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Motivation

Notation
If Y is a class of metric spaces, FY is the class of finitely generated groups Γ such
that every isometric action of Γ on a space Y ∈ Y fixes a point.

Examples

I A ={simplicial trees}. Then FA is the class of groups which do not split as
amalgamated sums (Bass-Serre).

I H ={Hilbert spaces}. Then FH ⇔ (T ) (Delorme-Guichardet).

I Lp = {Lp(X , µ)}. Then FLp is useful in connection with local rigidity of smooth
actions on compact manifolds (Fisher-Margulis).

I SI ={symmetric spaces and Euclidean buildings of type Ãn, all n}. Then
FSI ⇔ finite representation type (Bass ?).

Conjecture
(Gromov, 2003). Random groups in suitable models have FSI.

This talk : (yet) unsuccessful attempt to prove this.
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Combinatorial harmonic maps

Definition
Let C be a finite simplicial 2-complex. Put on each edge a weight equal to the number
of faces that contain it, put on each vertex the total weight of edges containing it.

For a map g : C → Y sending vertices of C to a metric space Y , define the energy

E(g) =
X

edges e

m(e)d(g(ori(e)), g(end(e)))2 =
1

2

X
c

X
c′∼c

m(c, c ′)d(g(c), g(c ′))2.

Let X be a simplicial 2-complex with a cocompact action of a group Γ.
If f : X → Y is equivariant, define

E(g) =
X

e edge of Γ\X
m(e)d(f (ori(ẽ)), f (end(ẽ)))2,

where ẽ denotes a lift of e to X . Say f is harmonic if it minimizes energy among
equivariant maps.

Proposition
Let Y be CAT(0). Then an equivariant map f : X → Y is harmonic if and only if for
each vertex x of X , f (x) coincides with the barycenter of f|link(x), i.e. the unique point
of Y which minimizes the weighted sum of squares of distances to the images of the
neighbours of X .
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Existence of harmonic maps

Theorem
(Stated by Gromov, 2002). Let Y ⊂ CAT (0) be closed under taking asymptotic cones.
Then a finitely generated group Γ has FY if and only if every Γ-equivariant harmonic
map X → Y has to be constant.

Proof. (Following U. Mayer, H. Izeki/T. Kondo/S. Nayatani).

1. (Jost, Mayer). Gradient ∇E makes sense. Heat flow ft exists for all t ≥ 0. It

satisfies ∂E(ft )
∂t

= −|∇E |2(ft).

2. If there exists a constant C such that for all t > 0, E(ft) ≤ C |∇E |2(ft), then ft
converges to a constant map.

3. Otherwise, along a subsequence, E(ft)−1/2|∇E |(ft) → 0. Pick nonprincipal
ultrafilter ω. Rescale (Y , d) to Yt = (Y , E(ft)−1/2d). Then
limω ft = fω : X → Yω is non constant, harmonic and equivariant for a limiting
action.
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Bottom of spectrum

Definition
(M.T. Wang, 1998). Let C be a finite weighted graph, g : C → Y a nonconstant
map. Let

d(g , bar(g))2 = inf
y∈Y

X
c∈C

m(c)d(g(c), y)2.

(If Y is CAT (0), it is the L2 distance of map g to its barycenter).

Define the Rayleigh
quotient

RQ(g) =
E(g)

d(g , bar(g))2
.

The bottom of spectrum of C relative to Y is the infimum of Rayleigh quotients of
nonconstant maps C → Y ,

λ(C , Y ) = inf
g :C→Y

RQ(g).

Example
When Y = R, the bottom of spectrum equals the smallest positive eigenvalue of the
combinatorial Laplacian ∆g(c) =

P
neighbours c′ of c m(c, c ′)(g(c)− g(c ′)).
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Garland’s formula

Discovered by H. Garland in 1972 for compact quotients of Euclidean buildings, A.
Borel (1973) for arbitrary simplicial complexes. A. Zuk applied it to prove Kazhdan’s
property. Nonlinear version due to M.T. Wang (1998).

Theorem
(H. Garland, 1972, M.T. Wang, 1998). Let X be a simplicial complex, Γ a uniform
lattice in X , acting isometricly on a metric space Y . Let f : X → Y be an equivariant
map. For x ∈ X, denote by

ED(f , x) =
1

2
d(f|link(x), f (x))2,

(where links inherit weights from X). Then

E(f ) =
X

x∈Γ\X
ED(f , x̃).

If furthermore f is harmonic, then

E(f ) = 2
X

x∈Γ\X
RQ(f|link(x))ED(f , x).

In particular, if, for all x ∈ X, λ(link(x), Y ) > 1
2
, every equivariant harmonic map

X → Y is constant.
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Proof of Garland’s formula
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X

x∈Γ\X
E(f|link(x)).

If f is harmonic, for each x ∈ X ,

E(f|link(x)) = RQ(f|link(x))d(f|link(x), bar(f|link(x)))
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= 2RQ(f|link(x))ED(f , x).
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Comparison to tangent cones

Definition
Let Y be geodesic and CAT(0). If s, s′ are geodesics emanating from y ∈ Y , let

d(s, s′) = lim
t→0

d(s(t), s(t′))

t
,

(nondecreasing limit). Identify s and s′ if d(s, s′) = 0. This gives a metric space,
denoted by TyY , with a distance nonincreasing map πy : Y → TyY .

Theorem
(M.T. Wang, 1998). Let C be a finite weighted graph. Let Y be a geodesic CAT(0)
metric space. Then

λ(C , Y ) = inf
y∈Y

λ(C , TyY ).

Corollary
Let Γ act cocompactly on X. Let Yε denote the family of CAT (0) spaces Y such that
for all x ∈ X and y ∈ Y ,

λ(link(x), TyY ) ≥
1

2
+ ε.

Then Γ ∈ FYε.
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Examples of bottoms of spectra

Theorem
(H. Izeki/S. Nayatani, 2004).

1. If Y is a tree, then for every finite weighted graph C, λ(C , Y ) = λ(C , R).

2. If Y is the building associated with Sl(3, Q2), then for every finite weighted graph
C, λ(C , Y ) ≥ 0.5878 λ(C , R).

Corollary
If λ(link(x), R) > 1

2
for all vertices x ∈ X, Γ ∈ FM where M is the class obtained by

taking products of trees, Hilbert spaces and simply connected nonpositively curved
manifolds.
To add the building associated with Sl(3, Q2), one needs require
λ(link(x), R) > 0.8507.
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Random groups

Observe that every group presentation can be modified, by adding generators, so that
all relators have length 3.

Consider presentations on m fixed generators and (2m − 1)3d relators chosen
independently at random among the (2m − 1)3 possibilities. We are interested in
properties which are satisfied with overwhelming probability as m tends to infinity.
Such a property is said to be satisfied by a random group in density d .

Theorem
(M. Gromov, 1993). Random groups in density < 1

2
are infinite and hyperbolic.

(A. Zuk, 2003). Random groups in density > 1
3

have Kazhdan’s property (T).

Proof. (very rough idea)
The Cayley complex has links which look like random graphs. Such graphs (M. Broder
and E. Shamir, 1987) have bottom of spectra which tend to 1 as m tends to infinity.

Corollary
Random groups in density > 1

3
are FM′ where M′ is the class obtained by taking

products of trees, Hilbert spaces, simply connected nonpositively curved manifolds and
the building associated with Sl(3, Q2).



Random groups

Observe that every group presentation can be modified, by adding generators, so that
all relators have length 3.

Consider presentations on m fixed generators and (2m − 1)3d relators chosen
independently at random among the (2m − 1)3 possibilities. We are interested in
properties which are satisfied with overwhelming probability as m tends to infinity.
Such a property is said to be satisfied by a random group in density d .

Theorem
(M. Gromov, 1993). Random groups in density < 1

2
are infinite and hyperbolic.

(A. Zuk, 2003). Random groups in density > 1
3

have Kazhdan’s property (T).

Proof. (very rough idea)
The Cayley complex has links which look like random graphs. Such graphs (M. Broder
and E. Shamir, 1987) have bottom of spectra which tend to 1 as m tends to infinity.

Corollary
Random groups in density > 1

3
are FM′ where M′ is the class obtained by taking

products of trees, Hilbert spaces, simply connected nonpositively curved manifolds and
the building associated with Sl(3, Q2).



Random groups

Observe that every group presentation can be modified, by adding generators, so that
all relators have length 3.

Consider presentations on m fixed generators and (2m − 1)3d relators chosen
independently at random among the (2m − 1)3 possibilities. We are interested in
properties which are satisfied with overwhelming probability as m tends to infinity.
Such a property is said to be satisfied by a random group in density d .

Theorem
(M. Gromov, 1993). Random groups in density < 1

2
are infinite and hyperbolic.

(A. Zuk, 2003). Random groups in density > 1
3

have Kazhdan’s property (T).

Proof. (very rough idea)
The Cayley complex has links which look like random graphs. Such graphs (M. Broder
and E. Shamir, 1987) have bottom of spectra which tend to 1 as m tends to infinity.

Corollary
Random groups in density > 1

3
are FM′ where M′ is the class obtained by taking

products of trees, Hilbert spaces, simply connected nonpositively curved manifolds and
the building associated with Sl(3, Q2).



Random groups

Observe that every group presentation can be modified, by adding generators, so that
all relators have length 3.

Consider presentations on m fixed generators and (2m − 1)3d relators chosen
independently at random among the (2m − 1)3 possibilities. We are interested in
properties which are satisfied with overwhelming probability as m tends to infinity.
Such a property is said to be satisfied by a random group in density d .

Theorem
(M. Gromov, 1993). Random groups in density < 1

2
are infinite and hyperbolic.

(A. Zuk, 2003). Random groups in density > 1
3

have Kazhdan’s property (T).

Proof. (very rough idea)
The Cayley complex has links which look like random graphs. Such graphs (M. Broder
and E. Shamir, 1987) have bottom of spectra which tend to 1 as m tends to infinity.

Corollary
Random groups in density > 1

3
are FM′ where M′ is the class obtained by taking

products of trees, Hilbert spaces, simply connected nonpositively curved manifolds and
the building associated with Sl(3, Q2).



Random groups

Observe that every group presentation can be modified, by adding generators, so that
all relators have length 3.

Consider presentations on m fixed generators and (2m − 1)3d relators chosen
independently at random among the (2m − 1)3 possibilities. We are interested in
properties which are satisfied with overwhelming probability as m tends to infinity.
Such a property is said to be satisfied by a random group in density d .

Theorem
(M. Gromov, 1993). Random groups in density < 1

2
are infinite and hyperbolic.

(A. Zuk, 2003). Random groups in density > 1
3

have Kazhdan’s property (T).

Proof. (very rough idea)
The Cayley complex has links which look like random graphs. Such graphs (M. Broder
and E. Shamir, 1987) have bottom of spectra which tend to 1 as m tends to infinity.

Corollary
Random groups in density > 1

3
are FM′ where M′ is the class obtained by taking

products of trees, Hilbert spaces, simply connected nonpositively curved manifolds and
the building associated with Sl(3, Q2).



Towards property FCAT (0) ?

Theorem
(M. Gromov, 2001). Let Ck denote the k-cycle. Then, for every CAT (0) space Y ,

λ(Ck , Y ) = λ(Ck , R) =
1

2
|1− e2iπ/k |2.

In particular, λ(C6, Y ) = 1
2
.

Proof. Introduce

F (g) =
1

2
P

m(c)

X
c, c′∈C

m(c)m(c ′)d(g(c), g(c ′))2.

Then d(g , bar(g))2 ≤ F (g) with equality when Y is a Hilbert space.

Given g : Ck → Y , extend g to a geodesic polygon, then to a ruled disk f : D → Y .
Since D has nonpositive curvature, there exists an embedding g ′ : D → R2 which is
isometric on the boundary and does not decrease other distances (Yu. Reshetnyak,
1968). Thus E(g ′) = E(g) and

d(g ′, bar(g ′))2 = F (g ′) ≥ F (g) ≥ d(g , bar(g))2,

thus RQ(g ′) ≤ RQ(g).
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Sharp Integralgeometrie

Definition
Let C be a weighted graph, Y a metric space. Define

λGro(C , Y ) = inf
g :C→Y

RQGro(g) where RQGro(g) =
E(g)

F (g)
.

If Y is geodesic CAT (0), λGro(C , Y ) ≤ λ(C , Y ), with equality when Y is a Hilbert
space.

Theorem
Let C be the incidence graph of a finite projective plane. Let Y be an arbitrary
geodesic CAT(0) space. Then

λGro(C , Y ) = RQGro(ι),

where ι : C → I is the embedding of C in the cone over C, for instance, as the link of
a vertex in a Euclidean building of type Ã2.

Proof. In the incidence graph of a finite projective plane, the number of 6-cycles
containing two given vertices depends only on their distance. Sum up Gromov’s
estimate on F for all 6-cycles. q.e.d.

Unfortunately, RQGro(ι) < 1
2
. Note that RQ(ι) = 1

2
.
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Coarse Integralgeometrie

Proposition
Let Y be complete geodesic CAT (0). Let C be a finite graph. Let L be a family of
loops of length k (i.e. maps of the k-cycle to C). Denote by

I p the smallest number of loops in L which contain a given pair of vertices of C.

I Q the largest number of loops in L which contain a given edge.

I A the number of edges of C.

Then

Q

p
<

A

k

1

2
|1− e2iπ/k |2 =⇒ λ(C , Y ) ≥ λGro(C , Y ) >

1

2
.

Conjecture
A random graph with n vertices and degree ∼ n1/3 admits a family of loops of length
6 that satisfies the above assumptions.

With some work, this might imply Gromov’s conjecture for the density model of
random groups in density > 1/3.



Proof of coarse integralgeometric estimate

X
`∈L

F (g ◦ `) =
1

4k

X
`

X
z, z′∈Ck

d(g ◦ `(z), g ◦ `(z ′))2

≥
p

4k

X
c, c′∈C

d(g(c), g(c ′))2 =
pA

k
F (g).

λGro(Ck , Y )
X
`∈L

F (g ◦ `) ≤
X
`∈L

E(g ◦ `)

=
X
`∈L

X
e edge of Ck

d(g ◦ `(ori(e)), g ◦ `(end(e)))2

≤ Q
X

e′ edge of C

d(g(ori(e′)), g(end(e′))2

= Q E(g).

RQ(g) ≥ RQGro(g) ≥
pA

Qk
λGro(Ck , Y ) =

pA

Qk

1

2
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Wirtinger inequalities

Definition
Given g : C → Y , let

Ej (g) =
X

{c, c′∈C , d(c,c′)=j}
d(g(c), g(c ′))2.

Theorem
(Gromov’s generalization of Wirtinger inequality, 2001). Let Y be CAT (0). Consider

maps g : Ck → Y . For every j, the ratio E(g)
Ej (g)

is minimum when Y = R2 and g maps

onto a regular k-gon.

Proposition
Let Y be complete geodesic CAT (0). Let C be a finite graph. Let L be a family of
isometricly embedded k-cycles in C. Assume that for each pair c, c ′ ∈ C, the number
Nj of cycles from L passing through c and c ′ depends only on j = d(c, c ′). Assume
that C admits an isometric embedding ι : C → I to a metric space I , such that each
cycle of L is mapped into a Euclidean plane isometricly embedded in I . Then

λGro(C , Y ) = RQGro(ι).
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Proof of sharp integralgeometric estimate
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The Iseki-Nayatani invariant

Definition
(H. Izeki and S. Nayatani, 2004). Let Y be a geodesic CAT(0) space. Given a finite
weighted subset Z ∈ Y (sum of weights = 1), let φ : Z →H be a 1-Lipschitz map to
Hilbert space such that for all z ∈ Z, |φ(z)| = d(z, bar(Z)). Define

δ(Z) = inf
φ

|bar(φ)|2

‖ φ ‖2
.

The IN invariant of Y is δ(Y ) = supZ⊂Y δ(Z) ∈ [0, 1].

Lemma
Let Y be a geodesic CAT(0) space, let C be a finite weighted graph. Then

λ(C , Y ) ≥ (1− δ(Y ))λ(C , R).

Proof. Given g : C → Y , let Z = g(C). Choose optimal φ for Z . Pythagore gives
d(φ, bar(φ))2 = ‖ φ ‖2 − |bar(φ)|2 = (1− δ(Z))‖ φ ‖2 = (1− δ(Z))d(g , bar(g))2.

λ(C , R) ≤ RQ(φ ◦ g) =
E(φ ◦ g)

d(φ ◦ g , bar(φ ◦ g))2
≤

E(g)

d(φ, bar(φ))2
=

1

1− δ(Z)
RQ(g).



Examples of values of IN invariant

Examples

1. Hilbert spaces have δ = 0, by definition.

2. For all Y , δ(Y ) = infy∈Y δ(TyY ). Therefore nonpositively curved manifolds have
δ(Y ) = 0.

3. Trees have δ = 0.

4. δ is continuous under ultralimits. Therefore (non proper) Euclidean buildings
which are asymptotic cones of symmetric spaces have δ(Y ) = 0.

5. For all Y and probability measure spaces Ω, δ(L2(Ω, Y )) ≤ δ(Y ).

6. δ(Y1 × Y2) ≤ max{δ(Y1), δ(Y2)}. Therefore, products of the above have δ = 0.

7. The Euclidean building of Sl(3, Qp) has δ ≥ (
√

p−1)2

2(p−√p+1)
(equality conjectured).

8. The Euclidean building of Sl(3, Q2) has δ < 1
2
.



The fixed point property FY≤δ0

Definition
Fix δ0 ∈ [0, 1]. Say a group Γ has property FY≤δ0

if every isometric action of Γ on a
geodesic CAT(0) space Y with δ(Y ) ≤ δ0 has a fixed point.

Proposition
Let δ0 < 1

2
. Let X be a simplicial complex, Γ a uniform lattice in X . Assume that for

all x ∈ X, λ(link(x), R) > 1
2(1−δ0)

. Then Γ has property FY≤δ0
.

Theorem
(A. Zuk, 2003, H. Izeki, T. Kondo and S. Nayatani, 2006). If δ0 < 1

2
, random groups

in density > 1
3

have asymptoticly property FY≤δ0
.

Theorem
(T. Kondo, 2006). In the space of marked groups, FY≤δ0

is an open condition.
Furthermore, FY<1/2 is dense.



Finite representation type

Definition
(H. Bass, 1980). Say a group Γ has finite representation type if for all n, every
homomorphism Γ → Gl(n, C) factors through a finite group.

Theorem
(T. Kondo, 2006). In the space of marked groups, there is a dense Gδ of groups which
have property FY<1/2 and finite representation type.

Proposition
If a group has a fixed point in all its isometric actions on symmetric spaces and
classical Euclidean buildings of type Ãn (call this FIS), then it has finite representation
type.

Remark
FY≤δ0

does not imply FIS. Indeed, δ tends to 1/2 for classical buildings of type Ã2, as
p tends to infinity.


