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ON THE SCHWARZ SYMMETRY PRINCIPLE
IN A MODEL CASE

JOEL MERKER AND FRANCINE MEYLAN

{Communicated by Steven R. Bell)

ABSTRACT. In this article, we prove that smooth CR diffeomorphisms between
two real analytic holomorphically nondegenerate hypersurfaces, one of which
is rigid and polynomial, extend to be locally biholomorphic. It turns out that
the result can be generalized to not totally degenerate mappings, in the sense
of Baouendi and Rothschild.

INTRODUCTION

Since the fundamental work of Baouendi, Jacobowitz and Treves [BJT], no par-
ticular attention was given to the analog of the Schwarz symmetry principle in
the complex euclidean space in the case of non essentially finite real analytic hy-
persurfaces, not to mention [MEY], [MM]. However, in view of the recent deep
work of Baouendi, Huang and Rothschild [BHR], it can be easily conjectured that
the local Schwarz symmetry principle holds for a C*-smooth CR diffeomorphism
f: M — M, between holomorphically nondegenerate real analytic hypersurfaces
M and M’, which is holomorphic in one side of M, and that this is the optimal
sufficient condition to get analyticity of a smooth CR mapping. In this paper, we
give a short and elegant geometric proof of a precise and general statement, in the
case M’ is polynomial and rigid. We do not assume that A is algebraic, so our
result does not follow from [BHR].

1. SMooTH CR DIFFEOMORPHISMS

Let M’ be a real analytic hypersurface in C™ and assume that its equation in
coordinates t = {w, 2), t € C", w = (w1, ..., wn—1) € C*~}, z € C, is in the special
form

(1.1) M zZ=z+ip(ww)=z24+1 Z oL (W),

aeNm—1 |a|<Ny
where the function p'(w,®) is a polynomial in the variables w,®, and No € N.
Choose coordinates ¢t in C™ near M. Such an equation. is usually called polynomial
rigid. Then one has the following remarkable statement.
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Theorem 1.1. Let M be a real analylic hypersurface in C*, let p € M, lel f hal
be a holomorphic mupping defined into o side D of M ot p, C°° up to M, such tﬁ'
thot f sends (M,p) CR diffeomorphically into another real analytic hypersurface en;
, (M', f(p)). Assume that there ezist coordinates (w,z) at f(p) = 0 such that M’ :
| has o polynomial like equation as (1.1) and let G(f, X) denote fr +ip'(f*, A}, f* =
» (.fli"'afn—l)' Then .
X (a) (£, A) > G(f(t), ) extends as o holomorphic function to O:(0) x OA(0); !
il (b) In casc the coordinates {w,z) are normal, ie. p'{w,0) = 0, the normal ;
N component f,, of f extends as a holomorphic function to O,(0);
; (c) f extends as a helomorphic function to O4(0) if M (hence M’ too) is holo- Not
- H; . morphically nondegenerate, : the
351 Proof. Define the reflection function (;;m
Gf(E),A) = falt) +i0' (£ (1), A}. ;
Now let § C M be a real analytic totally real submanifold of dimension n containing
0. Since there exists I, a well-defined biholomorphism taking S into & piece of R™ _
through 0, we can introduce an antiholomorphic reflection mapping os, os|s = id|s, cleg
by taking og(t) := H '(H(t)). Choose W~ a wedge of edge S near 0 such that Th]‘

W~ < Dand o5(W™) = WT ¢ U\D, U a neighborhood of 0.
First, we notice that G(f(¢),)) is holomorphic over I} x 0,(0) and C* over
(DU M) x ©,(0). By the assumption that f{(M) C M’, we have

Tull) = G(f(), FX@),  fort e M.

Choose a basis {L1,..., Ly,_1} of the complex tangent bundle T M with analytic
coefficients in (¢,7). Applying L; to the previous equation, one gets:

aG___f

M

(1.2)

k=1

Let J denote the matrix (L; fi)1<jk<n-1 and set J = det J. Since f is a CR
diffeomorphisim, J(t) # 0 for t € M. We now have

i BG BG’ i o 1T N T. T = T AT
(1.3) (aaag/\n—J = TTHLF YL fay oo Lu—1fn)

(7 denotes transposition). Writing (1.3) as (n — 1) scalar equations, applying L,
to each of them and proceeding in this manner, we see, by induction, that for ea,ch .
multiindex 8 = (81, ..., Bn_1}, there are two holomorphic functions Pm and P(Z)

the arguments (¢, {L" f}<g) and (8,7, {Z7F}}41<1) such that, for each t € M,

one has P'éz)(t, £{L7 T} <1) # 0 and

P( )(t £, {T?}:wl<|ﬁ|)
( }!'y|<1)

Here, LY denotes LI .. L7"7'. Since Pﬁg) does not vanish on M, we see that
the function P(l) / P(2 has a continuous extension to M, which we will denote by

ha(t, 4, {T7 f}\'ﬂ<!ﬁ\) Recall that since p' is a polynomial, 6/\G' becomes zero for
|3| sufficiently large, say |8] > Ng + 1. Set, for t € W, |8 < N, ha(t) =

(1.4) FGfE), 1) =




rpe M, letf
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hs(t,o5(t) {L" fes(t))}y<is)). Since t — o5(¢) is antiholomorphic in ¢, hy ex-
tends as a holomorphic function into W* and continuous in Wt U S, Now let

o =58 Y MO -Tlos@ o forte W, 6] < No,

[v[<No

40 =5

Notice that gbg matches up with ¢ over 5, by (1.4). Then the edge of the wedgs
theorem implies that there exists a neighborhood V of 0 such that each function
equal to ¢y in W, qbg in Wt, extends as a holomorphic function ¢4 defined in
V, which can be filled in by analytic discs with boundaries in W* UW™. Now,

> dp)¥f

18| < No

clearly gives the desired holomorphic extension for G{f(#), A) to Or(0) x O,(0).
The proof of (1) is complete.
If coordinates (w, z) are normal, the relation G(f(t),0) = f.(t) = ¢o(t) shows
that the normal component of f extends holomorphically at 0. This gives (b).
Since M’ is holomorphically nondegenerate, the complex analytic set at 0

(BCF (), \))a=o, for t e W™, |8] < No.

Bpq,
Bwj

A! = {{'LU) Z) S Cﬂ; det ( ) (’LU) = 0, V (al’ eny an—l) = N{nfl)z}
1<6,j<n—1

has complex codimension greater than one [S]. Hence C™\A' is connected, and
M'\(M' N A" too, since TpM' = {Z = #z} and the equations of A" depend only on
the w-coordinate. Set

C={{tAp eC"xCY te M, p=do(t), po(A)=pL(f*(t), Vlal > 1}.

According to (b), C is a real analytic subset of C". Furthermore, C contains the
germ at 0 of a C°° smooth (2n — 1)-dimensional manifold, namely the graph of f,

I'={{t, f(£)) € C" x C"; t € M}.

Lemma 1.2. Forpe M, f f(p) € M'\(M' N A'), then C =T in a neighborhood
of (p, f(p))- .

Proof. Apply the implicit function theorem. O

Since M\(f~H{M'NA")) is connected too (recall f is a diffeomorphism), Lemma
1.2 implies that a single irreducible component C; of the real analytic set C contains
T, dimgC; = 2n— 1. To conclude that f is analytic (hence holomorphically extend-
able, by complexification), apply the following theorem of Malgrange: A C*°-smooth
g-dimensional {g > 1) manifold contained in a real analytic set of dimension g is o
real analytic manifold [BHR). O

Remark 1.3. Under the hypothesis of {¢), M’ being rigid and nondegenerate cannot
contain a complex hypersurface through f(p), so M is minimal too and we do not
have to assume that f is holomorphic in one side of M at p, because of Trépreau’s
extension theorem.
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Femark 1.4. The authors conjecture that statements (a), (b) are true for any map-
ping f betwoen real analytic hypersurfaces without assuming that M ! is polynomial
rigid nor that det J¢(p) # 0.

2. NOT TOTALLY DEGENERATE CR MAPPINGS

Theorem 1.1 is easily seen to be true if one assumes only that the mapping f
is not totally degenerate in the sense that det(g-%)(w,{]) # 0, where Fi,..,F_y

denote the formal power series of fi, .., fa—1 at 0. We shall get the following
refinement of Theorem 1.1 (¢f. [MIR)).

Theorem 2.1. {a), (b) and (c) are valid for C* f not totally degenerote.
Proof. Let 7 denote the adjoint matrix of J = (Ejfk)lgj’k;gﬂ_l, so that JJ =

det J Id = J Id. Applying L; to the fundamental equation f,, = G(f, f*), we get

T, G, F) icogn—1 = T (E1fuy oo Ina1Fn)7

Assume, by induction, that for each § € N*~1 with |3] < ko, there exists a holo-
morphic polynomial gp such that, on M,

(2.1) T SIG(F, 1) = ga(t AL Phii<iel)-
Prove it for 8| = ko + 1. Indeed, applying L;, J =1,..,n—1,to (2.1), we get
n--1
(28] = 1)L (NG, Fry+ T Y 0 0G(f, P L
k=1

= g;a(t, L {7 Fhyi<isien);
where the g;z are holomorphic polynomials. Multiplying the equation by .J, and
replacing J281-182G(f, F*) by its value given by (2.1}, we get

n—1

(2.2) SIS 058G PV fu = gis T AL Fhmgisin), J=1oan—1,
k=1

for some polynomial gi,. Then (2.1) follows at order ko + 1 by multiplying (2.2)
by J. Recall that since G is a polynomial, the equations (2.1) are 0 = 0, d.e
8}?6‘ =0, for |3| > Nop + 1. Now, according to [BR], there exists v € N*~1 such
that LYJ(0) # 0, and thus also, for each 8, there exists v = {|8[) such that
(L7 J2181-1)(0) # 0. This implies that for each 8 with |8 = N¢, we have

(2.3) i o
82a(s, ) = 82a(f,0) = L (;’f(’ﬁf;{];'; <)) _ {L7 Frmsr)y

for some lolomorphic function kg near 0 and I'(3) > sup{v(|8); |6} = No} + No.
Assume by downards induction that, for each ko + 1 < |8| < Ny, there exists a
holomorphic function kg on a neighborhood of 0 in CF@+2" such that (2.3) is true
on M. Prove it for |3| = ko. In fact, there exists a holomorphic polynomial dg such
that

(B56)(£, ) = (BLG)(1,0) + ds{(BLN S, O} srrzioi e s
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so that, by (2.1) and {2.3), we can write
(24) THOENF,0) = 9o(t, T, {L7 T Hisial) =

JHE g (Tha (b, 8 {LY [ j<riay bror i< pl<Ng £

and (2.3) follows by applying some power of L to (2.4). Since we obtained the rep-
resentation (2.3}, {a) and (b) follow along the lines of 1.1. (The above calculations
are extracted from [BR].)

To prove (c), it is sufficient to show that the set

A ={(w,z} € M; det (L;fe)i<jbcn-1(w,z) =0}

is of Hausdorfl codimension at least two, so that M\A is connected. Indeed, let
U ¢ M\A be a small open set such that f : U — f(U) = V is CR isomorphic.
Then U\~ (V N A) is connected too, so My = (M\A)/{f 1A' N f(M\A))) is
connected too and Lemma 1.2 shows that My = C there.

Lemma 2.2. The set A C M is of Hausdor{f dimension < 2n—3 in a neighborhood
of the origin.

Proof. Let & denote the C*-smooth function on M, § = det (L, fr}1<j6<n—1. Since

f is not totally degenerate at 0, we can write (recall & is flat in 1 at 0)

S(w,w,z) = Plw) + Z w? Rg(w, @, z) + 2Q{w, 13, x),
[Bl=N+1

for some nonzero polynomial P and C* functions Rg, J. We study the zero
locus of §. We can assume that 8{wy,0,%1,0,0) = wi'(1 + S(wy, ®1)), with S
€, flat in W at 0, $(0) = 0. Malgrange’s preparation thoorem yields that there
exist C* functions q and r on M with ¢{0) # 0 and 7(0) # 0 such that (writing

w* = {Wa, ..., Wn—1))
N—j

(qb)(w, @, x) = ul + Z Ao, w', @,z
1<

and

(ré)(w, @, z) = ’U{V + Z Mj(ulu'w*:m*ﬁm)vivuj=
15N

for C°° functions A, gy, 1 < j < N, vanishing at 0. Fixing small (w*,%*,z), one
sees that there can be at most N? solutions to the system of the two equations

above. O
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