```
    restart:
    with(DifferentialGeometry):
    with(Tools) : with(LinearAlgebra) :
    DGsetup([l,x,y,z,zl],M, verbose);
                The following coordinates have been protected:
                    [l,x,y,z,zl]
The following vector fields have been defined and protected:
\[
\left[D \_l, D_{-} x, D_{-} y, D_{-} z, D_{-} z l\right]
\]
The following differential 1-forms have been defined and protected:
[ \(d l, d x, d y, d z, d z 1]\)
frame name: \(M\)
[Une procédure de dérivation:
```

```
\(>\operatorname{Der}:=\boldsymbol{\operatorname { p r o c }}(x) ; \boldsymbol{\operatorname { e v a l D G }}((\) derive \((x, 1)\) \&wedge \(W[1])+(\) derive \((x, 2)\) \&wedge \(W[2])\)
```

$>\operatorname{Der}:=\boldsymbol{\operatorname { p r o c }}(x) ; \boldsymbol{\operatorname { e v a l D G }}(($ derive $(x, 1)$ \&wedge $W[1])+($ derive $(x, 2)$ \&wedge $W[2])$
$+($ derive $(x, 3) \&$ wedge $W[3])+($ derive $(x, 4) \&$ wedge $W[4])+($ derive $(x, 5)$
$+($ derive $(x, 3) \&$ wedge $W[3])+($ derive $(x, 4) \&$ wedge $W[4])+($ derive $(x, 5)$
\&wedge $W[5])$); end proc;
\&wedge $W[5])$); end proc;
Der:= $\mathbf{p r o c}(x)$
Der:= $\mathbf{p r o c}(x)$
DifferentialGeometry:-evalDG(DifferentialGeometry:-\&wedge(derive(x, 1), W[1])
DifferentialGeometry:-evalDG(DifferentialGeometry:-\&wedge(derive(x, 1), W[1])
+ DifferentialGeometry:-\&wedge(derive($x, 2$), W[2]) + DifferentialGeometry:-
+ DifferentialGeometry:-\&wedge(derive($x, 2$), W[2]) + DifferentialGeometry:-
\&wedge(derive ($x, 3$), W[3]) + DifferentialGeometry:-\&wedge(derive ($x, 4$), $W[4]$)
\&wedge(derive ($x, 3$), W[3]) + DifferentialGeometry:-\&wedge(derive ($x, 4$), $W[4]$)
+ DifferentialGeometry:-\&wedge(derive(x, 5), W[5]))
+ DifferentialGeometry:-\&wedge(derive(x, 5), W[5]))
end proc
end proc
$\mathrm{M}>$ derive $:=\boldsymbol{\operatorname { p r o c }}(x, i) \operatorname{local} y ; y:=o p(1, x):$ if $\left(\right.$ type $\left(x,{ }^{`}+{ }^{`}\right)=$ true $)$
$\mathrm{M}>$ derive $:=\boldsymbol{\operatorname { p r o c }}(x, i) \operatorname{local} y ; y:=o p(1, x):$ if $\left(\right.$ type $\left(x,{ }^{`}+{ }^{`}\right)=$ true $)$
then add (derive $(o p(j, x), i), j=1 . . \operatorname{nops}(x))$ elif
then add (derive $(o p(j, x), i), j=1 . . \operatorname{nops}(x))$ elif
(type $\left(x, \quad{ }^{*}{ }^{\prime}\right)=$ true $)$ then $\operatorname{expand}\left(\operatorname{derive}(y, i) \cdot \frac{x}{y}+y \cdot \operatorname{derive}\left(\frac{x}{y}\right.\right.$,
(type $\left(x, \quad{ }^{*}{ }^{\prime}\right)=$ true $)$ then $\operatorname{expand}\left(\operatorname{derive}(y, i) \cdot \frac{x}{y}+y \cdot \operatorname{derive}\left(\frac{x}{y}\right.\right.$,
i)) elif
i)) elif
(type $\left(x, \quad{ }^{\wedge}\right)=$ true $)$ then $\operatorname{op}(2, x) \cdot y^{(o p(2, x)-1)} \cdot \operatorname{derive}(y, i)$
(type $\left(x, \quad{ }^{\wedge}\right)=$ true $)$ then $\operatorname{op}(2, x) \cdot y^{(o p(2, x)-1)} \cdot \operatorname{derive}(y, i)$
elif
elif
(type (x, function)=true) then x[i]elif
M > W:= Vector([dl,dx,dy,dz,dzl]):
M > List2 := GenerateForms([dl, dx,dy,dz,dzl], 2) : List1 := [dl, dx,dy,dz,dz1]:
M > trl(1):=1:
M > trl(2):= 1:
M > trl(3):= 1:
M > trl(4):= 1:
M > trl(5):= 2:
M > trl(6):= 2:
M > trl(7):= 2:
M > trl(8):= 3:
M > trl(9):= 3:
M > trl(10):= 4:
M > tr2(1):=2:
M > tr2(2):= 3:

```


M \(>B I:=\mathbf{p r o c}(\) omega) local \(R, i ; R:=G e t C o m p o n e n t s(D F(\) omega), List 3 ); for \(i\) from 1 to 10 do \(\operatorname{print}(R[i]=0) ; \mathbf{o d}\); end proc:
M \(>\) List3 \(:=\) GenerateForms([dl, \(d x, d y, d z, d z 1], 3\) );
List3 := \([d l \wedge d x \wedge d y, d l \wedge d x \wedge d z, d l \wedge d x \wedge d z 1, d l \wedge d y \wedge d z, d l \wedge d y \wedge d z 1\),
\(d l \wedge d z \wedge d z l, d x \wedge d y \wedge d z, d x \wedge d y \wedge d z l, d x \wedge d z \wedge d z 1, d y \wedge d z \wedge d z l]\)

Equations de structures:
\(\mathrm{M}>d W[1]:=\) evalD \(G\left(\frac{I}{2} \cdot I I \cdot(W[2] \&\right.\) wedge \(W[5])-\frac{I}{2} \cdot I I^{\#} \cdot(W[2] \& w e d g e ~ W[4])-\frac{1}{3}\) \(\cdot\left(I 2+I 3^{\#}\right) \cdot(W[3]\) \&wedge \(W[4])-\frac{1}{3} \cdot\left(I 2^{\#}+I 3\right) \cdot(W[3]\) \&wedge \(W[5])+I 0\) - (W[2] \&wedge \(W[3])\) );
\(d W_{1}:=I 0 d x \wedge d y-\frac{1}{2} \mathrm{I} I I^{\#} d x \wedge d z+\frac{1}{2} \mathrm{I} I 1 d x \wedge d z 1+\left(-\frac{1}{3} I 2-\frac{1}{3} I 3^{\#}\right) d y \wedge d z+(\) \(\left.-\frac{1}{3} I 2^{\#}-\frac{1}{3} I 3\right) d y \wedge d z 1\)
\(\mathbf{M}>d W[2]:=\operatorname{evalDG}(3 \cdot(W[1]\) \&wedge \(W[2])+(W[3]\) \&wedge \(W[4])+(W[3]\) \&wedge \(W[5]\) ) );
\[
\begin{equation*}
d W_{2}:=3 d l \wedge d x+d y \wedge d z+d y \wedge d z 1 \tag{5}
\end{equation*}
\]
\(\mathrm{M}>d W[4]:=\operatorname{evalDG}(W[1] \& w e d g e ~ W[4]+I 1 \cdot(W[2]\) \&wedge \(W[3])+I 2 \cdot(W[2]\) \&wedge \(W[4])+I 3 \cdot(W[2]\) \&wedge \(W[5])+I 4 \cdot(W[3]\) \&wedge \(W[4])+I 5\)
\(\cdot(W[3]\) \&wedge \(W[5]))\);
\(d W_{4}:=d l \wedge d z+I 1 d x \wedge d y+I 2 d x \wedge d z+I 3 d x \wedge d z 1+I 4 d y \wedge d z+I 5 d y \wedge d z 1\)
\(\mid \mathrm{M}>d W[5]:=\operatorname{evalD} G\left(W[1]\right.\) \&wedge \(W[5]+I I^{\#} \cdot(W[2] \& w e d g e W[3])+I 2^{\#} \cdot(W[2]\) \&wedge \(W[5])+I 3^{\#} \cdot(W[2]\) \&wedge \(W[4])+I 4^{\#} \cdot(W[3]\) \&wedge \(W[5])+I 5^{\#}\) \(\cdot(W[3] \&\) wedge \(W[4]))\);
\(d W_{5}:=d l \wedge d z 1+I I^{\#} d x \wedge d y+I 3^{\#} d x \wedge d z+I 2^{\#} d x \wedge d z 1+I 5^{\#} d y \wedge d z+I 4^{\#} d y \wedge d z 1\)
\(\overline{\mathrm{M}}>d W[3]:=\operatorname{evalDG}(2 \cdot(W[1]\) \&wedge \(W[3])+I \cdot(W[4]\) \&wedge \(W[5]))\);
\[
\begin{equation*}
d W_{3}:=2 d l \wedge d y+\mathrm{I} d z \wedge d z l \tag{8}
\end{equation*}
\]
\(\mathrm{M}>B I(d W[1]) ;\)
\[
\begin{gathered}
5 I 0+I 0_{1}=0 \\
-2 \mathrm{I} I I^{\#}-\frac{1}{2} \mathrm{I} I I_{1}^{\#}=0 \\
2 \mathrm{I} I I+\frac{1}{2} \mathrm{I} I l_{1}=0 \\
-I 2-I 3^{\#}-\frac{1}{3} I 2_{1}-\frac{1}{3} I 3_{1}^{\#}=0 \\
-I 2^{\#}-I 3-\frac{1}{3} I 2_{1}^{\#}-\frac{1}{3} I 3_{1}=0
\end{gathered}
\]
\[
0=0
\]
\(-\frac{1}{3} I 3^{\#} I 2^{\#}-\frac{1}{3} I 3 I 3^{\#}-\frac{1}{3} I 2^{2}-\frac{1}{3} I 2 I 3^{\#}-\frac{1}{2} \mathrm{I} I I I 5^{\#}+\frac{1}{2} \mathrm{I} I I^{\#} I 4-\frac{1}{3} I 2_{2}-\frac{1}{3} I 3^{\#}{ }_{2}\)
\[
+\frac{1}{2} \mathrm{I} I I_{3}^{\#}+I 0_{4}=0
\]
\(-\frac{1}{3} I 2^{\#^{2}}-\frac{1}{3} I 2^{\#} I 3-\frac{1}{3} I 3 I 2-\frac{1}{3} I 3 I 3^{\#}-\frac{1}{2} I I I I 4^{\#}+\frac{1}{2} I I I^{\#} I 5-\frac{1}{3} I 2^{\#} 2-\frac{1}{3} I 3_{2}\)
\[
-\frac{1}{2} \mathrm{I} I l_{3}+I 0_{5}=0
\]
\[
\begin{gather*}
-\mathrm{I} I 0-\frac{1}{2} \mathrm{I} I I_{4}-\frac{1}{2} \mathrm{I} I I_{5}^{\#}=0 \\
\frac{1}{2} \mathrm{I} I I+\frac{1}{2} \mathrm{I} I I^{\#}+\frac{1}{3} I 2_{4}^{\#}+\frac{1}{3} I 3_{4}-\frac{1}{3} I 2_{5}-\frac{1}{3} I 3_{5}^{\#}=0 \tag{9}
\end{gather*}
\]
\(\mathrm{M}>B I(d W[2]) ;\)
\[
\begin{align*}
& 0=0 \\
& 0=0 \\
& 0=0 \\
& 0=0 \\
& 0=0 \\
& 0=0 \\
& 0=0 \\
& 0=0 \\
& 0=0 \\
& 0=0 \tag{10}
\end{align*}
\]
\(\mathrm{M}>B I(d W[3]) ;\)
\[
0=0
\]
\[
\begin{array}{r}
0=0 \\
0=0 \\
0=0 \\
0=0 \\
0=0 \\
0=0 \\
0=0 \\
\mathrm{I} I 2^{\#}+\mathrm{I} I 2=0 \\
\mathrm{I} I 4^{\#}+\mathrm{I} I 4=0 \\
4 I I+I 1_{1}=0 \\
3 I 2+I 2_{1}=0 \\
3 I 3+I 3_{1}=0 \\
2 I 4+I 4_{1}=0 \\
2 I 5+I 5_{1}=0 \\
0=0 \\
\mathrm{M}>B I(d W[4]) ; \quad 15 I 2^{\#}+I 4 I 3-I 3 I 4^{\#}-I 2 I 5+I 5_{2}-I 3_{3}+I 1_{5}=0 \\
3 \\
-\frac{3}{2} I I I-I 3_{4}+I 2_{5}=0 \\
2 \\
\frac{4}{3} I 3-I 2+\frac{1}{3} I 2^{\#}-I 5_{4}+I 4_{5}=0 \tag{12}
\end{array}
\]
\(\mathbf{M}>B I(d W[5]):\)
\[
\begin{gather*}
4 I I^{\#}+I I_{1}^{\#}=0 \\
3 I 3^{\#}+I 3_{1}^{\#}=0 \\
3 I 2^{\#}+I 2_{1}^{\#}=0 \\
2 I 5^{\#}+I 5_{1}^{\#}=0 \\
2 I 4^{\#}+I 4_{1}^{\#}=0 \\
0=0 \\
I 4^{\#} I 3^{\#}+I 5^{\#} I 2-I 2^{\#} I 5^{\#}-I 3^{\#} I 4+I 5_{2}^{\#}-I 3_{3}^{\#}+I I_{4}^{\#}=0 \\
-I 5 I 3^{\#}+I 3 I 5^{\#}+I 0+I 4_{2}^{\#}-I 2_{3}^{\#_{3}}+I I_{5}^{\#}=0 \\
-\frac{3}{2} I I I^{\#}-I 2_{4}^{\#}+I 3_{5}^{\#}=0 \\
I 2^{\#}-\frac{4}{3} I 3^{\#}-\frac{1}{3} I 2-I 4_{4}^{\#}+I 5_{5}^{\#}=0 \tag{13}
\end{gather*}
\]
\(\mathrm{M}>\operatorname{derive}\left(\frac{I}{2} \cdot I I^{\#}\right) ;\)

Error, invalid input: derive uses a 2nd argument, i, which is missing```

