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Abstract

The abelian Hidden Subgroup Problem (HSP) and Fourier transforms form the primary
ingredients of many efficient quantum algorithms. Fourier transforms are also of central
importance in signal processing. The non-abelian case of HSP is still open and efficient
procedures for computing generalized Fourier transforms are still not known. This is
a survey of some of the recent developments in these problems which give an algebraic
approach using induced group representations to propose solutions for a larger class of
non-abelian groups. This will include the papers by Hallgren, Russell and Ta-Shma [6]
(STOC’00) on normal subgroup reconstruction, and by Piischel, Rétteler and Beth [11] on
Fourier transforms for some non-abelian groups.

1 Introduction

Quantum computation has been an important area of research in computer science as well as
physics for the past few years. The ability of a quantum computer to surpass a classical one
in some sense has been specifically of interest and the algorithms by Deutsch, Kitaev, Shor,
Grover etc are some of the well-known examples.

1.1 Hidden Subgroup Problem

Peter Shor’s article [14] presented efficient algorithms for integer factorization and discrete
logarithms, problems thought hard to solve on classical computers. Quantum computational
version of the discrete fourier transform and the remarkable ability of a quantum computer
to efficiently determine periodicities are at the core of Shor’s result. Simon’s algorithm [15],
which showed exponential gap between classical and quantum query complexities, is also an
example of “generalized periodicities” or hidden subgroup problem. Since then it has been
observed that hidden subgroup problem forms the theme of most of the efficient quantum
algorithms proposed till now.

Definition 1.1 (Hidden Subgroup Problem) Let G be a finite group with a subgroup H
and S be a set. Then given an efficiently computable function f : G — S that is constant on
the (left) cosets of H and takes distinct values on distinct cosets, find a set of generators for
the subgroup H.

The best place to read about the relation between quantum factoring, discrete logarithms
and HSP, and the step by step progress made in the case of abelian HSP, is the survey article
by Jozsa [7]. Some of the important papers include Shor [14], Kitaev [8].

It is also well known that an efficient solution for the HSP over the symmetric group S,
would give rise to an efficient algorithm for the famous graph isomorphism problem. Section
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3 will provide details about the result of Hallgren, Russell and Ta-Shma [6] about normal
subgroup reconstruction and Section 4 presents their negative result about graph isomorphism.

1.2 Fourier Transforms

For the past few decades, Fourier transforms have been at the heart of the research in signal
processing. The algorithm for fast Fourier transform rediscovered! by Cooley-Tuckey (1965)
[4] has enormous applications in correlation analysis, polynomial interpolation, the efficient
computation of convolutions and, above all, in signal processing. A deeper thought was put
forward later, when DFT was considered as decomposition matrix for the regular representa-
tion. Kitaev [8] showed how to compute Fourier transform efficiently over any abelian group.
It is also known how to compute Fourier transforms efficiently over some non-abelian groups,
most notably over S,, (Beals [2]). Maslen and Rockmore [9] is a good survey of the recent
results in generalized Fourier transforms.

Definition 1.2 (Generalized Fourier Transforms) Every isomorphism
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between the group algebra C[G] and its Wedderburn components is called Fourier transform of
the group G. A particular isomorphism is fized by picking a system p1, p2, ..., pr of irreducible
representations of G and defining ® as the linear extension of the map g — @lepi(g) (where

deg(pi) = d;)-

Piischel’s dissertation [10] on constructive representation theory is a good reference to read
more about generalized Fourier transforms and their relation to representation theory. In
Section 5, we present an algorithm proposed by Piischel, Rétteler and Beth [11] for computing
Fourier transforms over supersolvable groups.

2 Preliminaries

Here is some basic background required from representation theory (Serre [13], Terras [16]),
in order to undertstand the work in the following sections.

A representation of a finite group G is a homomorphism p : G — GL(V), where V is a
(finite dimensional) vector space over C. Fixing a basis for V', p(g) can be realized as d, x d,
matrix. Two representations p; : G — GL(V) and py : G — GL(W) are equivalent if there is
a linear isomorphism ¢ : V' — W such that ¢ - p1(g) = p2(g) - ¢, and we write it as p; = po.
And a representation is irreducible if it doesn’t leave any non-trivial subspace of V' invariant
(i.e. p(g) W C W implies that W = V or the zero subspace). Moreover, in our set-up, every
representation is equivalent to a direct sum of some irreducible representations, which is called
its decomposition.

Definition 2.1 (Regular Representation) Fiz a vector space V with basis {e4|lg € G}.
The regular representation ¢ : G — GL(V) is defined as ¢(g)(ex) = ezq, Yz € G. It has
dimension |G| and its matriz is a permutation matriz for any g € G.

1Tt was actually found in 1805 by Carl Fredrich Gauss, who used it to interpolate orbits of asteroids. It has
never been published and can be found in his collected works under the title “Theoria Interpolationis Methodo
Nova Tractata”, Gauss (1866)



The importance of regular representation is the fact that “Regular representation is the
mother of all the representations” (- Audrey Terras [16]), i.e. it contains every irreducible
representation of G. If p1, po, ..., pi are the irreducible representations of G with dimensions
di,do,...,dy, respectively, then

p=dip1 Ddapa ® ... D dpp. (2)
which also gives that S>% a2 = |G|.

Definition 2.2 (Restriction) A representation p of G naturally gives a representation for
H, given by p |g. We denote this by Resgp.

Definition 2.3 (Inner Conjugates) p': g+ p(t-g-t7') is called the inner conjugate of p,
a representation of H, by t € G.

But the most interesting among these all is induced representation.

Definition 2.4 (Induced Representation) Let H be a subgroup of G and p be a represen-
tation of H. T = {t1,t2,...,tn} be a transversal (system of coset representativesfor H). Then
the representation induced by p on G is given by,

Indfp(g) = (p(t“ 94 ))15 i, j <n ?
where (z)
v | plz fzeH
pla) = { Odeq p  otherwise )

Induced representation is equivalent upto the choice of the transversal. And if p is of degree
1, then the induction is called monomial representation.

An important fact about induced representation is that I ndglE is equivalent to the regular
representation of G, where 1 is the trivial representation of the trivial subgroup E. Another
useful fact, which is the theme of the result of Piischel, Rotteler and Beth [11], is the Double
Induction: If H C K C G groups and ¢, a representation of H. Then

Ind$ (Ind¥ ¢) = Ind%¢ (5)

First chapter of Piischel’s dissertation [10] is about constructive representation theory
where a lot of interesting observations about induced representations are listed.

Definition 2.5 (Characters and Frobenius Reciprocity) The character x, : G = C of
a representation p is defined as x,(g9) = trace(p(g)). It is basis independent and moreover, is
a class function, i.e. fized on conjugacy classes. There is a natural notion for inner product
of two characters as,

1 _
Oolxoda = a7 > Xo(9)x0(g7h).- (6)
geG
Frobenius reciprocity theorem says that,
<X1H|XRes%p>H = <XIndg1H|XP>G' (7)



We know that two inequivalent irreducible characters are orthogonal and therefore inner
product of a representation with an irreducible representation gives the number of occurences
of that irreducible representation in its decomposition.

We also need the following important theorem from representation theory:

Theorem 2.6 (Mackey’s Subgroup Theorem) G be a group and H and K be its two
subgroups. Then,
Res$ Ind% ¢ = @ IndggResganqﬁg (8)
geH\G/K

The generalized Fourier transform defined already can also be thought of as the following;:

Definition 2.7 (Fourier Transform) Let f : G — C. The Fourier transform of f at the
irreducible representation p, denoted by f(p) is the d, x d, matriz

flp) = %' 3" f9)elg). (9)

geaG

3 Normal Subgroup Reconstruction

The paper of Hallgren, Russell and Ta-Shma [6] fully analyzes a natural generalization of the
abelian HSP algorithm to the non-abelian case. This algorithm finds the normal core of the
hidden subgroup, and therefore, in particular, normal subgroups can be found.

The folklore algorithm for abelian HSP is as follows:

Algorithm 3.1 (Algorithm for the abelian HSP)

1. Compute ) |9, f(g)) and measure the second register f(g). The resulting superpo-
sition is ),y |ch) ® |f(ch)) for some coset cH of H. Furthermore, c is uniformly
distributed over G.

2. Compute the Fourier transform of the coset state, resulting in

) \/% i 3 Al (10)
pe@

heH

where G denotes the character group, {p|p : G — C homomorphism}.

3. Measure the first register and observe a homomorphism p.

A key fact about this procedure is that the resulting distribution over p is independent of
the coset arising after the first stage. Thus, we can repeat the experiment many times, each
time inducing the same distribution over G.

Consider the natural generalization of Algorithm 3.1 to non-abelian groups,

Algorithm 3.2 (Potential Algorithm for the General HSP)

1. Compute ) 19, f(g)) and measure the second register f(g). The resulting superpo-
sition is Y o |ch) ® |f(ch)) for some coset cH of H. Furthermore, c is uniformly
distributed over G.



2. Let G denote the set of all irreducible representations of G and, for each p € G, fiz a
basis for the space on which p(g) act. Let d, denote the dimension of p. Compute the
Fourier transform of the coset state, which gives the superposition

5 Jao [ (s~ ) i
22; G\ TH] (f;{p( h)) .Ip, %)) (11)
pe i,

3. Measure the first register and observe a representation p.

As expected, the resulting distribution is independent of the actual coset ¢cH (and thus
depends only on H). This is guarateed by measuring only the name of the representation
p and leaving the matrix entries (i and j) unobserved. But the crucial question is whether
this procedure retains enough information to determine H, or more precisely, are O(log|G|)
samples of this distribution sufficient to determine H with high probability.

Let f be the indicator function for a particular left coset cH of H, given by

f(9) ={ i ite e, (12)

0 otherwise

Now consider the probability of observing p according to the Algorithm 3.2. Let Dy be
the distribution on the representations p given bdy the algorithm 3.2. It’s easy to see that the
probability of observing p, D (p), is £ () I1? = & il Sen P = G |HI*(xos xa,) 11
Therefore Dy (p) = dp%(xp,le)H

Thus, from now onwards we can assume w.l.o.g. that our function f is constant and
positive on subgroup H itself and zero elsewhere.

Now, applying Frobenius Reciprocity to the above value calculated of Dy (p), we get the

following result:

Proposition 3.1 the probability of measuring the representation p in Algorithm 3.2 is the
product of d,, |H|/|G| and the number of occurences of the 1y, the trivial representation of
H, in p (which, due to Frobenius reciprocity, is the same as the number of occurences of p in
the representation induced by 1y ).

Now, let H be a subgroup of G and by H® we denote the core of H, the largest normal
subgroup of G contained in H. Our aim is to reconstruct H in general. Right now, we will try
to see if HE can be reconstructed. Thus, in the case when H is a normal subgroup, H = H¢
and the same procedure works. So let us consider the following algorithm:

Consider the following algorithm:

Algorithm 3.3 (Normal Subgroup Reconstruction)

1. Fori=1,2,...,m = 4log |G|, run Algorithm 3.2 and measure an irreducible represen-
tation p.

2. Let N; = ﬂ;-:l ker(p;), and finally output Np,.

Following is the theorem which will prove the reconstruction of the core:

—log |G|

Theorem 3.2 Algorithm 3.3 returns HS with probability 1 —2e &



Proof: Here we present the proof using induced representations. For interesting aliters, see
[6]. It is easy to see that ker(Ind%1y) = HY. Therefore, whenever an irreducible representa-
tion p; is sampled in algorithm 3.3, it must appear in T ndfl 17 and thus HE C ker(T ndgl ) C
ker(p;).

Similar to the decomposition theorem for the regular representation, we can show that
Ind%lNi = ®pEG,Nigker(p) d,p. Also let, Ind$1y = Gapeé mpp. Then we have

|H| |H|
Prpep, [Ni C ker(p)] = Gl Z mpd, = @(degmaXMdgimi)G (13)
pEGA',ngkeI‘(p)

|H|
= @(XlH’XResglnd%ilNi>H (14)
H|
= G ) X1 Xindlt 150w, 2 (15)
geH\G/N;
H
= % @ <X1H0Ni’X1HﬂNi>HmNi (16)
geEH\G/N;
H| |G| |H|
= =1 = 17
G| THN;] ~ [HN] (7
1
< JifNgH. (18)

where (14) is due to Frobenius Reciprocity and (15) is due to Mackey’s Subgroup Theorem.

Let X; € 0,1 be the indicator random variable such that X; = 1, if N; C H or N;1 # Ny;
and 0 otherwise. Thus from above, Pr[X; = 0|X1,..., X; 1] <1/2 and also Zé‘:o X; satisfies
Lipschitz condition, i.e. |Z;§) Xi— Z;:O Xi| < 1. Thus applying Azuma’s inequality ([1])
for Martingale Bounds, we finally get that Pr[| Y "  X; — | > A] < 2¢=3*/2m_ So putting
A = log, |G| we have Pr[>" X; < logs|G|] < 2e~10821G1/8,

Therefore with high probability, 1 — 2e~19821G//8 we have N, C H. But we already know
that HY C ker(p;) C N;, Vi and therefore N,,, = H%, which means that the algorithm actually
gives H® with high probability. O

Using this result, HSP can be solved efficiently for Hamiltonian Groups. These are the
groups in which every subgroup is normal. All abelian groups are Hamiltonian and the only
non-abelian Hamiltonian groups are of the form G = Z’; X B x @), where ( is the quaternion
group and B is an abelian group with exponent b coprime to 2. Using the irreducible repre-
sentations for @) and B, efficient QFT’s were constructed in [6] which making use of the same
algorithm solve HSP over Hamiltonian Groups.

4 Negative result: triviality in S,

As we have already seen, an efficient solution to HSP over S,, would give rise to an efficient
algorithm for the Graph Isomorphism Problem. Here is a negative result from [6] which says
that the proposed algorithm doesn’t give any help to solve Graph Isomorphism.

A graph G is called rigid if its automorphism group Aut(G) is trivial. Note that if a graph
consists of two connected components G, G2 which are themselves rigid graphs then either
Aut(G) is trivial (when G; 2 G2) or it is {e,7}, where 7 € S, is a permutation with n/2
disjoint 2-cycles.



Theorem 4.1 Let G and G3 be two rigid, connected graphs with n vertices. Let Dy and Dy
be the distributions on p in algorithm 3.3 for the cases, G1 = G2 and G, 2 G4 respectively.
Then |Dr — Dyl < 29U,

Proof: First of all, as we know Dy (p) = dp%(xp,)(lH)H. And therefore, Dy (p) = d%/n! as

H is trivial, whereas Dj(p) = %dp(le,Xp)H = %(dp + xp(7))-
Therefore,

S 1P1(0) ~ Do) = o 3 dplxo(7)] (19)
p

p
<o \/Z dz\/z XD £ =[S )P (20)
Vo p ™\ e

by Cauchy-Schwarz inequality. Now using orthogonality of second kind ([12], thm 1.10.3)
we get

1 n! 200/ (n)2)! g
Ep : |DI(p) DN(p)| = \/H\/\Conjugacy class Of 7_‘ nl = 2 (21)

a

Grigni, Schulman, Vazirani, Vazirani ([5], STOC’2000) independently showed that measur-
ing the representation alone is not enough for graph isomorphism, and gave stronger negative
results. This involves some bound even when the row i (similarly column j) of the repre-
sentation is also measured, under the assumption thet random bases are selected for each
representation. They also showed that the problem can be solved if the normalizers of all
subgroup have a large intersection.

5 Fourier transforms on non-abelian groups

The result of Puschel, Rotteler and Beth is a new approach to solve the problem of the
construction of Fourier transforms on non-abelian groups. The main theme is to construct
efficient Fourier transforms for a group G once we know how to construct efficient Fourier
transforms for N, a normal subgroup of G, and have some special information about the
quotient group G/N.

Here are the main lemmas from constructive representation theory which occupy a con-
siderable part of the chapter 1 of Piischel’s dissertation [10]. He considered a case when G/N
is cyclic, moreover of prime index. From here onwards ¢* means matrix of the representation
¢ conjugated by the matrix A and an extension of a representation ¢ of N to G means a
representation ¢ of G such that Res%q_ﬁ = ¢. We also denote the matrix of the representation
IndS ¢ using transversal T, by (¢ 17 G).

Now, since Fourier transforms are nothing but the matrix decomposing the regular repre-
sentation, we can use the recursion formula of double induction.

Lemma 5.1 Let N < G be a normal subgroup of prime index p with transversal (group of
coset representatives) T = (1%, 1, ... ,t(p_l)) and ¢ be a representation of N of degree d such
that it has an extension (careful ! this may not exist in general) ¢ to G. Now if A is the



matriz decomposing ¢ into irreducibles, say ¢ = p=p1 ® ... D py, and p be an extension of
p to G, then the matriz for the decomposition of (¢ T1 G) is the following:

B=(1,® A)-D-(DFT, ® 1,), whereD = péﬁ(ti). (22)
i=0
Moreover, the decomposition is
(¢ 1tr G)P QB i+ P, (23)
where \; : t — w; fori=0,1,...,(p—1), are the 1-dimensional representations of G arising

from the factor group G/N.

The matrix D is called the generalized Twiddle factor, which vanishes in the case when
G = N x G/N. And when G is abelian, above formula gives the well-known Cooley-Tuckey
decomposition.

Since we are considering Fourier transforms as the matrix decompositions of regular rep-
resentations, it is interesting to know if we can apply this lemma for regular representation.

Lemma 5.2 G and N as above and let ¢ be a regqular representation of N. Then ¢ has an
extension ¢ to G (and hence all conjugates of ¢, too). Furthermore ¢ = ¢', Vt € G, i.e. all
its inner conjugates are equivalent.

This lemma says that G/N operated on the set of irreducible representations via inner
conjugation. Now, according to Clifford’s theorem ([10], thm 1.71) exactly one of following
two cases occurs for each summand p;:

1. p; = pt, Vt € G and p; can be extended to G. The extension can be explicitly calculated
by Minkwitz’ formula (an elementary proof can be found in [3]).

2. pi 2 pl, Vt € G and p; Tr G is irreducible and hence the whole direct sum p; B pl®...d
+(p—1)

i can be extended to G by p; T G.

Another problem is to fix up the direct sum EBf;Ol ;- p with the equivalent summands being
equal. These arise from the p;’s falling in the second case of Clifford’s theorem. This can be
fixed up by conjugating them with a blockdiagonal matrix diag(1,wp, .. wz(gp 1)) .

Putting this all together, we get a procedure to construct Fourier transform on G, once

we know how to construct Fourier transforms on its subgroup N which is of prime index.

Algorithm 5.1 (Recursive Fourier transforms) Our goal is to get a decomposition matriz
B for (¢ T G) from the matriz A that decomposes ¢, regular representation of N.

1. Determine the permutation matriz P which rearranges p;’s such that the extendable

ones (first case of Clifford’s theorem) come first followed by the others, also ordered into

sequences of p-blocks equivalent to p;, pt, .. ,,pf(” R

2. Calculate matriz M which is identity on the extendables but conjugates the p-block se-

quences to make them equal to p;, pt, . .. ,pf(p ), instead of just equivalent.



3. Now extend ¢APM summandwise. Use Minkwitz formula for the extendables and use
pi T G for the p-block sequences.

4. Evaluate = @Z(I;_Ol) p(') and also construct the blockdiagonal matriz C as in the discus-
sion above.

Then the decomposition matriz for ¢ T G is given by,
B=(1,8A-P-M)-D-(DFT,®1y))-C (24)

Using this recursive technique, Pischel, Rotteler and Beth have constructed quantum
circuits that construct Fourier transforms efficiently on non-abelian 2-groups. This involves
explicit calculations of the above matrices in terms of quantum circuits on explicit class of
groups. They used the classification theorem for 2-groups which says that, for n > 3 there are
four classes of non-abelian groups of order 2(n + 1) upto isomorphism.

1. Dihedral group Dymi1y = {7,y | 22" = y? = 1,yzy~t = z71).

2. Quaternion group Qym+1) = (2,9 | 22— y4 _ l,yxy—l _ $_1>.
3. QPyesny = (m,y | 27" =12 = Lyzy !t =227 V41,

4. Quasidihedral group QDy(ns1) = (7,7 | 22" =92 = L,yzy~! = x2(n_l)_1).

6 Conclusion and Open Problems

This opens up a new approach towards non-abelian HSP as well as the construction of non-
abelian Fourier transforms. An important open problem is to try and apply the procedure
of Puschel et al to construct Fourier transforms over solvable groups. Even extending their
procedure to supersolvable groups would also be very interesting.
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