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Grothendick’s key observation was that the constructions of homological algebra do not
barely yield cohomology groups but in fact complexes with a certain indeterminacy.

The idea of the derived category is the following:

a) An object X of an abelian category should be identified with all its resolutions.

b) The main reason for such an identification is that some most important functors, such
as Hom, tensor products, I', should be redefined. Their usual definitions should only be
applied to some special objects, which are acyclic with respect to this functor.

c¢) To adopt this point of view one must consider from the very beginning not only objects
and their resolutions, but arbitrary complexes. Hence, the relation that enables us to
identify an object and its resolution should be generalized to arbitrary complexes. This is
the notion of quasi-isomorphism.

d) The redefinition of the functors makes them exact in a special sense.

Derived categories seem to be the appropriate place to do homological algebra. One of
their great advantages is that the important functors of homological algebra which are left
or right exact ( Hom, N®y, where N is a fixed k-module, the global section functor IT', etc.)
become exact on the level of derived functors (with an appropriately modified definition of
exact).

Derived and Triangulated categories

Definition | Proposition:
Let A be an abelian category, Kom(A) the category of complexes over A. There exists a
category D(A) and a functor Q:Kom(A) — D(A) with the following properties:

a) Q(f) is an isomorphism for any quasi-isomorphism f.

b) Any functor F:Kom(A)— D transforming quasi-isomorphisms into isomorphisms can
be factorized through D(A).
The category D(A) is called the derived category of the abelian category A.

Definitions:

a) Given any complex K* = (K*, d%) and for a fixed integer n define a new complex K|[n|*
by (K[Tl])z = Kn—H,dK[n] = (—1)ndK.

For a morphism of complexes f : K* — L* let f[n]: K[n]* — L[n|® coincide with f
componentwise.

T" : Kom(A) — Kom(A), T"(K*) = K[n|*,T"(f) = f[n] is called the translation by n

functor.



b) Let f : K* — L* be a morphism of complexes. The cone of f is the following complex:
C(f)z — K[l]z D Li, dc(f)(ki+1,li) — (_deH—l’f(ki—l—l) + dLli)

c¢) The cylinder of f Cyl(f) is the complex:

C’yl(f) =K'® K[l]' D L', diCyl(f)(ki’ k”l, li) — (dei _ kHl, _dei—i—l, f(ki—H) + dLli)

Lemma 1 For any morphism f : K* — L*® there exists the following commutative diagram
in Kom(A) with exact rows:

0 - L' S o) > K1 - o
al [
0 - K L ooyif) & i) » 0
I 8
kLo

It is functorial in f and has the following property:
a and 3 are quasi-isomorphisms; moreover Ba = idy, and af3 is homotopic to idcy ) so
that L* and Cyl(f) are canonically isomorphic in the derived category.

Proof: [Gel] Chapter 3

Definition:
a) A triangle in some category of complexes(Kom, D, D*,...) is a diagram of the form
K* = L* 35 M= K[1]°
b) A morphism of triangles is a commutative diagram of the form

K* &% L* % M 2 K[

VEodg Lk PN

K = L* =5 M = K[
It is an isomorphism if f, g, h are isomorphisms in the corresponding category.
c¢) A triangle is said to be distinguished if it is isomorphic to the middle row
K* Loy 5o S ke
of some diagram of the form as in the preceding lemma.

Definition:
A functor from D(A) — D(B) is said to be exact if it takes distinguished triangles to
distinguished triangles.

The derived functor of an additive left exact functor F:A — B is a pair consisting of an
exact functor RF:DT(A) — D*(B) and a morphism of functors e : Qg o KT (F) -RFoQ 4

DH(4)
Qa / N\ RF
K*(4) D*(B)

K*(F) Qs

K*(B)

satisfying the following universal property:



for any exact functor G:D*(A) — D*(B) and any morphism of functors
€:Qpo KT (F)— G oQ, there exists a unique morphism of functors n : RF — G making
the following diagram commutative.

Qpo K*(F)
€y €
RFoQa T2 GoQu

Similar theorem holds for right exact functor.

Definition:
Let D be an additive category. The structure of a triangulated category on D is given by
the following data a,b that must satisfy the axioms TR1 to TR4 below:
a) An additive automorphism T:D — D called the translation functor.
We write X[n] = 7"(X) f[n] = T"(f)
b) The class of distinguished triangles.
TR1:
(a) For any XeObD, the triangle
X4 X—0—X]1]
is distinguished.
(b) A triangle isomorphic to a distinguished one is itself distinguished.
(c) Any morphism X-%Y can be completed to distinguished triangle
X—=YZ-X|1]
TR2: A triangle X—Y—Z—>X|[1] is distinguished iff the triangle
Y272 X125V (1] s distinguished.
TR3: A diagram of the following form can be completed:
X —=» Y - Z — X][]
VEodg bk LA
X =Y - Z - X'Tj
TR4: Any diagram of the form ‘upper cap’ can be completed to an octahedron diagram.(
for diagram see |Gel|)

Theorem: A Derived category is triangulated.
Proof: [Gel] Chapter 3

Let C be a triangulated category. We shall say that a family of its objects {z;} generates
C, if the smallest full triangulated subcategory containing them is equivalent with C.

Remark 1 If {z;} generate C then the objects in C are upto translations, cones of
morphisms
u:z; =z, u € Home(x;, z;)



Lemma 2 Let C and D be triangulated categories, F:C — D be an ezxact functor, {z;} be a
family of objects of C. Let us assume that {x;} generates C, {F(z;)} generates D, and for
any pair x;,x; from the family,

F:Hom(x;,x;) — Hom(F(x;),F(x;))
15 an tsomorphism. Then F is an equivalence of categories.

Proof:
a) By hypothesis F is a fully faithful functor.
b) F is exact = it commutes with the translation functor and takes distinguished triangles
to distinguished triangles.
Further for a morphism u,
F(C(u)) = C(F(u))
Follows from Axiom TR3 applied to the following diagram:
Fe) "8 Fle) - FCW) - Pl
id id ) Jiso
Fla) W F;) —» C(Fw) — F()[]
= By preceding remark every object y € ObD is isomorphic to an object of the form F(x)
for some z € ObC
= F is an equivalence of categories.

Sheaf Cohomology

Proposition 1 If A is a ring, then every A-module is isomorphic to a submodule of an
injective A-module.

Proposition 2 Let (X, Ox) be a ringed space. Then the category Mod(X) of sheaves of
Ox-modules has enough injectives.

Sketch of Proof: For any sheaf of Ox-modules, F consider I = I1,¢xj.(I;) where I, is an
injective module containing F, and j:{ x } —X is the inclusion map.
Then [Iis an injective Ox -module and the natural map from F to [is injective

Proposition 3 If0 - F — F — F" — 0 is a short exact sequence in Mod(X), then for
any G we have long exact sequences

0 — Hom(G,F') = Hom(G,F) — Hom(G, F") — Ezt'(G, F') — Ext (G, F) —
Ext"(G,F") — ..., and

0 — Hom(F",G) - Hom(F,G) — Hom(F',G) — Ext'(F",G) — Exzt'(F,G) —
Ext'(F',G) — ...,

Sketch of Proof:

The first exact sequence is obtained by applying Hom(G, .) to injective resolutions of
F',F,F" and taking the long exact sequence of cohomology.

The second sequence is obtained by taking an injective resolution Z* of G and applying
Hom(.,Z*) on 0 —» F' — F — F" — 0 and taking the long exact sequence of cohomology.



Cohomology on Projective Spaces

Let A be a noetherian ring, let S = Az, ...z,| and let X = Proj S be the projective space
P} over A. Let Ox (1) be the twisting sheaf of Serre. For any sheaf of Ox-module F we
denote by by I'.(F) the graded S-module @,,c, I'(X, F(r)).

Theorem 1 Let A be a noetherian ring , and let X= Py}, with r>1. Then :

(a) the rational map S — T,(Ox) = @nez H' (X, Ox(n)) is an isomorphism of graded
S-modules;

(b) H(X,Ox(n)) = 0 for 0<i<r and alln € Z;

(¢) H'(X,Ox(—r—1)) = A;

(d) the natural map H°(X,Ox(r)) x H(X,O0x(—n—7r—1)) — H"(X,O0x(-r—1)) =2 A
is a perfect pairing of finitely generated free A-modules, for each ne Z.

Proof: [Harl| Chapter 3.

Theorem 2 Let A be a ring, let Y = Spec A, and let X = P}. Then there is an ezact
sequence of sheaves on X,
0— Qx)y — Ox(—1)""" — Ox —0

Theorem 3 Let k be a field, and let X = P'. Then there is an ezact sequence of sheaves
on X,
0— QG — A'VRO — Q714 — 0, Vi > 1 where V = H°(P,0(1))

Proof Consider the map 1 : Ox(—1)""V — Qi71(; — 1)

given by , '

Plo; : Ox (=) |; — Q7 (i = 1]y,

let v, ..., v, be a basis for V' (fix it). )

I, * oy Aoy Ao, U, x;_l(E(—l)l“xkld(%) A A d(%) A A d(%)) (where k; = j
take d(2) = 0).

s

Glues on U; N Ujy. Hence a map on the whole sheaf.

fix ky...k; 1 then

(fkl, e ,$ki+1) = E(—l)lﬂiﬂkl-evkl/\vk2/\.../\v;l/\.../\vki+1 — 0.

Now, Ox (—1)""V|y, —Vly Qi1 — 1)|y, is a surjective homomorphism of free
f-g-modules. '

= Rank(Ox (—1)"V|y,) = Rank(ker(¢|y,)) + Rank(Q(i — 1)|y, ).

= Rank(ker(¢|y,)) = (") - (1) = ()

Consider the map (i — 1)|y, — ker () |y,

d(%) NN d(zﬂv—’?) — ;%(.Tj, Thyy e .Z'kz)

This map is an isomorphi]srn and it glues on intersections. Hence, it is a map on the whole
space.

So, we have the exact sequence,

0—Q(G—1) — O=D"Y — Q7 1(i—1) —0



ie. 0 —=Q(i—1) = AVRO(-1) — Q"1 (i—1) — 0
ie. 0 — Qi) — AVR®O — Qi) — 0
Another proof:

Lemma 3 If0 — M’ i> M i) M" — 0 is ezact as A-modules and N* M" = 0.
Then 0 — N'M' — N'M — A\ P M' @ M" — 0 is ezact.

proof _

Consider A M! —N' NP M

my A ... Aml — ¢p(mh) A A p(m))

This is clearly injective.

Consider the map A' M iy AN~ M@ M"

mi Amg A .. Am; — Bi(=1)7(mi)my A o Ay A LAy
Clearly Ker(1;) = A" o(M') = N ¢(A M)

Yi 1 = 0= Im(v;) C A M' @ M"

Infact Ime); = A1 M' @ M".

(Consider v;(my, ..., m;) where m; ¢ M' and m; € M' Vj # 1).
Hence, the lemma.

Applying it to ,

0— Q1) —-Ve0—0(1) —0

Since A2 O(1) = 0 (locally free of rank 1) we get

0— Q) — A'VR®O — Q1) — 0

Hence proved

Theorem 4 Hom(O, Q0 (j + 1)) = HO(P", Qi(j + 1)) = NV

Proof

III U() N Ul, if l{)l, ceey k’j 7é 0 .

2T () A LA d(SE) = ahand(E) A LA d(zo ) +
xgz(—nlxkld(:—;)/\d(%)A.../\d(j—’g). = )

If k1 = 0 (say), .

() A L Ad(EE) == d(2) A LA d()

Now, suppose fo, ..., [ are such that f; € /(5 + 1))y, and they glue on intersection.
In UpNU, fo=h

— 1)‘T0fl(c)1 Ilfkll k; if kl,.. k 7é 0 1
Q)xof{),kz,...,k = _xlfo Koy T 2Lk k; T2 fpy k;
Similar conditon for f;, f;.

Now, consider, for a fixed k1, ..., k41

FE = af Rand(3) A A dG)- AT

then fkl’ “kit1 g satisfy the condition 1,2 (for varying 1).
—> they extend to a global section.




Moreover, flkl""’kj *1’s form a basis for the space of global sections as can be checked easily

(for varying ki, ..., kj41).

—> the map.
(féﬂl,---akj+1

y ooy M

kl;""k"'rl
) = vy A A U

from _
HO(P™, Q%(j +1)) — NT'V is an isomorphism.

Theorem 5 H"(P,Q(i —n —1)) = AV

Proof We compute using Cech Cohomology.
C" =T'(vo A1 A ... Ay, Qi —n — 1))
C" ! =T(v Ava A . Avp) X T(vg Avg A e Avy) X oo X T(wg Avp A oo Ap_1)
Let (fo,fl, .. fn) € C” L fz € F(U() N .. /\ ’U1 NN Un)
then, fo = i7"~ lfkl kd(mkl) A /\d( )
i =z " lfk:l ki (Ikl)/\ /\d( L)
for ks € klzo, x"](zl ey i)
flgl,...,ki € k[xO’ : xn](zl_l " %7 ) i)
Image of (fo, f1,.-, fn) in C" = j= j=o(— )jfj‘vo/\z_u/\.../\vn
- f0|110/\111/\.../\vn + ((H)n—i—lfkl,...,ki + zj: (_]‘)Jflgl,,kl)
The image of C"~! is the submodule of C™ generated by the elements of the form,
(@51 fd(EE) A A d(”')
s.t. f # constant x —e— = H"(P", (i —n—1)) X A\'V
the  map being,
—)d(“’“l) Ao Ad(ZE) — vpy Ay A Ay,

Theorem 6 Serre duality for P} :

Let X = P over a field K. Then:

(a) H*(X,wx) = k. Fiz ane such isomorphism.

(b) For any coherent sheaf F on X, the natural pairing

Hom(F,w) x HY(X,F) - H"(X,w) = k is a perfect pairing of f.d.v.s over K.
(c) For every i> 0 there is a natural funtorial isomorphism,

Ext'(F,w) = H" (X, F)*.

Proposition 4 Hom(Q(i),0) 2 \"V*

Proof

Hom(Q'(i),0) = Ext’(Q'(i —n — 1),w) (by Serre duality)
— H"(O, (i —n — 1))

— (/\zv)* — /\Zv*



The Main Theorem
Let P be n-dimensional projective space over k, V.= H°(P,0(1))

Lemma 4 For any pair 1,5 such that 0 <i,5 <n, andl > 1

(a) Hom(O(—i),0(—j)) = $"9(V)  Ext'(O(~i), O(~j)) =0

(b) Hom(Q (i), 20 (7)) = Ni9(V*) " Ewt(@6), 24(7)) = 0

where composition of morphisms coincides with multiplication in S(V) and A(V*),
respectively.

Proof:

(a) Follows from preceding theorem. Hom(O(—i), O(—j)) = H*(P,O( — j)) = S*I(V)
Bzt (O(—1),0(—j)) = H'(P,O(i - j)) = 0

(b) Applying Hom(e,71(5)) and Hom(§(7), ) to the exact sequence in theorem 2 for i
and j respectively, we get

0 — Hom(¥1(1), ¥1(5)) — Hom(A'V ® O, 0 71(5))...

and

0 — Hom(%(3), ¥ (5)) — Hom(QL (), NV ® O) — Hom(Q(i), |Omega?=1(5))...
By five lemma, we get

Hom(Q7 (i —1), %' (j — 1)) = Hom(Q'(3), ¥’ (j)) which by induction =

Hom(Q9(i — 5),0) = NI V™,

2. Let A be a graded algebra.

Notation:

Ali| is the free one-dimensional graded A-module with distinguished generator of degree i;
Mo, (A) is the full subcategory of the category of graded A-modules and morphisms of
degree 0, whose objects are isomorphic with finite direct sums of Ali|, where 0 <i < n ;
K, [bO,n] (A) is the category whose objects are finite complexes over My (A), and whose
morphisms are morphisms of complexes modulo null-homotopic ones.

3. With an (n+1)-dimensional vector space V over the field k are associated two graded
algebras S(V) and A(V*).
We set K = K[%,n}(A(V*)), Kg = K[”O,n](S(V)).

Let Mod(P) be the category of coherent sheaves on P, and D?(P) be its derived category.
It follows from Lemma 4 that there exist natural additive functors,

F : My (A(V*)) = Mod(P) and Fj : Mo (S(V)) = Mod(P) such that

FI(AV)[]) = (), F(S(V)[i]) = O(—1)

They extend canonically to exact functors
Fy: Ky — D%P), F,:Kg— DP)



Theorem 7 Fi and F, are equivalence of categories

Proof
We verify that F; satify Lemma 2

Proposition 5 Qi(i) generate D*(P).

Proof

We have the exact sequence,

0—Q—O0C-1)""!' -0 —0

—> the exact sequence,

0— Q(-1) — 0" — O(-1) — 0

= the sequence, (taking dual)

0— O(-1) — 0" — T(-1) — 0

Thus, the stalk of 7'(—1) at a point x5 € P" is, T(—1),, = C™"'/Cv, where z = [v]

Consider the map,
s': pi(O(-1)) @ p3(0) — pi(0) ® T(-1)
(locally) given by,
s'(z,y)(v) = v modCw, v,w € P", [v] =z, [w] =y
This gives a global section, s € H°(P, x P,,p;(O(1)) ® p5(T(-1))).
Now s(z,y) =0 < v modCw = 0 & v = Aw < x =y i.e. the zero locus of s is the
diagonal A C P, x P,
Taking the Koszul resolution w.r.t s we get the exact sequence,
0 — A"(pi(O(-1)) ® p3(Q2'(1))) — A"~ (pi(O(-1)) ® p5(Q'(1))) — .
— pi(0(=1)) ® p3(2'(1)) — pi(0) ® p5((0)) — Ox — 0
i.e. the exact sequence,
0 — pi(O(—n)) @ p5(2"(n)) — pi(O(—n+1)) @ p3(" " (n - 1)) — ... —
pi(O(-1)) @ p5(21(1)) — Opnxpn —» Oa — 0.
Denote it by C*. Now, for any X € ObD®(P).
Consider C* L Lp;(X)
0 — p3(Q*(n) @ pi(X(—n)) — ... — p3(2'(1)) ® pi(X(-1)) — Oa @ pi(X) — 0
= 0 — p3(Q"(n) @ pi (A"(X(—n))) — ... — p3(Q'(1)) @ pi(X(-1)) — 0
is quasi-isomorphic to Oa ® pi(X).
In the language of derived categories, Oa ®” Lp}(X) belongs to the full triangulated
subcategory of D?(P™ x Pm™) generated by sheaves of the form, pj(Q!(i)) ® p;(Y) for
Y € Ob(D*(P))
Applying Rps. we see that X belongs to the full triangulated subcategory generated by

Note:  Rp.(Oa @" Lpj(X)) 2 X
and Rpo.(p5(Q'(1)) @ p1(Y)) = Q(7) ® RT(Y) which is a direct sum of Q(4).



Proposition 6 O(—i) generate D*(P).
Proof Analogous to that of Q'(i).

Now by Definition A(V*)[i] generate Ky (resp, S(V)[i]generate Kg).
F;’s are exact and by Lemma 4,

Hom(A(V*)[i], A(V")[5]) = A2(V*) = Hom(&2'(d), €2 (7)) =
Hom(Fy(A(V*)[d]), FL(A(V*)[5])

and Hom(S(V)[i],S(V)[j]) = " (V) =

Hom(O(—i),0(—j)) = Hom(F1(S(V)[1]), F2(S(V)[4]))

—> By Lemma 2, the theorem is proved.
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