$>$ restart:
$>$ with(DifferentialGeometry):
$>$ with(Tools):
$>\operatorname{DGsetup}([z, y, u[1], u[2], u[3]]$, M, verbose $)$;
The following coordinates have been protected:

$$
\left[z, y, u_{1}, u_{2}, u_{3}\right]
$$

The following vector fields have been defined and protected:

$$
\left[D_{-} z, D_{_} y, D_{-} u_{1}, D_{-} u_{2}, D_{-} u_{3}\right]
$$

The following differential 1-forms have been defined and protected:

$$
\left[d z, d y, d u_{1}, d u_{2}, d u_{3}\right]
$$

frame name: M

$$
\begin{gather*}
>L:=e v a l D G\left(D_{-} z+I \cdot y \cdot D_{-} u[1]+I \cdot\left(2 \cdot z \cdot y+y^{2}\right) \cdot D_{-} u_{2}+I \cdot\left(3 \cdot z^{2} \cdot y+3 \cdot z \cdot y^{2}+y^{3}\right) \cdot D_{-} u_{3}\right) ; \\
L:=D_{-} z+\mathrm{I} y D_{-} u_{1}+\mathrm{I} y(2 z+y) D_{-} u_{2}+\mathrm{I} y\left(3 z^{2}+3 z y+y^{2}\right) D_{-} u_{3} \tag{2}
\end{gather*}
$$

$$
\overline{\mathrm{M}}>L^{\#}:=e v a l D G\left(D_{-} y-I \cdot z \cdot D_{-} u[1]-I \cdot\left(2 \cdot z \cdot y+z^{2}\right) \cdot D_{-} u_{2}-I \cdot\left(3 \cdot z^{2} \cdot y+3 \cdot z \cdot y^{2}+z^{3}\right)\right.
$$

$$
\left.\cdot D_{-} u_{3}\right) ;
$$

$$
\begin{equation*}
L^{\#}:=D _y-\mathrm{I} z D_{-} u_{1}-\mathrm{I} z(2 y+z) D _u_{2}-\mathrm{I} z\left(3 z y+3 y^{2}+z^{2}\right) D _u_{3} \tag{3}
\end{equation*}
$$

$\mathrm{M}>T:=\operatorname{evalDG}\left(I \cdot \operatorname{LieBracket}\left(L, L^{\#}\right)\right)$;

$$
\begin{equation*}
T:=2 D _u_{1}+(4 z+4 y) D _u_{2}+\left(6 z^{2}+12 z y+6 y^{2}\right) D _u_{3} \tag{4}
\end{equation*}
$$

M $>S:=\operatorname{LieBracket}(L, T)$;

$$
\begin{equation*}
S:=4 D_{-} u_{2}+(12 z+12 y) D_{-} u_{3} \tag{5}
\end{equation*}
$$

M $>R:=\operatorname{LieBracket}(L, S) ;$

$$
\begin{equation*}
R:=12 D _u_{3} \tag{6}
\end{equation*}
$$

$\left[\mathrm{M}>\operatorname{Fr}:=\right.$ FrameData $\left(\left[R, S, T, L, L^{\#}\right], N\right):$
$\mathbf{M}>\operatorname{DGsetup}\left(F r,[E],\left[\operatorname{tau}[0]\right.\right.$, sigma[0], rho[0], zeta[0], $\left.\zeta^{\#}[0]\right]$, verbose $):$
The following coordinates have been protected:

$$
\left[z, y, u_{1}, u_{2}, u_{3}\right]
$$

The following vector fields have been defined and protected:
[E1, E2, E3, E4, E5]
The following differential 1-forms have been defined and protected:

$$
\begin{equation*}
\left[\tau_{0}, \sigma_{0}, \rho_{0}, \zeta_{0}, \zeta_{0}^{\#}\right] \tag{7}
\end{equation*}
$$

$\mathrm{N}>$ ExteriorDerivative (tau[0]);

$$
\begin{equation*}
\sigma_{0} \wedge \zeta_{0}+\sigma_{0} \wedge \zeta_{0}^{\#} \tag{8}
\end{equation*}
$$

$\mathrm{N}>$ ExteriorDerivative $(\operatorname{sigma}[0])$;

$$
\begin{equation*}
\rho_{0} \wedge \zeta_{0}+\rho_{0} \wedge \zeta_{0}^{\#} \tag{9}
\end{equation*}
$$

N $>$ ExteriorDerivative(zeta[0]);

$$
\begin{equation*}
0 \tau_{0} \wedge \sigma_{0} \tag{10}
\end{equation*}
$$

$\mathrm{N}>$ ExteriorDerivative $\left(\zeta^{\#}[0]\right)$;

$$
\begin{equation*}
0 \tau_{0} \wedge \sigma_{0} \tag{11}
\end{equation*}
$$

N $>$ ExteriorDerivative(rho[0]);

$$
\begin{equation*}
\mathrm{I} \zeta_{0} \wedge \zeta_{0}^{\#} \tag{12}
\end{equation*}
$$

$$
\begin{align*}
& \mathrm{N}>\operatorname{DualBasis}\left(\left[R, S, T, L, L^{\#}\right]\right) \text {; } \\
& {\left[-\frac{1}{12} \mathrm{I} y^{3} d z+\frac{1}{12} \mathrm{I} z^{3} d y+\left(\frac{1}{4} z^{2}+\frac{1}{2} z y+\frac{1}{4} y^{2}\right) d u_{1}+\left(-\frac{1}{4} z-\frac{1}{4} y\right) d u_{2}\right.} \tag{13}\\
& +\frac{1}{12} d u_{3}, \frac{1}{4} \mathrm{I} y^{2} d z-\frac{1}{4} \mathrm{I} z^{2} d y+\left(-\frac{1}{2} z-\frac{1}{2} y\right) d u_{1}+\frac{1}{4} d u_{2},-\frac{1}{2} \mathrm{I} y d z+\frac{1}{2} \mathrm{I} z d y \\
& \left.+\frac{1}{2} d u_{1}, d z, d y\right] \\
& \text { M > }
\end{align*}
$$

