[> restart:

$>$ with(DifferentialGeometry):
[> with(Tools) : with(LinearAlgebra) :
$>\operatorname{DGsetup}([z, y, u[1], u[2], u[3]]$, [$a, a l, b, b 1, c, d, e, f, g, h, k], M$, verbose $)$;
The following coordinates have been protected:

$$
\left[z, y, u_{1}, u_{2}, u_{3}, a, a 1, b, b 1, c, d, e, f, g, h, k\right]
$$

The following vector fields have been defined and protected:

$$
\left[D _z, D _y, D _u_{1}, D _u_{2}, D _u_{3}, D _a, D _a 1, D _b, D _b 1, D _c, D _d, D _e, D _f, D _g, D _h, D _k\right]
$$

The following differential 1-forms have been defined and protected:

$$
\left[d z, d y, d u_{1}, d u_{2}, d u_{3}, d a, d a 1, d b, d b 1, d c, d d, d e, d f, d g, d h, d k\right]
$$

frame name: M
$>M a:=\operatorname{Matrix}\left(\left[\left[a^{3} \cdot a l, 0,0,0,0\right],\left[f, a^{2} \cdot a l, 0,0,0\right],[g, c, a \cdot a l, 0,0],[h, d, b, a, 0],[k, e\right.\right.$, $b 1,0, a 1]])$;

$$
M a:=\left[\begin{array}{ccccc}
a^{3} a l & 0 & 0 & 0 & 0 \\
f & a^{2} a l & 0 & 0 & 0 \\
g & c & a a l & 0 & 0 \\
h & d & b & a & 0 \\
k & e & b 1 & 0 & a l
\end{array}\right]
$$

M > MaInv:= MatrixInverse(Ma):

$\mathrm{M}>A:=\operatorname{map}($ evalDG, (ExteriorDerivative(Ma).MaInv));
$A:=\left[\left[\frac{3 d a}{a}+\frac{d a l}{a l}, 0 d z, 0 d z, 0 d z, 0 d z\right]\right.$,
$\left[-\frac{2 f d a}{a 1 a^{4}}-\frac{f d a 1}{a 1^{2} a^{3}}+\frac{d f}{a^{3} a 1}, \frac{2 d a}{a}+\frac{d a 1}{a l}, 0 d z, 0 d z, 0 d z\right]$,
$\left[-\frac{\left(g a^{2} a l-c f\right) d a}{a 1^{2} a^{6}}-\frac{\left(g a^{2} a l-c f\right) d a l}{a 1^{3} a^{5}}-\frac{f d c}{a^{5} a 1^{2}}+\frac{d g}{a^{3} a 1},-\frac{c d a}{a 1 a^{3}}-\frac{c d a l}{a 1^{2} a^{2}}\right.$
$\left.+\frac{d c}{a^{2} a 1}, \frac{d a}{a}+\frac{d a 1}{a 1}, 0 d z, 0 d z\right]$,
$\left[-\frac{\left(h a^{3} a 1^{2}-d f a a 1-b g a^{2} a l+b c f\right) d a}{a^{7} a 1^{3}}-\frac{\left(g a^{2} a l-c f\right) d b}{a^{6} a 1^{3}}-\frac{f d d}{a^{5} a 1^{2}}\right.$
$\left.+\frac{d h}{a^{3} a 1},-\frac{(d a a l-b c) d a}{a^{4} a 1^{2}}-\frac{c d b}{a^{3} a 1^{2}}+\frac{d d}{a^{2} a 1},-\frac{b d a}{a^{2} a 1}+\frac{d b}{a a 1}, \frac{d a}{a}, 0 d z\right]$,
$\left[-\frac{\left(k a^{3} a l^{2}-e f a a l-b 1 g a^{2} a l+b l c f\right) d a l}{a^{6} a l^{4}}-\frac{\left(g a^{2} a l-c f\right) d b 1}{a^{6} a 1^{3}}-\frac{f d e}{a^{5} a 1^{2}}\right.$
$\left.\left.+\frac{d k}{a^{3} a 1},-\frac{(e a a 1-b 1 c) d a 1}{a^{3} a 1^{3}}-\frac{c d b 1}{a^{3} a 1^{2}}+\frac{d e}{a^{2} a 1},-\frac{b 1 d a 1}{a a 1^{2}}+\frac{d b 1}{a a 1}, 0 d z, \frac{d a 1}{a 1}\right]\right]$

$$
\begin{aligned}
& \mathrm{M}>t[1]:=\frac{d a}{a}: \\
& \mathrm{M}>t[2]:=-\frac{b d a}{a^{2} a l}+\frac{d b}{a \operatorname{al}} \text { : } \\
& \mathrm{M}>t[3]:=-\frac{c d a}{a l a^{3}}-\frac{c d a 1}{a 1^{2} a^{2}}+\frac{d c}{a^{2} a l}: \\
& \mathrm{M}>t[4]:=-\frac{(d a a l-b c) d a}{a^{4} a 1^{2}}-\frac{c d b}{a^{3} a 1^{2}}+\frac{d d}{a^{2} a 1}: \\
& {\left[\mathrm{M}>t[5]:=-\frac{(e a a 1-b 1 c) d a 1}{a^{3} a 1^{3}}-\frac{c d b 1}{a^{3} a 1^{2}}+\frac{d e}{a^{2} a 1}\right. \text { : }} \\
& \mathrm{M}>t[6]:=-\frac{2 f d a}{a 1 a^{4}}-\frac{f d a 1}{a 1^{2} a^{3}}+\frac{d f}{a^{3} a 1} \text { : } \\
& {\left[\mathrm{M}>t[7]:=-\frac{\left(g a^{2} a l-c f\right) d a}{a 1^{2} a^{6}}-\frac{\left(g a^{2} a l-c f\right) d a l}{a 1^{3} a^{5}}-\frac{f d c}{a^{5} a l^{2}}+\frac{d g}{a^{3} a l}\right. \text { : }} \\
& \mathrm{M}>t[8]:=-\frac{\left(h a^{3} a 1^{2}-d f a a l-b g a^{2} a l+b c f\right) d a}{a^{7} a l^{3}}-\frac{\left(g a^{2} a l-c f\right) d b}{a^{6} a l^{3}}-\frac{f d d}{a^{5} a l^{2}} \\
& +\frac{d h}{a^{3} a 1}: \\
& \mathbf{M}>t[9]:=-\frac{\left(k a^{3} a 1^{2}-e f a a 1-b 1 g a^{2} a 1+b 1 c f\right) d a 1}{a^{6} a 1^{4}}-\frac{\left(g a^{2} a l-c f\right) d b 1}{a^{6} a 1^{3}} \\
& -\frac{f d e}{a^{5} a 1^{2}}+\frac{d k}{a^{3} a l}: \\
& {\left[\mathrm{M}>t[10]:=\frac{d a 1}{a l}:\right.} \\
& \mathrm{M}>t[11]:=-\frac{b 1 d a 1}{a a 1^{2}}+\frac{d b 1}{a a 1}: \\
& {\left[\mathrm{M}>\operatorname{form}[1]:=-\frac{1}{12} \mathrm{I} y^{3} d z+\frac{1}{12} \mathrm{I} z^{3} d y+\left(\frac{1}{4} z^{2}+\frac{1}{2} z y+\frac{1}{4} y^{2}\right) d u_{1}+\left(-\frac{1}{4} z\right.\right.} \\
& \left.-\frac{1}{4} y\right) d u_{2}+\frac{1}{12} d u_{3}: \\
& \mathrm{M}>\operatorname{form}[2]:=\frac{1}{4} \mathrm{I} y^{2} d z-\frac{1}{4} \mathrm{I} z^{2} d y+\left(-\frac{1}{2} z-\frac{1}{2} y\right) d u_{1}+\frac{1}{4} d u_{2} \text { : } \\
& \mathbf{M}>\operatorname{form}[3]:=-\frac{1}{2} \mathrm{I} y d z+\frac{1}{2} \mathrm{I} z d y+\frac{1}{2} d u_{1}: \\
& \mathrm{M}>V:=\operatorname{Vector}\left(\left[-\frac{1}{12} \mathrm{I} y^{3} d z+\frac{1}{12} \mathrm{I} z^{3} d y+\left(\frac{1}{4} z^{2}+\frac{1}{2} z y+\frac{1}{4} y^{2}\right) d u_{1}+\left(-\frac{1}{4} z\right.\right.\right. \\
& \left.-\frac{1}{4} y\right) d u_{2}+\frac{1}{12} d u_{3}, \frac{1}{4} \mathrm{I} y^{2} d z-\frac{1}{4} \mathrm{I} z^{2} d y+\left(-\frac{1}{2} z-\frac{1}{2} y\right) d u_{1}+\frac{1}{4} d u_{2}, \\
& \left.\left.-\frac{1}{2} \mathrm{I} y d z+\frac{1}{2} \mathrm{I} z d y+\frac{1}{2} d u_{1}, d z, d y\right]\right): \\
& \text { M }>W:=\text { Ma.V: } \\
& \mathbf{M}>F D:=\text { FrameData([} t[1], t[2], t[3], t[4], t[5], t[6], t[7], t[8], t[9], t[10], t[11], \\
& W[1], W[2], W[3], W[4], W[5]], N):
\end{aligned}
$$

$\mathrm{M}>\operatorname{DGsetup}(F D,[E],[\operatorname{alpha}[1]$, alpha[2], alpha[3], alpha[4], alpha[5], alpha[6], alpha[7], alpha[8], alpha[9], $\alpha^{\#}[1], \alpha^{\#}[2]$, tau, sigma, rho, zeta, $\left.\zeta^{\#}\right]$, verbose);

The following coordinates have been protected:

$$
\left[z, y, u_{1}, u_{2}, u_{3}, a, a l, b, b 1, c, d, e, f, g, h, k\right]
$$

The following vector fields have been defined and protected:
[E1,E2,E3,E4, E5,E6,E7,E8,E9,E10,E11,E12,E13,E14,E15,E16]
The following differential 1-forms have been defined and protected:

$$
\begin{gather*}
{\left[\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}, \alpha_{7}, \alpha_{8}, \alpha_{9}, \alpha_{1}^{\#}, \alpha_{2}^{\#}, \tau, \sigma, \rho, \zeta, \zeta^{\#}\right]} \\
\text { frame name: } N \tag{4}
\end{gather*}
$$

$\mathrm{N}>$ ExteriorDerivative (tau);

$$
\begin{align*}
& 3 \alpha_{1} \wedge \tau+\alpha_{1}^{\#} \wedge \tau+\frac{\left(k a^{2} a l+a a 1^{2} h-a b 1 g-a l b g\right) \tau \wedge \sigma}{a^{4} a l^{3}}+\frac{f(b 1 a+b a l) \tau \wedge \rho}{a^{4} a l^{3}} \tag{5}\\
& \quad-\frac{f \tau \wedge \zeta}{a^{3} a l}-\frac{f \tau \wedge \zeta^{\#}}{a^{2} a 1^{2}}-\frac{(b 1 a+b a l) \sigma \wedge \rho}{a a l^{2}}+\sigma \wedge \zeta+\frac{a \sigma \wedge \zeta^{\#}}{a l}
\end{align*}
$$

$\mathrm{N}>$ ExteriorDerivative(sigma);

$$
\begin{align*}
2 \alpha_{1} & \wedge \sigma+\alpha_{6} \wedge \tau+\alpha_{1}^{\#} \wedge \sigma-\frac{1}{a^{7} a l^{4}}\left(\left(a^{3} a l c k+a^{2} a l^{2} c h-e a^{3} a l g-d a^{2} a 1^{2} g\right.\right. \tag{6}\\
& \left.\left.-f a^{2} a l k-f a a 1^{2} h+f a b l g+f a l b g\right) \tau \wedge \sigma\right) \\
& +\frac{\left(-d a^{2} a 1^{2} f-a^{3} a l e f+b l a f^{2}+b a l f^{2}+a^{5} a 1^{2} k+a^{4} a l^{3} h\right) \tau \wedge \rho}{a^{7} a l^{4}} \\
& -\frac{\left(f^{2}+a^{3} a l g-a c f\right) \tau \wedge \zeta}{a^{6} a l^{2}}-\frac{\left(f^{2}+a^{3} a l g-a c f\right) \tau \wedge \zeta^{\#}}{a^{5} a l^{3}} \\
& +\frac{\left(a^{3} a l e+a^{2} a l^{2} d-b l a f-b a l f\right) \sigma \wedge \rho}{a^{4} a 1^{3}}-\frac{(-f+a c) \sigma \wedge \zeta}{a^{3} a l} \\
& -\frac{(-f+a c) \sigma \wedge \zeta^{\#}}{a^{2} a 1^{2}}+\rho \wedge \zeta+\frac{a \rho \wedge \zeta^{\#}}{a l}
\end{align*}
$$

$\mathrm{N}>$ ExteriorDerivative(rho);

$$
\begin{equation*}
\alpha_{1} \wedge \rho+\alpha_{3} \wedge \sigma+\alpha_{7} \wedge \tau+\alpha_{1}^{\#} \wedge \rho-\frac{1}{a^{7} a l^{4}}\left(\left(-e a g c-d a l g c+\mathrm{I} d a^{2} a l^{2} k\right.\right. \tag{7}
\end{equation*}
$$

$$
-\mathrm{I} e a^{2} a 1^{2} h+\mathrm{I} e a \operatorname{lal} b+\mathrm{I} b 1 c a l a h-\mathrm{I} d a \ln \mathrm{Cl} g-\mathrm{I} b c a k a l+a c^{2} k+a l c^{2} h
$$

$$
\left.\left.-g a a l^{2} h+g^{2} a b l+g^{2} a l b-g a^{2} a l k\right) \tau \wedge \sigma\right)-\frac{1}{a^{7} a l^{4}}\left(\left(-a^{3} a l c k\right.\right.
$$

$$
-a^{2} a 1^{2} c h+\mathrm{I} b 1 a a 1 d f-\mathrm{I} b a l a e f+a c e f+a l c d f-f a b 1 g-f a l b g
$$

$$
\left.\left.+\mathrm{I} b a 1^{2} a^{3} k-\mathrm{I} b 1 a^{3} a 1^{2} h\right) \tau \wedge \rho\right)
$$

$$
+\frac{\left(\mathrm{I} a b 1 c f-a^{2} a l g c+c^{2} f+\mathrm{I} a^{4} k a 1^{2}-g a a 1 f-\mathrm{I} a^{2} e f a l-\mathrm{I} a^{3} b 1 g a l\right) \tau \wedge \zeta}{a^{7} a l^{3}}
$$

$$
\begin{aligned}
& -\frac{\left(\mathrm{I} a l b c f+a^{2} a l g c-c^{2} f+g a a l f+\mathrm{I} a 1^{3} a^{3} h-\mathrm{I} a 1^{2} d a f-\mathrm{I} a 1^{2} b g a^{2}\right) \tau \wedge \zeta^{\#}}{a^{6} a 1^{4}} \\
& -\frac{(-\mathrm{I} b 1 a a 1 d+\mathrm{I} b a l a e+a b 1 g-a c e-a l c d+a l b g) \sigma \wedge \rho}{a^{4} a 1^{3}} \\
& +\frac{\left(-c^{2}+\mathrm{I} a^{2} e a l+g a a l-\mathrm{I} a b 1 c\right) \sigma \wedge \zeta}{a^{4} a 1^{2}} \\
& -\frac{\left(c^{2}-\mathrm{I} a l b c-g a a l+\mathrm{I} a 1^{2} a d\right) \sigma \wedge \zeta^{\#}}{a^{3} a 1^{3}}+\frac{(c+\mathrm{I} b 1 a) \rho \wedge \zeta}{a^{2} a l} \\
& -\frac{(-c+\mathrm{I} b a 1) \rho \wedge \zeta^{\#}}{a a 1^{2}}+\mathrm{I} \zeta \wedge \zeta^{\#}
\end{aligned}
$$

$\mathrm{N}>$ ExteriorDerivative(zeta);
$\alpha_{1} \wedge \zeta+\alpha_{2} \wedge \rho+\alpha_{4} \wedge \sigma+\alpha_{8} \wedge \tau-\frac{1}{a^{7} a 1^{4}}\left(\left(-d^{2} a l g-h a^{2} a l k+\mathrm{I} b 1 c h b-\mathrm{I} d b 1 g b\right.\right.$

$$
+\mathrm{I} e b^{2} g+\mathrm{I} d a a l b k-\mathrm{I} e a a l h b-\mathrm{I} b^{2} c k-h^{2} a a 1^{2}+a c d k+a 1 c d h-e a g d
$$

$$
+h a b 1 g+h a l b g) \tau \wedge \sigma)-\frac{1}{a^{7} a l^{4}}\left(\left(-d a^{3} a l k-d a^{2} a 1^{2} h+d^{2} a l f+d a e f\right.\right.
$$

$$
\left.\left.-b 1 a h f-b a 1 h f+\mathrm{I} b^{2} a 1 a^{2} k+\mathrm{I} b 1 d f b-\mathrm{I} b 1 a^{2} a 1 h b-\mathrm{I} b^{2} e f\right) \tau \wedge \rho\right)
$$

$$
+\frac{1}{a^{7} a 1^{4}}\left(\left(-d a^{2} a l^{2} g-f a a 1^{2} h+a l c d f+\mathrm{I} b a l^{2} a^{3} k-\mathrm{I} b a l a \text { ef }-\mathrm{I} a^{2} b 1 g a l b\right.\right.
$$

$$
+\mathrm{I} b 1 c f b) \tau \wedge \zeta)
$$

$$
-\frac{1}{a 1^{4} a^{7}}\left(\left(a^{3} a l g d+h a^{2} a l f-a c f d+\mathrm{I} a 1^{2} h a^{3} b-\mathrm{I} a l b^{2} g a^{2}+\mathrm{I} b^{2} c f\right.\right.
$$

$$
\left.-\mathrm{I} a 1 d f a b) \tau \wedge \zeta^{\#}\right)-\frac{\left(-d^{2} a 1+\mathrm{I} b^{2} e-\mathrm{I} b 1 d b-d a e+b a 1 h+b 1 h a\right) \sigma \wedge \rho}{a^{4} a 1^{3}}
$$

$$
+\frac{\left(-a l c d+\mathrm{I} b a l a e-\mathrm{I} b 1 c b+a a 1^{2} h\right) \sigma \wedge \zeta}{a^{4} a 1^{3}}
$$

$$
-\frac{\left(a c d-h a^{2} a l-\mathrm{I} b^{2} c+\mathrm{I} a 1 d a b\right) \sigma \wedge \zeta^{\#}}{a 1^{3} a^{4}}+\frac{(d a 1+\mathrm{I} b 1 b) \rho \wedge \zeta}{a^{2} a 1^{2}}
$$

$$
-\frac{\left(-d a+\mathrm{I} b^{2}\right) \rho \wedge \zeta^{\#}}{a 1^{2} a^{2}}+\frac{\mathrm{I} b \zeta \wedge \zeta^{\#}}{a a l}
$$

$\mathrm{N}>$ ExteriorDerivative $\left(\zeta^{\#}\right)$:
frame2 $>$ List $:=$ GenerateForms ([alpha[1], alpha[2], alpha[3], alpha[4], alpha[5], alpha[6], alpha[7], alpha[8], alpha[9], $\alpha^{\#}[1], \alpha^{\#}[2]$, tau, sigma, rho, zeta, $\left.\zeta^{\#}\right], 2$) :
frame2 $>$ Torsion $:=\boldsymbol{\operatorname { p r o c }}(S, i, j) \operatorname{local} k, X ; k:=16 \cdot(i-1)-\frac{i \cdot(i-1)}{2}+j-i ; X$

$$
\begin{aligned}
& :=\text { GetComponents (S, List); } X[k] \text {; end proc: } \\
& \text { frame2 }>\text { result }:=\operatorname{proc}(l) \operatorname{local} k, t, X ; X:=0: t:=\operatorname{expand}(\text { GetComponents }(l \text {, } \\
& \text { List)) : for } k \text { from } 1 \text { to } 120 \text { do } X:=X+t[k] \cdot \text { List }[k] \text { od; } X \text {; end } \\
& \text { proc: } \\
& \text { N }>\text { result(ExteriorDerivative(tau)); } \\
& 3 \alpha_{1} \wedge \tau+\alpha_{1}^{\#} \wedge \tau+\left(\frac{k}{a^{2} a 1^{2}}+\frac{h}{a^{3} a 1}-\frac{b 1 g}{a^{3} a l^{3}}-\frac{b g}{a^{4} a 1^{2}}\right) \tau \wedge \sigma+\left(\frac{f b 1}{a^{3} a l^{3}}\right. \\
& \left.+\frac{f b}{a^{4} a 1^{2}}\right) \tau \wedge \rho-\frac{f \tau \wedge \zeta}{a^{3} a l}-\frac{f \tau \wedge \zeta^{\#}}{a^{2} a 1^{2}}+\left(-\frac{b 1}{a 1^{2}}-\frac{b}{a l 1}\right) \sigma \wedge \rho+\sigma \wedge \zeta \\
& +\frac{a \sigma \wedge \zeta^{\#}}{a 1} \\
& \text { [} \mathrm{N}>
\end{aligned}
$$

