Chapter 1 : Numerical Series.

1 Definition and first properties

Definition 1.1. Given a sequence of real or complex numbers $a=\left(a_{n}\right)_{n>1}$, we define the sequence $\left(s_{n}(a)\right)$ of partial sums by

$$
s_{n}(a)=\sum_{k=1}^{n} a_{k} .
$$

The series associated to a is denoted by the symbol

$$
\sum_{n=1}^{\infty} a_{n}, \sum_{n \geq 1} a_{n} \text { or just } \sum a_{n}
$$

and is said convergent if the sequence of partial sums converges to a limit S called the sum of the series. In this case, it will be usefull to note $\left(r_{n}(a)\right)$ the sequence of the remainders associated to the convergent series $\sum a_{n}$, defined by

$$
r_{n}(a)=S-s_{n}(a)=\sum_{k=n+1}^{\infty} a_{k} .
$$

The series $\sum a_{n}$ is said divergent if the sequence $\left(s_{n}(a)\right)$ diverges.

Examples 1.2.

- Telescoping series : a sequence $\left(a_{n}\right)$ and the telescoping series $\sum\left(a_{n+1}-a_{n}\right)$ have the same behaviour.
- Geometric series : for a fixed real number $x \neq \pm 1$, we have

$$
\sum_{k=0}^{n} x^{k}=\frac{1-x^{n+1}}{1-x} \Rightarrow\left(\sum x^{n} \text { converges } \Leftrightarrow|x|<1\right)
$$

Theorem 1.3. [Cauchy criterion] The series $\sum a_{n}$ converges if and only if

$$
\forall \epsilon>0, \exists N \in \mathbb{N}, \forall p \geq q \geq N,\left|\sum_{k=q}^{p} a_{k}\right| \leq \epsilon
$$

Proof. Cauchy criterion on $\left(s_{n}(a)\right)$.
Corollary 1.4. A necessary condition for $\sum a_{n}$ to converge is the convergence of a_{n} to 0 .

Proof. Consider $p=q$ in the previous proof.

Example 1.5. $\sum(-1)^{n}$ diverges.
Remark 1.6. The condition is not sufficient: we'll see later that $\sum \frac{1}{n}$ diverges.
Notations 1.7. I will often note $(\forall n \gg 0)$ instead of $(\exists N \in \mathbb{N}$ such that $\forall n \geq N)$.
Theorem 1.8. Suppose $\forall n \gg 0, a_{n} \geq 0$. We have

$$
\sum a_{n} \text { converges } \Leftrightarrow\left(s_{n}(a)\right) \text { bounded. }
$$

Proof. $\exists N$ such that $\left(s_{n}(a)\right)_{n \geq N}$ is an increasing sequence.

2 Comparison tests

Notations 2.1. [Landau notations] Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be two sequences.
(Big O) We note $a_{n}=O\left(b_{n}\right)$ if $\exists K \in \mathbb{R}, \forall n \gg 0,\left|a_{n}\right| \leq K\left|b_{n}\right|$.
(little o) We note $a_{n}=o\left(b_{n}\right)$ if $\forall \epsilon>0, \forall n \gg 0,\left|a_{n}\right| \leq \epsilon\left|b_{n}\right|$.
(equivalence of sequences) We note $a_{n} \sim b_{n}$ if $a_{n}-b_{n}=o\left(a_{n}\right)$.
Exercise 2.2. Check that $a_{n}-b_{n}=o\left(a_{n}\right) \Leftrightarrow a_{n}-b_{n}=o\left(b_{n}\right)$.
Remark 2.3. - Suppose $\forall n \gg 0, b_{n}>0$. Then we have $a_{n}=O\left(b_{n}\right) \Leftrightarrow \frac{a_{n}}{b_{n}}$ bounded, $a_{n}=o\left(b_{n}\right) \Leftrightarrow \frac{a_{n}}{b_{n}} \rightarrow 0, a_{n} \sim b_{n} \Leftrightarrow \frac{a_{n}}{b_{n}} \rightarrow 1$.

- Be careful with the implication

$$
\left(a_{n} \sim \alpha_{n}, b_{n} \sim \beta_{n}\right) \Rightarrow a_{n}+b_{n} \sim \alpha_{n}+\beta_{n},
$$

it's false if $\forall n \gg 0, \alpha_{n}+\beta_{n}=0$: it would mean that $\forall n \gg 0, a_{n}+$ $b_{n}=0$, which is obviously not necessarily true. Consider $a_{n}=1 /(n+1)$, $b_{n}=-1 /(n+2)$ and $\alpha_{n}=-\beta_{n}=1 / n$: in fact we have $a_{n}+b_{n}=$ $1 /((n+1)(n+2)) \sim 1 / n^{2}$. In such cases, it's more safe to use equalities instead of equivalences, for example with the o and O notations.
Example 2.4. If $a_{n} \rightarrow 0$ we have $\left|a_{n}\right|<\frac{1}{2}$ for n big enough, and we can write (integration by parts)

$$
\int_{1}^{1+a_{n}} \frac{1+a_{n}-t}{t^{2}} d t=a_{n}-\int_{1}^{1+a_{n}} \frac{d t}{t}=a_{n}-\ln \left(1+a_{n}\right)
$$

thus

$$
\begin{aligned}
& \left|\ln \left(1+a_{n}\right)-a_{n}\right| \leq \int_{1}^{1+a_{n}} \frac{\left|1+a_{n}-t\right|}{t^{2}} d t \\
& \quad \leq\left|a_{n}\right| \int_{1}^{1+a_{n}} \frac{d t}{t^{2}}=\left|a_{n}\right| \frac{\left|a_{n}\right|}{1+a_{n}} \leq 2\left|a_{n}\right|^{2}
\end{aligned}
$$

hence

$$
\ln \left(1+a_{n}\right)=a_{n}+O\left(a_{n}^{2}\right)
$$

Theorem 2.5. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be two sequences with $\forall n \gg 0, b_{n} \geq 0$.

1. If $a_{n}=O\left(b_{n}\right)$,
(i) $\sum b_{n}$ converges $\Rightarrow \sum a_{n}$ converges and $r_{n}(a)=O\left(r_{n}(b)\right)$,
(ii) $\sum b_{n}$ diverges $\Rightarrow s_{n}(a)=O\left(s_{n}(b)\right)$.
2. Same statements with o.
3. If $a_{n} \sim b_{n}, \sum a_{n}$ and $\sum b_{n}$ have the same behaviour and
(i) $r_{n}(a) \sim r_{n}(b)$ in case of convergence,
(ii) $s_{n}(a) \sim s_{n}(b)$ in case of divergence.

Proof. (Partial) First, 3 directly follows from 1 and 2. Let's prove 1(i):

$$
\left(\exists K, \forall n \gg 0,\left|a_{n}\right| \leq K b_{n}\right) \Rightarrow\left(\exists K, \forall n \gg 0, \forall p,\left|\sum_{k=n+1}^{n+p} a_{k}\right| \leq K \sum_{k=n+1}^{n+p} b_{k}\right)
$$

By Cauchy criterion, $\sum a_{n}$ converges and we can make $p \rightarrow \infty$ to obtain the result. Let's suppose $a_{n}=o\left(b_{n}\right)$ and $\sum b_{n}$ divergent to prove 2(ii). We fix $\epsilon>0$ and N such that for all $n \geq N,\left|a_{n}\right| \leq \epsilon b_{n}$. Then

$$
\left|s_{n}(a)\right| \leq \underbrace{\left|\sum_{k=1}^{N-1} a_{k}\right|}_{\text {constant } K \geq 0}+\epsilon \sum_{k=N}^{n} b_{k} \leq\left(\sum_{k=0}^{n} b_{k}\right)\left(\epsilon+\frac{K}{\sum_{k=0}^{n} b_{k}}\right) .
$$

But $\sum b_{n}$ diverges and $b_{n} \geq 0$ for n big enough, so $\sum_{k=0}^{n} b_{k} \rightarrow \infty$ and there exists $N^{\prime} \geq N$ such that $\left|s_{n}(a)\right| \leq 2 \epsilon\left|s_{n}(b)\right|$, which gives the expected result.

Remark 2.6. We can use the contraposition of these statements, for example

$$
\sum a_{n} \text { diverges and } a_{n}=O\left(b_{n}\right) \Rightarrow \sum b_{n} \text { diverges. }
$$

Examples 2.7.

- $a_{n}=\sqrt{1+n^{4}}-\sqrt{n^{4}-1}=\frac{2}{\sqrt{1+n^{4}}+\sqrt{n^{4}-1}} \sim \frac{1}{n^{2}}$ and we'll see in the next section that $\sum n^{-\alpha}$ converges iff $\alpha>1$, so $\sum a_{n}$ converges.
- $a_{n}=\frac{\sqrt{n+1}-\sqrt{n}}{n} \leq \frac{\sup _{[n, n+1]}\left|f^{\prime}\right|}{n}$ where $f(x)=\sqrt{x}$, hence $0 \leq a_{n} \leq$ $\frac{1}{2 n \sqrt{n}}$, so $\sum a_{n}$ converges because $a_{n}=O\left(n^{-3 / 2}\right)$. Another way to treat this kind of sequence where it appears something like $f(a)-f(b)$, with f differentiable, is to write (here $f=\sqrt{\star}$)

$$
a_{n}=\frac{1}{n \sqrt{n}} \frac{\sqrt{1+(1 / n)}-\sqrt{n}}{1 / n} \sim \frac{1}{n \sqrt{n}} f^{\prime}(1) \sim \frac{1}{2 n \sqrt{n}}
$$

and we have a more precise result.

- By 2.4, we have $\sum\left(\frac{1}{n}-\ln \left(1+\frac{1}{n}\right)\right)$ convergent, and we can note γ its sum (the Euler-Mascheroni constant). We can rewrite it as

$$
\gamma=\lim _{n \infty} \sum_{k=1}^{n}\left(\frac{1}{k}-(\ln (k+1)-\ln (k))=\lim _{n \infty}\left\{\left(\sum_{k=1}^{n} \frac{1}{k}\right)-\ln (n+1)\right\}\right.
$$

and finally (cf. $\ln (n+1)-\ln n=o(1))$

$$
\sum_{k=1}^{n} \frac{1}{k}=\ln n+\gamma+o(1)
$$

Note that it implies $\sum_{k=1}^{n} \frac{1}{k} \sim \ln n$, which is a direct consequence of $\ln (1+$ $(1 / n)) \sim 1 / n$ and 2.5.3(ii).

3 Integral test

Theorem 3.1. Let $f:\left[a,+\infty\left[\rightarrow \mathbb{R}^{+}\right.\right.$be a continuous decreasing function. Then for all $N \geq a$ we have

$$
\exists \lim _{x \rightarrow+\infty} \int_{a}^{x} f(t) d t \Leftrightarrow \sum_{n \geq N} f(n) \text { converges. }
$$

Proof. We write

$$
\begin{equation*}
\forall n \geq N, f(n+1) \leq \int_{n}^{n+1} f(t) d t \leq f(n) \tag{1}
\end{equation*}
$$

Hence if $\exists \lim _{x \rightarrow+\infty} \int_{a}^{x} f(t) d t=S$,

$$
\sum_{k=N}^{n} f(k) \leq f(N)+\int_{N}^{n} f(t) d t \leq S
$$

and $f(k) \geq 0$ so we can use 1.8 to obtain the convergence of $\sum f(n)$. Conversely, if $\sum_{n \geq N} f(n)$ converges to S, because $F: x \mapsto \int_{a}^{x} f(t) d t$ is an increasing function, we just have to prove that F is bounded : but for all $x \geq a$, there exists $N^{\prime} \geq$ $\max \{x, N+1\}$ and, using (1),
$F(x) \leq F(N)+\int_{N}^{x} f(t) d t \leq F(N)+\int_{N}^{N^{\prime}} f(t) d t \leq F(N)+\sum_{k=N}^{N^{\prime}-1} f(k) \leq F(N)+S$.
which gives the result.
Examples 3.2. 1. For $\alpha>0, f_{\alpha}: x \mapsto x^{-\alpha}$ is continuous and decreasing on $\left[1,+\infty\left[\right.\right.$ and $F_{\alpha}(x)=\int_{1}^{x} t^{-\alpha} d t=\left\{\begin{array}{cc}\frac{x^{1-\alpha}-1}{1-\alpha} & \text { if } \alpha \neq 1 \\ \ln x & \text { if } \alpha=1\end{array}\right.$, which implies that $\sum n^{-\alpha}$ converges iff $\alpha>1$ (cf. for $\alpha \leq 0, a_{n} \nrightarrow 0$, which is a necessary condition). Let's use 2.5 to find an equivalent of $r_{n, \alpha}=\sum_{k=n+1}^{\infty} n^{-\alpha}$ for $\alpha>1$: first we have to find an interesting equivalent for $n^{-\alpha}$, typically something telescoping to obtain a nice remainder. We rewrite the formula (1) for $f=f_{\alpha}$, which gives :

$$
\frac{1}{(n+1)^{\alpha}} \leq \frac{1}{\alpha-1}\left(\frac{1}{n^{\alpha-1}}-\frac{1}{(n+1)^{\alpha-1}}\right) \leq \frac{1}{n^{\alpha}}
$$

Multiplying this line by n^{α}, we remark

$$
\frac{1}{\alpha-1}\left(\frac{1}{n^{\alpha-1}}-\frac{1}{(n+1)^{\alpha-1}}\right) \sim \frac{1}{n^{\alpha}},
$$

and using

$$
\sum_{k=n+1}^{\infty}\left(\frac{1}{k^{\alpha-1}}-\frac{1}{(k+1)^{\alpha-1}}\right)=\frac{1}{(n+1)^{\alpha-1}} \sim \frac{1}{n^{\alpha-1}}
$$

we obtain (cf. 2.5.3(i))

$$
r_{n, \alpha} \sim \frac{1}{\alpha-1} \frac{1}{n^{\alpha-1}}
$$

2. [Bertrand series] Let $a_{n}=n^{-\alpha} \ln ^{-\beta} n$.

- if $\left.\alpha<1, \exists \alpha^{\prime} \in\right] \alpha, 1\left[\right.$, and $n^{-\alpha^{\prime}}=o\left(a_{n}\right)$. But $\sum n^{-\alpha^{\prime}}$ diverges so by 2.5, $\sum a_{n}$ diverges.
- if $\left.\alpha>1, \exists \alpha^{\prime} \in\right] 1, \alpha\left[\right.$, and $a_{n}=o\left(n^{-\alpha^{\prime}}\right)$. Hence, this time, $\sum a_{n}$ converges.
- if $\alpha=1, \beta \leq 0, n^{-1}=O\left(a_{n}\right)$, so $\sum a_{n}$ diverges.
- if $\alpha=1, \beta>0, f \left\lvert\, \begin{array}{rll}{[2,+\infty[} & \rightarrow \mathbb{R} \\ x & \mapsto & \frac{1}{x \ln ^{\beta} x}\end{array} \quad\right.$ is continuous, decreasing, and

$$
\int_{2}^{x} f(t) d t \underset{u=\ln t}{=} \int_{\ln 2}^{\ln x} \frac{d u}{u^{\beta}}=F_{\beta}(\ln x)-F_{\beta}(\ln 2)
$$

which has a finite limite iff $\beta>1$ (cf. first example).

4 Ratio tests

Proposition 4.1. Let $\left(a_{n}\right)$ be a sequence such that $\forall n \gg 0,\left|a_{n}\right|>0$.
(i) If $\exists \alpha<1$ such that $\forall n \gg 0, \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}<\alpha$, then $\sum a_{n}$ converges.
(ii) If $\forall n \gg 0, \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|} \geq 1$, then $\sum a_{n}$ diverges.

Proof. For (i), $\exists N$ such that $\forall n \geq N,\left|a_{n+1}\right| \leq \alpha^{\prime}\left|a_{n}\right|$ with $\left.\alpha^{\prime} \in\right] \alpha, 1[$. Thus $\forall n \geq N$ we have $\left|a_{n}\right| \leq \alpha^{\prime n-N}\left|a_{N}\right|$ which implies $a_{n}=O\left(\alpha^{\prime n}\right)$ and so the result. For (ii), $a_{n} \nrightarrow 0$.

Corollary 4.2. [De D'Alembert rule] With the same hypothesis,
(i) If $\exists \lim _{n \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}<1$, then $\sum a_{n}$ converges.
(ii) If $\exists \lim _{n \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}>1$, then $\sum a_{n}$ diverges.

Remark 4.3. This test is very exigent! In most cases it will fail to solve your problem. For example you can't apply it to the Riemann series $\sum n^{-\alpha}$.

Theorem 4.4. [Raabe-Duhamel test] We suppose $\forall n \gg 0, a_{n}>0$.

1. If

$$
\exists \alpha \in \mathbb{R}, \quad \frac{a_{n+1}}{a_{n}}=1-\frac{\alpha}{n}+o\left(\frac{1}{n}\right)
$$

then
(i) $\alpha>1 \Rightarrow \sum a_{n}$ converges;
(ii) $\alpha<1 \Rightarrow \sum a_{n}$ diverges.
2. Same conclusions if

$$
\exists \alpha \in \mathbb{R}, \quad \frac{a_{n+1}}{a_{n}}=1-\frac{1}{n}-\frac{\alpha}{n \ln n}+o\left(\frac{1}{n \ln n}\right) .
$$

Proof. For 1. : if $\alpha>1$ (resp. <1), consider $\left.\alpha^{\prime} \in\right] 1, \alpha[$ (resp. $] \alpha, 1[$). To exploit the hypothesis, it's relevant to consider the sequence $b_{n}=\ln \left(n^{\alpha} a_{n}\right)$. One way to study such a sequence, considering the \ln and the ratio hypothesis, is to consider the associated telescoping series $u_{n}=b_{n+1}-b_{n}$:

$$
\begin{aligned}
u_{n} & =\alpha^{\prime} \ln \left(1+\frac{1}{n}\right)+\ln \frac{a_{n+1}}{a_{n}} \\
& =\alpha^{\prime} \ln \left(1+\frac{1}{n}\right)+\ln \left(1-\frac{\alpha}{n}+o\left(\frac{1}{n}\right)\right) \\
& =\frac{\alpha^{\prime}}{2.4}+O\left(\frac{1}{n^{2}}\right)-\frac{\alpha}{n}+o\left(\frac{1}{n}\right)+O\left(\left\{-\frac{\alpha}{n}+o\left(\frac{1}{n}\right)\right\}^{2}\right)
\end{aligned}
$$

but (cf. definition of the Landau notations), $o(1 / n)^{2}=o\left(1 / n^{2}\right),(1 / n) o(1 / n)=$ $o\left(1 / n^{2}\right)$ and of course $o\left(1 / n^{2}\right)=O\left(1 / n^{2}\right)$, so (we also use the Minkowski inequality)

$$
\left\{-\frac{\alpha}{n}+o\left(\frac{1}{n}\right)\right\}^{2}=O\left(\frac{1}{n^{2}}\right) .
$$

As we also have $\forall a_{n}, O\left(O\left(a_{n}\right)\right)=O\left(a_{n}\right)$ and $O\left(a_{n} / n\right)=o\left(a_{n}\right)(c f .1 / n \rightarrow 0)$, we finally obtain

$$
u_{n}=\frac{\alpha^{\prime}-\alpha}{n}+o\left(\frac{1}{n}\right) \sim \frac{\alpha^{\prime}-\alpha}{n} .
$$

Thus for (i), $\alpha^{\prime}-\alpha<0$ implies $\sum u_{n} \rightarrow-\infty$, which means $b_{n} \rightarrow-\infty$, which means $n^{\alpha^{\prime}} a_{n} \rightarrow 0$, which means $a_{n}=o\left(n^{-\alpha^{\prime}}\right)$ which gives the result ($\alpha^{\prime}>1$). For (ii), $\alpha^{\prime}-\alpha>0$ gives us $n^{\alpha^{\prime}} a_{n} \rightarrow+\infty$, so $n^{-\alpha}=O\left(a_{n}\right)$, which leads to the result ($\alpha^{\prime}<1$).

For 2. : same proof, using this time $b_{n}=\ln \left(n \ln ^{\alpha^{\prime}}(n) a_{n}\right)$.
Exercise 4.5. Considering $a_{n}=\left(\frac{(2 n)!}{2^{2 n}(n!)^{2}}\right)^{2}$, prove that the first Raabe test fails ($\alpha=1$ in the hyporhesis of 1 .), but not the second ($\alpha=0$ in the hypothesis of 2.).

5 Further results

Theorem 5.1. [Leibniz criterion] Suppose $a_{n}=(-1)^{n} b_{n}$ with $\left(b_{n}\right)_{n \geq 1}$ a decreasing sequence which tends to zero. Then

1. $\sum_{n \geq 1} a_{n}$ converges;
2. if we note S its sum, $S \leq 0$;
3. $\forall n,\left|r_{n}(a)\right| \leq\left|a_{n+1}\right|=b_{n+1}$.

Proof. $\left(s_{2 n}(a)\right)$ is decreasing, $\left(s_{2 n+1}(a)\right)$ is increasing and $s_{2 n+1}(a)-s_{2 n}(a) \rightarrow 0$. Hence there exists S such that $s_{2 n+1}(a) \leqq S \lesseqgtr s_{2 n}(a)$. As a consequence of these inequalities, we have $\left|r_{n}(a)\right|=\left|S-s_{n}(a)\right| \leq\left|s_{n}(a)-s_{n+1}(a)\right|=b_{n+1}$. For 2., just use $S \leq s_{2}(a)$.

Example 5.2. $\sum \frac{(-1)^{n}}{n}$ converges. Lets's calculate its limit : we write

$$
\sum_{k=1}^{n} \frac{(-1)^{k}}{k}=\sum_{k=0}^{n-1} \int_{0}^{1}(-t)^{k} d t=\int_{0}^{1}\left(\sum_{k=0}^{n-1}(-t)^{k}\right) d t=\int_{0}^{1} \frac{1-(-t)^{n}}{1+t} d t=\ln 2-\alpha_{n}
$$

with

$$
\left|\alpha_{n}\right|=\left|\int_{0}^{1} \frac{(-t)^{n}}{1+t} d t\right| \leq \int_{0}^{1} t^{n} d t=\frac{1}{n+1} \rightarrow 0
$$

Finally

$$
\sum_{n \geq 1} \frac{(-1)^{n}}{n}=\ln 2
$$

Exercise 5.3. Prove that we can apply the Leibniz criterion to $\sum r_{n}(a)$ with $a_{n}=$ $\frac{(-1)^{n}}{\ln n}$.

Definition 5.4. Let $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}$ two sequences. The Cauchy product of $\sum a_{n}$ and $\sum b_{n}$, noted $\left(\sum a_{n}\right) \star\left(\sum b_{n}\right)$, is the series $\sum c_{n}$, with

$$
c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k} .
$$

Theorem 5.5. Suppose $\sum\left|a_{n}\right|$ and $\sum b_{n}$ converge and note A, B the sums of $\sum a_{n}, \sum b_{n}$. Then $\sum c_{n}$ converge and its sum is $A B$.

Proof. We write

$$
\begin{aligned}
& s_{n}(c)=\sum_{k=0}^{n} \sum_{i=0}^{k} a_{i} b_{k-i}=\sum_{i=0}^{n} \sum_{k=i}^{n} a_{i} b_{k-i} \\
&=\overline{=}-i \\
& h=\sum_{i=0}^{n} a_{i} \sum_{h=0}^{n-i} b_{h}=\sum_{i=0}^{n} a_{i} s_{n-i}(b) \\
&=\sum_{i=0}^{n} a_{i}\left(B-r_{n-i}(b)\right)=\underbrace{s_{n}(a) B}_{\rightarrow A B}-\alpha_{n}
\end{aligned}
$$

Let's prove $\alpha_{n}=\sum_{i=0}^{n} a_{i} r_{n-i}(b) \rightarrow 0$. For $\epsilon>0, \exists N$ sucht that $\forall n \geq N,\left|r_{n}(b)\right| \leq$ 0 . We note \mathfrak{A} the sum of $\sum\left|a_{n}\right|$. Then

$$
\left|\alpha_{n}\right| \leq|\sum_{i=0}^{N} a_{i} r_{\underbrace{}_{\geq n-N}}^{n-i}(b)|+\mathfrak{A} \epsilon .
$$

But $a_{n} \rightarrow 0$, so $\exists N^{\prime}$ sucht that $\forall n \geq N^{\prime},\left|a_{n}\right| \leq \epsilon$. Hence

$$
\forall n \geq N+N^{\prime}, \quad n-N \geq N^{\prime} \Rightarrow\left|\alpha_{n}\right| \leq(K+\mathfrak{A}) \epsilon
$$

with $K=\sum_{i=0}^{N}\left|r_{i}(b)\right|$.
Proposition 5.6. [Abel's summation by parts formula] Given to sequences (a_{n}) and $\left(b_{n}\right)$, we have the following formulas $\forall p, q$:
(i) $\sum_{n=p+1}^{q} a_{n}\left(b_{n}-b_{n-1}\right)=\sum_{n=p+1}^{q}\left(a_{n}-a_{n+1}\right) b_{n}+a_{q+1} b_{q}-a_{p+1} b_{p}$
(ii) $\sum_{n=p+1}^{q} a_{n} b_{n}=\sum_{n=p+1}^{q}\left(a_{n}-a_{n+1}\right) s_{n}(b)+a_{q+1} s_{q}(b)-a_{p+1} s_{p}(b)$

Proof. First, (ii) is just (i) applied to $s_{n}(b)$ instead of b_{n}. For (i):

$$
\begin{aligned}
\sum_{n=p+1}^{q} a_{n}\left(b_{n}-b_{n-1}\right) & =\sum_{n=p+1}^{q} a_{n} b_{n}-\sum_{n=p+1}^{q} a_{n} b_{n-1} \\
& =\sum_{n=p+1}^{q} a_{n} b_{n}-\sum_{n=p}^{q-1} a_{n+1} b_{n} \\
& =\sum_{n=p+1}^{q} a_{n} b_{n}-\sum_{n=p+1}^{q} a_{n+1} b_{n}-a_{p+1} b_{p}+a_{q+1} b_{q} \\
& =\sum_{n=p+1}^{q}\left(a_{n}-a_{n+1}\right) b_{n}+a_{q+1} b_{q}-a_{p+1} b_{p}
\end{aligned}
$$

Example 5.7. Let $u_{n}=\frac{\cos (n \theta)}{n^{\alpha}}$.

- If $\alpha>1, u_{n}=O\left(n^{-\alpha}\right) \Rightarrow \sum u_{n}$ converges.
- If $\alpha \leq 0, u_{n} \nrightarrow 0 \Rightarrow \sum u_{n}$ diverges.
- If $\alpha \in] 0,1]$, we already know that $\sum u_{n}$ diverges if $\theta \equiv 0(\bmod 2 \pi)$, so we may assume $e^{i \theta} \neq 1$. In order to apply Abel's formula (ii), we note $a_{n}=n^{-\alpha}$ and $b_{n}=\cos (n \theta)$ and we have (cf. $s_{0}(b)=\cos 0=1$)

$$
\sum_{n=1}^{q} u_{n}=\sum_{n=1}^{q} \underbrace{\left(a_{n}-a_{n+1}\right) s_{n}(b)}_{v_{n}}+a_{q+1} s_{q}(b)-1
$$

But

$$
\begin{aligned}
s_{n}(b) & =\Re\left(\sum_{k=0}^{n} e^{i k \theta}\right) \underset{e^{i \theta} \neq 1}{=} \Re\left(\frac{1-e^{i(n+1) \theta}}{1-e^{i \theta}}\right) \\
& =\Re\left(\frac{e^{i(n+1) \theta / 2} 2 i \sin ((n+1) \theta / 2)}{e^{i \theta / 2} 2 i \sin (\theta / 2)}\right)=\frac{\sin ((n+1) \theta / 2)}{\sin (\theta / 2)} \Re\left(e^{i n \theta / 2}\right) \\
& =\frac{\cos (n \theta / 2) \sin ((n+1) \theta / 2)}{\sin (\theta / 2)} \\
& \Rightarrow\left|s_{n}(b)\right| \leq K=\frac{1}{\sin (\theta / 2)} \\
& \Rightarrow\left|v_{n}\right| \leq K\left(\frac{1}{n^{\alpha}}-\frac{1}{(n+1)^{\alpha}}\right)=K \frac{1}{n^{\alpha}}\left(1-\left(1+\frac{1}{n}\right)^{-\alpha}\right)
\end{aligned}
$$

and (with $f_{\alpha}: x \mapsto x^{-\alpha}$):

$$
\frac{1-\left(1+\frac{1}{n}\right)^{-\alpha}}{\frac{1}{n}} \rightarrow f_{\alpha}^{\prime}(1)=-\alpha \Rightarrow 1-\left(1+\frac{1}{n}\right)^{-\alpha}=O\left(\frac{1}{n}\right)
$$

Finally $v_{n}=O\left(n^{-(\alpha+1)}\right)$ and $\sum v_{n}$ converges (cf. $\alpha+1>1$). But $a_{q+1} \rightarrow 0$, so the Abel's formula proves the convergence of $\sum u_{n}$.

We finish with the Fubini's theorem for double series:
Theorem 5.8. Suppose $\left(a_{m, n}\right) \in \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ is such that for all $m, \sum_{n}\left|a_{m, n}\right|$ converges to a limit noted σ_{m} and that $\sum \sigma_{m}$ converges to a limit noted Σ. Then
(i) for all $n, \sum_{m}\left|a_{m, n}\right|$ converges to a limit noted σ_{n}^{\prime},
(ii) $\sum \sigma_{n}^{\prime}$ converges,
(iii) $\sum_{m} \sum_{n} a_{m, n}=\sum_{n} \sum_{m} a_{n, m}$ (noted $\sum_{m, n} a_{m, n}$).

Proof. (i) : For $n_{0} \in \mathbb{N}$, we have for all $M \in \mathbb{N}$

$$
\sum_{m=0}^{M}\left|a_{n_{0}, m}\right| \leq \sum_{m=0}^{M} \sigma_{m} \leq \Sigma
$$

so we have the result.
(ii) : For all $N \in \mathbb{N}$

$$
\sum_{n=0}^{N} \sigma_{n}^{\prime}=\sum_{m=0}^{\infty} \sum_{n=0}^{N}\left|a_{m, n}\right|=\lim _{M \rightarrow \infty} \sum_{m=0}^{M} \sum_{n=0}^{N}\left|a_{m, n}\right|
$$

and $\sum_{n=0}^{N}\left|a_{m, n}\right| \leq \sigma_{m}$, so $\sum_{m=0}^{M} \sum_{n=0}^{N}\left|a_{m, n}\right| \leq \Sigma$, and thus $\sum_{n=0}^{N} \sigma_{n}^{\prime} \leq \Sigma$ which is enough to conclude.
(iii) : First, both members of the equality exist : we note $S_{m}=\sum_{n} a_{m, n}$ and $S_{n}^{\prime}=\sum_{m} a_{m, n}$ so that $\left|S_{m}\right| \leq \sigma_{m}$ and $\left|S_{n}^{\prime}\right| \leq \sigma_{n}^{\prime}$ imply the convergence of $\sum S_{m}$ and $\sum S_{n}^{\prime}$.

Let $\epsilon>0$. We have for all $(M, N) \in \mathbb{N} \times \mathbb{N}$

$$
\begin{gathered}
\sum_{m=0}^{M} S_{m}=\sum_{m=0}^{M} \sum_{n \geq 0} a_{m, n}=\sum_{n \geq 0} \sum_{m=0}^{M} a_{m, n}= \\
\sum_{n=0}^{N} \sum_{m=0}^{M} a_{m, n}+\sum_{n \geq N+1} \sum_{m=0}^{M} a_{m, n}
\end{gathered}
$$

where, because $\sum \sigma_{n}^{\prime}$ converges, there exists $N_{\epsilon} \in \mathbb{N}$ such that for all $N \geq N_{\epsilon}$

$$
\left|\sum_{n \geq N+1} \sum_{m=0}^{J} a_{m, n}\right| \leq \sum_{n \geq N+1} \sum_{m=0}^{M}\left|a_{m, n}\right| \leq \sum_{n \geq N+1} \sigma_{n}^{\prime} \leq \epsilon
$$

and where, because $\sum \sigma_{m}$ converges, there exists $M_{\epsilon} \in \mathbb{N}$ such that for all $M \geq M_{\epsilon}$

$$
\begin{gathered}
\left|\sum_{n=0}^{N} S_{n}-\sum_{n=0}^{N} \sum_{m=0}^{M} a_{m, n}\right| \leq \sum_{n=0}^{N} \sum_{m \geq M+1}\left|a_{m, n}\right|= \\
\sum_{m \geq M+1} \sum_{n=0}^{N}\left|a_{m, n}\right| \leq \sum_{m \geq M+1} \sigma_{m} \leq \epsilon .
\end{gathered}
$$

Hence for all $N \geq N_{\epsilon}$ and $M \geq M_{\epsilon}$ we have

$$
\left|\sum_{n=0}^{N} S_{n}-\sum_{m=0}^{M} S_{m}\right| \leq 2 \epsilon .
$$

which leads to the result.

Remark 5.9.

- In fact (iii) is a particular case of the double-limit theorem you'll see in ch2. The trick is to consider $\mathbf{E}=\left\{x_{i}\right\}_{i \in \mathbb{N} \cup\{\infty\}} \subset \mathbb{R}$ with $x_{i} \xrightarrow{n \infty} x_{\infty}$ and to define $f_{m} \in \mathbb{C}^{\mathbf{E}}$ by $f_{m}\left(x_{i}\right)=\sum_{n=0}^{i} a_{m, n}$ for all $i \in \mathbb{N} \cup\{\infty\}$. We have - $\forall m, f_{m}\left(x_{i}\right) \xrightarrow{x_{i} \rightarrow x_{\infty}} f_{m}\left(x_{\infty}\right)=\sum_{n} a_{m, n}$;
- normal convergence : $\forall x \in \mathbf{E},\left|f_{m}(x)\right| \leq \sigma_{m}$.

Hence, setting $g=\sum_{m \geq 0} f_{m} \in \mathbb{C}^{\mathbf{E}}, \exists \lim _{x_{i} \rightarrow x_{\infty}} g\left(x_{i}\right)=g\left(x_{\infty}\right)$, which exactly says that $\sum_{n} S_{n}^{\prime}$ converges, and that the limit is $\sum_{m} S_{m}$.

- This theorem can be very usefull for the theory of power series - see ch3.

