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Abstract

We extend formulae of Mertens and Mirsky on the asymptotic behaviour of the
standard Euler function to the Euler functions of principal rings of integers of imagi-
nary quadratic number fields, giving versions in angular sectors and with congruences.
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1 Introduction

Let K be a number field of degree nK , with ring of integers OK , number of real places
r1, number of complex conjugated places r2, regulator RK , class number hK , number of
units ωK , discriminant DK and Dedekind zeta function ζK (see for instance [Nar]). Let
I `
K be the semigroup of nonzero ideals of OK , let ϕK : I `

K Ñ N be the Euler function
of K, and let N : I `

K Ñ N be the norm, with ϕKpaq “ ϕKpaOKq and Npaq “ NpaOKq for
every a P OK ´t0u. As usual, p below ranges over prime ideals in I `

K . The functions Op¨q
below depend only on K.

Our first result (see Section 2) is a Mertens formula with congruences for number
fields. Though probably well-known at least when m “ OK , we provide a proof for lack of
reference (compare with [Gro, Satz 2], [Cos, §4.3], [PP1, Theo. 3.1]) since arguments of its
proof will be useful for our next result. For every m P I `

K , let

cm “ Npmq
ź

p|m

p1`
1

Nppq
q .

Theorem 1.1 For every m P I `
K , if nK ě 2, then as xÑ `8, we have

ÿ

aPI `
K : Npaqďx, m|a

ϕKpaq “
2r1`r2´1 πr2 RK hK

ωK
a

|DK | ζKp2q cm
x2 `O

`

x
2´ 1

nK

˘

.

Assume in the remaining part of this introduction that K is imaginary quadratic and
that OK is principal. By Dirichlet’s unit theorem, these assumptions are more or less
necessary (besides K “ Q) for the following sums to be well defined and finite.

1Keywords: Euler function, imaginary quadratic number field, Mertens formula, Mirsky for-
mula. AMS codes: 11R04, 11N37, 11R11.
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We give in Section 3 a version in angular sectors of the Mertens formula given by
Theorem 1.1, that will be needed in [PP3]. For all z P Cˆ, θ P s0, 2πs and R ě 0, we
consider the truncated angular sector

Cpz, θ,Rq “
!

ρ eitz : t P s ´
θ

2
,
θ

2
s, 0 ă ρ ď

R

|z|

)

. (1)

It is important that the function Op¨q in the following result is uniform in m, z and θ.

Theorem 1.2 Assume that K is imaginary quadratic with OK principal. For all m P I `
K ,

z P Cˆ and θ P s0, 2πs, as xÑ `8, we have

ÿ

aPmXCpz,θ,xq

ϕKpaq “
θ

2
a

|DK | ζKp2q cm
x4 `Opx3q .

Lastly, we give a uniform asymptotic formula for the sum in angular sectors in C of
angle θ of the products of two shifted Euler functions with congruences, that will be needed
in [PP3]. When K “ Q (the sectorial restriction is then meaningless), this formula is due
to Mirsky [Mir, Thm. 9, Eq. (30)] without congruences, and to Fouvry [PP2, Appendix]
with congruences. For simplicity, we give a version without congruences and without an
error term in this introduction, see Section 4 Theorem 4.1 for the general statement.

Theorem 1.3 For all z P Cˆ, θ P s0, 2πs and k P OK , as xÑ `8, we have

ÿ

aPOKXCpz,θ,xq

ϕKpaqϕKpa` kq „
θ

3
a

|DK |

ź

p

`

1´
2

Nppq2
˘

ź

p | kOK

`

1`
1

NppqpNppq2 ´ 2q

˘

x6 .

Theorems 1.2 and 1.3 are used in [PP3] in order to study the correlations of pairs
of complex logarithms of Z-lattice points in the complex line at various scalings, when
the weights are defined by the Euler function, proving the existence of pair correlation
functions. We prove in op. cit. that at the linear scaling, the pair correlations exhibit level
repulsion, as it sometimes occurs in statistical physics. A geometric application is given in
op. cit. to the pair correlation of the lengths of common perpendicular geodesic arcs from
the maximal Margulis cusp neighborhood to itself in the Bianchi manifolds PSL2pOKqzH3

R.

Acknowledgements: This research was supported by the French-Finnish CNRS IEA PaCap. We
thank E. Fouvry for his inspirational appendix in [PP2].

2 A Mertens formula with congruences for number fields
Recall that I `

K is the semigroup of nonzero (integral) ideals of the Dedekind ring OK (with unit
OK). For all I, J P I `

K , we write J | I if I Ă J , we denote by pI, Jq “ I ` J the greatest common
ideal divisor of I and J , by rI, Js “ I X J the least common ideal multiple of I and J , and by IJ
the product ideal of I and J .

We denote by NpIq “ CardpOK{Iq the (absolute) norm of I P I `
K , which is completely multi-

plicative. The norm of a P OK ´ t0u is

Npaq “ NpaOKq .

It coincides with the (relative) norm NK{Qpaq of a (see for instance [Nar]), and in particular is
equal to |a|2 if K is imaginary quadratic.
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Recall that the Dedekind zeta function ζK : ts P C : Repsq ą 1u Ñ C of K is defined (see for
instance [Nar, §7.1]) equivalently by

ζKpsq “
ÿ

aPI`
K

1

Npaqs
“

ź

p

`

1´
1

Nppqs
˘´1

.

We denote by ϕK : I `
K Ñ N the Euler function of K, defined (see for instance [Nar, page 13])

equivalently by

@ a P I `
K , ϕKpaq “ Card

`

pOK{aq
ˆ
˘

“ Npaq
ź

p|a

`

1´
1

Nppq

˘

.

For every a P OK ´ t0u, we define ϕKpaq “ ϕKpaOKq. Note that the Euler function ϕK is
multiplicative2 by the Chinese remainder theorem. We have

Npaq “
ÿ

b|a

ϕKpbq , (2)

as checked by telescopic sum when a is a power of a prime ideal, and by multiplicativity.
We denote by µK : I `

K Ñ Z the Möbius function of K, defined by

@ a P I `
K , µKpaq “

$

’

’

’

&

’

’

’

%

1 if a “ OK

0 if p2 | a for some prime ideal p

p´1qm if a “ p1 . . . pm for pairwise distinct prime ideals

p1, . . . , pm and m P N´ t0u .

For every a P OK ´t0u, we define µKpaq “ µKpaOKq. We have (see for instance [Sha]) the Möbius
inversion formula: for all f, g : I `

K Ñ C,

fpaq “
ÿ

b|a

gpbq if and only if gpaq “
ÿ

b|a

µKpbqfpab
´1q . (3)

In particular, since the norm is completely multiplicative and by Equation (2), we have

@ a P I `
K ,

ϕKpaq

Npaq
“

ÿ

b|a

µKpbq

Npbq
. (4)

Proof of Theorem 1.1. In this proof, all functions Op¨q depend only on K. Let

ρK “
2r1 p2πqr2 RK hK

ωK
a

|DK |
. (5)

Recall (see for instance [MO, Theo. 5]) that, as xÑ ` 8, we have

Cardta P I `
K : Npaq ď xu “ ρK x`Opx

1´ 1
nK q . (6)

By Abel’s summation formula, as y Ñ ` 8, we have
ÿ

a PI`
K : Npaqďy

Npaq “
ÿ

1ďnďy

nCardta P I `
K : Npaq “ nu “

ρK
2
y2 `Opy

2´ 1
nK q . (7)

2Recall that a function f : I `
K Ñ Cˆ is multiplicative if fpOKq “ 1 and if for all coprime integral ideals

a, b in I `
K , we have fpabq “ fpaqfpbq.
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Furthermore, we have
Cardta P I `

K : Npaq “ yu “ Opy
1´ 1

nK q .

This formula implies since Nppb,mqq ď Npmq that

ˇ

ˇ

ˇ

ÿ

bPI`
K : Npbqěx

µKpbq
Nppb,mqq

Npbq2

ˇ

ˇ

ˇ
“ O

´

Npmq
ÿ

něx

n
1´ 1

nK

n2

¯

“ OpNpmq x
´ 1
nK q . (8)

Let us denote by Smpxq the sum on the left hand side in the statement of Theorem 1.1. Note that
by the Gauss lemma, for all m, b, c P I `

K , we have m | bc if and only if mpm, bq´1 | c. Then by
Equation (4), by the change of variable c “ mpm, bq´1a, by the complete multiplicativity of the
norm, by Equation (7) with y “ Nppb,mqqx

Npbq Npmq , since Nppb,mqq ď Npmq, and by Equation (8), we have

Smpxq “
ÿ

aPI`
K : Npaqďx, m|a

ÿ

b,c PI`
K : bc“a

µKpbq Npcq

“
ÿ

bPI`
K : Npbqďx

µKpbq
ÿ

c PI`
K : Npcqď x

Npbq , m|bc

Npcq

“
ÿ

bPI`
K : Npbqďx

µKpbq
ÿ

a PI`
K : Npaqď

Nppb,mqqx
Npbq Npmq

Npmq

Nppb,mqq
Npaq

“

´

ÿ

bPI`
K : Npbqďx

µKpbq
Nppb,mqq

Npbq2

¯ ρK
2 Npmq

x2 `Opx
2´ 1

nK q

“

´

ÿ

bPI`
K

µKpbq
Nppb,mqq

Npbq2

¯ ρK
2 Npmq

x2 `Opx
2´ 1

nK q . (9)

By decomposing a nonzero integral ideal b into powers of prime ideals, by the definition of the
Möbius function, and by the Euler product formula for the Dedekind zeta function, we have

ÿ

bPI`
K

µKpbq
Nppb,mqq

Npbq2
“

ź

p -m
p1´

1

Nppq2
q
ź

p |m

p1´
1

Nppq
q “

1

ζKp2q

ź

p |m

Nppq

1` Nppq
.

Equations (9) and (5) hence imply Theorem 1.1. l

3 A sectorial Mertens formula
Assume in the remaining part of this paper that K is imaginary quadratic and that OK is principal
(or equivalently factorial (UFD)). By Dirichlet’s unit theorem, the group of units OˆK , whose order
we denote by |OˆK |, is finite if and only if pr1, r2q is equal to p1, 0q or p0, 1q. This justifies our
restriction, the case K “ Q being well-known. With the notation of the beginning of the intro-
duction, we then have (see for instance [Nar]) DK P t´4,´8,´3,´7,´11,´19,´43,´67,´163u,
and

r1 “ 0, r2 “ 1, nK “ 2, RK “ 1, ωK “ |O
ˆ
K | and hK “ 1 . (10)

Given a Z-lattice ~Λ in the Euclidean space C (that is, a discrete (free abelian) subgroup of
pC,`q), we denote by covol~Λ “ VolpC{~Λq the area of a fundamental parallelogram F~Λ for ~Λ and
by diam~Λ the diameter of F~Λ. Note that every element m P I `

K is a Z-lattice in C with

covolm “ Npmq covolOK “
Npmq

a

|DK |

2
and diamm “ Op

a

|DK | Npmq q (11)

since diamOK “ |1`
?
DK
2 | if DK ” 0 mod 4 and diamOK “ |

3`
?
DK

2 | if DK ” 1 mod 4.
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With the notation of Equation (1), note that for every z1 P Cˆ, we have

z1Cpz, θ, Rq “ Cpzz1, θ, R |z1| q . (12)

Proof of Theorem 1.2. Let z P Cˆ, θ P s0, 2πs and y ą 0. Since AreapCpz, θ, yqq “ θ
2 y

2, the
standard Gauss counting argument, the finiteness of the number of imaginary quadratic number
fields with class number 1, and the equality on the left of Formula (11) give

Card
`

OK X Cpz, θ, yq
˘

“
AreapCpz, θ, yqq

covolOK
`O

`diamOK y

covolOK

˘

“
θ

a

|DK |
y2 `Opyq .

Since the map z1 ÞÑ |z1|2 “ Npz1q takes only integral values on OK , by Abel’s summation formula,
as y Ñ ` 8, we have

ÿ

dPOKXCpz,θ,yq

|d|2 “
ÿ

1ďnďy2

nCardtd P OK X Cpz, θ, yq : |d|2 “ nu

“
θ

2
a

|DK |
y4 `Opy3q . (13)

For all x ě 1 and b P I `
K , let us fix b,m, pb,mq P OK ´ t0u such that b “ bOK , m “ mOK

and pb,mq “ pb,mqOK . Since for every c P OK ´ t0u we have m | bc if and only if m
pb,mq | c, by the

change of variable c “ m
pb,mq d, by Equation (12) and by Equation (13) applied with y “ x|pb,mq|

|m| |b| , if

Sb “
ÿ

cPI`
K , aPmXCpz,θ,xq : bc“aOK

Npcq ,

we have

Sb “
ÿ

c POK´t0u, aPmXCpz,θ,xq : bc“a

|c|2

“
ÿ

c POK´t0u : bc PCpz,θ,xq, m | bc

|c|2 “
ÿ

d POK´t0u : d PCp
zpb,mq
mb , θ,

x|pb,mq|
|m| |b| q,

Npmq

Nppb,mqq
|d|2

“
θ Nppb,mqq

2
a

|DK | Npmq Npbq2
x4 `O

´ x3

Npbq3{2

¯

.

Let us denote by Sm,z,θpxq the sum on the left hand side in the statement of Theorem 1.2. Then
by Equation (4), we have

Sm,z,θpxq “
ÿ

aPmXCpz,θ,xq

ϕKpaOKq “
ÿ

aPmXCpz,θ,xq

ÿ

b,c PI`
K : bc“aOK

µKpbq Npcq

“
ÿ

bPI`
K : Npbqďx2

µKpbq Sb

“

´

ÿ

bPI`
K : Npbqďx2

µKpbq
Nppb,mqq

Npbq2

¯ θ

2
a

|DK | Npmq
x4 `Opx3q .

The proof then proceeds exactly as in the proof of Theorem 1.1. l
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4 A sectorial Mirsky formula
We now give a uniform asymptotic formula for the sum in angular sectors of the products of shifted
Euler functions with congruences. For all z P Cˆ, θ P s0, 2πs, k P OK , m P I `

K and x ě 1, let

Sz,θ,k,mpxq “
ÿ

aPmXCpz,θ,xq

ϕKpaqϕKpa` kq . (14)

Theorem 4.1 Assume that K is imaginary quadratic with OK principal. There exists a universal
constant C ą 0 such that for all k P OK and m P I `

K , there exists cm,k P s0, 1s such that for all
z P Cˆ, θ P s0, 2πs and x ě 1, we have

ˇ

ˇ

ˇ
Sz,θ,k,mpxq ´

θ cm,k

3
a

|DK |
x6

ˇ

ˇ

ˇ
ď C

`

p1`
a

Npkq qx5 ` Npkqx4
˘

.

We will prove Theorem 4.1 at the end of this Section after giving a number of Lemmas required
for the proof. We fix k P OK and m “ mOK P I `

K , and we define h “ kOK , which is a possibly
zero integral ideal. We start by giving the first definition and a simpler formula for the constant
cm,k that appears in the statement of Theorem 4.1. We define

cm,k “
ÿ

b,cPI`
K

pb,cq | h, pcpb,mq,mpb,cqq | hb

µKpbqµKpcq
N
`

pcpb,mq, mpb, cqq
˘

Npbq2 Npcq2 Npmq
, (15)

and
c1m “ inf

kPOK
cm,k .

Lemma 4.2 The series in Equation (15) defining cm,k converges absolutely. We have cm,k ď 1
and c1m ą 0. Furthermore, we have

cm,k “
1

Npmq

ź

p
pp,mq | h

`

1´
Nppp,mqq

Nppq2
˘

ź

p

`

1´
κm,hppq κ

1
hppq Nppp,mqq

Nppq2
˘

, (16)

where

κm,hppq “
!

p1´ Nppp,mqq
Nppq2 q´1 if pp,mq | h

1 otherwise
and κ1hppq “

"

1´ 1
Nppq if p | h

1 otherwise.
(17)

In the special case m “ OK , Equation (16) becomes

cOK ,k “
ź

p

`

1´
1

Nppq2
˘

ź

p | h

´

1´
p1´ 1

Nppq2 q
´1p1´ 1

Nppq q

Nppq2

¯

ź

p - h

´

1´
p1´ 1

Nppq2 q
´1

Nppq2

¯

“
ź

p

`

1´
1

Nppq2
˘

ź

p | h

´

1´
Nppq ´ 1

NppqpNppq2 ´ 1q

¯

ź

p

`

1´
1

Nppq2 ´ 1

˘

ź

p | h

´

1´
1

Nppq2 ´ 1

¯´1

“
ź

p

`

1´
2

Nppq2
˘

ź

p | h

`

1`
1

NppqpNppq2 ´ 2q

˘

. (18)

Theorem 1.3 in the introduction follows from Theorem 4.1 and the above computation.

Proof. Let us prove that uniformly in x ě 1, we have

ÿ

b,cPI`
K : Npbqěx,

pb,cq | h, pcpb,mq,mpb,cqq | hb

N
`

pcpb,mq, mpb, cqq
˘

Npbq2 Npcq2 Npmq
“ O

` 1
?
x

˘

. (19)
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This implies, by taking x “ 1, that the first claim of Lemma 4.2 is satisfied, since the Möbius func-
tion has values in t0,˘1u. Let us denote by Zm,hpxq the above sum. Since N

`

pcpb,mq, mpb, cqq
˘

ď

Npmpb, cqq, we have

Zm,hpxq ď
ÿ

b,cPI`
K : Npbqěx

Nppb, cqq

Npbq2 Npcq2
ď

ÿ

a,b1,c1PI`
K

Npb1qěx{ Npaq

Npaq

Npab1q2 Npac1q2

“
ÿ

c1PI`
K

1

Npc1q2

ÿ

aPI`
K

1

Npaq5{2

ÿ

b1PI`
K

Npaq Npb1qěx

1

Npb1q3{2 pNpaq Npb1qq1{2
ď ζKp2q ζKp

5

2
q ζKp

3

2
q

1
?
x
.

Equation (19) follows, since there are only finitely many fields K satisfying the assumptions of
Theorem 4.1.

The proof of Equation (16) that we now give is similar to Fouvry’s proof of Equation (21) in
[PP2, Appendix].

For every b P I `
K , let χb : I `

K Ñ t0, 1u be the characteristic function of the set of elements
c P I `

K such that pc, bq | h. Let us define a map ψb : I `
K Ñ I `

K by

ψb : c ÞÑ
`

c,
m

pb,mq
pb, cq

˘

. (20)

Note that the assertion pcpb,mq,mpb, cqq | b h is equivalent to the assertion

ψbpcq |
b

pb,mq
h .

For every b P I `
K , let χ˚b : I `

K Ñ t0, 1u be the characteristic function of the set of elements c P I `
K

such that the above divisibility assertion is satisfied. Let us finally define a map C˚ : I `
K Ñ R

(which depends on m and h) by

C˚ : b ÞÑ
ÿ

cPI`
K

µKpcq

Npcq2
χbpcq χ

˚
bpcq Npψbpcqq . (21)

By the absolute convergence property, Equation (15) then becomes

cm,k “
1

Npmq

ÿ

bPI`
K

µKpbq

Npbq2
Nppb,mqq C˚pbq . (22)

In order to transform the series C˚pbq defined by Formula (21) into an Eulerian product and in
order to analyse it, we will use the following two lemmas.

Lemma 4.3 For every b P I `
K , the maps χb, χ˚b and ψb on I `

K are multiplicative.

Proof. We have ψbpOKq “ OK and χbpOKq “ χ˚bpOKq “ 1. Let I, J P I `
K be coprime.

The equality pIJ, bq “ pI, bqpJ, bq and the fact that pI, bq and pJ, bq are coprime imply that
χbpIJq “ χbpIqχbpJq.

In order to prove the multiplicativity of the map ψb, we write

ψbpIJq “
`

IJ,
m

pb,mq
pb, IJq

˘

“
`

I,
m

pb,mq
pI, bqpJ, bq

˘`

J,
m

pb,mq
pI, bqpJ, bq

˘

.

Since I is coprime to pJ, bq and since J is coprime to pI, bq, we obtain as wanted the equality
ψbpIJq “ ψbpIqψbpJq.

Finally, the multiplicativity property χ˚bpIJq “ χ˚bpIqχ
˚
bpJq of the function χ

˚
b is a consequence

of the multiplicativity of the map ψb and of the fact that ψbpIq and ψbpJq are coprime. l
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Lemma 4.4 For every prime ideal p and every b P I `
K , we have

ψbppq “

"

p if p | b,
pp,mq otherwise,

and

χbppq χ
˚
bppq “ 1 ô

$

&

%

p | pb, hq
or
p - b and pp,mq | h .

Proof. The first formula follows from the definition of ψbppq (see Formula (20)) by considering
the three cases

‚ p | b,
‚ p - b and p | m, and
‚ p - b and p - m.
The second formula follows from the first one, from the definitions of χbppq and χ˚bppq, and

from the fact that χbppq χ
˚
bppq “ 1 if and only if χbppq “ χ˚bppq “ 1, by considering the two cases

‚ p | b and
‚ p - b. l

The arithmetic function c ÞÑ µKpcqχbpcq χ
˚
bpcq Npψbpcqq being multiplicative by Lemma 4.3

and the complete multiplicativity of the norm, and vanishing on the nontrivial powers of primes,
the series defining C˚pbq in Formula (21) may be written as an Eulerian product

C˚pbq “
ź

p

`

1´
χbppq χ

˚
bppq Npψbppqq

Nppq2
˘

“
ź

p
χbppq χ

˚
b ppq“1

`

1´
Npψbppqq

Nppq2
˘

. (23)

By Equations (22) and (23), and by Lemma 4.4, we have

cm,k “
1

Npmq

ÿ

bPI`
K

µKpbq

Npbq2
Nppb,mqq

ź

p - b, pp,mq | h

`

1´
Nppp,mqq

Nppq2
˘

ź

p | pb,hq

`

1´
1

Nppq

˘

.

Let us define Γm,h “
ź

p
pp,mq | h

`

1´ Nppp,mqq
Nppq2

˘

, so that

cm,k “
Γm,h

Npmq

ÿ

bPI`
K

µKpbq

Npbq2
Nppb,mqq

ź

p
p | b, pp,mq | h

`

1´
Nppp,mqq

Nppq2
˘´1 ź

p
p | pb,hq

`

1´
1

Nppq

˘

.

This equation writes cm,k as a series Γm,h

Npmq

ř

bPI`
K

fpbq
Npbq2 where f : I `

K Ñ R is a multiplicative
function, which vanishes on the nontrivial powers of prime ideals. By Eulerian product, we have
therefore proved Equation (16).

Let us now prove that 0 ď cm,k ď 1. Note that for every prime ideal p, we have

1 ď κm,hppq ď 2 and
1

2
ď κ1hppq ď 1 . (24)

In particular all the factors of the two products over p in Equation (16) belong to r0, 1s, hence
0 ď cm,k ď

1
Npmq ď 1.

Let us finally prove that c1m ą 0. For every prime ideal p, let wp “
κm,hppq κ

1
hppq Nppp,mqq

Nppq2 . By
Formula (17), if Nppq “ 2, we have

wp “

$

’

’

&

’

’

%

1{2 if p | h and p | m
1{6 if p | h and p - m
1{2 if p - h and p | m
1{3 if p - h and p - m
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In particular 1´ wp ‰ 0 if Nppq “ 2. From the inequalities (24) and by Equation (16), we have

cm,k ě
1

Npmq

ź

p
pp,mq | h

`

1´
Nppp,mqq

Nppq2
˘

ź

p : Nppqě3

`

1´
2 Nppp,mqq

Nppq2
˘

ź

p : Nppq“2

p1´ wpq .

Since there are only finitely many primes ideals p dividing m, the term on the right hand side is
bounded from below by a positive constant c1m “ minkPOK cm,k ą 0. This concludes the proof of
Lemma 4.2. l

Now that we understand the constant cm,k , we continue towards the proof of Theorem 4.1 by
giving an asymptotic formula for the sum

rSpxq “
ÿ

aPmXCpz,θ,xq

ϕKpaq

Npaq

ϕKpa` kq

Npa` kq
. (25)

Lemma 4.5 Uniformly in m P I `
K , k P OK , z P Cˆ, θ P s0, 2πs and x ě 1, we have

rSpxq “
θ cm,k
a

|DK

x2 `Opxq . (26)

Proof. For all nonzero elements a and b in the factorial ring OK , we denote by pa, bq any fixed
choice of gcd of a and b, and by ra, bs any fixed choice of lcm of a and b.

By Equation (4), for every a P OK ´ t0u, we have

ϕKpaq

Npaq
“

1

|OˆK |

ÿ

bPOK´t0u : b | a

µKpbq

Npbq
.

Let x ě 1. Applying twice this equality, since Npbq ď Npaq when b | a, we have by Fubini’s theorem

rSpxq “
1

|OˆK |
2

ÿ

aPmXCpz,θ,xq

ÿ

bPOK´t0u : b | a

µKpbq

Npbq

ÿ

cPOK´t0u : c | a`k

µKpcq

Npcq

“
1

|OˆK |
2

ÿ

bPOK´t0u : |b|ďx

µKpbq

Npbq

ÿ

cPOK´t0u

µKpcq

Npcq

ÿ

aPmXCpz,θ,xq
b | a, c | a`k

1 . (27)

Let b, c P OK´t0u. The system of three congruences

$

&

%

a ” 0 mod m
a ” 0 mod b
a ” ´k mod c

has a solution a P OK´t0u

such that |a| ď x if and only if there exists an element n P OK ´ t0u such that a “ bn, |n| ď x
|b|

and
"

bn ” 0 mod m
bn ” ´k mod c .

(28)

When pb, cq - k, no solution exists.
Assume that pb, cq | k. Since b

pb,cq is invertible modulo c
pb,cq , we denote by b

pb,cq a multiplicative
inverse of b

pb,cq modulo c
pb,cq . Then the system of congruences (28) is equivalent to

#

b
pb,mqn ” 0 mod m

pb,mq
b
pb,cqn ” ´

k
pb,cq mod c

pb,cq

ô

#

n ” 0 mod m
pb,mq

n ” ´ k
pb,cq

b
pb,cq mod c

pb,cq .
(29)

Recall that a system of two congruences
"

n ” α0 mod α
n ” β0 mod β

with unknown n P OK , where

α, β, α0, β0 P OK and α, β ‰ 0, has a solution if and only if α0 ´ β0 ” 0 mod pα, βq. Furthermore,

9



if this congruence condition is satisfied, that is, if there exists n0,m0 P OK such that α0 ´ β0 “

βm0 ´ αn0, then n is a solution if and only if

n´ α0 ´ αn0 P αOK X βOK “ rα, βsOK .

This is equivalent to asking n to belong to the translate Λα,β,α0,β0 “ α0 ` αn0 ` ~Λα,β of the
Z-lattice ~Λα,β “ rα, βsOK .

Applying this with α “ m
pb,mq , β “

c
pb,cq , α0 “ 0 and β0 “ ´

k
pb,cq

b
pb,cq , since the elements b

pb,cq

and b
pb,mq are both coprime with

`

m
pb,mq ,

c
pb,cq

˘

, the system (29) has a solution if and only if the
following divisibility condition holds

´ m

pb,mq
,

c

pb, cq

¯

|
k

pb, cq

b

pb, cq
ô

´ m

pb,mq
,

c

pb, cq

¯

|
k

pb, cq

ô

´ m

pb,mq
,

c

pb, cq

¯

|
k

pb, cq

b

pb,mq
ô

`

mpb, cq, cpb,mq
˘

| k b .

Thus Equation (27) becomes, using Equation (12),

rSpxq “
1

|OˆK |
2

ÿ

b,c POK´t0u : |b|ďx
pb,cq | k, pmpb,cq,cpb,mqq | k b

µKpbqµKpcq

Npbq Npcq

ÿ

nPΛα,β,α0,β0
XCpb´1z, θ, x{|b|q

1 .

Let b, c be as in the index of the first sum above. Using again the standard Gauss counting
argument, using Formula (11) for the second equality and the equation Nprα, βsq “ Npαq Npβq

Nppα,βqq for the
last equality, we have, uniformly in b, c,m P OK ´ t0u, k P OK , z P Cˆ, θ P s0, 2πs and y ě 1,

CardpΛα,β,α0,β0 X Cpb
´1z, θ, yqq “

θ

2 covol~Λα,β
y2 `O

´ diam~Λα,β

covol~Λα,β
y
¯

“
θ

a

|DK | Npr
m
pb,mq ,

c
pb,cq sq

y2 `O
´ 1
b

Npr m
pb,mq ,

c
pb,cq sq

y
¯

“
θ N

`

pmpb, cq, cpb,mqq
˘

a

|DK | Npmq Npcq
y2 `O

´ N
`

pmpb, cq, cpb,mqq
˘1{2

Npmq1{2 Npcq1{2
y
¯

.

Using this with y “ x
|b| , which is at least 1 since |b| ď x, we have

rSpxq “
θ x2

a

|DK |

ÿ

b,c POK´t0u : |b|ďx
pb,cq | k, pmpb,cq,cpb,mqq | k b

µKpbqµKpcq N
`

pmpb, cq, cpb,mqq
˘

|OˆK |
2 Npbq2 Npcq2 Npmq

`O
´

x
ÿ

b,c POK´t0u

N
`

pmpb, cq, cpb,mqq
˘1{2

|OˆK |
2 Npbq3{2 Npcq3{2 Npmq1{2

¯

. (30)

By Equation (19) (replacing therein x by x2), completing the first sum of the above equation
with the indices b P OK ´t0u such that |b| ą x introduces an error of the form Op 1

x q (uniformly in
m P OK ´t0u, k P OK and x ě 1). A computation similar to the one done for Equation (19) gives
that the second sum in Equation (30) is actually bounded by 1

|OˆK |
2
ζKp

3
2 q

2 ζKp2q, which is uniform
since there are only finitely many such fields K.

By the definition of the constant cm,k in Equation (15), this proves Equation (26), hence
concludes the proof of Lemma 4.5. l

Proof of Theorem 4.1. For all a, k P OK with a ‰ 0, we have

Npa` kq “ Npaq
ˇ

ˇ

ˇ
1`

k

a

ˇ

ˇ

ˇ

2

ď Npaq
´

1` 2

d

Npkq

Npaq
`

Npkq

Npaq

¯

,
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and similarly Npa ` kq ě Npaq
`

1 ´ 2
b

Npkq
Npaq `

Npkq
Npaq

˘

. Let us define the maps f˘ : r1,`8r Ñ R by

t ÞÑ t2 ˘ 2
a

Npkq t3{2 ` Npkq t, so that their derivatives are f 1˘ptq “ 2t˘ 3
a

Npkq t1{2 ` Npkq and

f´pNpaqq

Npaq Npa` kq
ď 1 ď

f`pNpaqq

Npaq Npa` kq
(31)

For all z P Cˆ, θ P s0, 2πs, x ě 1 and n P N´ t0u, let

an “
ÿ

aPmXCpz,θ,x q : Npaq“n

ϕKpaq

Npaq

ϕKpa` kq

Npa` kq
,

so that by Equation (25), we have rSpxq “
ÿ

1ďnďx2

an.

By the definition (14) of the sum Sz,θ,k,mpxq and the inequalities (31), by Abel’s summation
formula, by applying twice Lemma 4.5, and since cm,k ď 1 by Lemma 4.2, we have

Sz,θ,k,mpxq ď
ÿ

1ďnďx2

an f`pnq “
´

ÿ

1ďnďx2

an

¯

f`px
2q ´

ż x2

1

´

ÿ

1ďnďt

an

¯

f 1`ptq dt

“

´ θ cm,k
a

|DK |
x2 `Opxq

¯´

x4 ` 2
a

Npkqx3 ` Npkqx2
¯

´

ż x2

1

´ θ cm,k
a

|DK |
t`Opt1{2q

¯´

2t` 3
a

Npkq t1{2 ` Npkq
¯

dt

“
θ cm,k

3
a

|DK |
x6 `O

`

p1`
a

Npkq qx5 ` Npkqx4
˘

.

Replacing f` by f´ gives the same minoration to Sz,θ,k,mpxq, hence Theorem 4.1 follows. l
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