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Abstract

Using the methods developed by Kollár, Voisin, ourselves, Totaro,

we prove that a cyclic cover of Pn

C, n � 3 of prime degree p, ramified

along a very general hypersurface of degree mp is not stably rational

if n + 1  mp. In small dimensions, we recover double covers of P3
C,

ramified along a quartic (Voisin), and double covers of P3
C ramified

along a sextic (Beauville), and we also find double covers of P4
C rami-

fied along a sextic. This method also allows one to produce examples

over a number field.
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1 Introduction

A projective variety X over a field k is stably rational if for some n the vari-
ety X ⇥ Pn

k

is rational. There exist stably rational but not rational varieties
[1]. In [10], Claire Voisin introduced a method to show that a variety X is
not stably rational. It is based on an integral decomposition of the diagonal
in the Chow group CHdimX(X ⇥ X) and on a specialization argument. It
enabled her to show that a double cover of P3

C, branched along a very general
surface of degree 4 is not stably rational. In [4], we considered the property
of CH0-universal triviality, which is equivalent to the integral decomposition
of the diagonal for smooth projective varieties and which made the special-
ization method more flexible, in particular, allowing specializations over a
discrete valuation ring of positive characteristic. We showed that for a very
general choice of coefficients, a smooth complex quartic threefold is not sta-
bly rational.
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Definition 1.1. Let f : X ! Y be a projective morphism between varieties
over a field k. We say that f is CH0-universally trivial, if for any field
extension L/k the map f⇤ : CH0(XL

) ! CH0(YL

) is an isomorphism. If
Y = Spec k and f is the structure morphism, then we say that X is CH0-
universally trivial.

In particular, a smooth, projective stably rational variety is CH0-universally
trivial.

In [2, 3], A. Beauville considered the case of double covers of P3
C, branched

along a very general surface of degree 6, as well as the case of double covers
of P4

C and P5
C, branched along a very general hypersurface of degree 4. In [5],

A. Kresch, B. Hassett, and Y. Tschinkel consider the case of certain conic
bundles over surfaces.

B. Totaro [9] proved that a very general hypersurface of degree d in Pn+1
C

is not stably rational, provided d � 2d(n+ 2)/3e and n � 3; in the proof he
uses Kollár’s results [7, 8] on double covers in characteristic 2 and a special-
ization property of the CH0-universal triviality [4, Thm. 1.14] over a discrete
valuation ring with function field of characteristic zero and residue field of
positive characteristic. B. Totaro pointed out in [9] that the methods above
also apply to more general covers: in this paper we continue investigations
of cyclic covers in positive characteristic and show the following result (see
Theorem 4.1):

Тheorem 1.2. Let X be a cyclic, degree p cover of Pn

C, with n � 3, branched
along a very general hypersurface f(x0, . . . , xn

) = 0 of degree mp. Assume
that m(p � 1) < n + 1  mp. Then X is a Fano variety that is not stably
rational.

As in [9], we also obtain examples over number fields.
Note that for n = 3,m = p = 2 we get double covers of P3

C, branched
along a quartic (more general results are obtained in the work [10]), for
n = 3,m = 3, p = 2 we obtain another proof of the results in [3].

For n + 1 < mp Kollár proved that the covers we consider are not ruled
[6]. Hovewer, this does not lead to results on stable rationality, since there
exist stably rational varieties of dimension 3 that are not rational [1].

2 CH0-universal triviality of singular varieties

Lemma 2.1. Let k be an algebraically closed field and X an integral projec-
tive variety over k. Let U ⇢ X be a nonempty Zariski open set. Then for
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any point z 2 X(k) there exists a cycle ⇠ 2 Z0(U) rationally equivalent to z
in CH0(X).

Proof. If X = C is an integral curve with normalization D, then the state-
ment follows from the triviality of the Picard group of the semilocal rings
of D. In the general case, it suffices to observe that there exists an integral
curve C, such that z 2 C and C \ U 6= ;. ⇤

Lemma 2.2. Let k be an algebraically closed field and X an integral projec-
tive k-rational variety. If X is smooth on the complement of a finite number
of closed points, then X is universally CH0-trivial.

Proof. Let ; 6= U ⇢ X be an open subset isomorphic to an open subvariety
of Pn

k

. Let F/k be some field extension. Any smooth point z 2 X
F

(F ) is
rationally equivalent on X

F

to a zero-cycle in Z0(UF

). Using the lemma
above, the same holds for any k-point of X. As in [4, Lemma 1.5 ], we find
that every cycle in Z0(XF

) is rationally equivalent to a cycle Nx, for some
N and a (fixed) point x 2 U(k) ⇢ U(F ) ⇢ X(F ).

⇤

Lemma 2.3. Let k be an algebraically closed field and X a connected pro-
jective variety over k. If each reduced component of X is a k-rational variety
with isolated singular points, then X is universally CH0-trivial.

Proof. It suffices to invoke the previous lemma and [4, Example 1.3.] ⇤

In the next section we apply Lemma 2.3 to exceptional divisors of reso-
lutions of singularities. We also give a more general statement for the union
of CH0-universally trivial varieties. In this article, we will only need Lemma
2.3.

Lemma 2.4. Let X be a projective reduced geometrically connected variety
over a field k and X =

S
N

i=1 Xi

its decomposition into irreducible components.
Assume that

(i) each X
i

is geometrically irreducible and CH0-universally trivial;

(ii) each intersection X
i

\ X
j

is either empty or contains a 0-cycle z
ij

of
degree 1.

Then X is CH0-universally trivial.
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Proof. Let L/k be a field extension and z 2 CH0(XL

) a cycle of degree 0.
Since X is geometrically connected, the dual graph of geometric irreducible
components contains a path through all its vertices: there exists a sequence
of indices i1, . . . im, 1  i

j

 N (where m could be greater than N), such that
{i1, . . . , im} = {1, . . . , N} and X

ij ,L\X
ij+1,L is not empty for any 1  j  m.

There exists a decomposition z =
P

z
ij , where z

ij 2 CH0(XijL) is
of degree d

j

,
P

d
j

= 0 (with an arbitrary choice of z
ij on the intersec-

tions, some z
ij could be trivial). Then z

i1 = d1zi1i2L in CH0(Xi1L), so that
z
i1 + z

i2 = (d1 + d2)zi2i3L in CH0(Xi1L [ X
i2L). Proceeding in this way, we

obtain z =
P

z
ij = (

P
d
i

)z
im�1,imL

= 0 in CH0(XL

). ⇤

Remark. Condition (i) holds if there exists a resolution of singularities
⇡
i

: X̃
i

! X
i

, such that X̃
i

is CH0-universally trivial and all (scheme) fibres
of ⇡

i

are CH0-universally trivial (see. [4], Prop. 1.8.)

3 Cyclic covers and singularities

We first recall some properties of cyclic covers [7, Section V], [8].
Let p be a prime and f(x0, . . . , xn

) a homogeneous polynomial of degree
mp with coefficients in a field k. A cyclic cover of Pn

k

, branched along
f(x0, . . . , xn

) = 0, is a subvariety of P(m, 1, 1, . . . , 1) given by

yp � f(x0, . . . , xn

) = 0.

If char k = p, such a cyclic cover is almost never smooth, its singularities
correspond to the critical points of f .

Definition 3.1. A critical point of a polynomial g(x1, . . . , xn

) over a field
k is a point P , such that @g/@x

i

(P ) = 0, for all i. A critical point P of a
polynomial g is nondegenerate if the determinant | @

2
g

@xi@xj
(P )| is nonzero. A

critical point of a homogeneous polynomial f(x0, . . . , xn

) is a critical point of
one of the polynomials f(x0, . . . , xi�1, 1, xi+1, . . . , xn

).

If char k = 2 and n is odd, then all critical points of a polynomial
g 2 k[x1, . . . , xn

] are degenerate.
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Definition 3.2. Let char k = 2 and n odd. A critical point P of a polynomial
g(x1, . . . , xn

) is almost nondegenerate, if

lengthOAn
,P

/(@g/@x1(P ), . . . , @g/@x
n

(P )) = 2.

In order to investigate stable rationality we need some results on resolu-
tions of singularities of cyclic covers (see also [6]).

Lemma 3.3. Let k be an algebraically closed field of characteristic 2 and let

X : y2 = f(x1, . . . , xn

)

be an affine cyclic cover singular at P = (y, x1, . . . , xn

) = (0, 0, . . . , 0), where
n � 2 is even and (0, . . . , 0) is a nondegenerate critical point of f . Let
X̃ ! X be the blow-up of P . Then:

(i) Locally around P the cover X is given by the equation

y2 = x1x2 + x3x4 + . . .+ x
n�1xn

+ g(x1, . . . , xn

),

where each monomial of g(x1, . . . , xn

) is of degree at least three.

(ii) E is universally CH0-trivial and X̃ is smooth in a neighbourhood of E.

Proof. See Exercise V.5.6.6 in [7] for property (i) (and the proof of Theorem
3.7 below).

Let us prove (ii). It suffices to consider the following charts of the blow-
up:

1. x
i

= yz
i

, 1  i  n, and X̃ is given by the equation

1 = z1z2 + z3z4 + . . .+ z
n�1zn +

1

y2
g(yz1, . . . , yzn)

in affine coordinates y, z1, . . . zn.
Note that the polynomial 1

y

2 g(yz1, . . . , yzn) is divisible by y. The ex-
ceptional divisor E of the blow-up X̃ ! X is defined by the condition
y = 0. We obtain the equation of E in this chart:

z1z2 + z3z4 + . . .+ z
n�1zn = 1,

which gives a smooth quadric. The variety X̃ is smooth at every point
of E (it follows from the equation of X̃).
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2. y = wx1, xi

= x1zi, i 6= 1. The exceptional divisor E is defined by the
condition x1 = 0. We obtain the following equations for X̃ and E in
this chart:

w2 = z2 + z3z4 + . . .+ z
n�1zn +

1

x2
1

g(x1, x1z2, . . . , x1zn)

and
z2 = �(z3z4 + . . .+ z

n�1zn) + w2,

respectively. Hence E is smooth and rational (since E is isomorphic to
an affine space with coordinates z3, . . . zn, w). The variety X̃ is smooth
at every point of E.

We obtain that the exceptional divisor E is a smooth rational variety, hence,
universally CH0-trivial (see [4, Lemma 1.5]).

⇤
Lemma 3.4. Let k be an algebraically closed field of characteristic 2 and let

X : y2 = f(x1, . . . , xn

)

be an affine cyclic cover, singular at P = (y, x1, . . . , xn

) = (0, 0, . . . , 0), where
n � 3 is odd and (0, . . . , 0) is an almost nondegenerate critical point of f .
Let X̃ ! X be the blow-up of P . Then:

(i) Locally around P the cover X is given by the equation

y2 = ax2
1 + x2x3 + x4x5 + . . .+ x

n�1xn

+ g(x1, . . . , xn

),

where each monomial of g(x1, . . . , xn

) is of degree at least three, and
the coefficient b of the polynomial g at x3

1 is nonzero.

(ii) E is universally CH0-trivial and X̃ is smooth in a neighbourhood of E.

Proof. See Exercise V.5.7 in [7] for property (i) (and the proof of Theorem
3.7 below).

Let us prove (ii). It suffices to consider the following charts of the blow-
up:

1. x
i

= yz
i

, 1  i  n, and X̃ is given by the equation

1 = az21 + z2z3 + z4z5 + . . .+ z
n�1zn +

1

y2
g(yz1, . . . , yzn)

in affine coordinates y, z1, . . . zn.
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Note that the polynomial 1
y

2 g(yz1, . . . , yzn) is divisible by y. The ex-
ceptional divisor E of the blow-up X̃ ! X is given by the condition
y = 0. We obtain the equation of E in this chart:

az21 + z2z3 + z4z5 + . . .+ z
n�1zn = 1.

For a = 0 we obtain the product of A1 and a smooth quadric. For
a 6= 0 we obtain an irreducible quadric with one singularity at the
point z

i

= 0, i > 1, and az21 = 1.

Then X̃ is smooth at every point of E: a singular point of X̃ should
satisfy the conditions: z2 = . . . = z

n

= 0, y = 0, bz31 = 0 and az21 = 1,
which is impossible.

2. y = wx2, xi

= x2zi, i 6= 2. The exceptional divisor E is given by the
condition x2 = 0. In this chart, we obtain the following equations for
X̃ and E:

w2 = az21 + z3 + z4z5 + . . .+ z
n�1zn +

1

x2
2

g(x2z1, x2, x2z3 . . . , x2zn)

and
z3 = �(az21 + z4z5 + . . .+ z

n�1zn) + w2

respectively. As above, the polynomial
1
x

2
2
g(x2z1, x2, x2z3 . . . , x2zn) is divisible by x2. Hence E is smooth and

rational (it is isomorphic to an affine space) and X̃ is smooth at every
point of E.

3. y = wx1, xi

= x1zi, i 6= 1. The exceptional divisor E is given by the
condition x1 = 0. In this chart, we obtain the following equations for
X̃ and E:

w2 = a+ z2z3 + z4z5 + . . .+ z
n�1zn +

1

x2
1

g(x1, x1z2, . . . , x1zn)

and
a+ z2z3 + z4z5 + . . .+ z

n�1zn � w2 = 0

respectively. The variety E is an irreducible quadric with one singular-
ity at the point z

i

= 0 for all i and a�w2 = 0. Since the coefficient of
g at x3

1 is nonzero, X̃ is smooth at every point of E (similarly as in 1).

We obtain that E is irreducible and has an isolated singular point (c : 1 : 0 :
. . . 0), with c2 = a, and an open subvariety of E is smooth and rational. By
Lemma 2.3, E is universally CH0-trivial.

⇤
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Lemma 3.5. Let k be an algebraically closed field of characteristic p > 2
and

X : yp = f(x1, . . . , xn

)

an affine cyclic cover singular at P = (y, x1, . . . , xn

) = (0, 0, . . . , 0), where
(0, . . . , 0) is a nondegenerate critical point of f . Assume that n is even.
Then:

(i) Locally around P the cover X is given by the condition
yp = x1x2 + x3x4 + . . .+ x

n�1xn

+ g(x1, . . . , xn

), where each monomial
of g(x1, . . . , xn

) is of degree at least three.

(ii) After blowing up P and a finite number of isolated singular points above
P one obtains a variety X̃ which is smooth in a neighbourhood of X̃

P

and such that the fibre X̃
P

is universally CH0-trivial (but X̃
P

is not
irreducible in general).

Proof. See Exercise V.5.6.6 in [7] for property (i) (and the proof of Theorem
3.7 below).

Let us prove (ii). Let X 0 ! X be the blow-up of X at P . It suffices to
consider the following charts:

1. y = wx1, xi

= x1zi, i 6= 1. The exceptional divisor E is given by the
condition x1 = 0. In this chart, we obtain the following equations for
X 0 and E:

xp�2
1 wp = z2 + z3z4 + . . .+ z

n�1zn +
1

x2
1

g(x1, x1z2, . . . , x1zn)

(where the polynomial 1
x

2
1
g(x1, x1z2, . . . , x1zn) is divisible by x1) and

z2 = �(z3z4 + . . .+ z
n�1zn).

Hence, E is smooth and rational and X 0 is smooth at every point of E.

2. x
i

= yz
i

, 1  i  n and X 0 is given by the equation

yp�2 = z1z2 + z3z4 + . . .+ z
n�1zn +

1

y2
g(yz1, . . . , yzn).

The exceptional divisor E of the blow-up X 0 ! X is given by the
condition y = 0. In this chart, we obtain the equation of E:

z1z2 + z3z4 + . . .+ z
n�1zn = 0.
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This defines a quadric which is singular at (z1, . . . , zn) = (0, . . . , 0).
Note that X 0 is singular at one point P 0 = (y, z1, . . . , zn) = (0, . . . 0) if
p > 3 and smooth if p = 3. If p > 3, let X 00 ! X 0 be the blow-up of
X 0 at P 0. Similarly, consider the following charts:

(a) y = z1w, z
i

= t
i

z1, i 6= 1. In this chart, the exceptional divisor
E 0 is given by the condition z1 = 0. In this chart, we obtain the
following equations for X 00 and E 0:

wp�2zp�4
1 = t2 + t3t4 + . . .+ t

n�1tn +
1

z21
h(z1w, z1, z1t2, . . . , z1tn),

t2 + t3t4 + . . .+ t
n�1tn = 0,

respectively, where we denote 1
y

2 g(yz1, . . . , yzn) = h(y, z1, . . . , zn).
Note that the polynomial h(z1w, z1, z1t2, . . . , z1tn) is divisible by
z31 . We obtain that E 0 is smooth and rational: it is the product of
A1 (corresponding to the coordinate w), and the variety fiven by

t2 = �(t3t4 + . . .+ t
n�1tn).

Also X 00 is smooth at every point of E 0 in this chart.
(b) z

i

= yt
i

, 1  i  n. In this chart, the exceptional divisor E 0 is
given by the condition y = 0 and X 00 is given by the condition

yp�4 = t1t2 + t3t4 + . . .+ t
n�1tn +

1

y4
g(y2t1, . . . , y

2t
n

).

The polynomial 1
y

4 g(y2t1, . . . , y2tn) is divisible by y and the ex-
ceptional divisor E 0 is a quadric given by the equation

t1t2 + t3t4 + . . .+ t
n�1tn = 0.

Similarly, X 00 is singular at one point (y, t1, . . . , tn) = (0, . . . 0) if
p > 5 and smooth if p = 5. If X 00 is singular, we repeat the
previous construction. After a finite number of such operations
we obtain X̃ ! X with X̃ smooth at every point above P and
such that all the exceptional divisors are rational varieties which
are either smooth or singular at one isolated point, as described
above.

From the description of the exceptional divisors and Lemma 2.3 we obtain
that the fibre X̃

P

is a (connected) CH0-universally trivial variety.

⇤
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Lemma 3.6. Let k be an algebraically closed field of characteristic p > 2
and let

X : yp = f(x1, . . . , xn

)

be an affine cyclic cover singular at P = (y, x1, . . . , xn

) = (0, 0, . . . , 0), where
(0, . . . , 0) is a nondegenerate critical point of f . Assume that n is odd. Then:

(i) locally around P the cover X is given by the equation
yp = x2

1+x2x3+x4x5+. . .+x
n�1xn

+g(x1, . . . , xn

), where each monomial
of g(x1, . . . , xn

) has degree at least three.

(ii) after blowing up P and a finite number of isolated singular points above
P one obtains a variety X̃ that is smooth in a neighbourhood of X̃

P

and such that the fibre X̃
P

is universally CH0-trivial (but X̃
P

is not
irreducible in general).

Proof. See Exercise V.5.6.6 in [7] for property (i) (and the proof of Theorem
3.7 below).

Let us prove (ii). Let X 0 ! X be the blow-up of X at P . It suffices to
consider the following charts:

1. y = wx1, xi

= x1zi, i 6= 1. In this chart, the exceptional divisor E is
given by the condition x1 = 0. We obtain the following equations for
X 0 and E:

xp�2
1 wp = 1 + z2z3 + z4z5 + . . .+ z

n�1zn +
1

x2
1

g(x1, x1z2, . . . , x1zn)

(where the polynomial 1
x

2
1
g(x1, x1z2, . . . , x1zn) is divisible by x1) and

1 + z2z3 + z4z5 + . . .+ z
n�1zn = 0

respectively. Hence E is smooth and rational: it is a product of A1

(corresponding to the coordinate w) and a smooth quadric given by
the equation 1 + z2z3 + z4z5 + . . . + z

n�1zn = 0. Also X 0 is smooth at
every point of E in this chart.

2. y = wx2, xi

= x2zi, i 6= 2. In this chart, the exceptional divisor E is
given by the condition x2 = 0. We obtain the following equations for
X 0 and E:

xp�2
2 wp = z21 + z3 + z4z5 + . . .+ z

n�1zn +
1

x2
2

g(z1x2, x2, x2z3, . . . , x2zn)
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(where the polynomial 1
x

2
2
g(z1x2, x2, x2z3, . . . , x2zn) is divisible by x2)

and
z3 = �(z21 + z4z5 + . . .+ z

n�1zn),

respectively. Hence the variety E is smooth and rational (it is isomor-
phic to an affine space). Also X 0 is smooth at every point of E in this
chart.

3. x
i

= yz
i

, 1  i  n and X 0 is given by the equation

yp�2 = z21 + z2z3 + z4z5 + . . .+ z
n�1zn +

1

y2
g(yz1, . . . , yzn).

Note that the polynomial 1
y

2 g(yz1, . . . , yzn) is divisible by y.
The exceptional divisor E of the blow-up X 0 ! X is given by the
condition y = 0. In this chart we obtain the following equation of E:

z21 + z2z3 + z4z5 + . . .+ z
n�1zn = 0.

This defines a quadric with one singularity at the point (z1, . . . , zn) =
(0, . . . , 0).
Note that X 0 also has one singularity at the point P 0 = (y, z1, . . . , zn) =
(0, . . . , 0) if p > 3 and it is smooth in a neighbourhood of the excep-
tional divisor if p = 3. If p > 3, let X 00 ! X 0 be a blow-up of X 0 at the
point P 0. As in the previsous lemma, we consider the following charts:

(a) y = z1w, z
i

= t
i

z1, i 6= 1. The exceptional divisor E 0 is given by
the condition z1 = 0. We obtain the following equations of X 00

and E 0:

wp�2zp�4
1 = 1+t2t3+t4t5+. . .+t

n�1tn+
1

z21
h(z1w, z1, z1t2, . . . , z1tn),

1 + t2t3 + t4t5 + . . .+ t
n�1tn = 0,

where the polynomial 1
y

2 g(yz1, . . . , yzn) = h(y, z1, . . . , zn) is divis-
ible by z31 . We obtain that E 0 is smooth and rational: it is a
product of A1 (corresponding to the coordinate w) and a variety
given by the equation 1+ t2t3 + t4t5 + . . .+ t

n�1tn = 0. Also X 0 is
smooth at every point of E 0 in this chart.

(b) y = z2w, z
i

= t
i

z2, i 6= 2. The exceptional divisor E 0 is given by
the condition z2 = 0. We obtain the following equations for X 00

and E 0 respectively:

wp�2zp�4
2 = t21+t3+t4t5+. . .+t

n�1tn+
1

z22
h(z2w, z2t1, z2, z2t3, . . . , z2tn),
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t21 + t3 + t4t5 + . . .+ t
n�1tn = 0,

where we denote 1
y

2 g(yz1, . . . , yzn) = h(y, z1, . . . , zn). We obtain
that E 0 is smooth and rational, and that X 00 is smooth at every
point of E 0 in this chart.

(c) z
i

= yt
i

, 1  i  n, E 0 is given by the condition y = 0 and X 00 is
given by the equation

yp�4 = t21 + t2t3 + t4t5 + . . .+ t
n�1tn +

1

y4
g(y2t1, . . . , y

2t
n

).

Note that the polynomial 1
y

4 g(y2t1, . . . , y2tn) is divisible by y. The
exceptional divisor E 0 is the quadric

t21 + t2t3 + t4t5 + . . .+ t
n�1tn = 0.

Similarly, in this chart X 00 is singular in a neighbourhood of E
at a single point (y, t1, . . . , tn) = (0, . . . 0) if p > 5 and smooth
if p = 5. If X 00 is singular, we repeat the previous construction.
After a finite number of such operations we obtain a morphism
X̃ ! X with X̃ smooth at every point above P and such that
all the exceptional divisors are rational varieties which are either
smooth or singular at one isolated point, as described above.

From the description of the exceptional divisors and Lemma 2.3 we obtain
that the fibre X̃

P

is a (connected) CH0-universally trivial variety.

⇤

The following statement provides the key nontrivial invariants of cyclic
covers.

Recall that the coefficients of polynomials f 2 k[x0, . . . , xn

] of a given
degree are parametrized by points of some projective space. A general choice
of coefficients of f means that we consider coefficients in some nonempty
open subset (in Zariski topology) of this projective space.

Тheorem 3.7. Let k be an algebraically closed field of characteristic p and
f(x0, . . . , xn

) a homogeneous polynomial of degree mp � n + 1, with n � 3.
For a general choice of coefficients of f one has the following properties:

(i) All critical points of f are nondegenerate if p > 2 or p = 2 and n is
even.
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(ii) All critical points of f are almost nondegenerate it p = 2 and n is odd.

(iii) If X̃ ! X is a resolution of singularities of X, obtained by succes-
sive blow-ups of singular points, then the morphism X̃ ! X is CH0-
universally trivial, H0(X̃,⇤n�1⌦

X̃

) 6= 0, and X̃ is not CH0-universally
trivial.

Proof. Properties (i) and (ii) follow from [7, Section V, Exercises 2.7 and
5.11]. Assume that P = (b, a1, . . . , an) is a critical point of f . After a linear
change of variables y� c, x

i

� a
i

, where cp = f(P ) (k is algebraically closed)
we may assume that P = (0, . . . , 0). Then we can decompose f as a sum of
linear terms, quadratic terms, and terms of higher degrees:

f = f1(x1, . . . xn

) + f2(x1, . . . xn

) + f3(x1, . . . xn

).

Since P is a critical point, we have f1 = 0. Since k is algebraically closed, any
quadratic form over k could be written in a diagonal form as a sum of squares
(if char(k) 6= 2), or as a sum of

P
x
i

y
i

(regular part) and a sum of squares.
Hence one easily verifies that the condition that P is a nondegenerate (resp.
almost nondegenerate) point corresponds to the decomposition in Lemmas
3.3, 3.5, 3.6 (resp. 3.4), which holds for a general choice of coefficients of f
(see [7, Section V, Exercice 5.6.6.3]).

In order to prove (iii), as in the arguments of B. Totaro [9], we use [7,
Thm. V.5.11] for Pn

k

, with n � 3, and Lp = OPn(mp). We obtain:

1. KPn ⌦ Lp = OPn(mp� n� 1),

2. if mp � 4, the map H0(Pn, Lp) ! OPn/m4
x

⌦ Lp is surjective for every
closed point x 2 X.

It follows from [7, Exercise V.5.7] (see also [7, Thm. V.5.11], [8, Thm.
4.4]), that for a general choice of f 2 H0(Pn

k

,OPn(mp)) (in particular, f
satisfies (i) and (ii)), if q : X ! Pn

k

is a cyclic, degree p cover of Pn

k

, branched
along a hypersurface f = 0, and ⇡ : X̃ ! X is a resolution of singularities
of X obtained by successive blow-ups of singular points, then ⇡⇤q⇤OPn(mp�
n � 1) is a subsheaf of ⇤n�1⌦

X̃

. In particular, if mp � n � 1 � 0, then
H0(X̃,⇤n�1⌦

X̃

) 6= 0.
B. Totaro proved [9, Lemma 2.2] that if X̃ is CH0-universally trivial,

then H0(X̃,⇤n�1⌦
X̃

) = 0. Lemmas 3.3, 3.4, 3.5, 3.6 imply that all the fibres
of the map X̃ ! X are CH0-universally trivial, hence the map X̃ ! X is
CH0-universally trivial as well (see [4, Prop. 1.8]). ⇤
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Remark. If n+ 1 > mp�m and X is normal (in particular, this holds if
f has only isolated critical points), then X is a Fano variety: the line bundle
�K

X

is ample (see [8, Prop. 4.14]).

4 Cyclic covers that are not stably rational

Тheorem 4.1. Let X be a cyclic, degree p cover of Pn

C, with n � 3, branched
along a very general hypersurface f(x0, . . . , xn

) = 0 of degree mp. Assume
that m(p � 1) < n + 1  mp. Then X is a Fano variety that is not stably
rational. There exists a cyclic, degree p cover, branched along a hypersurface
of degree mp, that is not stably rational and is defined over a number field.

Proof. Let Y : yp = f(x0, . . . , xn

) be a cover satisfying the conditions of
Theorem 3.7. One may choose Y so that the coefficients of f are defined
over some finite field F

q

. Since in Theorem 3.7, condition f = 0 defines
a very general hypersurface, we may assume that the hypersurface f = 0
is smooth over F

q

. Hence there exists a polynomial H of degree mp with
coefficients in some number field, such that f is the reduction of H modulo
p, and the cover X : yp = H(x0, . . . , xn

) is smooth. Since X degenerates
to Y and the resolution Y 0 ! Y , constructed in Lemmas 3.3, 3.4, 3.5, 3.6
and Theorem 3.7, is CH0-universally trivial, we obtain that XC is not a
CH0-universally trivial variety by Theorem 3.7 and [4, Theorem 1.14(iii)].
Hence X is not stably rational. Moreover, from the construction we obtain
an example over a number field. Since the coefficients of the polynomials of
degree mp are parametrized by an irreducible variety (in fact, a projective
space), by [4, Thm. 2.3], for a very general choice of such polynomials, the
corresponding degree p covers of Pn

C are not CH0-universally trivial. ⇤
Remark. We obtain that a cyclic, degree p cover X of the projective

space Pn

C, branched along a very general hypersurface f(x0, . . . , xn

) = 0 of
degree mp with n + 1  mp is not CH0-universally trivial. As in [4], this
implies that X is not retract rational. Recall that a stably rational variety
over C is retract rational, but it is still unknown if these notions are different.

Examples.

1. For p = 2, n = 3, and mp = 6, we obtain another proof of the results
of A. Beauville [3].

2. For n = 3,m = p = 2, we get double covers of P3
C branched along a

quartic (more general results were obtained by Claire Voisin [10]).
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3. For p = 2, n = 4, and mp = 6, 8, we obtain that a double cover of
P4
C branched along a very general hypersurface of degree 6 or 8 is not

stably rational.

4. For p = 2, n = 5, we obtain examples for 2m = 8, 10.

5. For p = 3, n = 4, and mp = 6, we obtain an example of a Fano variety
of dimension 4, that is not stably rational: a degree 3 cover, branched
along a very general hypersurface of degree 6.

6. The case of double covers of Pn

C, n = 4, 5, branched along a quartic (A.
Beauville [2]), is not contained in Theorem 4.1.
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