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Effective equidistribution of lattice points

in positive characteristic

par Tal Horesh et Frédéric Paulin

Résumé. Étant donné une place ω d’un corps de functions global
K sur un corps fini, d’anneau des fonctions affines associé Rω et
de complétion Kω, le but de ce texte est de donner un résultat
d’équidistribution jointe effectif pour les points entiers primitifs
renormalisés pa, bq P Rω

2 du plan Kω
2, et pour les solutions renor-

malisées de l’équation du pgcd ax` by “ 1. Les outils principaux
sont les techniques de Gorodnik et Nevo sur le comptage de points
entiers dans des familles de parties bien arrondies. Ceci donne
un résultat plus précis en caractéristique positive d’un resultat de
Nevo et du premier auteur sur l’équidistribution des points entiers
primitifs de Z2.

Abstract. Given a place ω of a global function field K over a
finite field, with associated affine function ring Rω and completion
Kω, the aim of this paper is to give an effective joint equidistri-
bution result for renormalized primitive lattice points pa, bq P Rω

2

in the plane Kω
2, and for renormalized solutions to the gcd equa-

tion ax ` by “ 1. The main tools are techniques of Gorodnik
and Nevo for counting lattice points in well-rounded families of
subsets. This gives a sharper analog in positive characteristic of a
result of Nevo and the first author for the equidistribution of the
primitive lattice points in Z2.

1. Introduction

This paper has two motivations. The first one is the following result of
Dinaburg-Sinai [7]. Given two coprime positive integers a, b with a ă b,
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let px0, y0q be a shortest solution (with respect to the supremum norm
}px, yq}8 “ maxt|x|, |y|u) to the equation |ax ` by| “ 1 with unknown
px, yq P Z2. Dinaburg-Sinai proved that the quotients of norms

}px0, y0q}8

}pa, bq}8

equidistribute in the interval r0, 1s as }pa, bq}8 tends to `8. A key idea
in the approach of this paper, as well as the one for [19, 18], is due to
Risager-Rudnick [24], who translate the above problem in terms of the
equidistribution of the real parts of points of an SL2pZq-orbit in the Poincaré
upper-half plane, and give a solution different from the one of [15] (which
uses spectral theory of automorphic forms).

The second motivation is the well-studied Linnik problem of equidistri-
bution on the unit sphere Sn´1 of the directions of integral vectors in the
Euclidean space Rn for n ě 2. See for instance [8, 27, 9, 10, 12, 4, 13, 1, 2]
as well as the joint works of the first author [19, 18]. Let us denote by
Zn
prim the set of primitive integral vectors, by LebSn´1 the spherical mea-

sure on Sn´1 renormalized to be a probability measure, and by ∆x the unit
Dirac mass at any point x in any measurable space. A simple version of this
equidistribution phenomenon is the now well-known fact that, as N Ñ `8,
we have

1

Cardtv P Zn
prim : }v} ď Nu

ÿ

vPZn
prim : }v}ďN

∆ v
}v}

˚
á LebSn´1 ,

where
˚

á denotes the weak-star convergence of measures, here on the com-
pact space Sn´1. Actually, as considered in the above references and pointed
out by the referee, a much stronger result holds when considering the prim-
itive integral vectors on a sphere with appropriate large radius (instead of
in a ball with large radius). This will be the case also in this paper, though
the ultrametric properties makes this restriction to spheres much easier to
handle, and without restrictions on the radius. A connection between the
two motivations is that when n “ 2, an integral vector pa, bq is primitive if
and only if there exists an integral vector px, yq with |ax ` by| “ 1.

The goal of this paper is to address analogous questions in local fields
with positive characteristic. In this introduction, we describe our results in
the special following case.

Let Fq be a finite field of order a positive power q of some positive prime,
and let K “ FqpY q be the field of rational functions in one variable Y
over Fq. Let R “ FqrY s be the ring of polynomials in Y over Fq, let
pK “ FqppY ´1qq be the non-Archimedean local field of formal Laurent series

in Y ´1 over Fq and let O “ FqrrY ´1ss be the local ring of pK (consisting
of formal power series in Y ´1 over Fq). We denote by | ¨ | the complete
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non-Archimedean absolute value on pK such that |P | “ qdegP for every
P P R.

We endow pK with its Haar measure µ
pK
standardly normalized so that

µ
pK

pOq “ 1, and the quotient pK{R with the induced measure µ
pK{R

and

the quotient distance. We also endow the plane pK 2 with the product
measure and with the supremum norm. We denote by S18 the (compact-

open) unit sphere of pK 2, that we equip with the restriction µS18 of the
product measure.

Given v “ pa, bq P pK 2 ´ tp0, 0qu, we denote by }v}8 “ maxt|a|, |b|u P qZ

its supremum norm. We denote by zv “ a if |a| ě |b|, and zv “ b otherwise,
the component of v with maximum absolute value. We also denote by
qv “

`

a Y ´ logq }v}8 , b Y ´ logq }v}8
˘

the vector v canonically renormalised to

be in the unit sphere S18, of which we think as the direction of v.
We let R2

prim denote the set of elements v “ pa, bq in the standard

R-latticeR 2 of the plane pK 2 that are primitive, that is, satisfy aR`bR “ R.
Let wv “ p´y1, x1q be such that px1, y1q is a solution to the gcd equation
ax` by “ 1 of v, with unknown px, yq P R 2. We could for instance take the
shortest one, that is, the one with the smallest supremum norm (see Section
5 for the existence and uniqueness). We then think of wv as a normalized
“rotated” version of v (or generating the “orthogonal” R-lattice in analogy
with [1, 2]). What follows is actually independent of the choice of wv.

The following result is a joint equidistribution theorem, with error term,
for the direction and renormalized gcd solution of the primitive lattice

points in the non-Archimedean plane pK 2.
Error terms in equidistribution results usually require smoothness prop-

erties on test functions. The appropriate smoothness regularity of functions

defined on totally disconnected spaces like pKN for N P N is the locally con-
stant one. For every metric space E and ϵ ą 0, a bounded map f : E Ñ R
is ϵ-locally constant if it is constant on every closed ball of radius ϵ in E.
Its ϵ-locally constant norm is }f}ϵ “ 1

ϵ supxPE |fpxq|.

Theorem 1.1. For the weak-star convergence of measures on the compact

space S18 ˆ p pK{Rq, we have, as n Ñ `8,

1

q2pq ´ 1q
q´2n

ÿ

vPR2
prim : }v}8“qn

∆
qv b ∆ zwv

zv
`R

˚
á µS18 b µ

pK{R
.

Furthermore, there exists τ P s0, 18 s such that for all ϵ, δ ą 0, there is

a mutiplicative error term of the form 1 ` Oδpq2np´τ`δq }f}ϵ }g}ϵq when
evaluated on pairs pf, gq for all ϵ-locally constant maps f : S18 Ñ R and

g : pK{R Ñ R.
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The factor 1
q2pq´1q

q´2n in front of the above sum is a renormalization

factor, needed in order to have a convergence to the natural finite measure

on the right hand side (whose total mass q2´1
q3

will be computed in Section

2.1). The constant τ is described in terms of representation-theoretic data

for the locally compact group SL2p pKq, but it is not explicit, as it relies
in particular on a nonexplicit spectral constant (see the proof of Theorem
4.1).

We will actually prove a more general version of this result, when K is
replaced by any (global) function field in one variable over a finite field and
when congruence properties are added, see Theorem 4.5. See also Corollary
4.6 for a counting corollary of primitive lattice points.

We begin in Subsection 2.1 by recalling basic facts about functions fields
over finite fields. In Subsection 2.2, we define the various closed subgroups

of the totally disconnected locally compact group SL2p pKq which will be
useful in order to transfer arithmetic information on lattice points in the
plane to group-theoretic information. We will also discuss the properties
of their Haar measures. In Section 3, we give a precise correspondence
between primitive lattice points and elements in the Nagao-Weyl modular
group SL2pFqrY sq. We adapt in Section 4 the results of Gorodnik-Nevo [16]
(building on works of [11, 14]) on counting lattice points in well-rounded
subsets of semi-simple Lie groups, and check that a family of nice compact-
open subsets coming from a mixture of the LU and Iwasawa decompositions

of SL2p pKq is indeed well-rounded. Finally, in Section 5, we give an applica-
tion to the distribution properties of the continued fraction expansions of
elements in FqpY q, thus giving an analogue to the result of Dinaburg-Sinai
in [7] described in the beginning of this introduction.

2. Background on function fields and their modular groups

2.1. Global function fields. We refer for instance to [17, 25] and [5,
Chap. 14] for the content of this Section.

Let Fq be a finite field of order q, where q is a positive power of a positive
prime. Let K be a (global) function field over Fq, that is, the function
field of a geometrically connected smooth projective curve C over Fq, or
equivalently an extension of Fq of transcendance degree 1, in which Fq is
algebraically closed. We denote by g the genus of the curve C.

There is a bijection between the set of closed points of C and the set
of (normalised discrete) valuations ω of its function field K, where the
valuation of a given element f P K is the order of the zero or the opposite
of the order of the pole of f at the given closed point. We fix such a
valuation ω from now on.
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We denote by Kω the completion of K for the valuation ω, and by

Oω “ tx P Kω : ωpxq ě 0u

the valuation ring of (the unique extension to Kω) of ω. Let us fix a
uniformiser πω P Kω of ω, that is, an element in Kω with ωpπωq “ 1.
We denote by qω the order of the residual field Oω{πωOω of ω, which is a
(possibly proper) power of q. We normalize the absolute value associated
with ω as usual: for every x P Kω, we have the equality

|x |ω “ pqωq´ωpxq .

Finally, let Rω denote the affine algebra of the affine curve C ´ tωu,
consisting of the elements of K whose only poles (if any) are at the closed
point ω of C. Its field of fractions is equal to K.

The case in the introduction corresponds to C “ P1 (so that g “ 0) and
ω “ ω8 the valuation associated with the point at infinity r1 : 0s. Then

‚ K “ FqpY q is the field of rational functions in one variable Y over Fq,
‚ ω8 is the valuation defined, for all P,Q P FqrY s, by

ω8pP {Qq “ degQ ´ degP .

‚ Rω8 “ FqrY s is the (principal) ring of polynomials in one variable Y
over Fq,

‚ Kω8 “ FqppY ´1qq is the field of formal Laurent series in one variable
Y ´1 over Fq,

‚ Oω8 “ FqrrY ´1ss is the ring of formal power series in one variable
Y ´1 over Fq, πω8 “ Y ´1 is the usual choice of a uniformizer, and qω8 “ q.

Recall (see for instance [28, II.2, Notations]) that Rω is a Dedekind ring,
not principal in general. We have (see for instance [5, Eq. (14.2)]) that

(2.1) Rω X Oω “ Fq .

Lemma 2.1. For all elements a, b, c, d P Rω ´Fq such that ad´ bc “ 1 and
| a |ω ě | b |ω, we have | c |ω ě | d |ω.

Proof. The equality ad ´ bc “ 1 implies that ωpad ´ bcq “ 0. We have
ωpadq ă 0 and ωpbcq ă 0 since the only elements of Rω which have nonneg-
ative valuations are the elements in the ground field Fq by Equation (2.1).
Therefore ωpadq “ ωpbcq and

ωpcq ´ ωpdq “ ωpaq ´ ωpbq .

The left hand side is nonpositive, since the right hand side is. This proves
the result. □
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The (absolute) norm of a nonzero ideal I of the ring Rω is defined by
NpIq “ rRω : Is “ |Rω{I|. Dedekind’s zeta function ofK is (see for instance
[17, §7.8] or [25, §5])

ζKpsq “
ÿ

I

1

NpIqs

where the summation runs over the nonzero ideals I of Rω. By (for
instance) [25, §5], it is a rational function of q´s with simple poles at
s “ 0, s “ 1. In particular, when K “ FqpY q, then (see [25, Theo. 5.9] with
g “ 0)

(2.2) ζFqpY qp´1q “
1

pq ´ 1qpq2 ´ 1q
.

We denote by

R2
ω,prim “ tpa, bq P Rω

2 : aRω ` bRω “ Rωu

the set of primitive elements in the lattice Rω
2 in the plane Kω

2. Note that
since Rω is not always principal, not every point of Rω

2 is an Rω-multiple
of an element of R2

ω,prim.

For every v P Kω
2 ´ tp0, 0qu, we write v “ pxv, yvq, and define

(2.3) zv “

"

xv if |xv|ω ě | yv|ω
yv if |xv|ω ă | yv|ω

and z1
v “

"

yv if |xv|ω ě | yv|ω
xv if |xv|ω ă | yv|ω ,

as well as
(2.4)

}v}ω “ maxt|xv|ω, | yv|ωu, vK “ pyv,´xvq and qv “ π
logqω p}v}ωq
ω v .

We denote the unit sphere in the plane Kω
2 endowed with the supremum

norm } ¨ }ω by

S1ω “ tv P Kω
2 : }v}ω “ 1u .

Note that vK has the same norm as v and belongs to R2
ω,prim if v does,

and that S1ω “ t qv : v P Kω
2 ´ tp0, 0qu u. We think of qv as the direction

(or renormalisation) of v, it is a preferred element in the intersection of the
unit sphere S1ω with the vector line defined by v.

We denote by }µ} the total mass of any finite measure µ. We denote by
µKω the Haar measure of the (abelian) locally compact topological group
pKω,`q, normalised so that µKωpOωq “ 1. This measure scales as follows
under multiplication: for all λ, x P Kω, we have

(2.5) dµKωpλxq “ |λ|ω dµKωpxq .

We denote by µKω{Rω
the induced Haar measure on the compact additive

topological group Kω{Rω. Using the above scaling for the first equation



Effective equidistribution of lattice points 7

and [5, Lem. 14.4] for the second one, for every m P N, we have the equality

(2.6) µKωpπm
ω Oωq “ q´m

ω and }µKω{Rω
} “ qg´1 .

We endow Kω
2 with the product µKω b µKω of the Haar measures on

each factor. Note that the unit ball of Kω
2 is Oω

2, so that for every k P Z,
the measure of any ball in Kω

2 of radius qkω, which is of the form v`π´k
ω Oω

2

for some v P Kω
2, is equal to q2kω .

We denote by µS1ω the restriction to the compact-open subset S1ω of Kω
2

of the product measure. Since

(2.7) µKωpOˆ
ω q “ µKωpOω ´ πωOωq “ 1 ´ q´1

ω

by Equation (2.6), and since S1ω “ pOˆ
ω ˆ Oωq Y pOω ˆ Oˆ

ω q, the total mass
of µS1ω is

(2.8) }µS1ω} “ p1 ´ q´1
ω q ` p1 ´ q´1

ω q ´ p1 ´ q´1
ω q2 “

q2ω ´ 1

q2ω
.

2.2. The modular group. The aim of this section is to introduce the
various closed subgroups of the special linear group of the plane Kω

2 that
will be useful in order to transfer arithmetic information concerning lattice
points in Rω

2 into group-theoretic information. We will also discuss the
properties of their Haar measures.

Let G “ SL2pKωq, which is a totally disconnected locally compact topo-
logical group. The modular group Γ “ SL2pRωq is a non-uniform lattice in
G. When C “ P1 and ω “ ω8 as in the introduction, then up to finite
index, it is called Nagao’s lattice (see [22, 30]). For every nonzero ideal I
of Rω, we denote by Γ0rIs the Hecke congruence subgroup of Γ modulo I:

Γ0rIs “
␣`

a c
b d

˘

P Γ : b P I
(

.

By [5, Lem. 16.5], the index of Γ0rIs in Γ is

(2.9)
“

Γ : Γ0rIs
‰

“ NpIq
ź

p|I

´

1 `
1

Nppq

¯

.

where the product ranges over the prime factors p of the ideal I.
For every commutative ring S, we denote by M2pSq the S-module of

2 ˆ 2 matrices with coefficients in S. For every closed subgroup H of G,
we denote by HpOωq the compact-open subgroup H X M2pOωq of H, and
by µH the (left) Haar measure of H normalized so that

µHpHpOωqq “ 1 .

Note that G is unimodular. For every lattice Γ1 of G, we denote by µΓ1zG

the measure on Γ1zG induced by µG. By Exercice 2e) in [28, II.2.3] (which
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normalizes the Haar measure of G so that the mass of GpOωq is qω ´ 1),
the total mass of µΓzG is

(2.10) }µΓzG} “ ζKp´1q .

Let Z be the diagonal subgroup of G, let U´ and U` be its lower and
upper unipotent triangular subgroups, and let P´ “ U´Z be its lower
triangular Borel subgroup. We also consider the Cartan subgroup A “
␣` πn

ω 0

0 π´n
ω

˘

: n P Z
(

of G, whose centralizer in G is Z.

Since ApOωq “ tidu has measure one for the measure µA with the above
normalisation, the Haar measure µA on A is exactly the counting measure:

(2.11) µA “
ÿ

gPA

∆g .

The maps from Kω to U´ and U`, defined by α ÞÑ u´pαq “
`

1 0
α 1

˘

and

α ÞÑ u`pαq “
`

1 α
0 1

˘

respectively, are homeomorphisms (and even abelian
group isomorphisms). They send Oω to U˘pOωq, and the Haar measure of
pKω,`q to the Haar measure of U˘: namely, for (almost) all α P Kω, we
have

(2.12) dµU˘pu˘pαqq “ dµKωpαq .

Similarly, the map from the multiplicative group Kˆ
ω to the diagonal group

Z, defined by α ÞÑ
`

α 0
0 α´1

˘

, is a homeomorphism (and even an abelian

group isomorphism). It sends Oˆ
ω to ZpOωq, and the restriction to Kˆ

ω of
the Haar measure µKω to a multiple of the Haar measure of Z: namely, for
(almost) all α P Kˆ

ω , by Equation (2.7), we have

(2.13)
qω ´ 1

qω
dµZp

`

α 0
0 α´1

˘

q “ dµKωpαq .

Let

S1,7ω “
␣

v P S1ω : |xv|ω ě | yv|ω
(

“ Oˆ
ω ˆ Oω ,

which is a compact-open subset of the plane Kω
2. The map from S1,7ω to

P´pOωq defined by pα, βq ÞÑ p´pα, βq “
` α 0
β α´1

˘

is a homeomorphism.

Let us prove that it sends the restriction to S1,7ω of the measure µS1ω to a

multiple of the Haar measure of P´pOωq. First note that for (almost) every
α P Oˆ

ω and β P Oω, since |α|ω “ 1, the action by conjugation of
`

α 0
0 α´1

˘

on

U´pOωq, which satisfies
`

α 0
0 α´1

˘

u´pβq
`

α 0
0 α´1

˘´1
“ u´pα2βq, preserves the

Haar measure µU´pOωq by Equations (2.12) and (2.5). Hence the measure

dνpp´pα, βqq “ dµU´pOωqpu
´pβqq dµZpOωqp

`

α 0
0 α´1

˘

q is a Haar measure on

P´pOωq. Since µP´pOωq, µU´pOωq and µZpOωq are probability measures, we
have (this will be extended in Lemma 2.2)

dµP´pOωqpp
´pα, βqq “ dµU´pOωqpu

´pβqq dµZpOωqp
`

α 0
0 α´1

˘

q .



Effective equidistribution of lattice points 9

By Equations (2.12) and (2.13), we thus have, for (almost) every α P Oˆ
ω

and β P Oω

(2.14)

dµP´pOωqpp
´pα, βqq “

qω
qω ´ 1

dµKωpαq dµKωpβq “
qω

qω ´ 1
dµS1ωpα, βq .

We will need the following refined LU decomposition of elements of the
special linear group G. Let g “

` α γ
β δ

˘

P G with α ‰ 0. Then there are

unique elements u˘
g P U˘, mg P ZpOωq and ag P A such that

g “ u´
g mg ag u`

g .

Indeed, the existence of such a decomposition follows by taking

(2.15)

u´
g “

ˆ

1 0
β
α 1

˙

, u`
g “

ˆ

1 γ
α

0 1

˙

,

mg “

˜

απ
´ωpαq
ω 0

0 α´1π
ωpαq
ω

¸

, ag “

˜

π
ωpαq
ω 0

0 π
´ωpαq
ω

¸

.

In order to prove the uniqueness of this decomposition, if g “ u´ m a u`

where u˘ P U˘, m P ZpOωq and a P A is another such writing, then the
equality

pu´q´1 u´
g “ m a u`pmg ag u`

g q´1

between a unipotent lower triangular matrix and an upper triangular matrix
implies that u´ “ u´

g and that pm aq´1 mg ag “ u`p u`
g q´1. This last

equality between a diagonal matrix and a unipotent upper triangular matrix
gives u` “ u`

g and m a “ mg ag, which in turns give m “ mg and a “ ag
since A X ZpOωq “ tidu. We also consider

(2.16) pg “ u´
g mg “

˜

απ
´ωpαq
ω 0

βπ
´ωpαq
ω α´1π

ωpαq
ω

¸

P P´ .

Note that if ωpαq ď ωpβq, or equivalently if |α |ω ě |β |ω, then we have
pg P P´pOωq “ U´pOωqZpOωq, so that pg belongs to the maximal compact
subgroup GpOωq of G. In particular, the writing g “ pg ag u`

g is an Iwasawa
decomposition of g.

We conclude this section by providing the expression for the Haar mea-
sure of G in the refined LU decomposition. The composition map from the
product U´ ˆ ZpOωq ˆ A ˆ U` to G is an homeomorphism onto an open-
dense subset with full Haar measure in G, and the following result says
that the Haar measure of G is absolutely continuous with respect to the
product of the Haar measures of the factors. The main point of its proof is
to compute the Radon-Nikodym derivative. We denote by χ : Z Ñ Kˆ

ω the
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standard character
`

α´1 0
0 α

˘

ÞÑ α. It is well known (by the standard action
of a split torus on its root groups) that for all z P Z and α P Kω, we have

(2.17) z u´pαq z´1 “ u´pχpzq2 αq and z´1 u`pαq z “ u`pχpzq2 αq .

Lemma 2.2. For µG-almost every g P G, we have

dµGpgq “
qω

qω ` 1
|χpagq| ´2

ω dµU´pu´
g q dµZpOωqpmgq dµApagq dµU`pu`

g q .

Proof. By [20, §III.1], since G and U` are unimodular, there exists a con-
stant c1 ą 0 such that dµGpp´u`q “ c1 dµP´pp´q dµU`pu`q for (almost)
every p´ P P´ and u` P U`, using the product map P´ ˆ U` Ñ G. Note
that U´ is unimodular and that Z normalizes U´ as made precise in Equa-
tion (2.17). Hence there exists a constant c2 ą 0 such that, for (almost)
every u´ P U´ and z P Z, we have

|χpzq| ´2
ω dµU´pu´q dµZpzq “ c2 dµP´pu´zq .

This indeed follows by uniqueness from the fact that the left hand side
defines a left Haar measure on P´ using the product map pu´, zq ÞÑ u´z
from U´ ˆZ to P´ (which is an homeomorphism), by Equations (2.5) and
(2.12). Since Z “ ZpOωqA with A and ZpOωq abelian and commuting, this
proves that there exists a constant c3 ą 0 such that

(2.18) dµGpgq “ c3 |χpagq| ´2
ω dµU´pu´

g q dµZpOωqpmgq dµApagq dµU`pu`
g q .

In order to compute the constant c3, we evaluate the measures on both
sides on the compact-open subgroup

H “ t
` α γ
β δ

˘

P GpOωq : α, δ P 1 ` πωOω, β, γ P πωOωu .

This group, being the kernel of the reduction modulo πωOω, has index
| SL2pFqωq| “ qωpq2ω ´ 1q in GpOωq. Since µGpGpOωqq “ 1, the group H
has Haar measure µGpHq “ 1

qωpq2ω´1q
. By Equation (2.15), the refined LU

decomposition identifies H with the product space HU´ ˆ HZ ˆ HU` in
U´ ˆ Z ˆ U`, where

HU´ “ t
`

1 0
β 1

˘

: β P πωOωu, HZ “ t
`

α 0
0 α´1

˘

: α P 1 ` πωOωu,

HU` “ t
`

1 γ
0 1

˘

: γ P πωOωu .

These groups have index respectively qω,
ˇ

ˇOˆ
ω {p1`πωOωq

ˇ

ˇ “ |Fˆ
qω | “ qω ´1

and qω in U´pOωq, ZpOωq and U`pOωq. Hence the measure of H for the
measure on the right hand side of Equation (2.18) is equal to c3

q2ωpqω´1q
. This

implies that c3 “
qω

qω`1 , as wanted. □
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3. Primitive lattice points seen in the modular group

Recalling the relevant notation from Subsection 2.1, let K be a function
field over Fq, let ω be a (normalized discrete) valuation of K, let Kω be the
associated completion ofK, and letRω be the affine function ring associated
with ω. The aim of this section is to naturally associate elements in the
modular group Γ “ SL2pRωq to primitive lattice points in Rω

2.
We start by introducing subsets of the plane Kω

2 and of the group G “

SL2pKωq which will be technically useful. Let

G7 “
␣` α γ

β δ

˘

P G : |α |ω ě |β |ω
(

and Γ7 “ Γ X G7 ,

K2,7
ω “

␣

pa, bq P Kω
2 : | a |ω ě | b |ω

(

and R2,7
ω,prim “ R2

ω,prim X K2,7
ω .

We identify any element v “ px, yq P Kω
2 with the column matrix v “

`

x
y

˘

of its components, and thus write 2ˆ 2 matrices of elements of Kω as 1ˆ 2
matrices of elements of Kω

2. For all measurable subsets Θ of S1ω and D 1 of
Kω, and for every n P Z, let

P´
Θ “

␣ `

v1 w1
˘

P P´pOωq : v1 P Θ
(

,

An “
␣`

π´n
ω 0
0 πn

ω

˘(

Ă A,

U`
D 1 “

␣`

1 γ
0 1

˘

P U` : γ P D 1
(

.

By Lemma 2.2 and the various explicitations of Haar measures in Equations
(2.14), (2.11) and (2.12), we have

µGpP´
ΘAnU

`
D 1q “

qω
qω ` 1

qω
qω ´ 1

µS1ωpΘq
`

|πn
ω|ω

´2˘µKωpD 1q

“
q2n`2
ω

q2ω ´ 1
µS1ωpΘq µKωpD 1q .(3.1)

The following result gives a precise 1-to-1 correspondence between primi-

tive lattice points in R2,7
ω,prim and appropriate matrices in the modular group

Γ.

Proposition 3.1. Let D be a fixed (strict) fundamental domain for the
lattice Rω acting by translations on Kω. There exists a unique bijection

from R2,7
ω,prim to Γ7 X pP´ U`

D q of the form v ÞÑ γv “
`

v wv

˘

(where wv

will be defined in the following proof) such that for every n in Z, for all
measurable subsets Θ of S1ω and D 1 of D , and for every nonzero ideal I of
Rω, the following two assertions are equivalent:

(1) the lattice point v satisfies }v}ω “ qnω, yv P I, qv P Θ and xwv
xv

P D 1,

(2) the modular matrix γv belongs to the Hecke congruence subgroup Γ0rIs

and satisfies γv P P´
Θ An U`

D 1.
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Proof. Let v “ pa, bq P R2,7
ω,prim. In particular a ‰ 0 and }v}ω “ | a |ω. Let

us define

Sola,b “ tpx, yq P Rω
2 : ax ` by “ 1u ,

which is the set of solutions in Rω
2 to the equation ax ` by “ 1.

Given w0 “ px0, y0q P Sola,b, we claim that

Sola,b “ tw0 ` λ vK : λ P Rωu ,

where w ÞÑ wK is defined in Section 2.1. Indeed, we clearly have

tw0 ` λ vK : λ P Rωu Ă Sola,b .

Conversely, let px, yq P Sola,b be a solution different from px0, y0q. We have
apx ´ x0q “ bpy0 ´ yq. We may assume that b ‰ 0, since otherwise a P Rˆ

ω

and vK “ p0,´aq so that the result is clear. Then x ‰ x0 and y ‰ y0,
so that the nonzero principal ideal paq, being coprime with the principal
ideal pbq in the Dedekind ring Rω, divides the principal ideal generated by
y0 ´y, and y´y0 is a multiple of ´a, which implies that x´x0 is the same
multiple of b.

Let wv be the unique element of Rω
2 such that pwvqK is the unique

element of Sola,b with xwv
a P D . As xwv “ ´ ypwvqK , this is possible since,

by the above, the subset of Kω consisting of the elements ´
y
a , where y

varies over the second components of elements of Sola,b, is exactly one orbit
by translation under Rω (without repetition).

Let us define γv “
`

v wv

˘

“

ˆ

a xwv

b ywv

˙

. We have γv P Γ since pwvqK

belongs to Sola,b so that det γv “ 1. Furthermore, we have γv P Γ7 since

v P R2,7
ω,prim. Let g “ γv. By Equation (2.16), the first column of pg is

paπ
´ωpaq
ω , bπ

´ωpaq
ω q “ π

logqω |a|ω
ω v “ qv, so that pg P P´

Θ if and only if qv P Θ.

Since }v}ω “ | a |ω “ q
´ωpaq
ω and by Equation (2.15), we have ag P An if and

only if }v}ω “ qnω. Again by Equation (2.15), we have u`
g P U`

D 1 if and only

if xwv
xv

“
xwv
a P D 1.

The map v ÞÑ γv from R2,7
ω,prim to Γ7 is clearly injective. Its image is

Γ7 X pP´ U`
D q, since if

`

v w
˘

P Γ7 X pP´ U`
D q and v “ pa, bq, then v

belongs to R2,7
ω,prim and wK is an element of Sola,b such that by Equation

(2.15) we have ´
y
wK

a “ xw
a P D , hence w “ wv by uniqueness. We clearly

have yv “ b P I if and only if γv P Γ0rIs. This proves the result. □

4. Joint equidistribution of primitive lattice points

The aim of this section is to prove the main result of this paper, The-
orem 4.5, establishing the effective joint equidistribution of directions and
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renormalized solutions to the associated gcd equations for primitive lattice
points, generalizing Theorem 1.1 in the introduction to any function field.

The main tool for this result is an adaptation of two theorems of Gorod-
nik and Nevo [16], that we now state, after the necessary definitions.

Let G1 be an absolutely connected and simply connected semi-simple
algebraic group over Kω, which is almost Kω-simple. Let G1 “ G1pKωq be
the locally compact group of Kω-points of G1. Let Γ1 be a non-uniform1

lattice in G1, and let µG1 be any (left) Haar measure of G1. Note that
G1 “ G and Γ1 “ Γ0rIs satisfy these assumptions for every nonzero ideal I
of Rω.

Let ρ ą 0. Let pV 1
ϵ qϵą0 be a fundamental system of neighborhoods of the

identity in G1, which
‚ is symmetric (that is, x P V 1

ϵ if and only if x´1 P V 1
ϵ ),

‚ is nondecreasing with ϵ (that is, V 1
ϵ Ă V 1

ϵ1 if ϵ ď ϵ1), and
‚ has upper local dimension ρ, that is, there exist m1, ϵ1 ą 0 such that

µG1pV 1
ϵ q ě m1 ϵ

ρ for every ϵ P s0, ϵ1r .
Let C ě 0. Let pBnqnPN be a family of measurable subsets of G1. We

define

pBnq`ϵ “ V 1
ϵ BnV 1

ϵ “
ď

g,hPV 1
ϵ

gBnh and pBnq´ϵ “
č

g,hPV 1
ϵ

gBnh .

The family pBnqnPN is C-Lipschitz well-rounded with respect to pV 1
ϵ qϵą0 if

there exists ϵ0 ą 0 and n0 P N such that for all ϵ P s0, ϵ0r and n ě n0, we
have

µG1ppBnq`ϵq ď p1 ` C ϵq µG1ppBnq´ϵq .

Theorem 4.1. For every ρ ą 0, there exists τpΓ1q P s0, 1
2p1`ρq

s such that

for every C ě 0, for every symmetric nonincreasing fundamental system
pV 1

ϵ qϵą0 of neighborhoods of the identity in G1 with upper local dimension
ρ, for every family pBnqnPN of measurable subsets of G1 that is C-Lipschitz
well-rounded with respect to pV 1

ϵ qϵą0, and for every δ ą 0, we have that, as
n Ñ `8,

ˇ

ˇ

ˇ
CardpBn X Γ1q ´

1

}µΓ1zG1}
µG1pBnq

ˇ

ˇ

ˇ
“ O

`

µG1pBnq1´τpΓ1q`δ
˘

,

where the function Op¨q depends only on G1,Γ1, δ, C, pV 1
ϵ qϵą0, ρ.

Proof. The proof is a simple adaptation of a particular case of results of
Gorodnik-Nevo [16], which are phrased for algebraic number fields and not
for function fields.

By the assumptions on G1 and Γ1, and by [3, Theo. 2.8], the regular
representation π0 of G1 on L2

0pG1{Γ1q has a spectral gap. By [6] (see [3,
Theo. 2.7]), since π0 has a spectral gap, there exists p ě 2 such that π0

1This implies that G1 is isotropic over Kω , as part of the assumptions of [16].
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is strongly Lp (called Lp` in [16, Def. 3.1]). We do not know what is the
smallest such p. As in [16, Eq. (3.1)], let neppq “ 1 if p “ 2 and otherwise
let neppq “ r

p
2 s P N ´ t0, 1u. Since π0 is strongly Lp, by [16, Theo. 4.5], for

every measurable subset B of G1 with finite and positive Haar measure, if
β “ 1

µG1 pBq
pµG1q|B and π0pβq is the operator on L2

0pG1{Γ1q defined by

π0pβqfpxq “
1

µG1pBq

ż

B
fpg´1xq dµG1pgq

for all f P L2
0pG1{Γ1q and almost all x P G1{Γ1, then we have that, for every

η ą 0,

}π0pβq} “ OG1,Γ1,η

`

pµG1pBqq
´ 1

2neppq
`η˘

.

Actually, Theorem 4.5 of [16] is stated in characteristic zero. But its
proof has two ingredients, a spectral transfer principle, which is valid for
any locally compact second countable group by [6, Theo. 1], and a Kunze-
Stein phenomenon, which is valid even in positive characteristic by [29,
Theo. 1].

Now, by [16, Theo. 1.9] where a “ 1, which is valid for any locally
compact second countable group, and whose assumptions we just verified,
we have
ˇ

ˇ

ˇ

CardpBn X Γ1q

µG1pBnq
´

1

}µΓ1zG1}

ˇ

ˇ

ˇ
“ OG1,Γ1,C,ρ,pV 1

ϵ qϵą0

`

µG1pBnq
p´ 1

2neppq
`ηqp 1

ρ`1
q˘

.

Theorem 4.1 follows with τpΓ1q “ 1
2neppqpρ`1q

. □

The main result that will allow us to use Theorem 4.1 is the following
proposition. We will use, as a fundamental system of neighborhoods of the
identity element in G, a family of compact-open subgroups of GpOωq given
by the kernels of the morphisms of reduction modulo πn

ωOω for n P N. For
every ϵ ą 0, let Nϵ “

X

´ logqω ϵ
\

so that Nϵ ě 1 if and only if ϵ ď 1
qω
. Let

Vϵ “ GpOωq if ϵ ą 1
qω

and otherwise let

Vϵ “ kerpGpOωq Ñ GpOω{πNϵ
ω Oωqq

“

!

ˆ

1 ` πNϵ
ω α πNϵ

ω γ
πNϵ
ω β 1 ` πNϵ

ω δ

˙

P GpOωq : α, β, γ, δ P Oω

)

.

The family pVϵqϵą0 is indeed nondecreasing and we have
Ş

ϵą0 Vϵ “ tidu.
Note that for all ϵ1, . . . , ϵk ą 0, we have

mintNϵ1 , ¨ ¨ ¨ , Nϵku ě mint´ logqω ϵ1, ¨ ¨ ¨ ,´ logqω ϵku ´ 1

ě ´ logqωpϵ1 ` ¨ ¨ ¨ ` ϵkq ´ 1 ě Nqωpϵ1`¨¨¨`ϵkq ,

hence

(4.1) Vϵ1Vϵ2 ¨ ¨ ¨ Vϵk Ă Vqωpϵ1`¨¨¨`ϵkq .
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Proposition 4.2. For all metric balls Θ in S1ω and D 1 in Kω with radius
less than 1, the family

`

P´
Θ An U

`
D 1

˘

nPN is 0-Lipschitz well-rounded with
respect to pVϵqϵą0.

Proof. We will actually prove (as allowed by the ultrametric situation) the
stronger statement that given Θ and D 1 as above, if ϵ is small enough, then
for every n P N, we have

`

P´
ΘAn U

`
D 1

˘´ϵ
“ P´

ΘAn U
`
D 1 “

`

P´
ΘAn U

`
D 1

˘`ϵ
.

We start the proof by some elementary linear algebra considerations. For
every subgroup H of G, let V H

ϵ “ Vϵ X H. We endow M2pKωq with its
supremum norm } ¨ }ω defined, for every element X P M2pKωq ´ t0u, by
}X}ω “ maxt|Xi,j |ω : 1 ď i, j ď 2u P qZω . The unit ball of } ¨ }ω is M2pOωq.
We denote the operator norm of a linear operator ℓ of M2pKωq by

}ℓ}ω “ max
!

}ℓpXq}ω

}X}ω
: X P M2pKωq ´ t0u

)

P qZω Y t0u ,

so that ℓpM2pOωqq Ă M2pπ
´ logqω }ℓ}ω
ω Oωq. For every g P G, recall that Ad g

is the linear automorphism x ÞÑ gxg´1 of M2pKωq.

Lemma 4.3. For all ϵ ą 0 and g P G, we have

g Vϵ g
´1 Ă Vϵ }Ad g }ω , Vϵ “ V P´

ϵ V U`

ϵ and V P´

ϵ “ V U´

ϵ V Z
ϵ .

Furthermore, we have µGpVϵq ě
q 2
ω

q 2
ω´1

ϵ3 for every ϵ ą 0 small enough, so

that ρ “ 3 is an upper local dimension of the family pVϵqϵą0.

Proof. Let I2 be the identity element in G. The first claim follows from the
fact that

g Vϵ g
´1 “ I2 ` πNϵ

ω gM2pOωqg´1

Ă I2 ` π
Nϵ´logqω }Ad g }ω
ω M2pOωq “ Vϵ }Ad g }ω .

The second and third claims follow from the fact that by Equations (2.15)

and (2.16), if g P Vϵ then ag “ I2, u
˘
g P V U˘

ϵ and mg P V Z
ϵ .

Let us now apply Lemma 2.2 and the decomposition Vϵ “ V U´

ϵ V Z
ϵ V U`

ϵ :

µGpVϵq “
qω

qω ` 1
µU´pV U´

ϵ q µZpOωqpV
Z
ϵ q µU`pV U`

ϵ q .

By Equation (2.12) applied twice, by the left part of Equation (2.6), and
since Nϵ “ t´ logqω ϵ u, we have that for ϵ ď 1

qω
,

µGpVϵq “
qω

qω ` 1
µKωpπNϵ

ω Oωq
ˇ

ˇOˆ
ω {p1 ` πNϵ

ω Oωq
ˇ

ˇ

´1
µKωpπNϵ

ω Oωq

“
qω

qω ` 1

1

pqω ´ 1q qNϵ´1
ω

q´2Nϵ
ω ě

q 2
ω

q 2
ω ´ 1

ϵ3 .
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This proves the final claim of Lemma 4.3. □

The main ingredient in the proof of Proposition 4.2 is the following ef-
fective refined LU decomposition.

Lemma 4.4. With c : G Ñ s0,`8r the continuous function defined by
h ÞÑ }Adh }ω, for every g P G with |χpagq|ω ď 1, we have

Vϵ g Vϵ Ă p´
g V P´

qωpcpp´
g q`cpu`

g qqϵ
ag V U`

qωpcpp´
g q`2cpu`

g qqϵ
u`
g .

Proof. In order to simplify notation, let a “ ag, p “ p´
g and u “ u`

g , so that
g “ p a u. For every h P G, let ch “ }Adh }ω. In the following sequence of
equalities and inclusions, we use

‚ the first claim of Lemma 4.3, for the first inclusion,
‚ the second claim of Lemma 4.3, for the second equality,
‚ the fact that

aV P´

cuϵ “ aV U´

cuϵ V Z
cuϵ Ă V U´

cuϵ aV Z
cuϵ “ V P´

cuϵ a Ă Vcuϵ a

by the third claim of Lemma 4.3, by the left hand side of Equation (2.17)
with χpaq P Oω and since a and Z commute, for the second inclusion,

‚ the facts that Vcuϵ is a normal subgroup ofGpOωq and that the inclusion

V U`

cpϵ Ă GpOωq holds, for the third equality,
‚ again the second claim of Lemma 4.3, and the right hand side of

Equation (2.17) with χpaq P Oω, for the last inclusion.
We thus have

Vϵ g Vϵ “ p p´1Vϵ p a uVϵ u
´1u Ă pVcpϵ aVcuϵ u

“ pV P´

cpϵ V U`

cpϵ aV P´

cuϵ V U`

cuϵ u Ă pV P´

cpϵ V U`

cpϵ Vcuϵ aV U`

cuϵ u

“ pV P´

cpϵ Vcuϵ V U`

cpϵ aV U`

cuϵ u Ă pV P´

cpϵ V P´

cuϵ aV U`

cuϵ V U`

cpϵ V U`

cuϵ u .

Lemma 4.4 now follows from Equation (4.1). □

Now, in order to prove Proposition 4.2, we write Θ “ v0 ` πm
ω Oω

2 and

D 1 “ x0 ` πm1

ω Oω, for some m,m1 P N ´ t0u, x0 P Kω and v0 P S1ω. Let

c “ maxtqωpcppq ` 2cpuqq : p P P´
Θ , u P U`

D 1u ,

which is finite since P´
Θ and U`

D 1 are compact. Let ϵ0 “ 1
c q

´m1´m
ω ą 0, so

that we have Ncϵ ą maxtm,m1u ě 1 if ϵ ă ϵ0.
Let us fix ϵ P s0, ϵ0r. We claim that

(4.2) P´
Θ V P´

cϵ “ P´
Θ and V U`

cϵ U`
D 1 “ U`

D 1 .
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Indeed, the inclusion of the right hand sides into the left hand sides of these

equalities are immediate. If p P P´
Θ and p1 P V P´

cϵ , we may write

p “

ˆ

xv0 ` πm
ω α 0

yv0 ` πm
ω β pxv0 ` πm

ω αq´1

˙

and p1 “

ˆ

1 ` πNcϵ
ω α1 0

πNcϵ
ω β1 p1 ` πNcϵ

ω α1q´1

˙

for some α, β, α1, β1 P Oω, so that

p p1 “

ˆ

xv0 ` πm
ω α ` πNcϵ

ω α2 0
yv0 ` πm

ω β ` πNcϵ
ω β2 pxv0 ` πm

ω α ` πNcϵ
ω α2q´1

˙

for some α2, β2 P Oω (since xv0 , yv0 P Oω). The first claim of Equation (4.2)

then follows from the fact that Ncϵ ą m. The inclusion V U`

cϵ U`
D 1 Ă U`

D 1

follows from a similar and even easier computation.
Now for every n P N, we have by Lemma 4.4 and Equation (4.2) that
`

P´
ΘAn U

`
D 1

˘`ϵ
“ Vϵ P

´
ΘAn U

`
D 1Vϵ Ă P´

Θ V P´

cϵ An V U`

cϵ U`
D 1 “ P´

ΘAn U
`
D 1 .

Since the converse inclusion is immediate, we have
`

P´
ΘAn U

`
D 1

˘`ϵ
“ P´

ΘAn U
`
D 1 .

Since Vϵ is symmetric, this implies that g P´
ΘAn U

`
D 1 h Ą P´

ΘAn U
`
D 1 for all

g, h P Vϵ so that
`

P´
ΘAn U

`
D 1

˘´ϵ
Ą P´

ΘAn U
`
D 1 . Since the converse inclusion

is immediate, this concludes the proof of Proposition 4.2. □

The main result of this paper is the following one. Recall that zv, z
1
v and

qv for v in Kω
2 ´ tp0, 0qu have been defined in Equations (2.3) and (2.4).

If v “ pa, bq P R2
ω,prim, we denote by wv any element of R2

ω,prim such that

pwvqK “ px, yq is a solution to the equation ax ` by “ 1. As seen in the
proof of Proposition 3.1 if | a |ω ě | b |ω, and by symmetry otherwise, the
class zwv

zv
`Rω of zwv

zv
in the quotient Kω{Rω does not depend on the choice

of wv. For every nonzero ideal I of Rω, let

(4.3) cI “
pq 2

ω ´ 1q ζKp´1qNpIq
ś

p|I

`

1 ` 1
Nppq

˘

q2ω

Theorem 4.5. For every nonzero ideal I of Rω, for the weak-star conver-
gence on the compact space S1ω ˆ pKω{Rωq, we have, as n Ñ `8,

cI q´2n
ω

ÿ

vPR2
ω,prim : }v}ω“qnω , z

1
vPI

∆
qv b ∆ zwv

zv
`Rω

˚
á µS1ω b µKω{Rω

.

Furthermore, there exists τ P s0, 18 s such that for all ϵ, δ ą 0, there is
a multiplicative error term in the above equidistribution claim of the form
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1 ` Oω,δ,I

`

q
2np´τ`δq
ω }f}ϵ }g}ϵ

˘

when evaluated on pf, gq for all ϵ-locally con-

stant maps f : S1ω Ñ R and g : Kω{Rω Ñ R:

cI q´2n
ω

ÿ

vPR2
ω,prim : }v}ω“qnω , z

1
vPI

fp qv q g
`zwv

zv
` Rω

˘

“

´

ż

S1ω
f dµS1ω

¯´

ż

Kω{Rω

g dµKω{Rω

¯´

1 ` Oω,δ,I

`

q2np´τ`δq
ω }f}ϵ }g}ϵ

˘

¯

.

When C “ P1, ω “ ω8 and I “ Rω8 , we recover Theorem 1.1 in the
introduction by using Equations (4.3), (2.9) and (2.2), as well as the fact
that qω “ q. Note that up to changing the constant cI , the same result
holds when v ranges over the elements in R2

ω,prim with }v}ω ď qnω rather

than }v}ω “ qnω and z1
v P I. But as said in the introduction, ranging on

spheres rather than balls gives much stronger result, in fit adequation with
the number theoretic results on Linnik’s problem. Also note that in the
statement of Theorem 4.5, the measures µS1ω and µKω{Rω

are not normalized
to be probability measures, see Equations (2.8) and (2.6) if a normalization
is useful, as for instance in Corollary 4.6.

Given a nonzero (possibly nonprincipal) ideal J of Rω, an effective joint
equidistribution result similar to the one of Theorem 4.5 is possible when
the elements v “ pa, bq P Rω

2 are not assumed to be primitive, but instead
to satisfy the property that a and b generate the ideal J .

Proof. Let I be a nonzero ideal of Rω. Let τ “ τpΓ0rIsq P s0, 18 s be as in
Theorem 4.1 applied with G1 “ G and Γ1 “ Γ0rIs, and with pV 1

ϵ qϵą0 “

pVϵqϵą0 which has upper local dimension ρ “ 3 according to the final claim
of Lemma 4.3. Let δ P s0, τ s. Fix a compact-open strict fundamental
domain D for the action by translations of Rω on Kω, such that for all
x0 P D and m1 P N ´ t0u, we have Bpx0, q

´m1

ω q “ x0 ` πm1

ω Oω Ă D . This is
possible since Rω XπωOω “ t0u by Equation (2.1). Note that for all v0 P S1ω
(respectively v0 P S1,7ω ) and m P N´ t0u, the ball Bpv0, q

´m
ω q “ v0 `πm

ω Oω
2

is contained in S1ω (respectively S1,7ω ).
Let us prove that for all m,m1 P N ´ t0u, x0 P D and v0 P S1ω, if

Θ “ v0 ` πm
ω Oω

2 and D 1 “ x0 ` πm1

ω Oω, then, as n Ñ `8

Card
␣

v P R2
ω,prim : }v}ω “ qnω, z

1
v P I, qv P Θ,

zwv

zv
P D 1

(

“
1

cI
q2nω µS1ωpΘq µKωpD 1q

`

1 ` Oω,δ,I

`

q2np´τ`δq
ω qm`m1

ω

˘˘

.(4.4)

Since the characteristic functions 1Θ and 1D 1 of Θ and D 1 are respectively
q´m
ω - and q´m1

ω -locally constant, and by a finite additivity argument, this
proves Theorem 4.5.
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We first claim that in order to prove the counting result of elements
in R2

ω,prim stated in Equation (4.4), we only have to prove an analogous

counting result of elements in R2,7
ω,prim, namely that for all m,m1 P N ´ t0u,

for all x0 P D and v0 P S1,7ω , if Θ “ v0 `πm
ω Oω

2 and D 1 “ x0 `πm1

ω Oω, then,
as n Ñ `8

Card
␣

v P R2,7
ω,prim : }v}ω “ qnω, yv P I, qv P Θ,

xwv

xv
P D 1

(

“
1

cI
q2nω µS1ωpΘq µKωpD 1q

`

1 ` Oω,δ,I

`

q2np´τ`δq
ω qm`m1

ω

˘˘

.(4.5)

Indeed, by Lemma 2.1 and Equation (2.3), since det
`

v wv

˘

“ 1, we have
zwv
zv

“
xwv
xv

when v belongs to R2,7
ω,prim except finitely many of them. The

involutive linear map ι “
`

0 1
1 0

˘

of exchange of coordinates

‚ preserves the subsets R2
ω,prim and S1ω of the plane Kω

2,

‚ sends the compact-open set S1ω ´ S1,7ω into S1,7ω ,

‚ sends an element v in R2
ω,prim ´ R2,7

ω,prim to the element ιpvq in R2,7
ω,prim

such that z1
v “ zιpvq “ yιpvq and zwv

zv
“

xwιpvq

xιpvq
again by Lemma 2.1 and

Equation (2.3), and
‚ sends v0 ` πm

ω Oω
2 to ιpv0q ` πm

ω Oω
2.

Hence Equation (4.4) follows from Equation (4.5).

Now according to Proposition 4.2, the family
`

P´
Θ An U

`
D 1

˘

nPN is 0-Lip-
schitz well-rounded in G with respect to pVϵqϵą0. Note that

Γ X pP´
Θ An U

`
D 1q “ Γ7 X pP´

Θ An U
`
D 1q

since Θ is contained in S1,7ω . In the following sequence of equalities, we use
respectively

‚ Proposition 3.1,
‚ Theorem 4.1 applied with G1 “ G, Γ1 “ Γ0rIs and pBnqnPN “

pP´
Θ An U

`
D 1qnPN,

‚ Equation (3.1),
‚ the fact that Θ is a metric ball of radius q´m

ω in the plane Kω
2 and

D 1 a metric ball of radius q´m1

ω in the line Kω.
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We thus have

Card
␣

v P R2,7
ω,prim : }v}ω “ qnω, yv P I, qv P Θ,

xwv

xv
P D 1

(

“ Card
`

Γ0rIs X pP´
Θ An U

`
D 1q

˘

“
µGpP´

Θ An U
`
D 1q

}µΓ0rIszG}
` Oω,δ,I

``

µGpP´
Θ An U

`
D 1q

˘1´τ`δ˘

“
q2n`2
ω

pq 2
ω ´ 1q }µΓ0rIszG}

µS1ωpΘq µKωpD 1q

` Oω,δ,I

``

q2nω µS1ωpΘq µKωpD 1q
˘1´τ`δ˘

“
q2n`2
ω

pq 2
ω ´ 1q }µΓ0rIszG}

µS1ωpΘq µKωpD 1q

ˆ
`

1 ` Oω,δ,I

`

q2np´τ`δq
ω q2mpτ´δq

ω qm
1pτ´δq

ω

˘˘

.

Since by Equations (2.10) and (2.9) we have

}µΓ0rIszG} “ }µΓzG} rΓ : Γ0rIs s “ ζKp´1qNpIq
ź

p|I

`

1 `
1

Nppq

˘

and since τ ď 1
8 (so that 2mpτ ´ δq ď m and m1pτ ´ δq ď m1 ), this proves

Equation (4.5) and completes the proof of Theorem 4.5. □

We conclude this section by stating a counting result, which follows from
the equidistribution claim of Theorem 4.5 by integrating on the pairs of con-
stant functions with value 1 on S1ω and on Kω{Rω, and by using Equations
(2.8) and (2.6).

Corollary 4.6. There exists τ P s0, 18 s such that for every δ ą 0, we have

Card tv P R2
ω,prim : }v}ω “ qnω, z

1
v P Iu

“
qg´1

ζKp´1q NpIq
ś

p|I

`

1 ` 1
Nppq

˘ q2nω ` Oδ,I

`

q2np1´τ`δq
ω

˘

.

5. Application to the distribution of continued fraction
expansions

In this section, we assume that C “ P1 and ω “ ω8, so that the notation
in Section 2.1 coincides with the notation of the introduction: K “ FqpY q,

Rω8 “ R “ FqrY s, Kω8 “ pK “ FqppY ´1qq, Oω8 “ O “ FqrrY ´1ss and
| ¨ |ω8 “ | ¨ |.

Let us recall elementary facts on the continued fraction expansions in pK,
similar to the ones in R, see for instance the surveys [21, 26], and [23] for

a geometric interpretation. Any element f P pK may be uniquely written
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f “ rf s ` tfu with rf s P R (called the integral part of f) and tfu P Y ´1O
(called the fractional part of f). The Artin map Ψ : Y ´1O ´t0u Ñ Y ´1O is
defined by f ÞÑ

␣

1
f

(

. Any f P K ´R has a unique finite continued fraction
expansion

f “ a0 `
1

a1 `
1

a2 `
1

¨ ¨ ¨ `
1

an

,

with a0 “ rf s P R and ai “
“

1
Ψi´1pf´a0q

‰

a nonconstant polynomial for

1 ď i ď n (called the coefficients of the continued fraction expansion of f),
where n P N ´ t0u is such that Ψnpf ´ a0q “ 0.

Two finite sequences of polynomials pPiq´1ďiďn and pQiq´1ďiďn in R are
defined inductively as follows

P´1 “ 1 P0 “ a0, Pi “ Pi´1ai ` Pi´2

Q´1 “ 0 Q0 “ 1, Qi “ Qi´1ai ` Qi´2

for 1 ď i ď n. The elements Pi{Qi for 0 ď i ď n ´ 1 are called the
convergents of f , and Pn{Qn “ f . The convergents have the following
characterisation (see for instance [26, p. 140]): for all P,Q P R such that
degQ ă degQn

(5.1) if |f ´ P {Q| ă
1

|Q|2
then P {Q is a convergent.

For 0 ď i ď n ´ 1, we have

(5.2)
ˇ

ˇ

ˇ
f ´

Pi

Qi

ˇ

ˇ

ˇ
“

1

|Qi| |Qi`1|

by for instance [26, Eq. (1.12)]), and

(5.3) Qi`1Pi ´ Pi`1Qi “ p´1qi`1 .

Since deg ai ě 1 if i ě 1, we have degQi ą degQi´1 for 1 ď i ď n. If
f P Y ´1O, then a0 “ 0 and Pi{Qi P Y ´1O, or equivalently |Pi| ă |Qi|, for
1 ď i ď n.

The following result relates the shortest solutions to an equation of the
form ax ` by “ 1 with the continued fraction expansion of a{b.

Lemma 5.1. Let a, b P R ´ t0u be two coprime polynomials such that
a{b P Y ´1O. Let pPi{Qiq0ďiďn be the sequence of convergents of a{b.
Then there exists a unique λ P Fˆ

q such that pa, bq “ pλPn, λQnq, and

p´p´1qnλ´1Qn´1, p´1qnλ´1 Pn´1q is the unique shortest solution to the
equation ax ` by “ 1.
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Note that this result implies that for all a, b P R ´ t0u, the equation
ax` by “ 1 has one and only one shortest solution, up to exchanging a and
b if |a| ą |b| and to replacing pa, bq by pa ´ λ1b, bq for the unique λ1 P Fˆ

q

such that degpa ´ λ1bq ă deg b if |a| “ |b|.

Proof. We may assume that a R Fˆ
q , otherwise the result is immediate with

λ “ a since a0 “ 0, a1 “ a´1b, n “ 1, P0 “ 0, Q0 “ 1, P1 “ 1 and
Q1 “ a´1b.

Since Pn and Qn are coprime polynomials by Equation (5.3) and since
Pn{Qn “ a{b, there exists λ P Fˆ

q such that a “ λPn and b “ λQn. Let

ra “ a
p´1qnλ and rb “ a

p´1qnλ . Let Solra,rb “ tpx, yq P R2 : ra x `rb y “ 1u.

We have ra “ p´1qnPn and rb “ p´1qnQn. Again by Equation (5.3), this
implies that p´Qn´1, Pn´1q P Sol

ra,rb
.

Let prx0, ry0q be another element of Sol
ra,rb

. Since we have |ra | ă |rb |, it

follows from Lemma 2.1 that |rx0| ě |ry0|, so that }prx0, ry0q}8 “ |rx0|. We
have }p´Qn´1, Pn´1q}8 “ |Qn´1| since Pn´1{Qn´1 P Y ´1O. In order to
prove that p´Qn´1, Pn´1q is the unique shortest element of Sol

ra,rb
, let us

assume that |rx0| ď |Qn´1|, and prove that prx0, ry0q “ p´Qn´1, Pn´1q.
Since |rx0| ď |Qn´1| ă |Qn|, we have

ˇ

ˇ

ˇ

ry0
´rx0

´
Pn

Qn

ˇ

ˇ

ˇ
“

1

|rx0| |Qn|
ă

1

| ´ rx0|2
.

Hence by Equation (5.1), ry0
´rx0

is a convergent of Pn
Qn

, that is, there exists

i P t0, . . . , n´ 1u such that ry0
´rx0

“
Pi
Qi

. This implies in particular that there

exists λ1 P Fˆ
q such that pry0,´rx0q “ pλ1Pi, λ

1Qiq. Using Equation (5.2) for
the last equality, we have

1

|Qi| |Qn|
“

1

|rx0| |Qn|
“

ˇ

ˇ

ˇ

ry0
´rx0

´
Pn

Qn

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

Pi

Qi
´

Pn

Qn

ˇ

ˇ

ˇ
“

1

|Qi| |Qi`1|
.

Since |Qi`1| ă |Qn| if i ă n ´ 1, this implies that i “ n ´ 1. Since
prx0, ry0q belongs to Sol

ra,rb
and by Equation (5.3), we have λ1 “ 1. Hence

pry0,´rx0q “ pPn´1, Qn´1q as wanted.
Since the pair px0, y0q is a solution to the equation ax`by “ 1 if and only

if the pair pp´1qnλx0, p´1qnλ y0q is a solution to the equation ra x`rb y “ 1,
the result follows. □

The following result is an analogue in the field of formal Laurent series
to the main result of [7] in the real field. It gives an application of Theorem
1.1 to the distribution properties of the continued fraction expansions of

elements of K. For every v “ pa, bq P R2
prim, we denote by

´

Pipvq

Qipvq

¯

´1ďiďnv

the sequence of convergents of a
b and by λv P Fˆ

q the unique element such
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that v “ pλvPnvpvq, λvQnvpvqq. We denote by µY ´1O the Haar measure of
the compact additive group Y ´1O, normalized to be a probability measure.

Corollary 5.2. Let P˚ “
śk

i“1 πi be a nonzero polynomial in the Euclidean

ring R, with prime factors π1, . . . , πk. Let cP˚
“

q1`degP˚
śk

i“1

`

1´ 1

qdeg πi

˘

pq´1q2
.

For the weak-star convergence of measures on Y ´1O, we have, as n Ñ `8,

cP˚
q´2n

ÿ

v“pP,QqPR2
prim : degP ădegQ“n, P˚ |P

∆ p´1qnvQnv´1pvq

λ2v Qnv pvq

˚
á µY ´1O .

Furthermore, there exists τ P s0, 18 s such that for all ϵ, δ ą 0, there is
a mutiplicative error term in the above equidistribution claim of the form
1 ` Oδ, P˚

pq2np´τ`δq }g}ϵq when evaluated on g for every ϵ-locally constant
map g : Y ´1O Ñ R.

Proof. The result follows by applying the joint equidistribution Theorem

4.5 with C “ P1, ω “ ω8 and I “ P˚R (so that cI “
qdegP˚

śk
i“1

`

1´ 1

qdeg πi

˘

q2pq´1q

by Equations (4.3) and (2.2)) to the characteristic function of the set

S1
8 ´ S1,7

8 “ tpx, yq P pK 2 : |x| ă |y| “ 1u

on the left factor, using the following remarks.

‚ Let v “ pa, bq P R2
prim be such that |a| ă |b| (or equivalently such

that qv P S1
8 ´ S1,7

8 ), and let pPi{Qiq´1ďiďnv be the sequence of convergents
of a{b. Lemma 5.1 (actually Equation (5.3) is sufficient) says that we may
take wv “ p´p´1qnvλ´1

v Pnv´1,´p´1qnvλ´1
v Qnv´1q. Since |Pi| ă |Qi| for

0 ď i ď nv, we have

zwv

zv
“

ywv

yv
“

´p´1qnvλ´1
v Qnv´1

λvQnv

“
´p´1qnvQnv´1

λ2
vQnv

.

‚ The map from Y ´1O to pK{R defined by f ÞÑ f`R is a homeomorphism
and an isomorphism of additive groups, which maps the probability measure
µY ´1O to q µ

pK{R
, since µ

pK{R
has total mass 1

q by Equation (2.6).

‚ The map from Y ´1O to itself defined by f ÞÑ ´f is an homeomorphism
preserving µY ´1O .

‚ We have µS1
8

pS1
8 ´ S1,7

8 q “ µ
pK

b µ
pK

pY ´1O ˆ Oˆq “ 1
q p1 ´ 1

q q “
q´1
q2

,

so that

µS1
8

pS1
8 ´ S1,7

8 q dµ
pK{R

p´f ` Rq “
q ´ 1

q3
dµY ´1Opfq

for (almost) every f P Y ´1O. □
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Remark. A change of variable (by multiplication by an appropriate
element of Fˆ

q , which preserves the measures) in the finitely many clopen

subsets of v P S1
8 ´ S1,7

8 such that the data pnv mod 2, λvq, varying in the
finite set pZ{2Zq ˆ Fˆ

q , is constant, allows to prove that

cP˚
q´2n

ÿ

v“pP,QqPR2
prim : degP ădegQ“n, P˚ |P

∆Qnv´1pvq

Qnv pvq

˚
á µY ´1O .
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