Chapter 1 : Numerical Series.

1 Definition and first properties

Definition 1.1. Given a sequence of real or complex numbers $a = (a_n)_{n \ge 1}$, we define the sequence $(s_n(a))$ of *partial sums* by

$$s_n(a) = \sum_{k=1}^n a_k.$$

The series associated to a is denoted by the symbol

$$\sum_{n=1}^{\infty}a_n$$
, $\sum_{n\geq 1}a_n$ or just $\sum a_n$

and is said *convergent* if the sequence of partial sums converges to a limit S called the *sum* of the series. In this case, it will be usefull to note $(r_n(a))$ the sequence of the *remainders* associated to the convergent series $\sum a_n$, defined by

$$r_n(a) = S - s_n(a) = \sum_{k=n+1}^{\infty} a_k.$$

The series $\sum a_n$ is said *divergent* if the sequence $(s_n(a))$ diverges.

Examples 1.2.

- Telescoping series : a sequence (a_n) and the telescoping series $\sum (a_{n+1}-a_n)$ have the same behaviour.
- Geometric series : for a fixed real number $x \neq \pm 1$, we have

$$\sum_{k=0}^{n} x^{k} = \frac{1-x^{n+1}}{1-x} \Rightarrow \Bigl(\sum x^{n} \text{ converges } \Leftrightarrow |x| < 1\Bigr).$$

Theorem 1.3. [Cauchy criterion] The series $\sum a_n$ converges if and only if

$$\forall \epsilon > 0 \ , \ \exists N \in \mathbb{N} \ , \ \forall p \ge q \ge N \ , \ \left| \sum_{k=q}^{p} a_k \right| \le \epsilon.$$

Proof. Cauchy criterion on $(s_n(a))$.

Corollary 1.4. A necessary condition for $\sum a_n$ to converge is the convergence of a_n to 0.

Proof. Consider p = q in the previous proof.

Example 1.5. $\sum (-1)^n$ diverges.

Remark 1.6. The condition is not sufficient : we'll see later that $\sum \frac{1}{n}$ diverges.

Notations 1.7. I will often note $(\forall n \gg 0)$ instead of $(\exists N \in \mathbb{N} \text{ such that } \forall n \ge N)$.

Theorem 1.8. Suppose $\forall n \gg 0, a_n \ge 0$. We have

 $\sum a_n$ converges $\Leftrightarrow (s_n(a))$ bounded.

Proof. $\exists N$ such that $(s_n(a))_{n \ge N}$ is an increasing sequence.

2 Comparison tests

Notations 2.1. [Landau notations] Let (a_n) and (b_n) be two sequences. (Big O) We note $a_n = O(b_n)$ if $\exists K \in \mathbb{R}, \forall n \gg 0, |a_n| \le K |b_n|$. (little o) We note $a_n = o(b_n)$ if $\forall \epsilon > 0, \forall n \gg 0, |a_n| \le \epsilon |b_n|$. (equivalence of sequences) We note $a_n \sim b_n$ if $a_n - b_n = o(a_n)$.

Exercise 2.2. Check that $a_n - b_n = o(a_n) \Leftrightarrow a_n - b_n = o(b_n)$.

Remark 2.3. – Suppose $\forall n \gg 0, \ b_n > 0$. Then we have $a_n = O(b_n) \Leftrightarrow \frac{a_n}{b_n}$ bounded, $a_n = o(b_n) \Leftrightarrow \frac{a_n}{b_n} \to 0, \ a_n \sim b_n \Leftrightarrow \frac{a_n}{b_n} \to 1$.

- Be careful with the implication

$$(a_n \sim \alpha_n, \ b_n \sim \beta_n) \Rightarrow a_n + b_n \sim \alpha_n + \beta_n$$

it's false if $\forall n \gg 0$, $\alpha_n + \beta_n = 0$: it would mean that $\forall n \gg 0$, $a_n + b_n = 0$, which is obviously not necessarily true. Consider $a_n = 1/(n+1)$, $b_n = -1/(n+2)$ and $\alpha_n = -\beta_n = 1/n$: in fact we have $a_n + b_n = 1/((n+1)(n+2)) \sim 1/n^2$. In such cases, it's more safe to use equalities instead of equivalences, for example with the o and O notations.

Example 2.4. If $a_n \to 0$ we have $|a_n| < \frac{1}{2}$ for n big enough, and we can write (integration by parts)

$$\int_{1}^{1+a_n} \frac{1+a_n-t}{t^2} dt = a_n - \int_{1}^{1+a_n} \frac{dt}{t} = a_n - \ln(1+a_n),$$

thus

$$|\ln(1+a_n) - a_n| \le \int_1^{1+a_n} \frac{|1+a_n - t|}{t^2} dt$$
$$\le |a_n| \int_1^{1+a_n} \frac{dt}{t^2} = |a_n| \frac{|a_n|}{1+a_n} \le 2|a_n|^2,$$

hence

$$\ln(1+a_n) = a_n + O(a_n^2)$$

Theorem 2.5. Let (a_n) and (b_n) be two sequences with $\forall n \gg 0, b_n \ge 0$.

- 1. If $a_n = O(b_n)$, (i) $\sum b_n$ converges $\Rightarrow \sum a_n$ converges and $r_n(a) = O(r_n(b))$, (ii) $\sum b_n$ diverges $\Rightarrow s_n(a) = O(s_n(b))$.
- 2. Same statements with o.
- 3. If $a_n \sim b_n$, $\sum a_n$ and $\sum b_n$ have the same behaviour and

(i) $r_n(a) \sim r_n(b)$ in case of convergence, (ii) $s_n(a) \sim s_n(b)$ in case of divergence.

Proof. (Partial) First, 3 directly follows from 1 and 2. Let's prove 1(i) :

$$\left(\exists K, \ \forall n \gg 0, |a_n| \le K b_n\right) \Rightarrow \left(\exists K, \ \forall n \gg 0, \forall p, \ \left|\sum_{k=n+1}^{n+p} a_k\right| \le K \sum_{k=n+1}^{n+p} b_k\right).$$

By Cauchy criterion, $\sum a_n$ converges and we can make $p \to \infty$ to obtain the result. Let's suppose $a_n = o(b_n)$ and $\sum b_n$ divergent to prove 2(ii). We fix $\epsilon > 0$ and

N such that for all $n \geq N$, $|a_n| \leq \epsilon b_n$. Then

$$|s_n(a)| \le \bigcup_{\substack{k=1\\ \text{constant } K \ge 0}}^{N-1} a_k| + \epsilon \sum_{k=N}^n b_k \le \left(\sum_{k=0}^n b_k\right) \left(\epsilon + \frac{K}{\sum_{k=0}^n b_k}\right).$$

But $\sum b_n$ diverges and $b_n \ge 0$ for n big enough, so $\sum_{k=0}^n b_k \to \infty$ and there exists $N' \ge N$ such that $|s_n(a)| \le 2\epsilon |s_n(b)|$, which gives the expected result. \Box

Remark 2.6. We can use the contraposition of these statements, for example

 $\sum a_n$ diverges and $a_n = O(b_n) \Rightarrow \sum b_n$ diverges.

Examples 2.7.

- **amples 2.7.** $a_n = \sqrt{1 + n^4} \sqrt{n^4 1} = \frac{2}{\sqrt{1 + n^4} + \sqrt{n^4 1}} \sim \frac{1}{n^2}$ and we'll see in the next section that $\sum n^{-\alpha}$ converges iff $\alpha > 1$, so $\sum a_n$ converges. $a_n = \frac{\sqrt{n + 1} \sqrt{n}}{n} \leq \frac{\sup_{[n, n+1]} |f'|}{n}$ where $f(x) = \sqrt{x}$, hence $0 \leq a_n \leq \frac{1}{2n\sqrt{n}}$, so $\sum a_n$ converges because $a_n = O(n^{-3/2})$. Another way to treat this kind of sequence where it appears something like f(a) - f(b), with f differentiable, is to write (here $f = \sqrt{\star}$)

$$a_n = \frac{1}{n\sqrt{n}} \frac{\sqrt{1 + (1/n)} - \sqrt{n}}{1/n} \sim \frac{1}{n\sqrt{n}} f'(1) \sim \frac{1}{2n\sqrt{n}}$$
 ave a more precise result.

• By 2.4, we have $\sum \left(\frac{1}{n} - \ln\left(1 + \frac{1}{n}\right)\right)$ convergent, and we can note γ its sum (the Euler-Mascheroni constant). We can rewrite it as

$$\gamma = \lim_{n \infty} \sum_{k=1}^{n} \left(\frac{1}{k} - (\ln(k+1) - \ln(k)) \right) = \lim_{n \infty} \left\{ \left(\sum_{k=1}^{n} \frac{1}{k} \right) - \ln(n+1) \right\}$$

and finally (cf. $\ln(n+1) - \ln n = o(1)$)

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + o(1)$$

Note that it implies $\sum_{k=1}^{n} \frac{1}{k} \sim \ln n$, which is a direct consequence of $\ln(1 + (1/n)) \sim 1/n$ and 2.5.3(ii).

Integral test 3

Theorem 3.1. Let $f : [a, +\infty[\rightarrow \mathbb{R}^+]$ be a continuous decreasing function. Then for all $N \ge a$ we have

$$\exists \lim_{x \to +\infty} \int_{a}^{x} f(t) dt \Leftrightarrow \sum_{n \ge N} f(n) \text{ converges.}$$

Proof. We write

$$\forall n \ge N, \ f(n+1) \le \int_n^{n+1} f(t)dt \le f(n).$$
(1)

Hence if $\exists \lim_{x \to +\infty} \int_{a}^{x} f(t) dt = S$,

$$\sum_{k=N}^{n} f(k) \le f(N) + \int_{N}^{n} f(t)dt \le S$$

and $f(k) \ge 0$ so we can use 1.8 to obtain the convergence of $\sum f(n)$. Conversely, if $\sum_{n\geq N} f(n)$ converges to S, because $F: x \mapsto \int_a^x f(t)dt$ is an increasing function, we just have to prove that F is bounded : but for all $x \geq a$, there exists $N' \geq a$ $\max\{x, N+1\}$ and, using (1),

$$F(x) \le F(N) + \int_N^x f(t)dt \le F(N) + \int_N^{N'} f(t)dt \le F(N) + \sum_{k=N}^{N'-1} f(k) \le F(N) + S.$$

which gives the result.

which gives the result.

1. For $\alpha>0,\ f_\alpha:x\mapsto x^{-\alpha}$ is continuous and decreasing on Examples 3.2. $[1, +\infty[\text{ and } F_{\alpha}(x) = \int_{1}^{x} t^{-\alpha} dt = \begin{cases} \frac{x^{1-\alpha} - 1}{1-\alpha} & \text{if } \alpha \neq 1 \\ & & \text{if } \alpha = 1 \end{cases}$, which implies

that $\sum n^{-\alpha}$ converges iff $\alpha > 1$ (cf. for $\alpha \leq 0$, $a_n \nrightarrow 0$, which is a necessary condition). Let's use 2.5 to find an equivalent of $r_{n,\alpha} = \sum_{k=n+1}^{\infty} n^{-\alpha}$ for $\alpha > 1$: first we have to find an interesting equivalent for $n^{-\alpha}$, typically something telescoping to obtain a nice remainder. We rewrite the formula (1)for $f = f_{\alpha}$, which gives :

$$\frac{1}{(n+1)^{\alpha}} \le \frac{1}{\alpha - 1} \left(\frac{1}{n^{\alpha - 1}} - \frac{1}{(n+1)^{\alpha - 1}} \right) \le \frac{1}{n^{\alpha}}$$

Multiplying this line by n^{α} , we remark

$$\frac{1}{\alpha-1}\left(\frac{1}{n^{\alpha-1}}-\frac{1}{(n+1)^{\alpha-1}}\right)\sim\frac{1}{n^{\alpha}},$$

and using

$$\sum_{k=n+1}^{\infty} \left(\frac{1}{k^{\alpha-1}} - \frac{1}{(k+1)^{\alpha-1}} \right) = \frac{1}{(n+1)^{\alpha-1}} \sim \frac{1}{n^{\alpha-1}},$$

we obtain (cf. 2.5.3(i))

$$r_{n,\alpha} \sim \frac{1}{\alpha - 1} \frac{1}{n^{\alpha - 1}}$$

- 2. [Bertrand series] Let $a_n = n^{-\alpha} \ln^{-\beta} n$. if $\alpha < 1$, $\exists \alpha' \in]\alpha, 1[$, and $n^{-\alpha'} = o(a_n)$. But $\sum n^{-\alpha'}$ diverges so by 2.5,

 $\begin{array}{c|c} - \text{ if } \alpha < 1, \ \exists \alpha \in]^{\alpha, \ r_1, \ constant}} \\ \sum a_n \text{ diverges.} \\ - \text{ if } \alpha > 1, \ \exists \alpha' \in]1, \alpha[, \text{ and } a_n = o(n^{-\alpha'}). \text{ Hence, this time, } \sum a_n \text{ converges.} \\ - \text{ if } \alpha = 1, \beta \leq 0, \ n^{-1} = O(a_n), \text{ so } \sum a_n \text{ diverges.} \\ - \text{ if } \alpha = 1, \beta > 0, \ f \left| \begin{array}{c} [2, +\infty[\ \rightarrow \ \mathbb{R} \\ x \ \mapsto \ \frac{1}{x \ln^{\beta} x} \end{array} \right| \text{ is continuous, decreasing, and} \end{array}$

$$\int_{2}^{x} f(t)dt = \int_{\ln 2}^{\ln x} \frac{du}{u^{\beta}} = F_{\beta}(\ln x) - F_{\beta}(\ln 2),$$

which has a finite limite iff $\beta > 1$ (cf. first example).

4 Ratio tests

Proposition 4.1. Let (a_n) be a sequence such that $\forall n \gg 0$, $|a_n| > 0$.

- (i) If $\exists \alpha < 1$ such that $\forall n \gg 0$, $\frac{|a_{n+1}|}{|a_n|} < \alpha$, then $\sum a_n$ converges.
 - (ii) If $\forall n \gg 0$, $\frac{|a_{n+1}|}{|a_n|} \ge 1$, then $\sum a_n$ diverges.

Proof. For (i), $\exists N$ such that $\forall n \geq N$, $|a_{n+1}| \leq \alpha' |a_n|$ with $\alpha' \in]\alpha, 1[$. Thus $\forall n \geq N$ we have $|a_n| \leq \alpha'^{n-N} |a_N|$ which implies $a_n = O(\alpha'^n)$ and so the result. For (ii), $a_n \not\rightarrow 0$.

Corollary 4.2. [De D'Alembert rule] With the same hypothesis,

(i) If $\exists \lim_{n \to \infty} \frac{|a_n+1|}{|a_n|} < 1$, then $\sum a_n$ converges. (ii) If $\exists \lim_{n \to \infty} \frac{|a_n+1|}{|a_n|} > 1$, then $\sum a_n$ diverges.

Remark 4.3. This test is very exigent ! In most cases it will fail to solve your problem. For example you can't apply it to the Riemann series $\sum n^{-\alpha}$.

Theorem 4.4. [Raabe-Duhamel test] We suppose $\forall n \gg 0$, $a_n > 0$.

1. If

$$\exists \alpha \in \mathbb{R}, \ \frac{a_{n+1}}{a_n} = 1 - \frac{\alpha}{n} + o\left(\frac{1}{n}\right),$$

then

(i)
$$\alpha > 1 \Rightarrow \sum a_n \text{ converges ;}$$

(ii) $\alpha < 1 \Rightarrow \sum a_n \text{ diverges.}$

2. Same conclusions if

$$\exists \alpha \in \mathbb{R}, \ \frac{a_{n+1}}{a_n} = 1 - \frac{1}{n} - \frac{\alpha}{n \ln n} + o\left(\frac{1}{n \ln n}\right)$$

Proof. For 1. : if $\alpha > 1$ (resp. < 1), consider $\alpha' \in]1, \alpha[$ (resp. $]\alpha, 1[$). To exploit the hypothesis, it's relevant to consider the sequence $b_n = \ln(n^{\alpha'}a_n)$. One way to study such a sequence, considering the \ln and the ratio hypothesis, is to consider the associated telescoping series $u_n = b_{n+1} - b_n$:

$$u_n = \alpha' \ln\left(1 + \frac{1}{n}\right) + \ln\frac{a_{n+1}}{a_n}$$

= $\alpha' \ln\left(1 + \frac{1}{n}\right) + \ln\left(1 - \frac{\alpha}{n} + o\left(\frac{1}{n}\right)\right)$
= $\frac{\alpha'}{2.4} + O\left(\frac{1}{n^2}\right) - \frac{\alpha}{n} + o\left(\frac{1}{n}\right) + O\left(\left\{-\frac{\alpha}{n} + o\left(\frac{1}{n}\right)\right\}^2\right)$

but (cf. definition of the Landau notations), $o(1/n)^2 = o(1/n^2)$, $(1/n)o(1/n) = o(1/n^2)$ and of course $o(1/n^2) = O(1/n^2)$, so (we also use the Minkowski inequality)

$$\left\{-\frac{\alpha}{n} + o\left(\frac{1}{n}\right)\right\}^2 = O\left(\frac{1}{n^2}\right).$$

As we also have $\forall a_n$, $O(O(a_n)) = O(a_n)$ and $O(a_n/n) = o(a_n)$ (cf. $1/n \to 0$), we finally obtain

$$u_n = \frac{\alpha' - \alpha}{n} + o\left(\frac{1}{n}\right) \sim \frac{\alpha' - \alpha}{n}$$

Thus for (i), $\alpha' - \alpha < 0$ implies $\sum u_n \to -\infty$, which means $b_n \to -\infty$, which means $n^{\alpha'}a_n \to 0$, which means $a_n = o(n^{-\alpha'})$ which gives the result $(\alpha' > 1)$. For (ii), $\alpha' - \alpha > 0$ gives us $n^{\alpha'}a_n \to +\infty$, so $n^{-\alpha} = O(a_n)$, which leads to the result $(\alpha' < 1)$.

For 2. : same proof, using this time $b_n = \ln(n \ln^{\alpha'}(n)a_n)$.

Exercise 4.5. Considering $a_n = \left(\frac{(2n)!}{2^{2n}(n!)^2}\right)^2$, prove that the first Raabe test fails $(\alpha = 1 \text{ in the hyporhesis of 1.})$, but not the second $(\alpha = 0 \text{ in the hypothesis of 2.})$.

5 Further results

Theorem 5.1. [Leibniz criterion] Suppose $a_n = (-1)^n b_n$ with $(b_n)_{n\geq 1}$ a decreasing sequence which tends to zero. Then

- 1. $\sum_{n>1} a_n$ converges;
- 2. if we note S its sum, $S \leq 0$;
- 3. $\forall n, |r_n(a)| \le |a_{n+1}| = b_{n+1}$.

Proof. $(s_{2n}(a))$ is decreasing, $(s_{2n+1}(a))$ is increasing and $s_{2n+1}(a) - s_{2n}(a) \to 0$. Hence there exists S such that $s_{2n+1}(a) \stackrel{\leq}{\to} S \stackrel{\leq}{\leftarrow} s_{2n}(a)$. As a consequence of these inequalities, we have $|r_n(a)| = |S - s_n(a)| \le |s_n(a) - s_{n+1}(a)| = b_{n+1}$. For 2., just use $S \le s_2(a)$.

Example 5.2. $\sum \frac{(-1)^n}{n}$ converges. Lets's calculate its limit : we write

$$\sum_{k=1}^{n} \frac{(-1)^k}{k} = \sum_{k=0}^{n-1} \int_0^1 (-t)^k dt = \int_0^1 \left(\sum_{k=0}^{n-1} (-t)^k\right) dt = \int_0^1 \frac{1 - (-t)^n}{1 + t} dt = \ln 2 - \alpha_n$$

with

$$|\alpha_n| = |\int_0^1 \frac{(-t)^n}{1+t} dt| \le \int_0^1 t^n dt = \frac{1}{n+1} \to 0.$$

Finally

$$\sum_{n\geq 1} \frac{(-1)^n}{n} = \ln 2$$

Exercise 5.3. Prove that we can apply the Leibniz criterion to $\sum r_n(a)$ with $a_n = \frac{(-1)^n}{\ln n}$.

Definition 5.4. Let $(a_n)_{n\geq 0}$ and $(b_n)_{n\geq 0}$ two sequences. The *Cauchy product* of $\sum a_n$ and $\sum b_n$, noted $(\sum a_n) \star (\sum b_n)$, is the series $\sum c_n$, with

$$c_n = \sum_{k=0}^n a_k b_{n-k}.$$

Theorem 5.5. Suppose $\sum |a_n|$ and $\sum b_n$ converge and note A, B the sums of $\sum a_n, \sum b_n$. Then $\sum c_n$ converge and its sum is AB.

Proof. We write

$$s_{n}(c) = \sum_{k=0}^{n} \sum_{i=0}^{k} a_{i}b_{k-i} = \sum_{i=0}^{n} \sum_{k=i}^{n} a_{i}b_{k-i}$$

$$= \sum_{i=0}^{n} a_{i} \sum_{h=0}^{n-i} b_{h} = \sum_{i=0}^{n} a_{i}s_{n-i}(b)$$

$$= \sum_{i=0}^{n} a_{i}(B - r_{n-i}(b)) = \underbrace{s_{n}(a)B}_{\to AB} - \alpha_{n}$$

Let's prove $\alpha_n = \sum_{i=0}^n a_i r_{n-i}(b) \to 0$. For $\epsilon > 0$, $\exists N$ such that $\forall n \ge N$, $|r_n(b)| \le 0$. We note \mathfrak{A} the sum of $\sum |a_n|$. Then

$$|\alpha_n| \le |\sum_{i=0}^N a_i r_{\underbrace{n-i}_{\ge n-N}}(b)| + \mathfrak{A}\epsilon.$$

But $a_n \to 0$, so $\exists N'$ sucht that $\forall n \ge N'$, $|a_n| \le \epsilon$. Hence

$$\forall n\geq N+N', \ n-N\geq N'\Rightarrow |\alpha_n|\leq (K+\mathfrak{A})\epsilon$$
 with $K=\sum_{i=0}^N|r_i(b)|.$

Proposition 5.6. [Abel's summation by parts formula] Given to sequences (a_n) and (b_n) , we have the following formulas $\forall p, q$:

(i)
$$\sum_{n=p+1}^{q} a_n(b_n - b_{n-1}) = \sum_{n=p+1}^{q} (a_n - a_{n+1})b_n + a_{q+1}b_q - a_{p+1}b_p$$

(ii) $\sum_{n=p+1}^{q} a_n b_n = \sum_{n=p+1}^{q} (a_n - a_{n+1})s_n(b) + a_{q+1}s_q(b) - a_{p+1}s_p(b)$

Proof. First, (ii) is just (i) applied to $s_n(b)$ instead of b_n . For (i) :

$$\sum_{n=p+1}^{q} a_n (b_n - b_{n-1}) = \sum_{\substack{n=p+1 \ q}}^{q} a_n b_n - \sum_{\substack{n=p+1 \ q}}^{q} a_n b_{n-1}$$

$$= \sum_{\substack{n=p+1 \ q}}^{q} a_n b_n - \sum_{\substack{n=p+1 \ q}}^{q-1} a_{n+1} b_n$$

$$= \sum_{\substack{n=p+1 \ q}}^{q} a_n b_n - \sum_{\substack{n=p+1 \ q}}^{q} a_{n+1} b_n - a_{p+1} b_p + a_{q+1} b_q$$

$$= \sum_{\substack{n=p+1 \ q}}^{q} (a_n - a_{n+1}) b_n + a_{q+1} b_q - a_{p+1} b_p$$

- **Example 5.7.** Let $u_n = \frac{\cos(n\theta)}{n^{\alpha}}$. If $\alpha > 1$, $u_n = O(n^{-\alpha}) \Rightarrow \sum u_n$ converges. If $\alpha \le 0$, $u_n \ne 0 \Rightarrow \sum u_n$ diverges. If $\alpha \in]0, 1]$, we already know that $\sum u_n$ diverges if $\theta \equiv 0 \pmod{2\pi}$, so we may assume $e^{i\theta} \ne 1$. In order to apply Abel's formula (ii), we note $a_n = n^{-\alpha}$ and $b_n = \cos(n\theta)$ and we have (cf. $s_0(b) = \cos 0 = 1$)

$$\sum_{n=1}^{q} u_n = \sum_{n=1}^{q} \underbrace{(a_n - a_{n+1})s_n(b)}_{v_n} + a_{q+1}s_q(b) - 1.$$

But

$$s_{n}(b) = \Re\left(\sum_{k=0}^{n} e^{ik\theta}\right) \underset{e^{i\theta} \neq 1}{=} \Re\left(\frac{1 - e^{i(n+1)\theta}}{1 - e^{i\theta}}\right)$$
$$= \Re\left(\frac{e^{i(n+1)\theta/2}2i\sin((n+1)\theta/2)}{e^{i\theta/2}2i\sin(\theta/2)}\right) = \frac{\sin((n+1)\theta/2)}{\sin(\theta/2)}\Re(e^{in\theta/2})$$
$$= \frac{\cos(n\theta/2)\sin((n+1)\theta/2)}{\sin(\theta/2)}$$
$$\Rightarrow |s_{n}(b)| \le K = \frac{1}{\sin(\theta/2)}$$

$$\Rightarrow |v_n| \le K \left(\frac{1}{n^{\alpha}} - \frac{1}{(n+1)^{\alpha}} \right) = K \frac{1}{n^{\alpha}} \left(1 - \left(1 + \frac{1}{n} \right)^{-\alpha} \right),$$

ith $f_{\alpha} : x \mapsto x^{-\alpha}$:

and (with $f_{\alpha}: x \mapsto x^{-\alpha}$)

$$\frac{1-\left(1+\frac{1}{n}\right)^{-\alpha}}{\frac{1}{n}} \to f'_{\alpha}(1) = -\alpha \implies 1-\left(1+\frac{1}{n}\right)^{-\alpha} = O\left(\frac{1}{n}\right)$$

Finally $v_n = O(n^{-(\alpha+1)})$ and $\sum v_n$ converges (cf. $\alpha + 1 > 1$). But $a_{q+1} \to 0$, so the Abel's formula proves the convergence of $\sum u_n$.

We finish with the Fubini's theorem for double series :

Theorem 5.8. Suppose $(a_{m,n}) \in \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ is such that for all $m, \sum_n |a_{m,n}|$ converges to a limit noted σ_m and that $\sum \sigma_m$ converges to a limit noted Σ . Then (i) for all $n, \sum_m |a_{m,n}|$ converges to a limit noted σ'_n , (ii) $\sum \sigma'_n$ converges, (iii) $\sum_m \sum_n a_{m,n} = \sum_n \sum_m a_{n,m}$ (noted $\sum_{m,n} a_{m,n}$).

Proof. (i) : For $n_0 \in \mathbb{N}$, we have for all $M \in \mathbb{N}$

$$\sum_{m=0}^{M} |a_{n_0,m}| \le \sum_{m=0}^{M} \sigma_m \le \Sigma,$$

so we have the result.

(ii) : For all $N \in \mathbb{N}$

$$\sum_{n=0}^{N} \sigma'_{n} = \sum_{m=0}^{\infty} \sum_{n=0}^{N} |a_{m,n}| = \lim_{M \to \infty} \sum_{m=0}^{M} \sum_{n=0}^{N} |a_{m,n}|$$

and $\sum_{n=0}^N |a_{m,n}| \le \sigma_m$, so $\sum_{m=0}^M \sum_{n=0}^N |a_{m,n}| \le \Sigma$, and thus $\sum_{n=0}^N \sigma'_n \le \Sigma$ which is enough to conclude.

(iii) : First, both members of the equality exist : we note $S_m = \sum_n a_{m,n}$ and $S'_n = \sum_m a_{m,n}$ so that $|S_m| \le \sigma_m$ and $|S'_n| \le \sigma'_n$ imply the convergence of $\sum S_m$ and $\sum S'_n$.

Let $\epsilon > 0$. We have for all $(M, N) \in \mathbb{N} \times \mathbb{N}$

$$\sum_{m=0}^{M} S_m = \sum_{m=0}^{M} \sum_{n \ge 0} a_{m,n} = \sum_{n \ge 0} \sum_{m=0}^{M} a_{m,n} = \sum_{n \ge 0} \sum_{m=0}^{M} a_{m,n} + \sum_{n \ge N+1} \sum_{m=0}^{M} a_{m,n}$$

where, because $\sum \sigma'_n$ converges, there exists $N_{\epsilon} \in \mathbb{N}$ such that for all $N \geq N_{\epsilon}$

$$\left|\sum_{n\geq N+1}\sum_{m=0}^{J}a_{m,n}\right| \leq \sum_{n\geq N+1}\sum_{m=0}^{M}|a_{m,n}| \leq \sum_{n\geq N+1}\sigma'_{n} \leq \epsilon,$$

and where, because $\sum \sigma_m$ converges, there exists $M_\epsilon \in \mathbb{N}$ such that for all $M \geq M_\epsilon$

$$\begin{aligned} |\sum_{n=0}^{N} S_n - \sum_{n=0}^{N} \sum_{m=0}^{M} a_{m,n}| &\leq \sum_{n=0}^{N} \sum_{m \geq M+1} |a_{m,n}| = \\ \sum_{m \geq M+1} \sum_{n=0}^{N} |a_{m,n}| &\leq \sum_{m \geq M+1} \sigma_m \leq \epsilon. \end{aligned}$$

Hence for all $N \geq N_{\epsilon}$ and $M \geq M_{\epsilon}$ we have

$$\left|\sum_{n=0}^{N} S_n - \sum_{m=0}^{M} S_m\right| \le 2\epsilon.$$

which leads to the result.

Remark 5.9.

- In fact (iii) is a particular case of the double-limit theorem you'll see in ch2. The trick is to consider $\mathbf{E} = \{x_i\}_{i \in \mathbb{N} \cup \{\infty\}} \subset \mathbb{R}$ with $x_i \xrightarrow{n\infty} x_\infty$ and to define $f_m \in \mathbb{C}^{\mathbf{E}}$ by $f_m(x_i) = \sum_{n=0}^{i} a_{m,n}$ for all $i \in \mathbb{N} \cup \{\infty\}$. We have $-\forall m, f_m(x_i) \xrightarrow{x_i \to x_\infty} f_m(x_\infty) = \sum_n a_{m,n};$ - normal convergence : $\forall x \in \mathbf{E}, |f_m(x)| \leq \sigma_m.$ Hence, setting $g = \sum_{m \ge 0} f_m \in \mathbb{C}^{\mathbf{E}}$, $\exists \lim_{x_i \to x_\infty} g(x_i) = g(x_\infty)$, which exactly says that $\sum_n S'_n$ converges, and that the limit is $\sum_m S_m$.
- This theorem can be very usefull for the theory of power series see ch3.