Then X satisfies strong appproximation

off any finite set S ⊂ ΩF containing v0.

Proof. This goes back to Eichler and Kneser. See [CTX] Thm. 3.7 (b) and

Thm. 6.1.

Lemma 3.3. Let q(x1, . . . , xn) (n ≥ 1) be a nondegenerate quadratic form

over a field k of characteristic different from 2. Let p(t) ∈ k[t] be a nonzero

polynomial. Let X be the affine k-scheme defined by q(x1, . . . , xn) = p(t).

The singular points of X are the points defined by xi = 0 (all i) and t = θ

with θ a multiple root of p(t). In particular, if p(t) is a separable polynomial,

then X is smooth over k.

Proposition 3.4. Let F be a number field and X be an F -variety defined

by an equation

q(x1, . . . , xn) = p(t)

where q(x1, . . . , xn) is a nondegenerate quadratic form with n ≥ 4 over F

and p(t) 6= 0 is a polynomial in F [t]. Let X̃ be any smooth geometrically

integral variety which contains the smooth locus Xsmooth as a dense open

set. Assume Xsmooth(Fv) 6= ∅ for each real place v of F .

(1) X̃(F ) is Zariski-dense in X̃.

(2) X̃ satisfies weak approximation.

Let v0 be a place of F such that q is isotropic over Fv0.

(3) X̃ satisfies strong approximation off any finite set S of places which

contains v0.

Proof. Statements (1) and (2), which are easy, are special cases of Prop. 3.9,

p. 66 of [CTSaSD]. Let us prove (3) for X̃ = Xsmooth, the smooth locus of X.

Let f : Xsmooth → A1
F be given by the coordinate t. By Lemma 2.2, it suffices

to prove the theorem for S = {v0}. Let W be the complement of p(t) = 0 in

A1
F . Given Prop. 3.2, Lemma 3.3, statement (3) for X̃ = Xsmooth is an im-

mediate consequence of Proposition 3.1 applied to the map f . Statement (3)

for an arbitrary X̃ is then an immediate application of Proposition 2.3.
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4 The equation q(x, y, z) = a

Let q(x, y, z) be a nondegenerate quadratic form over a field k of charac-

teristic zero and let a ∈ k∗. Let Y/k be the affine quadric defined by the

equation

q(x, y, z) = a.

This is an open set in the smooth projective quadric defined by the homo-

geneous equation

q(x, y, z)− au2 = 0.

Let d = −a. det(q) ∈ k×.

Proposition 4.1. [CTX, §5.6, §5.8] Assume Y (k) 6= ∅. If d is a square,

then Br(Y )/Br(k) = 0. If d is not a square, then Br(Y )/Br(k) = Z/2. For

any field extension K/k, the natural map Br(Y )/Br(k) → Br(YK)/Br(K)

is surjective.

(i) If αx + βy + γz + δ = 0 is an affine equation for the tangent plane

of Y at a k-point of the projective quadric q(x, y, z) − au2 = 0. then the

quaternion algebra (αx + βy + γz + δ, d) ∈ Br(k(Y )) belongs to Br(Y ) and

it generates Br(Y )/Br(k).

(ii) Assume q(x, y, z) = xy − det(q)z2. Then the quaternion algebra

(x, d) ∈ Br(k(Y )) belongs to Br(Y ) and it generates Br(Y )/Br(k).

Lemma 4.2. Let F be a number field. Let q(x1, . . . , xn) be a nondege-

nerate quadratic form over F . Let v be a nondyadic valuation of F . As-

sume n ≥ 3. If the coefficients of q(x1, . . . , xn) are in ov and the deter-

minant of q(x1, . . . , xn) is a unit in ov, then for any d ∈ ov the equation

q(x1, . . . , xn) = d admits a solution (α1, . . . , αn) in ov such that one of

α1, . . . , αn is a unit in o×v .

Proof. This follows from Hensel’s lemma.

Lemma 4.3. Let v be a nondyadic valuation of a number field F . Let

q(x, y, z) be a quadratic form defined over ov with v(det(q)) = 0. Let a ∈ ov,

a 6= 0. Let Y be the ov-scheme defined by the equation

q(x, y, z) = a.

Let Y be the generic fibre of Y over Fv. Assume −a. det(q) /∈ F×2
v . Let

Y∗(ov) = {(xv, yv, zv) ∈ Y(ov) : one of xv, yv, zv ∈ o×v }.

An element which represents the nontrivial element of Br(Y )/Br(Fv) takes

two values over Y∗(ov) if and only if v(a) is odd.
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Proof. After an invertible ov-linear change of coordinates, one may write

q(x, y, z) = xy − det(q)z2

over ov. In the new coordinates, the set Y∗(ov) is still defined by the same

conditions on the coordinates. By Proposition 4.1, one has

Br(Y )/Br(Fv) ' Z/2 for − a. det(q) /∈ F×2

v

and the generator is given by the class of the quaternion algebra

(x,−a. det(q)) ∈ Br(Fv(Y )).

If v(a) = v(−a. det(q)) is odd, one can choose (xv, yv, 0) ∈ Y∗(ov) where

xv is a square, resp. a nonsquare unit in o×v . On these points, (x,−a. det(q))

takes the value 0, resp. the value 1/2.

If v(a) = v(−a. det(q)) is even, we claim that for any (xv, yz, zv) ∈
Y∗(ov), v(xv) is even. Indeed, suppose there exists (xv, yv, zv) ∈ Y∗(ov)

such that v(xv) is odd. Then yv or zv is in o×v . If we have zv ∈ o×v , then by

Hensel’s lemma −a. det(q) ∈ F×2

v , which is excluded. We thus have zv /∈ o×v
and yv ∈ o×v . This implies v(xvyv) is odd. Therefore

v(− det(q).z2
v) = v(a) < v(xvyv)

and −a. det(q) ∈ F×2

v by Hensel’s lemma. A contradiction is derived and the

claim follows. By the claim, the algebra (x,−a. det(q)) vanishes on Y∗(ov).

Lemma 4.4. Let k = Fv be a completion of the number field F . Let q(x, y, z)

be a nondegenerate quadratic form over k and let a ∈ k×. Let Y be the affine

k-scheme defined by the equation

q(x, y, z) = a.

Assume −a. det(q) /∈ k×2. Assume Y has a k-point. One has Br(Y )/Br(k) '
Z/2. Let ξ be an element of Br(Y ) with nonzero image in Br(Y )/Br(k).

Then ξ takes a single value over Y (k) if and only if v is a real place and q

is anisotropic over Fv.

Proof. By Proposition 4.1, one has

Br(Y )/Br(k) ' Z/2.

Let V be the quadratic space defined by q(x, y, z) over k. Fix a k-point

m ∈ Y (k). To prove the lemma, we may take ξ ∈ Br(Y ) to be the nonzero
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element, of order 2, which vanishes at m. Associated to the k-point m we

have the map SO(V ) → Y sending g to g.m. By a theorem of Witt, this

map induces a surjective map SO(V )(k) → Y (k). By [CTX, p. 331], the

composite map

SO(V )(k)→ Y (k)→ Br(k),

where the map Y (k) → Br(k) is defined by evaluation of ξ, coincides with

the composite map

SO(V )(k)→ k×/k×2 → k×/NK/k(K
×) ↪→ Br(k),

where K = k(
√
−a. det(q)), the map k×/NK/k(K

×) ↪→ Br(k) sends c ∈ k×

to the class of the quaternion algebra (c,−a. det(q)), the map θ : SO(V )(k)→
k×/k×2 is the spinor map, and k×/k×2 → k×/NK/k(K

×) is the natural pro-

jection. This latter map is onto, and it is by assumption an isomorphism

if k = R. For k a nonarchimedean local field, the spinor map is surjec-

tive [OM, 91: 6]. For k = R the reals, the spinor map has trivial image in

R×/R×2 ' ±1 if and only if the quadratic form q is anisotropic.

The following proposition does not appear formally in §6 of [CTX], where

attention is restricted to schemes over the whole ring of integers. It follows

however easily from Thm. 3.7 and §5.6 and §5.8 of [CTX].

Proposition 4.5. Let F be a number field. Let Y/F be a smooth affine

quadric defined by an equation

q(x, y, z) = a.

Assume Y (F ) 6= ∅. Let S be a finite set of places of F . Assume there

exists v0 ∈ S such that q is isotropic over Fv0. Then strong approximation

with Brauer-Manin obstruction off S holds for Y . Namely, the closure of

the image of Y (F ) under the diagonal map Y (F ) → Y (AS
F ) coincides with

the image of Y (AF )Br(Y ) ⊂ Y (AF ) under the projection map Y (AF ) →
Y (AS

F ).

5 Computation of Brauer groups for the equa-

tion q(x, y, z) = p(t)

Let k be a field of characteristic zero, q(x, y, z) a nondegenerate quadratic

form in three variables over k and p(t) ∈ k[t] a nonzero polynomial.
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Let X be the affine variety defined by the equation

(5.1) q(x, y, z) = p(t).

The singular points of Xk are the points (0, 0, 0, t) with t a multiple root

of p (Lemma 3.3). Let U ⊂ Xsmooth be the the complement of the closed set

of X defined by x = y = z = 0.

Let π : X̃ → X a desingularization of X, i.e. X̃ is smooth and in-

tegral, the k-morphism π is proper and birational. We moreover assume

that the map π : π−1(Xsmooth) → Xsmooth is an isomorphism. In particular

π : π−1(U)→ U is an isomorphism.

Write p(t) = c.p1(t)e1 . . . ps(t)
es , where c is in k× and the pi(t), 1 ≤ i ≤ s,

are distinct monic irreducible polynomials over k. Let ki = k[t]/(pi(t)) for

1 ≤ i ≤ s.

Let K = k(t) where k is an algebraic closure of k. The polynomial p(t)

is a square in K if and only if all the ei are even.

In this section we compute the Brauer groups of U and the Brauer group

of the desingularization X̃ of X. By purity for the Brauer group [G, Thm.

(6.1)], we have Br(Xsmooth)
'→ Br(U), and the group Br(X̃) does not depend

on the choice of the resolution of singularities X̃ → X (see [G, Cor. (7.3)

and Thm. (7.4)].)

The following lemma is well known (see [CTSk, Thm. 2.5]).

Lemma 5.1. Let F be a field, char(F ) 6= 2. Let F be a separable closure

of F , and let g = Gal(F/F ). Let f(x, y, z, t) be a nondegenerate quadratic

form over F . Let d ∈ F× be its discriminant. Let X ⊂ P3
F be the smooth

quadric defined by f = 0.

(a) There is an isomorphism of g-lattices Pic(X) ' Ze1 ⊕ Ze2, with the

following Galois action.

(b) If d ∈ F×2, the action of g on Pic(X) is trivial.

(c) If d /∈ F×2, the action of g factors through Gal(F (
√
d)/F ), the non-

trivial element of the latter group acting by permutation of e1 and e2.

(d) The class e1 + e2 belongs to Pic(X) ⊂ Pic(X), it is the class of a

hyperplane section of the quadric X ⊂ P3
F .

(e) There is a natural exact sequence

0→ Pic(X)→ Pic(X)g → Br(F )→ Br(X)→ 0.
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Proposition 5.2. Let p(t) = c.p1(t)e1 . . . ps(t)
es, q(x, y, z) and U be as in

the beginning of this section. If p(t) is not a square in K = k(t), i.e. if not

all ei are even, the natural map Br(k)→ Br(U) is an isomorphism.

Proof. Let Z be the closed subscheme of P3
k ×A1

k defined by the equation

q(x, y, z) = p(t)u2

where (x, y, z, u) are homogeneous coordinates for P3
k. Then X can be re-

garded as an open set in Z with u 6= 0. The complement of X in Z is given

by u = 0 and isomorphic to D = C ×k A1
k where C is the projective conic

in P2
k defined by q(x, y, z) = 0. Let f : P3

k × A1
k → A1

k be the projection

onto A1
k. We shall abuse notation and also denote by f the restriction of f

to Zariski open sets of X.

Let Uk = U ×k k. Let UK = U ×A1
k

Spec(K) and ZK = Z ×A1
k

Spec(K).

Any invertible function on UK ⊂ ZK has its divisor supported in u = 0,

which is an irreducible curve over K. Hence such a function is a constant in

K×. Since the fibres of f : U → A1
k are nonempty, any invertible function

on Uk is the inverse image of a function in K[U ]× = K× which is invertible

on A1
k
, hence is in k

×
. Thus

k[U ]× = k
×
.

Let V = Zsmooth and Vk = V ×k k. Since p(t) is not a square in K, the

K-variety

VK = V ×A1
k

Spec(K) ⊂ P3
K

is a smooth projective quadric defined by a quadratic form whose discrimi-

nant is not a square. By Lemma 5.1 (c) (e) together with Br(K) = 0 (Tsen’s

theorem), this implies that the abelian group Pic(VK) is free of rank one

and is spanned by the class of a hyperplane section of VK . Since UK ⊂ VK is

the complement of the hyperplane section u = 0, this implies Pic(UK) = 0.

Since U is smooth, Pic(A1
k
) = 0 and all the fibres of f : U → A1

k are geomet-

rically integral, the restriction map Pic(Uk)→ Pic(UK) is an isomorphism.

Thus

Pic(Uk) = 0.

Lemma 5.1 (e) and Br(K) = 0 then yields Br(VK) = 0. Moreover, since

Vk is regular, the natural map Br(Vk) → Br(VK) is injective. Therefore

Br(Vk) = 0.

Let

Ck = C ×k k and Dk = D ×k k.
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Since D = C ×k A1
k and Ck ' P1

k
, we have H1

ét(Dk,Q/Z) = 0. Since Dk is

a smooth divisor in the smooth variety Vk, we have the exact localization

sequence

0→ Br(Vk)→ Br(Uk)→ H1
ét(Dk,Q/Z).

One concludes

Br(Uk) = 0.

The Hochschild-Serre spectral sequence for étale cohomology of the sheaf

Gm and the projection morphism U → Spec(k) yields a long exact sequence

Pic(Uk)
g → H2(g, k[U ]×)→ ker[Br(U)→ Br(Uk)]→ H1(g,Pic(Uk))

where g = Gal(k/k). Combining it with the displayed isomorphisms, we get

Br(k) ' Br(U).

Let us now consider the case where p(t) is a square in K = k(t).

Proposition 5.3. Let p(t) = c.p1(t)e1 . . . ps(t)
es, q(x, y, z) and U be as

above. Assume all ei are even, i.e. p(t) = c.r(t)2 with c ∈ k× and r(t) ∈ k[t]

nonzero. Let d = −c. det(q).

The following conditions are equivalent:

(i) d is not a square in k and the natural map H3
ét(k,Gm)→ H3

ét(U,Gm)

is injective;

(ii) Br(U)/Br(k) = Z/2.

If they are not satisfied then Br(U)/Br(k) = 0.

Proof. We keep the same notation as that in the proof of Proposition 5.2,

in particular g = Gal(k/k). Let M = k(
√
d). If d /∈ k×2, let Z̃d be the rank

one g-lattice defined by the Gal(M/k)-lattice such that σ.x = −x for σ the

nontrivial element in Gal(M/k). If d ∈ k×2, let Z̃d = Z with trivial g-action.

Since p(t) is a square in K = k(t), one has Pic(VK) ∼= Ze1 ⊕ Ze2 (cf.

Lemma 5.1). The Galois group g = Gal(k/k) acts on Pic(VK) trivially if

d ∈ k×2. If d /∈ k×2, then Gal(k/k) acts on Pic(VK) through Gal(M/k)

with permutation action on the two generators e1 and e2. We thus have an

isomorphism of g-modules Pic(UK) ∼= Z̃d.
By the same argument as those in the proof of Proposition 5.2, one has

k
×

= k[U ]×, Pic(Uk) ' Pic(UK) ' Z̃d and Br(Uk) = 0.
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Using Br(Uk) = 0, we deduce from the Hochschild-Serre spectral se-

quence a long exact sequence

Br(k)→ Br(U)→ H1(g,Pic(Uk))→ H3
ét(k,Gm)→ H3

ét(U,Gm).

If d ∈ k×2, one has

H1(g,Pic(Uk)) = Homcont(g,Z) = 0

and the long exact sequence yields Br(U)/Br(k) = 0.

Assume d /∈ k×2. From

H1(g,Pic(Uk)) = H1(g, Z̃d) = Z/2

one gets an inclusion Br(U)/Br(k) ⊂ Z/2, which is an equality if and only

if H3
ét(k,Gm)→ H3

ét(U,Gm) is injective.

Remark 5.4. The natural mapH3
ét(k,Gm)→ H3

ét(U,Gm) is injective under

each of the following hypotheses:

(i) the open set U has a point over a finite, odd degree extension of k;

(ii) the field k is a number field (in which case H3
ét(k,Gm) = 0).

Proposition 5.5. Keep notation as in Proposition 5.3. Assume that we

have Br(U)/Br(k) = Z/2. Then:

(a) For any field extension L/k, the map Br(U)/Br(k)→ Br(UL)/Br(L)

is onto.

(b) For any field extension L/k and any α ∈ A1(L) such that p(α) 6= 0,

the evaluation map Br(U)/Br(k)→ Br(Uα)/Br(L) on the fibre q(x, y, z) =

p(α) is onto.

Proof. The long exact sequence

Br(k)→ Br(U)→ H1(gk,Pic(Uk))→ H3
ét(k,Gm)→ H3

ét(U,Gm).

is functorial in the base field k. The assumption Br(U)/Br(k) = Z/2 and

the possible Galois actions of the Galois group on Pic(Uk) (as discussed in

the proof of the previous proposition) imply that the map Br(U)/Br(k)→
H1(gk,Pic(Uk)) is an isomorphism.

(a) Let L be an algebraic closure of L extending k ⊂ k. If we have

Br(UL)/Br(L) = 0, the assertion is obvious. If Br(UL)/Br(L) 6= 0, then

d /∈ L×2 and Br(UL)/Br(L) = H1(gL,Pic(UL)) = Z/2. The natural map

Pic(Uk)→ Pic(UL) is an isomorphism of free rank one abelian groups which
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moreover is Galois-equivariant. Under the hypothesis d /∈ L×2, it is an iso-

morphism of Gal(M/k)-modules. Thus the natural map H1(gk,Pic(Uk))→
H1(gL,Pic(UL)) is an isomorphism. This implies that the map

Br(U)/Br(k)→ Br(UL)/Br(L)

is an isomorphism, as claimed in (a).

(b) If d is a square in L, then Br(Uα)/Br(L) = 0. Assume d /∈ L×2. Let

L be an algebraic closure of L extending k ⊂ k. By the functoriality of the

Hochschild-Serre spectral sequence for the morphism Uα → U , we have a

commutative diagram of exact sequences

(5.2)

Br(k)→Br(U) → H1(gk,Pic(Uk)) →H3
ét(k,Gm) → H3

ét(U,Gm)

↓ ↓ ↓ ↓ ↓

Br(L)→Br(Uα)→ H1(gL,Pic(Uα,L))→H3
ét(L,Gm)→ H3

ét(Uα,Gm)

One readily verifies that the evaluation map Pic(Uk) → Pic(Uα,L) is an

isomorphism of Galois modules (split by a quadratic extension), hence the

map H1(gk,Pic(Uk)) → H1(gL,Pic(Uα,L)) is an isomorphism Z/2 = Z/2.

From the diagram we conclude that Br(U)→ Br(Uα)/Br(L) is onto.

Proposition 5.6. Let p(t) = c.
∏

i∈I pi(t)
ei, q(x, y, z), X, U and the map

π : X̃ → X be as above. Assume H3
ét(k,Gm)→ H3

ét(U,Gm) is injective. Let

d = −c. det(q).

Consider the following conditions:

(i) All ei are even, i.e. p(t) = c.r(t)2 for c ∈ F× and some r(t) ∈ k[t].

(ii) d /∈ k×2.

(iii) For each i ∈ I, d ∈ k×2
i .

We have:

(a) If (i) or (ii) or (iii) is not fulfilled, then Br(X̃)/Br(k) = 0.

(b) Assume U(k) 6= ∅. If (iii) is fulfilled, then Br(X̃)
'→ Br(U).

(c) If (i), (ii) and (iii) are fulfilled, then

Br(X̃)/Br(k)
'→ Br(U)/Br(k) = Z/2.

In that case, for any field extension L/k and any α ∈ L such that p(α) 6= 0,

the evaluation map Br(X̃)/Br(k)→ Br(Xα)/Br(L) is surjective.

Proof. One has Br(X̃) ⊂ Br(U).

Proof of (a)
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By Proposition 5.2, resp. Proposition 5.3, if (i), resp. (ii), is not fulfilled,

then Br(U)/Br(k) = 0. Assume (i) and (ii) are fulfilled. Proposition 5.3

then gives Br(U)/Br(k) ' Z/2.

Let F be the function field of the smooth projective conic C defined by

q(x, y, z) = 0. Assume (iii) does not hold. Let i ∈ I such that d /∈ k×2
i . Let

Fi be the composite field F.ki. Since k is algebraically closed in F , so is ki

in Fi. Thus d is not a square in Fi.

By the same argument as in Proposition 5.5, the map

Z/2 = Br(U)/Br(k)→ Br(UFi
)/Br(Fi)

is an isomorphism. Over the field Fi, one may rewrite the equation of XFi

as

xy − det(q)z2 = c.r(t)2

and assume that t = 0 is a root of r(t). After restriction to the generic fibre

of UFi
→ Spec(Fi[t]), the quaternion algebra (x, d) ∈ Br(Fi(X)) defines

a generator modulo Br(Fi(t)). This follows from Proposition 4.1. Now the

algebra (x, d) = (y. det(q), d) is unramified on the complement of the closed

set {x = y = 0} on UFi
, of codimension 2 in UFi

, thus (x, d) belongs to

Br(UFi
). It thus generates Br(UFi

)/Br(Fi).

Define h(T ) ∈ k[T ] by Th(T ) = cr(T )2. Consider the morphism

σ : Spec(Fi[[T ]])→ X

defined by

(x, y, z, t) = (T, h(T ), 0, T ).

The induced morphism Spec(Fi((T ))) → X has its image in U . Since

π : X̃ → X is proper, we conclude that the morphism σ lifts to a mor-

phism σ̃ : Spec(Fi[[T ]]) → X̃. Suppose (x, d) ∈ Br(UFi
) is in the image of

Br(X̃Fi
) → Br(UFi

). Then σ̃∗((x, d)) = (T, d) belongs to Br(Fi[[T ]]). But

the residue of (T, d) ∈ Br(Fi(T )) at T = 0 is d 6= 1 ∈ F×i /F
×2
i . This

is a contradiction. Taking into account Proposition 5.5, we conclude that

the embedding Br(X̃)/Br(k) ↪→ Br(U)/Br(k) = Z/2 is not onto, hence

Br(X̃)/Br(k) = 0.

Proof of (b)

Let E = k(
√
d). By Proposition 5.3, we have Br(UE)/Br(E) = 0. Using

the hypothesis U(k) 6= ∅, we see that any element of Br(U) ⊂ Br(k(U))

may be represented as the sum of an element of Br(k) and the class of a

quaternion algebra (g, d) for some g ∈ k(U)×.
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Assume (iii) is fulfilled. Let x be a point of codimension 1 of X̃ which does

not belong to p−1(U). Let v be the associated discrete rank one valuation on

the function field of X. We then have v(pi(t)) > 0 for some i ∈ I. We thus

have k ⊂ ki ⊂ κv, where κv = κ(x) is the residue field of v. If assumption

(iii) is fulfilled we conclude that d is a square in κv.

But then the residue of (g, d) at x, which is a power of d in κ×v /κ
×2
v ,

is trivial. By purity for the Brauer group, we conclude Br(X̃)/Br(k) =

Br(U)/Br(k). This proves (b).

Proof of (c)

This follows from Proposition 5.3 and Proposition 5.5.

Let Q be the smooth affine quadric over k defined by q(x, y, z) = c. For

simplicity, let us assume Q(k) 6= ∅. In the situation of Proposition 5.3, with

d = −c. det(q) /∈ (k×)2, one may give an explicit generator in Br(U) for

Br(U)/Br(k) = Z/2.

The assumption Q(k) 6= ∅ implies U(k) 6= ∅. By Prop. 4.1, we have

Br(Q)/Br(k) = Z/2. Let αx+ βy + γz + δ = 0 define the tangent plane of

Q at some k-point. Not all α, β, γ are zero. As recalled in Proposition 4.1,

A = (αx+ βy + γz + δ, d) ∈ Br(k(Q))

belongs to Br(Q) and generates Br(Q)/Br(k).

Given a nonzero r(t) ∈ k[t], let W = Q ×k (A1
k \ {r(t) = 0}). Consider

the birational k-morphism

f : Q×k A1
k → X ⊂ A4

k; (x, y, z, t) 7→ (r(t)x, r(t)y, r(t)z, t).

This map induces an isomorphism between W = Q×k {A1 \{r(t) = 0} and

the open set V of U = Xsmooth defined by r(t) 6= 0. Let AV be the image of

A inside Br(V ) under the composition map

Br(Q)→ Br(W ) ∼= Br(V ).

Proposition 5.7. Let p(t) = c.r(t)2 with c ∈ k× and r(t) ∈ k[t] nonzero.

Assume

d = −c. det(q) /∈ k×2

.

Assume Q(k) 6= ∅. With notation as above, the element

B = AV + (r(t), d) = (αx+ βy + γz + δr(t), d) ∈ Br(V )

can be extended to Br(U) and it generates the group Br(U)/Br(k) ' Z/2.
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Proof. On V ⊂ U = Xsmooth, we have

AV = (αx/r(t)+βy/r(t)+γz/r(t)+δ, d) = (αx+βy+γz+δr(t), d)−(r(t), d).

Thus

B = AV + (r(t), d) = (αx+ βy + γz + δr(t), d) ∈ Br(k(V ))

is unramified on V . To check that it is unramified on U , it is enough to

compute the residue at the generic point of each component of r(t) = 0

on U . These are defined by a system pi(t) = 0, q(x, y, z) = 0. But at such a

point, αx+βy+γz+δr(t) is a unit since it induces the class of αx+βy+γz

on the residue field, and this is not zero since αx+ βy + γz is not divisible

by q(x, y, z). Since d is clearly a unit, we conclude that B is not ramified

at such points. The natural map Br(Q)/Br(k)→ Br(Qk(t))/Br(k(t)) is the

identity on Z/2. It sends the nontrivial class A to the class of B. The image

of B in Br(U)/Br(k) = Z/2 is thus nontrivial.

One may use this proposition to give a more concrete description of

specialization of the Brauer group, as discussed in Propositions 5.5 and

5.6.

6 Arithmetic of the equation q(x, y, z) = p(t)

Let F be a number field, q(x, y, z) a nondegenerate quadratic form in three

variables over F and p(t) ∈ F [t] a nonzero polynomial. Let X be the affine

variety over F defined by the equation

(6.1) q(x, y, z) = p(t).

The singular points of XF are the points (0, 0, 0, t) with t a multiple root

of p (Lemma 3.3). Let U ⊂ Xsmooth be the complement of the closed set of

X defined by x = y = z = 0.

Let π : X̃ → X a desingularization of X, i.e. X̃ is smooth and integral,

the map π is proper and birational. We assume that π : π−1(Xsmooth) →
Xsmooth is an isomorphism. Thus π : π−1(U)→ U , is an isomorphism. This

allows us to view U as an open set of X̃.

Write p(t) = c.p1(t)e1 . . . ps(t)
es , with c is in F× and the pi(t), 1 ≤ i ≤ s

distinct monic irreducible polynomials over F . Let Fi = F [t]/(pi(t)) for

1 ≤ i ≤ s.
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Under some local isotropy condition for q, we investigate strong approx-

imation for the F -variety X̃.

This variety is equipped with an obvious fibration X̃ → A1
F = Spec(F [t]).

We begin with two lemmas.

Lemma 6.1. If r(t) is an irreducible polynomial over a number field F , then

there are infinitely many valuations v of F for which there exist infinitely

many tv ∈ ov with v(r(tv)) = 1.

Proof. By Chebotarev’s theorem, there are infinitely many valuations v of

F which are totally split in the field F [t]/(r(t)). Let d denote the degree of

r(t). For almost all such v, we may write

r(t) = c
d∏
i=1

(t− ξi) ∈ Fv[t]

with all ξi in ov and c and all ξi − ξj (i 6= j) units in ov. Since there are

infinitely many elements of ov with v-valuation 1, there exist infinitely many

tv ∈ ov such that v(tv − ξ1) = 1. Then v(r(tv)) = 1.

Lemma 6.2. Let F be a number field, and q(x, y, z) and p(t) be as above.

If not all ei are even, then there exist infinitely many valuations w of F for

which there exists tw ∈ ow with w(p(tw)) odd and −p(tw). det(q) 6∈ F×2
w .

Proof. Assume ei0 is odd for some i0 ∈ {1, · · · , s}. If s = 1, the result

immediately follows from Lemma 6.1. Assume s > 1.

For any j 6= i0, there are polynomials aj(t) and bj(t) over F such that

(6.2) aj(t)pj(t) + bj(t)pi0(t) = 1

holds.

Let S be a finite set of primes such that each of the following conditions

hold:

(i) the coefficients of q are integral away from S;

(ii) w(c) = w(det(q)) = 0 for all w 6∈ S;

(iii) the coefficients of aj(t), bj(t) for j 6= i0 and of pi(t) for 1 ≤ i ≤ s are

in ow for all w 6∈ S.

By applying Lemma 6.1 to pi0(t), we see that there exist infinitely many

primes w 6∈ S and tw ∈ ow such that w(pi0(tw)) = 1. By equation (6.2),

one has w(pj(tv)) = 0 for any j 6= i0. This implies w(p(tw)) = ei0 is odd.

Therefore −p(tw) · det(q) 6∈ F×2
w .
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Proposition 6.3. Let F be a number field and X be an F -variety defined

by an equation

q(x, y, z) = p(t)

where q(x, y, z) is a nondegenerate quadratic form over F and p(t) is a

nonzero polynomial in F [t]. Assume Xsmooth(Fv) 6= ∅ for each place v of F .

Then

(1) Xsmooth(F ) is Zariski-dense in X.

(2) Xsmooth satisfies weak approximation.

Proof. This is a special case of Thm. 3.10, p. 66 of [CTSaSD].

Theorem 6.4. Let F be a number field. Let U ⊂ X̃ be as above. Assume

U(AF ) 6= ∅. Let S be a finite subset of ΩF which contains a place v0 such

that the quadratic form q(x, y, z) is isotropic over Fv0. Then strong approx-

imation off S with Brauer-Manin condition holds for any open set V with

U ⊂ V ⊂ X̃, in particular for Xsmooth.

Since X̃ is smooth and geometrically integral, the hypotheses U(AF ) 6= ∅,
Xsmooth(AF ) 6= ∅ and X̃(AF ) 6= ∅ are all equivalent.

Taking into account the isomorphism Br(Xsmooth)
'→ Br(U), the finite-

ness of Br(U)/Br(F ) (§5) and Proposition 2.6, this theorem is an immediate

consequence of the following more precise statement.

Theorem 6.5. Let F be a number field. Let p(t) = c.p1(t)e1 . . . ps(t)
es,

q(x, y, z), X, U and X̃ be as above. Let d = −c. det(q). Let S be a finite

subset of ΩF which contains a place v0 such that the quadratic form q(x, y, z)

is isotropic over Fv0. Assume U(AF ) 6= ∅.
Then U(F ) 6= ∅ is Zariski dense in U .

(i) If at least one ei is odd, then

Br(X̃)/Br(F ) = Br(U)/Br(F ) = 0,

and strong approximation off S holds for U and for X̃.

(ii) If all ei are even and d ∈ F×2, then

Br(X̃)/Br(F ) = Br(U)/Br(F ) = 0,

and strong approximation off S holds for U and for X̃.

(iii) If all ei are even and there exists i such that d /∈ F×2
i , then

Br(X̃)/Br(F ) = 0, Br(U)/Br(F ) = Z/2,
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strong approximation off S with Brauer-Manin condition holds for U and

for any open set V with U ⊂ V ⊂ X̃. Strong approximation holds for X̃

and for any open set V with U ⊂ V ⊂ X̃ which satisfies Br(X̃)
'→ Br(V ).

(iv) If all ei are even, d /∈ F×2, and for all i, d ∈ F×2
i , then

Br(X̃)/Br(F ) = Br(U)/Br(F ) = Z/2,

and strong approximation off S with Brauer-Manin condition holds for U

and for X̃.

(v) Strong approximation off S fails for U , resp. for X̃, if and only if the

following two conditions simultaneously hold:

(a) Br(U)/Br(F ) = Z/2, resp. Br(X̃)/Br(F ) = Z/2;

(b) d is a square in Fv for each finite place v ∈ S and also for each real

place v ∈ S such that either q(x, y, z) is isotropic over Fv or r(t) has a root

over Fv.

Proof. By Proposition 6.3, U(F ) 6= ∅ and U(F ) is Zariski dense in U . The

various values of Br(U) and Br(X) have been computed in §5. By Proposi-

tion 2.3 and Proposition 2.6, to prove (i) to (iv), it is enough to prove the

strong approximation statements (with Brauer-Manin obstruction) for U .

We fix a finite set T of places, which contains S, the infinite primes, the

dyadic primes and all the finite places v where q(x, y, z) has bad reduction.

We also assume that p(t) has coefficients in oT and that its leading coefficient

c is invertible in oT . We denote by X the oT -scheme given by

q(x, y, z) = p(t).

We let U ⊂ X be the complement of the closed set defined by the ideal

(x, y, z). We may extend T so that there is a smooth integral oT -scheme X̃

equipped with a proper birational oT -morphism X̃→ X extending the map

π : X̃ → X.

For any v /∈ T , U(ov) is the set of points (xv, yv, zv, tv) with all coordi-

nates in ov, q(xv, yv, zv) = p(tv) and one of (xv, yv, zv) a unit. By Lemma

4.2, given any tv ∈ ov, this set is not empty.

To prove the statements (i) to (iv), after possibly increasing T , we have

to prove that for any such finite set T containing S, a nonempty open set

of U(AF ) of the shape

WU = [
∏
v∈S

U(Fv)×
∏
v∈T\S

Uv ×
∏
v/∈T

U(ov)]
Br(U)

with Uv open in U(Fv), contains a point in U(F ).
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Given t0 ∈ oT = A1(oT ) with p(t0) 6= 0, we let Ut0/Spec(oT ) be the fibre

of U/A1
oT

above t0. This is the oT -scheme defined by q(x, y, z) = p(t0). We

let Ut0 = Ut0 ×oT F .

It is enough to show that in each of the cases under consideration:

There exists t0 ∈ oT such that the set

[
∏
v∈S

Ut0(Fv)×
∏
v∈T\S

Uv ∩ Ut0(Fv)×
∏
v/∈T

Ut0(ov)]
Br(Ut0 )

is nonempty.

Indeed, Proposition 4.5 implies that such a nonempty set contains an

F -rational point.

We have Br(U)/Br(F ) ⊂ Z/2. If Br(U)/Br(F ) is nonzero, we may rep-

resent the group by an element ξ of order 2 in Br(U). To prove the result,

we may extend T . After doing so, we may assume that ξ vanishes identically

on each U(ov) for v /∈ T .

We start with a point {Mv} = {(xv, yv, zz, tv)}v∈ΩF
in WU such that

p(tv) 6= 0 for each v ∈ ΩF .

We have ∑
v

ξ(Mv) = 0 ∈ Z/2.

In case (i), we choose a w /∈ T and a t′w ∈ ow with w(p(t′w)) odd and

−p(t′w). det(q) /∈ F×2
w . The existence of such w, t′w is guaranteed by Lemma

6.2.

Using the strong approximation theorem, we find a t0 ∈ oT which is very

close to each tv for v ∈ T \ {v0} and is also very close to t′w in case (i).

By Lemma 4.2, as recalled above, for each v /∈ S, the projection map

U(ov) → A1(ov) is onto. By assumption, q is isotropic at v0 ∈ S, hence

U(Fv0)→ A1(Fv0) is onto.

Combining this with the implicit function theorem, we find an adèle

{Pv} ∈ Ut0(AF ) = X̃t0(AF ) with the following properties:

• For v ∈ T \ {v0}, Pv is very close to Mv in U(Fv), hence belongs to

Uv ∩Ut0(Fv) for v ∈ T \ S. Moreover ξ(Mv) = ξ(Pv).

• For v /∈ T , Pv ∈ Ut0(ov), hence ξ(Pv) = 0 = ξ(Mv).

By the Hasse principle, there exists an F -point on the affine F -quadric

Ut0 = X̃t0 .

Consider case (i). By the definition of w, w(p(t0)) is odd, −p(t0). det(q) /∈
F×2
w , hence −p(t0). det(q) /∈ F×2, thus

Z/2 = Br(Ut0)/Br(F ) ' Br(Ut0,Fw)/Br(Fw)
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by Proposition 4.1. Let ρ ∈ Br(Ut0) be an element of order 2 which generates

these groups.

If
∑

v ρ(Pv) = 0, the adèle {Pv} ∈ Ut0(AF ) belongs to the Brauer-Manin

set of Ut0 .

Suppose
∑

v ρ(Pv) = 1/2. By Lemma 4.3 , ρ takes two distinct values

on Ut0(ow). We may thus choose a new point Pw ∈ Ut0(ow) such that now∑
v ρ(Pv) = 0, that is the new adèle {Pv} ∈ Ut0(AF ) belongs to the Brauer-

Manin set of Ut0 , which completes the proof in this case.

Consider case (ii). In this case − det(q).p(t0) ∈ F×2, hence we have

Br(Ut0)/Br(F ) = 0 by Proposition 4.1. Thus the adèle {Pv} ∈ Ut0(AF ) is

trivially in the Brauer-Manin set of Ut0 , which completes the proof in this

case.

Let us consider (iii) and (iv). In these cases, −c. det(q) /∈ F×2, hence

− det(q).p(t) /∈ F (t)×2 and − det(q).p(t0) /∈ F×2 for any t0 ∈ F . We have

Br(U)/Br(F ) = Z/2 and Br(Ut0)/Br(F ) = Z/2 for any t0 with p(t0) 6= 0.

The element ξ ∈ Br(U) has now exact order 2. It generates Br(U)/Br(F ).

The restriction of this element to Br(Ut0)/Br(F ) = Z/2 is the generator of

that group (Propositions 5.3 and 5.5).

By hypothesis,
∑

v ξ(Mv) = 0. We then have∑
v

ξ(Pv) = ξ(Pv0)+
∑

v∈T\{v0}

ξ(Pv) = ξ(Pv0)+
∑

v∈T\{v0}

ξ(Mv) = ξ(Pv0)−ξ(Mv0).

If d ∈ F×2
v0

, then Br(UFv0
)/Br(Fv0) = 0 (Prop. 5.3), from which we

deduce ξ(Pv0)− ξ(Mv0) = 0. We thus get
∑

v ξ(Pv) = 0. The adèle {Pv} is

in the Brauer-Manin set of Ut0 .

Assume d /∈ F×2
v0

. Then Br(UFv0
)/Br(Fv0)

'→ Br(Ut0,Fv0
)/Br(Fv0) = Z/2

(Propositions 5.3 and 5.5). The image of ξ in Br(Ut0,Fv0
)/Br(Fv0) generates

this group. By Lemma 4.4, the class ξ takes two distinct values on Ut0(Fv0).

This holds whether v0 is real or not, because by assumption q is isotropic

at the place v0. We may then change Pv0 ∈ Ut0(Fv0) in order to ensure that

ξ(Pv0) − ξ(Mv0) = 0, which yields
∑

v ξ(Pv) = 0. The adèle {Pv} is in the

Brauer-Manin set of Ut0 .

This proves (iii) and (iv) for U .

It remains to establish (v).

Assume (a) and (b). Under (a), all ei are even and d /∈ F×2. We let

ξ be an element of exact order 2 in Br(U), resp. Br(X̃), which generates

Br(U)/Br(F ), resp. Br(X̃)/Br(F ). Under (b), at each finite place v ∈ S, by
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Proposition 5.3 we have ξFv ∈ Br(Fv), hence ξ is constant on U(Fv), resp.

X̃(Fv). The same holds at a real place v such that d ∈ F×2
v . At a real place

v ∈ S such that d /∈ F×2
v , the form q(x, y, z) is anisotropic over Fv and r(t)

has no real root. At such v, the equation after suitable transformation reads

x2 + y2 + z2 = (r(t))2 and U(Fv) = U(R) is connected. Then ξ is constant

on U(R).

Let M be a point of U(F ), resp. X̃(F ), with p(t(M)) 6= 0. Since we have

d /∈ F×2, there are infinitely many finite places w /∈ S such that d /∈ F×2
w . At

such a place w, ξ takes two distinct values on Ut(M)(Fw) = X̃t(M)(Fw) (use

Proposition 5.5 and Lemma 4.4). Pick Pw ∈ Ut(M)(Fw) such that ξ(Pw) 6=
ξ(M)Fw ∈ Z/2. If we let {Pv} be the adèle of U , resp. X̃ with Pv = M

for v 6= w and Pw as just chosen, then
∑

v ξ(Pv) 6= 0, and this adèle lies

in an open set of the shape
∏

v∈S U(Fv) ×
∏

v∈T\S Uv ×
∏

v/∈T U(ov), resp.∏
v∈S X̃(Fv)×

∏
v∈T\S Uv×

∏
v/∈T X̃(ov), which contains no diagonal image of

U(F ), resp. X̃(F ). Strong approximation off S therefore fails for U , resp. X̃.

Suppose either (a) or (b) fails. Let us prove that strong approximation

holds off S. If (a) fails, then Br(U)/Br(F ) = 0, resp. Br(X̃)/Br(F ) = 0,

and we have proved that strong approximation holds off S. We may thus

assume Br(U)/Br(F ) = Z/2, resp. Br(X̃)/Br(F ) = Z/2, hence all ej are

even and d /∈ F×2, and that (b) fails. Then either

(i) there exists a finite place v ∈ S with d /∈ F×2
v

or

(ii) there exists a real place v ∈ S with d /∈ F×2
v , i.e. d < 0, such that q

is isotropic over Fv or r(t) has a root in Fv.

We let ξ be an element of exact order 2 in Br(U), resp. Br(X̃) which

generates Br(U)/Br(F ), resp. Br(X̃)/Br(F ). For any tv ∈ A1(Fv) with

p(tv) 6= 0, ξ generates Br(Utv)/Br(Fv), resp. Br(X̃tv)/Br(Fv) (Proposition

5.5). If v is a finite place of S with d /∈ F×2
v then, by Lemma 4.4, above

any point of tv ∈ A1(Fv) with p(tv) 6= 0, ξ takes two distinct values on

Utv(Fv) = X̃tv(Fv). It thus takes two distinct values on U(Fv), resp. X̃(Fv).

The same argument applies if v ∈ S is a real place with d /∈ F×2
v and q is

isotropic at v. If v is a real place with d /∈ F×2
v and q is anisotropic at v,

then one may write the equation of X over Fv = R as

x2 + y2 + z2 = r(t)2.

The real quadric Q defined by x2 + y2 + z2 = 1 contains the point (1, 0, 0).

Applying the recipe in Proposition 5.7, one finds that the class of the

quaternion algebra (x − r(t),−1) in Br(F (U)) lies in Br(U) and generates
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Br(U ×F R)/Br(R). By assumption, r(t) has a real root. One easily checks

that (x − r(t)) takes opposite signs on U(R) when one crosses such a real

root of r(t). Thus ξR = (x− r(t),−1) takes two distinct values on U(Fv).

Let now {Pv} be an adèle of U , resp. X̃. If
∑

v ξ(Pv) = 1/2, then we

change Pv at a place v ∈ S so that the new
∑

v ξ(Pv) = 0. We then know

that that we can approximate this family off S by a point in U(F ), resp. a

point in X(F ).

Remark 6.6. Over the ring of usual integers, a special case of Watson’s

Theorem 3 in [Wat] reads as follows.

Assume the ternary quadratic form q(x, y, z) with integral coefficients is

of rank 3 over Q and isotropic over R. Let p(t) ∈ Z[t] be a nonconstant

polynomial. Assume

(W) For each big enough prime l, the equation p(t) = 0 has a solution

in the local field Ql.

If the equation q(x, y, z) = p(t) has solutions in Zl for each prime l, then

it has a solution in Z.

Let k = Q and X/k and X̃/k be as above. This result is a consequence

of Theorem 6.5. Indeed, if Br(X̃)/Br(k) = 0, strong approximation holds

for X̃, hence in particular the local-global principle holds for integral points

of X̃. By Proposition 5.6, Br(X̃)/Br(k) 6= 0 occurs only if all ei are even,

d /∈ k×2 and d ∈ k×2
i for all i. That is to say, for each i, the quadratic

field extension k(
√
d) of k lies in ki. There are infinitely many primes v of k

which are inert in k(
√
d). For such primes v, none of the equations pi(t) = 0

admits a solution in kv. Condition (W) excludes this possibility.

7 Two examples

In this section we give two examples which exhibit a drastic failure of strong

approximation: there are integral points everywhere locally but there is no

global integral point.

The first example develops [Xu, (6.1), (6.4)].

Proposition 7.1. Let X ⊂ A4
Z be the scheme over Z defined by

−9x2 + 2xy + 7y2 + 2z2 = (2t2 − 1)2.

Let U over Z be the complement of x = y = z = 0 in X. Let X = X×Z Q
and U = U ×Z Q. Let X̃ → X be a desingularization of X inducing an
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isomorphism over U . Let X̃ → X, with U ⊂ X̃, be a proper morphism

extending X̃ → X.

Strong approximation off ∞ fails for U and for X̃. More precisely:

(i) ∏
p≤∞

X(Zp) 6= ∅ and X(Z) = ∅.

(ii) ∏
p≤∞

U(Zp) 6= ∅ and U(Z) = ∅.

(iii) ∏
p≤∞

X̃(Zp) 6= ∅ and X̃(Z) = ∅.

Proof. With notation as in Theorem 6.5, we have F = Q, v0 =∞, S = {v0}.
One has det(q) = −27 and d = −c. det(q) = 29. We are in case (iv) of

Theorem 6.5. Over R, q(x, y, z) is isotropic. By Theorem 6.5 (iv) we have

Br(X̃)/Br(F ) = Br(U)/Br(F ) = Z/2

and by Theorem 6.5 (v) we know that strong approximation off S fails for

U and X̃.

The equation may be written as

(7.1) (x− y)(9x+ 7y) = 2z2 − (2t2 − 1)2.

Let Y/Q be the smooth open set defined by

(7.2) (x− y)(9x+ 7y) = 2z2 − (2t2 − 1)2 6= 0.

Thus Y ⊂ U ⊂ X. We have Y (Q) = U(Q) = X(Q) since 2 is not a square

in Q. We also have Y (Qp) = U(Qp) = X(Qp) for any prime p such that 2

is not a square in Qp.

On the 3-dimensional smooth variety U , the algebra

(7.3) B = (y − x, 2) = (−2(9x+ 7y), 2) = (9x+ 7, 2)

is unramified off the codimension 2 curve x = y = 0, hence by purity

it is unramified on U . One could show by purely algebraic means that it

generates Br(U)/Br(F ) = Z/2 but this will follow from the arithmetic

computation below.

Note that U(Q) = X(Q), since the singular points of X are not defined

over Q.
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For p 6= 2, there is a point of U(Zp) with t = 1. For p 6= 3, we have the

point (0, 1/3, 1/3, 1) in U(Zp). Thus
∏

p≤∞U(Zp) 6= ∅.
For p 6= 2, and 2 not a square in Qp, for any solution of (7.2) in Zp,

y − x and 9x + 7y are p-adic units. For any p 6= 2, equality (7.3) thus

implies B(Mp) = 0 for any point in X(Zp) ∩ Y (Qp). Since U is smooth,

Y (Qp) is dense in U(Qp). Since X(Zp) is open in X(Qp), this implies that

X(Zp) ∩ Y (Qp) is dense in X(Zp) ∩ U(Qp), and then that B(Mp) = 0 for

any point in X∗(Zp) := X(Zp) ∩ U(Qp). This last set contains U(Zp).
The algebra B trivially vanishes on X∗(R) := U(R).

Let us consider a point M2 ∈ X(Z2) ⊂ Y (Q2). From (7.2), for such a

point with coordinates (x, y, z, t), we have

(x− y)(9x+ 7y) = ±1 mod. 8.

Thus the 2-adic valuation of y−x and of 9x+7y is zero. If B vanishes on M2

then y−x = 1 mod. 4 and 9x+7y = 1 mod. 4. But then 16x = 2 mod. 4,

which is absurd. Thus B(M2) is not zero, that is B(M2) = 1/2 ∈ Q/Z.

We conclude that for any point {Mp} ∈
∏

p X∗(Zp)×X∗(R),∑
p

B(Mp) = B(M2) = 1/2.

This implies X(Z) = X(Z) ∩ U(Q) = ∅, hence U(Z) = ∅ and X̃(Z) = ∅,
since both sets map to X(Z).

Since X̃→ X is proper, the map X̃(Zp)→ X(Zp) contains X∗(Zp) in its

image. We thus have X̃(Zp) 6= ∅.
One actually has

[
∏
p≤∞

X̃(Zp)]Br(X̃) = ∅.

Indeed, the algebra B = (y − x, 2) on U extends to an unramified class on

X̃. To see this, one only has to consider the points of codimension 1 on X̃

above the closed point 2t2− 1 = 0 of A1
Q. For the corresponding valuation v

on the field F (X̃), one have v(2t2− 1) > 0, thus 2 is a square in the residue

field of v, hence the residue of (y − x, 2) at v is trivial.

The next example is inspired by an example of Cassels (cf. [CTX, 8.1.1]).

Proposition 7.2. Let X ⊂ A4
Z be the scheme over Z defined by

x2 − 2y2 + 64z2 = (2t2 + 3)2.
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Let U over Z be the complement of x = y = z = 0 in X. Let X = X×Z Q
and U = U×Z Q. Let X̃ → X be a desingularization of X. Let X̃→ X be

a proper morphism extending X̃ → X.

Strong approximation off ∞ holds for X̃ and fails for U . More precisely:

(i) X̃(Z) is dense in
∏

p<∞ X̃(Zp).

(ii) There are solutions (x, y, z, t) in Z with p(t) 6= 0, thus we have

X(Z) ∩ U(Q) 6= ∅.
(iii) We have

∏
p≤∞U(Zp) 6= ∅ and [

∏
p≤∞U(Zp)]Br(U) = ∅, hence

U(Z) = ∅ : there are no solutions (x, y, z, t) in Z with (x, y, z) primitive.

Proof. With notation as in Theorem 6.5, we have F = Q, v0 =∞, S = {v0}.
We have d = 29. Over R, q(x, y, z) is isotropic. We are in case (iii) of

Theorem 6.5. We have Br(X̃)/Br(F ) = 0 and Br(U)/Br(F ) = Z/2.

According to Theorem 6.5 (iii), strong approximation off∞ holds for X̃.

Theorem 6.5 (v) then says that strong approximation off S fails for U .

That is, U(Q) is not dense in U(A∞Q ).

The point (x, y, z, t) = (3, 0, 0, 0) ∈ U(Q) ∩ X(Z) provides a point in

U(Zp) for each prime p 6= 3 and for p = ∞. In general, for p odd, we have

U(Zp) 6= ∅ by Lemma 4.2.

Let us prove statement (iii).

Since 1−8z = 0 is the tangent plane on affine quadric x2−2y2 +64z2 = 1

over Q at the point (0, 0, 1
8
), Proposition 5.7 shows that B = (2t2 +3−8z, 2)

is the generator of Br(U)/Br(F ). We have

(7.4) (2t2 + 3− 8z)(2t2 + 3 + 8z) = x2 − 2y2

thus

(7.5) B = (2t2 + 3− 8z, 2) = (2t2 + 3 + 8z, 2).

Let p be an odd prime such that 2 is not a square modulo p. For a point

(x, y, z) ∈ U(Zp), if p divides both 2t2 + 3−8z and 2t2 + 3 + 8z, then on the

one hand p divides z and on the other hand, by equation (7.4), it divides

x2 − 2y2, which then implies that p divides x and y. Thus p divides x, y, z,

which is impossible for a point in U(Zp). We conclude from (7.5) that for

any odd prime p, B vanishes on U(Zp).
For p = 2, for any t and z in Z2, we have 2t2 + 3 − 8z = ±3 modulo 8,

hence

(2t2 + 3− 8z, 2) = (±3, 2) = 1/2 ∈ Br(Q2).

Thus

[
∏
p≤∞

U(Zp)]Br(U) = ∅,
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which implies U(Z) = ∅.

8 Approximation for singular varieties

The following lemma is well known.

Lemma 8.1. Let k be a local field of characteristic zero. Let X be a geometri-

cally integral variety over k. Let f : X̃ → X be a resolution of singularities

for X, i.e. X̃ is a smooth, geometrically integral k-variety and f is a proper

birational k-morphism. The following closed subsets of X(k) coincide:

(a) The closure of Xsmooth(k) in X(k) for the topology of k.

(b) The set f(X̃(k)) ⊂ X(k).

In particular, this set, called the set of central points of X, does not

depend on the resolution f : X̃ → X. It will be denoted X(k)cent.

Proof. One uses the fact that for a nonempty open set U of X̃, U(k) is dense

in X̃(k) for the local topology, and that the inverse image of a compact

subset of X(k) under f is a compact set in X̃(k).

Definition 8.2. Let F be a number field. Let X be a geometrically integral

variety over F . Assume Xsmooth(F ) 6= ∅. Let S be a finite set of places of F .

One says that X satisfies central weak approximation at S if either of the

following conditions is fulfilled:

(a) Xsmooth(F ) is dense in
∏

v∈S Xsmooth(Fv).

(b) Xsmooth(F ) is dense in
∏

v∈S X(Fv)cent.

One says that X satisfies weak approximation if this holds for any finite

set S of places of F .

While discussing the possible lack of weak approximation for a given

variety X the natural Brauer-Manin obstruction is defined by means of the

Brauer group of a smooth, projective birational model of X.

Let us now discuss strong approximation.

Lemma 8.3. Let F be a number field. Let X be a geometrically integral

variety over F . Let f : X̃ → X be a resolution of singularities for X, i.e. X̃

is a smooth, geometrically integral F -variety and f is a proper birational F -

morphism. Let S be a finite set of places of F . The following closed subsets

of X(AS
F ) coincide:

(a) The intersection of X(AS
F ) with

∏
v/∈S X(Fv)cent.

(b) The image of X̃(AS
F ) under f : X̃(AS

F )→ X(AS
F ).
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This set does not depend on the resolution f : X̃ → X. We shall call it

the set of central S-adèles of X, and we shall denote it X(AS
F )cent.

Proof. There exists a finite set T of places of F containing S and a proper

oT -morphism of oT schemes X̃ → X extending X̃ → X. For v /∈ T , one

checks that

X̃(ov) = X(ov)×X(Fv) X̃(Fv).

Proposition 8.4. Let X be a geometrically integral variety over the number

field F . Assume Xsmooth(F ) 6= ∅. Let f : X̃ → X be a resolution of singu-

larities for X. Let S be a finite set of places of F . The following conditions

are equivalent:

(a) The diagonal image of Xsmooth(F ) in X(AS
F )cent is dense.

(b) The diagonal image of X̃(F ) in X̃(AS
F ) is dense.

Definition 8.5. If these conditions hold, we say that central strong ap-

proximation holds for X off S.

If central strong approximation off S holds for X, it holds off any finite

set S ′ containing S.

Definition 8.6. Let X be a geometrically integral variety over the number

field F . Assume Xsmooth(F ) 6= ∅. Let f : X̃ → X be a resolution of singular-

ities. Let S be a finite set of places of F . If the diagonal image of X̃(F ) in

(X̃(AS
F ))Br(X̃) ⊂ X̃(AS

F ) is dense, we say that central strong approximation

with Brauer-Manin obstruction off S holds for X. If central strong approx-

imation with Brauer-Manin obstruction off S holds for X, it holds off any

finite set S ′ containing S.

We leave it to the reader to translate the statement in terms ofX(AS
F )cent.

We insist that the relevant group is the group Br(X̃), which does not depend

on the chosen resolution of singularities X̃ → X.

Example 8.7. Let k be a local field of characteristic zero and X be a

k-variety defined by an equation

q(x1, · · · , xn) = p(t),

where q is a nondegenerate quadratic form and p(t) ∈ k[t] a nonzero poly-

nomial. Then X(k) 6= X(k)cent if and only if there is a zero α of p(t) over k

of even order r and the quadratic form in n+ 1 variables

q(x1, · · · , xn)− p0(α)x2
n+1
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is anisotropic over k, where p(t) = (t− α)rp0(t).

Proof. By Lemma 3.3, a singular point of X(k) is given by (0, · · · , 0, α),

where α is a zero of p(t) of order r > 1. Let p(t) = (t − α)rp0(t). We may

assume

q(x1, · · · , xn) =
n∑
i=1

aix
2
n.

Let π denote a uniformizer of k if k is p-adic and some nonzero element

with |π| < 1 when k is archimedean.

Suppose r is odd. Let αl = α + p0(α)a1π
2l, hence liml→∞ αl = α. For

l� 0, one has p0(αl) = p0(α)ε2l with εl ∈ k× and εl → 1 as l→∞. Then

Pl = (εla
r−1
2

1 p0(α)
r+1
2 πlr, 0, · · · , 0, αl)

are smooth points of X(k) for l � 0 and Pl → (0, · · · , 0, α) when l → ∞.

Therefore (0, · · · , 0, α) ∈ X(k)cent.

Suppose r is even and the quadratic form q(x1, · · · , xn) − p0(α)x2
n+1 is

isotropic. There exists

(θ1, · · · , θn, θn+1) 6= (0, · · · , 0, 0)

in kn+1 such that q(θ1, · · · , θn) = p0(α)θ2
n+1. If θn+1 = 0, then the smooth

points of X(k)

Pn = (πlθ1, · · · , πlθn, α)→ (0, · · · , 0, α)

as l→∞. Therefore (0, · · · , 0, α) ∈ X(k)cent.

If θn+1 6= 0, one can assume that θn+1 = 1. Let tl = α + π2l. Then

p0(tl) = p0(α)ε2l with εl ∈ k× and εl → 1 as l → ∞. The smooth points of

X(k)

Pn = (πrlεlθ1, · · · , πrlεlθn, tl)→ (0, · · · , 0, α)

as l→∞. Therefore (0, · · · , 0, α) ∈ X(k)cent.

Suppose r is even and the quadratic form in n+ 1 variables

q(x1, · · · , xn)− p0(α)x2
n+1

is anisotropic over k. Suppose the singular point P0 = (0, · · · , 0, α) is the

limit of a sequence of smooth k-points. There thus exists a sequence of

smooth k-points Pl, l ∈ N, satisfying Pl → P0 when l→∞. Let Pl = (Ql, αl)

where αl is the t-coordinate of Pl. Then p0(αl) = p0(α)ε2l 6= 0 with εl ∈ k×

for l� 0. Therefore

q(Ql)− p(αl) = q(Ql)− p0(α)[(αl − α)
r
2 εl]

2 = 0



Strong approximation for certain quadric fibrations 35

for l � 0, which implies that q(x1, · · · , xn)− p0(α)x2
n+1 is isotropic over k.

A contradiction is derived, the point P0 does not lie in X(k)cent.

We conclude that X(k) 6= X(k)cent may happen only in the following

cases.

1) The field k is R and q(x1, · · · , xn) is ±-definite over R and there is a

zero α of p(t) over R of even order r such that p0(α) has ∓ sign.

2) The field k is p-adic field and n ≤ 3. One can determine if a quadratic

space is anisotropic over k by computing determinants and Hasse invariants,

as in [OM, 42:9; 58:6; 63:17].
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des zéro-cycles sur les fibrés en quadriques, K-Theory 7 (1993),

477–500.



36 J.-L. Colliot-Thélène and F. Xu

[CTW] J.-L. Colliot-Thélène et O. Wittenberg, Groupe de Brauer et

points entiers de deux familles de surfaces cubiques affines,

American Journal of Mathematics, to appear.

[CTX] J.-L. Colliot-Thélène and F. Xu, Brauer-Manin obstruction for

integral points of homogeneous spaces and representations by

integral quadratic forms, Compositio Math. 145 (2009) 309–363.

[D] C. Demarche, Le défaut d’approximation forte dans les groupes
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