Jacques Smulevici

Département de Mathématiques
Bât. 425
Faculté des Sciences d'Orsay
Université Paris-Sud
91405 Orsay Cedex
France


Courrier électronique :
Bureau : 228
Téléphone : (+33) 1 69 15 60 12
Photo
English version

Domaine de recherche

Je m'interesse à l'analyse des équations différentielles partielles hyperboliques à caractère géométrique, plus particulièrement, au problème de Cauchy pour les équations d'Einstein, en relation avec les questions suivantes:
Plus récemmment, j'ai commencé une série de travaux en lien avec la théorie cinétique. Bien que ces travaux soient motivés initialement par l'étude du système d'Einstein-Vlasov, certaines applications concernent l'étude des opérateurs linéaires de transport cinétique ainsi que les systèmes de Vlasov-Poisson et Vlasov-Norström.

Curriculum Vitae

Prépublications

  1. In collaboration with David Fajman and Jérémie Joudioux, A vector field method for relativistic transport equations with applications 72 pages, October 2015, preprint available at arXiv:1510.04939.
  2. Small data solutions of the Vlasov-Poisson system and the vector field method, 45 pages, April 2015, sent for publication, preprint available at arXiv:1502.04965.
  3. In collaboration with Gustav Holzegel, Jonathan Luk and Claude Warnick, Asymptotic properties of linear field equations in anti-de Sitter space, 56 pages, February 2015, preprint available at arXiv:1502.04965.

Publications

  1. In collaboration with Phillipe G. LeFloch, Weakly regular T2 symmetric spacetimes. The future causal geometry of Gowdy spaces, J. Differential Equations 260 (2006), no. 2, 1496-1521.
  2. In collaboration with Gustav Holzegel, Quasimodes and a Lower Bound on the Uniform Energy Decay Rate for Kerr-AdS Spacetimes, Anal. PDE 7 (2014), no. 5, 1057–1090.
  3. In collaboration with Phillipe G. LeFloch, Weakly regular T2 symmetric space times. The global geometry of future developments, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 5, 1229–1292.
  4. In collaboration with Gustav Holzegel, Decay properties of Klein-Gordon fields on Kerr-AdS spacetimes, Comm. Pure Appl. Math., Vol. 66(11), pp 1751-1802, Nov. 2013
  5. In collaboration with Gustav Holzegel, Stability of Schwarzschild-AdS for the spherically symmetric Einstein-Klein-Gordon system, Commun. Math. Phys., 317(1), pp 205-251 (2013).
  6. In collaboration with Gustav Holzegel, Self-gravitating Klein-Gordon fields in asymptotically Anti-de-Sitter spacetimes, Annales Henri Poincaré 13(4), 991-1038 (2012).
  7. In collaboration with Phillipe G. LeFloch, Global geometry of T2-symmetric spacetimes with weak regularity., C. R. Math. Acad. Sci. Paris 348 (2010), no. 21-22, 1231-1233.
  8. On the area of the symmetry orbits of cosmological spacetimes with toroidal or hyperbolic symmetry, Analysis & PDE, Vol. 4 (2011), No. 2, 191-245.
  9. Strong Cosmic Censorship for T2-Symmetric Spacetimes with Cosmological Constant and Matter, Annales Henri Poincaré, 9(8), 1425-1453 (2008).

Actes de conférences

  1. In collaboration with David Fajman and Jérémie Joudioux, The vector field method for transport equations with applications to classical and relativistic systemsOberwolfach Report no 33 (2015) on Mathematical Aspects of General Relativity.
  2. Sur quelques problèmes d’analyse globale en relativité générale (in French), Séminaire Laurent Schwartz — EDP et applications (2013-2014), Exp. No. 14.
  3. In collaboration with Gustav Holzegel, Waves, modes and quasimodes on asymptotically Anti-de-Sitter black hole spacetimes , Oberwolfach Report no 37 (2012) on Mathematical Aspects of General Relativity.
  4. On the global geometry of spacetimes with toroidal or hyperbolic symmetry.Complex analysis and dynamical systems IV. Part 2, 245-252, Contemp. Math., 554, Amer. Math. Soc., Providence, RI, 2011.
  5. Structure of singularities in cosmological spacetimes with symmetry Oberwolfact Report no 46 (2009) on Mathematical Aspects of General Relativity.

Autres

  1. The bounded L^2 curvature conjecture , after S. Klainerman, I. Rodnianski and J. Szeftel Séminaire Bourbaki, June 21 2014, Insitut Henri Poincaré.
  2. La conjecture de courbure bornée dans L^2, d'après les travaux de S. Klainerman, I. Rodnianski et J. Szeftel Gazette des Mathématiciens - n°144, Avril 2015.



Logo