> restart:
$>K:=\operatorname{proc}(x)$ local $y ; y:=o p(1, x):$ if (type $\left.\left(x,{ }^{`}+{ }^{`}\right)=\operatorname{true}\right)$ then $\operatorname{add}(K(o p(i, x)), i=1$
.. $\operatorname{nops}(x))$ elf
(type ($x, \quad{ }^{*}$) $)=$ true) then expand $\left(K(y) \cdot \frac{x}{y}+y \cdot K\left(\frac{x}{y}\right)\right)$ eli
(type $\left(x, \quad{ }^{\wedge} `\right)=$ true $)$ then $o p(2, x) \cdot y^{(o p(2, x)-1)} \cdot K(y)$ elf
(type $(x$, function $)=$ true) then Kfunction (x) elif
$($ type $(x$, symbol $)=$ true $) \quad$ then $\operatorname{Ksymbol}(x)$ else 0 fie end proc:
$>$ Ksymbol $:=\boldsymbol{p r o c}(x)$; if $x=k^{\#}$ then 0 elf $x=P$ then $(-L(k) \cdot P-L(L(k)))$ elif $x=P 1$ then $($ $\left.-L^{\#}(k) \cdot P-L\left(L^{\#}(k)\right)-2 \cdot I \cdot \operatorname{Tau}(k)\right)$ else ' $K^{\prime}(x)$ fie end proc:
$>$ recherche $:=\boldsymbol{\operatorname { p r o c }}(x)$ local $y ; y:=o p(1, x)$; while (type $(y$, function $)=$ true $)$ do $y:=o p(1, y)$ od; y; end proc:
Kfunction $:=\boldsymbol{\operatorname { p r o c }}(x)$ local $y ; y:=\operatorname{recherche}(x)$; if $y=k$ then ' $K^{\prime}(x)$ else $\operatorname{Kfunctionl(x)} \mathbf{f i}$ end proc:
$\left[>\right.$ Kfunction $:=\operatorname{proc}(x) \operatorname{local} y, J:$ if $x=k^{\#}$ then 0 elif $x=P$ then $(-L(k) \cdot P-L(L(k)))$ elif x $=P 1$ then $\left(-L^{\#}(k) \cdot P-L\left(L^{\#}(k)\right)-2 \cdot I \cdot \operatorname{Tau}(k)\right)$ else $J:=o p(0, x): y:=o p(1, x):$ if J $=L$ then $L($ Kfunction $1(y))-' L(k)^{\prime} \cdot L(y)$ elif

$$
J=L^{\#}
$$

then $L^{\#}($ Kfunction $1(y))-L^{\# \prime}(k) \cdot L(y)$ elif

$$
J=K^{\#}
$$

then $K^{\#}($ Kfunction $1(y))$ elif $J=$ Tau then Tau $($ Kfunction $1(y))-' L(k)$ ' $\operatorname{Tau}(y)-\operatorname{Tau}(k)$ ' $\cdot L(y)$ ii fie end proc:
$\overline{\mid}>L:=\operatorname{proc}(x)$ local $y ; y:=o p(1, x):$ if (type $\left.\left(x, \quad{ }^{`}+{ }^{`}\right)=\operatorname{true}\right)$ then $\operatorname{add}(L(o p(i, x)), i=1$.. $\operatorname{nops}(x))$ elf
(type $\left(x, \quad{ }^{* \prime}\right)=$ true) then $\operatorname{expand}\left(L(y) \cdot \frac{x}{y}+y \cdot L\left(\frac{x}{y}\right)\right)$ elif
(type $\left(x, \quad{ }^{\wedge}\right)=$ true $)$ then $o p(2, x) \cdot y^{(o p(2, x)-1)} \cdot L(y)$ elf
(type $(x$, function $)=$ true) then ' L ' (x) elif
(type $(x$, symbol $)=$ true) then $L^{\prime}(x)$ else 0 fie end proc:
$\left[>L^{\#}:=\operatorname{proc}(x) \operatorname{local} y ; y:=o p(1, x):\right.$ if $($ type $(x, \quad `+`)=\operatorname{true})$ then $\operatorname{add}\left(L^{\#}(o p(i, x)), i=1\right.$.. $\operatorname{nops}(x))$ elif
(type $\left(x, \quad{ }^{*}\right)=$ true $)$ then $\operatorname{expand}\left(L^{\#}(y) \cdot \frac{x}{y}+y \cdot L^{\#}\left(\frac{x}{y}\right)\right)$ elif
(type $\left(x, \quad{ }^{\prime `}\right)=$ true $)$ then $o p(2, x) \cdot y^{(o p(2, x)-1)} \cdot L^{\#}(y)$ elif
(type $(x$, function $)=$ true) then $L^{\#}(x)$ ' elf
(type (x, symbol $)=$ true $)$ then ' $L^{\# \prime}(x)$ else 0 fie end proc:
$>\operatorname{Tau}:=\operatorname{proc}(x)$ local $y ; y:=o p(1, x):$ if $\left(\operatorname{type}\left(x,{ }^{`}+{ }^{`}\right)=\operatorname{true}\right)$ then $\operatorname{add}(\operatorname{Tau}(o p(i, x)), i=1$.. $\operatorname{nops}(x))$ elf

$$
\text { (type } \left.\left(x, \quad{ }^{*}\right)=\text { true }\right) \text { then } \operatorname{expand}\left(\operatorname{Tau}(y) \cdot \frac{x}{y}+y \cdot \operatorname{Tau}\left(\frac{x}{y}\right)\right) \text { elif }
$$

(type $\left(x, \quad \wedge^{\prime}\right)=$ true $)$ then $o p(2, x) \cdot y^{(o p(2, x)-1)} \cdot \operatorname{Tau}(y)$ eli
(type $(x$, function $)=$ true $)$ then 'Tau' (x) elif
(type $(x$, symbol $)=$ true $) \quad$ then 'Tau' (x) else 0 fie end proc:

$$
\begin{aligned}
& \left.>K^{\#}:=\boldsymbol{p r o c}(x) \text { local } y ; y:=o p(1, x): \text { if (type }\left(x, \quad{ }^{`}+{ }^{`}\right)=\operatorname{true}\right) \text { then } \operatorname{add}\left(K^{\#}(o p(i, x)), i=1\right. \\
& \text {.. } \operatorname{nops}(x)) \text { elif } \\
& \text { (type } \left.\left(x, \quad{ }^{* `}\right)=\text { true }\right) \text { then expand }\left(K^{\#}(y) \cdot \frac{x}{y}+y \cdot K^{\#}\left(\frac{x}{y}\right)\right) \text { elif } \\
& \text { (type } \left.\left(x, \quad \wedge^{`}\right)=\text { true }\right) \text { then } o p(2, x) \cdot y^{(o p(2, x)-1)} \cdot K^{\#}(y) \text { elif } \\
& \text { (type }(x, \text { function })=\text { true) then } \text { Kfunction }^{\#}(x) \text { elif } \\
& \text { (type }(x, \text { symbol })=\text { true) } \quad \text { then } \operatorname{Ksymbol}^{\#}(x) \text { else } 0 \text { fi end proc: }
\end{aligned}
$$

Kfunction ${ }^{\#}:=\operatorname{proc}(x)$ local $y ; y:=\operatorname{recherche}(x) ;$ if $y=k^{\#}$ then ' $K^{\# \prime}(x)$ else Kfunction $I^{\#}(x)$ fi end proc:
$>$ Kfunction $I^{\#}:=\operatorname{proc}(x)$ local $y, J:$ if $x=k$ then 0 elif $x=P 1$ then $\left(-L^{\#}\left(k^{\#}\right) \cdot P 1\right.$
$\left.-L^{\#}\left(L^{\#}\left(k^{\#}\right)\right)\right)$ elif $x=P$ then $\left(-L\left(k^{\#}\right) \cdot P 1-L^{\#}\left(L\left(k^{\#}\right)\right)+2 \cdot I \cdot T a u\left(k^{\#}\right)\right)$ else J
$:=o p(0, x): y:=o p(1, x):$ if $J=L$ then $L\left(\operatorname{Kfunction}^{\#}(y)\right)-' L\left(k^{\#}\right) \cdot \cdot L^{\#}(y)$ elif

$$
J=L^{\#}
$$

then $L^{\#}\left(\right.$ Kfunction $\left.I^{\#}(y)\right)-L^{\#}\left(k^{\#}\right) \cdot L^{\#}(y)$ elif

$$
J=K
$$

then $K\left(\right.$ Kfunction $\left.^{\#}(y)\right)$ elif $J=$ Tau then $\operatorname{Tau}\left(\right.$ Kfunctionl $\left.^{\#}(y)\right)-L^{\#}\left(k^{\#}\right) \cdot \cdot \operatorname{Tau}(y)-$ $' \operatorname{Tau}\left(k^{\#}\right) \cdot \cdot L^{\#}(y) \mathbf{f i}$ fi end proc:
Ksymbol $:=\operatorname{proc}(x)$; if $x=k$ then 0 elif $x=P 1$ then $\left(-L^{\#}\left(k^{\#}\right) \cdot P 1-L^{\#}\left(L^{\#}\left(k^{\#}\right)\right)\right)$ elif $x=P$ then $\left(-L\left(k^{\#}\right) \cdot P 1-L^{\#}\left(L\left(k^{\#}\right)\right)+2 \cdot I \cdot \operatorname{Tau}\left(k^{\#}\right)\right)$ else ' $K^{\#}(x)$ ' fi end proc:
$\operatorname{Der}:=\operatorname{proc}(x)$ local $y ; y:=o p(1, x):$ if $\left(\operatorname{type}\left(x,{ }^{`}+{ }^{`}\right)=\operatorname{true}\right)$ then $\operatorname{add}(\operatorname{Der}(o p(i, x)), i=1$.. $\operatorname{nops}(x))$ elif
(type $\left(x, \quad{ }^{* \prime}\right)=$ true $)$ then $\operatorname{expand}\left(\frac{x}{y} \cdot \operatorname{Der}(y)+y \cdot \operatorname{Der}\left(\frac{x}{y}\right)\right)$ elif
(type (x, ${ }^{` `}$) $=$ true) then $\operatorname{op}(2, x) \cdot y^{(o p(2, x)-1)} \cdot \operatorname{Der}(y)$ elif
$(($ type $(x$, function $)=$ true $)$ or $($ type $(x$, symbol $)=$ true $))$ then $\operatorname{Tau}(x) \cdot W[1]$
$+L(x) \cdot W[2]+K(x) \cdot W[3]+L^{\#}(x) \cdot W[4]+K^{\#}(x) \cdot W[5]$
else 0 fi end proc:
derivation $:=\boldsymbol{p r o c}(x): \operatorname{collect}(\operatorname{Der}(x),[W[1], W[2], W[3], W[4], W[5]])$: end proc:
$[>$ with(DifferentialGeometry):
$>$ with(Tools) : with(LinearAlgebra):
$>\operatorname{DGsetup}([x, y, z, y 1, z 1],[b, b 1, c, c 1, d, d 1, e, e 1], M$, verbose $)$;
The following coordinates have been protected:

$$
[x, y, z, y 1, z l, b, b 1, c, c l, d, d 1, e, e l]
$$

The following vector fields have been defined and protected:
$\left[D _x, D_{_} y, D_{_} z, D _y 1, D_{_} z 1, D_{_} b, D_{_} b 1, D_{_} c, D_{-} c l, D_{_} d, D_{-} d 1, D_{_} e, D_{_} e l\right]$
The following differential 1-forms have been defined and protected:
[$d x, d y, d z, d y 1, d z 1, d b, d b 1, d c, d c 1, d d, d d 1, d e, d e 1]$ frame name: M
$\mathrm{M}>g:=\operatorname{Matrix}\left(\left[[c \cdot c l, 0,0,0,0],[b, c, 0,0,0],\left[d, e, \frac{c}{c l}, 0,0\right],[b 1,0,0, c 1,0],[d 1,0\right.\right.$,

$$
\left.\left.\left.0, e l, \frac{c l}{c}\right]\right]\right)
$$

$$
g:=\left[\begin{array}{ccccc}
c c l & 0 & 0 & 0 & 0 \tag{2}\\
b & c & 0 & 0 & 0 \\
d & e & \frac{c}{c l} & 0 & 0 \\
b 1 & 0 & 0 & c l & 0 \\
d 1 & 0 & 0 & e 1 & \frac{c l}{c}
\end{array}\right]
$$

$$
\left[\frac{d b}{c c l}-\frac{b d c}{c^{2} c l}, \frac{d c}{c}, 0 d x, 0 d x, 0 d x\right]
$$

$$
\left[\frac{(-d c+e b) d c}{c^{3} c 1}-\frac{(-d c+e b) d c l}{c^{2} c l^{2}}+\frac{d d}{c c l}-\frac{b d e}{c^{2} c l},-\frac{e d c}{c^{2}}+\frac{e d c l}{c l c}+\frac{d e}{c}, \frac{d c}{c}\right.
$$

$$
\left.-\frac{d c 1}{c 1}, 0 d x, 0 d x\right]
$$

$$
\left[\frac{d b 1}{c c 1}-\frac{b 1 d c 1}{c c 1^{2}}, 0 d x, 0 d x, \frac{d c 1}{c 1}, 0 d x\right]
$$

$$
\left[-\frac{(-d 1 c 1+e 1 b 1) d c}{c 1^{2} c^{2}}+\frac{(-d 1 c 1+e 1 b 1) d c 1}{c l^{3} c}+\frac{d d 1}{c c 1}-\frac{b 1 d e 1}{c c 1^{2}}, 0 d x, 0 d x, \frac{e 1 d c}{c c 1}\right.
$$

$$
\left.\left.-\frac{e l d c l}{c l^{2}}+\frac{d e l}{c l},-\frac{d c}{c}+\frac{d c l}{c l}\right]\right]
$$

$\left[\mathbf{M}>t[1]:=\frac{d c}{c}:\right.$
$\mathrm{M}>\mathrm{t}[2]:=\frac{d b}{c c 1}-\frac{b d c}{c^{2} c 1}$:
$\mathrm{M}>t[3]:=\frac{(-d c+e b) d c}{c^{3} c 1}-\frac{(-d c+e b) d c 1}{c^{2} c l^{2}}+\frac{d d}{c c 1}-\frac{b d e}{c^{2} c 1}:$
$\mathrm{M}>t[4]:=-\frac{e d c}{c^{2}}+\frac{e d c l}{c l c}+\frac{d e}{c}:$
$\mathrm{M}>t[5]:=\frac{d c 1}{c l}:$
$\left[\mathrm{M}>t[6]:=\frac{d b 1}{c c 1}-\frac{b 1 d c 1}{c c l^{2}}:\right.$
$\left[\mathrm{M}>t[7]:=-\frac{(-d 1 c 1+e l b 1) d c}{c 1^{2} c^{2}}+\frac{(-d 1 c 1+e 1 b 1) d c 1}{c 1^{3} c}+\frac{d d 1}{c c 1}-\frac{b 1 d e 1}{c c 1^{2}}:\right.$
$\mathrm{M}>t[8]:=\frac{e 1 d c}{c c 1}-\frac{e 1 d c 1}{c l^{2}}+\frac{d e 1}{c l}:$
$\mathbf{M}>F D:=$ FrameData $([t[1], t[2], t[3], t[4], t[5], t[6], t[7], t[8], d x, d y, d z, d y 1, d z 1]$, $N):$
$\mathrm{M}>\operatorname{DGsetup}\left(F D,[E],\left[\operatorname{alpha}[1]\right.\right.$, alpha[2], alpha[3], alpha[4], $\alpha^{\#}[1], \alpha^{\#}[2], \alpha^{\#}[3], \alpha^{\#}[4]$, rho, kappa, zeta, $\left.\left.\kappa^{\#}, \zeta^{\#}\right]\right)$;
frame name: N
$\mathrm{N}>T:=\operatorname{Vector}\left(\left[\right.\right.$ rho, kappa, zeta, $\left.\left.\kappa^{\#}, \zeta^{\#}\right]\right):$
$\mathrm{N}>X:=\operatorname{Der}\left(L^{\#}(k)\right) ; X 1:=\operatorname{Der}\left(L\left(k^{\#}\right)\right) ; X X:=\operatorname{subs}\left(\left\{W[3]=\frac{W[3]}{L^{\#}(k)}, W[5]=\frac{W[5]}{L\left(k^{\#}\right)}\right\}\right.$, $X): X X 1:=\operatorname{subs}\left(\left\{W[3]=\frac{W[3]}{L^{\#}(k)}, W[5]=\frac{W[5]}{L\left(k^{\#}\right)}\right\}, X 1\right):$
$X:=\mathrm{T}\left(L^{\#}(k)\right) W_{1}+L\left(L^{\#}(k)\right) W_{2}+K\left(L^{\#}(k)\right) W_{3}+L^{\#}\left(L^{\#}(k)\right) W_{4}-L^{\#}\left(k^{\#}\right) L^{\#}(k) W_{5}$
$X 1:=\mathrm{T}\left(L\left(k^{\#}\right)\right) W_{1}+L\left(L\left(k^{\#}\right)\right) W_{2}-L(k) L\left(k^{\#}\right) W_{3}+L^{\#}\left(L\left(k^{\#}\right)\right) W_{4}+K^{\#}\left(L\left(k^{\#}\right)\right) W_{5}$
$\mathrm{N}>W:=h . T$:
$E q 1:=P \cdot(W[1] \&$ wedge $W[2])-\frac{L(k)}{L^{\#}(k)} \cdot(W[1] \&$ wedge $W[3])+P 1 \cdot(W[1]$ \&wedge $W[4])-\frac{L^{\#}\left(k^{\#}\right)}{L\left(k^{\#}\right)} \cdot(W[1]$ \&wedge $W[5])+I \cdot(W[2]$ \&wedge $W[4])$:
$\left[\mathrm{N}>E q 2:=-\frac{L(k)}{L^{\#}(k)} \cdot(W[2]\right.$ \&wedge $W[3])+(W[3]$ \&wedge $W[4])-\frac{\operatorname{Tau}(k)}{L^{\#}(k)} \cdot(W[1]$ \&wedge $W[3])$:
$\left[\mathbf{N}>E q 3:=\left(\frac{X X}{L^{\#}(k)}\right.\right.$ \&wedge $\left.W[3]\right):$
$\mathrm{N}>E q 4:=-\frac{L^{\#}\left(k^{\#}\right)}{L\left(k^{\#}\right)} \cdot(W[4] \&$ wedge $W[5])+(W[5] \&$ wedge $W[2])-\frac{\operatorname{Tau}\left(k^{\#}\right)}{L\left(k^{\#}\right)} \cdot(W[1]$ \&wedge $W[5])$:
$\mathrm{N}>E q 5:=\left(\frac{X X 1}{L\left(k^{\#}\right)}\right.$ \&wedge $\left.W[5]\right):$
omega $:=\operatorname{Vector}([E q 1, E q 2, E q 3, E q 4, E q 5]):$
Omega $:=\operatorname{map}($ evalDG, g.omega) :
$[\mathrm{N}>A:=\operatorname{map}($ evalDG,$($ ExteriorDerivative $(g) . h)):$
$B:=A$ \&MatrixWedge T :
$\mathrm{N}>S E:=\operatorname{map}($ evalDG, $(B$ \&MatrixPlus Omega) $):$
$\mathrm{N}>$ List $:=$ GenerateForms $\left(\left[\operatorname{alpha}[1]\right.\right.$, alpha[2], alpha[3], alpha[4], $\alpha^{\#}[1], \alpha^{\#}[2], \alpha^{\#}[3]$, $\alpha^{\#}[4]$, rho, kappa, zeta, $\left.\left.\kappa^{\#}, \zeta^{\#}\right], 2\right):$
$\mathrm{N}>\operatorname{result}:=\operatorname{proc}(l) \operatorname{local} k, t, X ; X:=0: t:=\operatorname{expand}($ GetComponents(l,List)) : for k from 1 to 78 do $X:=X+t[k] \cdot \operatorname{List}[k]$ od; X; end proc:
$\mathrm{N}>\operatorname{Res} 1:=\operatorname{result}(S E[1])$;

$$
\begin{aligned}
\text { Resl } & :=\alpha_{1} \wedge \rho+\alpha_{1}^{\#} \wedge \rho+\left(\frac{\mathrm{I} b l}{c c l}+\frac{c l L(k) e}{c^{2} L^{\#}(k)}+\frac{P}{c}\right) \rho \wedge \kappa-\frac{L(k) c l \rho \wedge \zeta}{L^{\#}(k) c}+\left(-\frac{\mathrm{I} b}{c c l}\right. \\
& \left.+\frac{c L^{\#}\left(k^{\#}\right) e l}{c l^{2} L\left(k^{\#}\right)}+\frac{P 1}{c l}\right) \rho \wedge \kappa^{\#}-\frac{L^{\#}\left(k^{\#}\right) c \rho \wedge \zeta^{\#}}{L\left(k^{\#}\right) c l}+\mathrm{I} \kappa \wedge \kappa^{\#}
\end{aligned}
$$

$\mathrm{N}>\operatorname{Res} 2:=\operatorname{result}(S E[2]) ;$

$$
\begin{aligned}
\text { Res } 2 & :=\alpha_{1} \wedge \kappa+\alpha_{2} \wedge \rho+\left(\frac{\mathrm{T}(k) e}{c^{2} L^{\#}(k)}-\frac{e b 1}{c^{2} c l}-\frac{L(k) d}{c^{2} L^{\#}(k)}+\frac{\mathrm{I} b b 1}{c^{2} c l^{2}}+\frac{L(k) e b}{c^{3} L^{\#}(k)}\right. \\
& \left.+\frac{b P}{c^{2} c l}\right) \rho \wedge \kappa+\left(-\frac{\mathrm{T}(k)}{c L^{\#}(k)}+\frac{b 1}{c c l}\right) \rho \wedge \zeta+\left(-\frac{d}{c c l}+\frac{e b}{c l c^{2}}-\frac{\mathrm{I} b^{2}}{c^{2} c l^{2}}\right. \\
& \left.+\frac{b L^{\#}\left(k^{\#}\right) e l}{c l^{3} L\left(k^{\#}\right)}+\frac{b P 1}{c c l^{2}}\right) \rho \wedge \kappa^{\#}-\frac{b L^{\#}\left(k^{\#}\right) \rho \wedge \zeta^{\#}}{L\left(k^{\#}\right) c l^{2}}-\frac{L(k) c l \kappa \wedge \zeta}{L^{\#}(k) c}+\left(-\frac{e}{c}\right. \\
& \left.+\frac{\mathrm{I} b}{c c l}\right) \kappa \wedge \kappa^{\#}+\zeta \wedge \kappa^{\#}
\end{aligned}
$$

$\mathrm{N}>\operatorname{Res} 3:=\operatorname{result}(S E[3])$;

$$
\begin{align*}
R e s 3 & :=\alpha_{1} \wedge \zeta+\alpha_{3} \wedge \rho+\alpha_{4} \wedge \kappa-\alpha_{1}^{\#} \wedge \zeta+\left(\frac{L\left(L^{\#}(k)\right) d}{c l c^{2} L^{\#}(k)}-\frac{e L^{\#}\left(k^{\#}\right) d l}{L\left(k^{\#}\right) c l^{2} c}\right. \tag{8}\\
& +\frac{e L^{\#}\left(k^{\#}\right) e l b 1}{L\left(k^{\#}\right) c l^{3} c}+\frac{e L^{\#}\left(L^{\#}(k)\right) b 1}{c l^{2} c^{2} L^{\#}(k)}-\frac{e \mathrm{~T}\left(L^{\#}(k)\right)}{c l c^{2} L^{\#}(k)}+\frac{e^{2} \mathrm{~T}(k)}{c^{3} L^{\#}(k)}-\frac{e^{2} b 1}{c l c^{3}}+\frac{\mathrm{I} d b 1}{c l^{2} c^{2}} \\
& \left.+\frac{d P}{c l c^{2}}\right) \rho \wedge \kappa+\left(\frac{d l L^{\#}\left(k^{\#}\right)}{L\left(k^{\#}\right) c l^{2}}-\frac{e l L^{\#}\left(k^{\#}\right) b 1}{L\left(k^{\#}\right) c l^{3}}-\frac{L^{\#}\left(L^{\#}(k)\right) b 1}{c l^{2} c L^{\#}(k)}-\frac{L\left(L^{\#}(k)\right) b}{c l c^{2} L^{\#}(k)}\right. \\
& \left.+\frac{\mathrm{T}\left(L^{\#}(k)\right)}{c l c L^{\#}(k)}-\frac{\mathrm{T}(k) e}{c^{2} L^{\#}(k)}+\frac{e b 1}{c^{2} c l}+\frac{L(k) e b}{c^{3} L^{\#}(k)}-\frac{L(k) d}{c^{2} L^{\#}(k)}\right) \rho \wedge \zeta+\left(\frac{2 L^{\#}\left(k^{\#}\right) e l d}{L\left(k^{\#}\right) c l^{3}}\right. \\
& -\frac{L^{\#}\left(k^{\#}\right) e l e b}{L\left(k^{\#}\right) c l^{3} c}+\frac{L^{\#}\left(L^{\#}(k)\right) d}{c l^{2} c L^{\#}(k)}-\frac{L^{\#}\left(L^{\#}(k)\right) e b}{c l^{2} c^{2} L^{\#}(k)}-\frac{e d}{c l c^{2}}+\frac{e^{2} b}{c l c^{3}}-\frac{\mathrm{I} d b}{c l^{2} c^{2}} \\
& \left.+\frac{d P 1}{c l^{2} c}\right) \rho \wedge \kappa^{\#}+\left(-\frac{2 L^{\#}\left(k^{\#}\right) d}{c l^{2} L\left(k^{\#}\right)}+\frac{L^{\#}\left(k^{\#}\right) e b}{c l^{2} L\left(k^{\#}\right) c}\right) \rho \wedge \zeta^{\#}+\left(\frac{L\left(L^{\#}(k)\right)}{L^{\#}(k) c}\right. \\
& \left.-\frac{c l L(k) e}{c^{2} L^{\#}(k)}\right) \kappa \wedge \zeta+\left(\frac{e L^{\#}\left(k^{\#}\right) e l}{L\left(k^{\#}\right) c l^{2}}+\frac{e L^{\#}\left(L^{\#}(k)\right)}{L^{\#}(k) c l c}-\frac{e^{2}}{c^{2}}+\frac{\mathrm{I} d}{c l c}\right) \kappa \wedge \kappa^{\#} \\
& -\frac{L^{\#}\left(k^{\#}\right) e \kappa \wedge \xi^{\#}}{c l\left(k^{\#}\right)}+\left(-\frac{c L^{\#}\left(k^{\#}\right) e 1}{c\left(k^{\#}\right)}-\frac{L^{\#}\left(L^{\#}(k)\right)}{L^{\#}(k) c l}+\frac{e}{c}\right) \zeta \wedge \kappa^{\#}+\frac{L^{\#}\left(k^{\#}\right) c \zeta \wedge \xi^{\#}}{L\left(k^{\#}\right) c l}
\end{align*}
$$

$\mathrm{N}>$ Torsion $:=\boldsymbol{p r o c}(S, i, j)$ local $k, X ; k:=13 \cdot(i-1)-\frac{i \cdot(i-1)}{2}+j-i ; X$

$$
:=\text { GetComponents }(S, L i s t) ; X[k] ; \text { end proc: }
$$

N > eq:=expand(2•Torsion(SE[2], 10, 12) - Torsion(SE[3], 11, 12) - Torsion(SE[1], 9,12));

$$
\begin{equation*}
e q:=-\frac{3 e}{c}+\frac{3 \mathrm{I} b}{c c l}+\frac{L^{\#}\left(L^{\#}(k)\right)}{L^{\#}(k) c l}-\frac{P I}{c l} \tag{9}
\end{equation*}
$$

$\lceil\mathrm{N}>$ Normalisation $:=\operatorname{expand}($ solve $($ eq,,$b))$;

$$
\begin{gather*}
\text { Normalisation }:=-\mathrm{I} e c 1+\frac{\frac{1}{3} \mathrm{I} L^{\#}\left(L^{\#}(k)\right) c}{L^{\#}(k)}-\frac{1}{3} \mathrm{I} P 1 c \tag{10}\\
{\left[\mathrm{~N}>g:=\operatorname{expand}\left(\frac{(\text { Normalisation }+I \cdot e \cdot c l)}{c}\right) ;\right.} \tag{11}\\
g:=\frac{\frac{1}{3} \mathrm{I} L^{\#}\left(L^{\#}(k)\right)}{L^{\#}(k)}-\frac{1}{3} \mathrm{I} P 1
\end{gather*}
$$

