Erratum

Sur les automorphismes extérieurs des groupes hyperboliques Ann. Scien. Ec. Norm. Sup. **30** (1997) 147–167

Frédéric Paulin

December 31, 2021

The author thanks Gilles Courtois for noticing that Proposition 2.1 (3) is incorrect as stated.

Firstly, $d(f_i(*_i), *_i)$ should be $d_i(f_i(*_i), *_i)$, where the second $*_i$ is the basepoint in the metric space Y_i .

Secondly, the map from X_{∞} to Y_{∞} defined by $(x_i)_{i \in \mathbb{N}} \mapsto (f_i(x_i))_{i \in \mathbb{N}}$ gives by passing to the quotient a map f_{ω} from X_{ω} to Y_{ω} only if we assume that $\epsilon = 0$.

When $\epsilon \neq 0$, for every class $x = [(x_i)_{i \in \mathbb{N}}] \in X_{\omega}$, we choose $(\tilde{x}_i)_{i \in \mathbb{N}} \in X_{\infty}$ one of its representative. Then we define the map f_{ω} by asking $f_{\omega}(x)$ to be the image of the sequence $(f_i(\tilde{x}_i))_{i \in \mathbb{N}}$ (which does belong to Y_{∞}) by the canonical projection from Y_{∞} to Y_{ω} .

The fact that for every $x = [(x_i)_{i \in \mathbb{N}}] \in X_{\omega}$ we have $\lim_{\omega} d_i(x_i, \tilde{x}_i) = 0$ implies that f_{ω} is indeed a (λ, ϵ) -quasi-isometric map.

Laboratoire de mathématique d'Orsay, UMR 8628 CNRS, Bâtiment 307, Université Paris-Saclay, 91405 ORSAY Cedex, FRANCE *e-mail: frederic.paulin@universite-paris-saclay.fr*