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ABSTRACT. At the AWS 1999, I discussed work on the Hasse principle achieved
during the previous decade. The present lectures are meant as an introduction
to significant progress achieved during the last 5 years, in particular to work of
Browning, Harpaz, Liang, Matthiesen, Skorobogatov, Wittenberg.

The text, which in part uses some earlier notes of mine, is not in final form. It is
mainly a survey, but an attempt has been made at giving proofs in suitably chosen
simple cases, for example in section 7.4.
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1. INTRODUCTION

Let k be a number field, Ω the set of its places. For each place v, let kv denote
the completion.

Given an algebraic variety X over k, one would like to decide whether the set
X(k) of k-rational points is not empty.

One necessary condition is that each set X(kv) of local points be nonempty.
Deciding whether the condition

∏
vX(kv) 6= ∅ is fulfilled is a relatively easy

matter.
When X is a smooth projective quadric, weak approximation holds : the image

of the diagonal map

X(k)→
∏
v

X(kv)

has dense image in the topological produce. In particular, the Hasse principle holds :∏
vX(kv) 6= ∅ implies X(k) 6= ∅.
It has been known for a long time that such a nice principle holds very rarely.
In 1970, Yu. I. Manin noticed that the Brauer group of scheme, as developed by

Grothendieck, produces a common explanation for many of the counterexamples
to the Hasse principle hitherto exhibited. In short, for X/k smooth, projective, the
Brauer group Br(X) cuts out a subset X(Ak)

Br ⊂ X(Ak) =
∏

vX(kv) and there
are inclusions

X(k) ⊂ X(Ak)
Br ⊂ X(Ak).

The set X(Ak)
Br is referred to as the Brauer-Manin set of X . Most countexamples

known at the time have since been explained in this simple fashion : X(Ak) 6= ∅
but X(Ak)

Br = ∅.
This raised the question whether there are interesting classes of varieties X for

which X(Ak)
Br 6= ∅ implies X(k) 6= ∅.

The setX(Ak)
Br is closed inX(Ak). One may ask for general classes of varieties

for which the following property holds :

https://video.ias.edu/jointiasnts/2014/0410-AlexeiSkorobogatov
https://www.maths.bris.ac.uk/~matdb/preprints/him.pdf
http://www.math.u-psud.fr/~colliot/liste-cours-exposes.html
http://www.math.u-psud.fr/~colliot/liste-cours-exposes.html
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(WABM) The topological closure of X(k) in X(Ak) coincides with the Brauer-
Manin set X(Ak)

Br:

X(k)
top

= X(Ak)
Br

WABM stands for : weak approximation for the Brauer-Manin set.
Work of Sansuc and of Borovoi, building upon earlier work on the Hasse prin-

ciple for principal homogeneous spaces of semisimple simply connected groups
(Eichler, Kneser, Harder, Chernousov) showed that this is indeed so for varieties
which are k-birational to homogeneous spaces of connected linear algebraic groups
with connected geometric stabilizers.

In work done in 1984-1987, Sansuc, Swinnerton-Dyer and I [41] proved

X(k)
top

= X(Ak)
Br

for smooth projective models of affine surfaces given by an equation in three vari-
ables (x, y, t)

y2 − az2 = P (t)

with a ∈ k× and P (x) a separable polynomial of degree 3 or 4.
Such surfaces are in general NOT k-birational to a homogenous space of the type

considered by Sansuc and Borovoi, as mentioned above (question : can you prove
this ?).

Since then, one kept on asking for more general classes of varieties for which
X(k)top = X(Ak)

Br holds.
From a naive point of view, one asks whether X(k)

top
= X(Ak)

Br holds for
smooth projective models of varieties defined by an equation

NormK/k(Ξ) = P (t)

where P (t) ∈ k[t] is a nonzero polynomial and K/k is a finite field extension.
The study of such equations leads to the study of systems of equations

NormKi/k(Ξi) = Pi(t), i = 1, . . . , n,

where each Pi(t) is a nonzero polynomial and each Ki is an étale extension of k,
i.e. a finite product of finite field extensions of k.

For the smooth k-variety V defined by such a system, projection to the t-coordinate
defines a morphism V → A1

k. Over the complement U of the closed set defined
by

∏
i Pi(t) = 0, projection V → U is a principal homogeneous space under the

k-torus T defined by the equations

1 = NormK1/k(Ξ1) = · · · = NormKn/k(Ξn),

which is the product over all i of the tori

R1
Ki/k

Gm = Ker[NormKi/k : RKi/kGm → Gm,k].

We shall be interested in smooth compactifications X of V with a map X → P1
k

extending V → U ⊂ P1
k. From the geometric point, such varieties are rather

simple. Indeed, over k, they are k-rational varieties.
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Around 1990, I put forward the conjecture – extending one done for surfaces by
Sansuc and me in 1979 :

Conjecture For any smooth, projective, geometrically rational connected va-
riety over a number field k, the closure of X(k) in X(Ak) coincides with the
Brauer-Manin set X(Ak)

Br.

That is, WABM should hold for such varieties.
It seems natural to try an induction process on dimension. Let X/k be a smooth,

projective, geometrically connected variety, equipped with a dominant fibration
X → P1

k with geometrically integral generic fibre. If WABM holds for the smooth
fibres, does WABM hold for X ?

[The analogous question for the Hasse principle and weak approximation already
has a negative answer for one parameter families of conics.]

This question is hard. One could for instance dream of understanding cubic sur-
faces by fibering them into curves of genus one, for which some version of (WABM)
is conjectured. Except in very special cases, we do not know how to do this.

In trying to prove an inductive result, one should therefore put some restriction
on the fibres of X → P1

k.
Geometrically rational varieties are special cases of (geometrically) rational con-

nected varieties. In the geometric classification of higher dimensional varieties,
rationally connected varieties appeared as the good analogue of rational curves and
rational surfaces (work of Kollár, Miyaoka, Mori, of Campana). A fundamental
theorem due to Graber, Harris and Starr [60] asserts that for any fibration X → Y
whose base and general fibre is rationally connected, then the total space X is also
rationally connected.

The purpose of these lectures is to give an introduction to recent progress on the
arithmetic of rationally connected fibres under inductive procedures.

It will turn out that in the process of handling general fibrations X → P1
k with

rationally connected generic fibre, concrete auxiliary varieties will be forced upon
us which are very close to the special systems

NormKi/k(Ξi) = Pi(t), i = 1, . . . , n,

considered above.

There will be general results on rational points conditional on some conjectures
for these auxiliary varieties.

Over k = Q, and under specific assumptions on the singular fibres of X → P1
k,

unconditional results on rational points have been achieved thanks to great recent
advances in additive combinatorics, due to Green, Tao, Ziegler, with further work
by T. Browning and L. Mathiesen. We shall mention work of the last two authors,
Harpaz, Skorobogatov, Wittenberg.

Over an arbitrary number field, Harpaz and Wittenberg have obtained a com-
pletely satisfying inductive result for analogous questions on zero-cycles (rather
than rational points). A typical question here is : rather than asking for existence
of a rational point, one ask whether the degrees of field extensions K/k over which
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a given k-variety aquires a K-rational point is equal to 1. In other words, given
any prime p, is there a field extension of degree prime to p over which X aquires a
rational point ?

2. BASIC PROPERTIES OF NUMBER FIELDS; HASSE PRINCIPLE AND WEAK
APPROXIMATION (DEFINITIONS)

Let k be a number field. We let Ωk, or sometimes simply Ω, denote the set
of its places. The completion of k at a place v is denoted kv. For a finite (=nonar-
chimedean) place v, the notation v is also used for the normalized valuation attached
to the place v.

2.1. Hasse principle, weak approximation, strong approximation.

Definition 2.1. (Hasse principle) Let k be a number field. The Hasse principle fails
for a k-variety if

∏
v∈Ω X(kv) 6= ∅ and X(k) = ∅.

A class of algebraic varieties over k satisfies the Hasse principle if any k-variety
in that class satisfies the Hasse principle.

Definition 2.2. (Weak approximation) Let k be a number field. Weak approxima-
tion holds for a k-variety X if the image of the diagonal map

X(k)→
∏
v∈Ω

X(kv)

is dense in the right hand side equipped with the product topology.
Assuming

∏
v∈Ω X(kv) 6= ∅, this amounts to the statement thatX(k) is not empty

and that for any finite S of place, the image of X(k) under the diagonal embedding

X(k)→
∏
v∈S

X(kv)

is dense.

According to this definition, if weak approximation holds for a k-variety X , then
the Hasse principle holds forX . One should however be aware that for some classes
of varieties it may be easy to prove weak approximation for varieties in the class
which already have a k-rational point, and hard to prove the Hasse principle. The
simplest example here is that of quadrics.

Let X be an integral k-variety. A subset H ⊂ X(k) is a Hilbert set if there exists
an integral k-variety Z and a dominant quasi-finite k-morphism Z → X such that
H is the set of k-points P whose fibre ZP is integral.

The intersection of two Hilbert sets in X(k) contains a Hilbert set.

Definition 2.3. (Hilbertian weak approximation) Let k be a number field. A ge-
ometrically integral k-variety X satisfies hilbertian weak approximation if for any
Hilbert set H ⊂ X(k) the image of H under the diagonal map

X(k)→
∏
v∈Ω

X(kv)
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is dense in the RHS equipped with the product topology.

AssumeXsmooth(k) 6= ∅. The definition then implies that any Hilbert set inX(k)
is Zariski dense in X , and in particular is not empty.

Definition 2.4. (Weak weak approximation) Let k be a number field. A k-varietyX
with a k-point satisfies weak weak approximation if there exists a finite set S0 ⊂ Ωk

such that the image of the diagonal map

X(k)→
∏

v∈Ω,v /∈S0

X(kv)

is dense in the RHS equipped with the product topology. This amounts to requiring
that for any finite set S ⊂ Ω with S ∩ S0 = ∅, the image of the diagonal map

X(k)→
∏
v∈S

X(kv)

is dense.

Proposition 2.5. (Kneser) Let k be a number field. Let X and Y be two smooth,
geometrically integral k-varieties. Assume that X and Y are k-birationally equiv-
alent, and assume ∏

v

X(kv) 6= ∅.

Then weak approximation holds for X if and only if it holds for Y .

Definition 2.6. (Strong approximation) Let k be a number field. Let X be a k-
variety with a k-point. We say that X satisfies strong approximation with respect to
a finite set S ⊂ Ω if the image of the diagonal map

X(k)→ X(AS
k )

is dense in the space of S-adèles ofX , i.e. of adèles where the components at places
in S have been omitted.

Definition 2.7. (Hilbertian strong approximation) Let k be a number field. Let X
be a k-variety with a k-point. We say that X satisfies strong approximation with
respect to a finite set S ⊂ Ω if for any Hilbert set H ⊂ X(k) the image of H under
the diagonal map

X(k)→ X(AS
k )

is dense in the space of S-adèles of X .

If weak approximation holds for a proper k-variety X with a k-point, then strong
approximation holds for X with respect to any finite set S ⊂ Ω, in particular for
S = ∅. Similarly in the Hilbertian case.



8 JEAN-LOUIS COLLIOT-THÉLÈNE

2.2. Basic properties of number fields.

Theorem 2.8. (Ekedahl, [57]) Let k be a number field, S ⊂ Ω a finite set, and for
each v ∈ S, let λv ∈ kv. Let H ⊂ A1(k) = k be a Hilbert set. For each ε > 0,
there exists λ ∈ H such that |λ− λv|v < ε for each v ∈ S.

Thus Hilbertian weak approximation holds for any nonempty Zariski open set of
the projective line.

The following theorem may be viewed as an extension of the Chinese remainder
theorem.

Theorem 2.9. (Ekedahl, [57]) Let k be a number field, S ⊂ Ω a finite set, and for
each v ∈ S, let λv ∈ kv. Let ε > 0. Let v0 /∈ S be a place of k. Let H ⊂ k be a
Hilbert set. There then exists λ ∈ H such that

(i) |λ− λv|v < ε for each v ∈ S,
(ii) v(λ) ≥ 0 at each finite place v /∈ S ∪ v0.

Thus Hilbertian strong approximation holds for the affine line A1
k and any nonempty

finite set S ⊂ Ω.
Note that one may choose any v0 /∈ S.
Ekedahl’s theorem is actually more general.

Theorem 2.10. (Ekedahl, [57]) Let R be the ring of integers of a number field k,
let π : X → SpecR be a morphism of finite type, and let ρ : Y → X be an étale
covering. Assume that the generic fibre of π.ρ is geometrically irreducible. Assume
moreover that weak approximation, resp. strong approximation away from a finite
S ⊂ Ω, holds for X ×R k. Then weak approximation, resp. strong approximation
away from S, holds for the set of x ∈ X(k) with ρ−1(x) connected.

A useful result in this context is given by A. Smeets [130, Prop. 6.1].

The next theorem is the extension to number fields of Dirichlet’s theorem on
primes in an arithmetic progression.

Theorem 2.11. (Dirichlet, Hasse) Let k be a number field, S ⊂ Ω a finite set of
finite places, and for each v ∈ S, let λv ∈ k×v . Let ε > 0. There exist λ ∈ k∗ and a
finite place v0 /∈ S, of absolute degree 1, such that

(i) |λ− λv|v < ε for each place v ∈ S,
(ii) λ > 0 in each real completion of k,
(iii) λ is a unit at any place v /∈ S ∪ v0 and v0(λ) = 1.

Here v0 may not be chosen at the outset.

The next statement (easy for k = Q) enables one to approximate also at the
archimedean places, if one accepts to loose control over an infinite set of places of
k, which one may choose at the outset. Typically, this will be the set of places split
in a fixed, finite extension of k.

Theorem 2.12. (Dirichlet, Hasse, Waldschmidt, Sansuc)[112] Let k be a number
field, S ⊂ Ω a finite set, and for each v ∈ S, let λv ∈ k×v . Let ε > 0. Let V be an
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infinite set of places of k. There exists λ ∈ k∗ and a finite place v0 /∈ S of absolute
degree 1 such that

(i) |λ− λv|v < ε for each v ∈ S,
(iii) λ is a unit at each finite place v /∈ S ∪ v0 ∪ V and v0(λ) = 1.

Here again v0 may not be chosen at the outset.

This is to be compared with the following proposition, coined by Harpaz and
Wittenberg [80, Lemma 5.2]. Though relatively easy to prove, it plays an important
rôle in their work.

Proposition 2.13. Let K/k be a finite extension of number fields. Let S be a finite
set of places of k. For each place v ∈ S, let ξv ∈ k×v ∩NormK/k(K

×
v ). Then there

exists ξ ∈ k× arbitrarily close to ξv for v ∈ S and such that ξ is a unit outside S
except possibly at places v above which there exists a place w of K of degree one.
In addition, if v0 is a place of k, not in S, over which K possesses a place of degree
1, one may ensure that ξ is integral outside of S ∪ {v0}.

Tchebotarev’s theorem is used to prove the existence of such a place v0, but the
proof otherwise only uses the strong approximation theorem.

Theorem 2.14. (Tchebotarev) LetK/k be a finite extension of number fields. There
exists an infinite set of places v of k which are split inK, i.e. the kv-algebraK⊗kkv
is a product of copies of kv.

This special case of Tchebotarev’s theorem admits of an elementary proof (ref-
erence given in [80, Lemma 5.2]).

We shall also use :

Theorem 2.15. Let K/k be a finite nontrivial extension of number fields. There
exist infinitely many places v of k such that K⊗k kv has no kv-factor. That is, given
an irreducible polynomial P (t) of degree at least two, there exist infinitely many
places v such that P (t) has no root in kv.

As is well known, the second statement does not hold for reducible polynomials.
A classical example is P (t) = (t2 − 13)(t2 − 17)(t2 − 221) ∈ Q[t].

We may also use the following statement (see [62, Prop. 2.2.1]).

Theorem 2.16. Let L/K/k be finite extensions of number fields, with L/K cyclic.
There exist infinitely many places w of K of degree 1 over k which are inert in the
extension L/K.

Let us now give a few reminders of class field theory.

Theorem 2.17. Let k be a number field, Ω the set of its places.
(i) There are embeddings

iv : Br(kv) ↪→ Q/Z.

For nonarchimedan v, the map iv is an isomorphism. For a real place v, the map iv
induces Br(kv) = Z/2. For a complex place v, Br(kv) = 0.
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(ii) The image of natural map Br(k) →
∏

v∈Ω Br(kv) lies in the direct sum
⊕v∈ΩBr(kv)

(iii) The maps iv fit into an exact sequence

0→ Br(k)→ ⊕v∈ΩBr(kv)→ Q/Z→ 0.

That the sequence (iii) is a complex is a generalisation of Gauss’s quadratic reci-
procity laws.

Theorem 2.18. (Poitou-Tate) Let k be a number field, Ω the set of its places. Let T
be an algebraic k-torus. Let T̂ be its character group. This is a torsion free finitely
generated Galois module. There is a natural exact sequence of abelian groups

H1(k, T )→ ⊕v∈ΩH
1(kv, T )→ Hom(H1(k, T̂ ),Q/Z)→ H2(k, T )→ ⊕v∈ΩH

2(kv, T )

and a perfect duality of finite abelian groups X1(k, T )×X2(k, T̂ )→ Q/Z.

Remark 2.1. Here is an amusing consequence. Let K/k be a finite extension of
number fields. The quotient k×/NormK/k(K

×) is finite if and only if the kernel of
the restriction map Br(k)→ Br(K) is finite.

As a matter of fact, for K 6= k, these groups are infinite. The only known proof
(Fein, Kantor, Schacher) uses the classification of finite simple groups.

Proposition 2.19. LetK/k be a cyclic extension of number fields, andG = Gal(K/k).
For each place v ∈ Ω, there are embeddings

k∗v/NK/k((K ⊗k kv)∗)→ G

and there is an exact sequence

1→ k∗/NK/k(K
∗)→ ⊕v∈Ωk

∗
v/NK/k((K ⊗k kv)∗)→ G→ 1.

In particular, for a cyclic extension K/k, an element a in k× is a global norm
if and only if it is a local norm everywhere locally. This is a celebrated result of
Hasse. Moreover, it is enough that a be a local norm at all places except possibly
one.

As pointed out in [80], one also has :

Proposition 2.20. Let K/k be an abelian extension of number fields. If c ∈ k× is
local norm for K/k at all places of k except possibly one place v0, then it is also a
norm at v0.

3. THE BRAUER-MANIN OBSTRUCTION

3.1. Counterexamples to the Hasse principle and to weak approximation. In
the literature one finds many counterexamples to the local-global principle and
weak approximation.

Singular varieties
There are examples of singular varietiesX/k with points in all completions kv but

with the property that there exists at least one place v such that Xsing(kv) = X(kv)
and Xsing(k) = ∅. One may give examples with Xsing finite.
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Reducible varieties

Proposition 3.1. Let X = Y ∪ Z be the disjoint union of two k-varieties Y and Z.
Assume X has points in all kv’s, but there exists a place v1 with Y (kv1) = ∅, hence
Z(kv1) 6= ∅, and a place v2 6= v1 with Z(kv2) = ∅, hence Y (kv2) 6= ∅. Then

(i) X(k) = ∅.
(ii) X(Ak)

Br = ∅.

Proof. Statement (i) is obvious. Let us prove (ii). We have the natural map :

Br(k)⊕ Br(k)→ Br(Y )⊕ Br(Z) = Br(X).

Choose α ∈ Br(k) with αv = 1/2 ∈ Br(kv) for v = v1 and v = v2, and αv = 0 for
any other place of v. Let A ∈ Br(X) be the image of (α, 0) ∈ Br(k)×Br(k). Then
for any {Mv} ∈

∏
v∈ΩX(kv), we have Mv1 ∈ Z(kv1) and Mv2 ∈ Y (kv2), hence∑

v

A(Mv) = A(Mv1) + A(Mv2) = αv2 = 1/2 6= 0.

�

Let us discuss the famous counterexample (x2 − 13)(x2 − 17)(x2 − 221) = 0
over Q from another point of view.

This defines a closed set Z ⊂ Gm,Q. Let A = (x, 13) ∈ Br(Gm,Q). For any
point Pv ∈ Z(Qv) we have A(Pv) = 0 if v 6= 2, 13, 17. This obvious for R. This is
also clear for any finite place v = p distinct from 2, 13, 17.

Indeed, xp is then a unit in Zp.
Let v = 13. Then x2

13 = 17 in Q13 and x13 = ±2 up to a square in Q13, hence
A(P13) = (±2, 13)13 = 1 ∈ Z/2.

Let v = 17. Then x2
17 = 13 in Q17, hence x17 = ±8 up to a square in Q17. Then

A(P17) = (±8, 13)17 = 0.
Let v = 2. Then x2

2 = 17 in Q2, hence x2 = ±5 up to a square in Q2. Then
A(P2) = (±5, 13)2 = 0, as may be seen by writing this as (±5, 13)5 +(±5, 13)13 =
1 + 1 = 0 in Z/2.

This produces a Brauer-Manin obstruction attached to the algebra induced on Z
by the class A ∈ Br(Gm,Q).

Compare with Stoll [132], Liu–Xu [96], Jahnel–Loughran [87].

For smooth, projective, geometrically integral varieties, many counterexamples
have been produced.

Genus one curves

There is a famous equation considered independently by Reichardt and by Lind
in the 40’s. An affine equation is :

2y2 = x4 − 17

over the rationals.
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Let us give the “elementary ” proof. If there is a solution over Q, then there is a
solution of

2u2 = v4 − 17w4 6= 0

with u, v, w ∈ Z and (v, w) = 1. Reducing modulo 17, we find u 6= 0 (17). Now
2 is not a fourth power modulo 17 (indeed 24 = −1 modulo 17). The equation
then gives that u is not a square modulo 17. If an odd prime p divides u, then the
equation yields (17/p) = 1. By the law of quadratic reciprocity for the Legendre
symbol, we then have (p/17) = 1. Thus p is a square modulo 17. Both 2 and −1
are squares modulo 17. Thus u is a square modulo 17. Contradiction.

A challenge was to understand such examples so as to systematically study other
equations.

The more famous Selmer example

3x3 + 4y3 + 5z3 = 0

is harder to handle.

Principal homogeneous spaces of connected linear algebraic groups

The first counterexamples to the Hasse principle were here given by Hasse and
by Witt around 1934.

They are given by an equation

NK/k(Ξ) = c

where K/k is a Galois extension with group Z/2 × Z/2, c ∈ k∗, and Ξ is a “vari-
able” in K (which corresponds to 4 variables). This defines a principal homoge-
neous space under the 3-dimensional torus given by the equation

NK/k(Ξ) = 1.

In his book Cohomologie galoisienne [117], Serre constructs a principal homoge-
neous space of a (not simply connected) semisimple group which is a counterex-
ample to the Hasse principle.

Geometrically rational surfaces

Counterexamples to the Hasse principle for any smooth projective model were
given for :

• Smooth cubic surfaces (Swinnerton-Dyer 1962)

• Diagonal cubic surfaces (Cassels–Guy, 1966)

5x3 + 9y3 + 10z3 + 12t3 = 0.

A further example was given by A. Bremner, then all diagonal cubic surfaces with
a, b, c, d integer smaller than 100 were studied by CT-Kanevsky-Sansuc (1987) [32].

• Singular intersection of two quadrics in P 4, as well as conic bundles over P1

(Iskovskikh 1970)
y2 + z2 = (3− x2)(x2 − 3).
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CT-Coray-Sansuc [30] later proved that any

y2 + z2 = (c− x2)(x2 − c+ 1)

with c > 0 integer congruent 3 modulo 4 gives a counterexample. Here is the
elementary argument. One checks that there are solutions in all completions Qp. A
rational solution lead to an integral solution of

y2 + z2 = (3v2 − u2)(u2 − 2v2) 6= 0

with (u, v) = 1. In the LHS, the primes congruent 3 mod 4 appear with an even
exponent. As 3v2 − u2 and u2 − 2v2 are coprime, the same property hods for each
of them. Over the reals, the equation gives 3v2 − u2 > 0 et u2 − 2v2 > 0. Thus the
pair (3v2 − u2, u2 − 2v2) may take the following values modulo 4 :

(1, 1); (2, 1); (0, 1); (2, 1); (0, 1).

But the possible values of the pair (u2, v2) modulo 4 are

(0, 1); (1, 0); (1, 1)

which for (3v2 − u2, u2 − 2v2) modulo 4 gives (3, 2); (3, 1); (2, 3), hence none of
the previous values. Contradiction, there is no rational solution for

y2 + z2 = (c− x2)(x2 − c+ 1)

with c as above.

• Smooth complete intersections of two quadrics in P4
k : Birch et Swinnerton-

Dyer, Crelle 1975.

uv = x2 − 5y2,

(u+ v)(u+ 2v) = x2 − 5z2.

Counterexamples to weak approximation for any smooth projective model were
given for

• Singular cubic surfaces with two conjugate singular points (Swinnerton-Dyer
1962)

y2 + z2 = (4x− 7)(x2 − 2).

The Q-rational points are not dense in the set of real points, for any Q-rational point
one has x ≥ 7/4.

• Smooth intersection of two quadrics in P4
k : CT-Sansuc , Note CRAS 1977.

See also Coray-Tsfasman [49] for various concrete birational models.
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3.2. The Brauer–Manin set.

Lemma 3.2. Let k be a local field, X a smooth quasi-projective k-variety, A ∈
Br(X). The evaluation map evA : X(k) → Br(k) ⊂ Q/Z into the discrete group
Q/Z is a continous map and its image is finite.

Proof. Because X/k is smooth, Br(X) is torsion hence A , by a theorem of Gab-
ber, represented by an Azumaya algebra A/X . Let Y → X be the Severi-Brauer
scheme associated to an Azumaya algebra A. The class A ∈ Br(X) is annihilated
by some integer n > 0. The image of evA is thus contained in the finite subgroup
Z/n ⊂ Q/Z. The inverse image of 0 in X(k) coincides with the image of Y (k) in
X(k). As Y → X is smooth, this image is open in X(k) (implicit function theo-
rem). For any β ∈ Br(k), A − β belongs to BrAz(X). The inverse image of any
element in Z/n is thus open in X(k). This also proves that each of these open sets
is closed.

A known theorem of Gabber (see also J. de Jong’s webpage) ensures that the
statement holds for any torsion element in Br(X), which for X/k smooth implies
the result for any element of Br(X). �

Lemma 3.3. Let k be a number field, X a smooth quasi-projective k-variety and
A ∈ Br(X).

(i) There exists a nonempty open set T = Spec(OS) of the ring of integers of
k, a model X/T of X/k and an element A ∈ Br(X ) with image A ∈ Br(X).
For such a model, for any place v ∈ T and any point Mv ∈ X (Ov) ⊂ X(kv),
A(Mv) = 0 ∈ Br(kv).

(ii) If X is a proper k-variety, there exists a finite set S of places of k such that
for all v /∈ S, for any Mv ∈ X(kv), A(Mv) = 0.

Given A ∈ Br(X), these lemmas show that there is a well defined, continuous
map

evA : X(Ak)→ Q/Z

which sends an adèle {Mv} to the finite sum
∑

v A(Mv) ∈ Q/Z.
The Brauer–Manin pairing

X(Ak)× Br(X)→ Q/Z)

is given by
({Mv}, A) 7→

∑
v

A(Mv) ∈ Q/Z.

One checks this is well defined, i.e. each sum only involves finitely many nonzero
terms.

For X/k proper, X(Ak) =
∏

vX(kv), one may rewrite the map as∏
v

X(kv)× Br(X)→ Q/Z.

For any subset B ⊂ Br(X), we let X(Ak)
B ⊂ X(Ak) denote the set of adèles

orthogonal to B with respect to the above pairing. It is a closed subset of X(Ak).
For B = Br(X), the set X(Ak)

B is referred to as the Brauer-Manin set of X .
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If X/k is moreover projective, X(Ak) is compact. If X(Ak)
Br(X) is empty, there

exists a finite subset B ⊂ Br(X) such that X(Ak)
B = ∅.

Theorem 3.4. (Manin) Let k be a number field and X a smooth k-variety. The
closure of the image of the diagonal map

X(k)→ X(Ak)

lies in the Brauer-Manin set X(Ak)
Br(X).

Proof. This follows immediately from the class field theory exact sequence

0→ Br(k)→ ⊕vBr(kv)→ Q/Z→ 0

and the fact that X(Ak)
Br(X) is closed in X(Ak). �

There may thus exist a k-variety X with X(Ak) 6= ∅ and X(Ak)
Br(X) = ∅. In

that case one says that there is a Brauer-Manin obstruction to the Hasse principle
for X .

When the inclusion X(Ak)
Br(X) ⊂ X(Ak) is a proper inclusion, one says that

there is a Brauer-Manin obstruction to strong approximation for X . If X/k is
proper, then this is a Brauer-Manin obstruction to weak approximation.

Let S ⊂ Ωk be a finite set containing all archimedean places and let T =
Spec(OS) be the ring of S-integers of a number field k. Let X/T be a separated
T -scheme of finite type and let X = X ×T Spec(k). For each subset B ⊂ Br(X),
there is an inclusion

X (OS) ⊂ [
∏
v∈S

X(kv)×
∏
v∈T

X (Ov)]
B.

Using the Brauer group of X one may thus sometimes show that there is a lack of
strong approximation outside a finite set S of places. For A ∈ Br(X ) computing
the image of evA on the set ∏

v∈S

X(kv)×
∏
v∈T

X (Ov)

may be done in a finite number of steps, because for any v ∈ T , A vanishes on
X (Ov). On the whole of X(Ak), unless X is proper over k, there is no such finite
process.

Remark 3.5. Quite generally, as soon as one has a contravariant functor F from
the category of k-schemes to the category of sets, for any k-variety X there is a
commutative diagram

X(k) → F (k)
↓ ↓

X(Ak) →
∏

v F (kv)

This imposes restrictions on the image of X(k) in X(Ak). We shall later see func-
tors which are useful from this point of view. One such is H1

ét(•, G) for G an
algebraic group over k.
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Let Br0(X) ⊂ Br(X) be the image of Br(k) → Br(X) under the structure
morphism.

If X(Ak) 6= ∅, then Br(k)
'→ Br0(X).

(1) ForB ⊂ Br(X), the setX(Ak)
B only depends on the image ofB in Br(X)/Br0(X).

(2) Let B(X) ⊂ Br(X) be the subgroup consisting of elements A ∈ Br(X)
such that for each place v, there exists αv ∈ Br(kv) with image equal to A⊗k kv ∈
Br(Xkv). Let us assume X(Ak) 6= ∅. This implies that Br(kv) → Br(Xkv) is
injective for each v. Then for each v, αv is well defined, it is equal to the evaluation
of A at any kv-point of X . By lemma 3.3, αv = 0 for almost all v. For each adèle
{Mv} ∈ X(Ak), one then has∑

v

A(Mv) =
∑
v

αv ∈ Q/Z.

The value of this sum does not depend on the adèle {Mv}. The Brauer-Manin
obstruction attached to the “small” subgroup B(X) ⊂ Br(X) plays a great rôle
in the study of the Hasse principle for homogeneous spaces of connected linear
algebraic groups – but it is too small to control weak approximation.

The group B(X)/Br0(X) is conjecturally finite. Indeed :

Proposition 3.6. LetX be a smooth, projective, geometrically connected k-variety.
Assume X(Ak) 6= ∅. If X(Pic0

X/k) is finite, then B(X)/Br0(X) is finite.

Here are some references on the group B(X) : Sansuc [111], Borovoi, Borovoi-
CT-Skorobogatov [6], Wittenberg [150], Harari-Szamuely [77].

3.3. The obstruction on a few examples.

3.3.1. The Reichardt and Lind counterexample to the Hasse principle. LetX be the
smooth compactification of the smooth Q-curve U defined by the affine equation

2y2 = x4 − 17 6= 0.

One easily checks X(AQ) 6= ∅.
One checks that the Azumaya algebra on U defined by the quaternion algebra

A = (y, 17) defines an element of Br(X) ⊂ Br(U).
One then checks that A on each U(Qp) takes the following values. For p 6= 17

and p = ∞, A vanishes on U(Qp). For p = 17, A takes on U(Q17) the constant
value 1/2 ∈ Q/Z. Since evaluation is continous, this still holds on all of X(Qp).
Thus ∑

p

A(Mp) = 1/2

for any adèle {Mp} ∈ X(AQ), hence X(Q) = ∅. [One may check A ∈ B(X ⊂
Br(X).]
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3.3.2. The Swinnerton-Dyer counterexample to weak approximation. Let U/Q be
the affine surface defined by the equation

y2 + z2 = (4x− 7)(x2 − 2) 6= 0

sur Q. Its set U(R) of real points decomposes into two connected components,
the first one with −

√
2 < x <

√
2, lthe second one with 7/4 < x. Consider

the Azumaya algebra A = (−1, 4x − 7) on U . One shows that on any smooth
compactification X of U , the class of A belongs to Br(X) ⊂ Br(U).

For p prime, p 6= 2, using the equality

(4x− 7)(4x+ 7)− 16(x2 − 2) = 1

one checks that A vanished on U(Qp) hence also on X(Qp). For p = 2, one checks
that A also vanishes on U(Q2). On U(R), A takes the two values (0, 1/2) ∈ Q/Z.
The reciprocity law then shows that on any Q-rational point M , A(M) = 0 ∈
Br(R), that is x > 7/4.

3.3.3. The Iskovskikh counterexample to the Hasse principle. In that example, and
more generally in the example [30, Exemple 5.4]

y2 + z2 = (c− x2)(x2 − c+ 1) 6= 0

with c ∈ N, c congruent 3 modulo 4, one uses the Azumaya algebra on U defined
by the quaternion algebra A = (c − x2,−1). Let X be a smooth compactification
of U . One checks that A defines a class in Br(X) ⊂ Br(U).

For p 6= 2 (also for p = ∞), one checks A(Mp) = 0 for any Mp ∈ U(Qp), For
p = 2, one checks A(M2) = 1/2 ∈ Q/Z for any M2 ∈ U(Q2), Thus∑

p

A(Mp) = 1/2

for any adèle {Mp} ∈ X(AQ), hence X(Q) = ∅.

3.3.4. Principal homogeneous spaces under a specific torus. The following exam-
ple is discussed in more detail in [29].

Let k be a number field, a, b, c ∈ k×, and let U be the k-variety defined by the
equation

(x2 − ay2)(z2 − bt2)(u2 − abw2) = c.

LetX/k be a smooth compactification of U . Computing residues, one easily checks
that the class of the quaternion algebra A = (x2 − ay2, b) ∈ Br(U) lies in the
subgroup Br(X).

Proposition 3.7. With notation as above, assume that for each place v of k the
fields extension kv(

√
a,
√
b) is cyclic, hence of degree at most 2. Then

(i) The class A belongs to B(X).
(ii) For each adèle {Mv}v∈Ω of X , one has :∑

v∈Ω

A(Mv) =
∑

v, a/∈k∗2v

(c, b)v ∈ Z/2.
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Proof. For a field F containing k, if one of a, b or ab is a square, then on the
equation of U one sees that U is F -rational, hence Br(F )

'→ Br(XF ). This proves
(i).

Let v ∈ Ω. Let Mv ∈ U(kv) be a point with coordinates xv, yv, zv, tv, uv, wv.
Let us compute (x2

v − aby2
v , b) ∈ Br(kv). If a is not a square in kv, then either b

or ab is a square in kv. In the first case, (x2
v − ay2

v , b) = 0, in the second case,
(x2

v − ay2
v , b) = (x2

v − ay2
v , a) = 0. We have (z2

v − bt2v, b) = 0. Assume a is a
square. Then (u2

v − abw2
v, b) = (u2

v − abw2
v, ab) = 0. Using the equation of U we

then conclude (x2
v−ay2

v , b) = (c, b)v. By continuity of the evaluation map of A, the
same result holds on any point of X(kv). �

Starting from this explicit formula, one easily produces counterexamples to the
Hasse principle. Here is an example. Take k = Q, a = 17, b = 13 and take for c a
prime number which is not a square mod 17 and not a square mod 13, for instance
c = 5.

Many more examples have been constructed.

3.4. Beyond the Brauer-Manin obstruction. Papers :
Skorobogatov [122], then Harari [65], Harari–Skorobogatov [71], Demarche [52],

Skorobogatov [124] : definition of the étale Brauer-Manin set, comparison with the
descent obstruction.

Examples of Enriques surfaces (Harari–Skorobogatov [73], Várilly-Alvarado–
Viray [142]).

Poonen [107] : the étale Brauer-Manin obstruction is not enough (for a threefold).
Poonen uses a threefold with a fibration to a curve with finitely many points, the
generic fibre being a Châtelet surface.

Harpaz and Skorobogatov [78] : the étale Brauer–Manin obstruction is not enough
(for a surface). Again a fibration over a curve with finitely many points, but with a
tricky argument with a singular fibre consisting of a union of curves of genus zero.

CT–Pál–Skorobogatov [35] : the étale Brauer-Manin obstruction is not enough
for the total space of families of quadrics over a curve with finitely many points –
already for families of conics.

In the last three sets of examples, the varieties have a nonconstant map to a curve
of genus at least one, hence have a nontrivial Albanese variety. A. Smeets [131] has
now given examples with trivial Albanese varieties.

4. ALGEBRA : CALCULATING THE BRAUER GROUP

This chapter is extracted from my IU Bremen notes, 2005.
www.math.u-psud.fr/˜colliot/CTBremenBrauerplusJuly2012.

pdf
I only added brief mentions of later developments. There is more in my “Notes

sur le groupe de Brauer” :
http://www.math.u-psud.fr/˜colliot/CTnotesBrauer.pdf

www.math.u-psud.fr/~colliot/CTBremenBrauerplusJuly2012.pdf
www.math.u-psud.fr/~colliot/CTBremenBrauerplusJuly2012.pdf
http://www.math.u-psud.fr/~colliot/CTnotesBrauer.pdf
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One would like to be able to compute X(Ak)
Br(X). For this, a prerequisite

is to compute the Brauer group Br(X), or a least a system of representives of
Br(X)/Br(k).

Suppose char k is zero, and X/k is smooth, projective and geometrically con-
nected. We write X := X ×k k, where k is an algebraic closure of k.

4.1. The “geometric” Brauer group. For computing BrX , we have an exact se-
quence

0→ (Q/Z)b2−ρ → BrX → H3(X,Z)tors → 0.

Here b2 is the second Betti number, which one computes by using either l-adic co-
homology H2

ét(X,Ql) for an arbitrary prime l or by using classical cohomology
H2(X ×k C,Q) if an embedding k ⊂ C is given. The integer ρ = rk NSX is
the rank of the geometric Néron-Severi group. The vanishing of b2 − ρ is equiv-
alent to the vanishing of the coherent cohomology group H2(X,OX). The group
H3(X,Z)tors is a finite group, which one computes either as the direct sum over all
primes l of the torsion in integral l-adic cohomology H3

ét(X,Zl) or as the torsion in
classical cohomology H3(X ×k C,Z) if an embedding k ⊂ C is given. If X is a
curve, or if X is birational to a projective space, then BrX = 0.

Remarks
1. It is in general quite difficult to exhibit the Azumaya algebras on X corre-

sponding to the divisible subgroup (Q/Z)b2−ρ.
2. When k is a number field, it is an open question whether the group of fixed

points (BrX)Gal(k/k) is finite.

Further works on this topic
Skorobogatov and Zarhin [127, 128, 129]
Ieronymou, Skorobogatov, Zarhin [85] [86]
Colliot-Thélène et Skorobogatov [44]
Hassett and Várilly-Alvarado [82]

4.2. The “algebraic” Brauer group. Define Br1(X) := Ker[BrX → BrX]. For
computing this group, we have the exact sequence

0→ PicX → (PicX)Gal(k/k) →∗ Br k → Br1X → H1(k,PicX)→∗ H3(k, k
×

)

where the maps marked with a ∗ are zero when X(k) is nonempty. The group
H3(k, k

×
) is trivial when k is a number field (this is a nontrivial result from class

field theory).
There are cases where it is easy to explicitly compute the group H1(k,PicX) but

where it is difficult to lift a given element of that group to an explicit element of
Br1(X) : Even if one knows a 3-cocycle is a 3-coboundary, it is not easy to write it
down as an explicit 3-coboundary. This may create difficulties for deciding whether
a given X(Ak)

BrX is empty or not. Such a delicate situation arises in the study of
diagonal cubic surfaces ([32], [88]).
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To get a hold on H1(k,PicX) one uses the exact sequence of Galois-modules

0→ Pic 0
X/k(k)→ PicX → NSX → 0 .

Here NSX is of finite type. If NSX tors = 0, then H1(k,NSX) is a finite group.

4.3. Curves. If X = C is a curve, then Br1C = BrC (as noted above), and the
above exact sequence reads

0→ JacC(k)→ PicC → Z→ 0.

Since H1(k,Z) = 0, we thus have the exact sequence

(PicC)Gal(k/k) → Z→ H1(k, JacC(k))→ H1(k,PicC)→ 0

which one may combine with the above long exact sequence. The group H1(k, JacC(k))
classifies principal homogeneous spaces under JacC = Pic 0

C/k. The map Z →
H1(k, JacC(k)) sends 1 to the class of the principal homogeneous space Pic 1

C/k.
If k is a number field, we thus have a surjective map from BrC to a quotient of
H1(k, JacC(k)). In practice, it is quite hard to lift an element of this quotient to an
explicit element of BrC.

Examples
1. If C = P1

k, then the natural map Br k → BrP1
k is an isomorphism.

2. If C is a smooth projective conic with no rational point, we have an exact
sequence

0→ Z/2→ Br k → BrC → 0

1 7→ [AC ]

where [AC ] ∈ 2 Br k is the class corresponding to C.

4.4. Residues. Let A be a discrete valuation ring with field of fractions F and
with residue field κ of characteristic zero. There is a natural “residue map” BrF →
H1(κ,Q/Z) and an exact sequence

0→ BrA→ BrF → H1(κ,Q/Z) .

Let k be a field of characteristic zero. Let X be a smooth, integral, k-variety
with function field k(X). Given a closed integral subvariety Y ⊂ X of codimen-
sion 1, with function field k(Y ), we may consider the residue map Br k(X) →
H1(k(Y ),Q/Z). One then has (Grothendieck) the exact sequence

0→ BrX → Br k(X)→
⊕
Y

H1(k(Y ),Q/Z),

where Y runs through all codimension 1 subvarieties of X as above.
From the exactness of this sequence one deduces that BrX is a birational invari-

ant for smooth, projective, integral k-varieties.
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4.5. The projective line. Let us consider the special case X = P1
k. As noted

above, BrP1
k = Br k. The short exact sequence above thus reads

0→ Br k → Br k(P1)→
⊕
P∈P1

k

H1(kP ,Q/Z),

where P runs through the closed points of P1
k and kP is the residue field at such a

point P .
One may compute the cokernel of the last map : there is an exact sequence

0 −−−→ Br k −−−→ Br k(P1) −−−→
⊕

P∈P1
k

H1(kP ,Q/Z)

∑
P NkP /k−−−−−−→ H1(k,Q/Z) −−−→ 0,

where NkP/k is the corestriction map.

4.6. Conic bundles over the projective line. Let X/k be a smooth, projective,
geometrically connected surface equipped with a morphismX → P1

k whose generic
fibre Xη is a smooth conic over K = k(P1

k) = k(t). After performing k-birational
transformations one may assume that for each closed point P ∈ P1

k, the fibre XP

is a conic over the residue field kP , and that X → P1
k is relatively minimal. There

are finitely many points P ∈ P1
k for which XP is not smooth. At such a point P ,

there is a quadratic extension FP/kP over which XP splits into a pair of transversal
lines. Write FP = kP (

√
aP ).

Let A ∈ BrK be the class of a quaternion algebra over K associated to the conic
Xη/K, as in example 2 of section 2.3.

We shall assume that A does not come from Br k. In the long exact sequence
associated to P1 in section 2.5, for each closed point P ∈ P1

k, the residue δP (A) ∈
H1(kP ,Q/Z) lies in H1(FP/kP ,Z/2) = Z/2.

Using the last three subsections, one shows that there is an exact sequence

0→ Br k → BrX → (⊕P (Z/2)P )/({δP (A)})→ k×/k×
2
.

The last map sends the class of the element 1 ∈ (Z/2)P = H1(FP/kP ,Z/2) ⊂
H1(kP ,Q/Z) to the class of NkP /k(aP ) ∈ k×/k×2.

In this situation one may give explicit generators for BrX/Br k. They are given
as the images under Br k(t)→ Br k(X) of suitable linear combinations of elements
of the shape CoreskP /k(t − αP , βP ) ∈ Br k(t), where kP = k(αP ), βP ∈ k×P , and
(t− αP , βP ) is a quaternion algebra over the field kP (t).

Since a conic bundle X/P1
k contains a smooth conic Y ⊂ X , functoriality of the

exact sequence

0→ PicX → (PicX)Gal(k/k) →∗ Br k → Br1X → H1(k,PicX)→∗ H3(k, k
×

)

implies that the map H1(k,PicX)→∗ H3(k, k
×

) is zero.

In these notes, we shall often consider a smooth, projective, geometrically con-
nected k-variety X equipped with a dominant k-morphism X → P1

k with geomet-
rically integral generic fibre. We shall be concerned with the so-called vertical
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Brauer group of X with respect ot the fibration f : X → P1
k. This is the group

Brvert(X) = {α ∈ Br(X) ∩ f ∗(Br(k(P1))) ⊂ Br(X)}.

For conic bundles, and more generally for one-parameter families of Severi-
Brauer varieties, one has Brvert(X) = Br(X).

4.7. Computing when no smooth projective model is available. One is often
confronted with the following problem : given a smooth, affine, geometrically con-
nected variety U over a field k, compute the Brauer group of a smooth compactifi-
cation X of U without knowing a single such smooth compactification. The point
as far as local to global problems are concerned is that it is only the Brauer group
of smooth compactifications which naturally produces obstructions to the existence
of rational points. A preliminary question is to compute H1(k,PicX) (also a bira-
tional invariant of smooth, projective varieties).

Assume U = T is a k-torus, i.e. an algebraic group which over k becomes iso-
morphic to a product of multiplicative groups. To such a k-torus there is associated
its character group T̂ (over k). This is a g-lattice (g being the Galois group of k
over k). For X any smooth k-compactification of T , one has

H1(k,PicX) = Ker[H2(g, T̂ )→
∏
h

H2(h, T̂ )],

where h ⊂ g runs through all closed pro-cyclic subgroups of g – as a matter of fact
the computation of this kernel may be done after going over only to a suitable finite
Galois extension of k.

It seems hard to lift the elements of H1(k,PicX) to explicit elements in BrX .
The situation gets worse if X is a smooth compactification of a principal homoge-
neous space U under T . We have the same formula for H1(k,PicX) as above, but
in this case for k arbitrary there is no reason why the map Br1X → H1(k,PicX)
should be surjective. If k is a number field, the map is surjective but lifting seems
nevertheless very hard. Hence it seems difficult to test the condition X(Ak)

BrXc 6=
∅.

Probably the simplest nontrivial example is the norm 1 torus T = R1
K/kGm

associated to a biquadratic extension K = k(
√
a,
√
b)/k. In this case one finds

H1(k,PicX) = Z/2. The same result holds if X = Xc is a smooth compactifica-
tion of a principal homogeneous space of R1

K/kGm, that is a variety U = Uc given
by an equation NormK/k(z) = c for some c ∈ k×. If k is a number field, Uc has
points in all completions of k, and Xc is a smooth compactification of U , then there
exists someA ∈ BrXc such thatX(Ak)

BrXc = X(Ak)
A. But how to compute such

an A in a systematic fashion ?
The question is important, since in this case it is known that Xc(Ak)

BrXc 6= ∅
implies Xc(k) 6= ∅. The latter statement is a general fact for principal homoge-
neous spaces of connected linear algebraic groups (Sansuc [111]), and it holds more
generally for smooth compactifications of homogeneous spaces under connected
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linear algebraic groups, at least when the geometric stabilizer group is connected
(Borovoi).

Coming back to the case of equations NormK/k(z) = c, in the case K =

k(
√
a,
√
b), Sansuc [113] gives an algorithm to decide whether Xc(Ak)

BrXc 6= ∅. It
would be interesting to understand this algorithm better.

It is natural to study varieties which are given as the total space of a one-parameter
family of principal homogeneous spaces. A special but already difficult case is that
of varieties given by an affine equation

NormK/k(z) = P (t)

where K/k is a finite field extension and P (t) a polynomial in one variable. In
[31] the group H1(k,PicX) for smooth projective models X of varieties defined
by such an equation was computed for many cases, but it could not computed in all
cases. See the questions raised at the end of section 2 of [31].

Further work on this section, various papers of Bogomolov, Borovoi, Demarche,
Harari, Kunyavskiı̌, Skorobogatov, D. Wei, Wittenberg, myself : [33] [8] [148] [31]
[9] [34] [26] [53] [54] [5] [7] [28] [29] [147] [48].

5. HARARI’S FORMAL LEMMA AND VARIANTS

5.1. The formal lemma for the Brauer group. This subsection is a mere transla-
tion from [24].

Theorem 5.1. (Harari, [62, Thm. 2.1.1 p. 226]) Let k be a number field and X
be a smooth connected k-variety. Let X/O be an integral model over an open set
Spec (O) of the spectrum of the ring of integers of k.

Let U ⊂ X be a nonempty open subet of X . For any element α ∈ Br (U) which
does not belong to Br (X) ⊂ Br (U), there exist infinitely many places v of k for
which there exists Mv ∈ U(kv) ∩ X (Ov) with α(Mv) 6= 0.

Proof. There exists a codimension 1, integral closed subvariety Z ⊂ X , with
generic point ζ , such that the residue

∂ζ(α) ∈ H1(k(Z),Q/Z)

at ζ does not vanish. After replacing X by a suitable open set, one may assume that
Z is smooth over k, that α has only one nontrivial residue on X , to wit the residue
at ζ , and that the residue ∂ζ(α) belongs to H1(Z,Q/Z) ⊂ H1(k(Z),Q/Z) (here
we use étale cohomology). Replacing X by a smaller open set, we may assume
that Z is a finite cover of affine space Ad

k. Let Z1/Z be the finite (cyclic) cover
defined by ∂ζ(α). Hilbert’s irreducibility theorem, when applied to the composite
cover Z1/A

d
k, produce k-point of Ad

k whose fibre is integral. Let us pick such a
k-point. It inverse image under the map Z → Ad

k is a closed point P ∈ Z such that
∂ζ(α)(P ) 6= 0 ∈ H1(k(P ),Q/Z).

A local equation of Z ⊂ X en P may be written as part of a regular system of
parameters of the regular local ring OX,P . One thus finds a closed integral curve
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C ⊂ X containing P as a smooth closed point, transversal to Z at P . Shrinking
X some more, one may assume that C/k is smooth and Z ∩ C = P . We have
α ∈ Br(X \ Z). Thus α induces an element αC ∈ Br(C \ P ). Because C and Z
are transveral at P one has

∂P (αC) = ∂ζ(α)(P ) ∈ H1(k(P ),Q/Z).

Thus ∂P (αC) 6= 0. The embedding C ⊂ X extends to an embedding of integral
models over a suitable open set of the spectrum of integers of k. It is enough to
prove the statement of the theorem for the smooth connected curve C.

Let now C be a connected, smooth (hence integral) k-curve, P ∈ C a closed
point, U = C\P . Let α ∈ Br(U) with nonzero residue χ = ∂P (α) ∈ H1(k(P ),Q/Z).
Let r > 1 be the order of ∂P (α). We thus have

∂P (α) ∈ H1(k(P ),Z/r) ⊂ H1(k(P ),Q/Z).

Replacing C by a suitable open set, we may assume that C is affine, C = Spec(A),
and that P is defined be the vanishing of f ∈ A. Let Ahs be the henselisation of A
in P . Restriction H1(Ahs,Z/r) → H1(k(P ),Z/r) is an isomorphism. There thus
exists a connected étale open set q : Spec(B) → Spec(A), say q : D → C, such
that q : Q = q−1(P ) → P is an isomorphism, and such that χ is the restriction of
some element ξ ∈ H1(D,Z/r).

Let V = D \ Q. Consider the cup-product (f, ξ) ∈ Br(V ) of the class of f ∈
k[V ]∗/k[V ]∗r ⊂ H1(V, µr) with ξ ∈ H1(D,Z/r). The difference β = αD −
(f, ξ) ∈ Br(V ) has a trivial residue at Q, it thus belongs to Br(D).

There exists an open set Spec(O) of the spectrum of the ring of integers of k, a flat
affine, finite type curve C/Spec(O), a morphismD → C, extending D/C/Spec(k),
with the following properties : the element f comes from an element f in the ring
of C, the element ξ ∈ H1(D,Z/r) is the restriction of an element ξ ∈ H1(D,Z/r),
and β ∈ Br(D) is the restriction of an element β ∈ Br(D). We may moreover
assume that the closed set in D and C defined by f = 0 are integral and isomorphic
though the map D → C and that the projection of these closed sets to Spec(O) is
finite and étale. LetR be the ring whose spectrum is the closed set defined by f = 0
in C (and in D). The fraction field of R is the field k(P ).

Tchebotarev’s theorem ensures that there exist infinitely many places v of k such
that there exists a place w of k(P ) with kv

'→ k(P )w (i.e. w is of degree 1 over v)
andw is inert in the cyclic extension k(P )(χ)/k(P ) defined by χ ∈ H1(k(P ),Z/r)
[62, Prop. 2.2.1, p. 226].

For such a place v, there exists an Ov-point N0
v of the closed set f = 0 of D

which maps isomorphically to an Ov-point M0
v of C.

Let Nv ∈ D(Ov) be such that f(Nv) 6= 0 and let Mv ∈ C(Ov) ⊂ C(kv) be its
image. One then has

α(Mv) = α(Nv) = β(Nv) + (f(Nv), χ(Nv)) ∈ Br(kv)
'→Q/Z.

We have β(Nv) ∈ Br(Ov) = 0. Asw is inert in the cyclic extension k(P )(χ)/k(P ),
if Nv is close enough to N0

v for the v-adic topology on D(Ov), the class χ(Nv) ∈
H1(k(P )w,Z/r) = H1(kv,Z/r) has order r. From the standard formula for the
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tame symbol we then get that α(Mv) ∈ Z/r ⊂ Q/Z is equal to the class of the
valuation v(f(Nv)) modulo r. As the closed set f = 0 of D ×O Ov contains the
Ov-section ofD×OOv → Spec(Ov) defined by N0

v , and is finite and étale over Ov,
there exists Nv ∈ D(Ov), close to N0

v , such that v(f(Nv)) ≡ 1 mod r, hence with
image Mv ∈ C(Ov) ⊂ C(kv) satisfying α(Mv) 6= 0. �

Remark 5.1. (i) Here is the simplest case, which the reader should have first handled
as an exercise before reading the proof just given. Let a ∈ k×, a not a square in
k, let X = A1

k = Spec(k[t]) then U ⊂ X the open set given by t 6= 0, then
α ∈ Br(k(t)) the class of the quaternion algebra (a, t). There exist infinitely many
places v for which there exists tv ∈ k×v with (a, tv) 6= 0 ∈ Br(kv).

(ii) In this example, there also exist infinitely many places v such that α iden-
tically vanishes on U(kv). The analogous property holds more generally for any
smooth connected curve X .

This does not extend to higher dimension. SupposeX/k is smooth, geometrically
integral of dimension at least 2, U ⊂ X is an open set, α ∈ Br(U) and there exists
a codimension 1 subvariety Z ⊂ X such that ∂(α) ∈ H1(k(Z),Q/Z) defines a
cyclic extension L/k(Z) with the property that k is algebraically closed in L. Then
for almost all places v of k, the class α takes on U(kv) at least one value other
than 0.

Starting from Theorem 5.1, a combinatorial argument leads to the following ex-
tremely useful result. The present version is a variation, first stated in [42], of D.
Harari’s “formal lemma” [62, Corollaire 2.6.1, p. 233].

Theorem 5.2. Let k be a number field and X be smooth, geometrically connected
k-variety. Let U ⊂ X be a nonempty open set and B ⊂ Br(U) a finite subgroup.
Let {Pv} ∈ U(Ak). Assume that for any α in the finite group B ∩ Br(X),∑

v∈Ω

α(Pv) = 0.

Then for any finite set S of places of k there exists an adèle {Mv} ∈ U(Ak) such
that Mv = Pv for v ∈ S and a finite set S1 of places, S ⊂ S1 such that for any
β ∈ B ∑

v∈S1

β(Mv) = 0

and ∑
v∈Ω

β(Mv) = 0.

Proof. As the group B is finite, upon replacing S by a bigger finite set, we may
assume that the embedding U ⊂ X extends to an embedding of integral models
U ⊂ X over the ring O of S-integers of k, that Pv ∈ U(Ov) ⊂ X (Ov) for v /∈ S,
that B ⊂ Br(U) and that B ∩Br(X) ⊂ Br(X ). For each β ∈ B, and for v /∈ S, we
have β(Pv) = 0. For each β ∈ B∩Br(X) each v /∈ S, eachMv ∈ X (Ov) ⊂ X(kv),
we have β(Mv) = 0.
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Let α ∈ B,α /∈ Br(X). According to theorem 5.1, there exists an infinite
set Tα of places v /∈ S, and a family {Nv} ∈

∏
v∈Tα U(kv) ∩ X (Ov) such that

α(Nv) 6= 0 for each v ∈ Tα. The group B/(B ∩ Br(X)) is finite, hence so is its
dual Hom(B/(B ∩ Br(X)),Q/Z). There thus exists an infinite subset of Tα such
that the linear maps B/(B ∩ Br(X)) → Q/Z given by γ → γ(Nv) for v in that
subset coı̈ncide. Replacing Tα by this subset, we may thus assume that there exists
a linear map ϕα : B/(B ∩Br(X))→ Q/Z with the property ϕα(α) 6= 0, such that
for any β ∈ B/(B ∩ Br(X)), and any v ∈ Tα, one has

ϕα(β) = β(Nv) ∈ Q/Z,

with Nv ∈ U(kv) ∩ X (Ov) as above.
In the dual of the finite group B/(B ∩ Br(X)), the sums of such maps ϕα as α

varies in B/(B ∩ Br(X)) (repetitions allowed) build up a subgroup. Let us denote
it C; this is a simple consequence of the fact that B/(B ∩ Br(X)), just like B, is a
torsion group. Let us consider the natural bilinear pairing

B/(B ∩ Br(X))× C → Q/Z.

The above discussion shows that this pairing of finite abelian groups is nondegen-
erate on the LHS. Thus B/(B ∩ Br(X)) injects into the dual of C. Counting then
shows that this possibly only if C coincides with the dual of B/(B ∩ Br(X)).

The assumption in the theorem ensures that the family {Pv}v∈S defines a linear
map B/(B ∩ Br(X))→ Q/Z, which is given by

β 7→ −
∑
v∈S

β(Pv).

We have just seen that this map may be written as a sum of maps ϕα (possibly with
repetitions). Each of the terms in this last sum may be written as β 7→ β(Nv), this
time without repetition on the places v – since each time we have an infinite set of
places v at our disposal. We have thus found a finite set T of places v /∈ S and
points Nv ∈ U(kv) ∩ X (Ov) for v ∈ T such that∑

v∈S

β(Pv) +
∑
v∈T

β(Nv) = 0

for each β ∈ B/(B ∩ Br(X)), that is∑
v∈S

β(Pv) +
∑
v∈T

β(Nv) = 0

for each β ∈ B. We then have∑
v∈S

β(Pv) +
∑
v∈T

β(Nv) +
∑
v/∈S∪T

β(Pv) = 0

for each β ∈ B. This completes the proof, upon setting S1 = S ∪ T and choosing
Mv = Nv for v ∈ T and Mv = Pv for v /∈ S ∪ T . �
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5.2. The formal lemma for torsors under a torus. The following statement and
proof appear in [17, Prop. 3.1]

Theorem 5.3. Let U be a smooth, geometrically integral variety over a number
field k. Let T be a k-torus. Let Y → U be a torsor over U under T , and let
θ ∈ H1(U, T ) be its cohomology class. Let B ⊂ Br(U) be the finite subgroup
consisting of cup-products θ ∪ γ for γ runnning through the finite group H1(k, T̂ ).
Let {Mv} ∈ U(Ak) be a point which is orthogonal to B ∩ Brnr(k(U)). Let S ⊂ Ω
be a finite set. Then there exists α ∈ H1(k, T ) such that the twisted torsor Y α has
points in all completions of k and such that for each v ∈ S, the point Mv lies in the
image of Y α(kv)→ U(kv).

Proof. According to Theorem 5.2, there exists another adèle {Pv} ∈ U(Ak) with
Mv = Pv for v ∈ S such that

∀γ ∈ H1(k, T̂ ),
∑
v∈Ω

[θ(Pv) ∪ γ] = 0 ∈ Q/Z.

Thus {θ(Pv)} ∈ ⊕v∈ΩH
1(kv, T ) is orthogonal to H1(k, T̂ ), hence by the Poitou-

Tate exact sequence for tori is the image of an element −α ∈ H1(k, T ) under the
diagonal map H1(k, T ) → ⊕v∈ΩH

1(kv, T ). Twisting Y by α yields a torsor over
Y under T which over each point Pv posssesses a kv-point. �

Remark 5.2. In [31], Proof of Thm. 3.1, there is a similar argument with a stronger
hypothesis and a stronger conclusion. There we have the extra condition k

×
=

k[U ]×. Starting from an element in X(Ak)
Br, the outcome is then more powerful,

in the situation described there we manage to produce an adèle on a suitable Y α with
the added property that it is orthogonal to (a suitable subgroup) of the unramified
Brauer group of Y α.

6. THE BRAUER-MANIN OBSTRUCTION FOR RATIONAL POINTS ON
RATIONALLY CONNECTED VARIETIES

Given a smooth, projective, geometrically integral variety X over a number field
k, one would like to know whetherX(k) is dense inX(Ak)

Br – we shall then simply
write X(k)cl = X(Ak)

Br.
In loose words, one asks whether the Brauer-Manin obstruction is the only ob-

struction to weak approximation – and in particular to the Hasse principle. More
precisely, one would like to produce geometric types of varieties for which this
holds.

The propertyX(Ak)
Br 6= ∅ impliesX(k) not empty is preserved under k-birational

invariance of smooth projective variety.
If Br(X)/Br(k) is finite, then the propertyX(k)cl = X(Ak)

Br is preserved under
k-birational invariance.

When Br(X)/Br(k) is infinite, the situation for weak approximaiton is unclear.
A variant of the statement, where the connected component is smashed down, is
wrong ! See [35, Remark 6.2 (2)].
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6.1. Rationally connected varieties. Let k denote a field of characteristic zero.
By definition, a “rationally connected variety over k” is a smooth, projective,

geometrically connected variety over k with the following property :
Over any algebraically closed field Ω containing k, any two Ω-points are con-

nected by a rational curve, i.e. lie in the image of a morphism P1
Ω → XΩ.

These varieties, studied by Kollár, Miyaoka and Mori, and by Campana, are ac-
tually characterized by many equivalent properties.

In particular, in the above definition, one may simply assume that any two points
are connected by a chain of rational curves, or even that two “general” points are
connected by such a chain.

A standard reference is Kollár’s book on rational curves on higher dimensional
varieties.

A rationally connected variety of dimension 1 is a smooth conic.
A rationally connected variety of dimension 2 is a geometrically rational surface.
Any geometrically unirational variety is a rationally connected variety (the con-

verse is an open question).
By a theorem of Campana and Kollár, Miyaoka, Mori, any Fano variety (smooth

projective variety with ample anticanonical bundle) is rationally connected. This is
thus the case for smooth hypersurfaces of degree d ≤ n in projective space Pn.

By a theorem of Enriques, Manin, Iskovskikh, Mori, any rational k-surface is
k-birational to at least one of :

(i) Smooth del Pezzo surface of degree d, with 1 ≤ d ≤ 9.
(ii) Conic bundle (with degeneracies) over a conic.
Del Pezzo surfaces of degree d ≥ 5 are arithmetically simple. They satisfy

the Hasse principle, and they are k-rational as soon as they have a k-point. The
conjecture thus holds for them.

For a rationally connected variety X over an arbitrary field k, the quotient group
Br(X)/Br(k) is finite.

For surfaces, the following conjecture was put forward as an open question by
Sansuc and myself (1980). The general question was raised in lectures of mine in
1990.

Conjecture LetX be a smooth, projective, geometrically integral variety over
a number field k. If X is geometrically rationally connected, then the image of
X(k) is dense in X(Ak)

Br.

The conjecture is birational invariant.
For conic bundles over a conic, there is theoretical evidence for the conjecture.

Schinzel’s hypothesis implies the conjecture (see below).
For conic bundles over the projective line with r ≤ 5 geometric degenerate fibres,

the conjecture is known. The case r ≤ 3 is trivial. For Châtelet surfaces, which
satisfy r = 4, the conjecture was proven by CT-Sansuc-Swinnerton-Dyer. The
general case with r = 4 is due to CT (and Salberger unpublished), the case r = 5
is due to Salberger and Skorobogatov. Swinnerton-Dyer also discusses this case, as
well as some specific cases with r = 6.
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For Del Pezzo surfaces of degree 4 with a k-point the conjecture is known (Sal-
berger and Skorobogatov). This is one case where theorems about zero-cycles ulti-
mately lead to results on rational points.

For the local-global problem for Del Pezzo surfaces of degree 4, Wittenberg’s
thesis, developing a method of Swinnerton-Dyer, produces strong evidence – de-
pending on Schinzel’s hypothesis and finiteness of Tate-Shafarevich groups of el-
liptic curves.

In higher dimension, the case of intersections of two quadrics has been much
discussed (CT-Sansuc-Swinnerton-Dyer, Heath-Brown). When the number of vari-
ables is large with respect to the degree, the circle method applies. The circle
method also gives good results in relatively low dimension for cubic hypersurfaces
(Heath-Brown, Hooley). See also recent work of Tim Browning and his collabora-
tors.

For X birational to a homogeneous space E under a connected linear algebraic
group with connected geometric isotropy groups, it is a theorem of Borovoi, build-
ing upon earlier work of Sansuc, that X(k) is dense in X(Ak)

Br.

6.2. What about other types of varieties ? Let X be an arbitrary smooth, pro-
jective, geometrically integral variety. Let X(Ak)

Br
• be defined by replacing each

X(kv) for v archimedean by π0(X(kv)) (the set of connected components).
For X a curve, it is an open question whether the image of X(k) is dense in

X(Ak)
Br
• . For X a curve of genus one, this is the case if the Tate-Shafarevich

group of the jacobian of X is finite. For X a curve of higher genus whose jacobian
variety J satisfies Sha(J) finite (expected) and also J(k) finite, it is a theorem of
Scharashkin and (independently) Skorobogatov that X(k) = X(Ak)

Br
• .

In higher dimension, there are by now many examples for which X(k) is not
dense in X(Ak)

Br
• , in particular examples where X(Ak)

Br 6= ∅ but X(k) = ∅.
The first examples (Skorobogatov, Harari) could be explained by the refined étale
Brauer-Manin obstruction, which produces a closed subset

X(Ak)
Br,et ⊂ X(Ak)

Br.

Further examples (Poonen, Harpaz-Skorobogatov, CT-Pál-Skorobogatov, Smeets)
cannot even be explained by the étale Brauer-Manin obstruction.

ForK3 surfaces, it is an open question whetherX(k) is dense inX(Ak)
Br. There

is work going on in this direction, particularly for surfaces which are geometrically
Kummer.

For Enriques surfaces, for which examples with X(Ak)
Br,et = ∅, hence X(k) =

∅ and X(Ak)
Br 6= ∅ have very recently been produced

(http://arxiv.org/abs/1501.04974v1)
one may ask whether X(k) is dense in X(Ak)

Br,et.
If X is rationally connected, then the quotient Br(X)/Br(k) is finite. The closed

set X(Ak)
Br ⊂ X(Ak) is thus open. In particular, if the conjecture holds, then

weak weak approximation holds for X .
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If a smooth, projective, geometrically connected variety X over a number field
satisfies weak weak approximation over any finite extension of k, then its geometric
fundamental group is trivial (Harari). In particular H1(X,OX) = 0.

7. RATIONAL POINTS : APPLICATIONS OF SCHINZEL’S HYPOTHESIS, OF A
NEW HYPOTHESIS BY HARPAZ AND WITTENBERG, AND OF RECENT

RESULTS IN ADDITIVE NUMBER THEORY

7.1. Using Schinzel’s hypothesis. In a series of papers (CT-Sansuc [39], Serre
(cf. [47]), Swinnerton-Dyer [136], CT-Swinnerton-Dyer [47], CT-Skorobogatov-
Swinnerton-Dyer [45]), consequences of Schinzel’s hypothesis were explored.

Let us recall the statement of Schinzel’s hypothesis, which is an elaboration on
conjectures of Bouniakowsky, Dickson, and also Hardy and Littlewood.

Hypothesis (H) Let Pi(x) ∈ Z[x], i = 1, . . . , n, be irreducible polynomials
with positive leading coefficients. Assume that no prime divides all

∏n
i=1 Pi(m) for

m ∈ Z. Then there exists infinitely many m ∈ N such that each Pi(m) is a prime
number.

Here is a simple case, taken from [39].

Theorem 7.1. (CT–Sansuc, 1979) Let a ∈ Q, a > 0 and P (x) ∈ Q[x]. Un-
der Schinzel’s hypothesis, if P (x) is irreducible, then Hasse principle and weak
approximation hold for the variety X defined by

y2 − az2 = P (x) 6= 0

Proof. Let S be a the following finite set of finite primes : p = 2, primes p with
vp(a) 6= 0, primes p with P (x) /∈ Zp[x], other primes for which the reduction
modulo p has smaller degree than the degree of P (x) or is not separable, and finally
primes p ≤ deg(P ). For each p ∈ S, one fixes λp ∈ Qp such that 0 6= P (λp) is
represented by y2 − az2 over Qp.

Using the irreducibility of P (x) and Schinzel’s hypothesis, one finds λ ∈ Q very
close to each λp for p ∈ S and such that

P (λ) =
∏
p∈S

pnp .q ∈ Q

with np ∈ Z and q a prime not in S (“the Schinzel prime”).
The rational number 0 6= P (λ) is then represented by the quadratic form y2 −

az2 over each completion of Q (including the reals, since we assumed a > 0),
except possibly in Qq. The law of quadratic reciprocity then implies that P (λ) is
represented by this form over Qq and over Q. Using weak approximation on the
affine conic y2−az2 = P (λ) and the implicit function theorem, one concludes that
weak approximation holds for X . �

It is clear how this proof is a direct generalization of Hasse’s proof of the local-
global principle for zeros of quadratic forms in 4 variables, starting from the case
of 3 variables.

A general result is the following ([45, Thm. 1.1]) :
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Theorem 7.2. Let k be a number field. Let X → P1
k be a dominant map of smooth,

projective, geometrically integral varieties. Assume that the generic fibre is geo-
metrically integral and that each special fibre Xm/k(m) contains a component of
multiplicity one Y such that the integral closure of k(m) in the function field of Y
is an abelian extension. Under Schinzel’s hypothesis (H), if X(Ak)

Brvert 6= ∅, then
there exists c ∈ P1(k) such that Xc is smooth and has points in all completions of
k.

In the proof, the same reciprocity argument as in Hasse’s proof is used : at some
point, one produces a cyclic extension L/K of number fields and an element in
K× which is a norm locally at all places of K except possibly one, and then one
concludes that the element is a global norm. The cyclic extensions in the argument
come from the abelian extensions L/K mentioned in the statement of the theorem.

7.2. Additive combinatorics come in. An enormous breakthrough happened in
2010. Work of B.Green and T.Tao, followed by further work with T. Ziegler (2012),
proves something which is essentially a two variable version of the Schinzel hypoth-
esis, when restricted to a system of polynomials of total degree one over Z.

The initial results of Green and Tao, together with further work by L. Matthiesen
on additive combinatorics, first led to unconditional results in the spirit of “Schinzel
implies Hasse”. This is the work of Browning, Matthiesen and Skorobogatov [17]
A typical result is the proof of (WABM) for conic bundles over P1

Q when all the
singular fibres are above Q-rational points of P1

Q. They also prove a similar result
for the total space of quadric bundles of relative dimension 2 over P1

Q. These results
were spectacular, indeed up till then, for most such Q-varieties, we did not know
that existence of one rational point implies that the rational points are Zariski dense
– unless one was willing to accept Schinzel’s hypothesis.

The work of Green, Tao and Ziegler, led to further progress. Here is the exact
result used, which I reproduce from [79] :

Theorem 7.3. (Green, Tao, Ziegler) Let L1(x, y), . . . , Lr(x, y) ∈ Z[x, y] be pair-
wise nonproportional linear forms, and let c1, . . . , cr ∈ Z. Assume that for each
prime p, there exists (m,n) ∈ Z2 such that p does not divide Li(m,n) + ci for any
i = 1, . . . , r. Let K ⊂ R2 be an open convex cone containing a point (m,n) ∈ Z2

such that Li(m,n) > 0 for i = 1, . . . , r. Then there exist infinitely many pairs
(m,n) ∈ K ∩ Z2 such that each Li(m,n) + ci is a prime.

Harpaz, Skorobogatov and Wittenberg [79] deduced a host of results on (WABM)
from that theorem. Let me describe the argument in a simple case.

Theorem 7.4. Let k = Q. Let U be the surface

y2 − az2 = b.
2n∏
i=1

(t− ei) 6= 0,

where a, b ∈ Q× and the ei are distinct elements in Q. LetX be a smooth projective
model, let {Mv} ∈ X(Ak)

Br, and let W ⊂ X(Ak) be a neighbourhood of that
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point. Then there exists a k-point of U in that neighbourhood. A consequence is
that Q-points are Zariski-dense on U , and that weak-weak approximation holds.

Proof. The argument used to prove Theorem 7.2 reduces to Schinzel’s hypothesis
(H) for the system of polynomials t− ei, which is not available.

We shall resort to a simple but slightly mysterious trick to get two variables.
Introduce two variables (u, v) and set t = u/v.
Consider the variety V given by

Y 2 − aZ2 = b.
∏
i

(u− eiv) 6= 0

v 6= 0

The formulas y = Y/vn, z = Z/vn, t = u/v produce an isomorphism between
V and U ×Gm, where the coordinate on the last factor is v.

For V ⊂ Vc a smooth compactification, we get a k-birational isomorphism be-
tween X ×P1

k and Vc. Brauer groups do not change under multiplication by P1.
For X as considered here, Br(X)/Br(k) is finite. After moving {Mv} in the

given neighbourhood, we may assume that each Mv is in U and we may find find
an adèle {Nv} ∈ Vc(Ak)

Br all components of which are in V above {Mv}.
One then uses Harari’s formal lemma for the finite family of quaternion algebras

(a, u− eiv) on V .
This produces elements ci ∈ k× and an adèle on the variety given by the system

Y 2 − aZ2 = b.
∏
i

(u− eiv) 6= 0

y2
i − az2

i = ci(u− eiv) 6= 0, i = 1, . . . , 2n

above the point {Nv}.
That system is isomorphic to the product of the conic Y 2−aZ2 = b.

∏
i ci, which

satsifies HP and WA, and the variety given by

y2
i − az2

i = ci(u− eiv) 6= 0, i = 1, . . . , 2n.

Now we use Green-Tao-Ziegler for the family of linear forms {u− eiv} in place
of the unproved Schinzel’s hypothesis (H) for the family {t− ei} to prove – uncon-
ditionnally – Hasse principle and weak approximation for this last variety. �

Harpaz, Skorobogatov and Wittenberg [79] prove the following general result.

Theorem 7.5. LetX be a smooth, proper, geometrically connected Q-variety equipped
with a dominant morphism f : X → P1

Q such that
(i) the generic fibre of f is geometrically integral;
(ii) the only nonsplit fibres Xm are above Q-rational points m of P1

Q and each
such fibre contains a component Y of multiplicity one such that the integral closure
of Q in Q(Y ) is an abelian extension of Q;

(iii) the Hasse principle and weak approximation hold for the smooth fibres.
Then X(Q) is dense in X(AQ)Br.

Here are concrete examples :
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Corollary 7.6. LetKi/Q, i = 1, . . . , r be cyclic extensions. Let Pi(t), i = 1, . . . , r,
be nonzero polynomials all roots of which are in Q. LetX/Q be a smooth projective
model of the Q-variety given by the system of equations

NKi/Q(Ξi) = Pi(t) 6= 0, i = 1, . . . , r.

Then X satisfies (WABM) : X(Q) is dense in X(AQ)Br.

Corollary 7.7. Let Ki/Q, i = 1, . . . , r be cyclic extensions. Let bi ∈ Q× and
ei ∈ Q, i = 1, . . . , r. Then the Q-variety given by the system of equations

NKi/Q(Ξi) = bi(t− ei) 6= 0, i = 1, . . . , r

satisfies the Hasse principle and weak approximation.

To put this result in perspective, here is what was known before 2010. The case
r = 1 is obvious. The case r = 2 and K1 and K2 both of degree 2 reduces to
quadrics. An ancient result obtained by the circle method (Birch, Davenport, Lewis)
gave this for r = 2 and K1 = K2 of arbitrary degree over Q. The case r = 3 and
K1 = K2 = K3 of degree 2 over Q was covered by CT, Sansuc, Swinnerton-Dyer
[41]. Much more was not known.

All the results above ultimately discussed the total space of a one-parameter fam-
ily X → P1

k which satisfied :
(i) The smooth fibres satisfy the Hasse principle and weak approximation.
(ii) Each nonsplit fibre Xm contains a component of multiplicity one Y such that

the algebraic closure of k(m) in k(Y ) is abelian.
(iii) k = Q and the nonsplit fibres are over Q-rational points. (this last result to

be able to use Green, Tao, Ziegler).

[A fibre Xm/k(m) over a closed point m with residue field k(m) is called split if
it contains a component of multiplicity one Y/k(m) which is geometrically integral,
in other words such that the field k(m) is algebraically closed in the function field
k(Y ).]s

7.3. Harpaz and Wittenberg’s theorems on rational points. Harpaz and Witten-
berg [80] have produced a conjecture which leads to a result where conditions (i)
and (ii) have disappeared, conjecture which work of Browning and Matthiesen has
established in situations analogous to that of Green, Tao, Ziegler.

ConjectureH∗∗ Let k be a number field. Let n ≥ 1 be an integer and P1, . . . , Pn ∈
k[t] denote pairwise distinct irreducible monic polynomials. Let ki = k[t]/(Pi(t))
and let ai ∈ ki denote the class of t. For each i ∈ {1, . . . , n} suppose given a finite
extension Li/ki and an element bi ∈ k×i . Let S be a finite set of places of k contain-
ing the real places of k and the finite places above which, for some i, either bi is not
a unit or Li/ki is ramified. Finally, for each v ∈ S, fix an element tv ∈ kv. Assume
that for every i ∈ {1, . . . , n} and every v ∈ S, there exists xi,v ∈ (Li ⊗k kv)× such
that

tv − ai = bi.NLi⊗kkv/ki⊗kkv(xi,v) ∈ ki ⊗k kv.
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Then there exists t0 ∈ k satisfying the following conditions:
(1) t0 is arbitrarily close to tv for v ∈ S;
(2) for every i ∈ {1, ..., n} and every finite place w of ki with w(t0 − ai) > 0,

either w lies above a place of S or the field Li possesses a place of degree 1 over
w.

This is conjecture 9.1 in [80]. Let ε =
∑

i[ki : k].
Over an arbitrary number field, the conjecture is known under any of the follow-

ing hypotheses :
(i) ε ≤ 2. The essential ingredient is strong approximation. In the case k1 =

k2 = k, one may also give a proof using Dirichlet’s theorem in a suitable field
extension of the ground field. If one wants to control the situation at the real places,
this method requires the use of a theorem of Waldschmidt.

(ii) ε = 3 and [Li : ki] = 2 for each i.
An important recently established case is :
(iii) k = Q, all ki = Q, ε = n arbitrary, each Li/ki = Q arbitrary.
This last case is a theorem of Lilian Matthiesen, in the wake of the results in addi-

tive combinatorics of Green, Tao, Ziegler and of her joint work with Tim Browning
[16]. See [80, Theorem 9.14].

In [80, Prop. 9.9, Cor. 9.10], we find closely related conjectures which are
possibly more appealing than conjecture H∗∗. The authors produce specific quasi-
affine varieties W . If strong approximation off any finite place v0 holds for these
varieties, then conjecture H∗∗ holds.

In the particular case where each ki = k, W is an open set of a variety with
equation

u− aiv = biNormLi/k(Ξi), i = 1 . . . , r.

Here the ai and bi are in k, ai 6= aj for i 6= j and bi 6= 0. The open set W is defined
by deleting points with (u, v) = (0, 0) and deleting points (u, v,Ξ1, . . . ,Ξr) for
which, for some i, one has Ξi belongs to the singular locus of RLi/kGa \ RLi/kGm

(which implies u− aiv = 0).

Harpaz and Wittenberg [80, Thm. 9.17] prove :

Theorem 7.8. Let k be a number field. Let X → P1
k be a dominant map of smooth,

projective, geometrically integral varieties. Assume that the generic fibre is geo-
metrically integral and that the generic fibre is a rationally connected variety. In
particular (Graber, Harris, Starr [60]) each special fibre contains a component of
multiplicity one. Assume X(Ak)

Br 6= ∅. Then, under conjecture H∗∗, there exists
t0 ∈ P1(k) with smooth fibre Xt0 such that Xt0(Ak)

Br is non-empty and satisfies an
approximation condition at finitely many places v with respect to any given point in
X(Ak)

Br.

Corollary 7.9. Let k be a number field. Let X/k be a smooth, projective, geomet-
rically connected variety equipped with a morphism X → P1

k such that the generic
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fibre is birational over k(P1) to a homogeneous space of a connected linear k(P1)-
algebraic group, with connected geometric stabilizers. Assume hypothesis H∗∗.
Then X(k) is dense in X(Ak)

Br.

That result applies in particular to smooth projective models X of varieties given
by an arbitrary system of equations

NormKi/k(Ξi) = Pi(t) 6= 0 i = 1, . . . , n

which have been considered in many special situations.

Remark 7.1. One nontrivial algebraic problem is to decide when such a system
satisfies Br(X)/Br(k) = 0. If the Pi(t) are all of degree 1 and no two of them are
proportional, do we have Br(X)/Br(k) = 0 ?

7.4. Main steps of a proof of Theorem 7.8. As mentioned by the authors in [80,
Remark 9.18 (i)], if one is willing to take conjectureH∗∗ for granted for an arbitrary
set of polynomials Pi(t), one may write down a lighter proof than the one they offer.
This is what I shall do here, under some simplifying assumptions. The proof I give
slightly differs from the proof in [80], it uses Severi-Brauer schemes.

Theorem 7.10. Let k be a number field. Let X → P1
k be a dominant map of

smooth, projective, geometrically integral varieties. Assume that the generic fibre
is geometrically integral and that the fibration is geometrically split, I.e. each geo-
metric special fibre contains a component of multiplicity one. Under conjecture
H∗∗, if X(Ak)

Brvert 6= ∅, then there exists t0 ∈ k = A1(k) such that Xt0 is smooth
and has points in all completions of k. Moreover, given a finite set S of places
of k, and a point {Mv} ∈ X(Ak)

Brvert , one may find a t0 such that Xt0 contains
kv-points close to Mv for v ∈ S.

Proof. For simplicity of notation, let us consider only the case where the fibre at in-
finity is smooth and the nonsplit fibres occur only above k-points of A1

k = Speck[t],
given by t = ai, i = 1 . . . , n. We also simply discuss the existence of a t0 with
Xt0(Ak) 6= ∅.

For each i, fix an irreducible component Ei of multiplicity one and let Li be the
integral closure of k in the field of functions of that component. Let U ⊂ X be the
complement of the fibre at infinity and the fibres over the points t = ai. Let T be the
k-torus

∏
iR

1
Li/k

Gm. Consider the torsor over U under T given by the equations

0 6= t− ai = NormLi/k(Ξi), i = 1, . . . , n.

Applying the formal lemma for torsors (Theorem 5.3), and noticing that the given
torsor over U comes from a torsor over an open set of P1

k, hence the group B
mentioned in the proof of Theorem 5.3 consists in this particular case of elements
coming from Br(k(P1)), hence are vertical elements, we find elements bi ∈ k× and
a family {Mv} ∈ U(Ak), with projections tv ∈ kv, v ∈ Ω, such that for each v the
system

0 6= tv − ai = bi.NormLi/k(Ξi), i = 1, . . . , n

has solutions over kv.
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Now we inject Conjecture H∗∗. We choose a finite set S of places of k, large
enough for various purposes. We include all archimedean places and all finite places
v with v(ai) < 0 for some i. We demand that each Li/k be unramified at v /∈ S,
that each bi be a unit at v /∈ S, that the fibre at infinity has good reduction at v /∈ S
and has points in all kv for v /∈ S (possible by Lang-Weil-Nisnevich, since that
fibre is smooth and geometrically integral). We demand that Ei,smooth, which is
geometrically integral over Li, has points in all Li,w for w place of Li not above a
place of S.

Conjecture H∗∗ then produces a t0 ∈ k very close to tv for v ∈ S, and such that
for any i and any v /∈ S either v(t0 − ai) ≤ 0 or there exists a place of Li of degree
1 over v.

Claim : the fibre Xt0 has points in all completions kv of k.
For v ∈ S, this is a consequence of the implicit function theorem.
If v is not in S and v(t0 − ai) < 0 for some i, then v(t0) < 0, and t0 specializes

at v to the same smooth κ(v)-variety as the fibre X∞, hence has kv-points.
If v is not in S and v(t0 − ai) = 0 for each i, then t0 does not specialize to

any of the specialisations of the points ai and hence (provided S had been chosen
reasonable at the beginning) specializes to a smooth, geometrically integral variety
over the finite field κ(v), of a given “type” (Hilbert polynomial), hence by Lang-
Weil-Nisnevich, has a κ(v)-point, hence Xt0 has a kv-point.

Finally, let us assume that for some v /∈ S, we have v(t0 − ai) > 0 for some i.
Then Xt0 specializes as Xai over the field κ(v). However, by the conclusion of
conjecture H∗∗, v has an extension w of degree 1 to the field Li over which the
component Ei is geometrically integral. Again provided that S was chosen big
enough, that component admits a reduction over the field κ(w) = κ(v) which is
geometrically integral and hence (Lang-Weil-Nisnevich) possesses a smooth κ(v)-
point. Using Hensel’s lemma, we conclude that Xt0 contains a kv-point. �

Assume that the smooth fibres satisfy the Hasse principle and weak approxima-
tion. Then, granting H∗∗, the above result immediately implies that X(k) is dense
in X(Ak)

Brvert , hence in X(Ak)
Br – which then coincides with X(Ak)

Brvert . Such
a general result was out of reach of the theorems based on Schinzel’s hypothesis.

The following corollary had already been obtained via a descent method [42,
Theorem A]. In its turn, the latter result improved upon [45, §2.2].

Corollary 7.11. Let k be a number field. Let f : X → P1
k be a dominant map

of smooth, projective, geometrically integral varieties. Assume that the generic
fibre is geometrically integral and that each special fibre contains a component of
multiplicity one. Assume that δ(f) ≤ 2. If X(Ak)

Brvert 6= ∅, then there exists
t0 ∈ k = A1(k) such that Xt0 is smooth and has points in all completions of k.
Moreover, given a finite set S of places of k, and a point {Mv} ∈ X(Ak)

Brvert , one
may find a t0 such that Xt0 contains kv-points close to Mv for v ∈ S.

Proof. In the case where the nonsplit fibres correspond to two k-rational points, in
the proof of Theorem 7.10, this corresponds to the case n = 2, hence ε = 2, in
which case H∗∗ is known. �
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In the sequel we make a free use of resolution of singularities in characteric zero.

Lemma 7.12. Let X be a smooth, projective, geometrically connected variety. Let
Y and Z be two smooth projective varieties, with dominant morphisms Y → X
and Z → X . Assume that the generic fibre of each of these morphisms is a Severi-
Brauer variety, with associated class αY ∈ Br(k(X)) and αZ ∈ Br(k(X)). Sup-
pose αY − αZ ∈ Br(k). For a class β ∈ Br(k(X)), the following are equivalent :

(i)The image of β in Br(k(Y )) is unramified.
(ii) The image of β in Br(k(Z)) is unramified.

Proof. The fibre product Y ×X Z is stably Z-birational to a constant Severi-Brauer
scheme Y ′ → Z and stably Y -birational to a constant Severi-Brauer scheme Z ′ →
Y . The k-varieties Y ′ and Z ′ are stably k-birational to each other.

A class in Br(k(Y )) is unramified over Y if and only if its image is unrami-
fied over Z ′. Indeed for a constant Severi-Brauer scheme Y ′ → Z, all fibres at
codimension 1 points of Z are geometrically integral.

A class in Br(k(Z)) is unramified over Z if and only if its image is unramified
over Y ′. Now Y ′ and Z ′ are stably k-birational to each other. Thus a class β ∈
Br(k(X)) has unramified image in Br(k(Y )) if and only if it has unramified image
in Br(k(Z)). �

There is a similar result with a finite product
∏

X Yi and a finite product
∏

X Zi
of varieties Yi, Zi generically Severi-Brauer overX such that each class αYi−αZi ∈
Br(k(X)) comes from Br(k).

Theorem 7.13. Let k be a number field. Let f : X → P1
k be a dominant map of

smooth, projective, geometrically integral varieties. Assume that the generic fibre
is geometrically integral and that the fibration is geometrically split. Let U ⊂ P1

k

be a non-empty open set such thatXU/U is smooth, and letB ⊂ Br(XU) be a finite
subgroup. Let {Mv} ∈ X(Ak) be orthogonal to [B + f ∗(Br(k(P1)))] ∩ Br(X).
Let S be a finite set of places. Then, under conjecture H∗∗, there exists t0 ∈ U(k)
such that Xt0(Ak)

B is non-empty and contains a point {Sv} with Sv close to Mv

for each v ∈ S.

Proof. Let B ⊂ Br(XU) be spanned by the classes of finitely many Azumaya alge-
bras Ai over XU .

Let YU → XU be the fibre product of the corresponding Severi-Brauer schemes.
Upon resolution of singularities, this may be completed to a g : Y → X , with Y/k
smooth and projective. The composite fibration h : Y → X → P1

k is geometrically
split.

Indeed, this condition is equivalent with the property that h is locally split for the
étale topology on P1

k. To check this, we may assume k = k. Given a point m ∈ P1,
there exist a connected étale neighbourhood V → P1 whose image contains m
and over which XV → V admits a section V → XV , whose image is an integral
curve W ⊂ XV whose image in V is dense. The map Y → X restricts to a map
YV → XV . The restriction of this map to W ⊂ XV , over the generic point of
the curve W , is a product of Severi-Brauer varieties. Tsen’s theorem then gives a
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rational section from W → YW , which must be a morphism since W is a regular
curve and YW → W is proper.

Let us go back to the case where k is a number field.
Since the composite fibration h : Y → X → P1

k is geometrically split, the
set of elements of Br(U)/Br(k) which become unramified over Y is finite. Let
γj ∈ Br(U) be a finite set of representatives.

Assume that we have an adelic point {Mv} ∈ X(Ak) which is orthogonal to
B′ = [B + f ∗(Br(k(P1)))] ∩ Br(X). Since B′/Br(k)) is finite modulo Br(k), we
may replace this adèle by an adèle {Mv} ∈ XU(Ak), still orthogonal to B′, and
with each new Mv close to the previous Mv.

By the formal lemma we may assume {Mv} ∈ XU(Ak) and∑
v

Ai(Mv) = 0

and ∑
v

γj(Mv) = 0.

By class field theory, there exists ρi ∈ Br(k) with ρi,v = Ai(Mv) for each place
v.

Let A′i = Ai − ρi ∈ Br(XU) and choose Azumaya representatives over XU .
Consider the associated Y ′U → XU and let Y ′ → X be some extension as above.

We now have points {Nv} ∈ Y ′U(Ak) above the point {Mv} ∈ XU(Ak). Claim :
such points are orthogonal to Brvert(Y

′) (where “vert” here refers to the projection
Y ′ → P1

k). Indeed Brvert(Y
′) is included in the image of the elements of Br(U)

which become unramified on Y ′. By Lemma 7.12, these elements of Br(U) are
exactly those which become unramified on Y . Modulo Br(k), this group is spanned
by the classes γj , and we had ∑

v

γj(Mv) = 0,

which over Y ′U gives ∑
v

γj(Nv) = 0,

If we now assume hypothesisH∗∗ and apply1 Theorem 7.10 to the fibration Y ′ →
P1, we find that there exists t0 ∈ U(k) such that the fibre Y ′t0 has an adelic point
{Rv}, with Rv close to Nv for v ∈ S.

Let Sv ∈ Xt0(kv) be the projection of Rv under Y ′t0 → Xt0 .
For each i and each v we have A′i(Sv) = 0, hence Ai(Sv) = ρi,v. Thus∑

v

Ai(Sv) = 0,

with Sv close to Mv for v ∈ S. �

1Here we cannot restrict to the simplifying assumption made in the proof given above for that
theorem.
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To conclude, let us sketch the proof of the general theorem by Harpaz and Wit-
tenberg, which we here repeat for the convenience of the reader.

Theorem 7.14. (Harpaz and Wittenberg) [80, Thm. 9.17] Let k be a number field.
Let X → P1

k be a dominant map of smooth, projective, geometrically integral va-
rieties. Assume that the generic fibre is geometrically integral and that the generic
fibre is a rationally connected variety, and that the fibration is smooth over the
Zariski open setU ⊂ P 1

k . AssumeX(Ak)
Br 6= ∅. Then, under conjectureH∗∗, there

exists t0 ∈ U(k) such that Xt0(Ak)
Br is non-empty and satisfies an approximation

condition at finitely many places v with respect to any given point in X(Ak)
Br.

Proof. (Sketch) By the Graber, Harris, Starr theorem [60]), each special fibre con-
tains a component of multiplicity one. Also, the group Br(Xη)/Br(k(t)) is finite.
One fixes an open set U ⊂ P1

k such that XU/U is smooth and there is a finite group
B ⊂ Br(XU) which spans Br(Xη)/Br(k(t)). Then one looks for a t0 as in the pre-
vious theorem, with the extra condition that the image of B spans the finite group
Br(Xt0)/Br(k). By Harari’s specialisation result ([62, §3] and [64, Thm. 2.3.1],
see also [80, Prop. 4.1]), the set of k-points such that the last condition is fulfilled
is a Hilbert set. The question is thus to show that in the previous theorem one may
require t0 to lie in a Hilbert set. We refer here to [80, Thm. 9.22], which uses [130,
Prop. 6.1]. �

Building upon the results in additive combinatorics one then obtains the follow-
ing unconditional result, first proven by Skorobogatov [125]. Skorobogatov’s proof
(of a slightly more general result) also uses the result of Browning and Matthiesen
[16] on systems of equations

u− aiv = biNormLi/k(Ξi), i = 1 . . . , r,

obtained using additive combinatorics, but his argument looks somewhat different.
He uses descent and universal torsors ([40]). In the present argument, descent has
been replaced by the use of the formal lemma for torsors.

Theorem 7.15. (Skorobogatov) Let X/Q, with a dominant morphism X → P1
Q be

a smooth projective model of a variety given by a system

NormKi/Q(Ξi) = Pi(t) 6= 0 i = 1, . . . , n,

where theKi/Q are arbitrary field extensions, and each polynomial Pi(t) has all its
solutions in Q, and X → P1

Q extends projection to the t-coordinate. Then X(Q) is
dense in X(AQ)Br. In particular, if X(Q) is not empty, then it is Zariski dense in
X , and weak weak approximation holds for X : there exists a finite set T of places
such that for any finite set S of places disjoint from T , X(Q) is dense in the product∏

v∈S X(Qv).

Proof. Let U be the complement of∞ and the zeros of the polynomials Pi(t). To
prove the theorem, we may choose the model. Since tori admit smooth equivariant
compactifications, we may produce a model X → P1

Q such that the only singular
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fibres lie over the point at infinity and the Q-points defined by the zeros of the
polynomials Pi(t) (see [31]).

Letm ∈ U be a closed point, letXm/k(m) be the smooth, geometrically integral
fibre at m.

Since Xm is a smooth, geometrically rational variety, one has

H1(k(m),Q/Z) = H1
et(Xm,Q/Z).

For m ∈ U and any β ∈ Br(Xη), the residue of β at the generic point of Xm lies
in

H1
et(Xm,Q/Z) ⊂ H1(k(m)(Xm),Q/Z).

Thus this residue comes from H1(k(m),Q/Z).
Using the Faddeev exact sequence, one sees that any element of Br(Xη) is the

sum of an element coming from Br(Q(P1)) and an element in Br(XU).
From this one deduces that there exists a finite subgroupB ⊂ Br(XU) which sur-

jects onto Br(Xη)/Br(k(P1)). We may thus choose this U as the open set of P1
Q in

the previous two theorems. The composite fibration Y ′U → XU → U is smooth, the
complement of U consists of rational points. Since k = Q, Matthiesen’s theorem
(see subsection 7.3) guarantees the validity of Hypothesis H∗∗ in the present situa-
tion. The proof of Theorem 7.8 given in this subsection 7.4 thus specializes to an
unconditional proof in the present case. �

Harpaz and Wittenberg [80], using more elaborate arguments, some of them com-
ing from Harari’s thesis [62], actually prove the following general, unconditional
result.

Theorem 7.16. Let X/Q be a smooth, connected, projective variety with a mor-
phism X → P1

Q with rationally connected generic fibre. Assume that the only non-
split fibres are above Q-rational points of P1

Q. IfXP (Q) is dense inXP (AQ)Br(XP )

for smooth fibres XP over rational points of P1
Q, then X(Q) is dense in X(AQ)Br.

For this, just like Harari in [62], they have to discuss what happens when repre-
sentatives of Br(Xη) have nontrivial residues above split fibres.

Remark 7.17. Over k = Q, Theorem 7.16 goes beyond most results which had
been obtained by the descent method.

One exception is the work of Derenthal, Smeets, Wei [56] based on the sieve
method result of Browning and Heath-Brown [15]. They get unconditional results
for an equation

NormK/Q(Ξ) = P (t)

with P (t) irreducible of degree 2 and K/Q arbitrary. Here the sum of the degrees∑n
i=1[ki : k] = 3.

Remark 7.18. A very special example for Corollary 7.11 is the Hasse principle for
quadratic forms in 4 variables. One considers a system

0 6= t = b1(x2
1 − a1y

2
1)

0 6= t = b2(x2
2 − a2y

2
2).
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Assume this has solutions everywhere locally. Hasse’s method is to define an ob-
vious set S of bad places, then to use Dirichlet’s theorem to produce a value t0 of
t which is a unit away from S and one finite place v0 (where t0 has valuation one).
Then each conic t0 = bi(x

2
i −a1y

2
i ) has solutions in all completions except possibly

at v0. One uses reciprocity to conclude that it has a solution also in v0 and then
globally.

The present proof for this result is “different”.
The argument based on Tate-Nakayama duality and the formal lemma for torsors

directly produces a point t0 such that each of the two equations t0 = bi(x
2
i − a1y

2
i )

has solutions in all completions.
Since this is a situation where the fibre at infinity is not smooth, let us do the

argument directly. One considers the 3-dimensional variety W given by

0 6= t = b1(x2
1 − a1y

2
1)

0 6= t = b2(x2
2 − a2y

2
2).

Assume this has solutions everywhere locally. Let L = k(
√
a1,
√
b1). Introduce the

torsor given by
t = NormL/k(Ξ).

There is no vertical Brauer-Manin obstruction, since the given variety is k-birational
to the product of P1

k and a quadric. The formal lemma for torsors then produces an
element c ∈ k× such that the system

0 6= t = b1(x2
1 − a1y

2
1)

0 6= t = b2(x2
2 − a2y

2
2).

0 6= t = c.NormL/k(Ξ)

has solutions in all completions of k. This now implies that the system

b1(x2
1 − a1y

2
1) = c = b2(x2

2 − a2y
2
2).

has solutions in all completions of k : there is a fibre of W → A1 over a k-point
which has points in all kv. That fibre is the product of two conics, we can use the
Hasse principle for each of them.

The same arguments would produce a suitable t0 if one started from a system

0 6= t = biNormki/k(Ξi)

with arbitrary field extensions ki/k. But for arbitrary field extensions ki/k one
would not be able to conclude that the system has rational solutions. The question
will be discussed further below : here one must take the whole Brauer group Br(X)
into account.

Remark 7.19. In theorem 7.10, there is no geometric assumption on the generic
fibre beyond the fact that it is geometrically integral.

Here is an interesting case, still with ε = 2, hence with H∗∗ known.
Let n > 1 be any integer. Let a, b, c, d ∈ k×. If the projective surface X ⊂ P3

k

given by
axn + byn = czn + dwn
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has solutions in all completions of k, and there is no Brauer-Manin obstruction
with respect to the finite subgroup of Br(X) corresponding to the vertical part for
(a projective model of) the fibration of W → A1

k defined by mapping

axn + byn = t = czn + dwn 6= 0

to t, then there exists ρ ∈ k× such that the affine variety given by

axn + byn = ρ = czn + dtn

has solutions in all completions of k. For n = p a prime, the relevant vertical Brauer
group is reduced to Br(k).

For n = 3, this statement is a starting point in Swinnerton-Dyer’s paper [140,
Lemma 2, p. 901], see also a similar situation in [126]. Exercise : rephrase
Swinnerton-Dyer’s argument from the present point of view. The challenge here,
assuming X(Ak)

Br 6= ∅, is to produce a ρ such that for each of the two curves
axn + byn = ρ and czn + dtn = ρ, there is no Brauer-Manin obstruction to the
existence of a rational point, or at least to the existence of a zero-cycle of degree 1.

8. ZERO-CYCLES

8.1. The conjectures. Let X be a smooth, projective, geometrically integral vari-
ety over a number field k.

For any field F containing k, there is a natural bilinear pairing

CH0(XF )× Br(X)→ Br(F )

between the Chow group of zero-cycles on XF (group of zero-cycles modulo ratio-
nal equivalence) and the Brauer group of X .

In particular, for each place v of k, there is a pairing

CH0(Xkv)× Br(X)→ Br(kv) ⊂ Q/Z.

For v archimedean, this pairing vanishes on Normk′v/kvCH0(Xk′v), where k′v is an
algebraic closure of kv. Let thenCH ′0(Xkv) be the quotientCH0(Xkv)/Norm(CH0(Xk′v))
for v archimedean, and CH ′0(Xkv) = CH0(Xkv) for v finite.

Class field reciprocity gives rise to a complex

CH0(X)→
∏
v

CH ′0(Xkv)→ Hom(Br(X),Q/Z).

For A an abelian group, let Â denote lim←−A/n. There is an induced complex

ĈH0(X)→
∏
v

ĈH
′
0(Xkv)→ Hom(Br(X),Q/Z).

Work of Sansuc and mine on rational surfaces [38] and of Kato and Saito on
higher class field theory has led to the following general conjecture.
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Conjecture (E) : For any smooth, projective variety X over a number field
k, the complex

ĈH0(X)→
∏
v

ĈH
′
0(Xkv)→ Hom(Br(X),Q/Z)

is exact.
This conjecture subsumes
Conjecture (E1) : For any smooth, projective variety X over a number field

k, If there exists a family {zv} of local zero-cycles of degree 1 on X such that,
for all A ∈ Br(X) ∑

v

A(zv) = 0 ∈ Q/Z,

then there exists a zero-cycle of degree one on X .
as well as a Conjecture (E0), where CH0(X) is replaced by the subgroup A0(X)
of zero-cycles classes of degree zero.

For more on this, and precise references, see [38], Kato–Saito, Saito, [20], [22],
[141], and the introduction of Wittenberg’s paper [152].

Note that this is a conjecture for all smooth, projective, geometrically connected
varieties over a number field.

For curves, classical results imply the conjecture – modulo finiteness of Tate-
Shafarevich groups.

For Châtelet surfaces, conjecture (E) was proved in [41].
Then Salberger [108] by a very ingenious method proved the conjecture for arbi-

trary conic bundles over P1.
Further progress was achieved in papers by myself, Swinnerton-Dyer, Skoroboga-

tov, Salberger [110], Frossard, van Hamel [141], and more recently Wittenberg
[152] and Yongqi Liang (see the references).

The following simple case gives a good idea of Salberger’s method.

Theorem 8.1. Assume that the equation

y2 − az2 = P (t) 6= 0

with P (t) ∈ k[t] irreducible of degree d has solutions in all completions kv. Then
for any integer N > d there exists a solution in an extension of degree N of k.
Taking N and N + 1, we find that there exists a zero-cycle of degree 1 on X .

Proof. [Here I am cheating on the real places. There are various methods to fix the
problem.]

Let U be the k-variety defined by the equation.
One fixes an obvious set S of bad places of k for the given equation.
For each v ∈ S, one fixes a polynomial Gv(t) ∈ kv[t), monic, separable, of

degree N with all roots in kv corresponding to projections of points of U(kv), in
particular Gv(t) is prime to P (t).

One also fixes a place v0 outside of S, such that a is a square in kv0 , and a monic
irreducible polynomial of degree N over kv0 .
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One then applies euclidean division :

Gv(t) = P (t)Qv(t) +Rv(t)

with degree of Rv smaller than N .
Let K be the field k[t]/P (t). Let ξv ∈ K ⊗k kv be the image of Rv(t).
Using Dirichlet’s theorem in the fieldK, one produces an element ξ ∈ K× which

is very close to each ξv for v ∈ S ∪ {v0} and such that its prime decomposition in
K involves only places above S ∪ {v0} and one place w of K such that w(ξ) = 1,
this place being of degree 1 over k. The element ξ ∈ k[t]/P (t) lifts to a unique
element R(t) of k[t] of degree strictly smaller than the degree of P (t).

Fix a place v1 outside the previous set of places, such that a is a square at v1.
Using strong approximation in k away from v1 one produces a monic polynomial
Q(t) ∈ k[t] with integral coefficients aways from v1 and very close coefficientwise
to each Qv(t) for v ∈ S ∪ {v0}.

One then defines

G(t) := P (t)Q(t) +R(t).

This polynomial is irreducible (because close to Gv0). It is monic and has integral
coefficients away from S ∪ v0 ∪ v1.

Let L = k[t]/G(t). This is a field extension of degree N of k. Let θ ∈ L be the
class of t. The element θ is integral over places not in S ∪ v1 ∪ v0. Let ρ = P (θ)
denote the class of P (t) in L.

Claim : The L-conic given by y2 − az2 = ρ has an L-point.
At places w of L above S, the conic has an Lw-point because G(t) is very close

to Gv(t).
The formula for the resultant of two polynomials shows that the product of the

conjugates of P (θ) is ± the product of the conjugates of G(α), for α the class of t
in k[t]/P (t). Now

G(α) := P (α)Q(α) +R(α) = R(α) = ξ.

And the degree 1 condition on the Dirichlet prime implies that the norm of ξ, away
from S ∪ {v0} has in its factorisation only one prime, and of valuation 1. Since
P (θ) is integral away from S ∪ v0 ∪ v1, this implies that the prime decomposition
of P (θ) away from S ∪ v0 ∪ v1 involves only one prime w′ of L. Thus the L-conic
has points in all completions of L except possibly at the prime w′, and we conclude
that it has an L-point by the reciprocity argument. �

In the above proof, we did not assume that we had started from an adelic point
orthogonal to the unramified Brauer group. But this is automatic, since P (t) irre-
ducible implies that the Brauer group of a smooth projective model of y2 − az2 =
P (t) is reduced to Br(k).

8.2. From results on rational points to results on zero-cycles : work of Yongqi
Liang. The following proposition is a baby case (Liang, [93, Prop. 3.2.3]).
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Proposition 8.2. Let k be a number field and X/k be a smooth, proper, geometri-
cally integral variety. Assume that for any field extension K/k, the Hasse principle
holds for XK . Then the Hasse principle holds for zero-cycles of degree one on X .

Proof. By the Lang-Weil-Ninevich estimates, there exists a finite set S of places of
k such that for any place v /∈ S, one has X(kv) 6= ∅. Fix a closed point m of some
degree N over X . For each v ∈ S, let zv = z+

v − z−v be a local zero-cycle of degree
one, where z+

v and z−v are effective zero-cycles. Let z1
v = z+

v + (N − 1)z−v . This is
an effective zero-cycle of degree congruent to 1 modulo N . Since there are finitely
many v’s, we can add to each z1

v a suitable positive multiple nvm of the closed point
m and ensure that all the effective cycles z2

v = z1
v + nvm, v ∈ S, have the same

common degree d congruent to 1 modulo N .
Here comes the basic trick. Let Y = X ×P1 and let f : Y → P1

k be the natural
projection. Fix a rational point q ∈ P1(k). On Y we have the effective zero-cycles
z2
v × q, of degree d.

A moving lemma which builds upon the implicit function theorem ensures that
each z2

v×q is rationally equivalent on Ykv to an effective cycle z3
v without multiplicty

and such that the projected f∗(z
3
v) is also without multiplicity. This amounts to

saying that z3
v =

∑
j Rj with all Rj distinct and with k(f(Rj)) = k(Rj) for each

j. We may assume that all f∗(z3
v) lie in Speck[t] = A1

k ⊂ P1
k. Each f∗(zv) is

defined by a separable monic polynomial Pv(t). We pick a place v0 outside S and an
arbitrary monic irreducible polynomial Pv0(t) ∈ kv0 [t]. By weak approximation on
the coefficients, we then approximate the Pv(t), v ∈ S ∪ v0, by a monic polynomial
P (t) ∈ k[t]. This defines a closed point M ∈ A1

k of degree d.
If the approximation is close enough, Krasner’s lemma and the implicit function

theorem imply that the fibre X ×k k(M) has points in all completions of k(M) at
the places above v ∈ S. By the definition of S, X ×k k(M) has points in all the
other completions. By assumption, X ×k k(M) satisfies the Hasse principle over
k(M), hence it has a k(M)-point. Thus X has a point in an extension of degree
d. As d is congruent to 1 mod N , we conclude that the k-variety X possesses a
zero-cycle of degree 1. �

Theorem 8.3. (Y. Liang [93]) Let k be a number field and X a smooth, projective,
geometrically connected variety over k. Assume that H i(X,OX) = 0 for i =
1, 2 and that the geometric Picard group PicX is torsion free. For any finite field
extension K of k, assume that the Brauer-Manin obstruction to the Hasse principle
for XK is the only obstruction. Then the Brauer-Manin obstruction to the existence
of a zero-cycle of degree one on X is the only obstruction : conjecture (E1) holds.

Proof. Over any field k of char. zero, the assumptions on the geometry of the variety
X imply that the quotient Br(X)/Br(k) is finite. Let A1, . . . , An ∈ Br(X) span
Br(X)/Br(k).

Let S be a finite set of places such that away from S, X and the Ai have good
reduction, and X(kv) 6= ∅ vanishes when evaluated on any zero-cycle of Xkv when
v is not in S.
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One starts with a family zv of zero-cycles of degree one onX which is orthogonal
to Br(X) for the Brauer-Manin pairing.

This boils down to

∀i
∑
v

Ai(zv) = 0 ∈ Q/Z.

Let N be an integer which is a multiple of the degree of a closed point of X and
also annihilates each Ai ∈ Br(X).

Let Y = X ×P1
k and f : Y → P1

k be the projection.
Proceeding as in the previous proof, one produces reduced effective zero-cycles

zv on Y of the same degree d congruent to 1 modulo N , with the property that
f∗(zv) is reduced. We may choose coordinates so that the support of these zero-
cycles lies in Speck[t] = A1

k ⊂ P1
k. They are then defined by the vanishing of

separable, monic polynomials Pv(t) of degree d.
One then approximates the Pv(t) for v ∈ S and at another place v0 by a suitable

monic irreducible polynomial P (t) ∈ k[t]. Just as before, this defines a closed point
M ∈ P1

k.
For each place v ∈ S, there exists an effective zero-cycle z′v close to zv onXM⊗k

kv, this corresponds to k(M)w-rational points Rw of the k(M)-variety Xk(M) over
the various completions w of k(M) above the places in S.

At each place w /∈ Sk(M) above a place v /∈ S, we take an arbitrary k(M)w-
rational point, for instance one coming from a kv-point on X .

We then have

∀i
∑

w∈Ωk(M)

Ai(Rw) = 0 ∈ Q/Z.

Now this is not enough to ensure that the adèle {Rw} ∈ Xk(M(Ak(M)) is orthogo-
nal to Br(Xk(M)). This is enough if we can choose the point M , i.e. the polynomial
P (t), in such a way that the map

Br(X)/Br(k)→ Br(Xk(M))/Br(k(M))

is onto.
The geometric hypotheses made on X imply, by [93, Prop. 3.1.1] (a special and

easier case of a more general theorem of Harari [64, Thm. 2.3.1] that there exists
a fixed finite Galois extension L/k such that the above surjectivity holds for any
closed point M as soon as the tensor product L ⊗k k(M) is a field. But this last
condition is easy to ensure. just impose on N from the very beginning that it is also
a multiple of [L : k]. Then d = [k(M) : k], congruent to 1 modulo N , is prime to
[L : k]. �

The paper by Yongqi Liang proves more :

Theorem 8.4. (Y. Liang) Let k be a number field. Let X/k be a smooth, projective,
geometrically connected, geometrically rationally connected variety. Assume that
for any finite field extension K/k, X(K) is dense in X(AK)Br. Then conjecture
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(E) holds, i.e. the sequence

ĈH0(X)→
∏
v

ĈH
′
0(Xkv)→ Hom(Br(X),Q/Z)

is exact. That is, conjecture (E) holds.

To prove this, Yongqi Liang first proves a version of the previous theorem for
zero-cycles of degree one, keeping track of “approximation” modulo a positive in-
teger. Here z is said to be close to zv modulo n if they have the same image in
CH0(Xkv)/n. Here work of Wittenberg [152] is used.

Then one goes from this statement to the long exact sequence above for rationally
connected varieties. This more stringent geometric condition is imposed, indeed at
some point one uses results of Kollár and Szabó on Chow groups of zero-cycles of
such varieties over local fields – in the good reduction case.

The results of Yongqi Liang thus establish conjecture (E), (E0) and (E1) for
smooth projective varieties which are birational to a homogeneous space of a con-
nected linear algebraic group with connected homogeneous stabilizers, since the
standard conjecture for rational points has been proved for such varieties (Sansuc
[111] when the stabilizers are trivial, Borovoi [4] in general).

8.3. Harpaz and Wittenberg’s general theorem on zero-cycles : statement and
proof of a very special case. In the various papers quoted in subsection 8.1, inspi-
ration came from Salberger’s paper [108], which was later seen [45] to build upon
a zero-cycle, unconditional version of Schinzel’s hypothesis (Salberger’s trick).

Just as in the case of rational points, one got results for fibrations X → P1
k if one

assumed :
– Over any closed point m, the fibre contains a component Y of multiplicity one

Y such that the integral closure of k(m) in k(Y ) is abelian.
– The Hasse principle and weak approximation hold for the smooth closed fibres.
These restrictions on the algebra and arithmetic of fibres have now been lifted,

and we have the unconditional result :

Theorem 8.5. (Harpaz et Wittenberg)[80] Let X be a smooth, projective, geomet-
rically connected variety over a number field, equipped with a dominant morphism
f : X → P1

k. Assume the geometric generic fibre is a rationally connected variety.
If the smooth fibres satisfy conjecture (E), then X satisfies conjecture (E).

Corollary 8.6. LetX be a smooth, projective, geometrically connected variety over
a number field, equipped with a dominant morphism f : X → P1

k. Assume that the
generic fibre is birational to a homogeneous space of a connected , linear k(P1)-
algebraic groupG with connected geometric stabilizers. Then conjecture (E) holds
for X .

Harpaz and Wittenberg actually prove their result for varieties fibred over a curve
of arbitrary genus, under the assumption that conjecture (E) holds for the curve, for
instance when the Tate-Shafarevich group of the jacobian of the curve is finite. For
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the time being I shall not attempt to present the proof of their result, not even in the
case where the bottom curve is P1

k.

I shall describe one idea in the proof of Theorem 8.5. This is a zero-cycle ana-
logue of Theorem 7.10.

Theorem 8.7. Let f : X → P1
k be a fibration. Assume that the nonsplit fibres all

lie over k-points of A1
k = Speck[t], that they are given by t = ei, i = 1, . . . , n, and

that for each i there is a component Ei of multiplicity one in the fibre at ei. Assume
that there exists an adèle {Pv} ∈ X(Ak) which is orthogonal to the finite group
Brvert(X)/Br(k). Then for any integer N > n there exists a closed point m of P1

k

of degree N such that the fibre Xm/k(m) has points in all the completions of k(m).

Proof. Let U be the complement of the points t = ei in A1
k. Let V = f−1(U). Let

ki be the integral closure of k in k(Ei).
We assume that there exists an adèle Pv ∈ X(Ak) which is orthogonal to the finite

group Brvert(X)/Br(k). One may assume that the point actually lies in V (Ak). Let
tv ∈ kv denote the projection of Pv. Let fi(t) := t− ei ∈ k[t].

Over any field K containing k, there is an obvious homomorphism of abelian
groups

fi : Z0(UK)→ K×

defined by fi using norms.
Let N > n be an integer. By using the implicit function theorem, out of the Pv’s

one constructs effective 0-cycles zv of degree N such that f∗(zv) is reduced, sum of
N points of U(kv).

Applying the formal lemma for torsors and for rational points, using the fact that
there is no vertical Brauer-Manin obstruction, one produces other zv’s (identical to
the original ones at a preassigned finite set of places) and global elements bi ∈ k×
such that for each v,

fi(zv) ∈ bi.Normki/k(ki
×
v ).

We now use Proposition 2.13 (Lemma 5.2 of [80]).
Let S denote the obvious finite set of bad places, in particular all places where bi

is not a unit, all infinite places, all places where one ki/k is ramified.
That proposition produces elements ci ∈ k× such that ci is close to b−1

i fi(zv) ∈
k×v for v ∈ S, and such that at any place v /∈ S either ci is a unit or ki/k possesses
a place of degree 1 over v. Moreover if we fix a place v0 /∈ S we may take ci
integer away from S ∪ v0. We fix such a place v0 which is split in all extensions
ki/k (possible by Tchebotarev).

For v ∈ S, let Gv(t) ∈ kv[t] be the monic polynomial vanishing on zv.
By interpolation, as in Salberger’s trick, one builds a monic irreducible polyno-

mial G(t) ∈ k[t] of degree N , integral away from S ∪ v0, such that G(t) is close to
Gv(t) for v ∈ S and such that G(ei) = bici ∈ k×.

Let m be the closed point defined by G(t) = 0. We claim that Xm has points in
all completions Fw of F := k(m).

For w a place which lies over S, this is a consequence of the implicit function
theorem.
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For the other places, one must only discuss the finitely many closed points of
P1
OS

where the closure of m in P1
OS

meets the closure of one of the ei’s. Indeed,
provided S was chosen big enough at the outset, at any other closed point the fibre
of a model over P1

OS
is split, and provided again S was chosen big enough, has a

smooth rational point over its residue field.
Let us consider one of the above closed points, of degree one above a place

v /∈ S ∪ {v0}. One has

OS[t]/(t− ei, G(t)) = OS/G(ei) = OS/(bici).

This is nonzero only if v(bici) = v(ci) > 0. In that case, v admits an extension w
of degree one in the extension ki/k. The smooth locus of the component Ei ⊂ Xm

possesses a a smooth point in its reduction modulo w. This produces a smooth point
in the reduction of Xm at the place of k(m) intersection of the closure of m and the
closure of ei. the fibre Ei/ki possesses a smooth point over the reduction of ki at w,
hence also does the reduction of Xm/k(m) at the closed point under consideration,
which defines a place of degree one w′ on F = k(m) hence Xm has a point in the
completion Fw′ .

As for the place v0, the fibration X → P1
k has all its fibres split over kv0 , hence

there is no difficulty : provided v0 was chosen big enough, over any finite field
extension F of kv0 , the map X(F ) → P1(F ) is onto. [If the generic fibre is a
rationally connected variety, the fibration X → P1

k admits a section over a finite
field extension of k (Graber-Harris-Starr [60]). It is then enough to take a v0 which
splits in this extension, and the existence of such a v0 is guaranteed by Tchebotarev’s
theorem.] �

REFERENCES

[1] A. Beauville, On the Brauer group of Enriques surfaces. Math. Res. Lett. 16 (2009), no. 6,
927–934.

[2] F. A. Bogomolov, Le groupe de Brauer des espaces quotients de représentations linéaires (en
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groupe algébrique fini. Bull. Soc. Math. France 135 (2007), no. 4.
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