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Abstract

We study the correlations of pairs of complex logarithms of Z-lattice points in
C at various scalings, proving the existence of pair correlation functions. We prove
that at the linear scaling, the pair correlations exhibit level repulsion, as it sometimes
occurs in statistical physics. We prove total loss of mass phenomena at superlinear
scalings, and Poissonian behaviour at sublinear scalings. The case of Euler weights has
applications to the pair correlation of the lengths of common perpendicular geodesic
arcs from the maximal Margulis cusp neighborhood to itself in the Bianchi orbifold
PSL2pZrisqzH3

R.
1

1 Introduction

When studying the asymptotic distribution of a sequence of finite subsets of R, finer
information is sometimes given by the statistics of the spacing (or gaps) between pairs
or k-tuples of elements, seen at an appropriate scaling. These problems often arise in
quantum chaos, including energy level spacings or clusterings, and in statistical physics,
including molecular repulsion or interstitial distribution. See for instance [Mon, Ber, RS,
BocZ, MaS, LS, HoK, PP3]. This paper may be seen as a complex version of our paper
[PP2] where we study the pair correlation of logarithms of pairs of natural integers, though
new phenomena occur, including the necessity to take limits of the underlying spaces, as
we now explain.

The general setting for our study may be described as follows. Let E be an abelian
locally compact group. Let A “ pAN , ωN qNPN be a sequence of finite subsets AN of
E, endowed with a weight function ωN : AN Ñ s 0,`8r (or multiplicity function when
its values are positive integers). When studying the asymptotic distribution of differences
of elements of AN , looking at them at various scalings is often desirable. As explained
by Gromov (see for instance [Gro1]), scaling a metric space sometimes requires to change
the space, especially at the limit (unless this space has a nice family of homotheties, as
the Euclidean space Rn does). We thus introduce a sequence pEN qNPN of abelian locally
compact groups converging for the pointed Hausdorff-Gromov convergence to an abelian
locally compact group E8 (see for instance [Gro2]). Let HaarE8 be a Haar measure on E8.
Let ψ : N ÞÑ ψpNq be a scaling function, that is, for every N P Nrt0u, let ψpNq : E Ñ EN
be any map, typically a dilating homeomorphism for appropriate distances, that we think
of as “scaling” the space E. Let ψ1 : Nrt0u Ñ r1,`8r be an appropriately chosen function,

1Keywords: pair correlation, lattice point counting, complex logarithm, level repulsion, Euler function,
imaginary quadratic number field. AMS codes: 11K38, 11J83, 11N37, 53C22.
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called a renormalising function. The pair correlation measure of A at time N with scaling
ψpNq is the measure on EN with finite support

RA ,ψ
N “

ÿ

x,yPAN ,x‰y

ωN pxqωN pyq∆ψpNqpy´xq , (1)

where ∆z denotes the unit Dirac mass at z in any measurable space. When the se-
quence of measures pRA ,ψ

N qNPN, renormalized by ψ1pNq, converges (see Section 3 for back-
ground definitions) for the pointed Hausdorff-Gromov weak-star convergence to a measure
gA ,ψ HaarE8 absolutely continuous with respect to HaarE8 , the Radon-Nikodym deriva-
tive gA ,ψ is called the asymptotic pair correlation function of A for the scaling ψ and
renormalisation ψ1. When gA ,ψ is a positive constant, we say that A has a Poissonian
behaviour for the scaling ψ and renormalisation ψ1. When gA ,ψ vanishes on a neighbour-
hood of 0 in E8 but is not the constant 0-function, we say that the pair pA , ψq exhibits a
strong level repulsion. The standard level repulsion only requires gA ,ψ to vanish at 0.

Recall that a Z-lattice in C is a discrete (free abelian) subgroup of pC,`q generating
C as an R-vector space. Let Λ be a Z-grid in C (or an affine (Euclidean) lattice in the
terminology of [MaS, EBMV]), that is, a translate Λ “ a ` ~Λ of a Z-lattice ~Λ in the
Euclidean space C for some a P C (well defined modulo ~Λ), see for instance [AES]. We
denote by covol~Λ “ VolpC{~Λq the area of a fundamental parallelogram for ~Λ. We denote
by

Sys~Λ “ min
 

|z| : z P ~Λ r t0u
(

ą 0

the systole of the Z-lattice ~Λ. Recall that the complex logarithm is an isomorphism of
abelian topological groups log : Cˆ Ñ E “ C{p2πiZq. Given N P N r t0u and a function
ψ : N r t0u Ñ s0,`8r, we again denote by ψpNq the scaling map from E to EN “

C{p2πiψpNqZq defined by z mod 2πiZ ÞÑ ψpNqz mod 2πiψpNqZ. In Sections 2 and 3, we
study the pair correlations of the family of the complex logarithms of grid points

LΛ “
`

LΛ
N “ tlog z : z P Λ, 0 ă |z| ď Nu, ωN “ 1

˘

NPN

without multiplicities.
In order to simplify the statements in this introduction, we only consider power scalings

ψ : N ÞÑ Nα for α ě 0, and we denote them by idα. We use the notation LebA for the
Lebesgue measures on A “ C and A “ C{p2πiZq.

Theorem 1.1 Let α ě 0 and let Λ be a Z-grid. As N Ñ `8, the normalized pair
correlation measures 1

N4´2α R LΛ, id
α

N on the cylinder EN “ C{p2πiNαZq converge for the
pointed Hausdorff-Gromov weak-star convergence to the measure gLΛ, id

α LebE8 on E8 “
C{p2πiZq if α “ 0 and E8 “ C otherwise, with pair correlation function given by

gLΛ, id
α : z ÞÑ

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

π
2 covol~Λ

e´2 |Re z| if α “ 0,

π
2 covol2~Λ

if 0 ă α ă 1,

1
covol~Λ |z|

4

ř

pP~Λ : |p|ď|z|

|p|2 if α “ 1,

0 if α ą 1 .

The convergence is uniform on Λ varying in any given compact subset of the set of Z-grids
of C endowed with the Chabauty topology.

2



The renormalisation by 1
N4´2α in Theorem 1.1 is naturally chosen in order for the pair

correlation function to be finite. We refer to Theorems 2.2 and 3.1 for more complete
versions of Theorem 1.1, with more general scaling functions, as well as for error terms.
These error terms, as well as the ones in Theorems 5.1 and 6.1, constitute the main technical
parts of this paper.

A standard scaling function in dimension n is the inverse of the n-th root of the average
volume gap, which is the quotient of the volume of the ball of smallest radius containing
FN by the number of elements in FN . See for instance [Mon, RS, BocZ, LS, HoK], though
these references are in dimension n “ 1. For the family LΛ, this average volume gap is
equivalent to plnNq2

N2 , up to a positive multiplicative constant. As we shall see in Theorem
3.1, the corresponding scaling function ψ : N ÞÑ N

lnN gives, as for ψ : N ÞÑ Nα for
0 ă α ă 1 in the above theorem, a Poissonian behaviour (see also [Van, EBMV] for a
similar behaviour).

There is a phase transition from a Poissonian behaviour when 0 ă α ă 1 to a total loss
of mass when α ą 1. In fact, the support of the measure itself converges to infinity for
α ą 1. The transition occurs at the linear scaling (when α “ 1 in Theorem 1.1), where an
exotic pair correlation function gLΛ, id

1 appears, which has a discontinuity along every circle

(centered at 0) through a grid point. Since gLΛ, id
1pzq vanishes when z P

˝

Bp0,Sys~Λq, the
pair pLΛ, id1q exhibits a strong level repulsion. Hence gLΛ, id

1 has near z “ 0 a behaviour
similar to the case α ą 1. Note that gLΛ, id

1pzq converges to π
2 covol2~Λ

when z goes to 8,

corresponding to the Poissonian behaviour of 0 ă α ă 1, see Lemma 2.1 with k “ 2.
The figure below gives the graph of the pair correlation function gLΛ, ψ of LΛ for the

Z-grid (which is a Z-lattice) Λ “ ~Λ “ Zris of the Gaussian integers at the linear scaling
ψ “ id1 : N ÞÑ N in the ball of center 0 and radius 5. The blue lines on the bounding
box represent the limit π

2 covol2~Λ
“ π

2 at `8 of gLΛ, ψ. We refer to the end of Section 3 for

further illustrations, also in the case of the Eisenstein integers.

We now give some existence results of pair correlation functions of logarithms of lattice
points with weights, restricting to integral lattices with an arithmetic weight motivated by

3



geometric applications. Let K be an imaginary quadratic number field K, with discrim-
inant DK , whose ring of integers OK is principal. We fix a nonzero ideal Λ in OK , and
we denote by ϕK : OK r t0u Ñ N the Euler function a ÞÑ Card

`

pOK{aOKq
ˆ
˘

of K. In
the products below, p runs over the prime ideals of OK . The following result describes the
asymptotic behaviour of the pair correlation measures associated with the family

L ϕK
Λ “

`

LΛ
N “ tlog z : z P Λ, 0 ă |z| ď Nu, ωN “ ϕK ˝ exp

˘

NPN . (2)

Theorem 1.2 (1) As N Ñ `8, the pair correlation measures R
L
ϕK
Λ ,1

N on the constant
cylinder E “ C{p2πiZq, renormalized to be probability measures, weak-star converge to the
probability measure gL

ϕK
Λ ,1 LebE, with pair correlation function independent of Λ given by

gL
ϕK
Λ ,1 : z1 ÞÑ 1

π e
´ 4 |Re z1|.

(2) As N Ñ `8, the normalized pair correlation measures 1
N6 R

L
ϕK
OK

, id1

N on the vary-
ing cylinders EN “ C{p2πiN Zq converge for the pointed Hausdorff-Gromov weak-star
convergence to the measure gL

ϕK
OK

, id1 LebC, with pair correlation function

gL
ϕK
OK

, id1 : z ÞÑ
2

|z|8
a

|DK |

ź

p

`

1´
2

Nppq2
˘

ÿ

kPOK
|k|ď|z|

|k|6
ź

p | kOK

`

1`
1

NppqpNppq2 ´ 2q

˘

. (3)

We refer to Theorems 5.1 and 6.1 for more complete versions of Theorem 1.2, including
possible congruence restrictions, and for error terms. The proof of Theorem 1.2 (2) uses
Theorems 1.1 and 4.1 of [PP4] that describe the asymptotic behaviour in angular sectors
in C for the Euler function of K. For the reader’s convenience, we briefly review these
results in Section 4. In order to simplify the treatment, we only consider the constant and
linear scaling in Theorem 1.2.

2 4 6 8 10

1

2

3

4

The pair correlation functions at the linear scaling are radially symmetric by Theorem
1.2 (2). The figure above compares the radial profiles of the pair correlation functions
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gL
ϕK
Λ , id1 for K “ Qpiq and Λ “ OK “ Zris in blue and K “ Qpi

?
3q and Λ “ OK “

Zr1`i
?

3
2 s in orange. The radial profiles of the pair correlation functions converge to a limit

π

|DK |

ź

p

`

1´
2

Nppq2
˘`

1`
1

Nppq2pNppq2 ´ 2q

˘

at infinity, where p ranges over the prime ideals of OK , see Proposition 6.5. This limit is
approximately 0.346 for the blue curve and 0.634 for the orange one.

The radial profiles of the pair correlation functions in the weighted and unweighted cases
are similar to certain radial distribution functions in statistical physics, see for example
[ZP, Sect. II], [SdH, Fig. 7], [Cha, page 199] or [Boh, page 18]. See also [Mat`]. The
unfolding technique (see for instance [Boh, p. 14] and [MaS, §3, §5]), though guiding the
very first step of the proofs of Theorem 1.1 and 1.2, falls short of giving a complete answer,
in particular when varying the scalings and weights and for the error term analysis.

As explained in Section 7, our motivation for introducing the weights by the Euler
function comes from hyperbolic geometry. We prove in Proposition 7.1 that the pair cor-
relation measures of the lengths (counted with multiplicity) of the common perpendiculars
between the maximal Margulis cusp neighbourhood and itself in the (one-cusped) Bianchi
orbifold PSL2pOKqzH3

R are closely related to the pair correlation measures of the weighted
family L ϕK

OK
. Theorem 1.2 implies a pair correlation result for the lengths of common per-

pendiculars of cusps neighborhoods in the Bianchi orbifold PSL2pOKq{H3
R, see Corollary

7.2 for a precise statement and a version with congruences.

Acknowledgements: This research was supported by the French-Finnish CNRS IEA BARP and
PaCap. We thank Rafael Sayous for his correction to the proof of Lemma 2.1.

Notation. We introduce here some of the notation used throughout the paper.
All our measures are Borel, positive, regular measures on locally compact spaces. The

pushforward of a measure µ by a mapping f is denoted by f˚µ, and its total mass by }µ}.
We denote by LebK the restriction of Lebesgue’s measure of C to any Borel subset K of
C. For every smooth manifold with boundary Y and every k P N, we denote by Ckc pY q the
set of complex-valued Ck functions with compact support on Y .

We equivariantly identify the space Grid2 of Z-grids in the real Euclidean plane C,
endowed with the Chabauty topology and the affine action of GL2pRq ˙ R2 with the
homogeneous space pGL2pRq ˙ R2q{pGL2pZq ˙ Z2q, which smoothly fibers by the map
a ` ~Λ ÞÑ ~Λ over the space of Z-lattices GL2pRq{GL2pZq, with fibers the elliptic curves
C{~Λ.

We will use the following indexing sets in Sections 2, 3 and 5. Given a Z-grid Λ, for
every N P Nr t0u, let

IN “ IN,Λ “ tpm,nq P Λ2 : 0 ă |m|, |n| ď N, m ‰ nu ,

I´N “ tpm,nq P IN : |m| ď |n|u and I`N “ tpm,nq P IN : |n| ď |m|u .

Given a subset b of the set of ambient parameters, for every positive function g of a
variable in N r t0u, we will denote by Obpgq (and Opgq when b is empty) any function f
on Nr t0u such that there exists a constant C 1 depending only on the parameters in b and
a constant N0 possibly depending on the all the parameters (including the ones in b) such
that for every N ě N0, we have |fpNq| ď C |gpNq|.
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2 Pair correlation of grid points without weight or scaling

In this section, we work on the constant cylinder E “ C{p2πiZq, endowed with its quotient
Riemann surface structure, with its quotient additive abelian locally compact group struc-
ture, and with its Haar measure dLebEpx

1 ` iy1q “ dx1dy1 where x1 P R and y1 P R{p2πZq.
We endow the multiplicative group Cˆ with its Riemann surface structure as an open
subset of C and with the restriction of the Lebesgue measure LebC of C. The logarithm
map log : Cˆ Ñ E defined by ρ eiθ ÞÑ ln ρ ` iθ is a biholomorphic group isomorphism,
whose inverse is the exponential map z1 “ x1 ` iy1 ÞÑ exppz1q “ ex

1

eiy
1 . The real part map

Re : E Ñ R defined by x1 ` iy1 ÞÑ x1 is a smooth (trivial) fibration, and

Re˚ LebE “ 2π LebR . (4)

Note that for every z P Cr t0u, we have

lnp|z|2q “ 2 Replog zq . (5)

Since dLebCpρ e
iθq “ ρ dρ dθ, we have

dplog˚ LebCqpz
1q “ e2 Repz1q dLebEpz

1q . (6)

Let Λ “ a ` ~Λ be a Z-grid. We choose a Z-basis pv1, v2q of ~Λ such that the (weak)
fundamental parallelogram

F~Λ “
 

s v1 ` t v2 : s, t P r´
1

2
,
1

2
s
(

for the action of ~Λ on C has smallest diameter. We then denote by

diam~Λ “ diampF~Λq “ maxt|v1 ` v2|, |v1 ´ v2|u

the diameter of F~Λ, which is the length of a longest diagonal of the parallelogram F~Λ. We
denote by

covol~Λ “ VolpC{~Λq “ AreapF~Λq “ |detpv1, v2q |

the area of the elliptic curve C{~Λ for the measure induced by the Lebesgue measure on C,
or the area of the parallelogram F~Λ (which does not depend on the choice of the Z-basis
pv1, v2q of ~Λ). We will use several times the following well known result, having a more
precise error term that we won’t need, and we only give a proof in order to make the
dependence on the parameters k and Λ explicit.

Lemma 2.1 For every k P N, there exists a constant Ck ą 0 such that for all Λ P Grid2

and x ě 1, we have

ˇ

ˇ

ˇ

ÿ

pPΛ : |p|ďx

|p|k ´
2π

pk ` 2q covol~Λ
xk`2

ˇ

ˇ

ˇ
ď Ck

`
p1` diam~Λqx` diam2

~Λ

covol~Λ
xk
˘

. (7)
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Proof. The case k “ 0 is the standard Gauss
counting result of lattice points in discs. With
Ax “ tp P Λ : |p| ď xu and Bx “

Ť

pPAx
pp `F~Λq,

so that AreapBxq “ CardpAxq AreapF~Λq, we have

B
`

0, x´ diam~Λ

˘

Ă Bx Ă B
`

0, x` diam~Λ

˘

,

(with the convention that Bp0, rq “ H if r ă 0)
so that the result for k “ 0 with a slightly simpler

error term Op
xdiam~Λ

`diam2
~Λ

covol~Λ
q follows by computing

the area of the two above discs.

0

Let now k ě 1. We consider the sequence
`

an “ Cardtp P Λ : n ´ 1 ă |p| ď nu
˘

ně1

and the smooth functions f : r1,`8r Ñ R defined by t ÞÑ tk or by t ÞÑ pt´ 1qk. For every
x ě 1, we have the estimate

ÿ

1ďnďtxu

an pn´ 1qk ď
ÿ

pPΛ : |p|ďx

|p|k ď
ÿ

1ďnďrxs

an n
k . (8)

Using the case k “ 0 showing that
ř

1ďnďt an “
π

covol~Λ
t2`O

` diam~Λ
pt`diam~Λ

q

covol~Λ

˘

, the general
result follows from Abel’s summation formula

ÿ

1ďnďx

anfpnq “
`

ÿ

1ďnďx

an
˘

fpxq ´

ż x

1

`

ÿ

1ďnďt

an
˘

f 1ptq dt

applied to the above sequence panqně1 and to the two functions f , the first one for the
majoration in Formula (8), the second one for its minoration. l

For every N P Nr t0u, the (not normalised) pair correlation measure of the logarithms
of nonzero grid points in Λ, with trivial multiplicities and with trivial scaling function, is
the finite measure on the cylinder E defined by

νN “ νN,Λ “ RLΛ,1
N “

ÿ

pm,nqPIN

∆logm´logn .

Note that for every k P Nr t0u, we have IkN,kΛ “ IN,Λ and νkN,kΛ “ νN,Λ. Let us consider
the function (actually independent on Λ) on E defined by

gLΛ,1 : z1 ÞÑ
1

2π
e´2 |Repz1q| .

Theorem 2.2 As N Ñ `8, the measures νN on E, renormalized to be probability mea-
sures, weak-star converge to gLΛ,1 LebE. The convergence is uniform for Λ varying in any
given compact subset of Grid2. Furthermore, for every f P C1

c pEq, we have

νN
}νN}

pfq “
1

2π

ż

E
fpz1q e´2 |Repz1q| dLebEpz

1q `O
´ diamΛ

N
p}f}8 ` }e

´zdfpzq}8q
¯

.

This result implies the case α “ 0 of Theorem 1.1 in the introduction, since we will
prove in Formula (15) that limNÑ`8

}νN }
N4 “ π2

covol2~Λ
.
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Remark 2.3 Theorem 2.2 is still valid if we allow n “ m in the definition of the index set
IN (this correspond to removing the condition p ‰ q in the definition below of Jq), see also
Remark (2) in [PP3, §3] for a general argument. We will use this comment in the proofs
of Corollary 2.4 and 2.5.

Proof of Theorem 2.2. For all N P N and q P Λ with 0 ă |q| ď N , let

Jq “ tp P Λ : 0 ă |p| ď |q|, p ‰ qu and ωq “
ÿ

pPJq

∆ p
q
, (9)

which is a finitely supported measure on the closed unit disc D of C. Note that the
assumptions 0 ă |p| and 0 ă |q| are automatic when 0 R Λ, that is, when Λ is not a
Z-lattice. As q Ñ `8, by Equation (7) with k “ 0 (and its slightly better error term), its
total mass, which is nonzero since ´q P Jq, satisfies

Card Jq “ }ωq} “
π

covol~Λ
|q|2 `O

` diam~Λp|q| ` diam~Λq

covol~Λ

˘

, (10)

for some Op¨q uniform in Λ. Note that we need to remove 0 if 0 P Λ and q from the
counting of Equation (7), but this is taken care of by the above Op¨q. In particular, we

have }ωq} “ O
` diam2

~Λ
covol~Λ

˘

uniformly in Λ if |q| ă diam~Λ and otherwise

}ωq} “
π

covol~Λ
|q|2 `O

` diam~Λ

covol~Λ
|q|
˘

“ O
` |q|2

covol~Λ

˘

.

We hence have, if |q| ě diam~Λ,

1

}ωq}
“

covol~Λ
π |q|2

`O
` diam~Λ covol~Λ

|q|3
˘

,

for some Op¨q uniform in Λ. We denote by ωq “
ωq
}ωq}

the renormalisation of ωq to a
probability measure on D.

Let f P C1pDq. Assume that |q| ě diam~Λ. Let

Cq “
ď

pPJq

pp`F~Λq .

Note that the symmetric difference pD r Cq
q q Y p

Cq
q r Dq is contained in the union of the

annulus Bp0, 1` diam~Λ
|q|

˘

rB
`

0, 1´
diam~Λ
|q|

˘

and (when 0 P Λ) the parallelogram F~Λ
q , hence

has area at most

covol~Λ
|q|2

` π
`

p1`
diam~Λ

|q|
q2 ´ p1´

diam~Λ

|q|
q2
˘

“ O
`diam~Λ

|q|

˘

.

Also note that diam~Λ
covol~Λ

|q|3
|ωqpfq| “ O

`diam~Λ
}f}8

|q|

˘

by Equation (10). Therefore

ˇ

ˇ

ˇ

1

π

ż

D
fpzq dLebCpzq ´ ωqpfq

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

1

π

ż

Cq
q

fpzq dLebCpzq ´
covol~Λ
π |q|2

ωqpfq
ˇ

ˇ

ˇ
`O

`diam~Λ}f}8

|q|

˘

.
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By the mean value inequality, for all p P Jq and z P p`F~Λ
q , we have

ˇ

ˇ fpzq ´ fp
p

q
q
ˇ

ˇ ď }df}8
ˇ

ˇ z ´
p

q

ˇ

ˇ .

Hence
ˇ

ˇ

ˇ

1

π

ż

Cq
q

fpzq dLebCpzq ´
covol~Λ
π |q|2

ωqpfq
ˇ

ˇ

ˇ
“

1

π

ˇ

ˇ

ˇ

ÿ

pPJq

ż

p`F~Λ
q

`

fpzq ´ fp
p

q
q
˘

dLebCpzq
ˇ

ˇ

ˇ

ď
1

π

ÿ

pPJq

}df}8 sup

zP
p`F~Λ
q

ˇ

ˇ z ´
p

q

ˇ

ˇ Areap
p`F~Λ

q
q

ď
1

π
CardpJqq

diam~Λ

|q|

covol~Λ
|q|2

}df}8

“ O
´diam~Λ }df}8

|q|

¯

.

Therefore, if |q| ě diam~Λ, then

ωqpfq “
1

π

ż

D
fpzq dLebCpzq `O

´diam~Λ p}f}8 ` }df}8q

|q|

¯

. (11)

In particular, as q Ñ `8, we have ωq
˚
á 1

π LebD.
Assume that N ě diam~Λ. Let us now define

µ´N “
ÿ

pm,nqPI´N

∆m
n
“

ÿ

qPΛ, 0ă|q|ďN

ωq ,

which is a finitely supported measure on D. By Equations (10) and (7) with k “ 2, 1, 0,
an heavy computation since N ě diam~Λ gives that its total mass is equal to

}µ´N} “
ÿ

qPΛ, 0ă|q|ďN

}ωq} “
ÿ

qPΛ, 0ă|q|ďN

` π

covol~Λ
|q|2 `O

`
diam~Λ|q| ` diam2

~Λ

covol~Λ

˘ ˘

“
π2

2 covol2~Λ
N4 `O

´1` diam~Λ

covol2~Λ
N3

¯

“ O
´ N4

covol2~Λ

¯

. (12)

It follows that if N ě diam~Λ, then

1

}µ´N}
“

2 covol2~Λ
π2N4

`O
`
p1` diam~Λq covol2~Λ

N5

˘

“ O
`

covol2~Λ
N4

˘

. (13)

Let f P C1pDq. By Equations (11), (13), (12) and (7) with k “ 1, we have, as

9



N ě diam~Λ tends to 8,

µ´N pfq

}µ´N}
“

1

}µ´N}

´

ÿ

qPΛ, 0ă|q|ădiam~Λ

}ωq} ωqpfq `
ÿ

qPΛ, diam~Λ
ď|q|ďN

}ωq} ωqpfq
¯

“ O
´ 1

}µ´N}
}µ´diam~Λ

} }f}8

¯

`

´}µ´N} ´ }µ
´
diam~Λ

}

}µ´N}

¯ 1

π

ż

D
fpzq dLebCpzq

`
ÿ

qPΛ, diam~Λ
ď|q|ďN

}ωq}

}µ´N}
O
´diam~Λ p}f}8 ` }df}8q

|q|

¯

“ O
´covol2~Λ

N4

diam4
~Λ

covol2~Λ
}f}8

¯

`

´

1`O
`

diam4
~Λ

N4

˘

¯ 1

π

ż

D
fpzq dLebCpzq

`O
´ diam~Λ

N
p}f}8 ` }df}8q

¯

“
1

π

ż

D
fpzq dLebCpzq `O

´ diam~Λ

N
p}f}8 ` }df}8q

¯

. (14)

Let E˘ “ p˘r0,8r`iRq{p2πiZq so that E “ E´ YE`. Note that log : Dr t0u Ñ E´

and log : Cr DÑ E` are homeomorphisms. Let us define a measure with finite support
on E˘ by

ν˘N “
ÿ

pm,nqPI˘N

∆log m
n
,

so that ν´N “ log˚ µ
´
N “ νN |E´ , and }ν´N} “ }µ´N}. For every f P C1

c pE
´q, we have

f ˝ log P C1
c pDr t0uq (hence f ˝ log may be extended to a C1 function on D which vanishes

on a neighborhood of 0). By Equations (14) and (6), we have

ν´N pfq

}ν´N}
“
µ´N pf ˝ logq

}µ´N}

“
1

π

ż

D
f ˝ logpzq dLebCpzq `O

´ diam~Λ

N
p}f ˝ log }8 ` }dpf ˝ logq}8q

¯

“
1

π

ż

E´
f e2 Repz1q dLebEpz

1q `O
´ diam~Λ

N
p}f}8 ` }e

´zdfpzq}8q
¯

.

Let sg : E Ñ E be the horizontal change of sign map x1` iy1 ÞÑ ´x1` iy1, which maps E´

to E`. Then ν`N “ sg˚ ν
´
N and νN “ ν´N ` ν`N . Since E´ X E` has zero measure for the

Haar measure LebE and since }ν˘N} “
1
2 }νN} ` Opdiam~ΛN

3q, the last claim of Theorem
2.2 follows. Note that, as needed just after the statement of Theorem 2.2, as N Ñ `8,
we have

}νN} „ 2}µ´N} „
π2

covol2~Λ
N4 . (15)

The first claim of Theorem 2.2 follows by approximating continuous functions with
compact support by C1 ones. The uniformity of the convergence on compact subsets of
lattices follows from the uniformity of the functions Op¨q and the fact that the constants
covol~Λ and diam~Λ vary in a compact subset of s0,`8r when Λ varies in a compact subset
of Grid2. l

10



The following picture illustrates the weak-star convergence statement in Theorem 2.2
when Λ “ ~Λ “ Zris is the ring of Gaussian integers and N “ 20, using as horizontal
coordinates px1, y1q P E with x1 P R and y1 P r´π, πr. A smooth histogram scaled to a
probability density is displayed in orange, and the limiting distribution in grey.

Arithmetic applications. (1) Let K be an imaginary quadratic number field, with
discriminant DK , ring of integers OK and Dedekind zeta function ζK . We denote by
I `
K the semigroup of nonzero (integral) ideals of the Dedekind ring OK (with unit OK).

We denote by NpIq “ CardpOK{Iq the norm of an ideal I P I `
K , which is completely

multiplicative. The norm of a P OK r t0u is

Npaq “ NpaOKq .

It coincides with the (relative) norm NK{Qpaq of a (see for instance [Nar]), and in particular
is equal to |a|2 since K is imaginary quadratic. The norm of a fractional ideal m of OK is

1
|c|2

Npcmq for any c P OK r t0u such that cm Ă OK .
Let m be a nonzero fractional ideal of OK . Note that m is a Z-lattice in C with

covolm “

a

|DK | Npmq

2
and diamm “ Op

a

|DK | Npmq q , (16)

for a Op q uniform in K, since OK “ Z`
?
DK
2 Z and diamOK “ |1`

?
DK
2 | if DK ” 0 mod 4,

and since OK “ Z` 1`
?
DK

2 Z and diamOK “ |
3`
?
DK

2 | if DK ” 1 mod 4. In particular, the
Gauss ball counting argument of Equation (7) with k “ 0 (with its slightly simpler error
term) and x “

?
N 1 gives, as N 1 ě Npmq tends to `8,

pCardtm P m : 0 ă Npmq ď N 1uq2 “
´ π

covolm
N 1 `O

` diamm

?
N 1 ` diam2

m

covolm

˘

¯2

“
4π2N 12

|DK | Npmq2

´

1`O
`

a

|DK | Npmq
?
N 1

˘

¯

.

11



Hence Theorem 2.2 implies the existence of a pair correlation function (independent of m)
for the family of the complex logarithms of nonzero elements of m

Lm “
`

Am
N 1 “ tlog n : n P m, 0 ă Npnq ď N 1u, ωN 1 “ 1

˘

N 1PN

without weights or scaling, as stated in the following result, using Remark 2.3.

Corollary 2.4 For every f P C1
c pEq, as N 1 Ñ `8, we have

|DK | Npmq
2

4π2N 12

ÿ

m,nPm : 0ăNpmq,NpnqďN 1

fplogm´ log nq

“
1

2π

ż

E
fpz1q e´2 |Repz1q| dLebEpz

1q `O
´

a

|DK | Npmq
?
N 1

p}f}8 ` }e
´zdfpzq}8q

¯

. l

(2) For every positive integer d, let r2,d : Nr t0u Ñ N be the integral function where

r2,dpnq “ Cardtpx, yq P Z2 : x2 ` d y2 “ nu

is the number of integral solutions of the Diophantine equation x2 ` d y2 “ n, for every
n P N. In particular, if d “ 1, then r2,d “ r2 is the well known function counting the sum
of two squares representatives of a given positive integer (see for instance [Cox] or [HaW,
Sect. 16.9]). The following result proves that the map

gR : t ÞÑ
1

2
e´|t|

on R is the pair correlation function for the family

L
r2,d
N “

`

AN “ tlnn : 0 ă n ď N, r2,dpnq ‰ 0u, ωN “ r2,d ˝ exp
˘

NPN

of the logarithms of the nonzero natural integers, without scaling but with weights given by
r2,d (removing the zero weights). Other weights have been considered in [PP2] (including
the one given by the Euler function ϕ). Note that the following corollary holds also when
r2,dpnq is replaced by the number of representations of n by the norm form of any imaginary
quadratic number field, evaluated on any order of their ring of integers (as for instance the
norm form px, yq ÞÑ x2 ´ xy ` y2 of the Eisenstein integers).

Corollary 2.5 As N Ñ `8, we have
1

`
ř

0ămďN2 r2,dpmq
˘2

ÿ

m,nPN : 0ăm,nďN2

r2,dpmq r2,dpnq ∆lnm´lnn
˚
á gR LebR .

Proof. Let us consider the Z-lattice Λ “ Z` i
?
d Z in C. Using Remark 2.3, we remove

the assumptions m ‰ n in the summations defining RLΛ,1
N as well as R

L
r2,d
N ,1

N2 .
By the linearity of p2 Req˚ and 2 Re, and by Equation (5), for every N P N r t0u, we

have

p2 Req˚
`

RLΛ,1
N

˘

“
ÿ

p,qPΛ : 0ă|p|,|q|ďN

∆2 Replog pq´2 Replog qq

“
ÿ

0ăm,nďN2

ÿ

p,qPΛ : |p|2“m,|q|2“n

∆lnp|p|2q´lnp|q|2q

“ R
L
r2,d
N ,1

N2 .

12



The pushforward map p2 Req˚ preserves the total mass and is continuous for the weak-star
topology, since the map 2 Re : E Ñ R is proper. Hence by the weak-star convergence
statement in Theorem 2.2 and by (4), we have

R
L
r2,d
N ,1

N2

}R
L
r2,d
N ,1

N2 }

“ p2 Req˚

´ RLΛ,1
N

}RLΛ,1
N }

¯

˚
á p2 Req˚

´ 1

2π
e´ |2 Repz1q| dLebEpz

1q

¯

“
1

2
e´ |t| dLebRptq .

Corollary 2.5 follows. l

As covolZ`i
?
d Z “

?
d, by Lemma 2.1 with k “ 0, we have

ÿ

lnnďt

r2,dpnq “ Card
`

Bp0, et{2q X pZ` i
?
d Zq

˘

“
π
?
d
etp1`Opet{2qq .

Thus, the conclusion of Corollary 2.5 also follows from [PP3, Theo. 1.1], whose proof only
uses the exponential growth property of the weighted family L

r2,d
N .

3 Pair correlation of grid points with scaling without weight

In this section, we study the pair correlations of complex logarithms of grid points at various
scaling. We fix a positive scaling function ψ : N r t0u Ñ s0,`8r such that lim

`8
ψ “ `8.

We consider a normalisation function ψ1 : N r t0u Ñ s0,`8r depending on ψ, which will
be made precise later on, but which in most cases will not yield the renormalisation to a
probability measure.

We will work on the following family pEN qNPNrt0u of varying cylinders. For every
N P Nrt0u, we consider EN “ C{p2πi ψpNqZq, endowed with its quotient Riemann surface
structure and its quotient additive abelian locally compact group structure. Since a real
number θ is well defined modulo 2πZ if and only if ψpNqθ is well defined modulo 2πψpNqZ,
the scaled logarithm map ψpNq log : Cˆ Ñ EN defined by ρ eiθ ÞÑ ψpNq ln ρ ` iψpNqθ
is a biholomorphic group isomorphism, whose inverse is the rescaled exponential map

z1 “ x1 ` iy1 ÞÑ expp z1

ψpNqq “ e
x1

ψpNq e
i y1

ψpNq . The real part map Re : C Ñ R induces a
map again denoted by Re : EN Ñ R, which is a trivial smooth bundle map with fibers
iR{p2πiψpNqZq, such that for every z P E,

RepψpNqzq “ ψpNq Repzq . (17)

We consider also EN as a pointed metric space, with distance the quotient of the
Euclidean distance on C and base point its (additive) identity element 0. Note that EN is
a proper metric space. As lim

`8
ψ “ `8, for every R ą 0, there exists NR P N r t0u such

that for every N ě NR, the closed ball Bp0, Rq in C injects isometrically by the canonical
projection pN : CÑ EN . Hence the sequence pEN qNPNrt0u of proper pointed metric spaces
converges to the proper metric space C pointed at 0 for the pointed Hausdorff-Gromov
convergence (see [Gro2] for background).

Any function f P C0
c pCq defines for all N large enough a function fN P C0

c pEN q as
follows. Let Rf ą 0 be such that the support of f is contained in Bp0, Rf q. Then for every

13



N ě NRf , the function fN P C0
c pEN q is the function which vanishes outside pN pBp0, Rf qq

and coincides with f ˝ ppN |Bp0,Rf qq
´1 on pN pBp0, Rf qq. Note that fN is C1 if f is C1.

We say that a sequence pµN qNPNrt0u of measures µN on EN converges to a measure µ8
on C for the pointed Hausdorff-Gromov weak-star convergence if for every f P C0

c pCq, the
sequence pµN pfN qqNěNRf converges in C to µ8pf8q (see [Gro2, Chap. 31

2 ] for background).

We again use the symbol ˚
á in order to denote this convergence.

Let Λ be a Z-grid in C. For every N P N r t0u, the (not normalised, empirical) pair
correlation measure of the complex logarithms of points in Λ at time N with trivial weights
and with scaling ψpNq is the measure with finite support in EN defined by

RLΛ,ψ
N “

ÿ

pm,nqPIN

∆ψpNq logm´ψpNq logn ,

and the normalized one is 1
ψ1pNq RLΛ,ψ

N .

Theorem 3.1 Let Λ “ a`~Λ be a Z-grid in C. Assume that the scaling function ψ satisfies
lim

NÑ`8

ψpNq
N “ λψ P r0,`8s. As N Ñ `8, the measures RLΛ,ψ

N on EN , normalized by

ψ1pNq as given below, converge for the pointed Hausdorff-Gromov weak-star convergence
to a measure gLΛ,ψ LebC on C, absolutely continuous with respect to the Lebesgue measure
on C, with Radon-Nikodym derivative the function

gLΛ,ψ : z ÞÑ

$

’

’

’

&

’

’

’

%

0 if λψ “ `8 and ψ1 “ ψ ,
π

2 covol2~Λ
if λψ “ 0 and ψ1pNq “ N4

ψpNq2
,

1
covol~Λ |z|

4

ř

pP~Λ : |p|ď |z|
λψ

|p|2 if λψ ‰ 0,`8 and ψ1pNq “ ψpNq2 .

(18)

The convergence
1

ψ1pNq
RLΛ,ψ
N

˚
á gLΛ,ψ LebC , (19)

is uniform on every compact subset of Z-grids Λ in the space Grid2.
Furthermore, if λψ ‰ 0,`8, for all A ě 1 and f P C1

c pCq with support contained in
Bp0, Aq, we have

1

ψ1pNq
RLΛ,ψ
N pfN q “

ż

zPC
fpzq gLΛ,ψpzq dLebCpzq

`O
´ A5 }f}8

ˇ

ˇλψ ´
ψpNq
N

ˇ

ˇ

λ9
ψ Sys4

~Λ
covol2~Λ

`
A4 diam~Λ }df}8

λ4
ψ covol2~Λ Sys~Λ ψpNq

`
A2pdiam~Λ `

A
λψ
q }f}8

λ3
ψ covol2~Λ ψpNq

¯

.

Note that the pair correlation function gLΛ,ψ depends on ~Λ but is independent of a.
The above result shows in particular that renormalizing to probability measures (taking
ψ1pNq „ π2N4

covol2~Λ
by Equation 7 with k “ 0) is inappropriate, as the limiting measure would

always be 0. We will see during the proof that the above result implies the cases α ą 0 of
Theorem 1.1 in the introduction.

The fact that gLΛ,ψ vanishes when λψ “ `8 means that the sequence of measures
`

1
ψ1pNq RLΛ,ψ

N

˘

NPNrt0u on pEN qNPNrt0u has a total loss of mass at infinity. For error terms
when λψ “ `8 and λψ “ 0, see respectively Equation (37) and Equation (40).
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Proof. Let Λ “ a` ~Λ be a Z-grid in C. We may assume that a P F~Λ. Let N P N r t0u.
Let

E˘N “ p˘r0,8r`iRq{p2πi ψpNqZq

(which contains the base point 0) so that EN “ E´NYE
`
N . Note that pE

˘
N qNPNrt0u converges

for the pointed Hausdorff-Gromov convergence to the closed halfplane C˘ “ ˘r0,8r`iR
and that C´ X C` has measure 0 for any measure absolutely continuous with respect to
the Lebesgue measure on C. Note that if f P C1

c pC˘q, then for N large enough, we have
fN P C

1
c pE

˘
N q, with the above notation.

Let sgN : EN Ñ EN be the change of sign map z1 ÞÑ ´z1, which maps E´N to E`N
and converges to the change of sign map sg : z ÞÑ ´z on C. The change of variables
pm,nq ÞÑ pn,mq in the index set IN proves that we have RLΛ,ψ

N |E´N
“ psgN q˚

`

RLΛ,ψ
N |E`N

˘

.

We will thus only study the convergence of the measures 1
ψ1pNq RLΛ,ψ

N on E`N , and deduce
the global result by the symmetry of gLΛ,ψ under sg.

For every p P ~Λ r t0u, let

Jp,N “ tq P Λ : 0 ă |q| ď |p` q| ď Nu , (20)

and let
ωp,N “

ÿ

qPJp,N

∆ψpNq p
q

and µ`N “
ÿ

pP~Λrt0u

ωp,N . (21)

Note that ωp,N is a measure on C with finite support, which vanishes if |p| ą 2N by the
triangle inequality, hence µ`N is also a measure on C with finite support.

Lemma 3.2 As N ě diam~Λ tends to `8, we have

}ωp,N} “ Card Jp,N “
πN2

2 covol~Λ
`O

´p|p| ` diam~ΛqN

covol~Λ

¯

.

Proof. We may assume that |p| ď 2N . Note that Jp,N is the finite set of nonzero grid
points in the intersection

rCp,N “ tz P C : |z| ď |p` z| ď Nu (22)

of the disc Bp´p,Nq of radius N centered at ´p with the closed halfplane containing 0
with boundary the perpendicular bisector of 0 and ´p (see the picture below).

´p

0

N

´
p
2

15



Since rCp,N is contained in a halfdisc of radius N and contains the complement in
this halfdisc of its intersection with a rectangle of length 2N and height |p|

2 , we have
π
2N

2 ´ |p|N ď Areap rCp,N q ď
π
2N

2, so that

Areap rCp,N q “
π

2
N2 `Op|p|Nq .

Let
Cp,N “

ď

qPJp,N

pq `F~Λq . (23)

By a Gauss counting argument similar to the one in the proof of Equation (7) with k “ 0,
we have

}ωp,N} “ Card Jp,N “
AreapCp,N q

covol~Λ
“

Areap rCp,N q

covol~Λ
`

AreapCp,N q ´Areap rCp,N q

covol~Λ

“
πN2

2 covol~Λ
`O

´p|p| ` diam~ΛqN ` diam2
~Λ

covol~Λ

¯

.

The lemma follows. l

Lemma 3.3 For every A ą 0 and for every f P C1
c pC`q with support contained in Bp0, Aq,

as N Ñ `8 and uniformly on Λ varying in a compact subset of Grid2, we have

ˇ

ˇ pRLΛ,ψ
N q

|E`N
pfN q ´ µ

`
N pfq

ˇ

ˇ “ O
´ A4 }df}8 N4

covol 2
~Λ
ψpNq3

¯

.

Proof. Let A and f be as in the statement of this lemma. Note that since ψpNq ą 0 and
by Equation (5), for every pm,nq P IN , we have pm,nq P I`N , that is |n| ď |m|, if and only if
ψpNq logm´ψpNq log n P E`N . Hence by the change of variable pp, qq ÞÑ pm “ p`q, n “ qq

(which is a bijection from ~Λˆ Λ to Λˆ Λ), we have

pRLΛ,ψ
N q

|E`N
pfN q “

ÿ

pm,nqPI`N

fN pψpNq logm´ ψpNq log nq

“
ÿ

pP~Λrt0u, qPΛ
0ă|q|ď|p`q|ďN

fN
`

ψpNq logpp` qq ´ ψpNq log q
˘

.

By the assumption on the support of f , if an index pp, qq contributes to the above sum,
then RepψpNq logpp ` qq ´ ψpNq log qq ď A. Hence by Equations (17) and (5), we have
ln
ˇ

ˇ1 ` p
q

ˇ

ˇ ď A
ψpNq , which tends to 0 as N Ñ `8, since lim

`8
ψ “ `8. In particular, using

the assumption on q, we have

|p|

|q|
“ O

` A

ψpNq

˘

and |p| “ O
` AN

ψpNq

˘

, (24)

so that
ˇ

ˇ

p
q

ˇ

ˇ ă 1 if N is large enough. This allows to use the principal branch, again denoted
by log, of the complex logarithm in the open ball of center 1 and radius 1. By the analytic
expansion of this branch, we have

ˇ

ˇ

ˇ
logp1`

p

q
q ´

p

q

ˇ

ˇ

ˇ
“ O

`ˇ

ˇ

p

q

ˇ

ˇ

2˘
“ O

` A2

ψpNq2
˘

.
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The mean value theorem hence implies that

fN pψpNq logpp` qq ´ ψpNq log qq “ f
`

ψpNq logp1`
p

q
q
˘

“ fpψpNq
p

q
q `O

`A2}df}8
ψpNq

˘

. (25)

By Lemma 3.2 and Equation (7) with k “ 0, we have

Card
 

pp, qq P ~Λˆ Λ : 0 ă |q| ď |p` q| ď N, |p| “ O
` AN

ψpNq

˘(

“
ÿ

pP~Λrt0u : |p|“O
`

AN
ψpNq

˘

Card Jp,N “ O
´

Card
 

p P ~Λ r t0u : |p| “ O
` AN

ψpNq

˘( N2

covol~Λ

¯

“ O
´ A2N4

ψpNq2 covol2~Λ

¯

. (26)

Similarly, if an index pp, qq contributes to the sum

µ`N pfq “
ÿ

pP~Λrt0u, qPΛ
0ă|q|ď|p`q|ďN

f
`

ψpNq
p

q

˘

,

then Equation (24) holds. By summing Equation (25) on the set of elements pp, qq P ~ΛˆΛ
such that 0 ă |q| ď |p` q| ď N and |p| “ O

`

AN
ψpNq

˘

, and by using Equation (26), Lemma
3.3 follows. l

Let us now study the convergence properties (after renormalization) of the measures
ωp,N and of their sums µ`N as N Ñ `8. We assume in what follows that |p| ă N (which is
possible if N is large enough since we will have |p| “ O

`

AN
ψpNq

˘

). Let ι : Cˆ Ñ Cˆ be the
involutive diffeomorphism z ÞÑ 1

z , which maps C` r t0u to C` r t0u, whose holomorphic
derivative at z is 1

z2 , hence whose Jacobian at z is

Jιpzq “
1

|z|4
. (27)

By the equation on the left in Formula (21), we have

ι˚ωp,N “
ÿ

q PJp,N

∆ q
ψpNqp

. (28)

When q varies in Jp,N , as seen in the proof of Lemma 3.2, the above Dirac masses are
exactly at the nonzero points of the Z-grid Λp,N “

1
ψpNqp Λ that belong to the set

rYp,N “
1

ψpNq p
rCp,N .
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Note that

covol~Λp,N “ Area
` F~Λ

ψpNq p

˘

“
covol~Λ

ψpNq2 |p|2
. (29)

By Equation (22), the set rYp,N is the intersec-
tion of the disc Bp´ 1

ψpNq ,
N

ψpNq|p|q with the closed
halfplane containing 0 with boundary the perpen-
dicular bisector of 0 and ´ 1

ψpNq . Let us define

Zp,N “
 

z P C : Re z ě 0, |z| ď
N

ψpNq|p|

(

.

Note that

ιpZp,N q “
 

z P C : Re z ě 0, |z| ě
ψpNq|p|

N

(

.

(30)

Zp,N

rYp,N

N{pψpNq|p|q

0´ 1
ψpNq

The symmetric difference of rYp,N and Zp,N , that we denote by rYZp,N , is contained in
the union of the rectangle

“

´ 1
2ψpNq , 0

‰

ˆ
“

´ N
ψpNq|p| ,

N
ψpNq|p|

‰

and the half-annulus

!

z P C : Re z ě 0,
N

ψpNq|p|
´

1

ψpNq
ď |z| ď

N

ψpNq|p|

)

(well defined since |p| ă N). In particular, its area satisfies LebCprYZp,N q “ O
`

N
ψpNq2|p|

˘

.
Let

Yp,N “
1

ψpNq p
Cp,N , (31)

so that, as in the proof of Lemma 3.2, the symmetric difference of Yp,N and rYp,N has area
O
` Ndiam~Λ
ψpNq2|p|2

˘

as N Ñ `8. The symmetric difference of Yp,N and Zp,N , that we denote by

YZp,N , hence has area LebCpYZp,N q “ O
`Npdiam~Λ

`|p|q

ψpNq2|p|2

˘

as N Ñ `8. In particular, for

every φ P C1
c pC` r t0uq, since Zp,N Ă Bp0, N

ψpNq|p|q and Yp,N Ă Bp0,
N`diam~Λ
ψpNq|p| q, we have

ˇ

ˇ

ˇ

ż

Zp,N

φpzq dLebCpzq ´

ż

Yp,N

φpzq dLebCpzq
ˇ

ˇ

ˇ

“ O
´

Npdiam~Λ ` |p|q
›

›φ
|Bp0,

N`diam~Λ
ψpNq|p|

q

›

›

8

ψpNq2|p|2

¯

. (32)

By Equations (31), (23), (28) and (29), by the mean value theorem and by Lemma 3.2, as
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N Ñ `8, we have
ˇ

ˇ

ˇ

ż

Yp,N

φpzq dLebCpzq ´
covol~Λ

ψpNq2 |p|2
ι˚ωp,N pφq

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ÿ

qPJp,N

ż

q`F~Λ
ψpNq p

´

φpzq ´ φ
` q

ψpNq p

˘

¯

dLebCpzq
ˇ

ˇ

ˇ

ď pCard Jp,N q
covol~Λ

ψpNq2 |p|2

›

›

›
dφ
|Bp0,

N`diam~Λ
ψpNq|p|

q

›

›

›

8

diam~Λ

ψpNq |p|

“ O
´

diam~Λ

›

›

›
dφ
|Bp0,

N`diam~Λ
ψpNq|p|

q

›

›

›

8
N2

ψpNq3 |p|3

¯

.

Hence by Equation (32), we have

ι˚ωp,N pφq “
ψpNq2 |p|2

covol~Λ

ż

Zp,N

φpzq dLebCpzq

`O
´

diam~Λ

›

›

›
dφ
|Bp0,

N`diam~Λ
ψpNq|p|

q

›

›

›

8
N2

covol~Λ ψpNq |p|
`

pdiam~Λ ` |p|q
›

›

›
φ
|Bp0,

N`diam~Λ
ψpNq|p|

q

›

›

›

8
N

covol~Λ

¯

. (33)

Let f P C1
c pC` r t0uq with support contained in Bp0, Aq. Note that f ˝ ι P C1

c pC` r t0uq,
that

›

›

›
f ˝ ι

|t|z|ď
N`diam~Λ
ψpNq|p|

u

›

›

›

8
“

›

›

›
f
|t|z|ě ψpNq|p|

N`diam~Λ
u

›

›

›

8
and that

›

›

›
dpf ˝ ιq

|t|z|ď
N`diam~Λ
ψpNq|p|

u

›

›

›

8
ď A2

›

› df
|t|z|ě ψpNq|p|

N`diam~Λ
u

›

›

8

since the support of f is contained in Bp0, Aq. The change of variable by ι in the integral
of Equation (33) applied with φ “ f ˝ ι, together with Equations (30) and (27), hence give

ωp,N pfq “
ψpNq2 |p|2

covol~Λ

ż

|z|ěψpNq|p|
N

fpzq
1

|z|4
dLebCpzq

`O
´

A2 diam~Λ

›

›df
|t|z|ě ψpNq|p|

N`diam~Λ
u

›

›

8
N2

covol~Λ ψpNq |p|
`

pdiam~Λ ` |p|q
›

›f
|t|z|ě ψpNq|p|

N`diam~Λ
u

›

›

8
N

covol~Λ

¯

.

For every z P C` r t0u, let

θN pzq “
1

|z|4

ÿ

pP~Λrt0u

|p|2 1 
|z|ěψpNq|p|

N

(pzq “
1

|z|4

ÿ

pP~Λrt0u : |p|ď N |z|
ψpNq

|p|2 . (34)

Note that if z and N are fixed, then for |p| large enough, we have |z| ă ψpNq|p|
N , thus the

above sum has only finitely many nonzero terms. Let θN p0q “ 0.
Note that θN pzq vanishes if and only if |z| ă ψpNq Sys~Λ

N , by the definition of the systole
of ~Λ.

As seen in the proof of Lemma 3.3, the only elements p P ~Λ that give a nonzero
contribution to the sum

ř

pP~Λrt0u ωp,N pfq satisfy p ‰ 0 and |p| “ O
`

AN
ψpNq

˘

. By Equation
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(7) with k “ 0, as N Ñ `8, we have

Card
 

p P ~Λ r t0u : |p| “ O
` AN

ψpNq

˘(

“ O
´ A2N2

covol~Λ ψpNq
2

¯

if λψ ă `8. Otherwise, if λψ “ `8, we have O
`

AN
ψpNq

˘

ď Sys~Λ if N is large enough, hence
if N is large enough, we have

Card
 

p P ~Λ r t0u : |p| “ O
` AN

ψpNq

˘(

“ 0 . (35)

Thus, by the right equality in Formula (21), we have

µ`N pfq “
ÿ

pP~Λrt0u

ωp,N pfq “
ψpNq2

covol~Λ

ż

zPC`
fpzq θN pzq dLebCpzq

`O
´

A4 diam~Λ

›

›df
|t|z|ě

ψpNq Sys~Λ
N`diam~Λ

u

›

›

8
N4

covol2~Λ Sys~Λ ψpNq3
`

pdiam~Λ `
AN
ψpNq q

›

›f
|t|z|ě

ψpNq Sys~Λ
N`diam~Λ

u

›

›

8
A2N3

covol2~Λ ψpNq2

¯

. (36)

Case 1. Let us first assume that λψ “ `8, that is, lim
NÑ`8

N
ψpNq “ 0.

For every A ě 1, if N is large enough (uniformly on Λ varying in a compact subspace
of Grid2, since then ~Λ varies in a compact subspace of the space of Z-lattices, on which
the systole function ~Λ ÞÑ Sys~Λ has a positive lower bound), then for every z P Bp0, Aq, we
have θN pzq “ 0 by Equation (34), and µ`N pfq “ 0 by Formulas (21) and (35), since the
sum defining µ`N pfq is an empty sum. Thus, whatever the (positive) normalizing function
ψ1 is, we have a total loss of mass at infinity :

1

ψ1pNq
µ`N

˚
á 0 .

Assume that the renormalizing function ψ1 is such that N4

ψpNq3ψ1pNq
tends to 0 as N

tends to 8, for instance ψ1 “ ψ, as assumed in the first case of Equation (18). Note that
if ψpNq “ Nα with α ą 1, then we indeed have λψ “ `8 and if ψ1pNq “ N4´2α as in the
statement of Theorem 1.1, we do have limNÑ`8

N4

ψpNq3ψ1pNq
“ 0.

Together with Lemma 3.3, the above centered formula proves Formula (19) when λψ “
`8, with a convergence which is uniform on every compact subset of Λ in Grid2, as well as
the case α ą 1 in Theorem 1.1. Furthermore, if follows from the error term in Lemma 3.3
that for every f P C1

c pCq with support contained in Bp0, Aq, as N Ñ `8 and uniformly
on Λ varying in a compact subset of Grid2, we have

1

ψ1pNq
RLΛ,ψ
N pfN q “ O

´ A4 }df}8 N4

covol 2
~Λ
ψpNq3ψ1pNq

¯

. (37)

Case 2. Let us now assume that λψ “ 0, that is, lim
NÑ`8

ψpNq
N “ 0.

For all z P C` r t0u, by Equations (34) and (7) for k “ 2, we have

ψpNq4

N4
θN pzq “

`ψpNq

N |z|

˘4
ÿ

pP~Λ: |p|ď N |z|
ψpNq

|p|2

“
π

2 covol~Λ
`O

´ p1` diam~ΛqψpNq

covol~Λ N |z|
`

diam2
~Λ
ψpNq2

covol~Λ N2 |z|2

¯

. (38)
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In particular, if |z| ě ψpNq Sys~Λ
N , then ψpNq4

N4 θN pzq is uniformly bounded. Since θN pzq

vanishes if |z| ă ψpNq Sys~Λ
N , this proves that the function ψpNq4

N4 θN is uniformly bounded on
C` r t0u, and pointwise converges to the constant function π

2 covol~Λ
. Hence by Equation

(36) and by the Lebesgue dominated convergence theorem, we have, with a convergence
which is uniform on every compact subset of Λ in Grid2,

ψpNq2

N4
µ`N

˚
á

π

2 covol2~Λ
LebC` . (39)

More precisely, for every A ě 1, for every f P C1
c pC` r t0uq with support in Bp0, Aq,

and for every Λ in a compact subset of Grid2, we have the following control. At each point
z P C` where θN does not vanish, the second error term in Equation (38) is at most the
first one, as it satisfies

diam2
~Λ
ψpNq2

covol~Λ N2 |z|2
ď

diam2
~Λ
ψpNq2

covol~Λ Sys~Λ N2 |z|
ď
p1` diam~ΛqψpNq

covol~Λ N |z|

for N large enough since ψpNq
N tends to 0. By Equations (36) and (38), and since ψpNq ď N

for N large enough, using the equality
ż π{2

´π{2

ż A

0

1

ρ
ρ dρ dθ “ πA in order to integrate the

first error term in Equation (38), we have

ψpNq2

N4
µ`N pfq “

ψpNq4

covol~Λ N4

ż

zPC`
fpzq θN pzq dLebCpzq

`O
´ A4 diam~Λ }df}8

covol2~Λ Sys~Λ ψpNq
`
A2pdiam~Λ `Aq }f}8

covol2~Λ ψpNq

¯

“
π

2 covol2~Λ

ż

zPC`
fpzq dLebCpzq `O

´ A4 diam~Λ }df}8

covol2~Λ Sys~Λ ψpNq

`
A2pdiam~Λ `Aq }f}8

covol2~Λ ψpNq
`
A p1` diam~ΛqψpNq}f}8

covol2~Λ N

¯

.

If ψ1pNq “ N4

ψpNq2
as assumed in the second case of Equation (18), it follows from

Formula (39) and Lemma 3.3 by symmetry that

1

ψ1pNq
RLΛ,ψ
N

˚
á

π

2 covol2~Λ
LebC .

This proves Formula (19) when λψ “ 0, with a convergence which is uniform on every
compact subset of Λ in Grid2, as well as the case 0 ă α ă 1 in Theorem 1.1. Furthermore,
for every f P C1

c pCq with support contained in Bp0, Aq, as N Ñ `8 and uniformly on Λ
varying in a compact subset of Grid2, using the error term in Lemma 3.3 with the fact
that that Sys~Λ ď diam~Λ, we have

1

ψ1pNq
RLΛ,ψ
N pfN q “

π

2 covol2~Λ

ż

C
f dLebC`O

´ A4 diam~Λ }df}8

covol2~Λ Sys~Λ ψpNq

`
A2pdiam~Λ `Aq }f}8

covol2~Λ ψpNq
`
A p1` diam~ΛqψpNq }f}8

covol2~Λ N

¯

. (40)
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Case 3. Let us finally assume that lim
NÑ`8

ψpNq
N “ λψ belongs to s0,`8r .

We consider the function θ8 : CÑ r0,`8r defined by

z ÞÑ
1

|z|4

ÿ

pP~Λ : |p|ď |z|
λψ

|p|2 ,

where by convention θ8p0q “ 0, and replacing p P ~Λ by p P ~Λ r t0u makes no difference.
Note that θ8 vanishes on the open disc

˝

B p0, λψ Sys~Λq, is uniformly bounded and tends
to π

2 covol~Λ λ4
ψ

as |z| Ñ `8 by Equation (7) with k “ 2. Furthermore, θ8 is piecewise

continuous, with discontinuities along each circle Sp0, |p|q centered at 0 passing through a
nonzero lattice point p P ~Λ. See the picture in the introduction representing the graph of
θ8 when Λ “ ~Λ “ Zris (so that covol~Λ “ 1) and λψ “ 1.

By Equation (34), the sequence of uniformly bounded maps pθN qNPN converges almost
everywhere to θ8 (more precisely, it converges at least outside

Ť

pP~Λrt0u Sp0, |p|q). Hence
by Equation (36) and by the Lebesgue dominated convergence theorem, we have

1

ψpNq2
µ`N

˚
á

1

covol~Λ
θ8 LebC` . (41)

Let A ě 1. Note that |z| ď A implies that |z|λψ ď
A
λψ
ď 2A

λψ
. If N is large enough so that

ψpNq
N ě

λψ
2 , then |z| ď A implies that N |z|

ψpNq ď
2A
λψ

. Hence for every z P C` X Bp0, Aq, if N
is large enough, we have

| θ8pzq ´ θN pzq | ď
1

|z|4

ÿ

pP~Λ : |p|ď 2A
λψ

|p|2
ˇ

ˇ

ˇ
1|z|ěλψ |p|pzq ´ 1

|z|ěψpNq|p|
N

pzq
ˇ

ˇ

ˇ
.

Note that if N is large enough, the left term vanishes if |z| ă λψ
2 Sys~Λ.

Let f P C1
c pC`q with support in Bp0, Aq. By integration on annuli and Equation (7)

with k “ 3, we have
ˇ

ˇ

ˇ

ż

C`
f pθ8 ´ θN q dLebC

ˇ

ˇ

ˇ
“ O

´

}f}8
pλψ Sys~Λq

4

ÿ

pP~Λ : |p|ď 2A
λψ

|p|2 2π
ˇ

ˇ λψ|p| ´
ψpNq|p|

N

ˇ

ˇ

¯

“ O
´ A5 }f}8

λ9
ψ Sys4

~Λ
covol~Λ

ˇ

ˇλψ ´
ψpNq

N

ˇ

ˇ

¯

.

Hence by Equation (36), we have

1

ψpNq2
µ`N pfq “

1

covol~Λ

ż

zPC`
fpzq θ8pzq dLebCpzq `O

´A5 }f}8
ˇ

ˇλψ ´
ψpNq
N

ˇ

ˇ

λ9
ψ Sys4

~Λ
covol2~Λ

¯

`O
´ A4 diam~Λ }df}8N

4

covol2~Λ Sys~Λ ψpNq5
`
A2pdiam~Λ `

AN
ψpNq q }f}8N

3

covol2~Λ ψpNq4

¯

“
1

covol~Λ

ż

zPC`
fpzq θ8pzq dLebCpzq

`O
´ A5 }f}8

ˇ

ˇλψ ´
ψpNq
N

ˇ

ˇ

λ9
ψ Sys4

~Λ
covol2~Λ

`
A4 diam~Λ }df}8

λ4
ψ covol2~Λ Sys~Λ ψpNq

`
A2pdiam~Λ `

A
λψ
q }f}8

λ3
ψ covol2~Λ ψpNq

¯

. (42)
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If ψ1pNq “ ψpNq2 as assumed in the third case of Equation (18), it follows from Formula
(41) and Lemma 3.3 by symmetry that

1

ψ1pNq
RLΛ,ψ
N

˚
á

1

covol~Λ
θ8 LebC .

This proves Formula (19) when λψ ‰ 0,8, with a convergence which is uniform on every
compact subset of Λ in Grid2, as well as the case α “ 1 in Theorem 1.1 (since if ψpNq “ N ,
then λψ “ 1 and ψ1pNq “ ψpNq2 “ N2 “ N4´2α). Furthermore, for every f P C1

c pC`q
with support contained in Bp0, Aq, as N Ñ `8 and uniformly on Λ varying in a compact
subset of Grid2, using Equation (42) and the error term in Lemma 3.3 with the fact that
that Sys~Λ ď diam~Λ, we have

1

ψ1pNq
pRLΛ,ψ

N q
|E`N
pfN q “

1

ψpNq2
µ`N pfq `O

´ A4 }df}8 N4

covol2~Λ ψpNq5

¯

“

ż

zPC`
fpzq

θ8pzq

covol~Λ
dLebCpzq`

O
´ A5 }f}8

ˇ

ˇλψ ´
ψpNq
N

ˇ

ˇ

λ9
ψ Sys4

~Λ
covol2~Λ

`
A4 diam~Λ }df}8

λ4
ψ covol2~Λ Sys~Λ ψpNq

`
A2pdiam~Λ `

A
λψ
q }f}8

λ3
ψ covol2~Λ ψpNq

¯

.

By symmetry, this concludes the proof of Theorem 3.1. l

Let us give a numerical illustration of Theorem 3.1 when Λ “ ~Λ “ Zris and ψpNq “ N .
The following figure shows the points 60 logm´ 60 log n contained in the ball of radius 5
centered at 0 for pm,nq P I60.
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The second figure shows an approximation (given by Mathematica and its smooth-
ing process) of the pair correlation function gLΛ,ψ computed using the empirical measure

1
602 RLΛ,ψ

60 in the ball of center 0 and radius 5. We refer to the first picture in the intro-
duction for the actual graph of the pair correlation function gLΛ,ψ.
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The figure below gives on the left the graph of the pair correlation function gLΛ, ψ of
the Z-lattice Λ “ ~Λ “ Zr1`i

?
3

2 s of the Eisenstein integers at the linear scaling ψ : N ÞÑ N
in the ball of center 0 and radius 5. The blue lines on the bounding box represent the limit

π
2 covol2~Λ

“ 2π
3 at `8 of gLΛ, ψ, given by Equation (7) with k “ 2. On the right, we have

the approximation of the pair correlation function computed with the empirical measure
1

602 RLΛ,ψ
60

4 Mertens and Mirsky formulae for algebraic number fields

In this short section, we recall the notation and statements of [PP4] that we will use in
Sections 5 and 6.

Let K be an imaginary quadratic number field (with DK , OK , ζK , I `
K , N the no-

tation introduced before Corollary 2.4). We assume in Sections 4, 5 and 6 that OK
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is principal (or equivalently factorial (UFD)). This implies, see for instance [Nar], that
DK P t´4,´8,´3,´7,´11,´19,´43,´67,´163u. For all I, J P I `

K , we write J | I if
I Ă J , we denote by pI, Jq “ I ` J the greatest common ideal divisor of I and J , and by
IJ the product ideal of I and J .

We denote by ϕK : I `
K Ñ N the Euler function of K, defined (see for instance [Nar,

page 13]) equivalently by

@ a P I `
K , ϕKpaq “ Card

`

pOK{aq
ˆ
˘

“ Npaq
ź

p|a

`

1´
1

Nppq

˘

,

where, here and thereafter, p ranges over the prime ideals of OK . For every a P OK r t0u,
we define ϕKpaq “ ϕKpaOKq.

We first give a version in angular sectors of the Mertens formula on the average of the
Euler function that will be needed in the proof of Theorem 5.1. For all z P Cˆ, θ P s0, 2πs
and R ě 0, we consider the truncated angular sector

Cpz, θ, Rq “
 

ρ eitz : t P
‰

´
θ

2
,
θ

2

‰

, 0 ă ρ ď
R

|z|

(

. (43)

Note that for every z1 P Cˆ, we have

z1Cpz, θ,Rq “ Cpzz1, θ, R |z1| q . (44)

It is important that the function Op¨q in the following result is uniform in m, z and θ. For
every m P I `

K , let

cm “ Npmq
ź

p|m

p1`
1

Nppq
q .

Theorem 4.1 (A Sectorial Mertens formula) For all m P I `
K , z P Cˆ and θ P

s0, 2πs, as xÑ `8, we have

ÿ

aPmXCpz,θ,xq

ϕKpaq “
θ

2
a

|DK | ζKp2q cm
x4 `Opx3q .

Proof. See [PP4, Thm. 1.1]. l

We now give a uniform asymptotic formula for the sum in angular sectors in C of the
products of two shifted Euler functions with congruences, which is used in the proof of
Theorems 5.1 and 6.1. When K “ Q (the sectorial restriction is then meaningless), this
formula is due to Mirsky [Mir, Thm. 9, Eq. (30)] without congruences, and to Fouvry [PP2,
Appendix] with congruences.

For all m P I `
K , z P Cˆ, θ P s0, 2πs, k P OK , and x ě 1, let

Sm,z,θ,kpxq “
ÿ

aPmXCpz,θ,xq

ϕKpaqϕKpa` kq . (45)

Let
cm,k “

1

Npmq

ź

p
pp,mq | kOK

´

1´
Nppp,mqq

Nppq2

¯

ź

p

´

1´
κm,kppq κ

1
kppq Nppp,mqq

Nppq2

¯

, (46)
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where

κm,kppq “

#

p1´ Nppp,mqq
Nppq2

q´1 if pp,mq | kOK

1 otherwise
and κ1kppq “

#

1´ 1
Nppq if p | kOK

1 otherwise.

(47)
For instance, if m “ OK then by [PP4, Eq. (15)], we have

cOK ,k “
ź

p

`

1´
2

Nppq2
˘

ź

p | kOK

`

1`
1

NppqpNppq2 ´ 2q

˘

. (48)

Since it will be useful in Section 6, by [PP4, Lem. 4.2], we have

c1m “ inf
kPOK

cm,k ą 0 . (49)

Theorem 4.2 (A Sectorial Mirsky Formula) There exists a constant CK ą 0 such
that for all m P I `

K , z P Cˆ, θ P s0, 2πs, k P OK and x ě 1, we have
ˇ

ˇ

ˇ
Sm,z,θ,kpxq ´

θ cm,k

3
a

|DK |
x6

ˇ

ˇ

ˇ
ď CK

`

p1`
a

Npkq qx5 ` Npkqx4 ` Npkq lnpNpkqqx2 lnp2xq
˘

.

Proof. See [PP4, Thm. 4.1 and Lem. 4.2]. l

5 Pair correlation of integral lattice points with Euler weight
and no scaling

In this section, we fix an imaginary quadratic number field K whose ring of integers OK is
principal. We fix a nonzero ideal Λ P I `

K . Note that Λ “ ~Λ is a Z-lattice (hence a Z-grid)

in C, with covolΛ “ NpΛq

?
|DK |

2 as seen in Equation (16). As in Section 2, we work on the
constant cylinder E “ C{p2πiZq in this section.

Recall that L ϕK
Λ is the family defined in Equation (2). For every N P N r t0u, the

(not normalised, empirical) pair correlation measure of the logarithms of nonzero elements
in Λ, with trivial scaling function Ψ “ 1 and multiplicities given by the Euler function, is
the measure on E with finite support defined, with IN “ IN,Λ by

rνN “ R
L
ϕK
Λ ,1

N “
ÿ

pm,nqPIN

ϕKpmq ϕKpnq ∆logm´logn .

Theorem 5.1 As N Ñ `8, the measures rνN on E, renormalized to be probability mea-
sures, weak-star converge to the measure absolutely continuous with respect to the Lebesgue
measure on E, with Radon-Nikodym derivative the function gL

ϕK
Λ ,1 : z1 ÞÑ 1

π e
´ 4 |Re z1|,

which is independent of Λ and K:

rνN
} rνN}

˚
á gL

ϕK
Λ ,1 LebE .

Furthermore, for all f P C1
c pEq and α P s0,

1
2 r, with cΛ “ NpΛq

ź

p |Λ

p1`
1

Nppq
q, we have

rνN
} rνN}

pfq “

ż

z1PE

1

π
e´ 4 |Re z1| fpz1q dLebEpz

1q `O
`cΛ }f}8
N1´2α

`
}e´z

1

dfpz1q}8
Nα

˘

.
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This result gives the first assertion of Theorem 1.2 in the introduction. As in Remark
2.3, Theorem 5.1 remains valid if we allow n “ m in the definition of the index set IN , and
we will use this remark in the proof of Corollary 7.2.

Proof. In this proof, all functions Op¨q are absolute, since there are finitely many fields
K as in this section. The first assertion of Theorem 5.1 follows from the second one, by
the density of C1

c pEq in C0
c pEq for the uniform convergence.

For all N P N and q P Λ with 0 ă |q| ď N , let Jq be given by the equation on the left
in Formula (9). We now define

rωq “
ÿ

pPJq

ϕKppq ∆ p
q
,

which is a finitely supported measure on the closed unit disc D “ Bp0, 1q of C, and is
nonzero since ´q P Jq.

Lemma 5.2 As |q| Ñ `8, we have } rωq} “
π

a

|DK | ζKp2q cΛ

|q|4 `Op|q|3q.

Proof. This follows from Theorem 4.1 applied with m “ Λ, z “ 1, θ “ 2π and x “ |q|,
since ϕKpqq “ OpNpqqq and

} rωq} “
ÿ

pPΛ : 0ă|p|ď|q|, p‰q

ϕKppq “
`

ÿ

pPΛXCp1,2π,|q|q

ϕKpaq
˘

´ ϕKpqq . l

Lemma 5.3 For all f P C1pDq and α P s0, 1
2 r , as |q| Ñ `8, we have

rωq
} rωq}

pfq “

ż

D

2

π
|z|2 fpzq dLebCpzq ` O

´cΛ }f}8
|q|1´2α

`
}df}8
|q|α

¯

.

Proof. Note that cΛ ě 1 and let us define

c2Λ “ 2
a

|DK | ζKp2q cΛ “ OpcΛq .

By Lemma 5.2, as |q| Ñ `8, we have

1

} rωq}
“

c2Λ
2π |q|4

`O
` c2

Λ

|q|5
˘

. (50)

Let Q “ t |q|αu ě 1, which tends to `8
as |q| Ñ `8. For all elements m and
n in t0, . . . , Q´ 1u, let

An,m “
!

ρ e2iπ t : ρ P
‰ n

Q
,
n` 1

Q

‰

,

t P
‰m

Q
,
m` 1

Q

‰

)

,

so that Dr t0u is the disjoint union of
the sets An,m for m,n P t0, . . . , Q´ 1u.

An,m

n
Q
e

2iπm
Q

n`1
Q

e
2iπm`1

Q

0

1
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With the notation of Equation (43), we have

An,m “ C
`

e
2iπm`1{2

Q ,
2π

Q
,
n` 1

Q

˘

r C
`

e
2iπm`1{2

Q ,
2π

Q
,
n

Q

˘

. (51)

Note that since n` 1 ď Q, as Q tends to `8, we have

diampAn,m q ď
ˇ

ˇ

ˇ

n` 1

Q
e

2iπ m`1
Q ´

n` 1

Q
e

2iπ m
Q

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

n` 1

Q
e

2iπ m
Q ´

n

Q
e

2iπ m
Q

ˇ

ˇ

ˇ
“ O

` 1

Q

˘

.

Hence for every z P An,m, we have by the mean value theorem

fpzq “ f
` n

Q
e

2iπm
Q
˘

`O
`}df}8

Q

˘

. (52)

Since
ż

An,m

|z|2 dLebCpzq “

ż 2πm`1
Q

2πm
Q

ż n`1
Q

n
Q

ρ3 dρ dθ “
2π

Q

pn` 1q4 ´ n4

4Q4
“ O

` 1

Q2

˘

,

we have therefore
ż

An,m

1

π
|z|2 fpzq dLebCpzq “

`

f
` n

Q
e

2iπm
Q
˘

`O
`}df}8

Q

˘˘

ż

An,m

1

π
|z|2 dLebCpzq

“
1

Q2

´

pn` 1q4 ´ n4

2Q3
f
` n

Q
e

2iπm
Q
˘

`O
`}df}8

Q

˘

¯

. (53)

By Equations (51) and (44), we have

qAn,m “ C
`

q e
2iπm`1{2

Q ,
2π

Q
,
pn` 1q|q|

Q

˘

r C
`

q e
2iπm`1{2

Q ,
2π

Q
,
n|q|

Q

˘

.

By Equations (52), (50), applying twice Theorem 4.1 with m “ Λ, θ “ 2π
Q and x “

|q| n`1
Q , |q| nQ , and using the fact that |q|Q tends to `8 as |q| Ñ `8 since α ă 1, we have,

as |q| Ñ `8,

ÿ

p P qAn,mXJq

f
`p

q

˘ 1

} rωq}
ϕKppq

“

´

f
` n

Q
e

2iπm
Q
˘

`O
`}df}8

Q

˘

¯ 1

} rωq}

ÿ

p PΛX qAn,m : p‰q

ϕKppq

“

´

f
` n

Q
e

2iπm
Q
˘

`O
`}df}8

Q

˘

¯´ c2Λ
2π |q|4

`O
` c2

Λ

|q|5
˘

¯

ˆ

´2π |q|4

Qc2Λ

pn` 1q4 ´ n4

Q4
`O

` |q|3pn` 1q3

Q3

˘

¯

“
1

Q2

´

pn` 1q4 ´ n4

Q3
f
` n

Q
e

2iπm
Q
˘

`O
`}df}8 n

3

Q4

˘

`O
`}f}8 cΛ n

3

|q|Q

˘

¯

. (54)
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Note that qD “ Bp0, |q|q. By cutting the sum defining rωq and the integral over D into Q2

subparts, by using Equations (53) and (54), and since n ď Q ď |q|α, as |q| Ñ `8, we have
ˇ

ˇ

ˇ

rωq
} rωq}

pfq ´

ż

D

2

π
|z|2 fpzq dLebCpzq

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

Q´1
ÿ

n,m“0

´

ÿ

p P qAn,mXJq

ϕKppq

} rωq}
f
`p

q

˘

´

ż

An,m

2

π
|z|2 fpzq dLebCpzq

¯
ˇ

ˇ

ˇ

“ O
`}df}8

Q

˘

`O
`}f}8 cΛ

|q|1´2α

˘

.

This proves Lemma 5.3. l

For every N P Nr t0u, let us define

rµ´N “
ÿ

pm,nqPI´N

ϕKpmq ϕKpnq ∆m
n
“

ÿ

qPΛ´t0u : |q|ďN

ϕKpqq rωq ,

which is a finitely supported measure on D. By Theorems 4.1 and 4.2 both with m “ Λ,
θ “ 2π, x “ N and the second one with k “ 0, since cΛ ě 1 and cΛ,0 ď 1 by Equation
(46), and since there are finitely many such fields K, its total mass is

}rµ´N} “
ÿ

qPΛrt0u : |q|ďN

ϕKpqq }rωq} “
ÿ

pm,nqPI´N

ϕKpmq ϕKpnq

“
1

2

´

`

ÿ

pPΛrt0u
|p|ďN

ϕKppq
˘2
´

ÿ

pPΛrt0u
|p|ďN

ϕKppq
2
¯

“
2π2

pc2Λq
2
N8 `OpN7q .

For every f P C1pDq, by Lemmas 5.3 and 5.2, again by Theorem 4.1 with m “ Λ, θ “ 2π
and x “ N , we have

rµ´N pfq

}rµ´N}
“

1

}rµ´N}

ÿ

qPΛrt0u : |q|ďN

ϕKpqq }rωq}
rωqpfq

}rωq}

“

ż

D

2

π
|z|2 fpzq dLebCpzq `

1

}rµ´N}

ÿ

qPΛrt0u
|q|ďN

ϕKpqq }rωq} O
`cΛ }f}8
|q|1´2α

`
}df}8
|q|α

˘

“

ż

D

2

π
|z|2 fpzq dLebCpzq

`O
´

pc2Λq
2

2π2N8

ÿ

qPΛrt0u
|q|ďN

ϕKpqq
2π

c2Λ

`

N3`2αcΛ }f}8 `N
4´α }df}8

¯

“

ż

D

2

π
|z|2 fpzq dLebCpzq `O

`cΛ }f}8
N1´2α

`
}df}8
Nα

˘

.

For every N P Nr t0u, let us define

rν˘N “
ÿ

pm,nqPI˘N

ϕKpmq ϕKpnq ∆logm´logn ,
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which is a measure with finite support on E˘ “ p˘r0,8r`iRq{p2πiZq, so that rν´N “

log˚ rµ
´
N “ rνN |E´ , and }rν

´
N} “ }rµ

´
N}. For every f P C1

c pE
´q, the function f ˝ log is a C1

function on D which vanishes on a neighborhood of 0. By Equation (6), we have

rν´N pfq

}rν´N}
“

rµ´N pf ˝ logq

}rµ´N}

“

ż

D

2

π
|z|2 f ˝ logpzq dLebCpzq `O

`cΛ }f ˝ log }8
N1´2α

`
}dpf ˝ logq}8

Nα

˘

“

ż

E´

2

π
e4 Repz1q fpz1q dLebEpz

1q `O
`cΛ }f}8
N1´2α

`
}e´z

1

dfpz1q}8
Nα

˘

.

Since rνN “ rν´N ` rν`N on E r piRq{p2iπZq and LebEppiRq{p2iπZqq “ 0, since rν`N “ sg˚ rν
´
N

where sg : E ÞÑ E is the map x1 ` iy1 ÞÑ ´x1 ` iy1, we have }rν˘N} “
1
2 }rνN} and the last

claim of Theorem 5.1 follows by symmetry. l

6 Pair correlation of integral lattice points with scaling and
Euler weight

As in Section 5, we fix an imaginary quadratic number field K whose ring of integers
OK is principal, and a nonzero ideal Λ “ ~Λ P I `

K . We also study the pair correlations
of the family L ϕK

Λ defined in the introduction, but now with the linear scaling function
ψ “ id1 : N ÞÑ N . We leave to the reader the study of a general scaling ψ, assumed to
converge to `8, proving a Poissonian behaviour for sublinear scalings and total loss of
mass behaviour for superlinear scalings. We also leave to the reader a statement similar to
Theorem 6.1, replacing the above Z-lattice Λ by a Z-grid a` Λ for any a P OK .

As in Section 3, we work on the family of varying cylinders pEN “ C{p2πiN ZqqNPNrt0u.
As in Section 3, for every f P C1

c pCq, for every N large enough such that the support of f
is contained in

˝

Bp0, πNq, we denote by fN P C1
c pEN q the map which coincides with f on

Bp0, πNq modulo 2πiN Z and vanishes elsewhere. For every N P Nr t0u, we consider the
measure on EN with finite support defined with IN “ IN,Λ by

rRN “ R
L
ϕK
Λ , id1

N “
ÿ

pm,nqPIN

ϕKpmq ϕKpnq ∆Nplogm´lognq ,

which is the (not normalised) empirical pair correlation measure at time N of the complex
logarithms of the elements of Λ with multiplicities given by the Euler function and with
linear scaling ψ “ id1 : N ÞÑ N .

Theorem 6.1 As N Ñ `8, the family
`

1
N6

rRN

˘

NPN of measures on EN converges (for
the pointed Hausdorff-Gromov weak-star convergence) to the measure absolutely continuous
with respect to the Lebesgue measure on C, with Radon-Nikodym derivative the function

gL
ϕK
Λ , id1 : z ÞÑ

1

|z|8

ÿ

kPΛ : |k|ď|z|

2 cΛ,k
a

|DK |
|k|6 ,

that is, as N Ñ `8,
1

N6
rRN

˚
á gL

ϕK
Λ , id1 LebC .
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Furthermore, for all A ě 1 and f P C1pCq with compact support contained in Bp0, Aq, as
N Ñ `8, we have

1

N6
rRN pfN q “

ż

zPC
fpzq gL

ϕK
Λ , id1pzq dLebCpzq ` O

´ A4

covolΛ c1ΛN
1{2

`

}df}8 ` }f}8
˘

¯

.

The above result with Λ “ OK gives the second assertion of Theorem 1.2 in the
introduction, using the values of cOK ,k for k P OK given in Equation (48).

Note that, as the proof below shows, the total mass of rRN is equivalent to cN8 as
N Ñ `8, for some constant c ą 0. Hence renormalising rRN to be a probability measure
would make it converge to the zero measure on C.

Proof. We proceed as in the beginning of the proof of Theorem 3.1 : We only have
to prove the second assertion above; We define E˘N “ p˘r0,8r`iRq{p2πiN Zq; We only
study the convergence of the measures 1

N6
rRN on the half-cylinder E`N to the measure

gL
ϕK
Λ ,id1 LebC` on the half-plane C` “ tz P C : Repzq ě 0u as N Ñ `8; And we deduce

the global result by the symmetry of gL
ϕK
Λ ,id1 under z ÞÑ ´z.

For all N P Nr t0u and p P Λ r t0u, let Jp,N be given by Equation (20). Note that

pΛ r t0uq XBp0, N ´ |p|q Ă Jp,N Ă pΛ r t0uq XBp0, Nq . (55)

We now define the key auxiliary measure by

rωp,N “
ÿ

qPJp,N

ϕKpqq ϕKpq ` pq ∆ q
N p

.

Then rωp,N is a measure with finite support on Bp0, 1
|p|qr t0u, which is nonzero if N ě 2|p|

(which is the case if p is bounded and N Ñ `8), and vanishes if |p| ą 2N . If N ě 2|p|,
by Theorem 4.2 with m “ Λ, k “ p and θ “ 2π, by Formula (55), since |p| ě 1, and since
cΛ,p ď 1 (see Equation (46)), we have

} rωp,N} “
ÿ

qPJp,N

ϕKpqq ϕKpq ` pq “
2π cΛ,p

3
a

|DK |
pN `Op|p|qq6

`O
`

|p| pN `Op|p|qq5 ` |p|2 pN `Op|p|qq4 ` |p|2 ln |p|pN `Op|p|qq2 lnpN `Op|p|qq
˘

“
2π cΛ,p

3
a

|DK |
N6 `Op |p|N5q . (56)

In particular, if N ě 2|p|, since c1Λ ą 0 by Equation (49), we have

1

} rωp,N}
“

3
a

|DK |

2π cΛ,pN6

´

1`O
` |p|

c1ΛN

˘

¯

. (57)

The next result implies that the measures rωp,N , once normalized to be probability mea-
sures, weak-star converge to the measure dµpzq “ 3

π |p|
6 |z|4 dLebBp0, 1

|p|
qpzq on Bp0,

1
|p|q

as N Ñ `8, uniformly on p P Λ r t0u bounded.

Lemma 6.2 For all p P Λ r t0u, α P s 0, 1 r and f P C1
c pCq, as N Ñ `8, we have

rωp,N
}rωp,N}

pfq “

ż

Bp0, 1
|p|
q

3

π
|p|6 |z|4 fpzq dLebCpzq `O

´

}df}8
Nα |p|

`
|p| }f}8
c1ΛN

1´α
`
}f}8
Nα

¯

.
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Proof. As in the proof of Lemma 5.3, we will estimate the difference of the main terms
in the above centered formula by cutting the sum defining the renormalized measure rωp,N
and by cutting similarly the integral on Bp0, 1

|p|q. We assume, as we may, that N ě 2|p|.
Let Q “ tNαu ě 1, which tends to `8 as N Ñ `8. For all m,n P t0, . . . , Q´ 1u, let

A1n,m “
!

ρ e2iπ t : ρ P
ı n

Q |p|
,
n` 1

Q |p|

ı

, t P
ım

Q
,
m` 1

Q

ı)

, (58)

so that Bp0, 1
|p|qr t0u is the disjoint union of the sets A1n,m for m,n P t0, . . . , Q´1u. With

the notation of Equation (43), we have

A1n,m “ C
`

e
2iπm`1{2

Q ,
2π

Q
,
n` 1

Q |p|

˘

r C
`

e
2iπm`1{2

Q ,
2π

Q
,
n

Q |p|

˘

. (59)

Note that diampA1n,m q “ O
`

1
Q |p|

˘

. Hence for every z P A1n,m, we have by the mean value
theorem

fpzq “ f
` n

Q |p|
e

2iπm
Q
˘

`O
`}df}8
Q |p|

˘

. (60)

If |p| ď N1´α (which is the case if p is bounded and N Ñ `8) and if n ď Q´ 2, then

N |p|
n` 1

Q |p|
ď N

Q´ 1

Q
ď N ´N1´α ď N ´ |p| .

Hence for all m,n P t0, . . . , Q ´ 1u, by Formula (55), if |p| ď N1´α and if n ‰ Q ´ 1, we
have

`

N pA1n,m
˘

X Jp,N “ ΛX
`

N pA1n,m
˘

. (61)

For all m,n P t0, . . . , Q´ 1u, let

Sn,m “
ÿ

q P pN pA1n,mqXJp,N

f
` q

N p

˘ 1

} rωp,N}
ϕKpqq ϕKpq ` pq .

If n ‰ Q´ 1, by Equations (60) and (61) for the first equality, and for the second one, by
Equations (57), (59) and (44), by Theorem 4.2 applied twice with m “ Λ, k “ p, θ “ 2π

Q

and x “ Npn`1q
Q , N n

Q , we have, as N Ñ `8 (so that in particular N ě maxt2, c1λu |p|),

Sn,m “
´

f
` n

Q |p|
e

2iπm
Q
˘

`O
`}df}8
Q |p|

˘

¯ 1

} rωp,N}

ÿ

q PΛXpN pA1n,mq

ϕKpqq ϕKpq ` pq

“

´

f
` n

Q |p|
e

2iπm
Q
˘

`O
`}df}8
Q |p|

˘

¯ 3
a

|DK |

2π cΛ,pN6

´

1`O
` |p|

c1ΛN

˘

¯

ˆ

2π
Q cΛ,p

3
a

|DK |

´

`Npn` 1q

Q

˘6
´
`N n

Q

˘6
`O

` |p|

c1Λ

`N n

Q

˘5
`
|p|2

c1Λ

`N n

Q

˘4

`
|p|2

c1Λ
ln |p|

`Nn

Q

˘2
ln
`Nn

Q

˘˘

¯

“
1

Q2

´

pn` 1q6 ´ n6

Q5
f
` n

Q |p|
e

2iπm
Q
˘

`O
`}df}8
Q |p|

`
Q |p| }f}8
c1ΛN

˘

¯

. (62)
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Note that by Equations (59), (55) and (44) for the first inequality, and for the second one,
by Equations (57) and twice (56), as N Ñ `8, we have

ˇ

ˇ

ˇ

ÿ

0ďmďQ´1

SQ´1,m

ˇ

ˇ

ˇ
ď }f}8

1

} rωp,N}

ÿ

q PΛXpBp0,NqrBp0,N´N
Q
qq

ϕKpqq ϕKpq ` pq

“ }f}8
3
a

|DK |

2π cΛ,pN6

´

1`O
` |p|

c1ΛN

˘

¯

ˆ
2π cΛ,p

3
a

|DK |

´

N6 ´ pN ´
N

Q
q6 `Op

|p|

c1Λ
N5q

¯

“ O
`}f}8
Q

˘

. (63)

For all m,n P t0, . . . , Q´ 1u, let

In,m “

ż

A1n,m

3

π
|p|6 |z|4 fpzq dLebCpzq .

By Equations (60) and (58), we have

In,m “
´

f
` n

Q |p|
e

2iπm
Q
˘

`O
`}df}8
Q |p|

˘

¯

ż
2πpm`1q

Q

2πm
Q

ż n`1
Q |p|

n
Q |p|

3

π
|p|6 ρ5 dρ dθ

“
1

Q2

´

pn` 1q6 ´ n6

Q5
f
` n

Q |p|
e

2iπm
Q
˘

`O
`}df}8
Q |p|

˘

¯

. (64)

Furthermore,

ˇ

ˇ

ˇ

ÿ

0ďmďQ´1

IQ´1,m

ˇ

ˇ

ˇ
ď }f}8

ż 2π

0

ż 1
|p|

1
|p|
´ 1
Q |p|

3

π
|p|6 ρ5 dρ dθ “ O

`}f}8
Q

˘

. (65)

Since Bp0,
1

|p|
qr t0u “

Q´1
ğ

n,m“0

A1n,m, putting together Equations (62), (64), (63) and (65),

and since Q “ tNαu P rN
α

2 , Nαs for N large enough, we have

ˇ

ˇ

ˇ

rωp,N
}rωp,N}

pfq ´

ż

Bp0, 1
|p|
q

3

π
|p|6 |z|4 fpzq dLebCpzq

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

Q´2
ÿ

n,m“0

pSn,m ´ In,mq `

Q´1
ÿ

m“0

SQ´1,m ´

Q´1
ÿ

m“0

IQ´1,m

ˇ

ˇ

ˇ

ď

Q´2
ÿ

n,m“0

|Sn,m ´ In,m| `
ˇ

ˇ

Q´1
ÿ

m“0

SQ´1,m

ˇ

ˇ`
ˇ

ˇ

Q´1
ÿ

m“0

IQ´1,m

ˇ

ˇ

ˇ

“ O
`}df}8
Q |p|

`
Q |p| }f}8
c1ΛN

˘

`O
`}df}8
Q |p|

˘

`O
`}f}8
Q

˘

`O
`}f}8
Q

˘

“ O
` }df}8
Nα |p|

`
|p| }f}8
c1ΛN

1´α
`
}f}8
Nα

˘

.

This proves Lemma 6.2. l
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Now, let us introduce the finitely supported measure on Cr t0u defined by

rµ`N “
ÿ

pPΛrrt0u
ι˚rωp,N “

ÿ

p,qPΛrt0u : |q|ď|q`p|ďN

ϕKpqq ϕKpq ` pq ∆N p
q
,

where as previously ι : z ÞÑ 1
z (recalling that the measure rωp,N vanishes if |p| ą 2N and

has finite support contained in Bp0, 1
|p|qr t0u).

Lemma 6.3 For all A ě 1 and f P C1pC`q with compact support contained in Bp0, Aq,
as N Ñ `8, we have

ˇ

ˇ rRN |E`N
pfN q ´ rµ`N pfq

ˇ

ˇ “ O
´A4}df}8N

5

covolΛ

¯

.

Proof. Let us assume that N ą A
π , so that the ball Bp0, Aq injects by the canonical

projection C Ñ EN “ C{p2πiN Zq. Note that fN has support in E`N . Using the change
of variables pp, qq ÞÑ pm “ p` q, n “ qq, we have

rRN pfN q “
ÿ

pm,nqPI`N

ϕKpmq ϕKpnq fN pN logm´N log nq

“
ÿ

p,qPΛrt0u : |q|ď|q`p|ďN

ϕKpqq ϕKpq ` pq fN pN logpp` qq ´N log qq .

As in the proof of Lemma 3.3 (see Formulas (24) and (25) with ψpNq “ N), if a pair pp, qq
occurs in the index of the sum defining either rRN pfN q or rµ`N pfq with nonzero corresponding
summand, then |p|

|q| “ O
`

A
N

˘

, |p| “ OpAq, and

ˇ

ˇ fN pN logpp` qq ´N log qq ´ fpN
p

q
q
ˇ

ˇ “ O
`A2}df}8

N

˘

.

Hence, by Equation (56), since cΛ,p ď 1 (see Equation (46)) and by Lemma 2.1 with k “ 0,
as N ě diam~Λ tends to `8, we have

ˇ

ˇ rRN pfN q ´ rµ`N pfq
ˇ

ˇ ď
ÿ

pPΛrt0u : |p|“OpAq, qPJp,N

ϕKpqq ϕKpq ` pqO
`A2}df}8

N

˘

“
ÿ

pPΛrt0u : |p|“OpAq

OpN6qO
`A2}df}8

N

˘

“ O
´A4}df}8N

5

covolΛ

¯

This proves Lemma 6.3. l

Lemma 6.4 For all A ě 1 and f P C1pC`q with compact support contained in Bp0, Aq,
as N Ñ `8, we have

1

N6
rµ`N pfq “

ż

C`
fpzq gL

ϕK
Λ , id1pzq dLebCpzq `O

´ A4

covolΛ c1ΛN
1{2

`

}df}8 ` }f}8
˘

¯

.
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Proof. Let A and f be as in the statement, let N be large enough, and let α P s0, 1r .
Since the support of rωp,N is contained in Bp0, 1

|p|q, the support of ι˚rωp,N is contained in
tz P C : |z| ě |p|u. Since a nonzero element of OK has norm, hence absolute value, at
least 1, the measures rµ`N and gL

ϕK
Λ , id1pzq dLebCpzq both vanish on

˝

Bp0, 1q. Hence we may
assume that the support of f is contained in tz P C : |z| ě 1u, so that the support of f ˝ ι
is compact. Note that }f ˝ ι}8 “ }f}8 and as the support of f is contained in Bp0, Aq,
that

}dpf ˝ ιq}8 ď A2}df}8 .

By Equation (56) and by Lemma 6.2, by Equation (27), since 1 ď |p| “ OpAq and
cΛ,p ď 1, as N Ñ `8, we hence have

rµ`N pfq “
ÿ

pPΛrt0u
ι˚rωp,N pfq “

ÿ

pPΛrt0u
}rωp,N}

rωp,N
}rωp,N}

pf ˝ ιq

“
ÿ

pPΛrt0u

´ 2π cΛ,p

3
a

|DK |
N6 `Op |p|N5q

¯

ˆ

´

ż

Bp0, 1
|p|
q

3

π
|p|6 |z|4 f ˝ ιpzq dLebCpzq `O

´ A2}df}8
Nα |p|

`
|p| }f}8
c1ΛN

1´α
`
}f}8
Nα

¯¯

“ N6
´

ÿ

pPΛ

2 cΛ,p |p|
6

a

|DK |

ż

|z|ě|p|

1

|z|8
fpzq dLebCpzq

`O
´

ÿ

pPΛ : |p|“OpAq

|p| }f}8
N

`
A2}df}8
Nα

`
A }f}8
c1ΛN

1´α
`
}f}8
Nα

¯¯

.

By Lemma 2.1 with k “ 0, as N Ñ `8, we hence have

rµ`N pfq

N6
“

ż

C

1

|z|8

ÿ

pPΛ : |p|ď|z|

2 cΛ,p |p|
6

a

|DK |
fpzq dLebCpzq

`O
´ A2

covolΛ

`A2 }df}8
Nα

`
A }f}8
c1ΛN

1´α
`
}f}8
Nα

˘

¯

.

Taking α “ 1
2 , this proves Lemma 6.4 since c1Λ ď 1 and A ě 1. l

Theorem 6.1 now follows from Lemmas 6.3 and 6.4, as explained in the beginning of
the proof. l

The following figure illustrates Theorem 6.1 when K “ Qp1`i
?

3
2 q and Λ “ OK “

Zr1`i
?

3
2 s. It shows an approximation of the pair correlation function gL

ϕK
Λ , id1 computed

using the empirical measure 1
506

rR50 in the ball of radius 5 centered at the origin, to be
compared with the orange radial profile of gL

ϕK
Λ , id1 in the second figure of the introduction.
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The graph of gL
ϕK
Λ , id1 is bounded by Lemma 2.1 with k “ 6 since cΛ,p ď 1. It is

asymptotic to a horizontal plane at infinity, by the following result. In its proof, we use
the Möbius function µK : I `

K Ñ Z of K, defined by

@ a P I `
K , µKpaq “

#

0 if p2 | a for some prime ideal p

p´1qm if a “ p1 . . . pm for distinct prime ideals p1, . . . , pm

(in particular µKpOKq “ 1). For every a P OK r t0u, we define µKpaq “ µKpaOKq. We
have (see for instance [Sha]) the Möbius inversion formula: for all f, g : I `

K Ñ C,

fpaq “
ÿ

b|a

gpbq if and only if gpaq “
ÿ

b|a

µKpbqfpab
´1q . (66)

Proposition 6.5 We have

lim
|z|Ñ8

gL
ϕK
Λ , id1pzq “

π

|DK |

ź

p

`

1´
2

Nppq2
˘`

1`
1

Nppq2pNppq2 ´ 2q

˘

.

Proof. Let us consider the multiplicative2 function on I `
K defined by

f : a ÞÑ
ź

p | a

`

1`
1

NppqpNppq2 ´ 2q

˘

and the constant C1 “
2π

|OˆK |
?
|DK |

ś

p

`

1 ` 1
Nppq2pNppq2´2q

˘

. Let us prove that uniformly in

x ě 1, we have
ÿ

aPI`
K : Npaqďx

Npaq3fpaq “
C1

4
x4 `Opx7{2q . (67)

2Recall that a function f : I `
K Ñ Cˆ is multiplicative if fpOKq “ 1 and for all coprime integral ideals

a, b in I `
K , we have fpabq “ fpaqfpbq.
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Applying this with x “ |z|2, by Equation (3), since the map k ÞÑ kOK from OK r t0u onto
I `
K is |OˆK |-to-1, this proves Proposition 6.5.
Let

g “ f ˚ µK : a ÞÑ
ÿ

b|a

µKpbqfpab
´1q

be the Dirichlet convolution of f with the Möbius function µK of K. Then g is multiplica-
tive. For every prime ideal p of OK , we have

gppq “ fppqµKpOKq ` fpOKqµKppq “
1

NppqpNppq2 ´ 2q

and gppkq “ fppkqµKpOKq ` fppk´1qµKppq “ 0 for every k ě 2. Therefore, for every
b P I `

K , we have

gpbq “ µKpbq
2
ź

p | b

1

NppqpNppq2 ´ 2q
.

By for instance Equation (7) with Λ “ OK , k “ 0 and x “ ?y, by Equation (16) with
m “ OK , and again since the map k ÞÑ kOK is |OˆK |-to-1, as y Ñ `8, we have (see also
[MvO, Theo. 15])

Cardta P I `
K : Npaq ď yu “

2π

|OˆK |
a

|DK |
y `Opy

1
2 q . (68)

Lemma 6.6 For every b P I `
K , we have 0 ď gpbq ď Npbq´3

ź

p

`

1´
2

Nppq2
˘´1. In particular,

ÿ

bPI`
K : Npbqěx

gpbq

Npbq
“ O

` 1

x2

˘

.

Proof. This is immediate if µKpbq “ 0. Otherwise, b “ p1 . . . pk with k P N and p1, . . . , pk
pairwise distinct prime ideals, and

0 ď Npbq3gpbq “
k
ź

i“1

Nppiq
3

NppiqpNppiq2 ´ 2q
“

k
ź

i“1

`

1´
2

Nppiq2
˘´1

ď
ź

p

`

1´
2

Nppq2
˘´1

ă `8 .

The last claim follows from the well known error term in the Dedekind zeta function
summation: as an “ Cardta P I `

K : Npaq “ nu “ Opnq (see for instance Equation (68)),
we have by the first claim

ÿ

bPI`
K : Npbqěx

gpbq

Npbq
“ O

`

ÿ

bPI`
K : Npbqěx

1

Npbq4
˘

“ O
`

ÿ

něx

an
n4

˘

“ O
`

ż `8

x

1

t3
dt
˘

“ O
` 1

x2

˘

.

l

Using the Möbius inversion formula (66) for the first equality, Equation (68) with
y “ x

Npbq for the third equality, Lemma 6.6 for the fifth equality and an Eulerian product
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(since g is multiplicative and vanishes on ideals divisible by a nontrivial square) for the
sixth equality, with Spxq “

ř

aPI`
K : Npaqďx fpaq, uniformly in x ě 1, we have

Spxq “
ÿ

b,cPI`
K

Npbcqďx

gpbq “
ÿ

bPI`
K

Npbqďx

gpbq
ÿ

cPI`
K

Npcqďx{ Npbq

1

“
ÿ

bPI`
K

Npbqďx

gpbq
´ 2π x

|OˆK |
a

|DK | Npbq
`O

` x1{2

Npbq1{2

˘

¯

“
2π x

|OˆK |
a

|DK |

ÿ

bPI`
K

gpbq

Npbq
`O

´

x
ÿ

bPI`
K

Npbqěx

gpbq

Npbq

¯

`O
´

x1{2
ÿ

bPI`
K

Npbqďx

gpbq

Npbq1{2

¯

“
2π x

|OˆK |
a

|DK |

ÿ

bPI`
K

gpbq

Npbq
`Opx1{2q

“
2π x

|OˆK |
a

|DK |

ź

p

´

1`
1

Nppq2pNppq2 ´ 2q

¯

`Opx1{2q “ C1 x`Opx1{2q .

By summation by parts, we hence have

ÿ

aPI`
K : Npaqďx

Npaq3fpaq “

ż x

1
t3drSptqs “

“

t3pC1 t`Opt1{2qq
‰x

1
´ 3

ż x

1
t2pC1 t`Opt1{2qq dt

“
C1

4
x4 `Opx7{2q .

This proves Equation (67) and concludes the proof of Proposition 6.5. l

7 Pair correlations of common perpendiculars in the Bianchi
manifolds PSLpOKqzH3

R

We again fix an imaginary quadratic number field K whose ring of integers OK is principal,
and a nonzero ideal Λ “ ~Λ P I `

K . In this section, we give a geometric motivation for the
introduction of the Euler function as multiplicities in the family L ϕK

Λ of complex logarithms
of elements of Λ defined in Equation (2), and we give a geometric application of the results
in Section 5.

We refer to [PP1, BPP] for more information on the following notions. Let Y be a
nonelementary geodesically complete connected proper locally CATp´1q good orbispace,
so that the underlying space of Y is ΓzrY with rY a geodesically complete proper CATp´1q
space and Γ a discrete group of isometries of rY preserving no point nor pair of points in
rY YB8 rY . LetD´ andD` be connected proper nonempty properly immersed locally convex
closed subsets of Y , that is, D´ and D` are locally finite Γ-orbits of proper nonempty
closed convex subsets rD´ and rD` of rY . A common perpendicular α between D´ and D`

is the Γ-orbit of the unique shortest arc rα between rD´ and γ rD` for some γ P Γ such that
dp rD´, γ rD`q ą 0. The multiplicity multpαq of α is the ratio A{B where
‚ A is the number of elements pγ´, γ`q P pΓ{ΓD´q ˆ pΓ{ΓγD`q such that rα is the

unique shortest arc between γ´ rD´ and γ`γ rD`, and
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‚ B is the cardinality of the pointwise stabilizer of rα in Γ.
The length λpαq of the common perpendicular α is the length of the geodesic segment rα in
rY . For every ` in the set OL6pD´, D`q of lengths of common perpendiculars, the length
multiplicity of ` is the sum of the multiplicities of the common perpendiculars between D´,
D` having the length ` :

ωp`q “
ÿ

α common perpendicular
beween D´ and D` with λpαq“`

multpαq . (69)

If PerppD´, D`q is the set of all common perpendiculars fromD´ toD` with multiplicities,
then pλpαqqαPPerppD´, D`q is the marked ortholength spectrum from D´ to D`, and the set
OLpD´, D`q “ pOL6pD´, D`q, ωq of the lengths of the common perpendiculars endowed
with the length multiplicity ω is the ortholength spectrum from D´ to D`.

As defined in [PP2, §6], the pair correlation measure of the common perpendiculars
from D´ to D` is the pair correlation measure of the family

AD´,D` “
`

pAD
´,D`

N “ OL6pD´, D`q X r0, 2 lnN sqNPN, ω
˘

.

Let us specialize these objects as follows. Let

rY “ H3
R “

`

tpz “ x` iy, tq P Cˆ R : t ą 0u, ds2 “
dx2 ` dy2 ` dt2

t2
˘

be the upper halfspace model of the real hyperbolic 3-space with constant curvature ´1.
We identify as usual its space at infinity B8H3

R “ pCˆ t0uq Y t8u with P1pCq “ CY t8u.
For every b P I `

K , let Γ0rbs be Hecke’s congruence subgroup modulo b of the Bianchi
group PSL2pOKq, which is the preimage of the upper triangular subgroup of PSL2pOK{bq
under the reduction morphism PSL2pOKq Ñ PSL2pOK{bq. It acts faithfully on H3

R by
Poincaré’s extension, and is a lattice in the isometry group of H3

R. Let Y b “ Γ0rbszH3
R,

which is a finite (possibly ramified) cover of the Bianchi orbifold PSL2pOKqzH3
R. Note

that since OK is principal, this Bianchi orbifold has only one cusp (the number of cusps
being the class number of K, see for instance [EGM, Sect. 7.2]).

Let rD´ “ rD` be the horoball H8 “ tpz, tq P H3
R : t ě 1u in H3

R, whose image
D´ “ D` in Y b is a Margulis neighbourhood of a cusp of Y b. In order to emphasize the
dependence on the ideal b, we will use the notation A b

D´,D` “ AD´,D` for the family of
lengths of common perpendiculars between D´ and D` in Y b.

The following result relates the pair correlation measures of the common perpendiculars
from this Margulis cusp neighbourhood to itself to the pair correlation measures of the
complex logarithms of the elements of Λ “ b, with multiplicities given by the Euler function
ϕK . As explained in Remark 2.3, in the following result, we remove from the index set IN

of the summations defining R
A b
D´,D`

, 1

N and R
L
ϕK
b , 1

N the assumption that m ‰ n. Recall
that the map 2 Re : E Ñ R is a continuous proper map.

Proposition 7.1 For every ideal b P I `
K , we have

R
A b
D´,D`

, 1

N “
4

|OˆK |
4
p2 Req˚

`

R
L
ϕK
b , 1

N

˘

.
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Proof. The orbit of H8 under Γ0rbs consists, besides H8 itself, of the Euclidean 3-balls
H p

q
of Euclidean radius 1

2|q|2
tangent to the horizontal plane C at the rational elements p

q

(with this point removed), with p P OK , q P b r t0u and pp, qq “ 1. Note that H8 meets
H p

q
(and then is tangent to it) if and only if q P OˆK , since the hyperbolic distance betwen

H8 and H p
q
is equal to 2 ln |q|.

Every common perpendicular between
D´ and D` has a vertical representative
in H3

R which starts from a point in Cˆt1u
and ends on the boundary of H p

q
with

p
q as above and q R OˆK . Its hyperbolic
length is 2 ln |q|. In particular, the set
OL6pD´, D`q is equal to

t2 ln |q| “ 2 Replog qq : q P br OˆKu .
1
q

p
q

2 ln |q|

t

1

C

H8

H p

q
H 1

q

1
2|q|2

The stabilizer of H8, or equivalently of 8, in Γ0rbs is the upper triangular subgroup
U of Γ0rbs, hence of PSL2pOKq. It contains the upper unipotent subgroup consisting of

translations by OK with finite index, equal to |O
ˆ
K |

2 . Hence given a denominator q P brOˆK ,
the points at infinity with denominator q of the geodesic lines containing a lift of a common
perpendicular between D´ and D` are, modulo translation by OK , exactly the points
p
q where p ranges over a set of representatives of pOK{qOKq

ˆ. Note that for any unit
u P OˆK , we have up

uq “
p
q . Thus, the number modulo U of fractions p

q with |q| “ n is
2

|OˆK |
2

ř

|q|“n φKpqq.

By Equation (5), the map z ÞÑ ` “ 2 Repzq from Lb
N “ tlog q : q P pb r t0uq, |q| “ nu

to the set AD
´,D`

n of lengths of the common perpendiculars between D´ and D` with
length 2 lnn hence sends the sum of the Euler weights

ř

|q|“n φKpqq to
|OˆK |

2

2 times the
multiplicity ωplnnq defined in Equation (69) of the common perpendiculars of length `.
The claim follows. l

The following result computes the pair correlation function without scaling of the
lengths of the common perpendiculars from the Margulis cusp neighbourhood at infin-
ity to itself in the Hecke-Bianchi orbifold Γ0rbszH2

R, giving a new proof of this special case
of [PP3, Cor. 4.2], see also the remark after Corollary 2.5. The maps Re : EN Ñ R for
N P N being not uniformly proper, the case with scalings requires a new analysis.

Corollary 7.2 For every ideal b P I `
K , as N Ñ `8, the pair correlation measures

R
A b
D´,D`

, 1

N on R, renormalized to be probability measures, weak-star converge to a mea-
sure absolutely continuous with respect to the Lebesgue measure on R, with pair correlation
function given by s ÞÑ e´ 2|s|.

Proof. This follows from Theorem 5.1 with Λ “ b as in the proof of Corollary 2.5, using
Proposition 7.1. l
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