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§. 1 Introduction

Let M be a smooth real hypersurface in C”. Its holomorphic tan-
gent bundle T M is defined to be CTM Ni(CTM), where CTM
is the complexified tangent bundle of M. A (complex) vector field L
along M is called a CR vector field if T is a cross section of TE:I’O).
A function f over M is said to be a CR function if it is annihilated
by all CR vector fields along M in the sense of distribution. An in-
teresting question in Complex Analysis is the regularity problem of
CR functions (or mappings). In particular, one would like to know
when a CR mapping between two real analytic hypersurfaces is also
real analytic. By now, there have appeared many studies when the
hypersurfaces are assumed to be sufficiently non-degenerate or when
the maps are assumed to be sufficiently smooth (see [BJT], [BR1],
[BR3], [DF], [Me], [BHR], [Hul| and [Hu2], as well as the survey pa-
per [Fr] and their references). In this paper, we carry out a study for
the analyticity problem of C'-regular CR mappings between certain

degenerate real analytic hypersurfaces in C”, called weakly essential
finite hypersurfaces. Qur result provides a regularity theorem for CR
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mappings between quite degenerate hypersurfaces with a little initial
regularity (C'-smooth) to start with.

We first introduce some notation and definitions to state precisely
our main theorem.

Let M be a non Levi-flat real analytic hypersurface at p in C”.
After a holomorphic change of coordinates [Me], we may assume that
p = 0 and there exists a sufliciently small open neighborhood € of 0

in C™ such that M is given by an equation of the following form:
(1.1) Im w = (Rew)"¢(z, z, Rew), (z,w)e C" ! xC,

where ¢ is a real valued convergent power series in z,%, Re{w) such
that

(1.2) ¢(z,0,Re(w)) = ¢(0,% Re(w)) =0, ¢(2,%,0) #0 andm € N.

Such a choice of coordinates is called normal coordinates. It is shown
in [Me] that the integer m is an invariant for normal coordinates.
Note that m = 0 if and only if M is of finite type at 0 in the sense of
Bloom-Graham [BG]. Write

P(z, ¢, 0) = Z Qo (Z)Ca-

o

Definition: M is called m-essential finite af 0 if the ideal (ay(2))

in the ring of formal power series C[[z]] generated by all of the aq(2)
is of finite codimension, i.e.

(1.3) dime C[[z]]/{ea(2)) < co.

Note that M is O-essential at 0 if and only if M is essentially finite in
the sense of [BJT].

It is shown in [Me] that the above definition is independent of the

choice of normal coordinates. In what follows, for brevity, by saying
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infinite type, we always mean infinite type in the sense of Bloom-
Graham [BG|. When M is m-essential at p € M with m > 0, we will
alfo call M is weakly-essential at p.

Main Theorem Let M and M’ be real analytic hypersurfaces
of infinite type near 0 in C™. Suppose that M and M' are weakly
essential at 0. Let D be a certain side of M. Let f: M — M’ be a
CY mapping which is the restriction of a certain continuous mapping
over D, holomorphic in D and with f{0) = 0. Either suppose that the
Jacobian of f is not identically zero over M ond f~H0)NM does not
contain any non-trivial holomorphic curves; or suppose that f, as a
map from M into M, is finite to one. Then f extends holomorphically
to a neighborhood of 0.

Corollary: Let M and M’ be real analytic hypersurfaces of infinite
type near 0 in C™. Suppose that M and M ! are weakly essential at 0.
Let D be a certain side of M. Let f : M — M’ be a C1 mapping which
is the restriction of a certain continuous mapping over D, holomorphic
in D with f(0) = 0. Suppose that f == (f1,-*+, fa-1,9) : M — M’
is a finite to one map. Then f extends as a local proper holomorphic
map from a neighborhood of 0. Moreover there is an integer k > 0
such that g(z, w) = w*g*(z,w) with g*(0) # 0, in case M and M’ are
defined by equations of the forms in (1.1) and (1.2).

It should be mentioned that when the map f is apriori assumed
to be infinitely smooth, then the hypothesis in the theorem can be
replaced by the analytic hypothesis that “the Jacobian of f does not
vanish to infinite order at any boundary point”, as proved in the deep
work of Baouendi-Rothschild [BR3] in the case of complex dimension
two and the later generalization by the second author [Me]. However,
in view of the following example, this is no longer the case for only

finitely many times differentiable CR mappings.
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Example : Let M and M’ be given in C? by
M = {(z,w) € C*|Re w = || |w|****(Im w)?},

M ={(Z,v") € C*|Re v = |z’|2’°.(Imw')2},
flzw) = (20F* 3 W),

where k is even. Omne can check that A is of class C’k’%, h extends
holomorphically to one side of M, A{(M) C M’, but h is not of class
C**1. Notice that the Jacobian of A has a finite order of vanishing at
0 and A=10) N M is the w = 0.

We should also mention that when the hypersurfaces are essentially
finite in the Corollary, a result of Baouendi and Rothschild [BR2] in-
dicates that the integer k has to be 1, from which it follows that f

preserves the side. However, this is no longer the case in our situa-

tion, as the following example demonstrates (see also [BR3] for similar _

exarmples):

Example: Let M1 = {(z,w = s+ it) : t = |2|%s}, My = {(z,w =
2
s+it):t= 231—'—7:['?{} and f(z,w) = (z,w?). Then f(M;) C M and
k = 2. Notice that f does not preserve sides.

We now say a few words about the proof of the main theorem.
The first step is to show that the map, though only assumed to be
C?, behaves like a smooth function in the sense that it has an integer
vanishing order. (This can be regarded as a much stronger version
of the unique continuation phenomenon for CR mappings). By ap-
plying the famous Hanges-Treves (HT] propagation theorem, we then
can work near a point where the map is a kind of C 1. diffeomorphism.
Next, we show that the Baouendi-Jacobowitz-Treves reflection prin-
ciple [BJT] is usable there. Lastly, we prove that the map extends
along an open dense subset of the complex hypersurface contained in

M, and thus it extends everywhere too. Some of the approaches used
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in this paper (especially, the idea of proving the extension at some
thin set and then applying the Hanges-Treves theorem to get the ex-
tension everywhere) were also later used by the second anthor in [Me]

for some other related purposes.

Acknowledgment: This work was essentially carried out when
the first author was visiting the third author at the Institute of Mathe-
matics, University of Fribourg, Switzerland, in September, 1996. The
first author would like to thank this institute for its hospitality during
his visit. The authors also wish to thank H. Maire for several helpful
discussions at Fribourg in 1996.

§2. More Notation and Preliminary Facts

In what follows, we always assume that M and M’ are real analytic
hypersurfaces near the origin defined by equations of the following

form, respectively:
Im w = (Re w)™$(2, 2, Re w), (z,w) € c 1l x C,

(2.1)  Imw = (Re w)™y(z, 7, Re w), (7 ,w)eC" ' xC,

Here, 1 satisfies the normalization condition as imposed in (1.2).

Let f = (f*.9) = {(fr,~ fn_1,9) be a continuous CR mapping
from M; into My, which extends continuously to a certain side D of
M,. g is then called the normal component of f. Write E for the
w = 0 in C™. We also recall that a real analytic hypersurface in C*
is of finite type at p in the sense of Bloom-Graham if and only if it
does not contain a complex analytic variety of pure codimension one
passing through p.

The following lemma seems standard and its proof can be easily
achieved by studying the uniqueness of the Bishop equation describing

the attached analytic disks. (Hence we omit its proof).
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Lemma 2.1:-Let M be a real analytic hypersurface with 0 € M
a peint of infinite type. Assume that E is the complex hypersurface
passing through 0 and is contained in M. Let £(-) be a holomorphic
disk attached to M and £(-} is continuous up to the boundary. When
() is small enough and £(1) = 0, then £(A) C E, where A is the
unit disk in the complex plane.

Lemma 2.2: Suppose that f is a continuous CR mapping from M
into M’ with f(0) = 0. If M is of infinite type at 0 and if f~1(0)N M
does not contain any non-trivial holomorphic curves, then M’ must be
of infinite type at 0. Conversely, if M’ is of infinite type at 0 and M is

of finite type, then the normal component g of f has to be identically
0.

Proof of Lemma 2.2 Since M contains the complex hypersurface
E = {w = 0}, and since the CR mapping f, when restricted to £,
is a holomorphic map, the hypothesis of the first part of the lemma
indicates that f has to be proper from E near 0 to its image £’ =
f(E). Hence, M’ contains a complex analytic variety of complex
codimension one at the origin. Therefore, M’ has to be of infinite
Bloom-Graham type at 0.

Conversely, suppose that M’ is of infinite type at 0. If M does
not contain a complex analytic hypersurface passing through 0, then,
it is known (see, f.g, [I] [Tu]) that there exists a family of small
complex analytic disks & attached to M such that their images fill
an a uniqueness set for holomorphic functions in a certain side D of
M near 0 and &(1) = 0. Also, by the approximation theorem of
Baouendi-Treves, we can assume that f extends holomorphically to
each small disk attached to M. Now, notice that for each ¢, fo & is
also a complex analytic disk attached to M’ through 0. Therefore, by
Lemma 2.1, f o & has image inside E' = {w' = 0} in M. Therefore,
we see that f maps M U D inte F’. This is equivalent to saying that

the normal component g of f has to be identically 0. W
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Remark 2.3: Notice that even if f is smooth, f~*(0) N M = {0}
and M’ is of infinite type, M does not have to be of infinite type at
0, To see this, we can simply take M = {(z,u +iv} € C2: v=|z%},
M ={(z,u+iv): v=ulz|’} and f = (e_leF,O). Of course, in all

such examples, g = 0 by the above lemma.

Applying the implicit function theorem to (2.1), we can assume
that M is also defined by an equation of the following formu

22)  p(ew) o) = —wr T Y 6T,

izm

where ¢ does not contain any harmonic terms and the idea gen-
erated by {aa(2)} has finite codimension in C{z]. Here or(z,¢) =
S0 (¢)2*. We recall that for each point (a,b) € C* ! % C close
to the origin, the Segre variety Qa,p) of M corresponding to (a,b) is
defined by Qan = {(z,w} = 0 : p*((z,w),m) = 0}. As usual,
we write Ay p) = {(zyw) = 0: Quw) = Qa,n}- (See [Wel, for in-
stance). It is clear from the definition concerning the essential finite
type that (a,b) € M is a point of essential finite type if and only if
A, py s discrete near (a, b).

Next, we give a different invariant characterization of the m -

essential property.

Lemma 2.4: Assume that M is of infinite type at 0. If M is weakly
essential at 0 € M, then A, ., is discrete for (z,w) ¢ E. Moreover,
when M is weakly essential at 0, then M is wealkly essential at any
other point p(= 0) € E and M is essentially finite at M\ E.

Proof of Lemma 2.4: Write ¢} = 3_, ¢;o(Z)z*. For any (a,b) €
M \ E. Notice that b # 0, and
A(a:b) i {(Z,‘I_U) W= b’ Z Cj,a (E)mj = Z Cjaa(a)gj}

o jem J

B {(Z,w) rw=b Z Cj,a(z)gjdm = Z Cj,a(a)gj_m}.

jzm jzm
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Therefore
Atay) ={(z,w) 1w = b, ¢a(2) = cma(@) + O(b]z]), for all a).

By the weak essential property, we see that Agapy is discrete near 0 if
M is weakly essential at 0, where b # 0 is sufliciently close to 0. Since
A(a,0y = E, we easily conclude the proof of Lemma 2.4. B

Finally, we prove the following lemma which will be used later.

Lemma 2.5: Let {ax(2)}x>1 be a family of holomorphic functions
defined near 0 € C™ and vanishing at 0. Suppose the idea generated
by these functions has finite codimension in the ring of power series
Cl[z]. Then there is a complex subvariety Vj of positive codimension
in €™ such that for each z & V, close to 0, there are ky,--- , k, with

Jay,
det(5 st il #0.

Proof of Lemma 2.5: First, by the Hilbert Zero theorem, there is
an integer N such that the common zero of ay, (2) is O where k < N.
Define 7(z) = (ax(2)){"_, to be the map from C" into CV near the
origin. Then m(2) is locally finite to one and thus is locally proper
near 0. Hence, the image V of a neighborhood of 0 in C” under 7 is a
complex analytic subvariety of dimension 7 in C" near 0. Therefore,
there is a V4 of positive codimension such that for each (= 0) € Vg,
7 i8 locally biholomorphic from a neighborhood of z to V near 7r(z)

The proof of the lemma nows follows easily from the rank theorem. W

§3. An Integer Vanishing Order of the Normal Component

One of the key steps for the proof of our Main Theorem is to show

that the normal component g of f behaves like a smooth function
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along a certain wedge, although it is only sssumed to be C* or even
Hilder continuous. For this purpose, we first prove the following
integer-vanishing order property for g along a wedge, which plays a
_crucial role in the whole discussion. We would like to mention that
" results of this type are also related to the more general framework on
the boundary unigue continuation problems of holomorphic functions
in [ABR] [BL| [HK] [BR3] [E], etc, where the non-infinite vanishing
order problem of the normal component is investigated. In the fol-

lowing, we use O(a) to denote & small neighborhood of a.

Lemma 3.1: Let At = {z € C: lz| < 1,Im(z} > 0}. Let
flz,t) = ulz,t) + ww(z,t) be a holomorphic function over At in z,
which is continuous over AT x Oltg), where Oto) s a small neigh-
borhood of £ in the parameter t-Space. If for x € (—1,1), v(x,t) =
u(z, t) Pz, t) with P(z,t) € C*((-1,1) % O(t)), then there exists
a non-negative integer K, depending upper semi-continuously on £,
such that f(z,1) = 2Fg(z,t), where g(0,t) # 0 and g(z,t) depends
Hélder continuously on z up to (=1, 1). Moreover when k¢ is con-
stant for ¢ & to, then g(z,t) depends C°-continuously on (z,t) €
(At U(=1,1)) X O(to). Here a is a certain positive non-integer num-
ber.

Proof of Lemma 3.1: Write #(z,t) = f(z,t) and £ (z,t) = f(Z:1)
forzeA-={z€C: |zls] Tm(z) < 0}. Then for z € (-1,1),
one has v(z, t) = =(fT(z,t) - £ (z,1)) and u(z,t) = H(ft (1) +
F~(z,t)). Substituting these into the given equation v = uwP(z,t), it
follows that %f— (z,t) = [T (x,t). Let
1 P ge

Tt = gni ), €-2

Then by the well-known Plemej formula, one has LT (@t) =

%%:%—:%. Here for z ¢ (-1,1), [*(z,1) is defined to be the value

of T(z,t) for 2z € A%, respectively; and the values on (—1,1) are
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understood as the boundary values of I'(z) from inside, respectively.

By the Privalow theorem, they are C® on t and on z up to the real axis
(—1,1). Therefore, one obtains g: +((i’i)) = gr__((”; "?) . Hence, Ef":“‘r_((:fc%
“extends holomorphically in z to the unit disk A. Denote its extension
by g(z,t) and write g(z,t) = 2% g*(z,t) with g(0,¢) # 0. Then, again
by the Privalow theorem, it follows that e’ (2:) g(z,t) depends Hlder
continuously on ¢ and z € At U (—1,1). Applying also the Hurwitz
theorem, we conclude that k; is upper semi-continuous. Moreover,
in case k; is constant for ¢t & tg, g*(2,t) depends C® on (z,t) over
(AT U (=1,1)) x O(to), once one makes O(ty) sufficiently close to #p.
This completes the proof of the lemma. B

Next, let M be of infinite type at 0. Let 0 € M and S ¢ M be a
totally real submanifold of real dimension n passing through p such
that SN E is totally real of dimension n — 1 near 0. In what follows,
we will assume, without loss of generality, that F is still the w = 0
but § = R*NO(0). Also, Imw is the outward normal direction of M
along S near 0. Write

Wit = {(z,w) | £Im(w) > 8(|Tmzi| + - + [Im zm—1|)}.

Then Wi € O(0)\ DUM and (z,@) € D for (z,w) € W5 near the
origin. Let

18: (ﬁlﬁn) ER”:J@’ - (ﬁi:"'aﬁ:@-—l) € Rn_l:

Ac={CeC| l<e}, At ={(eA] Im¢>0}

For 8n > 6(|81l + - -+ + [Bn-1)| and for ¢ sufficiently small, we define
¥p,8 by
C — (ﬁlc + 185_: v 7ﬁﬂ—1< + ﬁ::,—_lnﬁﬂC)'

Notice that 155/ (A \ (AT U (~¢,¢)) C D.

Let M’ be a real analytic hypersurface at 0 given in the normal
coordinate by Imw’ = (Rew’)™ x(2', 7, Rew’) where x(2/, 2,0) # 0,,
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y(z',0,w') = 0. Let f = (f*,9) : M — M'bea Holder continuous
CR mapping, which is the restriction of a certain continuous mapping
from D holomorphic in D, with f{0) = 0.

Proposition 3.2: Assume the above notation. Suppose that g is
not identically zero along the norma)l direction in the sense that for
cach fixed @8, g(8,t) # 0 for t < 0. Then if § is sufficiently small,
there is a positive integer k, and a point zp = (85, 0) such that for
(z,w) € Wi NO(20), 9(%,W) = wrg*(z,w) with g*(85,0) # 0 and g*
Holder continuously in W; N O(z). Here 8 is a certain fixed real

(n — 1)-tuple sufficiently close to 0.

Proof of Proposition 3.2: Write gg,g = ¢ ovg p({). Then it de-
pends Holder continuously on /7, B, ¢ € (—¢,¢) and extends holomor-
phically to A7 in ¢. Notice that for ¢ € (—¢¢), Im(gap () =
—(Re(gp #(0)))"x(f ows.pr T o Wg,ps Re(ga,o(C)). Applying Lemma
3.1, we can write gg g (¢) = Ck*g};.,ﬂ,(g) with gz,ﬁ,(O) # 0 and ky de-
pending upper semi-continuously on t = (8, 3'). Since k¢ takes only on
integer values, we see the existence of a certain parameter to = {Bo, 84)
such that k; = k is constant for t close to to. Then by Lemma 3.1,
we conclude that gg g(¢) = C'kgb" 5(€) with gﬁﬁ,(()) # 0 and Holder
continuously on A(~ fo), 8 (= £8) and ¢ € At. Denote by zy the
point (8;,0). Since the image of all such ¥z g fill in Wi N O(z0)
with 0 < & << & and since w® ovg,6:(¢) = (8r)°¢*, we conclude eas-
ily that h(z) = g(z)/w’ = Elﬁg-:’é,ﬁ,(.q) is holomorphic and uniformly
bounded over _W_;_f N O(z). Write By = (85,0) = (Bos " > Bon)
and write Re(z,w) = (z',3n) = (21, ,%n). We easily see that for
z(= (20)) € S, when z — = from W, along the normal direction,
then h(z) takes the boundary value

1 %
W%m(‘”’*mnﬁa/ﬁo,n)(wn/ﬁo,n),

which, as a function in x, is Holder continuous over a neighborhood
of 7y = (8},0) in 8 by Lemma 8.1. Therefore, we conclude that h(z)
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extends Hélder continuously up to Wih US. The proof of Proposition
3.2 is complete.

Remark 3.3: From the proof, it is clear that Proposition 3.2 holds
for all functions g with the following property: (a): g does not vanish
identically along the normal direction; (5): Im(g) = Re(g)P(z) over

S and g is Holder continuous.

§4. Proof of the Main Theorem

We now present the proof of our Main Theorem. As already showed
up in the proof of Proposition 3.2, an important fact in our discussion
is that if a holomorphic function defined over a certain wedge blows
up polynomially when approaching to the edge and if its distribution
limit is continuous, then the function extends continuously up to the
edge from the wedge. Another useful fact for our argument is the
following propagation theorem of Hanges-Treves [HT]:

Theorem 4.1 (Hanges-Treves): Let M be as in our Main Theo-
rem. Let h be a CR function over M. If for a certain p € F, h extends
holomorphically to a neighborhood of p, then h extends holomorphi-
cally to a neighborhood of E.

Now, we let M, M’ and f be as in the Main Theorem. Since f
must be locally proper from E to E, it is locally biholomorphic from
E into E', away from a thin set. By Theorem 4.1 and Lemma 2.2, we
can assume without loss of generality that f* is locally biholomorphic
from F into E’ near the origin and we can assume that Proposition
3.2 holds near the origin zp = 0. Also, we use the same notation there.
And making a change of coordinates, we can let § in Proposition 3.2
be 1.

Write {L; };”;11 for a real analytic basis of the space of all cross sec-

tions of T pr, (Namely, we assume that each L; has real analytic
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coefficients). Hence, {L;lo} forms a basis of Ccn1; for Tgl’O)M =

Cnl, Write A(z, %, DF) = det(L; feh<jign—1. It thus follows easily

that A(z,Z,Df)lo # 0. As before, we still use z = (21, Zn_1,W)
_for the coordinates in C™.

Next, using Lemma 2.2, we see that for p(=0) € Mh\E,q= f(p) €
M'\ E' and df|, gives a linear isomorphism from T;I’O)M to Tél*o) M.
We now need a result proved in [BJT]. (See pp395 , Remark 6.1 of
[BJT]: Notice in [BJT], the result is stated for C* diffeomorphism,
however it works the same way for maps with the property described
below. Also notice that it follows from the work in [Hul] in case
n=2):

Theorem 4.2 (Baouendi-Jacobowitz-Treves): Let M and M’ be
two essentially finite hypersurfaces near 0. Let f be a C-CR map
from M into M’. Assume that df|o is an isomorphism from Tél’O)M
to Tgl’O)M /. Then f admits a multiple-valued holomorphic extension

near 0.

With Proposition 3.2 and Theorem 4.2 at our disposal, we can
proceed the proof of our Theorem a3 follows. Certain arguments here
are motivated by the work done in [BJT] [BR1] [Hul].

Since f(M) C M’, we get that

Im(g(2)) = (Re(g(2)))"#(f(2), f(2), Re(9(2))

for » € M. Applying the implicit function theorem, we can obtain

the following functional equation:

(4.1) 9(2) = 9(2) + (g™ H(f* (), F*(2), 9(2)),

for z € M, where S(a,q, 0) does not have any harmonic terms and

the idea generated by (ho(2')) is of finite codimension in C[#'], where
H(a,b,0) = > ha(a)b®.
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Since f* is proper from a neighborhood of 0/ in ¥ to a certain
small neighborhood of 0/ in £/, f "(R* 1N O(0")) 6lls in a real semi-
analytic set By, which also serves as a uniqueness set for holomorphic
‘functions over E'. By Lemma 2.5, we may assume that for a certain
ao(~ 0) € By and (n — 1) n-indices {oa, a1}, it holds that

oy, b, )

4.1 det
( ) 8(21,"' !Zn"‘l)

lag # 0.

Write 20 = (z(,0) € S with f (20) = (ap,0). Notice by Theorem
4.2, f is real analytic over & at most away from a thin set. Also, from
the hypothesis of the main theorem, we can assume that 9 # 0 along
the normal directions near (#5,0). In what follows, we assume that
Wt and 8 are sufficiently close to 20.

Now, applying L; to (4.1) for each § ¢ {L,---,n— 1}, we obtain

‘ n—1
(42)  Lig=(g(2)™ > D H(f*(z), 7 (2), 9(z))I; 7,
i=1

where e; = (0, ,0, 19t ¢ ... ,0). Write for z € W+,
Mz) = Az, z, Df(Z)).

By theorem 4.2, we know that A(z) is almost everywhere C° up to S.
On the other hand, A(z) blows up polynomially when z — & , by the
Cauchy estilﬁates, and A(z) has a continuous boundary limit. Hence,
Alz) € COWt U &) with A(0) # 0.

Regard now (4.2) as a system of linear equations in

9" Dy H(f*, %, 9).

Using the fact that Alo # 0 and the Cramer rule, we see that for each
jand z €8,

Ae; (2,Z, Df(2))
wkmA(z)

(" (@)™ Dy H(f*, 77, 9) = xe, (2) =
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where Ae, 18 holomorphic in its variable. Hence, a similar argument
as above shows that xe,(z) extends holomorphically to W1 and con-
tinuously over wr.

After solving (4.2) for g™ (2)Dy’ H(f* (2), f*(2), 9(2)), we can still
apply L; and reach, by Jinit, to the points where f does not extend.
More generally, inductively repeating such a process, we get the fol-
lowing;:

For each multiple index o, there exists a function A, holomorphic
in its arguments and polynomial in D® f with ||| > 1 such that for
each z € S,

AQ(Z:EaWV o ,Docf)

g™ (2 DEH(f" (2), I* (2),9(2) =

wkmA(z)
For z € W, writing xa(2) = Aalz ;z;;;,;’)\?:)f ). and repeating the

previous argument, we obtain the following

Claim 4.3: For each multiple index c, there exists a function Xo
holomorphic in W and continuous up to Wt U & such that

(¢ (@))" Dy H{(f* (z), [* (), 9(z)) = Xa(®)
for z € 8.
Notice that 2Dy H(f* (), f*(z), g(x)) can be expanded as
haoo(F*, T7) + 3 b T7)g
o,

Using (4.1)!, we can apply the implicit function theorem to see that
near (z,0) € 8 and for each § <,

(4‘3) fJ (:17) = (:,'.7'(33:7:‘::gﬁf< (m)axqﬁg*(m)a;{a1 y aian,,1)

where o; i8 holomorphic in its argument. Taking the complex conju-
gate to (4.1), we note that there is a certain holomorphic function o

in its arguments such that for = € S

(4'3), g* = Jn(xn;f*:?;,?) '—“'_QT-FO(:Bn).
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Substituting (4.3)" to (4.3) and applying again the implicit function
theorem, we can solve g* in terms of (z, f*, 4, Xa; ) and get:

.. Claim 4.4: For each j and z(C 8) & (z}, 0), there exists a function
o; holomorphic in its arguments such that

fy(ﬂ’)) - G,j(maf*(x)ag*(x):%am e :ian—l)a

g(m) = En(a:,f*(:?:),g*(m),)"{al, e 756627;—1)'

Recall that g* extends anti-holomorphically to Wt. Hence, f(x)
extends holomorphically to W™ and

Ej(wzf*(m)sg*(m)?%a1)'“ 7§an—1)

extends holomorphically to Wt. Making use of the weak version
of the edge of the wedge theorem, we get that f = (f*,g) extends

holomorphically across (zj,0). By Theorem 4.1, we conclude the proof
of our Main Theorem. ¥

Proof of Corollary: Now that the f in the corollary extends across
0, we can conclude that g = 28¢*(2) near the origin with g*(0) # 0.
Indeed, suppose that Z, = E U; V; be the finite decomposition of
the zero of g into its irreducible components near 0. Then for each
a € V;\ E,since f{Q,) C E’ by the invariant property, it follows that
9(Q.) = 0. Hence when a ~ 0, @, has to be a certain component of
Z4. This is a contradiction, because Q, N E = 0. Hence, Z, = B and
g = wFg* with g*(0) # 0.

Therefore, f1(0) is locally finite near 0 and f is locally proper
near (. This gives the proof of the corollary. i
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