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Document 1, p. 2: Travail (publié) sur une caractérisation explicite des sys-
tèmes d’équations différentielles ordinaires qui sont localement équivalents
au système décrivant une particule newtonienne dans un champ de forces
nul. Calculs très difficiles d’élimination algébrico-différentielle; c’est avec
cet article que j’ai appris à calculer,cf. les travaux sur Green-Griffiths.
Document 3, p. 93: Travail (publié) produisant des exemples de tubes CR
non algébrisables en codimension quelconque.
Document 3, p. 144: Travail (publié) donnant des bornes pour la di-
mension du groupe des symétries de Lie de certains systèmes complets
d’équations aux dérivées partielles.
Document 4, p. 185: Travail (récent et soumis) caractérisantexplicitement
les hypersurfaces analytiques réelles deC2 qui sont localement biholomor-
phes à la sphèreS3.
Document 5, p. 215: Travail (récent et soumis) caractérisant l’équivalence
locale à la pseudo-sphère de Heisenberg dansCn pourn > 3.
Document 6, p. 233: Travail de synthèse (à paraître) contenant de très
nombreuses idées à développer en relation avec la modernisation des travaux
de Lie.

[6 documents. En 2006, je me suis plus ou moins arrêté de travailler dans
cette direction pour étudier les œuvres originales de Lie, plus puissantes que
ce qui se fait actuellement dans cette direction.]
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Characterization of the Newtonian

free particle system

in m > 2 dependent variables

Joël Merker

Abstract. We treat the problem of linearizability of a system of secondorder ordi-
nary differential equations. The criterion we provide has applications to nonlinear
Newtonian mechanics, especially in three-dimensional space.

Let K = R or C, let x ∈ K, let m > 2, let y := (y1, . . . , ym) ∈ Km and let

y1
xx = F 1 (x, y, yx) , . . . . . . , ym

xx = Fm (x, y, yx) ,

be a collection ofm analytic second order ordinary differential equations, ingeneral
nonlinear. We obtain a new and applicable necessary and sufficient condition in
order that this system is equivalent, under a point transformation

(x, y1, . . . , ym) 7→
(
X(x, y), Y 1(x, y), . . . , Y m(x, y)

)
,

to the Newtonian free particle systemY 1
XX = · · · = Y m

XX = 0.
Strikingly, the explicit differential system that we obtain is of first order in the

casem > 2, whereas according to a classical result due to Lie, it is of second order
the case of a single equation(m = 1).
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§1. INTRODUCTION

Several physically meaningful systems of ordinary differential equations
are of second order, as for instance the free particle inm-dimensional space,
the damped or undamped harmonic oscillator, coupled or not,having con-
stant time-dependent frequency or not,etc. Such systems are ubiquitous in
Newtonian Mechanics, in Hamiltonian Dynamics and in General Relativity.

Two classical major problems are to classify these systems up to point or
contact equivalence (Lie’s Grail) and to recognize when they coincide with
the Euler equations associated to a Lagrangian (inverse variational problem).
In small dimensions, complete results hold (Lie, Tresse, Cartan; Darboux,
Douglas). However, in arbitrary dimension, both tasks quickly exceed the
human as well as the digital computer scale, due to the intrinsic complexity
of the underlying symbolic computations (explosion, swelling) and to the
exponentially increasing number of cases to be treated. We refer to Olver’s
monograph [Ol1995] for a panorama of problems, methods and results.

At least, as a first step in classification, with respect to applications, there
are both a mathematical and a physical interest in determining concrete, ex-
plicit and applicable (“ready-made”) criteria for a systemof ordinary differ-
ential equation to be equivalent, via a local point transformation, to a linear
equation.

1.1. Scalar equation.In this respect, we remind the celebrated linearizabil-
ity criterion for a single equation, due to Lie. LetK = R of C. Let x ∈ K

andy ∈ K. Consider a local second order ordinary differential equation
yxx = F (x, y, yx), possibly nonlinear, with a locallyK-analytic right-hand
side1.

Theorem 1.2.([Lie1883], pp. 362–365; [GTW1989]; [Ol1995], p. 406)The
following four conditions are equivalent:

(1) yxx = F (x, y, yx) is equivalent under a local point transformation
(x, y) 7→ (X, Y ) to the free particle equationYXX = 0;

(2) yxx = F (x, y, yx) is equivalent to some linear equationYXX =
G0(X) +G1(X) Y +H(X) YX;

(3) the local Lie symmetry group ofyxx = F (x, y, yx) is eight-
dimensional, locally isomorphic to the groupPGL(3,K) of all
projective transformations ofP2(K).

1By borrowing techniques developed in [Ma2003], this theorem as well as the next both
hold under weaker smoothness assumptions, namely with aC 2 or aW 1,∞

loc right-hand side.
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(4) Fyxyxyxyx = 0, or equivalentlyF = G + yxH + (yx)
2 L + (yx)

3M ,
whereG,H,L,M are functions of(x, y) that satisfy:

0 = −2Gyy +
4

3
Hxy −

1

3
Lxx + 2 (GL)y − 2Gx M − 4GMx +

2

3
H Lx −

4

3
H Hy,

0 = −2

3
Hyy +

4

3
Lxy − 2Mxx + 2GMy + 4Gy M − 2 (H M)x −

2

3
Hy L +

4

3
LLx.

Section 2 of this paper is devoted to a detailed exposition ofthe original
proof of the equivalence between(1) and(4), following [Lie1883]. In the
contemporary literature, to the author’s knowledge, thereis no modern resti-
tution of Lie’s elegant proof, whereas the description of analternative proof
of Theorem 1.2 as a byproduct of É. Cartan’s equivalence algorithm appears
in the references [Tr1896], [Ca1924], [GTW1989], [Ol1995], [23]2.

Lie’s Grail would comprise:

• a complete classification of all Lie algebras of local vectorfields; Lie
achieved this task in dimension2 overC (real case: [GKO1992]); how-
ever, as soon as the dimension is> 3, the complete classification is
unknown, due to the intrinsic richness of imprimitive Lie algebras of
vector fields;

• a list of all the possible Lie algebras that can be realized asinfinitesimal
Lie symmetry algebras of partial differential equations, together with
their Levi-Maľcev decomposition;

• an explicit Gröbner basis of the (noncommutative) algebra of all dif-
ferential invariants of each equation in the list.

However, complete results hold only for the scalar second order ordi-
nary differential equation. Some tables extracted from Lie’s Gesammelte
Abhandlungenand from Tresse’s prized thesis [Tr1896] may be found
in [Ol1995].

1.3. Systems.Let x ∈ K, letm > 2, let y := (y1, . . . , ym) ∈ Km and let

(1.4) y1
xx(x) = F 1 (x, y(x), yx(x)) , . . . . . . , y

m
xx(x) = Fm (x, y(x), yx(x))

2We note that in these references, the already substantial computations are stopped just
after the reduction to an{e}-structure on an eight-dimensional (local) principal bundle over
the three-dimensional first order jet space. The vanishing of two (among four) fundamental
tensors in the structure equations of the obtained{e}-structure yields two partial differential
equations satisfied by the right-hand sideF (x, y, yx), which are equivalent to(4) of Theo-
rem 1.2. We mention that with the help of Maple programming, the complete reduction to
an{e}-structureon the base(not only on the principal bundle) is achieved in [HK1989],
in the simpler case of so-calledfiber-preservingtransformations, namely point transforma-
tions leaving invariant the “vertical” foliation{x = ct.}. To the author’s knowledge, the
complete confirmation of Tresse’s results by means of É. Cartan’s method has never been
achieved.
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be a collection ofm analytic second order ordinary differential equations,
possibly nonlinear, of the most general form.

Motivated by physical applications and by geometrical questions, some
authors (Leach [Le1980], Grissom-Thompson–Wilkens [GTW1989],
González-López [GL1988], Fels [Fe1995], Crampin-Martínez-
Sarlet [CMS1996], Doubrov [Do2000], Grossman [Gr2000], Mahomed-
Soh [MS2001], and others) have been interested in a least characterizing
those that have the Lie symmetry group of maximal dimension.In [Le1980],
based on the belief that the equivalence between(1), (2) and (3) of The-
orem 1.2 would persist in the casem > 2, it was conjectured that the
symmetry algebra ofevery linear system

(1.5) yj
xx = Gj

0(x) +

m∑

l=1

ylGj
1,l(x) +

m∑

l1=1

yl1
x H

j
l1
(x), j = 1, . . . , m,

of m > 2 second order differential equations has a Lie symmetry group lo-
cally isomorphic to the full transformation groupPGL(m+1,K) of the pro-
jective spacePm+1(K). However, González-López [GL1988] infirmed this
expectation, and produced a necessary and sufficient condition (seeCorol-
lary 1.8 below) for local equivalence of such linear systemsto the free par-
ticle system

(1.6) Y j
XX = 0, j = 1, . . . , m.

Applying Lie’s algorithm it is easily seen ([11]) that the free particle system
has a local symmetry algebra of dimension≤ m2+4m+3, the bound being
attained byY j

XX = 0, j = 1, . . . , m, with groupPGL(m+ 1,K).
In 1939, for fiber-preserving transformations only, Chern [Ch1939] con-

ducted the É. Cartan algorithm through absorptions of torsion, normaliza-
tions and prolongations up to the reduction to an{e}-structure. Remarkably,
in 1995, Fels [Fe1995] conducted the É. Cartan algorithm forgeneral sys-
temsyj

xx = F j(x, y, yx) and for general point transformations. As a byprod-
uct of the uniqueness of the obtained{e}-structure for which all invariant
tensors vanish, Fels deduced in [Fe1995] that the flat systemY j

XX = 0,
j = 1, . . . , m, is, up to equivalence, the only system of second order pos-
sessing a symmetry group of maximal dimension. Alas, the{e}-structures
obtained by Chern and by Fels are not parametric, so that the counterpart
to (4) of Theorem 1.2 was lacking as soon asm > 2. The extraordinary
heaviness of É. Cartan’s method is a well known obstacle.

Recently, Neut [N2003] (seealso [DNP2005]) wrote a Maple program to
compute (among other{e}-structures) Fels’ tensors in a parametric, explicit
way. The digital computations succeeded in the casem = 2, yielding The-
orem 3 of [DNP2005], a statement that may be checked to be equivalent to
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Theorem 1.7(3) just below in the casem = 2. In the physically most mean-
ingful casem = 3, a present-day computer is stuck ([N2003], [DNP2005]).

Extending Lie’s less heavy computations3, we present here a complete
solution to the characterization ofY j

XX = 0 for arbitrarym > 2.

Theorem 1.7. Supposem > 2. The following three conditions are equiva-
lent:

(1) the systemyj
xx = F j(x, y, yx), j = 1, . . . , m, is equivalent, under

a local point transformation(x, yj) 7→ (X, Y j) to the free particle
equationY j

XX = 0;

(2) the local Lie symmetry group ofyj
xx = F j(x, y, yx) is (m2 + 4m+ 3)-

dimensional and locally isomorphic toPGL(m+ 1,K);

(3) the right hand sidesF j(x, y, yx) are of a special form, described as
follows.

(i) There exist localK-analytic functionsGj, Hj
l1

, Lj
l1,l2

andMl1,l2 ,

wherej, l1, l2 = 1, . . . , m, enjoying the symmetriesLj
l1,l2

= Lj
l2,l1

and Ml1,l2 = Ml2,l1 and depending only on(x, y) such that
F j(x, y, yx) may be written as the following specific cubic poly-
nomial with respect toyx:

yj
xx = Gj +

m∑

l1=1

yl1
x H

j
l1

+

m∑

l1=1

m∑

l2=1

yl1
x y

l2
x L

j
l1,l2

+ yj
x ·

m∑

l1=1

m∑

l2=1

yl1
x y

l2
x Ml1,l2.

(ii) The functionsGj , Hj
l1

, Lj
l1,l2

and Ml1,l2 satisfy the following
explicit system offour families of first order partial differential
equations:

(I)






0 = − 2Gj

yl1
+ 2 δj

l1
Gl2

yl2
+Hj

l1,x − δ
j
l1
H l2

l2,x+

+ 2

m∑

k=1

Gk Lj
l1,k − 2 δj

l1

m∑

k=1

Gk Ll2
l2,k+

+
1

2
δj
l1

m∑

k=1

Hk
l2
H l2

k −
1

2

m∑

k=1

Hk
l1
Hj

k,

3Throughout the article, we do not adopt the summation convention, because in several
subsequent equations, some repeated indices shall appear that will not be summed. Also,
we always put commas between the indices. For instanceLj

l1,l3,yl2
denotes∂Lj

l1,l3
/∂yl2

shortly. As usual,δj
i is the Kronecker symbol.
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where the indicesj, l1 vary in{1, 2, . . . , m};

(II)





0 = − 1

2
Hj

l1,yl2
+

1

6
δj
l1
H l2

l2,yl2
+

1

3
δj
l2
H l1

l1,yl1
+

+ Lj
l1,l2,x −

1

3
δj
l1
Ll2

l2,l2,x −
2

3
δj
l2
Ll1

l1,l1,x+

+Gj Ml1,l2 −
1

3
δj
l1
Gl2 Ml2,l2 −

2

3
δj
l2
Gl1 Ml1,l1+

+
1

3
δj
l1

m∑

k=1

Gk Ml2,k −
1

3
δj
l2

m∑

k=1

Gk Ml1,k−

− 1

2

m∑

k=1

Hj
k L

k
l1,l2

+
1

2

m∑

k=1

Hk
l1
Lj

l2,k+

+ δj
l1

(
1

6

m∑

k=1

H l2
k L

k
l2,l2
− 1

6

m∑

k=1

Hk
l2
Ll2

l2,k

)
+

+ δj
l2

(
1

3

m∑

k=1

H l1
k L

k
l1,l1 −

1

3

m∑

k=1

Hk
l1 L

l1
l1,k

)
,

where the indicesj, l1, l2 vary in{1, 2, . . . , m};

(III)





0 = Lj

l1,l2,yl3
− Lj

l1,l3,yl2
+ δj

l3
Ml1,l2,x − δj

l2
Ml1,l3,x+

+
1

2
Hj

l3
Ml1,l2 −

1

2
Hj

l2
Ml1,l3+

+
1

2
δj
l1

m∑

k=1

Hk
l3
Ml2,k −

1

2
δj
l1

m∑

k=1

Hk
l2
Ml3,k+

+
1

2
δj
l3

m∑

k=1

Hk
l1
Ml2,k −

1

2
δj
l2

m∑

k=1

Hk
l1
Ml3,k+

+

m∑

k=1

Lk
l1,l3

Lj
l2,k −

m∑

k=1

Lk
l1,l2

Lj
l3,k,

where the indicesj, l1, l2, l3 vary in{1, . . .m}; and

(IV)

{
0 = Ml1,l2,yl3 −Ml1,l3,yl2 −

m∑

k=1

Lk
l1,l2 Ml3,k +

m∑

k=1

Lk
l1,l3 Ml2,k,

where the indicesl1, l2, l3 vary in{1, . . . , m}.
Let us provide commentaries and explanations. The form of the right-

hand side of(3)(i) is the analog of the form of the right-hand sideF in (4)
of Lie’s Theorem 1.2. However, we notice that the right-handside of(3)(i)
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is not the most general degree three polynomial in the variables yj
x, j =

1, . . . , m: some coefficients of the cubic terms vanish.
Very strikingly, the differential system(I) , (II) , (III) , (IV) satisfied by the

functionsGj, Hj
l1

, Lj
l1,l2

, Ml1,l2 is of first order for m > 2, whereas the
system(4) satisfied byG,H, L,M in Lie’s Theorem 1.2 is ofsecond order
for m = 1. This confirms the main theorem of González-López [GL1988],
that is recovered here in the special linear case (1.5).

Corollary 1.8. ([GL1988]) For m > 2, a linear (nonhomogeneous) system
yj

xx = Gj
0(x)+

∑m
l=1 y

lGj
1,l(x)+

∑m
l1=1 y

l1
x H

j
l1
(x) is equivalent toY j

XX = 0
if and only if there exists a functionB(x) such that them × m matrixG1

may be written under the specific form:

(1.9) Gj
1,l =

1

2
Hj

l −
1

4

m∑

k=1

Hj
k H

k
l + δj

l B.

We also mention that Fels obtained a characterization of equivalence to
the free particleY j

XX = 0, j = 1, . . . , m, by the vanishing of two (non-
explicit) tensorsS̃j

ikl andP̃ j
i (Corollary 5.1 in [Fe1995]). In this reference,

some parametric computations are achieved after restricting the initialG-
structure, together with its subsequent prolongations, tothe identity element
of the group; explicit expressions of̃Sj

ikl

∣∣
Id

and ofP̃ j
i

∣∣
Id

are then obtained,

through already hard computations. The vanishing of the twotensorsP̃ j
i

and S̃j
ikl at the identity of the structure group, namely, as computed in

Lemma 4.1 of [Fe1995], yields (translating into our notation)
(1.10)




0 = (S̃j
ikl)
∣∣∣
Id

= F j
yi

xyk
xyl

x
− 1

n + 2

m∑

l1=1

∑

σ∈S3

δj
σ(l) F

l1

y
l1
x y

σ(i)
x y

σ(k)
x

,

0 = (P̃ j
i )
∣∣∣
Id

=
1

2
D
(
F j

yi
x

)
− F j

yi −
1

4

m∑

k=1

F j
yk

x
F k

yi
x
−

− 1

m
δj
i

[
1

2
D

(
m∑

k=1

F k
yk

x

)
−

m∑

k=1

F k
yk −

1

4

m∑

k=1

m∑

l=1

F l
yk

x
F k

yl
x

]
,

whereD is the total differentiation operator∂
∂x

+
∑m

l=1 y
l
x

∂
∂yl +

∑m
l=1 F

l ∂
∂yl

x
,

and wherei, j, k, l = 1, . . . , m. Strikingly, one may check that the first
equation is equivalent to(3)(i) of Theorem 1.2 and then that the second
equation yields the (complicated) four families of first order partial differen-
tial equations (I), (II), (III) and (IV). So, in Corollary 5.1 of [Fe1995], one
may replace the vanishing of̃Sj

ikl and ofP̃ j
i by the vanishing of̃Sj

ikl

∣∣
Id

and

of P̃ j
i

∣∣
Id

, which wereexplicitly computedthere.
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This phenomenon could be explained as follows: as soon as theten-
sors S̃j

ikl vanish, the system enjoys a projective connection (appendix
of [Fe1995]); with such a connection, the tensorsP̃ j

i then transform accord-
ing to a specific rule via tensorial rotation formulas and their general expres-
sion may be deduced from their expression at the identity4. We have checked
this, but as we try to avoid the method of equivalence, details will not be re-
produced here. Similar observations appear in Hachtroudi [Ha1937].

Even if the expressions (1.10) are more compact than the (equivalent)
conditions in Theorem 1.7(3), we prefer the complete expressions of The-
orem 1.7(3), since they are more explicit and ready-made for checking
whether a physically given nonlinear system is equivalent to a free parti-
cle. If the reader prefers compact expressions and “short” theorems, (s)he
may replace the conditions of Theorem 1.7(3) by (1.10).

Open problem1.11. Characterize explicitly the linearizability of a Newto-
nian system inm > 2 degrees of freedom,i.e. local equivalence to :

(1.12) Y j
XX = Gj

0(X) +

m∑

l=1

Y lGj
1,l(X) +

m∑

l1=1

Y l1
X Hj

l1
(X).

1.13. Organization, avertissement and acknowledgment.Section 2 is de-
voted to a thorough restitution of Lie’s original proof of the equivalence be-
tween(1) and(4) in Theorem 1.2. Section 3 is devoted to the formulation
of combinatorial formulas yielding the general form of a system equivalent
to Y j

XX = 0, j = 1, . . . , m, under a localK-analytic point transformation
(x, yj) 7→ (X, Y j), for generalm > 2 ; the proof of the main technical
Lemma 3.32 is exposed in Section 5. Section 4 is devoted to thefinal proof
of the equivalence between(1) and(3) in Theorem 1.7, the equivalence be-
tween(1) and(2) being already proved by Fels [Fe1995].

Some word about style and intentions. We wanted the proof of the equiv-
alence between(1) and(3) be totally complete, every tiny detail being rig-
orously and patiently checked. This is why we decided tocarefully detail
each intermediate computational step, seeking first the combinatorics of the
formal calculations in the casem = 1 and devising then the underlying com-
binatorics for the casem > 2. Actually, the size of differential expressions
is relatively impressive, as will become soon evident. Thus, no intermediate
symbolic computation will be hidden, hence essentially no checking work
is left to the reader, as would have been the case if we did not have typed all
the computations.

4Similar rotation formulas are known in the much simpler caseof (pseudo-) Riemannian
metrics,seeChapter 12 of Olver [Ol1995]. It would be interesting to write a program,
finer and more efficient than [N2003], which would systematically recognize such rotation
formulas in any application of É. Cartan’s equivalence method.
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We also would like to point out that except in every specific standard
situations, as with the much studied Riemann and Ricci tensors, present-
day computer programs are not yet powerful enough to apply the É. Cartan
equivalence method when the number of some collection of variables is a
general integer. All the formulas obtained in Sections 2, 3 and 4 were first
treated completely by hand and then, some of them were confirmed after-
wards with the help of MAPLE release 6 in the casesm = 2 andm = 3.
The author is indebted to Sylvain Neut and to Michel Petitot,from the Uni-
versity of Lille 1, for their help in computer machine confirmations.

§2. PROOF OFL IE’ S THEOREM

2.1. Argument. This preliminary section contains a detailed exposition of
Lie’s original proof of the equivalence between(1) and(4) in Theorem 1.2.
Since our goal is to guess the combinatorics of computationsin several vari-
ables, it will be a crucial point for us to explain thoroughlyand patiently
each step of Lie’s computation. Without such an intuitive control, it would
be hopeless to conduct any generalization to several variables. Hence we
shall respect a fundamental principle: always explain clearly and completely
what sort of computation is achieved at each step. Also, we shall many times
introduce some appropriate new notation.

2.2. Combinatorics of the second order prolongation of a point trans-
formation. Let K = R or C. Let (x, y) 7→ (X(x, y), Y (x, y)) be a local
K-analytic invertible transformation, defined in a neighborhood of the origin
in K2, which maps the second order differential equationyxx = F (x, y, yx)
to the flat equationYXX = 0. By assumption, the Jacobian determinant

(2.3) ∆(x|y) :=

∣∣∣∣
Xx Xy

Yx Yy

∣∣∣∣

is nowhere vanishing. Since the equationYXX = 0 is left unchanged by any
affine transformation in the(X, Y ) space, we can (and we shall) assume that
the transformation is tangent to the identity at the origin,namely the above
Jacobian matrix equals the identity matrix at(x, y) = (0, 0).

The computation how the differential equation in the(X, Y ) coordinates
is related to the differential equation in the(x, y)-coordinates is classical,
cf. [Lie1883], [Tr1896], [BK1989], [Ib1992]: let us remind it.A local graph
{y = y(x)} being transformed to a local graph{Y = Y (X)}, we have a
direct formula for the first derivativeYX :

(2.4) YX :=
dY

dX
=
dx · ∂Y (x, y(x))/∂x

dx · ∂X(x, y(x))/∂x
=

Yx + yxYy

Xx + yxXy

.
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This yields the prolongation of the transformation to the first order jet space.
For the second order prolongation, introducing the second order total differ-
entiation operator (which geometrically corresponds to differentiation along
graphs{(x, y(x))}) defined by

(2.5) D :=
∂

∂x
+ yx

∂

∂y
+ yxx

∂

∂yx
,

we may compute, simplify and reorder the expression of the second order
derivative in the(X, Y )-coordinates:
(2.6)




YXX :=
d2Y

dX2
≡ DYX

DX
=
D [(Yx + yxYy)(Xx + yxXx)

−1]

Xx + yxXy
=

=
1

[Xx + yxXy]3
{yxx [XxYy − YxXy] +XxYxx − YxXxx+

+ yx [2(XxYxy − YxXxy)− (XxxYy − YxxXy)] +

+ yxyx [XxYyy − YxXyy − 2(XxyYy − YxyXy)]+

+ yxyxyx [−(XyyYy − YyyXy)]} .

Even if not too complicated, the internal combinatorics of this expression
has to be analyzed and expressed thoroughly. First of all, asYXX = 0 by
assumption, we may erase the cubic factor[Xx+yxXy]

−3. Next, as the factor
of yxx in the right-hand side of (2.6), we just recognize the Jacobian∆(x|y)
expressed in (2.3) above. Also, all the other factors are modifications of the
Jacobian∆(x|y), whose combinatorics may be understood as follows.

There exist exactly three possible distinct second order derivatives:xx, xy
andyy. There are also exactly two columns in (2.3). By replacing each of
the two columns of first order derivative in∆(x|y) by any column of second
order derivative (leavingX andY unchanged), we may build exactly six
new determinants

(2.7)

{
∆(xx|y) ∆(xy|y) ∆(yy|y)
∆(x|xx) ∆(x|xy) ∆(x|yy)

where for instance

(2.8)

{
∆(xx|y) :=

∣∣∣∣
Xxx Xy

Yxx Yy

∣∣∣∣ and ∆(x|xy) :=

∣∣∣∣
Xx Xxy

Yx Yxy

∣∣∣∣ .

Hence, by rewriting (2.6), we see that the equationyxx = F (x, y, yx) equiv-
alent toYXX = 0 may be written under the general explicit form, involving
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determinants
(2.9)




0 = yxx ·
∣∣∣∣
Xx Xy

Yx Yy

∣∣∣∣+
∣∣∣∣
Xx Xxx

Yx Yxx

∣∣∣∣+ yx ·
{

2

∣∣∣∣
Xx Xxy

Yx Yxy

∣∣∣∣−
∣∣∣∣
Xxx Xy

Yxx Yy

∣∣∣∣
}

+

+ yxyx ·
{∣∣∣∣

Xx Xyy

Yx Yyy

∣∣∣∣− 2

∣∣∣∣
Xxy Xy

Yxy Yy

∣∣∣∣
}

+ yxyxyx ·
{
−
∣∣∣∣
Xyy Xy

Yyy Yy

∣∣∣∣
}

or equivalently, after solving inyxx, i.e. after dividing by the Jacobian
∆(x|y):
(2.10)




yxx = − ∆(x|xx)
∆(x|y) + yx ·

{
−2

∆(x|xy)
∆(x|y) +

∆(xx|y)
∆(x|y)

}
+

+ (yx)
2 ·
{
−∆(x|yy)

∆(x|y) + 2
∆(xy|y)
∆(x|y)

}
+ (yx)

3 ·
{

∆(yy|y)
∆(x|y)

}
.

At this point, it will be convenient to slightly contract thenotation by in-
troducing a new family ofsquare functionsas follows. We first index the
coordinates(x, y) as(y0, y1), namely we introduce the two notational equiv-
alences

(2.11) y0 ≡ x, y1 ≡ y ,

which will be very convenient in the sequel, especially to write down general
combinatorial formulas anticipating our treatment of the case ofm > 2 de-
pendent variables(y1, . . . , ym), to be achieved in Sections 3, 4 and 5 below.
With this convention at hand, our six square functions�

k1

yj1yj2
, symmetric

with respect to the lower indices, where0 6 j1, j2, k1 6 1, are defined by
(2.12)



�
0
xx :=

∆(xx|y)
∆(x|y) , �

0
xy :=

∆(xy|y)
∆(x|y) , �

0
yy :=

∆(yy|y)
∆(x|y) ,

�1
xx :=

∆(x|xx)
∆(x|y) , �1

xy :=
∆(x|xy)
∆(x|y) , �1

yy :=
∆(x|yy)
∆(x|y) .

Here of course, the upper index designates the column upon which the sec-
ond order derivative appears, itself being encoded by the two lower indices.
Even if this is hidden in the notation, we shall remember thatthe square
functions are explicit rational expressions in terms of thesecond order jet
of the transformation(x, y) 7→ (X(x, y), Y (x, y)). However, we shall be
aware of not confusing the index in the square functions witha second or-
der partial derivative of some function “�j”, denoted by the square symbol:
indeed, the partial derivatives are hidden in some determinant.

At this point, we may summarize what we have established so far.

Lemma 2.13.The equationyxx = F (x, y, yx) is equivalent to the flat equa-
tion YXX = 0 if and only if there exist two localK-analytic functions
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X(x, y) andY (x, y) such that it may be written under the form
(2.14)
yxx = −�1

xx +yx ·
(
−2 �1

xy + �0
xx

)
+(yx)

2 ·
(
−�1

yy + 2 �0
xy

)
+(yx)

3 ·�0
yy.

At this point, for heuristic reasons, it may be useful to compare the right-
hand side of (2.14) with the classical expression of the prolongation to the
second order jet space of a general vector field of the formL := X(x, y) ∂

∂x
+

Y (x, y) ∂
∂y

, which is given, according to [Lie1883], [Ol1986], [BK1989], by
(2.15)



L(2) = X
∂

∂x
+ Y

∂

∂y
+
[
Yx + yx · (Yy −Xx) + (yx)

2 · (−Xy)
] ∂

∂yx

+

+
[
Yxx + yx · (2Yxy −Xxx) + (yx)

2 · (Yyy − 2Xxy) + (yx)
3 · (−Xyy)+

+ yxx · (Yy − 2Xx) + yxyxx · (−3Xy)]
∂

∂yxx
.

We immediately see that (up to an overall minus sign) the right-hand side
of (2.14) is formally analogous to the second line of (2.15) :the letterX
corresponds to the symbol�0 and the letterY corresponds to the symbol
�1. This analogy is no mystery, just because the formula forL(2) is clas-
sically obtained by differentiating atε = 0 the second order prolongation
[exp(εL)(·)](2) of the flow ofL !

In fact, as we assumed that the transformation(x, y) 7→
(X(x, y), Y (x, y)) is tangent to the identity at the origin, we may
think thatXx

∼= 1, Xy
∼= 0, Yx

∼= 0 andYy
∼= 1, whence the Jacobian

∆(x|y) ∼= 1 and moreover

(2.16)

{
�0

xx
∼= Xxx, �0

xy
∼= Xxy, �0

yy
∼= Xyy,

�1
xx
∼= Yxx, �1

xy
∼= Yxy, �1

yy
∼= Yyy.

By means of this (abusive) notational correspondence, we see that, up to an
overall minus sign, the right-hand side of (2.14) transforms precisely to the
second line of (2.15). This analogy will be useful in devising combinato-
rial formulas for the generalization of Lemma 2.13 to the case ofm > 2
variables(y1, . . . , ym), seeLemmas 3.22 and 3.32 below.

2.17. Continuation. Clearly, since the right-hand side of (2.14) is a poly-
nomial of degree three inyx, the first condition of Theorem 1.2(4) imme-
diately holds. We are therefore led to establish that the second condition is
necessary and sufficient in order that there exist two localK-analytic func-
tionsX(x, y) andY (x, y) which solve the following system of nonlinear
second order partial differential equations (remind that the second order jet
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of (X, Y ) is hidden in the square functions):

(2.18)






G = −�1
xx,

H = − 2 �1
xy + �0

xx,

L = −�
1
yy + 2 �

0
xy,

M = �0
yy.

In the remainder of this section, following [Lie1883], p. 364, we shall study
this second order system by introducing two auxiliary systems of partial
differential equations which arecomplete, and we shall see in §2.38 below
that the compatibility conditions (insuring involutivity, hence complete in-
tegrability) of the second auxiliary system exactly provide the two partial
differential equations appearing in Theorem 1.2(4).

2.19. First auxiliary system. We notice that in (2.18), there are two more
square functions�0

xx, �0
xy, �0

yy, �1
xx, �1

xy, �1
yy, than functionsG,H, L and

M . Hence, as a trick, let us introduce six new independent functionsΠk1
j1,j2

of (x, y), symmetric with respect to the lower indices, for0 6 j1, j2, k1 6 1
and let us seek necessary and sufficient conditions in order that there exist
solutions(X, Y ) to thefirst auxiliary system:

(2.20)

{
�0

xx = Π0
0,0, �0

xy = Π0
0,1, �0

yy = Π0
1,1,

�1
xx = Π1

0,0, �1
xy = Π1

0,1, �1
yy = Π1

1,1.

According to the (aprooximate) identities (2.16), this system looks like a
complete second order system of partial differential equations in two vari-
ables(x, y) and in two unknowns(X, Y ). More rigorously, by means of
elementary algebraic operations, taking account of the fact thatXx

∼= 1,
Xy
∼= 0, Yx

∼= 0 andYy
∼= 1, one may transform this sytem in a true sec-

ond ordercompletesystem, solved with respect to the top order derivatives,
namely of the form

(2.21)

{
Xxx = Λ0

0,0, Xxy = Λ0
0,1, Xyy = Λ0

1,1,

Yxx = Λ1
0,0, Yxy = Λ1

0,1, Yyy = Λ1
1,1,

where theΛk1
j1,j2

are localK-analytic functions of(x, y,X, Y,Xx, Xy, Yx, Yy).
For such a system, the compatibility conditions [which are necessary and
sufficient for the existence of a solution(X, Y )] are easily formulated:

(2.22)

{
(Λ0

0,0)y = (Λ0
0,1)x, (Λ0

0,1)y = (Λ0
1,1)x,

(Λ1
0,0)y = (Λ1

0,1)x, (Λ1
0,1)y = (Λ1

1,1)x.

Equivalently, we may express the compatibility conditionsdirectly with the
system (2.20), without transforming it to the form (2.21). This direct strat-
egy will be more appropriate.



15

2.23. Compatibility conditions for the first auxiliary system. Indeed, to
begin with, let us remind that the∆(·|·) are determinant, hence we have the
skew-symmetry relation∆(xayb|xcyd) = −∆(xcyd|xayb) and the following
two formulas for partial differentiation

(2.24)

{ [
∆(xayb|xcyd)

]
x

= ∆(xa+1yb|xcyd) + ∆(xayb|xc+1yd),
[
∆(xayb|xcyd)

]
y

= ∆(xayb+1|xcyd) + ∆(xayb|xcyd+1).

With these formal rules at hand, as an exercise, let us compute for instance
the following cross differentiation (remember that the lower index in the
square functions isnot a partial derivative):
(2.25)




(
�

0
xx

)
y
−
(
�

0
xy

)
x

=
∂

∂y

(
∆(xx|y)
∆(x|y)

)
− ∂

∂x

(
∆(xy|y)
∆(x|y)

)
=

=
1

[∆(x|y)]2
{

∆(xxy|y) ·∆(x|y)
8a

+ ∆(xx|yy) ·∆(x|y)−

−∆(xy|y) ·∆(xx|y)
8b
−∆(x|yy) ·∆(xx|y)−

−∆(xxy|y) ·∆(x|y)
8a
−∆(xy|xy) ·∆(x|y)

8c
+

+∆(xy|y) ·∆(xx|y)
8b

+ ∆(xy|y) ·∆(x|xy)
}

=

=
1

[∆(x|y)]2 {∆(xx|yy) ·∆(x|y)−∆(x|yy) ·∆(xx|y)+

+∆(xy|y) ·∆(x|xy)} .
Crucially, we observe that the third order derivatives killeach other and
disappear,see the underlined terms with8a appended. Also, two products
of two determinants∆(·|·) involving a second order derivative upon one
column of each determinant kill each other: they are underlined with 8b

appended. Finally, by antisymmetry of determinants, the term ∆(xy|xy) ·
∆(x|y) vanishes gratuitously: it is underlined with8c appended.

However, there still remains one term involving second order derivatives
upon thetwo columns of a determinant: it is∆(xx|yy).

We must transform this unpleasant term∆(xx|yy) · ∆(x|y) and express
it as a product of two determinants, each involving a second order derivative
only in one column. To this aim, we have:

Lemma 2.26. The following three relations between the differential deter-
minants∆(·|·) hold true:
(2.27)




∆(xx|xy) ·∆(x|y) = ∆(xx|y) ·∆(x|xy)−∆(xy|y) ·∆(x|xx),
∆(xx|yy) ·∆(x|y) = ∆(xx|y) ·∆(x|yy)−∆(yy|y) ·∆(x|xx),
∆(xy|yy) ·∆(x|y) = ∆(xy|y) ·∆(x|yy)−∆(yy|y) ·∆(x|xy).
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Proof. Each of these three formal identities is an immediate directconse-
quence of the following Plücker type identity, easily verified by developing
all the determinants :
(2.28)∣∣∣∣
A1 B1

A2 B2

∣∣∣∣·
∣∣∣∣
C1 D1

C2 D2

∣∣∣∣ =

∣∣∣∣
A1 D1

A2 D2

∣∣∣∣·
∣∣∣∣
C1 B1

C2 B2

∣∣∣∣−
∣∣∣∣
B1 D1

B2 D2

∣∣∣∣·
∣∣∣∣
C1 A1

C2 A2

∣∣∣∣ ,

where the variablesA1, A2, B1, B2, C1, C2, D1, D2 ∈ K are arbitrary.

Thanks to the second identity (2.27), we may therefore transform the re-
sult left above in the last two lines of (2.25); as desired, itwill remain de-
terminants having only one second order derivative per column, so that after
division by[∆(x|y)]2, we discovera quadratic expression involving only the
square functions themselves:
(2.29)




(
�0

xx

)
y
−
(
�0

xy

)
x

=
1

[∆(x|y)]2 {∆(xx|y) ·∆(x|yy)−∆(yy|y) ·∆(x|xx)−

−∆(x|yy) ·∆(xx|y) + ∆(xy|y) ·∆(x|xy)}

=
1

[∆(x|y)]2 {−∆(yy|y) ·∆(x|xx) + ∆(xy|y) ·∆(x|xy)}

= −�0
yy ·�1

xx + �0
xy ·�1

xy.

In sum, the result of the cross differentiation(�0
xx)y − (�0

xy)x is a quadratic
expression in terms of the square functions themselves! Following the same
recipe (with no surprise), one may establish the following relations, listing
all the compatibility conditions (the first one is nothing else than (2.29)):
(2.30)



(
�0

xx

)
y
−
(
�0

xy

)
x

= −�1
xx ·�0

yy + �1
xy ·�0

xy,(
�0

xy

)
y
−
(
�0

yy

)
x

= −�0
xy ·�0

yx −�1
xy ·�0

yy + �0
yy ·�0

xx + �1
yy ·�0

xy,(
�1

xx

)
y
−
(
�1

xy

)
x

= −�0
xx ·�1

yx −�1
xx ·�1

yy + �0
xy ·�1

xx + �1
xy ·�1

xy,(
�1

xy

)
y
−
(
�1

yy

)
x

= −�0
xy ·�1

yx + �0
yy ·�1

xx.

Instead of checking patiently each of the remaining three cross above cross
differentiation identities, it is better to establish directly the following gen-
eral relation.

Lemma 2.31.Remind from(2.11)that we identifyy0 with x andy1 with y
and let0 6 j1, j2, j3, k1 6 1. Then
(2.32)
(
�

k1

yj1yj2

)
yj3
−
(
�

k1

yj1yj3

)
yj2

= −
1∑

k2=0

�
k2

yj1yj2
·�k1

yj3yk2
+

1∑

k2=0

�
k2

yj1yj3
·�k1

yj2yk2
.
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This lemma is left to the reader; anyway, we shall complete the proof of
a generalization of Lemma 2.31 to the case ofm > 1 dependent variables
(y1, . . . , ym) in Section 2 below (Lemma 3.40).

Coming back to the first auxiliary system (2.20), we therefore have ob-
tained a necessary and sufficient condition for the existence of (X, Y ): the
functionsΠk1

j1,j2 should satisfy the following system of first order partial dif-
ferential equations, just obtained from (2.30) by replacing the square func-
tions by the Pi functions:
(2.33)




(
Π0

0,0

)
y
−
(
Π0

0,1

)
x

= − Π1
0,0 · Π0

1,1 + Π1
0,1 · Π0

0,1,(
Π0

0,1

)
y
−
(
Π0

1,1

)
x

= − Π0
0,1 · Π0

0,1 −Π1
0,1 · Π0

1,1 + Π0
1,1 · Π0

0,0 + Π1
1,1 · Π0

0,1,
(
Π1

0,0

)
y
−
(
Π1

0,1

)
x

= − Π0
0,0 · Π1

0,1 −Π1
0,0 · Π1

1,1 + Π0
0,1 · Π1

1,1 + Π1
0,1 · Π1

0,1,(
Π1

0,1

)
y
−
(
Π1

1,1

)
x

= − Π0
0,1 · Π1

0,1 + Π0
1,1 · Π1

0,0.

2.34. Second auxiliary system.It is now time to come back to the functions
G,H,L andM and to get rid of the auxiliary “Pi” functions. Unfortunately,
we cannot invert directly the linear system (2.18), hence wemust choose two
specific square functions asprincipal unknowns, and the best, from a com-
binatorial point of view, is to choose�0

xx and�1
yy. Remind that by (2.20),

we have�0
xx = Π0

0,0 and�1
yy = Π1

1,1. For clarity, it will be useful to adopt
the notational equivalences

(2.35) Θ0 ≡ Π0
0,0 and Θ1 ≡ Π1

1,1.

We may therefore quasi-inverse the linear system (2.18), obtaining that the
four functionsΠ1

0,0, Π1
0,1, Π0

0,1 andΠ0
1,1 may be expressed in terms of the

functionsG, H, L andM and in terms of the remaining two principal un-
knowns (2.35), which yields:

(2.36)






Π1
0,0 = �1

xx = −G

Π1
0,1 = �1

xy = −1

2
H +

1

2
Θ0,

Π0
0,1 = �0

xy =
1

2
L+

1

2
Θ1,

Π0
1,1 = �0

yy = M.

Replacing now each of these four expressions in the compatibility conditions
of the first auxiliary system (2.33), solving the four equations with respect
to Θ1

y, Θ0
x, Θ1

x andΘ0
y, we get after hygienic simplifications what we shall

call thesecond auxiliary system, which is a complete system of first order
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partial derivatives in the remaining two principal unknownsΘ0 andΘ1:
(2.37)




Θ1
y = − Ly + 2Mx +HM − 1

2
L2 +M Θ0 +

1

2

(
Θ1
)2
,

Θ0
x = − 2Gy +Hx +GL− 1

2
H2 −GΘ1 +

1

2

(
Θ0
)2
,

Θ1
x = − 2

3
Hy +

1

3
Lx + 2GM − 1

2
H L− 1

2
H Θ1 +

1

2
LΘ0 +

1

2
Θ0 Θ1,

Θ0
y = − 1

3
Hy +

2

3
Lx + 2GM − 1

2
H L− 1

2
H Θ1 +

1

2
LΘ0 +

1

2
Θ0 Θ1.

We do not comment the intermediate computations, since theyoffer no new
combinatorial discovery.

2.38. Precise lexicographic rules.We group first order derivatives before
zeroth order derivatives; in each group, we respect the lexicographic order
of appearance given by the sequenceG,H,L,M , Θ0, Θ1; we always put ra-
tional coefficient of every differential monomial in its left; consequently, we
accept a minus sign just after an equality sign, as for instance in (2.36)1 and
in (2.37)2; for clarity, we prefer to write a complicated differentialequation
as0 = Φ, with 0 on the left, instead ofΦ = 0, sinceΦ may incoporate 10,
20 and up to 150 monomials, as will happen for instance in the next sections
below.

2.39. Compatibility conditions for the second auxiliary system. Clearly,
the necessary and sufficient condition for the existence of solutions(Θ0,Θ1)
to the second auxiliary system (2.37) is that the two cross differentiations
vanish:

(2.40)

{
0 =

(
Θ0

x

)
y
−
(
Θ0

y

)
x
,

0 =
(
Θ1

x

)
y
−
(
Θ1

y

)
x
.

Using (2.37), we shall see that we exactly obtain the two second order par-
tial differential equations written in Theorem 1.2(4). For completeness, we
shall perform completely the computation of the first compatibility condi-
tion (2.40) and leave the second as an (easy) exercise.

First of all, inserting (2.37) and using the rule of Leibniz for the differ-
entiation of a product, let us write the crude result, performing neither any
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simplification nor any reordering:
(2.41)



0 =
(
Θ0

x

)
y
−
(
Θ0

y

)
x

= − 2Gyy +Hxy +Gy L+GLy −HHy −Gy Θ1 −GΘ1
y + Θ0 Θ0

y+

+
1

3
Hxy −

2

3
Lxx − 2GxM − 2GMx +

1

2
Hx L+

1

2
H Lx+

+
1

2
Hx Θ1 +

1

2
H Θ1

x −
1

2
Lx Θ0 − 1

2
LΘ0

x −
1

2
Θ0

x Θ1 − 1

2
Θ0 Θ1

x.

Next, replacing each first order derivativeΘ0
x, Θ0

y, Θ1
x and Θ1

y occuring
in (2.41) by its expression given in (2.37), we obtain (suffering a little) as a
brute result, before any simplification (except that we put all second order
derivatives in the beginning):
(2.42)




0 = − 2Gyy +
4

3
Hxy −

2

3
Lxx+

+Gy L+GLy −HHy −Gy Θ1 +GLy − 2GMx −GHM+

+
1

2
G (L)2 −GM Θ0 − 1

2
G (Θ1)2 − 1

3
Hy Θ0 +

2

3
Lx Θ0+

+ 2GM Θ0 − 1

2
H LΘ0 − 1

2
H Θ0 Θ1 +

1

2
L (Θ0)2 +

1

2
(Θ0)2 Θ1−

− 2GxM − 2GMx +
1

2
Hx L+

1

2
H Lx +

1

2
Hx Θ1+

+
1

6
H Lx −

1

3
HHy + GHM − 1

4
(H)2L− 1

4
(H)2 Θ1+

+
1

4
H LΘ0 +

1

4
H Θ0 Θ1 − 1

2
Lx Θ0 + Gy L−

1

2
Hx L−

1

2
G (L)2+

+
1

4
H2L+

1

2
GLΘ1 − 1

4
L
(
Θ0
)2

+ Gy Θ1 − 1

2
Hx Θ1−

− 1

2
GLΘ1 +

1

4
H2 Θ1 +

1

2
G (Θ1)2 − 1

4

(
Θ0
)2

Θ1 − 1

6
Lx Θ0+

+
1

3
Hy Θ0 − GM Θ0 +

1

4
H LΘ0 +

1

4
H Θ0 Θ1 − 1

4
L (Θ0)2−

− 1

4
(Θ0)2 Θ1.



20

Now, we can simplify this brute expression by chasing every couple (or
triple, or quadruple) of terms killing each other. After (patient) simplifica-
tion and lexicographic ordering, we obtain the equation
(2.43)




0 = −2Gyy+
4

3
Hxy −

2

3
Lxx+

+ 2(GL)y − 2GxM − 4GMx +
2

3
H Lx −

4

3
HHy,

which is exactly the first equation of(4) of Theorem 1.2. The treatment of
the second one is totally similar. This completes the proof of the equivalence
between(1) and(4) in Theorem 1.2.

2.44. Interlude: about hand-computed formulas. In Section 4 below,
when dealing with several dependent variablesy1, . . . , ym, many simplifi-
cations of identities which are much more massive than (2.42) will occur
several times. It is therefore welcome to explain how we manage to achieve
such computations, without mistakes at the end and strictlyby hand. One of
the trick is to use colors, which, unfortunately, cannot be restituted in this
printed document. Another trick is tounderline and to number the terms
which disappear together, by pair, by triple, by quadruple,etc. This trick
is illustrated in the detailed identity (2.45) below, extracted from our man-
uscript, which is a copy of (2.42) together with the designation of all the
terms which vanish together. Hence,we keep a written track of each inter-
mediate step of every computation and of every simplification. Checking the
correctness of a computation simply by reading is then the easiest way, both
for the writer and for the reader, although of course, it takes time, anyway.

On the contrary, when relying upon a digital computer, most intermedi-
ate steps are invisible; the chase of mistakes is by reading the program and
by testing it on several instances. Alas, all the finest intuitions which may
awake in the extreme inside of a long computation are essentially absent, the
mind believing that the machine is stronger for such tasks. This last belief is
in part true, in the case where straightforward known computations are con-
cerned, and in part untrue, in the case where some new hidden mathematical
reality is concerned.

For us,the challenge is to control everything in a sea of signs. Compu-
tations are to be organized like a living giant coral tree, all part of which
should be clearly visible in a transparent fluid of thought, and permanently
subject to corrections.

Indeed, it often happens that going through a problem involving massive
formal computations, some disharmony or some incoherency is discovered.
Then one has to inspect every living atom in the preceding branches of the
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growing coral tree of computations until some very tiny or ridiculous mis-
take is found. In addition to making easy the reading,a perfectly rigorous
way of writing the formal identities which respects a large amount of virtual
conventions facilitates to reorganize rapidly the coral tree after a mistake
has been found. The accumulation of new virtual conventions, all of which
we cannot speak, constitutes another coral meta-tree and another profound
collection of trick. Finally, we use a blank fluid corrector to avoid copying
to much.

Extracted from our manuscript, here is the identity (2.42) with the
underlining-numbering of all the vanishing terms (withoutthe original
colours) until we get the final equation (2.43):

0 = − 2Gyy +
4

3
Hxy −

2

3
Lxx+

+ Gy L + GLy −H Hy −Gy Θ1

8o
+ GLy − 2GMx −GH M8k+

+
1

2
G (L)2

8a
−GM Θ0

8b −
1

2
G (Θ1)2

8c
− 1

3
Hy Θ0

8d
+

2

3
Lx Θ0

8e
+

+ 2GM Θ0
8b −

1

2
H LΘ0

8f
− 1

2
H Θ0 Θ1

8g
+

1

2
L (Θ0)2

8h
+

1

2
(Θ0)2 Θ1

8i
−

− 2Gx M − 2GMx +
1

2
Hx L +

1

2
H Lx +

1

2
Hx Θ1

8j
+

+
1

6
H Lx −

1

3
H Hy + GH M8k −

1

4
(H)2 L

8l
− 1

4
(H)2 Θ1

8m
+

(2.45)

+
1

4
H LΘ0

8f

+
1

4
H Θ0 Θ1

8g

− 1

2
Lx Θ0

8e

+Gy L−
1

2
Hx L−

1

2
G (L)2

8a

+

+
1

4
H2L

8l

+
1

2
GLΘ1

8n

− 1

4
L
(
Θ0
)2

8h

+Gy Θ1

8o
− 1

2
Hx Θ1

8j

−

− 1

2
GLΘ1

8n

+
1

4
H2 Θ1

8m
+

1

2
G (Θ1)2

8c

− 1

4

(
Θ0
)2

Θ1

8i

− 1

6
Lx Θ0

8e

+

+
1

3
Hy Θ0

8d

−GM Θ0
8b

+
1

4
H LΘ0

8f

+
1

4
H Θ0 Θ1

8g

− 1

4
L (Θ0)2

8h

−

− 1

4
(Θ0)2 Θ1

8i

.

As may be observed, the order in which we discover the terms which vanish
is governed by chance. After some terms are underlined, theyare automat-
ically disregarded by the eyes, which lightens the chasing of other terms to
be simplified. To collect the remaining terms in order to obtain the final ex-
pression (2.43), our method is similar: we underline the terms which may be
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summed together. However, whereas we use the red pencil to underline the
vanishing terms, we use the green pencil to underline the remaining terms.
This small trick is to avoid as much as possible to copy several times some
long formal expressions. Finally, we reorder everything lexicographically,
so as to get the conclusion (2.43). In order to obtain the finalequation (2.43)
as efficiently as possible, we read the remaining terms, picking them directly
in lexicographic order. If, by lack of luck, one or two terms are forgotten by
the eyes and not written in the right place, we copy once more the very final
result in the right order, or we use the blank corrector.

Of course, such a refined methodology could seem to be essentially su-
perfluous for such relatively accessible computations. However, when pass-
ing to several dependent variables, the current expressions will be approx-
imatively five times more massive. We may really ascertain that a clever
methodology of hand computations is helpful in this category.

§3. SYSTEMS OF SECOND ORDER ORDINARY DIFFERENTIAL

EQUATIONS EQUIVALENT TO FREE PARTICLES

3.1. Combinatorics of the second order prolongation of a point trans-
formation. In this section, we endeavour to explain how Lie’s theorem
and proof may be generalized to the case of several dependentvariables.
As in the statement of Theorem 1.7(1), let us assume that the system
yj

xx = F j(x, y, yx), j = 1, . . . , m, is equivalent under an invertible point
transformation(x, y) 7→ (X(x, y), Y (x, y)) to the free particle system
Y j

XX = 0, j = 1, . . . , m. By assumption, the Jacobian determinant

(3.2) ∆(x|y1| . . . |ym) :=

∣∣∣∣∣∣∣∣

Xx Xy1 . . . Xym

Y 1
x Y 1

y1 . . . Y 1
ym

. . . . . . . . . . . .
Y m

x Y m
y1 . . . Y m

ym

∣∣∣∣∣∣∣∣

does not vanish at the origin. As in the casem = 1, since the flat system
Y j

XX = 0 is left unchanged by any affine transformation, we can (and we
shall) assume that the transformation is tangent to the identity at the origin,
so that the above Jacobian matrix equals the identity matrixat (x, y) =
(0, 0), whence in a neighborhood of the origin it is close to the identity
matrix, namely

(3.3) Xx
∼= 1, Xyj

∼= 0, Y j
x
∼= 0, Y j2

yj1
∼= δj2

j1
.

Inductive formulas for the computation how the differential equation in the
(X, Y ) coordinates is related to the differential equation in the(x, y) coor-
dinates may be found in [BK1989], [Ol1995]; the explicit formulas are not
achieved in these references. Let us recall the inductive formulas, just on the
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computational level (differential-geometric conceptional background about
graph transformations may be found in [Ol1986], Ch. 2).

First of all, we seek how theY j
X := dY j

dX
are explicitely related to theyl

x.
It suffices to replace, in the identity
(3.4)

Y j
X ·
(
Xx dx+

m∑

l=1

Xyl dyl

)
= Y j

X dX = dY j = Y j
x dx+

m∑

l=1

Y j
yl dy

l

the differentialsdyl by yl
x dx and then to identify the coefficient ofdx on

both sides, which rapidly yields the formulas

(3.5) Y j
X =

Y j
x +

∑m
l=1 y

l
x Y

j
yl

Xx +
∑m

l=1 y
l
xXyl

,

for j = 1, . . . , m.

Next, we seek how theY j
XX := d2Y j

dX2 =
dY j

X

dX
are related to theyl1

x , yl2
xx.

It suffices to again replace eachdyl by yl
x dx and eachdyl

x by yl
xx dx in the

identity
(3.6)



Y j
XX ·

(
Xx dx+

m∑

l=1

Xyl dyl

)
= Y j

XX · dX = dY j
X

=
∂Y j

X

∂x
dx+

m∑

l=1

∂Y j
X

∂yl
dyl +

m∑

l=1

∂Y j
X

∂yl
x

dyl
x

=

(
∂Y j

X

∂x
+

m∑

l=1

∂Y j
X

∂yl
yl

x +

m∑

l=1

∂Y j
X

∂yl
x

yl
xx

)
· dx.

Before entering the precise combinatorics of the explicit expression ofY j
XX ,

let us observe that the last term of (3.6) simply writesD(Y j
X) dx, whereD

denotes thetotal differentiation operator(of order two) defined by

(3.7) D :=
∂

∂x
+

m∑

l=1

yl
x

∂

∂yl
+

m∑

l=1

yl
xx

∂

∂yl
x

.

SincedX ≡ DX after replacing eachdyl by yl
x dx, it follows that we may

compactly rewrite (3.6) as

(3.8) Y j
XX DX · dx = D

(
Y j

X

)
· dx

Consequently, the expressions ofY j
X (obtained in (3.5)) and ofY j

XX are
(3.9)

Y j
X =

DY j

DX
and Y j

XX =
D
(
Y j

X

)

DX
=
DDY j ·DX −DDX ·DY j

[DX]3
.
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As, by assumption, the systemyj
xx = F j(x, y, yx) transforms to the flat

systemY j
XX = 0, after erasing the denominator of (3.7), we come to the

equations

(3.10) 0 = DDY j ·DX −DDX ·DY j ,

for j = 1, . . . , m. However, this too simple and too compact expression of
the systemyj

xx = F j(x, y, yx) is of no use and we must develope (patiently!)
the explicit expressions ofDDY j, ofDX, of DDX and ofDY j , using the
complete expression ofD defined in (3.6).

At this point, we would like to stress thatit constitutes already a nontrivial
computational and combinatorial task to obtain a complete explicit formula
for the systemyj

xx = F j(x, y, yx) hidden in the compact form(3.10), which
would be the generalization of the nice formula (2.9) involving modifica-
tions of the Jacobian determinant. For generalm > 2, the complete proofs
are postponed to Section 5 below.

Since it would be intuitively unsatisfactory to provide directly the fi-
nal simplified expression of the development of (3.10) in thegeneral case
m > 2, let us firstly describe step by step how one may guess what is the
generalization of (2.9).



25

For instance, in the casem = 2, by a direct and relatively short computa-
tion which consists in developing plainly (3.10), we obtainfor j = 1, 2:
(3.11)



0 = −Xxx Y
j
x + Y j

xxXx+

+ y1
x ·
[
−Xxx Y

j
y1 + Y j

xxXy1 − 2Xxy1 Y j
x + 2 Y j

xy1 Xx

]
+

+ y2
x ·
[
−Xxx Y

j
y2 + Y j

xxXy2 − 2Xxy2 Y j
x + 2Y j

xy2 Xx

]
+

+ y1
x y

1
x ·
[
−2Xxy1 Y j

y1 + 2 Y j
xy1 Xy1 −Xy1y1 Y j

x + Y j
y1y1 Xx

]
+

+ y1
x y

2
x ·
[
−2Xxy1 Y j

y2 + 2 Y j
xy1 Xy2 − 2Xxy2 Y j

y1 + 2 Y j
xy2 Xy1−

−2Xy1y2 Y j
x + 2 Y j

y1y2 Xx

]
+

+ y2
x y

2
x ·
[
−2Xxy2 Y j

y2 + 2 Y j
xy2 Xy2 −Xy2y2 Y j

x + Y j
y2y2 Xx

]
+

+ y1
x y

1
x y

1
x ·
[
−Xy1y1 Y j

y1 + Y j
y1y1 Xy1

]
+

+ y1
x y

1
x y

2
x ·
[
−Xy1y1 Y j

y2 + Y j
y1y1 Xy2 − 2Xy1y2 Y j

y1 + 2 Y j
y1y2 Xy1

]
+

+ y1
x y

2
x y

2
x ·
[
−Xy2y2 Y j

y1 + Y j
y2y2 Xy1 − 2Xy1y2 Y j

y2 + 2 Y j
y1y2 Xy2

]
+

+ y2
x y

2
x y

2
x ·
[
−Xy2y2 Y j

y2 + Y j
y2y2 Xy2

]
+

+ y1
xx ·
[
−Xy1 Y j

x + Y j
y1 Xx + y2

x ·
{
−Xy1 Y j

y2 + Y j
y1 Xy2

}]
+

+ y2
xx ·
[
−Xy2 Y j

x + Y j
y2 Xx + y1

x ·
{
−Xy2 Y j

y1 + Y j
y2 Xy1

}]
.

Unfortunately,the above two equations are not solved with respect toy1
xx

and toy2
xx. Consequently, if we abbreviate them as a linear system of the

form

(3.12)

{
0 = A1 + y1

xx · B1
1 + y2

xx · B1
2 ,

0 = A2 + y1
xx · B2

1 + y2
xx · B2

2 ,

we have to solve fory1
xx and fory2

xx by means of the classical rule of Cramer.
Here, it is rather quick to check manually that the determinant of this system
has the following nice expression:

(3.13)





∣∣∣∣
B1

1 B1
2

B2
1 B2

2

∣∣∣∣ = ∆(x|y1|y2) ·
{
Xx + y1

xXy1 + y2
xXy2

}

= ∆(x|y1|y2) ·DX.
However, the complete solving fory1

xx and fory2
xx requires some more time.

After a direct and rather long hand computation (or alternately, using Maple
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or Mathematica) one obtains formulas involving hidden3× 3 determinants,
which have to be guessed by the intuition; the first equation that we obtain,
namely fory1

xx is as follows:

(3.14)

0 = y1
xx ·

∣∣∣∣∣∣

Xx Xy1 Xy2

Y 1
x Y 1

y1 Y 1
y2

Y 2
x Y 2

y1 Y 2
y2

∣∣∣∣∣∣
+

∣∣∣∣∣∣

Xx Xxx Xy2

Y 1
x Y 1

xx Y 1
y2

Y 2
x Y 2

xx Y 2
y2

∣∣∣∣∣∣
+

+ y1
x ·



2

∣∣∣∣∣∣

Xx Xxy1 Xy2

Y 1
x Y 1

xy1 Y 1
y2

Y 2
x Y 2

xy1 Y 2
y2

∣∣∣∣∣∣
−

∣∣∣∣∣∣

Xxx Xy1 Xy2

Y 1
xx Y 1

y1 Y 1
y2

Y 2
xx Y 2

y1 Y 2
y2

∣∣∣∣∣∣



+

+ y2
x ·



2

∣∣∣∣∣∣

Xx Xxy2 Xy2

Y 1
x Y 1

xy2 Y 1
y2

Y 2
x Y 2

xy2 Y 2
y2

∣∣∣∣∣∣



+

+ y1
x y

1
x ·






∣∣∣∣∣∣

Xx Xy1y1 Xy2

Y 1
x Y 1

y1y1 Y 1
y2

Y 2
x Y 2

y1y1 Y 2
y2

∣∣∣∣∣∣
− 2

∣∣∣∣∣∣

Xxy1 Xy1 Xy2

Y 1
xy1 Y 1

y1 Y 1
y2

Y 2
xy1 Y 2

y1 Y 2
y2

∣∣∣∣∣∣




+

+ y1
x y

2
x



2

∣∣∣∣∣∣

Xx Xy1y2 Xy2

Y 1
x Y 1

y1y2 Y 1
y2

Y 2
x Y 2

y1y2 Y 2
y2

∣∣∣∣∣∣
− 2

∣∣∣∣∣∣

Xxy2 Xy1 Xy2

Y 1
xy2 Y 1

y1 Y 1
y2

Y 2
xy2 Y 2

y1 Y 2
y2

∣∣∣∣∣∣



+

+ y2
x y

2
x ·





∣∣∣∣∣∣

Xx Xy2y2 Xy2

Y 1
x Y 1

y2y2 Y 1
y2

Y 2
x Y 2

y2y2 Y 2
y2

∣∣∣∣∣∣



+

+ y1
x y

1
x y

1
x ·




−

∣∣∣∣∣∣

Xy1y1 Xy1 Xy2

Y 1
y1y1 Y 1

y1 Y 1
y2

Y 2
y1y1 Y 2

y1 Y 2
y2

∣∣∣∣∣∣




+ y1
x y

1
x y

2
x ·




−2

∣∣∣∣∣∣

Xy1y2 Xy1 Xy2

Y 1
y1y2 Y 1

y1 Y 1
y2

Y 2
y1y2 Y 2

y1 Y 2
y2

∣∣∣∣∣∣




+

+ y1
x y

2
x y

2
x ·



−

∣∣∣∣∣∣

Xy2y2 Xy1 Xy2

Y 1
y2y2 Y 1

y1 Y 1
y2

Y 2
y2y2 Y 2

y1 Y 2
y2

∣∣∣∣∣∣



 .

This formula and the next have been checked by Sylvain Neut and Michel
Petitot with the help of Maple. We notice that the size is not negligible,
but fortunately, there appears some combinatorics, much more visible than
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in (3.11). The second equation that we obtain, namely fory2
xx, is as follows:

(3.15)

0 = y2
xx ·

∣∣∣∣∣∣

Xx Xy1 Xy2

Y 1
x Y 1

y1 Y 1
y2

Y 2
x Y 2

y1 Y 2
y2

∣∣∣∣∣∣
+

∣∣∣∣∣∣

Xx Xy1 Xxx

Y 1
x Y 1

y1 Y 1
xx

Y 2
x Y 2

y2 Y 2
xx

∣∣∣∣∣∣
+

+ y1
x ·




2

∣∣∣∣∣∣

Xx Xy1 Xxy1

Y 1
x Y 1

y1 Y 1
xy1

Y 2
x Y 2

y1 Y 2
xy1

∣∣∣∣∣∣




+

+ y2
x ·



2

∣∣∣∣∣∣

Xx Xy1 Xxy2

Y 1
x Y 1

y1 Y 1
xy2

Y 2
x Y 2

y1 Y 2
xy2

∣∣∣∣∣∣
−

∣∣∣∣∣∣

Xxx Xy1 Xy2

Y 1
xx Y 1

y1 Y 1
y2

Y 2
xx Y 2

y1 Y 2
y2

∣∣∣∣∣∣



+

+ y1
x y

1
x ·





∣∣∣∣∣∣

Xx Xy1 Xy1y1

Y 1
x Y 1

y1 Y 1
y1y1

Y 2
x Y 2

y1 Y 2
y1y1

∣∣∣∣∣∣



+

+ y1
x y

2
x




2

∣∣∣∣∣∣

Xx Xy1 Xy1y2

Y 1
x Y 1

y1 Y 1
y1y2

Y 2
x Y 2

y1 Y 2
y1y2

∣∣∣∣∣∣
− 2

∣∣∣∣∣∣

Xxy1 Xy1 Xy2

Y 1
xy1 Y 1

y1 Y 1
y2

Y 2
xy1 Y 2

y1 Y 2
y2

∣∣∣∣∣∣




+

+ y2
x y

2
x ·





∣∣∣∣∣∣

Xx Xy1 Xy2y2

Y 1
x Y 1

y1 Y 1
y2y2

Y 2
x Y 2

y1 Y 2
y2y2

∣∣∣∣∣∣
− 2

∣∣∣∣∣∣

Xxy2 Xy1 Xy2

Y 1
xy2 Y 1

y1 Y 1
y2

Y 2
xy2 Y 2

y1 Y 2
y2

∣∣∣∣∣∣



+

+ y1
x y

1
x y

2
x ·




−

∣∣∣∣∣∣

Xy1y1 Xy1 Xy2

Y 1
y1y1 Y 1

y1 Y 1
y2

Y 2
y1y1 Y 2

y1 Y 2
y2

∣∣∣∣∣∣




+ y1
x y

2
x y

2
x ·




−2

∣∣∣∣∣∣

Xy1y2 Xy1 Xy2

Y 1
y1y2 Y 1

y1 Y 1
y2

Y 2
y1y2 Y 2

y1 Y 2
y2

∣∣∣∣∣∣




+

+ y2
x y

2
x y

2
x ·



−

∣∣∣∣∣∣

Xy2y2 Xy1 Xy2

Y 1
y2y2 Y 1

y1 Y 1
y2

Y 2
y2y2 Y 2

y1 Y 2
y2

∣∣∣∣∣∣



 .

Importantly, the obtained formulas seem to be analogous to the for-
mula (2.9), since we observe that the coefficients of the degree three poly-
nomial in theyl

x are modifications of the Jacobian determinant∆(x|y1|y2).
To describe the underlying combinatorics, let us observe that there ex-

ist exactly six possible distinct second order derivatives: xx, xy1, xy2, y1y1,
y1y2 andy2y2. There are also exactly three columns in the Jacobian determi-
nant (3.2). By replacing each of the three columns of first order derivatives
by a column of second order detivatives (leavingX, Y 1 andY 2 unchanged),
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we may build exactly eighteen new determinants

(3.16)






∆(xx|y1|y2) ∆(x|xx|y2) ∆(x|y1|xx)
∆(xy1|y1|y2) ∆(x|xy1|y2) ∆(x|y1|xy1)

∆(xy2|y1|y2) ∆(x|xy2|y2) ∆(x|y1|xy2)

∆(y1y1|y1|y2) ∆(x|y1y1|y2) ∆(x|y1|y1y1)

∆(y1y2|y1|y2) ∆(x|y1y2|y2) ∆(x|y1|y1y2)

∆(y2y2|y1|y2) ∆(x|y2y2|y2) ∆(x|y1|y2y2),

where for instance

(3.17)





∆(y1y2|y1|y2) :=

∣∣∣∣∣∣∣

Xy1y2 Xy1 Xy2

Y 1
y1y2 Y 1

y1 Y 1
y2

Y 2
y1y2 Y 2

y1 Y 2
y2

∣∣∣∣∣∣∣
and

∆(x|y1|xy2) :=

∣∣∣∣∣∣∣

Xx Xy1 Xxy2

Y 1
x Y 1

y1 Y 1
xy2

Y 2
x Y 2

y1 Y 2
xy2

∣∣∣∣∣∣∣
.

Hence, using the∆-notation, we may rewrite the two equation (3.14)
and (3.15) under a more compact form; after division by the Jacobian de-
terminant∆(x|y1|y2), the first equation becomes:
(3.18)



0 = y1
xx +

∆(x|xx|y2)

∆(x|y1|y2)
+ y1

x ·
{

2
∆(x|xy1|y2)

∆(x|y1|y2)
− ∆(xx|y1|y2)

∆(x|y1|y2)

}
+

+ y2
x ·
{

2
∆(x|xy2|y2)

∆(x|y1|y2)

}
+ y1

x y
1
x ·
{

∆(x|y1y1|y2)

∆(x|y1|y2)
− 2

∆(xy1|y1|y2)

∆(x|y1|y2)

}
+

+ y1
x y

2
x ·
{

2
∆(x|y1y2|y2)

∆(x|y1|y2)
− 2

∆(xy2|y1|y2)

∆(x|y1|y2)

}
+ y2

x y
2
x ·
{

∆(x|y2y2|y2)

∆(x|y1|y2)

}
+

+ y1
x y

1
x y

1
x ·
{
−∆(y1y1|y1|y2)

∆(x|y1|y2)

}
+ y1

x y
1
x y

2
x ·
{
−2

∆(y1y2|y1|y2)

∆(x|y1|y2)

}
+

+ y1
x y

2
x y

2
x ·
{
−∆(y2y2|y1|y2)

∆(x|y1|y2)

}
.
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Similarly, the second equation takes the form:
(3.19)



0 = y2
xx +

∆(x|y1|xx)
∆(x|y1|y2)

+ y1
x ·
{

2
∆(x|y1|xy1)

∆(x|y1|y2)

}
+

+ y2
x ·
{

2
∆(x|y1|xy2)

∆(x|y1|y2)
− ∆(xx|y1|y2)

∆(x|y1|y2)

}
+ y1

x y
1
x ·
{

∆(x|y1|y1y1)

∆(x|y1|y2)

}
+

+ y1
x y

2
x ·
{

2
∆(x|y1|y1y2)

∆(x|y1|y2)
− 2

∆(xy1|y1|y2)

∆(x|y1|y2)

}
+

+ y2
x y

2
x ·
{

∆(x|y2|y2y2)

∆(x|y1|y2)
− 2

∆(xy2|y1|y2)

∆(x|y1|y2)

}
+

+ y1
x y

1
x y

2
x ·
{
−∆(y1y1|y1|y2)

∆(x|y1|y2)

}
+ y1

x y
2
x y

2
x ·
{
−2

∆(y1y2|y1|y2)

∆(x|y1|y2)

}
+

+ y2
x y

2
x y

2
x ·
{
−∆(y2y2|y1|y2)

∆(x|y1|y2)

}
.

Since the formulas are still of a consequent size, analogously to what was
achieved in Section 2, we shall introduce a new family ofsquare functionsas
follows. We first index the coordinates(x, y1, . . . , ym) as(y0, y1, . . . , ym),
namely we introduce the notational equivalence

(3.20) y0 ≡ x ,

which will be very convenient in the sequel, especially in order to write gen-
eral formulas. With this convention at hand, our eighteen square functions
�

k1

yl1yl2
, defined for0 6 j1, j2, k1 6 2 are defined by

(3.21)



�
0
xx :=

∆(xx|y1|y2)

∆(x|y1|y2)
�

0
xy1 :=

∆(xy1|y1|y2)

∆(x|y1|y2)
�

0
xy2 :=

∆(xy2|y1|y2)

∆(x|y1|y2)

�0
y1y1 :=

∆(y1y1|y1|y2)

∆(x|y1|y2)
�0

y1y2 :=
∆(y1y2|y1|y2)

∆(x|y1|y2)
�0

y2y2 :=
∆(y2y2|y1|y2)

∆(x|y1|y2)

�1
xx :=

∆(x|xx|y2)

∆(x|y1|y2)
�1

xy1 :=
∆(x|xy1|y2)

∆(x|y1|y2)
�1

xy2 :=
∆(x|xy2|y2)

∆(x|y1|y2)

�
1
y1y1 :=

∆(x|y1y1|y2)

∆(x|y1|y2)
�

1
y1y2 :=

∆(x|y1y2|y2)

∆(x|y1|y2)
�

1
y2y2 :=

∆(x|y2y2|y2)

∆(x|y1|y2)

�2
xx :=

∆(x|y1|xx)

∆(x|y1|y2)
�2

xy1 :=
∆(x|y1|xy1)

∆(x|y1|y2)
�2

xy2 :=
∆(x|y1|xy2)

∆(x|y1|y2)

�2
y1y1 :=

∆(x|y1|y1y1)

∆(x|y1|y2)
�2

y1y2 :=
∆(x|y1|y1y2)

∆(x|y1|y2)
�2

y2y2 :=
∆(x|y1|y2y2)

∆(x|y1|y2)

Obviously, the square functions are symmetric with respectto the lower
indices: �

k1

yl1yl2
= �

k1

yl2yl1
. Here, the upper index designates the column
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upon which the second order derivative appears, itself being encoded by the
two lower indices. Even if this is hidden in the notation, we shall remember
that the square functions are explicit rational expressions in terms of the
second order jet of the transformation(x, y) 7→ (X(x, y), Y (x, y)). At this
point, we may summarize what we have established so far.

Lemma 3.22. The system oftwo second order ordinary differential equa-
tionsy1

xx = F 1(x, y, yx) andy2
xx = F 2(x, y, yx) is equivalent, under a point

transformation, to the flat systemY 1
XX = 0 andY 2

XX = 0 if and only if there
exist three localK-analytic functionsX(x, y), Y 1(x, y) andY 2(x, y) such
that it may be written under the form
(3.23)



0 = y1
xx + �

1
xx + y1

x ·
(
2 �

1
xy1 −�

0
xx

)
+ y2

x ·
(
2 �

1
xy2

)
+

+ y1
x y

1
x ·
(
�

1
y1y1 − 2 �

0
xy1

)
+ y1

xy
2
x ·
(
2 �

1
y1y2 − 2 �

0
xy2

)
+ y2

x y
2
x ·
(
�

1
y2y2

)
+

+ y1
x y

1
x y

1
x ·
(
−�0

y1y1

)
+ y1

x y
1
x y

2
x ·
(
−2 �0

y1y2

)
+ y1

x y
2
x y

2
x ·
(
−�0

y2y2

)
,

0 = y2
xx + �2

xx + y1
x ·
(
2 �2

xy1

)
+ y2

x ·
(
2 �2

xy2 −�0
xx

)
+

+ y1
x y

1
x ·
(
�2

y1y1

)
+ y1

xy
2
x ·
(
2 �2

y1y2 − 2 �0
xy1

)
+ y2

x y
2
x ·
(
�2

y2y2 − 2 �0
xy2

)
+

+ y1
x y

1
x y

2
x ·
(
−�0

y1y1

)
+ y1

x y
2
x y

2
x ·
(
−2 �0

y1y2

)
+ y2

x y
2
x y

2
x ·
(
−�0

y2y2

)
.

3.24. Second Lie prolongation of a vector field.At this point, instead of
proceeding further with the casem = 2, it is now time to pass to the general
casem > 2. First of all, we would like to remind from [GM2003] the
complete explicit expression of the point prolongation to the second order
jet space of a general vector field of the formL = X ∂

∂x
+
∑m

j=1 Y
j ∂

∂yj : it
is a vector field of the form

(3.25) L(2) = X
∂

∂x
+

m∑

j=1

Y j ∂

∂yj
+

m∑

j=1

R
j
1

∂

∂yj
x

+
m∑

j=1

R
j
2

∂

∂yj
xx

,

where the coefficientsRj
1 andR

j
2 are polynomials in the jet space variables

having as coefficients certain specific linear combinationsof first and second
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order derivatives ofX and of theY j :
(3.26)




R
j
1 = Y j

x +
m∑

l1=1

yl1
x ·
[
Y j

yl1
− δj

l1
Xx

]
+

m∑

l1=1

m∑

l2=1

yl1
x y

l2
x ·
[
−δj

l1
Xyl2

]
,

R
j
2 = Y j

xx +
m∑

l1=1

yl1
x ·
[
2 Y j

xyl1
− δj

l1
Xxx

]
+

+
m∑

l1=1

m∑

l2=1

yl1
x y

l2
x ·
[
Y j

yl1yl2
− δj

l1
Xxyl2 − δj

l2
Xxyl1

]
+

+

m∑

l1=1

m∑

l2=1

m∑

l3=1

yl1
x y

l2
x y

l3
x ·
[
−δj

l1
Xyl2yl3

]
+

+

m∑

l1=1

yl1
xx ·
[
Y j

yl1
− 2 δj

l1
Xx

]
+

+

m∑

l1=1

m∑

l2=1

yl1
x y

l2
xx ·
[
−δj

l1
Xyl2 − 2 δj

l2
Xyl1

]
.

However, since the notations in [GM2003] are different and since the general
case ofn > 1 independent variables andm > 1 dependent variables is
considered there, it is certainly easier to reconstiture formulas (3.26) directly
by means of the inductive formulas described in [Ol1986], [BK1989]).

Analogously to the observation made in Section 2, we guess that there
exists a formal correspondence between the terms ofR

j
2 not involvingyl

xx

and the explicit form of the equationyj
xx = F j(x, y, yx) equivalent toY j

XX =
0. In the casem = 2, we claim that this formal correspondence also holds
true. Indeed, it suffices to write formula (3.26) forR

j
2 modulo theyl

xx, which
yields two expressions in total analogy with the two explicit polynomials
appearing in the right-hand side of (3.23):
(3.27)




R1
2 (mod yl

xx) ≡ Y 1
xx + y1

x ·
{
2 Y 1

xy1 −Xxx

}
+ y2

x ·
{
2 Y 1

xy2

}
+ y1

x y
1
x ·
{
Y 1

y1y1 − 2Xxy1

}
+

+ y1
xy

2
x ·
{
2 Y 1

y1y2 − 2Xxy2

}
+ y2

x y
2
x ·
{
Y 1

y2y2

}
+

+ y1
x y

1
x y

1
x · {−Xy1y1}+ y1

x y
1
x y

2
x · {−2Xy1y2}+ y1

x y
2
x y

2
x · {−Xy2y2} ,

R2
2 (mod yl

xx) ≡ Y 2
xx + y1

x ·
{
2 Y 2

xy1

}
+ y2

x ·
{
2 Y 2

xy2 −Xxx

}
+ y1

x y
1
x ·
{
Y 2

y1y1

}
+

+ y1
xy

2
x ·
{
2 Y 2

y1y2 − 2Xxy1

}
+ y2

x y
2
x ·
{
Y 2

y2y2 − 2Xxy2

}
+

+ y1
x y

1
x y

2
x · {−Xy1y1}+ y1

x y
2
x y

2
x · {−2Xy1y2}+ y2

x y
2
x y

2
x · {−Xy2y2} ,

Except for inductive inspiration (seethe formulation of Lemma 3.32 be-
low), this observation will not be used further. At this stage, it helps at least
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to maintain a strong intuitive control of the correctness ofthe underlying
combinatorics.

3.28. System equivalent to the flat system.By induction, we therefore
guess that the analogy holds for generalm > 2, namely we guess the fol-
lowing combinatorics, which requires some preliminaries.

As in the beginning of §3.1, letx ∈ K, let y = (y1, . . . , ym) ∈ Km, let
(x, y) 7→ (X(x, y), Y (x, y)) be a localK-analytic transformation defined in
a neighborhood of the origin inKm+1 and assume that the systemyj

xx =
F j(x, y, yx), j = 1, . . . , m, is equivalent to the flat systemY j

XX = 0, j =
1, . . . , m. By assumption, the Jacobian matrix of the equivalence equals the
identity matrix at the origin. Remind that we identifyx with y0. For all
k1, l1, l2 = 0, . . . , m, we define a modification

(3.29) ∆(x| . . . |k1yl1yl2| . . . |ym)

of the Jacobian determinant as follows. We replace thek1-th column of the
determinant (3.2), which consists of first order derivatives ·yk1 , by a column
which consists of second order derivatives·yl1yl2 . In (3.29), the notation|k1

designates thek1-th column, the first one being labelled byk1 = 0 and the
last one byk1 = m. With this notation at hand, we may define the square
functions

(3.30) �
k1

yl1yl2
:=

∆(x| . . . |k1yl1yl2| . . . |ym)

∆(x| . . . |k1yk1| . . . ym)
,

which are rational expressions in the second order jet of thetransformation
(x, y) 7→ (X(x, y), Y (x, y)). As before, the denominator is the Jacobian
determinant of the change of coordinates.

Since, according to (3.26), the expression ofR
j
2 (mod yl

xx) is
(3.31)



R
j
2 (mod yl

xx) = Y j
xx +

m∑

l1=1

yl1
x ·
[
2 Y j

xyl1
− δj

l1
Xxx

]
+

+

m∑

l1=1

m∑

l2=1

yl1
x y

l2
x ·
[
Y j

yl1yl2
− δj

l1
Xxyl2 − δj

l2
Xxyl1

]
+

+
m∑

l1=1

m∑

l2=1

m∑

l3=1

yl1
x y

l2
x y

l3
x ·
[
−δj

l1
Xyl2yl3

]
,

and since, in the casesm = 1 andm = 2, we have already observed strong
analogies between (3.31) and the complete explicit expression of the system
yj

xx = F j(x, y, yx) equivalent to the flat systemY j
XX = 0, we guess that the

following lemma is formally true.
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Lemma 3.32. The systemyj
xx = F j(x, y, yx), j = 1, . . . , m, is equivalent

to the flat systemY j
XX = 0, j = 1, . . . , m, if and only if there exist local

K-analytic functionsX(x, y) andY j(x, y), j = 1, . . . , m, such that it may
be written under the specific form
(3.33)




0 = yj
xx + �j

xx +

m∑

l1=1

yl1
x ·
[
2 �

j

xyl1
− δj

l1
�0

xx

]
+

+
m∑

l1=1

m∑

l2=1

yl1
x y

l2
x ·
[
�

j

yl1yl2
− δj

l1
�0

xyl2
− δj

l2
�0

xyl1

]
+

+ yj
x

m∑

l1=1

m∑

l2=1

yl1
x y

l2
x ·
[
−�0

yl1yl2

]
.

The complete proof of this lemma involves only linear algebra consid-
erations, although with rather massive terms. This makes itrather lengthy.
Consequently, we postpone it to the final Section 5 below.

3.34. First auxiliary system. Clearly, if we set

(3.35)





Gj := −�j
xx,

Hj
l1

:= −2 �
j

xyl1
+ δj

l1
�0

xx,

Lj
l1,l2

:= −�
j

yl1yl2
+ δj

l1
�0

xyl2 + δj
l2

�0
xyl1 ,

Ml1,l2 := �0
yl1yl2

,

we immediately see that the first condition of Theorem 1.7 holds true. More-
over, we claim that there arem+1 more square functions than functionsGj ,
Hj

l1
, Lj

l1,l2
andMl1,l2. Indeed, taking account of the symmetries, we enumer-

ate:
(3.36)



#{�j
xx} = m, #{�0

xx} = 1,

#{�j

xyl1
} = m2, #{�0

xyl1} = m,

#{�j

yl1yl2
} =

m2(m+ 1)

2
, #{�0

yl1yl2} =
m(m+ 1)

2
,

whereas
(3.37)



#{Gj} = m, #{Hj
l1
} = m2,

#{Lj
l1,l2
} =

m2(m+ 1)

2
, #{Ml1,l2} =

m(m+ 1)

2
.

Similarly as in Section 2, forj, l1, l2 = 0, 1, . . . , m, let us introduce func-
tionsΠj

l1,l2
of (x, y1, . . . , ym), symmetric with respect to the lower indices,
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and let us seek necessary and sufficient conditions in order that there exist
solutions(X, Y ) to thefirst auxiliary systemdefined precisely by:

(3.38)

{
�

0
xx = Π0

0,0, �
0
xyl1 = Π0

0,l1 , �
0
yl1yl2 = Π0

l1,l2,

�
j
xx = Πj

0,0, �
j

xyl1
= Πj

0,l1
, �

j

yl1yl2
= Πj

l1,l2
.

3.39. Compatibility conditions for the first auxiliary system. As in Sec-
tion 2, the compatibility conditions for this system will simply be obtained
by computing the cross differentiations. The following statement general-
izes Lemma 2.31 and also provides a proof of it, in the casem = 1.

Lemma 3.40.For all j, l1, l2, l3 = 0, 1, . . . , m, we have the cross differenti-
ation relations
(3.41)
(
�

j

yl1yl2

)

yl3
−
(
�

j

yl1yl3

)

yl2
= −

m∑

k=0

�k
yl1yl2 · �j

yl3yk +

m∑

k=0

�k
yl1yl3 · �j

yl2yk .

Proof. To begin with, as a preliminary, let us generalize the Plücker iden-
tity (2.28). LetC1, C2, . . . , Cm, D,E be(m+ 2) column vectors inKm and
introduce the following notation for them × (m + 2) matrix consisting of
these vectors:

(3.42) [C1|C2| · · · |Cm|D|E] .

Extracting columns from this matrix, we shall constructm×m determinants
which are modification of the following “fundamental” determinant

(3.43) ||C1| · · · |Cm|| ≡
∣∣∣∣C1| · · · |j1Cj1 | · · · |j2Cj2| · · · |Cm

∣∣∣∣ .

Here and in the sequel, we use a double vertical line in the beginning and in
the end to denote a determinant. Also, we emphasize two distinct columns,
the j1-th and thej2-th, wherej2 > j1, since we will modify them. For
instance in this matrix, let us replace these two columns by the columnD
and by the columnE, which yields the determinant

(3.44)
∣∣∣∣C1| · · · |j1D| · · · |j2E| · · · |Cm

∣∣∣∣ .

In this notation, one should understand thatonly the j1-th and thej2-th
columns are distinct from the columns of the fundamentalm ×m determi-
nant (3.43). With this notation at hand, we can now formulateand prove a
preliminary lemma that will be useful later.
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Lemma 3.45.The following quadratic identity between determinants holds
true:
(3.46)



∣∣∣∣C1| · · · |j1D| · · · |j2E| · · · |Cn

∣∣∣∣ ·
∣∣∣∣C1| · · · |j1Cj1| · · · |j2Cj2| · · · |Cn

∣∣∣∣ =

=
∣∣∣∣C1| · · · |j1D| · · · |j2Cj2| · · · |Cn

∣∣∣∣ ·
∣∣∣∣C1| · · · |j1Cj1| · · · |j2E| · · · |Cn

∣∣∣∣−
−
∣∣∣∣C1| · · · |j1E| · · · |j2Cj2| · · · |Cn

∣∣∣∣ ·
∣∣∣∣C1| · · · |j1Cj1 | · · · |j2D| · · · |Cn

∣∣∣∣ .

Proof. After some permutations of columns, this identity amounts to

(3.47)






||C1| · · · |Cm−2|D|E|| · ||C1| · · · |Cm−2|Cm−1|Cm|| =
= ||C1| · · · |Cm−2|D|Cm|| · ||C1| · · · |Cm−2|Cm−1|E|| −
− ||C1| · · · |Cm−2|E|Cm|| · ||C1| · · · |Cm−2|Cm−1|D|| .

To establish this identity, we introduce some notation. IfA andB are vertical
vectors inKm and if i1, i2 = 1, . . . , m with i1 < i2, we denote

(3.48) ∆2
i1,i2

(A|B) :=

∣∣∣∣
Ai1 Bi1

Ai2 Bi2

∣∣∣∣ .

If ||A1|A2|A3| · · · |Am|| is am×m determinant, and ifi1, i2 = 1, . . . , mwith
i1 < i2, we denote byMm−2

i1,i2
(A3| · · · |Am) the(m−2)×(m−2) determinant

obtained from the matrix[A3| · · · |Am] by erasing thei1-th line and thei2-th
line. Without proof, we recall an elementary classical formula
(3.49)



||A1|A2|A3| · · · |Am|| =
=

∑

16i1<i26m

(−1)i1+i2−1 ∆2
i1,i2

(A1|A2) ·Mm−2
i1,i2

(A3| · · · |Am),

which may be established by developing the determinant
||A1|A2|A3| · · · |Am|| with respect to its first column, and then re-developing
all the obtained(m − 1) × (m − 1) determinants with respect to their first
columns. To establish (3.47), we start with an equivalent version of the
identity (2.28):

(3.50)

{
∆2

i1,i2
(D|E) ·∆2

i3,i4
(C1|C2) = ∆2

i1,i2
(D|C2) ·∆2

i3,i4
(C1|E)−

−∆2
i1,i2

(E|C2) ·∆2
i3,i4

(C1|D),

where 1 6 i1 < i2 6 m and 1 6 i3 < i4 6 m. Multiply-
ing by (−1)i1+i2+i3+i4−2, multiplying by Mm−2

i1,i2
(C3| · · · |Cm), and

multiplying by Mm−2
i3,i4

(C3| · · · |Cm) applying the double summation
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∑
16i1<i26m

∑
16i3<i46m, we get

(3.51)



∑

16i1<i26m

∑

16i3<i46m

(−1)i1+i2+i3+i4−2 ∆2
i1,i2(D|E) ·∆2

i3,i4(C1|C2)·

·Mm−2
i1,i2

(C3| · · · |Cm) ·Mm−2
i3,i4

(C3| · · · |Cm) =

=
∑

16i1<i26m

∑

16i3<i46m

(−1)i1+i2−1 (−1)i3+i4−1
[
∆2

i1,i2
(D|C2) ·∆2

i3,i4
(C1|E)−

−∆2
i1,i2(E|C2) ·∆2

i3,i4(C1|D)
]
·Mm−2

i1,i2
(C3| · · · |Cm) ·Mm−2

i3,i4
(C3| · · · |Cm).

Thanks to the relation (3.49), this last identity coincidesexactly with the
desired identity (3.47). The proof is complete.

We can now establish Lemma 3.40. As a preliminary observation, by the
Leibniz rule for the differentiation of a determinant, we must differentiate
every column:

(3.52)

{[
∆
(
yl1yk1| · · · |ylmykm

)]
yj = ∆

(
yjyl1yk1| · · · |ylmykm

)
+ · · ·+

+ ∆
(
yl1yk1| · · · |yjylmykm

)
.

Using also the rule for the differentiation of a quotient, wemay endeav-

our to compute the cross differentiations
(
�

j

yl1yl2

)
yl3
−
(
�

j

yl1yl3

)
yl2

of the

left-hand side of (3.41). This will generalize (2.25). Sometimes in the com-
putation, we shall abbreviate the Jacobian determinant∆(y0| · · · |ym) using
the shorter notation∆; as before, a product between two elements ofK will



37

often be denoted by the sign “·”, for clarity. Here is the computation:
(3.53)



(
�

j

yl1yl2

)

yl3
−
(
�

j

yl1yl3

)

yl2
=

=
∂

∂yl3

(
∆
(
y0| · · · |jyl1yl2| · · · |ym

)

∆ (y0| · · · |ym)

)
− ∂

∂yl2

(
∆
(
y0| · · · |jyl1yl3| · · · |ym

)

∆ (y0| · · · |ym)

)

=
1

[∆]2




∆
(
y0yl3| · · · |jyl1yl2| · · · |ym

)
·∆ + · · ·+

+ ∆
(
y0| · · · |jyl3yl1yl2| · · · |ym

)
·∆

8a
+ · · ·+

+ ∆
(
y0| · · · |jyl1yl2| · · · |yl3ym

)
·∆−

−∆
(
y0| · · · |jyl1yl2| · · · |ym

)
·
[
∆
(
y0yl3| · · · |ym

)
+ · · ·+

+∆
(
y0| · · · |yl3ym

)]




−

− 1

[∆]2




∆
(
y0yl2| · · · |jyl1yl3| · · · |ym

)
·∆ + · · ·+

+ ∆
(
y0| · · · |jyl2yl1yl3| · · · |ym

)
·∆

8a
+ · · ·+

+ ∆
(
y0| · · · |jyl1yl3| · · · |yl2ym

)
·∆−

−∆
(
y0| · · · |jyl1yl3| · · · |ym

)
·
[
∆
(
y0yl2| · · · |ym

)
+ · · ·+

+∆
(
y0| · · · |yl2ym

)]




.

Crucially, we observe that all the determinants involving athird order de-
rivative upon one of their columns kill each other and disappear: we have
underlined them with8a appended. However, it still remains plenty of de-
terminants involving a second order derivative upon two different columns.
We must transform all of them and express them in terms of determinants
involving a second order derivative upon only one column. Tothis aim, as an
application of our preliminary Lemma 3.45, we have the following relations,
valid for j1, j2, l1, l2, l3, l4 = 0, . . . , m andj1 < j2:
(3.54)




∆
(
y0| · · · |j1yl1yl2| · · · |j2yl3yl4| · · · |ym

)
·∆
(
y0| · · · |j1yj1| · · · |j2yj2| · · · |ym

)
=

= ∆
(
y0| · · · |j1yl1yl2| · · · |j2yj2| · · · |ym

)
·∆
(
y0| · · · |j1yj1| · · · |j2yl3yl4| · · · |ym

)

−∆
(
y0| · · · |j1yl3yl4| · · · |j2yj2| · · · |ym

)
·∆
(
y0| · · · |j1yj1| · · · |j2yl1yl2| · · · |ym

)
.

With these formulas, we may transform the lines number 3, 4, 5and 8, 9, 10
of (3.53). Also, we observe that the lines 6, 7 and 11, 12 of (3.53) involve
determinants having a single second order derivative. Taking account of the

1
[∆]2

factor, we deduce that the lines 6, 7 and 11, 12 of (3.53) may already be
expressed as sums of square functions. Achieving all these transformations,
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we may rewrite (3.53) as follows
(3.55)



(
�

j

yl1yl2

)

yl3
−
(
�

j

yl1yl3

)

yl2
=

=
1

[∆]2




∆
(
y0yl3| · · · |jyj| · · · |ym

)
·∆
(
y0| · · · |jyl1yl2| · · · |ym

)
−

−∆
(
yl1yl2| · · · |jyj| · · · |ym

)
·∆
(
y0| · · · |jy0yl3| · · · |ym

)
+

+ · · ·+
+ ∆

(
y0| · · · |jyl1yl2| · · · |ym

)
·∆
(
y0| · · · |jyj| · · · |yl3ym

)
−

−∆
(
y0| · · · |jyl3ym| · · · |ym

)
·∆
(
y0| · · · |jyj| · · · |yl1yl2

)




−

−
m∑

k=0

�
j

yl1yl2
�k

yl3yk−

− 1

[∆]2




∆
(
y0yl2| · · · |jyj| · · · |ym

)
·∆
(
y0| · · · |jyl1yl3| · · · |ym

)
−

−∆
(
yl1yl3| · · · |jyj| · · · |ym

)
·∆
(
y0| · · · |jy0yl2| · · · |ym

)
+

+ · · ·+
+ ∆

(
y0| · · · |jyl1yl3| · · · |ym

)
·∆
(
y0| · · · |jyj| · · · |yl2ym

)
−

−∆
(
y0| · · · |jyl2ym| · · · |ym

)
·∆
(
y0| · · · |jyj| · · · |yl1yl3

)




+

+

m∑

k=0

�
j

yl1yl3
�k

yl2yk .

Notice that two pairs of “cdots” terms + · · ·+ appearing in the lines 3,
4 and 8, 9 of (3.53) are replaced by a single “cdots” term + · · ·+ in the
lines 4 and 9 of (3.55). Importantly, we point that in the “middle” of the two
“cdots” terms+ · · ·+ appearing in the lines 4 and 10 of (3.55) just above,
there are two terms which do not occur: they simply correspond to the two
underlined terms having8a appended appearing in the lines 4 and 9 (3.53).
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Now, taking account of the factor1
[∆]2

, we can re-express all the terms
of (3.55) as sums of square functions:

(3.56)






(
�

j

yl1yl2

)

yl3
−
(
�

j

yl1yl3

)

yl2
=

=

m∑

k=0; k 6=j

�k
yl3yk �

j

yl1yl2
−

m∑

k=0; k 6=j

�k
yl1yl2 �

j

yl3yk−

−
m∑

k=0

�
j

yl1yl2
�k

yl3yk−

−
m∑

k=0; k 6=j

�k
yl2yk �

j

yl1yl3
+

m∑

k=0; k 6=j

�k
yl1yl3 �

j

yl2yk+

+

m∑

k=0

�
j

yl1yl3
�

k
yl2yk .

Finally, we observe that in the two pairs of sums havingk 6= j appearing
in the lines 2 and 4 just above, we can include the termk = j in each pair,
because these two terms are immediately killed inside the corresponding
pair. In conclusion, after a final obvious killing of four (among six) complete
sums in this modification of (3.56), we obtain the desired formula (3.41),
with two sums. This completes the proof of Lemma 3.40 and alsoat the
same occasion, the proof of Lemma 2.31.

3.57. Compatibility conditions for the first auxiliary system. According
to the (approximate) identities (3.3), taking account of the explicit defini-
tions (3.30) of the square functions, we have

(3.58)

{
�0

xx
∼= Xxx, �0

xyl1
∼= Xxyl1 , �0

yl1yl2
∼= Xyl1yl2 ,

�j
xx
∼= Y j

xx, �
j

xyl1
∼= Y j

xyl1
, �

j

yl1yl2
∼= Y j

yl1yl2
.

Consequently, the first auxiliary system (3.38) looks approximatively like a
complete second order system of partial differential equations in the(m+1)
independent variables(x, y) and in the(m+1) dependent variables(X, Y ).
By means of elementary algebraic operations, one may transform this sys-
tem in a true second ordercompletesystem, solved with respect to the top
order derivatives, namely of the form

(3.59)

{
Xxx = Λ0

0,0, Xxyl1 = Λ0
0,l1
, Xyl1yl2 = Λ0

l1,l2
,

Y j
xx = Λj

0,0, Y j

xyl1
= Λj

0,l1
, Yyl1yl2 = Λj

l1,l2
,

where theΛk1
j1,j2

are localK-analytic functions of(x, yl1, X, Y j , Xx, Xyl1 , Y
j
x , Y

j

yl1
).

For such a system, the compatibility conditions [which are necessary and
sufficient for the existence of a solution(X, Y )] follow by obvious cross
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differentiation. Coming back to the system 3.38, these compatibility
conditions amount to the quadratic-like compatibility conditions expressed
in Lemma 3.40. In conclusion, we have proved the following intermediate
statement.

Proposition 3.60. There exist functionsX, Y j solving the first auxiliary
system(3.38)of nonlinear second order partial differential equationsif and
only if the right-hand side functionsΠj

l1, l2
(x, y) satisfy the quadratic com-

patibility conditions

(3.61)
∂Πj

l1,l2

∂yl3
−
∂Πj

l1,l3

∂yl2
= −

m∑

k=0

Πk
l1,l2 · Π

j
l3,k +

m∑

k=0

Πk
l1,l3 ·Π

j
l2,k,

for j, l1, l2, l3 = 0, 1, . . . , m.

3.62. Principal unknowns. As there are(m+ 1) more square (or Pi) func-
tions than the functionsGj, Hj

l1
, Lj

l1,l2
andMl1,l2 defined by (3.35), we

cannot invert directly the linear system (3.35) (which is ofmaximal rank).
Hence we must choose(m+1) specific square functions, calling themprin-
cipal unknowns, and similarly as in §2.34, the best choice is to choose�0

xx

and�j
xx, for j = 1, . . . , m. For clarity, it will be useful to adopt the nota-

tional equivalences

(3.63) Θ0 ≡ Π0
0,0 and Θj ≡ Πj

j,j.

Then we may quasi-inverse the system (3.35), which yields :
(3.64)




Πj
0,0 = �j

xx = −Gj ,

Πj
0,l1

= �
j

xyl1
= −1

2
Hj

l1
+

1

2
δj
l1

Θ0,

Πj
l1,l2

= �
j

yl1yl2
= −Lj

l1,l2
+

1

2
δj
l1
Ll2

l2,l2
+

1

2
δj
l2
Ll1

l1,l1
+

1

2
δj
l1

Θl2 +
1

2
δj
l2

Θl1 ,

Π0
0,l1 = �0

xyl1 =
1

2
Ll1

l1,l1
+

1

2
Θl1 ,

Π0
l1,l2

= �0
yl1yl2

= Ml1,l2 .

Before replacing these new expressions of the functionsΠj
0,0, Πj

0,l1
, Πj

l1,l2
,

Π0
l1,l2

andΠl1
0,l1

into the compatibility conditions (3.61), it is necessary to
expound first (3.61), taking account of the original splitting of the indices in
the two sets{0} and{1, 2, . . . , m}. This yields six families of compatibility
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conditions, totally equivalent to the compact identities (3.61):
(3.65)



(
Πj

0,0

)
yl1
−
(
Πj

0,l1

)
x

= −Π0
0,0 Πj

l1,0 −
m∑

k=1

Πk
0,0 Πj

l1,k + Π0
0,l1 Πj

0,0 +

m∑

k=1

Πk
0,l1 Πj

0,k,

(
Πj

l1,l2

)
x
−
(
Πj

l1,0

)
yl2

= −Π0
l1,l2 Πj

0,0 −
m∑

k=1

Πk
l1,l2 Πj

0,k + Π0
l1,0 Πj

l2,0 +

m∑

k=1

Πk
l1,0 Πj

l2,k,

(
Πj

l1,l2

)
yl3
−
(
Πj

l1,l3

)
yl2

= −Π0
l1,l2 Πj

l3,0 −
m∑

k=1

Πk
l1,l2 Πj

l3,k + Π0
l1,l3 Πj

l2,0 +
m∑

k=1

Πk
l1,l3 Πj

l2,k,

(
Π0

0,0

)
yl1
−
(
Π0

0,l1

)
x

= −Π0
0,0 Π0

l1,08a
−

m∑

k=1

Πk
0,0 Π0

l1,k + Π0
0,l1 Π0

0,08a
+

m∑

k=1

Πk
0,l1 Π0

0,k,

(
Π0

l1,l2

)
x
−
(
Π0

l1,0

)
yl2

= −Π0
l1,l2 Π0

0,0 −
m∑

k=1

Πk
l1,l2 Π0

0,k + Π0
l1,0 Π0

l2,0 +
m∑

k=1

Πk
l1,0 Π0

l2,k,

(
Π0

l1,l2

)
yl3
−
(
Π0

l1,l3

)
yl2

= −Π0
l1,l2 Π0

l3,0 −
m∑

k=1

Πk
l1,l2 Π0

l3,k + Π0
l1,l3 Π0

l2,0 +
m∑

k=1

Πk
l1,l3 Π0

l2,k.

3.66. Convention about sums.Up to the end of Section 4, we shall abbre-
viate any sum

∑m
k=1 or

∑m
p=1 as

∑
k or

∑
p. Such sums will appear very

frequently. For all other sums, we shall precisely write down the domain of
variation of the summation index.

3.67. Continuation. Thus, we have to replace (3.64) in the six identi-
ties (3.65). Firstly, let us expose all the intermediate steps in dealing with
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the first identity(3.65)1. Replacing plainly (3.64) in(3.65)1, we get:
(3.68)



(
Πj

0,0

)

yl1
−
(
Πj

0,l1

)

x
= Gj

yl1
+

1

2
Hj

l1,x −
1

2
δj
l1

Θ0
x =

=
1

2
Θ0 Hj

l1
− 1

2
δj
l1

Θ0 Θ0−

−
∑

k

(
−Gk

)(
−Lj

l1,k +
1

2
δj
l1

Lk
k,k +

1

2
δj
k Ll1

l1,l1
+

1

2
δj
l1

Θk +
1

2
δj
k Θk

)
+

+

(
1

2
Ll1

l1,l1
+

1

2
Θl1

)(
−Gj

)
+

+
∑

k

(
−1

2
Hk

l1 +
1

2
δk
l1 Θ0

)(
−1

2
Hj

k +
1

2
δj
k Θ0

)
=

=
1

2
Hj

l1
Θ0

8a
− 1

2
δj
l1

Θ0 Θ0 −
∑

k

Gk Lj
l1,k +

1

2
δj
l1

∑

k

Gk Lk
k,k +

1

2
Gj Ll1

l1,l1
8b

+

+
1

2
δj
l1

∑

k

Gk Θk +
1

2
Gj Θl1

8c
− 1

2
Gj Ll1

l1,l1
8b
− 1

2
Gj Θl1

8c
+

1

4

∑

k

Hk
l1 Hj

k−

− 1

4
Hj

l1
Θ0

8a
− 1

4
Hj

l1
Θ0

8a
+

1

4
δj
l1

Θ0 Θ0.

Eliminating the underlined vanishing terms with the letters a, b, c and d
appended, multiplying by−2 and reorganizing the identity so as to put the
termδj

l1
Θ0

x solely in the left-hand side, we obtain the relation
(3.69)



δj
l1

Θ0
x = −2Gj

yl1
+Hj

l1,x + 2
∑

k

Gk Lj
l1,k − δ

j
l1

∑

k

Gk Lk
k,k−

− 1

2

∑

k

Hk
l1
Hj

k − δ
j
l1

∑

k

Gk Θk +
1

2
δj
l1

Θ0 Θ0.

3.70. Conventions for simplifications of formal expressions. Before pro-
ceeding further, let us explain how we will organize the computations with
the formal expressions we shall encounter until the end of Section 4. Our
main goal is to devise a methodology of writing formal computations which
enables to check every computation visually, without being forced to re-
build any intermediate step. In fact, it would be unsatisfactory to just
claim that Theorem 1.7(3) follows by hidden massive formal computations,
so that we have to guide the rigorous and demanding reader until the very
extremal branches of our coral tree of formal computations.

As an example, suppose that we have to simplify the equation0 = Ax +
By +A−B+2C− 1

3
D− 2

3
A+ 1

6
D+E+B− 2C. In the beginning, the

termsAx andBy are differentiated once and they do not simplify with other
terms. To distinguish them, we underline them plainly and wecopy the nine
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remaining terms afterwards:
(3.71)



0 = Ax + By+

+ A
1
−B8a + 2C8b −

1

3
D

2
− 2

3
A

1
+

1

6
D

2
+ E

3
+ B8a − 2C8b .

Here, each remaining term is also underlined, with a number or with a letter
appended. For reasons of typographical readability, we never underline the
sign,+ or− of each term; however, it should be understood thatevery term
always includes its(not underlined)sign. Until the end of Section 4, we shall
use the roman alphabetic lettersa, b, c, etc. inside an octagon8 to exhibit
the vanishing terms. As readily checked by the eyes, we indeed have−B8a+

B8a = 0 and2C8b−2C8b = 0. Also, until the end of Section 4, we shall use
the numbers1, 2, 3, etc. inside a square� to exhibit the remaining terms,
collected in a certain order. The numbers have the followingsignification:
after the simplifications, the equation (3.71) may be written

(3.72)





0 = Ax + By+

+
1

3
A− 1

6
D + E.

Here, the plainly underlined termsAx +By do not count in the numbering
(their number is zero, for instance) andthe first term of the second line1

3
A

correspond to the addition of all terms1 in (3.69). Analogously, the second
term−1

6
D correspond to the addition of all terms2 in (3.69). Again, this

guiding facilitates the checking of the correctness of the computation, using
simply the eyes. No hidden delicate computational step is “left to the reader”
for the convenience of the writer.

This principle will be constantly used until the end of Section 4; it has
been systematically used in [M2004] and it could be applied in various other
contexts. Again, the advantage is that it enables to check the correctness of
all the formal computations just by reading, without havingto write anything
more. This is also useful for the author.

3.73. Choice of an ordering.Until the end of Section 4, we shall have to
deal with termsG, H, L, M , Θ together with indices and partial deriva-
tives up to order two. In order to organize the formal expressions in a way
which provides an easier deciphering, it is convenient to introduce an order
between these differential monomials. In a symbolic index-free notation, we
choose:

(3.74) G < H < L < M < Θ.

It follows for instance thatG < GH < GL < HHL < HLMΘ. Also, if a
sum appears, we choose:GM <

∑
GM .
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Here, we have only considered terms of order zero, without partial differ-
entiation. The first order partial differentiations are(·)x and(·)y, again in
symbolic notation, dropping the indices. We choose:
(3.75)
Gx < Gy < Hx < Hy < Lx < Ly < Mx < My < Θx < Θy < G < · · · .

For second order derivatives, we choose:

(3.76) Gxx < Gxy < Gyy < Hxx < · · · < Θyy < Gx < · · · .
As a final general example including indices we have the inequalities

(3.77) Hj

l1,yl2
< Lj

l1,l2,x < GjMl1,l2 <

m∑

k=1

Gk Ml2,k <

m∑

k=1

H l2
k H

k
l2,l2 ,

extracted from (II) of Theorem 1.7(3).
In the sequel, we shall call

• termsof order0 monomials likeG,H, LM ,GHM ;
• termsof order1 monomials likeGx,GxM , Lx Θ;
• termsof order2 monomials likeGxy,Lyy,Mxx (our terms of order two

will always be linear),

according to the top order partial derivatives.

3.78. A mean of checking intuitively the validity of partial differential
relations. Before replacing (3.64) in the five remaining identities(3.65)2,
(3.65)3, (3.65)4, (3.65)5 and(3.65)6, let us observe that if we assume that
j 6= l1 in (3.69), then all the terms involvingΘ vanish, so that we obtain the
nontrivial partial differential equations:

(3.79) 0 = −2Gj

yl1
+Hj

l1,x + 2
∑

k

Gk Lj
l1,k −

1

2

∑

k

Hk
l1
Hj

k,

for j 6= l1. Here, we have underlined the first order terms plainly, in order
to distinguish them from the terms of order zero. These equations coincides
with (I) of Theorem 1.7(3), again specialized withj 6= l1. Importantly,
we notice that the choice of indicesj 6= l1 is possible only ifm > 2.
Thus, we have deriveda subpart of (I) as a necessary condition for the point
equivalence toY j

XX = 0, j = 1, . . . , m > 2. These first order equations
show at once that there is a strong difference with the casem = 1.

How can we confirm (at least informally) that the functionsGj , Hj
l1

and
Lj

l1,l2
given by (3.35) in terms ofX andY j do indeed satisfy these equations

for j 6= l1? Dropping the zero order terms in (3.79) above, we obtain an
approximated equation

(3.80) 0 ≡ −2Gj

yl1
+Hj

l1,x.
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Here, the sign≡ precisely means: “modulo zero order terms”. We claim
that this approximated equation is a consequence of the existence ofX, Y j .

Indeed, according to the approximation (3.58), together with the defini-
tion (3.35) of the functionsGj andHj

l1
, we have

(3.81)

{
Gj = −�j

xx
∼= −Y j

xx,

Hj
l1

= −2 �
j

xyl1
∼= −2 Y j

xyl1
.

Differentiation of the first line with respect toyl1 and of the second line with
respect tox yields:

(3.82) Gj

yl1
∼= −Y j

xxyl1
and Hj

l1,x
∼= −2 Y j

xyl1x
,

so that we indeed have0 ≡ −2Gj

yl1
+ Hj

l1,x, approximatively and modulo

the derivatives of order0, 1 and2 of the functionsX, Y j .
Similar verifications have been effected constantly in our manuscript in

order to control the truth of the formal computations that weshall expose
until the end of Section 4.

3.83. Continuation. From now on and up to the end of Section 4, the hard-
est computational core of the proof may — at last — be developed. Further
amazing computational obstacles will be encountered.

Replacing plainly (3.64) in(3.65)2, we get:
(3.84)(

Πj
l1,l2

)
x
−
(
Πj

l1,0

)
yl2

= −Lj
l1,l2,x +

1

2
δj
l1

Ll2
l2,l2,x +

1

2
δj
l2

Ll1
l1,l1,x +

1

2
δj
l1

Θl2
x +

+
1

2
δj
l2

Θl1
x +

1

2
Hj

l1,yl2
− 1

2
δj
l1

Θ0
yl2

=

= −Π0
l1,l2 ·Π

j
0,0 −

∑

k

Πk
l1,l2 · Π

j
0,k + Π0

l1,0 ·Πj
l2,0 +

∑

k

Πk
l1,0 ·Πj

l2,k =

= Ml1,l2 Gj −
∑

k

(
−Lk

l1,l2 +
1

2
δk
l1 Ll2

l2,l2
+

1

2
δk
l2 Ll1

l1,l1
+

1

2
δk
l1 Θl2 +

1

2
δk
l2 Θl1

)
·

·
(
−1

2
Hj

k +
1

2
δj
k Θ0

)
+

+

(
1

2
Ll1

l1,l1
+

1

2
Θl1

)
·
(
−1

2
Hj

l2
+

1

2
δj
l2

Θ0

)
+

+
∑

k

(
−1

2
Hk

l1 +
1

2
δk
l1 Θ0

)
·

·
(
−Lj

l2,k +
1

2
δj
l2

Lk
k,k +

1

2
δj
k Ll2

l2,l2
+

1

2
δj
l2

Θk +
1

2
δj
k Θl2

)
.
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Developing the products and ordering each monomial, we get:
(3.85)

= Gj Ml1,l2 1
− 1

2

∑

k

Hj
k Lk

l1,l2

2

+
1

4
Hj

l1
Ll2

l2,l2
8a

+
1

4
Hj

l2
Ll1

l1,l1
8b

+

+
1

4
Hj

l1
Θl2

8c
+

1

4
Hj

l2
Θl1

8d
+

1

2
Lj

l1,l2
Θ0

8e
− 1

4
δj
l1

Ll2
l2,l2

Θ0

8f
−

− 1

4
δj
l2

Ll1
l1,l1

Θ0

8g
− 1

4
δj
l1

Θ0 Θl2

8h
− 1

4
δj
l2

Θ0 Θl1

8i
− 1

4
Hj

l2
Ll1

l1,l1
8b

+

+
1

4
δj
l2

Ll1
l1,l1

Θ0

6
− 1

4
Hj

l2
Θl1

8d
+

1

4
δj
l2

Θ0 Θl1

8i
+

1

2

∑

k

Hk
l1 Lj

l2,k

3

−

− 1

4

∑

k

Hk
l1 Lk

k,k

4

− 1

4
Hj

l1
Ll2

l2,l2
8a
− 1

4
δj
l2

∑

k

Hk
l1 Θk

5

− 1

4
Hj

l1
Θl2

8c
−

− 1

2
Lj

l2,l1
Θ0

8e
+

1

4
δj
l2

Ll1
l1,l1

Θ0

8g
+

1

4
δj
l1

Ll2
l2,l2

Θ0

8f
+

1

4
δj
l2

Θ0 Θl1

7
+

+
1

4
δj
l1

Θ0 Θl2

8h
.

We simplify according to our general principles and we reorganize the equal-
ity between the first two lines of (3.84) and (3.85) so as to putall termsΘx

in the left-hand side of the equality and to put all remainingterms in the
right-hand side, respecting the order of §3.73. We get:

(3.86)

1

2
δj
l1

Θl2
x +

1

2
δj
l2

Θl1
x −

1

2
δj
l1

Θ0
yl2

=

= −1

2
Hj

l1,yl2
+ Lj

l1,l2,x −
1

2
δj
l1
Ll2

l2,l2,x −
1

2
δj
l2
Ll1

l1,l1,x+

+Gj Ml1,l2 −
1

2

∑

k

Hj
k L

k
l1,l2 +

1

2

∑

k

Hk
l1 L

j
l2,k−

− 1

4
δj
l2

∑

k

Hk
l1
Lk

k,k −
1

4
δj
l2

∑

k

Hk
l1

Θk +
1

4
δj
l2
Ll1

l1,l1
Θ0+

+
1

4
δj
l2

Θ0 Θl1 .

Here, we have underlined plainly the four first order terms appearing in the
second line.
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Next, replacing plainly (3.64) in(3.65)3, we get:
(3.87)(

Πj
l1,l2

)
yl3
−
(
Πj

l1,l3

)
yl2

=

= −Lj

l1,l2,yl3
+

1

2
δj
l1

Ll2
l2,l2,yl3

+
1

2
δj
l2

Ll1
l1,l1,yl3

+
1

2
δj
l1

Θl2
yl3

+
1

2
δj
l2

Θl1
yl3

+

+ Lj

l1,l3,yl2
− 1

2
δj
l1

Ll3
l3,l3,yl2

− 1

2
δj
l3

Ll1
l1,l1,yl2

− 1

2
δj
l1

Θl3
yl2
− 1

2
δj
l3

Θl1
yl2

=

= −Π0
l1,l2 ·Π

j
l3,0 −

∑

k

Πk
l1,l2 · Π

j
l3,k + Π0

l1,l3 · Π
j
l2,0 +

∑

k

Πk
l1,l3 ·Π

j
l2,k =

= −Ml1,l2 ·
(
−1

2
Hj

l3
+

1

2
δj
l3

Θ0

)
−
∑

k

(
−Lk

l1,l2 +
1

2
δk
l1 Ll2

l2,l2
+

+
1

2
δk
l2 Ll1

l1,l1
+

1

2
δk
l1 Θl2 +

1

2
δk
l2 Θl1

)
·
(
−Lj

l3,k +
1

2
δj
l3

Lk
k,k+

+
1

2
δj
k Ll3

l3,l3
+

1

2
δj
l3

Θk +
1

2
δj
k Θl3

)
+

+ Ml1,l3 ·
(
−1

2
Hj

l2
+

1

2
δj
l2

Θ0

)
+
∑

k

(
−Lk

l1,l3 +
1

2
δk
l1 Ll3

l3,l3
+

+
1

2
δk
l3 Ll1

l1,l1
+

1

2
δk
l1 Θl3 +

1

2
δk
l3 Θl1

)
·
(
−Lj

l2,k +
1

2
δj
l2

Lk
k,k+

+
1

2
δj
k Ll2

l2,l2
+

1

2
δj
l2

Θk +
1

2
δj
k Θl2

)
.

Developing the products and ordering each monomial, we get:
(3.88)

=
1

2
Hj

l3
Ml1,l2

1
− 1

2
δj
l3

Ml1,l2 Θ0

16
−
∑

k

Lk
l1,l2 Lj

l3,k

6

+
1

2
δj
l3

∑

k

Lk
l1,l2 Lk

k,k

7

+

+
1

2
Lj

l1,l2
Ll3

l3,l3
8a

+
1

2
δj
l3

∑

k

Lk
l1,l2 Θk

13

+
1

2
Lj

l1,l2
Θl3

8b
+

1

2
Ll2

l2,l2
Lj

l3,l1
8c
−

− 1

4
δj
l3

Ll2
l2,l2

Ll1
l1,l1

4
− 1

4
δj
l1

Ll2
l2,l2

Ll3
l3,l3

8d
− 1

4
δj
l3

Ll2
l2,l2

Θl1

8e
− 1

4
δj
l1

Ll2
l2,l2

Θl3

8f
+

+
1

2
Ll1

l1,l1
Lj

l3,l2
8g
− 1

4
δj
l3

Ll1
l1,l1

Ll2
l2,l2

8h
− 1

4
δj
l2

Ll1
l1,l1

Ll3
l3,l3

8i
− 1

4
δj
l3

Ll1
l1,l1

Θl2

8j
−

− 1

4
δj
l2

Ll1
l1,l1

Θl3

8k
+

1

2
Lj

l3,l1
Θl2

8l
− 1

4
δj
l3

Ll1
l1,l1

Θl2

10
− 1

4
δj
l1

Ll3
l3,l3

Θl2

8m
−

− 1

4
δj
l3

Θl2 Θl1

8n
− 1

4
δj
l1

Θl2 Θl3

8o
+

1

2
Lj

l3,l2
Θl1

8p
− 1

4
δj
l3

Ll2
l2,l2

Θl1

12
−

− 1

4
δj
l2

Ll3
l3,l3

Θl1

8q
− 1

4
δj
l3

Θl1 Θl2

18
− 1

4
δj
l2

Θl1 Θl3

8r
−
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− 1

2
Hj

l2
Ml1,l3

2

+
1

2
δj
l2
Ml1,l3 Θ0

15

+
∑

k

Lk
l1,l3

Lj
l2,k

5

− 1

2
δj
l2

∑

k

Lk
l1,l3

Lk
k,k

8

−

− 1

2
Lj

l1,l3
Ll2

l2,l2
8c

− 1

2
δj
l2

∑

k

Lk
l1,l3 Θk

14

− 1

2
Lj

l1,l3
Θl2

8l

− 1

2
Ll3

l3,l3
Lj

l2,l1
8a

+

+
1

4
δj
l2
Ll3

l3,l3
Ll1

l1,l1
3

+
1

4
δj
l1
Ll3

l3,l3
Ll2

l2,l2
8d

+
1

4
δj
l2
Ll3

l3,l3
Θl1

8q

+
1

4
δj
l1
Ll3

l3,l3
Θl2

8m
−

− 1

2
Ll1

l1,l1
Lj

l2,l3
8g

+
1

4
δj
l2
Ll1

l1,l1
Ll3

l3,l3
8i

+
1

4
δj
l3
Ll1

l1,l1
Ll2

l2,l2
8h

+
1

4
δj
l2
Ll1

l1,l1
Θl3

9
+

+
1

4
δj
l3
Ll1

l1,l1
Θl2

8j

− 1

2
Lj

l2,l1
Θl3

8b

+
1

4
δj
l2
Ll1

l1,l1
Θl3

8k

+
1

4
δj
l1
Ll2

l2,l2
Θl3

8f
+

+
1

4
δj
l2

Θl3 Θl1

17
+

1

4
δj
l1

Θl3 Θl2

8o

− 1

2
Lj

l2,l3
Θl1

8p

+
1

4
δj
l2
Ll3

l3,l3
Θl1

11
+

+
1

4
δj
l3
Ll2

l2,l2
Θl1

8e

+
1

4
δj
l2

Θl1 Θl3

8r

+
1

4
δj
l3

Θl1 Θl2

8n

.

We simplify and we reorganize the equality between the second and third
lines of (3.88) and (3.85) so as to put all termsΘy in the left-hand side of
the equality and to put all remaining terms in the right-handside, respecting
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the order of §3.73. We get:
(3.89)
1

2
δj
l1

Θl2
yl3
− 1

2
δj
l1

Θl3
yl2

+
1

2
δj
l2

Θl1
yl3
− 1

2
δj
l3

Θl1
yl2

=

= Lj

l1,l2,yl3
− Lj

l1,l3,yl2
+

1

2
δj
l1
Ll3

l3,l3,yl2
− 1

2
δj
l1
Ll2

l2,l2,yl3
+

+
1

2
δj
l3
Ll1

l1,l1,yl2
− 1

2
δj
l2
Ll1

l1,l1,yl3
+

+
1

2
Hj

l3
Ml1,l2 −

1

2
Hj

l2
Ml1,l3 +

1

4
δj
l2
Ll3

l3,l3
Ll1

l1,l1
− 1

4
δj
l3
Ll2

l2,l2
Ll1

l1,l1
+

+
∑

k

Lk
l1,l3 L

j
l2,k −

∑

k

Lk
l1,l2 L

j
l3,k+

+
1

2
δj
l3

∑

k

Lk
l1,l2

Lk
k,k −

1

2
δj
l2

∑

k

Lk
l1,l3

Lk
k,k+

+
1

4
δj
l2
Ll1

l1,l1
Θl3 − 1

4
δj
l3
Ll1

l1,l1
Θl2 +

1

4
δj
l2
Ll3

l3,l3
Θl1 − 1

4
δj
l3
Ll2

l2,l2
Θl1+

+
1

2
δj
l3

∑

k

Lk
l1,l2

Θk − 1

2
δj
l2

∑

k

Lk
l1,l3

Θk+

+
1

2
δj
l2
Ml1,l3 Θ0 − 1

2
δj
l3
Ml1,l2 Θ0 +

1

4
δj
l2

Θl3 Θl1 − 1

4
δj
l3

Θl2 Θl1.

Next, replacing plainly (3.64) in(3.65)4, we get:
(3.90)(

Π0
0,0

)
yl1
−
(
Π0

0,l1

)
x

=

= Θ0
yl1
− 1

2
Ll1

l1,l1,x −
1

2
Θl1

x =

= −Π0
0,0 ·Π0

l1,08a
−
∑

k

Πk
0,0 ·Π0

l1,k + Π0
0,l1 ·Π

0
0,08a

+
∑

k

Πk
0,l1 · Π

0
0,k =

= −
∑

k

(
−Gk

)
· (Ml1,k) +

∑

k

(
−1

2
Hk

l1 +
1

2
δk
l1 Θ0

)
·

·
(

1

2
Lk

k,k +
1

2
Θk

)
=

=
∑

k

Gk Ml1,k −
1

4

∑

k

Hk
l1 Lk

k,k −
1

4

∑

k

Hk
l1 Θk +

1

4
Ll1

l1,l1
Θ0 +

1

4
Θ0 Θl1 .
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Reorganizing the equality so as to put the termsΘx andΘy alone in the
left-hand side, we get:
(3.91)

−1

2
Θl1

x + Θ0
yl1 =

1

2
Ll1

l1,l1,x+

+
∑

k

Gk Ml1,k −
1

4

∑

k

Hk
l1
Lk

k,k −
1

4

∑

k

Hk
l1

Θk+

+
1

4
Ll1

l1,l1
Θ0 +

1

4
Θ0 Θl1 .

Next, replacing plainly (3.64) in(3.65)5, we get:
(3.92)(

Π0
l1,l2

)
x
−
(
Π0

l1,0

)
yl2

=

= Ml1,l2,x −
1

2
Ll1

l1,l1,yl2
− 1

2
Θl1

yl2
=

= −Πl1,l2 ·Π0
0,0 −

∑

k

Πk
l1,l2 ·Π

0
0,k + Π0

l1,0 ·Π0
l2,0 +

∑

k

Πk
l1,0 · Π0

l2,k =

= −Ml1,l2 Θ0 −
∑

k

(
−Lk

l1,l2 +
1

2
δk
l1 Ll2

l2,l2
+

1

2
δk
l2 Ll1

l1,l1
+

+
1

2
δk
l1 Θl2 +

1

2
δk
l2 Θl1

)
·
(

1

2
Lk

k,k +
1

2
Θk

)
+

+

(
1

2
Ll1

l1,l1
+

1

2
Θl1

)
·
(

1

2
Ll2

l2,l2
+

1

2
Θl2

)
+

+
∑

k

(
−1

2
Hk

l1 +
1

2
δk
l1 Θ0

)
·Ml2,k =

= −Ml1,l2 Θ0

7
+

1

2

∑

k

Lk
l1,l2 Lk

k,k

3

+
1

2

∑

k

Lk
l1,l2 Θk

6

− 1

4
Ll2

l2,l2
Ll1

l1,l1
2
−

− 1

4
Ll2

l2,l2
Θl1

8a
− 1

4
Ll1

l1,l1
Ll2

l2,l2
8b
− 1

4
Ll1

l1,l1
Θl2

8c
− 1

4
Ll1

l1,l1
Θl2

4
−

− 1

4
Θl1 Θl2

8d
− 1

4
Ll2

l2,l2
Θl1

5
− 1

4
Θl1 Θl2

8
+

1

4
Ll1

l1,l1
Ll2

l2,l2
8b

+

+
1

4
Ll1

l1,l1
Θl2

8c
+

1

4
Ll2

l2,l2
Θl1

8a
+

1

4
Θl1 Θl2

8d
− 1

2

∑

k

Hk
l1 Ml2,k

1

+

+
1

2
Ml2,l1 Θ0

7
.
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Multiplying by −2 and reorganizing the equality, we get:

(3.93)

Θl1
yl2

= −Ll1
l1,l1,yl2

+ 2Ml1,l2,x+

+
∑

k

Hk
l1
Ml2,k +

1

2
Ll1

l1,l1
Ll2

l2,l2
−
∑

k

Lk
l1,l2

Lk
k,k+

+
1

2
Ll1

l1,l1
Θl2 +

1

2
Ll2

l2,l2
Θl1 −

∑

k

Lk
l1,l2

Θk+

+Ml1,l2 Θ0 +
1

2
Θl1 Θl2 .

Next, replacing plainly (3.64) in(3.65)4, we get:
(3.94)(

Π0
l1,l2

)
yl3
−
(
Π0

l1,l3

)
yl2

=

= Ml1,l2,yl3 −Ml1,l3,yl2 =

= −Π0
l1,l2 ·Π

0
l3,0 −

∑

k

Πk
l1,l2 · Π

0
l3,k + Π0

l1,l3 · Π
0
l2,0 +

∑

k

Πk
l1,l3 ·Π

0
l2,k =

= −Ml1,l2

(
1

2
Ll3

l3,l3
+

1

2
Θl3

)
−
∑

k

Ml3,k

(
−Lk

l1,l2 +
1

2
δk
l1 Ll2

l2,l2
+

+
1

2
δk
l2 Ll1

l1,l1
+

1

2
δk
l1 Θl2 +

1

2
δk
l2 Θl1

)
+

+ Ml1,l3

(
1

2
Ll2

l2,l2
+

1

2
Θl2

)
+
∑

k

Ml2,k

(
−Lk

l1,l3 +
1

2
δk
l1 Ll3

l3,l3
+

+
1

2
δk
l3 Ll1

l1,l1
+

1

2
δk
l1 Θl3 +

1

2
δk
l3 Θl1

)
.

Developing the products and ordering each monomial, we get:
(3.95)

= −1

2
Ll3

l3,l3
Ml1,l2

8a
− 1

2
Ml1,l2 Θl3

8b
+
∑

k

Lk
l1,l2 Ml3,k

1

− 1

2
Ll2

l2,l2
Ml3,l1

8c
−

− 1

2
Ll1

l1,l1
Ml3,l2

8d
− 1

2
Ml3,l1 Θl2

8e
− 1

2
Ml3,l2 Θl1

8f
+

1

2
Ll2

l2,l2
Ml3,l1

8c
+

+
1

2
Ml1,l3 Θl2

8e
−
∑

k

Lk
l1,l3 Ml2,k

2

+
1

2
Ll3

l3,l3
Ml2,l1

8a
+

1

2
Ll1

l1,l1
Ml2,l3

8d
+

+
1

2
Ml2,l1 Θl3

8b
+

1

2
Ml2,l3 Θl1

8f
.

Simplifying, we obtain the family (IV) in the statement of Theorem 1.7(3):

(3.96) 0 = Ml1,l2,yl3 −Ml1,l3,yl2 −
∑

k

Lk
l1,l2 Ml3,k +

∑

k

Lk
l1,l3 Ml2,k.
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3.97. SolvingΘ0
x, Θ0

yl1
, Θl1

x and Θl1
yl2

. It is now easy to solve all first or-

der partial derivatives of the functionsΘ0 andΘl. Equation (3.93) already
provides the solution forΘl1

yl2
. We state the result as an independent propo-

sition.

Proposition 3.98. As a consequence of the six families of equations(3.69),
(3.86), (3.89), (3.91), (3.93)and (3.96)the first order derivativesΘ0

x, Θ0
yl1

,

Θl1
x andΘl1

yl2
of the principal unknowns are given by:

(3.99)






Θ0
x = −2Gl1

yl1
+H l1

l1,x+

+ 2
∑

k

Gk Ll1
l1,k −

∑

k

Gk Lk
k,k −

1

2

∑

k

Hk
l1 H

l1
k −

−
∑

k

Gk Θk +
1

2
Θ0 Θ0.

(3.100)



Θ0
yl1

=
2

3
Ll1

l1,l1,x −
1

3
H l1

l1,yl1
+

+
2

3
Gl1 Ml1,l1 +

4

3

∑

k

Gk Ml1,k −
1

3

∑

k

H l1
k L

k
l1,l1

+

+
1

3

∑

k

Hk
l1 L

l1
l1,k −

1

2

∑

k

Hk
l1L

k
k,k −

1

2

∑

k

Hk
l1 Θk+

+
1

2
Ll1

l1,l1
Θ0 +

1

2
Θ0 Θl1 .

(3.101)





Θl1
x = −2

3
H l1

l1,yl1
+

1

3
Ll1

l1,l1,x+

+
4

3
Gl1 Ml1,l1 +

2

3

∑

k

Gk Ml1,k −
2

3

∑

k

H l1
k L

k
l1,l1

+

+
2

3

∑

k

Hk
l1 L

l1
l1,k −

1

2

∑

k

Hk
l1 L

k
k,k −

1

2

∑

k

Hk
l1 Θk+

+
1

2
Ll1

l1,l1
Θ0 +

1

2
Θ0 Θl1 .
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(3.102)





Θl1
yl2

= −Ll1
l1,l1,yl2

+ 2Ml1,l2,x+

+
∑

k

Hk
l1
Ml2,k +

1

2
Ll1

l1,l1
Ll2

l2,l2
−
∑

k

Lk
l1,l2

Lk
k,k+

+
1

2
Ll1

l1,l1
Θl2 +

1

2
Ll2

l2,l2
Θl1 −

∑

k

Lk
l1,l2

Θk+

+Ml1,l2 Θ0 +
1

2
Θl1 Θl2.

We notice that the right-hand side of (3.99) should be independent ofl1;
this phenomenon will be explained in a while.

Proof. ForΘ0
x in (3.99), it suffices to putj := l1 in (3.69).

To obtainΘ0
yl1

, we putj := l2 andl2 := l1 in (3.86), which yields:

(3.103)

Θl1
x −

1

2
Θ0

yl1
= −1

2
H l1

l1,yl1
+

+ Gl1 Ml1,l1 −
1

2

∑

k

H l1
k Lk

l1,l1+

+
1

2

∑

k

Hk
l1 Ll1

l1,k −
1

4

∑

k

Hk
l1 Lk

k,k−

− 1

4

∑

k

Hk
l1 Θk +

1

4
Ll1

l1,l1
Θ0 +

1

4
Θ0 Θl1 .

We may easily solveΘ0
yl1

andΘl1
x thanks to this equation (3.103) and thanks

to (3.91): indeed, to obtain (3.100), it suffices to compute4
3
· (3.91) + 2

3
·

(3.103); to obtain (3.101), it suffices to compute2
3
· (3.91) + 4

3
· (3.103).

Finally, (3.102) is a copy of (3.93). This completes the proof.

3.104. Appearance of the crucial four families of first orderpartial dif-
ferential relations (I), (II), (III) and (IV) of Theorem 1.7 (3). However,
in solvingΘ0

x, Θ0
yl1

, Θl1
x andΘl1

yl2
from our six families of equations (3.69),

(3.86), (3.89), (3.91), (3.93) and (3.96), only a subpart ofthese equations has
been used. We notice that the two families of equations (3.91) and (3.93)
have been used completely and that the family of equations (3.96), which
does not involveΘ, coincides precisely with the system (IV) of Theo-
rem 1.7(3). To insure thatΘ0

x, Θ0
yl1

, Θl1
x andΘl1

yl2
as written in Proposi-

tion 3.98 are true solutions, it is necessary and sufficient that they satisfy
the remaining equations. Thus, we have to replace these solutions (3.99),
(3.100), (3.101) and (3.102) in the three remaining families (3.69), (3.86)
and (3.89).

Firstly, let us insert inside (3.69) the value ofΘ0
x given by the equa-

tion (3.99), in which the indexl1 is replaced in advance by an arbitrary
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indexl2. We get:
(3.105)

0 = −2Gj

yl1
+ 2 δj

l1
Gl2

yl2
+ Hj

l1,x − δj
l1

H l2
l2,x+

+ 2
∑

k

Gk Lj
l1,k − 2 δj

l1

∑

k

Gk Ll2
l2,k − δj

l1

∑

k

Gk Lk
k,k

8a

+

+ δj
l1

∑

k

Gk Lk
k,k

8a

− 1

2

∑

k

Hk
l1 Hj

k +
1

2
δj
l1

∑

k

Hk
l2 H l2

k −

− δj
l1

∑

k

Gk Θk

8b

+ δj
l1

∑

k

Gk Θk

8b

+
1

2
δj
l1

Θ0 Θ0

8c
− 1

2
δj
l1

Θ0 Θ0

8c
.

We simplify, which yields the family (I) of partial differential relations of
Theorem 1.7(3):

(3.106)

0 = − 2Gj

yl1
+ 2 δj

l1
Gl2

yl2
+Hj

l1,x − δ
j
l1
H l2

l2,x+

+ 2
∑

k

Gk Lj
l1,k − 2 δj

l1

∑

k

Gk Ll2
l2,k+

− 1

2

∑

k

Hk
l1 H

j
k +

1

2
δj
l1

∑

k

Hk
l2 H

l2
k .

Secondly, let us insert inside (3.86) the values ofΘl1
x , Θl2

x given by (3.101)
and the value ofΘ0

yl1
given by (3.100). We place all the terms in the right-

hand side of the equality and we place the first order terms in the beginning
(first three lines just below). We obtain:
(3.107)

0 = −1

2
Hj

l1,yl2
1

+ Lj
l1,l2,x 4

− 1

2
δj
l1

Ll2
l2,l2,x

5
− 1

2
δj
l1

Ll1
l1,l1,x

6
+

+
1

3
δj
l1

H l2
l2,yl2

2
− 1

6
δj
l1

Ll2
l2,l2,x

5
+

1

3
δj
l2

H l1
l1,yl1

3
− 1

6
δj
l2

Ll1
l1,l1,x

6
+

+
1

3
δj
l1

Ll2
l2,l2,x

5
− 1

6
δj
l1

H l2
l2,yl2

2
+

+ GjMl1,l2 7
− 1

2

∑

k

Hj
k Lk

l1,l2

12

+
1

2

∑

k

Hk
l1 Lj

l2,k

13

− 1

4
δj
l2

∑

k

Hk
l1 Lk

k,k

8a

−

− 1

4
δj
l2

∑

k

Hk
l1 Θk

8b

+
1

4
δj
l2

Ll1
l1,l1

Θ0

8c
+

1

4
δj
l2

Θ0 Θl1

8d
−

− 2

3
δj
l1

Gl2 Ml2,l2
8
− 1

3
δj
l1

∑

k

Gk Ml2,k

10

+
1

3
δj
l1

∑

k

H l2
k Lk

l2,l2

14

− 1

3
δj
l1

∑

k

Hk
l2 Ll2

l2,k

15

+
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+
1

4
δj
l1

∑

k

Hk
l2 Lk

k,k

8e

+
1

4
δj
l1

∑

k

Hk
l2 Θk

8f

− 1

4
δj
l1

Ll2
l2,l2

Θ0

8g
− 1

4
δj
l1

Θ0 Θl2

8h
−

− 2

3
δj
l2

Gl1 Ml1,l1
9
− 1

3
δj
l2

∑

k

Gk Ml1,k

11

+
1

3
δj
l2

∑

k

H l1
k Lk

l1,l1

16

− 1

3
δj
l2

∑

k

Hk
l1 Ll1

l1,k

17

+

+
1

4
δj
l2

∑

k

Hk
l1 Lk

k,k

8a

+
1

4
δj
l2

∑

k

Hk
l1 Θk

8b

− 1

4
δj
l2

Ll1
l1,l1

Θ0

8c
− 1

4
δj
l2

Θ0 Θ0

8d
+

+
1

3
δj
l1

Gl2 Ml2,l2
8

+
2

3
δj
l1

∑

k

Gk Ml2,k

10

− 1

6
δj
l1

∑

k

H l2
k Lk

l2,l2

14

+
1

6
δj
l1

∑

k

Hk
l2 Ll2

l2,k

15

−

− 1

4
δj
l1

∑

k

Hk
l2 Lk

k,k

8e

− 1

4
δj
l1

∑

k

Hk
l2 Θk

8f

+
1

4
δj
l1

Ll2
l2,l2

Θ0

8g
+

1

4
δj
l1

Θ0 Θl2

8h
.

Simplifying and ordering, we obtain the family (II) of partial differential
relations of Theorem 1.7(3):
(3.108)

0 = −1

2
Hj

l1,yl2
+

1

6
δj
l1
H l2

l2,yl2
+

1

3
δj
l2
H l1

l1,yl1
+

+ Lj
l1,l2,x −

1

3
δj
l1
Ll2

l2,l2,x −
2

3
δj
l2
Ll1

l1,l1,x+

+Gj Ml1,l2 −
1

3
δj
l1
Gl2 Ml2,l2 −

2

3
δj
l2
Gl1 Ml1,l1 +

1

3
δj
l1

∑

k

Gk Ml2,k−

− 1

3
δj
l2

∑

k

Gk Ml1,k −
1

2

∑

k

Hj
k L

k
l1,l2

+
1

2

∑

k

Hk
l1
Lj

l2,k+

+
1

6
δj
l1

∑

k

H l2
k L

k
l2,l2
− 1

6
δj
l1

∑

k

Hk
l2
Ll2

l2,k+

+
1

3
δj
l2

∑

k

H l1
k L

k
l1,l1 −

1

3
δj
l2

∑

k

Hk
l1 L

l1
l1,k.

Thirdly, let us insert inside (3.89) the values ofΘl2
yl3

, of Θl3
yl2

, of Θl1
yl3

and

of Θl1
yl2

given by (3.102). We place all the terms in the right-hand side of the
equality and we place the first order terms in the beginning (first four lines
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just below). We obtain:
(3.109)

0 =
1

2
δj
l1

Ll2
l2,l2,yl3

8a
− δj

l1
Ml2,l3,x

8b
+

1

2
δj
l2

Ll1
l1,l1,yl3

8c
− δj

l2
Ml1,l3,x

4
−

− 1

2
δj
l1

Ll3
l3,l3,yl2

8d
+ δj

l1
Ml3,l2,x

8b
− 1

3
δj
l3

Ll1
l1,l1,yl2

8e
+ δj

l3
Ml1,l2,x

3
+

+ Lj

l1,l2,yl3
1
− Lj

l1,l3,yl2
2

+
1

2
δj
l1

Ll3
l3,l3,yl2

8d
− 1

2
δj
l1

Ll2
l2,l2,yl3

8a
+

+
1

3
δj
l3

Ll1
l1,l1,yl2

8e
− 1

2
δj
l2

Ll1
l1,l1,yl3

8c
+

+
1

2
Hj

l3
Ml1,l2

5
− 1

2
Hj

l2
Ml1,l3

6
+

1

4
δj
l2

Ll3
l3,l3

Ll1
l1,l1

8f
− 1

4
δj
l3

Ll2
l2,l2

Ll1
l1,l1

8g
+

+
∑

k

Lk
l1,l3 Lj

l2,k

11

−
∑

k

Lk
l1,l2 Lj

l3,k

12

+

+
1

2
δj
l3

∑

k

Lk
l1,l2 Lk

k,k

8h

− 1

2
δj
l2

∑

k

Lk
l1,l3 Lk

k,k

8i

+

+
1

4
δj
l2

Ll1
l1,l1

Θl3

8j
− 1

4
δj
l3

Ll1
l1,l1

Θl2

8k
+

1

4
δj
l2

Ll3
l3,l3

Θl1

8l
− 1

4
δj
l3

Ll2
l2,l2

Θl1

8m
+

+
1

2
δj
l3

∑

k

Lk
l1,l2 Θk

8n

− 1

2
δj
l2

∑

k

Lk
l1,l3 Θk

8o

+

+
1

2
δj
l2

Ml1,l3 Θ0

8p
− 1

2
δj
l3

Ml1,l2 Θ0

8q
+

1

4
δj
l2

Θl3 Θl1

8r
− 1

4
δj
l3

Θl2 Θl1

8s
−

− 1

2
δj
l1

∑

k

Hk
l2 Ml3,k

8

− 1

4
δj
l1

Ll2
l2,l2

Ll3
l3,l3

8t
+

1

2
δj
l1

∑

k

Ll2,l3 Lk
k,k

8u

−

− 1

4
δj
l1

Ll2
l2,l2

Θl3

8v
− 1

4
δj
l1

Ll3
l3,l3

Θl2

8w
+

1

2
δj
l1

∑

k

Lk
l2,l3 Θk

8x

−

− 1

2
δj
l1

Ml2,l3 Θ0

8y
− 1

4
δj
l1

Θl2 Θl3

8z
−

− 1

2
δj
l2

∑

k

Hk
l1 Ml3,k

10

− 1

4
δj
l2

Ll1
l1,l1

Ll3
l3,l3

8f
+

1

2
δj
l2

∑

k

Lk
l1,l3 Lk

k,k

8i

−

− 1

4
δj
l2

Ll1
l1,l1

Θl3

8j
− 1

4
δj
l2

Ll3
l3,l3

Θl1

8l
+

1

2
δj
l2

∑

k

Lk
l1,l3 Θk

8o

−

− 1

2
δj
l2

Ml1,l3 Θ0

8p
− 1

4
δj
l2

Θl3 Θl1

8r
+
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+
1

2
δj
l1

∑

k

Hk
l3 Ml2,k

7

+
1

4
δj
l1

Ll3
l3,l3

Ll2
l2,l2

8t
− 1

2
δj
l1

∑

k

Ll3,l2 Lk
k,k

8u

+

+
1

4
δj
l1

Ll3
l3,l3

Θl2

8w
+

1

4
δj
l1

Ll2
l2,l2

Θl3

8v
− 1

2
δj
l1

∑

k

Lk
l3,l2 Θk

8x

+

+
1

2
δj
l1

Ml3,l2 Θ0

8y
+

1

4
δj
l1

Θl3 Θl2

8z
+

+
1

2
δj
l3

∑

k

Hk
l1 Ml2,k

9

+
1

4
δj
l3

Ll1
l1,l1

Ll2
l2,l2

8g
− 1

2
δj
l3

∑

k

Lk
l1,l2 Lk

k,k

8h

+

+
1

4
δj
l3

Ll1
l1,l1

Θl2

8k
+

1

4
δj
l3

Ll2
l2,l2

Θl1

8m
− 1

2
δj
l3

∑

k

Lk
l1,l2 Θk

8n

+

+
1

2
δj
l3

Ml1,l2 Θ0

8q
+

1

4
δj
l3

Θl1 Θl2

8s
.

Simplifying and ordering, we obtain the family (III) of partial differential
relations of Theorem 1.7(3):

(3.110)

0 = Lj

l1,l2,yl3
− Lj

l1,l3,yl2
+ δj

l3
Ml1,l2,x − δj

l2
Ml1,l3,x+

+
1

2
Hj

l3
Ml1,l2 −

1

2
Hj

l2
Ml1,l3+

+
1

2
δj
l1

∑

k

Hk
l3
Ml2,k −

1

2
δj
l1

∑

k

Hk
l2
Ml3,k+

+
1

2
δj
l3

∑

k

Hk
l1 Ml2,k −

1

2
δj
l2

∑

k

Hk
l1 Ml3,k+

+
∑

k

Lk
l1,l3

Lj
l2,k −

∑

k

Lk
l1,l2

Lj
l3,k.

3.111. Arguments for the proof of Theorem 1.7 (3): necessityand suffi-
ciency of (I), (II), (III), (IV). Let us summarize the implications that have
been established so far, from the beginning of Section 3. Recall thatm > 2.

• There exist functionsX, Y j of (x, y) transforming the systemyj
xx =

F j(x, y, yx), j = 1, . . . , m, to the free particle systemY j
XX = 0, j =

1, . . . , m.
⇓
• There exist functionsΠj

l1,l2
of (x, y), 0 6 j, l1, l2 6 m, satisfying the

first auxiliary system (3.38) of partial differential equations.
⇓
• There exist (principal unknowns) functionsΘ0, Θj satisfying the six

families of partial differential equations (3.69), (3.86), (3.89), (3.91),
(3.93) and (3.96).
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⇓
• The functionsGj , Hj

l1
, Lj

l1,l2
andMl1,l2 satisfy the four families of

partial differential equations (I), (II), (III) and (IV) ofTheorem 1.7(3).

The four families of first order partial differential equations (3.99),
(3.100), (3.101) and (3.102) satisfied by the principal unknowns will be
called thesecond auxiliary system. It is a complete system.

To achieve the proof of Theorem 1.7(3), we have to establish the reverse
implications. More precisely:

• Some given functionsGj , Hj
l1

, Lj
l1,l2

= Lj
l2,l1

andMl1,l2 = Ml2,l1 of
(x, y) satisfy the four families of partial differential equations (I), (II),
(III) and (IV) of Theorem 1.7(3), or equivalently, the partial differen-
tial equations (3.106), (3.108), (3.110) and (3.96).

⇓
• There exist functionsΘ0, Θj satisfying the second auxiliary sys-

tem (3.99), (3.100), (3.101) and (3.102).
⇓
• These solution functionsΘ0, Θj satisfy the six families of partial dif-

ferential equations (3.69), (3.86), (3.89), (3.91), (3.93) and (3.96).
⇓
• There exist functionsΠj

l1,l2
of (x, y), 0 6 j, l1, l2 6 m, satisfying the

first auxiliary system (3.38) of partial differential equations.
⇓
• There exist functionsX, Y j of (x, y) transforming the systemyj

xx =
F j(x, y, yx), j = 1, . . . , m, to the free particle systemY j

XX = 0, j =
1, . . . , m.

The above last three implications have been already implicitely estab-
lished in the preceding paragraphs, as may be checked by inspecting
Lemma 3.40 and the formal computations after §3.62.

Thus,it remains only to establish the first implication in the above reverse
list. Since the second auxiliary system (3.99), (3.100), (3.101) and (3.102)
is complete and of first order, a necessary and sufficient condition for the
existence of solutions follows by writing out the followingfour families of
cross-differentiations:

(3.112)





0 =
(
Θ0

x

)
yl1
−
(
Θ0

yl1

)
x
,

0 =
(
Θ0

yl1

)

yl2
−
(
Θ0

yl2

)

yl1
,

0 =
(
Θl1

x

)
yl2
−
(
Θl1

yl2

)

x
,

0 =
(
Θl1

yl2

)

yl3
−
(
Θl1

yl3

)

yl2
.
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In the hardest techical part of this paper (Section 4 below),we verify that
these four families of compatibility conditions are a consequence of (I), (II),
(III) and (IV). For reasons of space, we shall in fact only study the first
family of compatibility conditions,i.e. the first line of (3.112). In the our
manuscript, we have treated the remaining three families ofcompatibility
conditions similarly and completely, up to the very end of every branch of
the coral tree of computations. However, we would like to mention that
typesetting the remaining three cases would add at least fifty pages of Latex
to Section 4. Thus, we prefer to expose thoroughly the treatment of the first
family of compatibility conditions, explaining implicitely how to guess the
treatment of the remaining three.

§4. COMPATIBILITY CONDITIONS FOR THE SECOND AUXILIARY

SYSTEM

So, we have to develope the first line of (3.112): we replaceΘ0
x by its

expression (3.99), we differentiate it with respect toyl1, we replaceΘ0
yl1

by
its expression (3.100), we differentiate it with respect tox and we substract.
We get:
(4.1)

0 =
(
Θ0

x

)
yl1
−
(
Θ0

yl1

)
x

= −2Gl1
yl1yl1

+ H l1
l1,xyl1

+

+ 2
∑

k

Gk
yl1

Ll1
l1,k + 2

∑

k

Gk Ll1
l1,k,yl1

−
∑

k

Gk
yl1

Lk
k,k −

∑

k

Gk Lk
k,k,yl1

−

− 1

2

∑

k

Hk
l1,yl1

H l1
k −

1

2

∑

k

Hk
l1 H l1

k,yl1
−
∑

k

Gk
yl1

Θk −
∑

k

Gk Θk
yl1

+

+ Θ0 Θ0
yl1
−

− 2

3
Ll1

l1,l1,xx +
1

3
H l1

l1,yl1x
−

− 2

3
Gl1

x Ml1,l1 −
2

3
Gl1 Ml1,l1,x −

4

3

∑

k

Gk
x Ml1,k −

4

3

∑

k

Gk Ml1,k,x+

+
1

3

∑

k

H l1
k,x Lk

l1,l1 +
1

3

∑

k

H l1
k Lk

l1,l1,x −
1

3

∑

k

Hk
l1,x Ll1

l1,k −
1

3

∑

k

Hk
l1 Ll1

l1,k,x+

+
1

2

∑

k

Hk
l1,x Lk

k,k +
1

2

∑

k

Hk
l1 Lk

k,k,x +
1

2

∑

k

Hk
l1,x Θk +

1

2

∑

k

Hk
l1 Θk

x−

− 1

2
Ll1,l1,x Θ0 − 1

2
Ll1,l1 Θ0

x −
1

2
Θ0

x Θl1 − 1

2
Θ0 Θl1

x .

Here, we underline twice the second order terms. Also, we have under-
lined once the six terms:Θk

yl1
, Θ0

yl1
, Θk

x, Θ0
x, Θ0

x andΘl1
x . They must be
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replaced by their values given in (3.99), (3.100), (3.101) and (3.102). In this
replacement, some double sums appear. As before, we use the first index
k = 1, . . . , m for single summation and then the second indexp = 1, . . . , m
for double summation. Finally, we put all the second order terms in the first
line, not disturbing the order of appearance of the 73 remaining terms. We
get:
(4.2)

0 = −2Gl1
yl1yl1

+
4

3
H l1

l1,xyl1
− 2

3
Ll1

l1,l1,xx+

+ 2
∑

k

Gk
yl1

Ll1
l1,k

4

+ 2
∑

k

Gk Ll1
l1,k,yl1

16

−
∑

k

Gk
yl1

Lk
k,k

5

−
∑

k

Gk Lk
k,k,yl1

8a

−

− 1

2

∑

k

Hk
l1,yl1

H l1
k

10

− 1

2

∑

k

Hk
l1 H l1

k,yl1

11

−
∑

k

Gk
yl1

Θk

8α

+

+
∑

k

Gk Lk
k,k,yl1

8a

− 2
∑

k

Gk Mk,l1,x

18

−
∑

k

∑

p

Gk Hp
k Ml1,p

19

−

− 1

2

∑

k

Gk Lk
k,k Ll1

l1,l1

8b

+
∑

k

∑

p

Gk Lp
k,l1

Lp
p,p

23

− 1

2

∑

k

Gk Lk
k,k Θl1

8c

−

− 1

2

∑

k

Gk Ll1
l1,l1

Θk

8d

+
∑

k

∑

p

Gk Lp
k,l1

Θp

8ε

−
∑

k

Gk Mk,l1 Θ0

8e

− 1

2

∑

k

Gk Θk Θl1

8f

+

+
2

3
Ll1

l1,l1,x Θ0

8g
− 1

3
H l1

l1,yl1
Θ0

8h
+

+
2

3
Gl1 Ml1,l1 Θ0

8i
+

4

3

∑

k

Gk Ml1,k Θ0

8e

− 1

3

∑

k

H l1
k Ll1

l1,l1
Θ0

8j

+
1

3

∑

k

Hk
l1 Ll1

l1,k Θ0

8k

−

− 1

2

∑

k

Hk
l1 Lk

k,k Θ0

8l

− 1

2

∑

k

Hk
l1 Θk Θ0

8m

+
1

2
Ll1

l1,l1
Θ0 Θ0

8n
+

1

2
Θ0 Θ0 Θl1

8o
−

− 2

3
Gl1

x Ml1,l1
1
− 2

3
Gl1 Ml1,l1,x

17
− 4

3

∑

k

Gk
x Ml1,k

2

− 4

3

∑

k

Gk Ml1,k,x

18

+

+
1

3

∑

k

H l1
k,x Lk

l1,l1

9

+
1

3

∑

k

H l1
k Lk

l1,l1,x

14

− 1

3

∑

k

Hk
l1,x Ll1

l1,k

7

− 1

3

∑

k

Hk
l1 Ll1

l1,k,x

13

+

+
1

2

∑

k

Hk
l1,x Lk

k,k

8

+
1

2

∑

k

Hk
l1 Lk

k,k,x

15

+
1

2

∑

k

Hk
l1,x Θk

8γ

−
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− 1

3

∑

k

Hk
l1 Hk

k,yk

12

+
1

6

∑

k

Hk
l1 Lk

k,k,x

15

+
2

3

∑

k

Hk
l1 Gk Mk,k

20

+

+
1

3

∑

k

∑

p

Hk
l1 Gp Mk,p

21

− 1

3

∑

k

∑

p

Hk
l1 Hk

p Lp
k,k

24

+
1

3

∑

k

∑

p

Hk
l1 Hp

k Lk
k,p

25

−

− 1

4

∑

k

∑

p

Hk
l1 Hp

k Lp
p,p

26

− 1

4

∑

k

∑

p

Hk
l1 Hp

k Θp

8η

+
1

4

∑

k

Hk
l1 Lk

k,k Θ0

8l

+

+
1

4

∑

k

Hk
l1 Θ0 Θk

8m

− 1

2
Ll1

l1,l1,x Θ0

8g
+

+ Gl1
yl1

Ll1
l1,l1 3

− 1

2
H l1

l1,x Ll1
l1,l1

6
−

−
∑

k

Gk Ll1
l1,l1

Ll1
l1,k

22

+
1

2

∑

k

Gk Ll1
l1,l1

Lk
k,k

8b

+
1

4

∑

k

Hk
l1 H l1

k Ll1
l1,l1

27

+

+
1

2

∑

k

Gk Ll1
l1,l1

Θk

8d

− 1

4
Ll1

l1,l1
Θ0 Θ0

8n
+

+ Gl1
yl1

Θl1

8β
− 1

2
H l1

l1,x Θl1

8δ
−

−
∑

k

Gk Ll1
l1,k Θl1

8ζ

+
1

2

∑

k

Gk Lk
k,k Θl1

8c

+
1

4

∑

k

Hk
l1 H l1

k Θl1

8θ

+
1

2

∑

k

Gk Θk Θl1

8f

−

− 1

4
Θ0 Θ0 Θl1

8o
+

+
1

3
H l1

l1,yl1
Θ0

8h
− 1

6
Ll1

l1,l1,x Θ0

8g
−

− 2

3
Gl1 Ml1,l1 Θ0

8i
− 1

3

∑

k

Gk Ml1,k Θ0

8e

+
1

3

∑

k

H l1
k Lk

l1,l1 Θ0

8j

− 1

3

∑

k

Hk
l1 Ll1

l1,k Θ0

8k

+

+
1

4

∑

k

Hk
l1 Lk

k,k Θ0

8l

+
1

4

∑

k

Hk
l1 Θ0 Θk

8m

− 1

4
Ll1

l1,l1
Θ0 Θ0

8n
− 1

4
Θ0 Θ0 Θl1

8o
.

As usual, all the terms underlined with the 15 roman alphabetic letters
a, b, . . . , n, o appended vanish evidently. Furthermore, we claim that the
eight terms underlined with the 8 Greek alphabetic lettersα, β, γ, δ, ε, ζ , η
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andθ also vanish:
(4.3)

0 =?= −
∑

k

Gk
yl1

Θk + Gl1
yl1

Θl1 +
1

2

∑

k

Hk
l1,x Θk − 1

2
H l1

l1,x Θl1+

+
∑

k

∑

p

Gk Lp
k,l1

Θp −
∑

k

Gk Ll1
l1,k Θl1 − 1

4

∑

k

∑

p

Hk
l1 Hp

k Θp +
1

4

∑

k

Hk
l1 H l1

k Θl1 .

Indeed, it suffices to observe that this identity coincides with

(4.4) 0 =
1

2

∑

k

Θk
(

(3.106)|j:=k; l1:=l1; l2:=l1

)
.

Simplifying then (4.2), we get the explicit formulation of the first family of
compatibility conditions for the second auxiliary system:

(4.5)

0 =?= 2Gl1
yl1yl1

+
4

3
H l1

l1,xyl1
− 2

3
Ll1

l1,l1,xx−

− 2

3
Gl1

x Ml1,l1 −
4

3

∑

k

Gk
x Ml1,k + Gl1

yl1
Ll1

l1,l1
+

+ 2
∑

k

Gk
yl1

Ll1
l1,k −

∑

k

Gk
yl1

Lk
k,k−

− 1

2
H l1

l1,x Ll1
l1,l1
− 1

3

∑

k

Hk
l1,x Ll1

l1,k +
1

2

∑

k

Hk
l1,x Lk

k,k+

+
1

3

∑

k

H l1
k,x Lk

l1,l1 −
1

2

∑

k

Hk
l1,yl1

H l1
k −

1

2

∑

k

H l1
k,yl1

Hk
l1−

− 1

3

∑

k

Hk
k,yk Hk

l1−
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− 1

3

∑

k

Ll1
l1,k,x Hk

l1 +
1

3

∑

k

Lk
l1,l1,x H l1

k +
2

3

∑

k

Lk
k,k,x Hk

l1+

+ 2
∑

k

Ll1
l1,k,yl1

Gk−

− 2

3
Ml1,l1,x Gl1 − 10

3

∑

k

Mk,l1,x Gk−

−
∑

k

∑

p

Gk Hp
k Ml1,p +

2

3

∑

k

Gk Hk
l1 Mk,k +

1

3

∑

k

∑

p

Gp Hk
l1 Mk,p−

−
∑

k

Gk Ll1
l1,k Ll1

l1,l1
+
∑

k

∑

p

Gk Lp
k,l1

Lp
p,p−

− 1

3

∑

k

∑

p

Hk
l1 Hk

p Lp
k,k +

1

3

∑

k

∑

p

Hk
l1 Hp

k Lk
k,p−

− 1

4

∑

k

∑

p

Hk
l1 Hp

k Lp
p,p +

1

4

∑

k

Hk
l1 H l1

k Ll1
l1,l1

.

We can now state the main technical lemma of this section and of this paper.

Lemma 4.6. The second order partial differential relations(4.5) hold true
for l = 1, . . . , m, and they are a consequence, by differentiations and by
linear combinations, of the fundamental first order partialdifferential equa-
tions(3.106), (3.108), (3.110)and(3.96).

4.7. Reconstitution of the appropriate linear combinations. The remain-
ing of Section 4 is entirely devoted to the proof of this statement. From
the manual computational point of view, the difficulty of thetask is due
to the fact that one has to manipulate formal expressions having from 10
to 50 terms. So the real question is:how can we reconstitute the linear
combinations and the differentiations which lead to the goal (4.5) from the
data(3.106), (3.108), (3.110)and(3.96)?.

The main trick is to first neglect the first order and the zero order terms in
the goal (4.5). Using the symbol “≡” to denote “modulo first order and the
zero order terms”, we formulate the following sub-goal:

(4.8) 0 ≡?≡ −2Gl1
yl1yl1

+
4

3
H l1

l1,xyl1
− 2

3
Ll1

l1,l1,xx,

for l1 = 1, . . . , m. Before estabilishing that these partial differential re-
lations are a consequence of the data (3.106), (3.108), (3.110) and (3.96)
(written with a similar sign≡), let us check that they are a consequence
of the existence of the change of coordinates(x, y) 7→ (X, Y ) (however,
recall that, in establishing the reverse implications of §3.111, we still do
not know that such a change of coordinates really exists); this will confirm
the coherence and the validity of our computations. Importantly, we have
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been able to achieve systematic corrections of our computations by always
checking them alongside with the existence of the change of coordinates
(x, y) 7→ (X, Y ).

Coming back to the definition (3.35) and to the approximation(3.58), we
have:

(4.9)

Gl1 = −�l1
xx
∼= −Y l1

xx,

H l1
l1

= −2�l1
xyl1

+ �
0
xx
∼= −2 Y l1

xyl1
+Xxx,

Ll1
l1,l1

= −�
l1
yl1yl1

+ 2 �0
xyl1
∼= −Y l1

yl1yl1
+ 2Xxyl1 .

Differentiating the first two lines with respect toyl1 and the third line with
respect tox, and replacing the sign∼= by the sign≡ (in a non-rigorous way,
this corresponds essentially to neglecting the derivatives of order0, 1, 2 and
3 of X, Y j and to neglecting the difference between the Jacobian matrix of
the transformation and the identity matrix), we get:

(4.10)

Gl1
yl1yl1

≡ −Y l1
xxyl1yl1

,

H l1
l1,xyl1

≡ −2Y l1
xyl1xyl1

+ Xxxxyl1 ,

Ll1
l1,l1,xx ≡ −Y l1

yl1yl1xx
+ 2Xxyl1xx.

Hence the linear combination−2 · (4.10)1 + 4
3
· (4.10)2 − 2

3
(4.10)3 yields

the desired result:
(4.11)

0 ≡?≡ −2Gl1
yl1yl1

+
4

3
H l1

l1,xyl1
− 2

3
Ll1

l1,l1,xx

≡ 2Y l1
xxyl1yl1

8a
− 8

3
Y l1

xyl1xyl1
8a

+
4

3
Xxxxyl1

8b
+

2

3
Y l1

yl1yl1xx
8a
− 4

3
Xxyl1xx

8b

≡ 0, indeed!

Thanks to this straightforward computation, we guess that the approximate
partial differential relations (4.8) are a consequence of the approximate re-
lations (3.106), (3.108), (3.110) and (3.96), namely:
(4.12)

(3.106)mod : 0 ≡ −2Gj

yl1
+ 2 δj

l1
Gl2

yl2
+Hj

l1,x − δ
j
l1
H l2

l2,x,

(3.108)mod : 0 ≡ −1

2
Hj

l1,yl2
+

1

6
δj
l1
H l2

l2,yl2
+

1

3
δj
l2
H l1

l1,yl1
+

+ Lj
l1,l2,x −

1

3
δj
l1
Ll2

l2,l2,x −
2

3
δj
l2
Ll1

l1,l1,x,

(3.110)mod : 0 ≡ Lj

l1,l2,yl3
− Lj

l1,l3,yl2
+ δj

l3
Ml1,l2,x − δj

l2
Ml1,l3,x,

(3.96)mod : 0 ≡Ml1,l2,yl3 −Ml1,l3,yl2 .
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Here, the sign≡ means “modulo zero order terms”. Before proceding fur-
ther, recall the correspondence between partial differential relations:

(4.13)

(I) = (3.106),

(II) = (3.108),

(III) = (3.110),

(IV) = (3.96).

However, these couples of equivalent identities are written slightly differ-
ently, as may be read by comparison. To fix ideas and to facilitate the eye-
checking of our subsequent computations,we shall only use and refer to the
exact writing of(3.106), of (3.108), of (3.110)and of(3.96).

4.14. Construction of a guide.So we want to show that the approximate re-
lation (4.8) is a consequence, by differentiations and by linear combinations,
of the approximate identities (4.12). The interest of working with approxi-
mate identities is that formal computations are lightened substantially. After
having discovered which linear combinations and which differentiations are
appropriate,i.e. after having constructed a “guide”, in §4.22 below, we shall
write down the complete computations, including all zero order terms, fol-
lowing our guide.

We shall use two indicesl1 and l2 with 1 6 l1, l2 6 m and, crucially,
l2 6= l1. Again, the assumptionm > 2 is used strongly.

Firstly, put j := l1 in (3.106)mod with l2 6= l1 and differentiate with
respect toyl1:

(4.15) 0 ≡ −2Gl1
yl1yl1

+ 2Gl2
yl2yl1

+ H l1
l1,xyl1

−H l2
l2,xyl1

.

Secondly, putj := l2 in (3.106)mod with l1 6= l2 and differentiate with
respect toyl2:

(4.16) 0 ≡ −2Gl2
yl1yl2

+ H l2
l1,xyl2

.

Thirdly, putj := l2 in (3.108)mod with l1 6= l2 and differentiate with respect
to x:

(4.17) 0 ≡ −1

2
H l2

l1,yl2x
+

1

3
H l1

l1,yl1x
+ Ll2

l1,l2,xx −
2

3
Ll1

l1,l1,xx.

Fourthly, putj := l1 in (3.108)mod with l2 6= l1 and differentiate with respect
to x:

(4.18) 0 ≡ −1

2
H l1

l1,yl2x
+

1

6
H l2

l2,yl2x
+ Ll1

l1,l2,xx −
1

3
Ll2

l2,l2,xx.

Fithly, permute the indices(l1, l2) 7→ (l2, l1):

(4.19) 0 ≡ −1

2
H l2

l2,yl1x
+

1

6
H l1

l1,yl1x
+ Ll2

l2,l1,xx −
1

3
Ll1

l1,l1,xx.
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Finally, compute the linear combination(4.15)+(4.16)+2·(4.17)−2·(4.19):

(4.20)

0 ≡ −2Gl1
yl1yl1

1
+ 2Gl2

yl1yl2
8a

+ H l1
l1,xyl1

2
−H l2

l2,xyl1
8b
−

− 2Gl2
yl1yl2

8a
+ H l2

l1,xyl2
8c
−

−H l2
l1,xyl2

8c
+

2

3
H l1

l1,l1,xyl1
2

+ 2Ll2
l1,l2,xx8d

− 4

3
Ll1

l1,l1,xx
3

+

+ H l2
l2,xyl1

8b
− 1

3
H l1

l1,xyl1
2
− 2Ll2

l2,l1,xx8d
+

2

3
Ll1

l1,l1,xx
3

.

We indeed get the desired approximate identity:

(4.21) 0 ≡ −2Gl1
yl1yl1

+
4

3
H l1

l1,xyl1
− 2

3
Ll1

l1,l1,xx.

4.22. Complete computation.Now that the guide is constructed, we can
achieve the complete computations.

Firstly, putj := l1 in (3.106) with l2 6= l1 and differentiate with respect
to yl1:
(4.23)
0 ≡ −2Gl1

yl1yl1
+ 2Gl2

yl2yl1
+ H l1

l1,xyl1
−H l2

l2,xyl1
+

+ 2
∑

k

Gk
yl1

Ll1
l1,k + 2

∑

k

Gk Ll1
l1,k,yl1

− 2
∑

k

Gk
yl1

Ll2
l2,k − 2

∑

k

Gk Ll2
l2,k,yl1

−

− 1

2

∑

k

Hk
l1,yl1

H l1
k −

1

2

∑

k

Hk
l1 H l1

k,yl1
+

1

2

∑

k

Hk
l2,yl1

H l2
k +

1

2

∑

k

Hk
l2 H l2

k,yl1
.

Secondly, putj := l2 in (3.106) with l1 6= l2 and differentiate with respect
to yl2:
(4.24)
0 ≡ −2Gl2

yl1yl2
+ H l2

l1,xyl2
+

2
∑

k

Gk
yl2

Ll2
l1,k + 2

∑

k

Gk Ll2
l1,k,yl2

− 1

2

∑

k

Hk
l1,yl2

H l2
k −

1

2

∑

k

Hk
l1 H l2

k,yl2
.
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Thirdly, put j := l2 in (3.108) with l1 6= l2 and differentiate with respect to
x:
(4.25)

0 ≡ −1

2
H l2

l1,yl2x
+

1

3
H l1

l1,yl1x
+ Ll2

l1,l2,xx −
2

3
Ll1

l1,l1,xx+

+ Gl2
x Ml1,l2 + Gl2

x Ml1,l2,x −
2

3
Gl1

x Ml1,l1 −
2

3
Gl1 Ml1,l1,x−

− 1

3

∑

k

Gk
x Ml1,k −

1

3

∑

k

Gk Ml1,k,x −
1

2

∑

k

H l2
k,x Lk

l1,l2 −
1

2

∑

k

H l2
k Lk

l1,l2,x+

+
1

2

∑

k

Hk
l1,x Ll2

l2,k +
1

2

∑

k

Hk
l1 Ll2

l2,k,x +
1

3

∑

k

H l1
k,x Lk

l1,l1 +
1

3

∑

k

H l1
k Lk

l1,l1,x−

− 1

3

∑

k

Hk
l1,x Ll1

l1,k −
1

3

∑

k

Hk
l1 Ll1

l1,k,x.

Fourthly, putj := l1 in (3.108) with l2 6= l1, differentiate with respect tox
and permute the indices(l1, l2) 7→ (l2, l1):
(4.26)

0 ≡ −1

2
H l2

l2,yl1x
+

1

6
H l1

l1,yl1x
+ Ll2

l2,l1,xx −
1

3
Ll1

l1,l1,xx+

+ Gl2
x Ml2,l1 + Gl2 Ml2,l1,x −

1

3
Gl1

x Ml1,l1 −
1

3
Gl1 Ml1,l1,x+

+
1

3

∑

k

Gk
x Ml1,k +

1

3

∑

k

Gk Ml1,k,x −
1

2

∑

k

H l2
k,x Lk

l2,l1 −
1

2

∑

k

H l2
k Lk

l2,l1,x+

+
1

2

∑

k

Hk
l2,x Ll2

l1,k +
1

2

∑

k

Hk
l2 Ll2

l1,k,x +
1

6

∑

k

H l1
k,x Lk

l1,l1 +
1

6

∑

k

H l1
k Lk

l1,l1,x−

− 1

6

∑

k

Hk
l1,x Ll1

l1,k −
1

6

∑

k

Hk
l1 Ll1

l1,k,x.
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Finally, compute the linear combination(4.23)+(4.24)+2·(4.25)−2·(4.26):
(4.27)

0 = −2Gl1
yl1yl1

+
4

3
H l1

l1,xyl1
− 2

3
Ll1

l1,l1,xx−

− 2

3
Gl1

x Ml1,l1 −
4

3

∑

k

Gk
x Ml1,k+

+ 2
∑

k

Gk
yl1

Ll1
l1,k − 2

∑

k

Gk
yl1

Ll2
l2,k + 2

∑

k

Gk
yl2

Ll2
l1,k+

+
∑

k

Hk
l1,x Ll2

l2,k +
1

3

∑

k

H l1
k,x Lk

l1,l1 −
1

3

∑

k

Hk
l1,x Ll1

l1,k −
∑

k

Hk
l2,x Ll2

l1,k+

+
1

2

∑

k

Hk
l2,yl1

H l2
k +

1

2

∑

k

H l2
k,yl1

Hk
l2 −

1

2

∑

k

Hk
l1,yl1

H l1
k −

− 1

2

∑

k

Hk
l1 H l1

k,yl1
− 1

2

∑

k

Hk
l1,yl2

H l1
k −

1

2

∑

k

Hk
l1 H l2

k,yl2
+

+
∑

k

Ll2
l2,k,x Hk

l1 +
1

3

∑

k

Lk
l1,l1,x H l1

k −
1

3

∑

k

Ll1
l1,k,x Hk

l1 −
∑

k

Ll2
l1,k,x Hk

l2+

+ 2
∑

k

Ll1
l1,k,yl1

Gk + 2
∑

k

Ll2
l1,k,yl2

Gk − 2
∑

k

Ll2
l2,k,yl1

Gk−

− 2

3
Ml1,l1,x Gl1 − 4

3

∑

k

Ml1,k,x Gk.

In this partial differential relation, importantly, the second order terms are
exactly the same as in our goal (4.5). Unfortunately, the first order and the
zero order terms are not the same.

4.28. Formulation of a new goal.Thus, in order to get rid of the second or-
der expression2Gl1

yl1yl1
+ 4

3
H l1

l1,xyl1
− 2

3
Ll1

l1,l1,xx, we substract:(4.5)−(4.27).
In the result, we write the first order terms in a certain way, adapted in ad-
vance to our subsequent computations. For this substraction yielding (4.29)
just below, we have not underlined the terms in (4.5) and in (4.27). How-
ever, they may be underlined with a pencil to check that the result (4.29) is
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correct. We get:
(4.29)
0 =?=

= −
∑

k

Gk
yl1

Lk
k,k + Gl1

yl1
Ll1

l1,l1
+

1

2

∑

k

Hk
l1,x Lk

k,k −
1

2
H l1

l1,x Ll1
l1,l1

+

+ 2
∑

k

Gk
yl1

Ll2
l2,k −

∑

k

Hk
l1,x Ll2

l2,k−

− 2
∑

k

Gk
yl2

Ll2
l1,k +

∑

k

Hk
l2,x Ll2

l1,k+

+
1

2

∑

k

H l2
k,yl2

Hk
l1 −

1

3

∑

k

Hk
k,yk Hk

l1 −
∑

k

Ll2
l2,k,x Hk

l1 +
2

3

∑

k

Lk
k,k,x Hk

l1−

− 1

2

∑

k

H l2
k,yl1

Hk
l2 +

∑

k

Ll2
l1,k,x Hk

l2+

+
1

2

∑

k

Hk
l1,yl2

H l2
k −

1

2

∑

k

Hk
l2,yl1

H l2
k +

+ 2
∑

k

Ll2
l2,k,yl1

Gk − 2
∑

k

Ll2
l1,k,yl2

Gk − 2
∑

k

Mk,l1,x Gk−

−
∑

k

∑

p

Gk Hp
k Ml1,p +

2

3

∑

k

Gk Hk
l1 Mk,k +

1

3

∑

k

∑

p

Gp Hk
l1 Mk,p−

−
∑

k

Gk Ll1
l1,l1

Ll1
l1,k +

∑

k

∑

p

Gk Lp
k,l1

Lp
p,p −

1

3

∑

k

∑

p

Hk
l1 Hk

p Lp
k,k+

+
1

3

∑

k

∑

p

Hk
l1 Hp

k Lk
k,p −

1

4

∑

k

∑

p

Hk
l1 Hp

k Lp
p,p +

1

4

∑

k

Hk
l1 H l1

k Ll1
l1,l1

.

We have underlined plainly the first order terms appearing inlines1, 2, 3, 4,
5, 6 and7.

4.30. Reconstitution of the subgoal(4.29)from (3.106), from (3.108)and
from (3.110). Now, it suffices to establish that the first order partial differ-
ential relations (4.29) for1 6 l1, l2 6 m andl2 6= l1 (crucial assumption)
are a consequence of (3.106), of (3.108) and of (3.110) by linear combina-
tions. The auxiliary indexl2, which is absent in the goal (4.5), will disappear
at the end. Differentiations will not be applied anymore. Also, the partial
differential relations (3.96), which were not used above, will neither be used
in the sequel. However, they are strongly used in the treatment of the re-
maining three compatibility conditions(3.112)2, (3.112)3 and(3.112)4, the
detail of which we do not copy in the typesetted paper. Finally, the construc-
tion of a guide for the subgoal (4.29) may be guessed similarly as in §4.14
above. We shall provide the final computations directly, without any guide:
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they consists of thesevenpartial differential relations (4.32), (4.33), (4.35),
(4.37), (4.39), (4.43) and (4.45) below. At the end, we shallmake the ad-
dition (4.47) below, producing the desired subgoal (4.29) := (4.32) + (4.33)
+ (4.35) + (4.37) + (4.39) + (4.43) + (4.45), with the numerotation of terms
corresponding to the order of appearance of the terms of (4.29), as usual.

Firstly, putj := k, l1 := l1 andl2 := l1 in (3.106):
(4.31)
0 = −2Gk

yl1
+ 2 δk

l1 Gl1
yl1

+ Hk
l1,x − δk

l1 H l1
l1,x+

+ 2
∑

p

Gp Lk
l1,p − 2 δk

l1

∑

p

Gp Ll1
l1,p −

1

2

∑

p

Hp
l1

Hk
p +

1

2
δk
l1

∑

p

Hp
l1

H l1
p .

Apply the operator1
2

∑
k L

k
k,k(·) to the preceding equality, namely compute

1
2

∑
k L

k
k,k · (4.31). This yields:

(4.32)

0 = −
∑

k

Gk
yl1

Lk
k,k + Gl1

yl1
+

1

2

∑

k

Hk
l1,x Lk

k,k −
1

2
H l1

l1,x Ll1
l1,l1

+

+
∑

k

∑

p

Gp Lk
k,k Lk

l1,p −
∑

p

Gp Ll1
l1,l1

Lk
l1,p −

1

4

∑

k

∑

p

Hp
l1

Hk
p Lk

k,k+

+
1

4

∑

p

Hp
l1

H l1
p Ll1

l1,l1
.

Secondly, apply the operator−
∑

k L
l2
l2,k(·) to (4.32), namely compute

−∑k L
l2
l2,k · (4.32). This yields:

(4.33)
0 = 2

∑

k

Gk
yl1

Ll2
l2,k − 2Gl1

yl1
Ll2

l2,l1
−
∑

k

Hk
l1,x Ll2

l2,k + H l1
l1,x Ll2

l2,l1
−

− 2
∑

k

∑

p

Gp Ll2
l2,k Lk

l1,p + 2
∑

p

Gp Ll2
l2,l1

Ll1
l1,p +

1

2

∑

k

∑

p

Hp
l1

Hk
p Ll2

l2,k−

− 1

2

∑

p

Hp
l1

H l1
p Ll2

l2,l1
.

Thirdly, putj := k, l1 := l2 andl2 := l1 with l2 6= l1 in (3.106):
(4.34)
0 = −2Gk

yl2
+ 2 δk

l2 Gl1
yl1

+ Hk
l2,x − δk

l2 H l1
l1,x+

+ 2
∑

p

Gp Lk
l2,p − 2 δk

l2

∑

p

Gp Ll1
l1,p −

1

2

∑

p

Hp
l2

Hk
p +

1

2
δk
l2

∑

p

Hp
l1

H l1
p .
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Next, apply the operator
∑

k L
l2
l1,k(·) to (4.34), namely compute

∑
k L

l2
l1,k ·

(4.34). This yields:
(4.35)
0 = −2

∑

k

Gk
yl2

Ll2
l1,k + 2Gl1

yl1
Ll2

l1,l2
+
∑

k

Hk
l2,x Ll2

l1,k −H l1
l1,x Ll2

l1,l2
+

+ 2
∑

k

∑

p

Gp Lk
l2,p Ll2

l1,k − 2
∑

p

Gp Ll1
l1,p Ll2

l1,l2
− 1

2

∑

k

∑

p

Hp
l2

Hk
p Ll2

l1,k+

+
1

2

∑

p

Hp
l1

H l1
p Ll2

l1,l2
.

Fourthly, putj := l2, l1 := k andl2 := l2 in (3.108):
(4.36)

0 = −1

2
H l2

k,yl2
+

1

6
δl2
k H l2

l2,yl2
+

1

3
Hk

k,yk + Ll2
k,l2,x−

− 1

3
δk
l2 Ll2

l2,l2,x −
2

3
Lk

k,k,x+

+ Gl2 Mk,l2 −
1

3
δk
l2 Gl2 Ml2,l2 −

2

3
Gk Mk,k +

1

3
δl2
k

∑

p

Gp Ml2,p−

− 1

3

∑

p

Gp Mk,p −
1

2

∑

p

H l2
p Lp

k,l2
+

1

2

∑

p

Hp
k Ll2

l2,p +
1

6
δl2
k

∑

p

H l2
p Lp

l2,l2
−

− 1

6
δl2
k

∑

p

Hp
l2

Ll2
l2,p +

1

3

∑

p

Hk
p Lp

k,k −
1

3

∑

p

Hp
k Lk

k,p.

Next, apply the operator−
∑

k H
k
l1
(·) to (4.36), namely compute−

∑
k H

k
l1
·

(4.36). This yields:
(4.37)

0 =
1

2

∑

k

H l2
k,yl2

Hk
l1 −

1

6
H l2

l2,yl2
H l2

l1
− 1

3

∑

k

Hk
k,yk Hk

l1−

−
∑

k

Ll2
k,l2,x Hk

l1 +
1

3
Ll2

l2,l2,x H l2
l1

+
2

3

∑

k

Lk
k,k,x Hk

l1−

−
∑

k

Gl2 Hk
l1 Mk,l2 +

1

3
Gl2 H l2

l1
Ml2,l2 +

2

3

∑

k

Gk Hk
l1 Mk,k−

− 1

3

∑

p

Gp H l2
l1

Ml2,p +
1

3

∑

k

∑

p

GpHk
l1 Mk,p +

1

2

∑

k

∑

p

Hk
l1 H l2

p Lp
k,l2
−

− 1

2

∑

k

∑

p

Hk
l1 Hp

k Ll2
l2,p −

1

6

∑

p

H l2
l1

H l2
p Lp

l2,l2
+

1

6

∑

p

H l2
l1

Hp
l2

Ll2
l2,p−

− 1

3

∑

k

∑

p

Hk
l1 Hk

p Lp
k,k +

1

3

∑

k

∑

p

Hk
l1 Hp

k Lk
k,p.
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Fithly, putj := l2, l1 := k andl2 := l1 in (3.108):
(4.38)

0 = −1

2
H l2

k,yl1
+

1

6
δl2
k H l1

l1,yl1
+ Ll2

k,l1,x −
1

3
δl2
k Ll1

l1,l1,x+

+ Gl2 Mk,l1 −
1

3
δl2
k Gl1 Ml1,l1 +

1

3
δl2
k

∑

p

Gp Ml1,p −
1

2

∑

p

H l2
p Lp

k,l1
+

+
1

2

∑

p

Hp
k Ll2

l1,p +
1

6
δl2
k

∑

p

H l1
p Lp

l1,l1
− 1

6
δl2
k

∑

p

Hp
l1

Ll1
l1,p.

Next, apply the operator
∑

k H
k
l2
(·) to (4.38), namely compute

∑
k H

k
l2
·

(4.38). This yields:
(4.39)

0 = −1

2

∑

k

H l2
k,yl1

Hk
l2 +

1

6
H l1

l1,yl1
H l2

l2
+
∑

k

Ll2
k,l1,x Hk

l2−

− 1

3
Ll1

l1,l1,x H l2
l2

+

+
∑

k

Gl2 Hk
l2 Mk,l1 −

1

3
Gl1 H l2

l2
Ml1,l1 +

1

3

∑

p

Gp H l2
l2

Ml1,p−

− 1

2

∑

k

∑

p

Hk
l2 H l2

p Lp
k,l1

+
1

2

∑

k

∑

p

Hk
l2 Hp

k Ll2
l1,p +

1

6

∑

p

H l2
l2

H l1
p Lp

l1,l1
−

− 1

6

∑

p

H l2
l2

Hp
l1

Ll1
l1,p.

Sixthly, we form the expression:

(4.40) (3.108)|j:=k; l1:=l1; l2:=l2
− (3.108)|j:=k; l1:=l2; l2:=l1

.
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Writing term by term the substractions, we get:
(4.41)

0 = −1

2
Hk

l1,yl2
1

+
1

2
Hk

l2,yl1
2

+
1

6
δk
l1 H l2

l2,yl2
3
− 1

6
δk
l2 H l1

l1,yl1
4

+

+
1

3
δk
l2 H l1

l1,yl1
4
− 1

3
δk
l1 H l2

l2,yl2
3

+ Lk
l1,l2,x8a

− Lk
l2,l1,x8a

−

− 1

3
δk
l1 Ll2

l2,l2,x
5

+
1

3
δk
l2 Ll1

l1,l1,x
6
− 2

3
δk
l2 Ll1

l1,l1,x
6

+
2

3
δk
l1 Ll2

l2,l2,x
5

+

+ Gk Ml1,l28b
−Gk Ml2,l18b

− 1

3
δk
l1 Gl2 Ml2,l2

7
+

1

3
δk
l2 Gl1 Ml1,l1

8
−

− 2

3
δk
l2 Gl1 Ml1,l1

8
+

2

3
δk
l1 Gl2 Ml2,l2

7
+

1

3
δk
l1

∑

p

Gp Ml2,p

9

− 1

3
δk
l2

∑

p

Gp Ml1,p

10

−

− 1

3
δk
l2

∑

p

Gp Ml1,p

10

+
1

3
δk
l1

∑

p

Gp Ml2,p

9

− 1

2

∑

p

Hk
p Lp

l1,l2

8c

+
1

2

∑

p

Hk
p Lp

l2,l1

8c

+

+
1

2

∑

p

Hp
l1

Lk
l2,p

11

− 1

2

∑

p

Hp
l2

Lk
l1,p

12

+
1

6
δk
l1

∑

p

H l2
p Lp

l2,l2

13

− 1

6
δk
l2

∑

p

H l1
p Lp

l1,l1

14

−

− 1

6
δk
l1

∑

p

Hp
l2

Ll2
l2,p

15

+
1

6
δk
l2

∑

p

Hp
l1

Ll1
l1,p

16

+
1

3
δk
l2

∑

p

H l1
p Lp

l1,l1

14

−

− 1

3
δk
l1

∑

p

H l2
p Lp

l2,l2

13

− 1

3
δk
l2

∑

p

Hp
l1

Ll1
l1,p

16

+
1

3
δk
l1

∑

p

Hp
l2

Ll2
l2,p

15

.

Simplifying, we get:
(4.42)

0 = −1

2
Hk

l1,yl2
+

1

2
Hk

l2,yl1
− 1

6
δk
l1 H l2

l2,yl2
+

1

6
δk
l2 H l1

l1,yl1
+

+
1

3
δk
l1 Ll2

l2,l2,x −
1

3
δk
l2 Ll1

l1,l1,x+

+
1

3
δk
l1 Gl2 Ml2,l2 −

1

3
δk
l2 Gl1 Ml1,l1 +

2

3
δk
l1

∑

p

Gp Ml2,p −
2

3
δk
l2

∑

p

Gp Ml1,p+

+
1

2

∑

p

Hp
l1

Lk
l2,p −

1

2

∑

p

Hp
l2

Lk
l1,p −

1

6
δk
l1

∑

p

H l2
p Lp

l2,l2
+

1

6
δk
l2

∑

p

H l1
p Lp

l1,l1
+

+
1

6
δk
l1

∑

p

Hp
l2

Ll2
l2,p −

1

6
δk
l2

∑

p

Hp
l1

Ll1
l1,p.
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Next, apply the operator−∑k H
l2
k (·) to (4.42), namely compute

−∑k H
l2
k · (4.42). This yields:

(4.43)

0 =
1

2

∑

k

Hk
l1,yl2

H l2
k −

1

2

∑

k

Hk
l2,yl1

H l2
k +

1

6
H l2

l2,yl2
H l2

l1
−

− 1

6
H l1

l1,yl1
H l2

l2
− 1

3
Ll2

l2,l2,x H l2
l1

+
1

3
Ll1

l1,l1,x H l2
l2
−

− 1

3
Gl2 H l2

l1
Ml2,l2 +

1

3
Gl1 H l2

l2
Ml1,l1 −

2

3

∑

p

Gp H l2
l1

Ml2,p+

+
2

3

∑

p

Gp H l2
l2

Ml1,p −
1

2

∑

k

∑

p

H l2
k Hp

l1
Lk

l2,p +
1

2

∑

k

∑

p

H l2
k Hp

l2
Lk

l1,p+

+
1

6

∑

p

H l2
l1

H l2
p Lp

l2,l2
− 1

6

∑

p

H l2
l2

H l1
p Lp

l1,l1
− 1

6

∑

p

H l2
l1

Hp
l2

Ll2
l2,p+

+
1

6

∑

p

H l2
l2

Hp
l1

Ll1
l1,p.

Seventhly, putj := l2, l1 := k, l2 := l2 andl3 := l1 in (3.108):
(4.44)
0 = Ll2

k,l2,yl1
− Ll2

k,l1,yl2
−Mk,l1,x+

+
1

2
H l2

l1
Mk,l2 −

1

2
H l2

l2
Mk,l1 +

1

2
δl2
k

∑

p

Hp
l1

Ml2,p −
1

2
δl2
k

∑

p

Hp
l2

Ml1,p−

− 1

2

∑

p

Hp
k Ml1,p +

∑

p

Lp
k,l1

Ll2
l2,p −

∑

p

Lp
k,l2

Ll2
l1,p,

and then apply the operator2
∑

k G
k(·):

(4.45)
0 = 2

∑

k

Ll2
k,l2,yl1

Gk − 2
∑

k

Ll2
k,l1,yl2

Gk − 2
∑

k

Mk,l1,x Gk+

+
∑

k

Gk H l2
l1

Ml1,l2 −
∑

k

Gk H l2
l2

Mk,l1 +
∑

p

Gl2 Hp
l1

Ml2,p−

−
∑

p

Gl2 Hp
l2

Ml1,p −
∑

k

∑

p

Gk Hp
k Ml1,p + 2

∑

k

∑

p

Gk Lp
k,l1

Ll2
l2,p−

− 2
∑

k

∑

p

Gk Lp
k,l2

Ll2
l1,p.

Finally, achieve the addition

(4.46) (4.32) + (4.33) + (4.35) + (4.37) + (4.39) + (4.43) + (4.45).

We copy these seven formal expression, we underline the vanishing terms
and we number the remaining terms so as to respect the order ofappearance
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of the terms of the subgoal (4.29):
(4.47)

0 = −
∑

k

Gk
yl1

Lk
k,k

1

+ Gl1
yl1

2
+

1

2

∑

k

Hk
l1,x Lk

k,k

3

− 1

2
H l1

l1,x Ll1
l1,l1

4
+

+
∑

k

∑

p

Gp Lk
k,k Lk

l1,p

24

−
∑

p

Gp Ll1
l1,l1

Lk
l1,p

23

− 1

4

∑

k

∑

p

Hp
l1

Hk
p Lk

k,k

27

+

+
1

4

∑

p

Hp
l1

H l1
p Ll1

l1,l1

28

+

+ 2
∑

k

Gk
yl1

Ll2
l2,k

5

− 2Gl1
yl1

Ll2
l2,l18a

−
∑

k

Hk
l1,x Ll2

l2,k

6

+ H l1
l1,x Ll2

l2,l18b
−

− 2
∑

k

∑

p

Gp Ll2
l2,k Lk

l1,p

8g

+ 2
∑

p

Gp Ll2
l2,l1

Ll1
l1,p

8h

+
1

2

∑

k

∑

p

Hp
l1

Hk
p Ll2

l2,k

8i

−

− 1

2

∑

p

Hp
l1

H l1
p Ll2

l2,l1

8j

−

− 2
∑

k

Gk
yl2

Ll2
l1,k

7

+ 2Gl1
yl1

Ll2
l1,l28a

+
∑

k

Hk
l2,x Ll2

l1,k

8

−H l1
l1,x Ll2

l1,l28b
+

+ 2
∑

k

∑

p

Gp Lk
l2,p Ll2

l1,k

8k

− 2
∑

p

Gp Ll1
l1,p Ll2

l1,l2

8h

− 1

2

∑

k

∑

p

Hp
l2

Hk
p Ll2

l1,k

8l

+

+
1

2

∑

p

Hp
l1

H l1
p Ll2

l1,l2

8j

+
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+
1

2

∑

k

H l2
k,yl2

Hk
l1

9

− 1

6
H l2

l2,yl2
H l2

l1
8c
− 1

3

∑

k

Hk
k,yk Hk

l1

10

−

−
∑

k

Ll2
k,l2,x Hk

l1

11

+
1

3
Ll2

l2,l2,x H l2
l1

8d
+

2

3

∑

k

Lk
k,k,x Hk

l1

12

−

−
∑

k

Gl2 Hk
l1 Mk,l2

8m

+
1

3
Gl2 H l2

l1
Ml2,l2

8n
+

2

3

∑

k

Gk Hk
l1 Mk,k

21

−

− 1

3

∑

p

Gp H l2
l1

Ml2,p

8o

+
1

3

∑

k

∑

p

GpHk
l1 Mk,p

22

+
1

2

∑

k

∑

p

Hk
l1 H l2

p Lp
k,l2

8p

−

− 1

2

∑

k

∑

p

Hk
l1 Hp

k Ll2
l2,p

8i

− 1

6

∑

p

H l2
l1

H l2
p Lp

l2,l2

8q

+
1

6

∑

p

H l2
l1

Hp
l2

Ll2
l2,p

8r

−

− 1

3

∑

k

∑

p

Hk
l1 Hk

p Lp
k,k

25

+
1

3

∑

k

∑

p

Hk
l1 Hp

k Lk
k,p

26

−

− 1

2

∑

k

H l2
k,yl1

Hk
l2

13

+
1

6
H l1

l1,yl1
H l2

l2
8e

+
∑

k

Ll2
k,l1,xH

k
l2

14

−

− 1

3
Ll1

l1,l1,xH
l2
l2

8f

+

+
∑

k

Gl2 Hk
l2 Mk,l1

8s

− 1

3
Gl1 H l2

l2
Ml1,l1

8t

+
1

3

∑

p

Gp H l2
l2
Ml1,p

8u

−

− 1

2

∑

k

∑

p

Hk
l2 H

l2
p L

p
k,l1

8v

+
1

2

∑

k

∑

p

Hk
l2 H

p
k L

l2
l1,p

8l

+
1

6

∑

p

H l2
l2
H l1

p L
p
l1,l1

8w

−

− 1

6

∑

p

H l2
l2
Hp

l1
Ll1

l1,p

8x

+
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+
1

2

∑

k

Hk
l1,yl2

H l2
k

15

− 1

2

∑

k

Hk
l2,yl1

H l2
k

16

+
1

6
H l2

l2,yl2
H l2

l1
8c
−

− 1

6
H l1

l1,yl1
H l2

l2
8e
− 1

3
Ll2

l2,l2,x H l2
l1

8d
+

1

3
Ll1

l1,l1,x H l2
l2

8f
−

− 1

3
Gl2 H l2

l1
Ml2,l2

8n
+

1

3
Gl1 H l2

l2
Ml1,l1

8t
− 2

3

∑

p

Gp H l2
l1

Ml2,p

8o

+

+
2

3

∑

p

Gp H l2
l2

Ml1,p

8u

− 1

2

∑

k

∑

p

H l2
k Hp

l1
Lk

l2,p

8p

+
1

2

∑

k

∑

p

H l2
k Hp

l2
Lk

l1,p

8v

+

+
1

6

∑

p

H l2
l1

H l2
p Lp

l2,l2

8q

− 1

6

∑

p

H l2
l2

H l1
p Lp

l1,l1

8w

− 1

6

∑

p

H l2
l1

Hp
l2

Ll2
l2,p

8r

+

+
1

6

∑

p

H l2
l2

Hp
l1

Ll1
l1,p

8x

+

+ 2
∑

k

Ll2
k,l2,yl1

Gk

17

− 2
∑

k

Ll2
k,l1,yl2

Gk

18

− 2
∑

k

Mk,l1,x Gk

19

+

+
∑

k

Gk H l2
l1

Ml1,l2

8o

−
∑

k

Gk H l2
l2

Mk,l1

8u

+
∑

p

Gl2 Hp
l1

Ml2,p

8m

−

−
∑

p

Gl2 Hp
l2

Ml1,p

8s

−
∑

k

∑

p

Gk Hp
k Ml1,p

20

+ 2
∑

k

∑

p

Gk Lp
k,l1

Ll2
l2,p

8g

−

− 2
∑

k

∑

p

Gk Lp
k,l2

Ll2
l1,p

8k

.

In conclusion, there is exact coincidence with the subgoal (4.29). The
proof that the first family(3.112)1 of compatibility conditions of the second
auxiliary system (3.99), (3.100), (3.101) and (3.102) are aconsequence of
(I), (II), (III) and (IV) of Theorem 1.7(3) is complete. Granted that the
treatment of the other three families of compatibility conditions (3.112)2,
(3.112)3 and(3.112)4 is similar (and as well painful), we consider that the
proof of the equivalence between(1) and (3) in Theorem 1.7 is complete,
now.

§5. GENERAL FORM OF THE POINT TRANSFORMATION

OF THE FREE PARTICLE SYSTEM

This section is devoted to the exposition of a complete proofof
Lemma 3.32. To start with, we must develope the fundamental equa-
tions (3.10), forj = 1, . . . , m. Recalling that the total differentiation
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operator is given byD = ∂
∂x

+
∑m

l1=1 y
l1
x · ∂

∂yl1
+
∑m

l1=1 y
l1
xx · ∂

∂y
l1
x

, we

compute first
(5.1)



DDX = D

[
Xx +

m∑

l1=1

yl1
x ·Xyl1

]

= Xxx + 2

m∑

l1=1

yl1
x ·Xxyl1 +

m∑

l1=1

m∑

l2=1

yl1
x y

l2
x ·Xyl1yl2 +

m∑

l1=1

yl1
xx ·Xyl1 ,

and
(5.2)



DDY j = D

[
Y j

x +

m∑

l1=1

yl1
x · Y j

yl1

]

= Y j
xx + 2

m∑

l1=1

yl1
x · Y j

xyl1
+

m∑

l1=1

m∑

l2=1

yl1
x y

l2
x · Y j

yl1yl2
+

m∑

l1=1

yl1
xx · Y j

yl1
.

Now, we can develope the equation0 = −DY j · DDX + DX · DDY j ,
which yields

(5.3)

0 = −
[
Y j

x +

m∑

l1=1

yl1
x · Y j

yl1

]
·
[
Xxx + 2

m∑

l1=1

yl1
x ·Xxyl1+

+

m∑

l1=1

m∑

l2=1

yl1
x y

l2
x ·Xyl1yl2 +

m∑

l1=1

yl1
xx ·Xyl1

]
+

+

[
Xx +

m∑

l1=1

yl1
x ·Xyl1

]
·
[
Y j

xx + 2
m∑

l1=1

yl1
x · Y j

xyl1
+

+

m∑

l1=1

m∑

l2=1

yl1
x y

l2
x · Y j

yl1yl2
+

m∑

l1=1

yl1
xx · Y j

yl1

]
=
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= −Xxx Y
j
x + Y j

xxXx+

+
m∑

l1=1

yl1
x ·
[
−2Xxyl1 Y

j
x + 2 Y j

xyl1
Xx−

−Xxx Y
j

yl1
+ Y j

xxXyl1

]
+

+
m∑

l1=1

m∑

l2=1

yl1
x y

l2
x ·
[
−Xyl1yl2 Y

j
x + Y j

yl1yl2
Xx−

−2Xxyl2 Y
j

yl1
+ 2 Y j

xyl2
Xyl1

]
+

+

m∑

l1=1

m∑

l2=1

m∑

l3=1

yl1
x y

l2
x y

l3
x ·
[
−Xyl2yl3 Y

j

yl1
+ Y j

yl2yl3
Xyl1

]
+

+
m∑

l1=1

yl1
xx ·
[
−Xyl1 Y

j
x + Y j

yl1
Xx

]
+

+
m∑

l1=1

m∑

l2=1

yl1
xx y

l2
x ·
[
−Xyl1 Y

j

yl2
+ Y j

yl1
Xyl2

]
.

The goal is to show that after solving thesem equations forj = 1, . . . , m
with respect to theyl

xx, l = 1, . . . , m, one obtains the expression (3.33) of
Lemma 3.32, or equivalently, using the∆ notation instead of the square
notation, one obtains

(5.4)





0 = yj
xx ·∆

(
x|y1| · · · |ym

)
+ ∆

(
x|y1| · · · |jxx| · · · |ym

)
+

+

m∑

l1=1

yl1
x ·
[
2 ∆

(
x|y1| · · · |jxyl1| · · · |ym

)
−

−δj
l1

∆
(
xx|y1| · · · |ym

)]
+

+
m∑

l1=1

m∑

l2=1

yl1
x y

l2
x ·
[
∆
(
x|y1| · · · |jyl1yl2| · · · |ym

)
−

−2 δj
l1

∆
(
xyl2 |y1| · · · |ym

)]
+

+
m∑

l1=1

m∑

l2=1

m∑

l3=1

yl1
x y

l2
x y

l3
x

[
−δj

l1
∆
(
yl2yl3|y1| · · · |ym

)]
.

Unfortunately, the equations (5.3) are not solved with respect to theyj
xx,

because in its last line, we notice that theyl2
xx are mixed with theyl1

x . Conse-
quently, we have to solve a linear system ofm equations with the unknowns
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yj
xx of the form

(5.5){
0 = Aj +

m∑

l1=1

yl1
xx ·
[
−Xyl1 Y

j
x + Y j

yl1
Xx +

m∑

l2=1

yl2
x ·
[
−Xyl1 Y

j

yl2
+ Y j

yl1
Xyl2

]
,

]
,

for j = 1, . . . , m, whereAj is an abbreviation for the terms appearing in
the lines 5, 6, 7, 8, 9 and 10 of (5.3), or even more compactly, changing the
indexj to the indexk

(5.6)

{
0 = Ak +

m∑

l1=1

yl1
xx · Bk

l1
,

for k = 1, . . . , m, whereBk
l1

is an abbreviation for the terms in the brackets
in (5.5).

Thanks to the assumption that the determinant (3.2) is the identity de-
terminant at(x, y) = (0, 0), we deduce that the determinant of them ×m
matrix(Bk

l1
)16k6m
16l16m is also the identity determinant at(x, y, yx) = (0, 0, 0). It

follows that the determinant of them×m matrix (Bk
l1
)16k6m
16l16m is nonvanish-

ing in a neighborhood of the origin in the first order jet space. Consequently,
we can apply the rule of Cramer to solve theyj

xx explicitely interms of the
Ak and of theBk

l1
as follows

(5.7)





yj
xx = −

∣∣∣∣∣∣

B1
1 · · · A1 · · · B1

m

· · · · · · · · · · · · · · ·
Bm

1 · · · Am · · · Bm
m

∣∣∣∣∣∣
∣∣∣∣∣∣

B1
1 · · · B1 · · · B1

m

· · · · · · · · · · · · · · ·
Bm

1 · · · Bm · · · Bm
m

∣∣∣∣∣∣

where on the numerator, the only modification of the determinant of the ma-
trix (Bk

l1
)16k6m
16l16m is the replacement of itsj-th column by the column vector

A. We have to show that after replacing theAk and theBk
l1

by their complete
expressions, one indeed obtains the desired equation (5.4). As in (3.43), we
shall introduce a notation for the twom×m determinants appearing in (5.6):
we write this quotient under the form

(5.8)

{
yj

xx = −
∣∣∣∣Bk

1 | · · · |jAk| · · · |Bk
m

∣∣∣∣
∣∣∣∣Bk

1 | · · · |jBk
j | · · · |Bk

m

∣∣∣∣ ,

where it is understood thatBk
1 , . . . , B

k
j , . . . , B

k
m andAk are column vectors

whose indexk (for their lines) varies from1 to m. This representation of
determinants emphasizing only its columns will be appropriate for later ma-
nipulations.
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Our first task is to compute the determinant in the denominator of (5.8).
Recalling that we make the notational identificationy0 ≡ x, it will be con-
venient to reexpress theBk

l1
in a slightly compacter form, using the total

differentiation operatorD:
(5.9)




Bk
l1 = −Xyl1 Y

k
x + Y k

yl1 Xx +

m∑

l2=1

yl2
x ·
[
−Xyl1 Y

k
yl2 + Y k

yl1 Xyl2

]
=

= Y k
yl1 ·DX −Xyl1 ·DY k.

Lemma 5.10. We have the following expression for the determinant of the
matrix (Bk

l1
)16k6m
16l16m:

(5.11)

{ ∣∣∣∣Y k
y1 ·DX −Xy1 ·DY k| · · · |Y k

ym ·DX −Xym ·DY k
∣∣∣∣ =

= [DX]m−1 ·∆
(
x|y1| · · · |ym

)
.

Proof. By multilinearity, we may develope the determinant writtenin the
first line of (5.11). Since it contains two terms in each columns, we should
obtain a sum of2m determinants. However, since the obtained determinants
vanish as soon as the columnDY k (multiplied by various factorsXyl) ap-
pears at least two different places, it remains only(m + 1) nonvanishing
determinants, those for which the columnDY k appears at most once:
(5.12)



∣∣∣∣Y k
y1 ·DX −Xy1 ·DY k| · · · |Y k

ym ·DX −Xym ·DY k
∣∣∣∣ =

= [DX]m ·
∣∣∣∣Y k

y1 | · · · |Y k
ym

∣∣∣∣− [DX]m−1Xy1 ·
∣∣∣∣DY k|Y k

y2| · · · |Y k
ym

∣∣∣∣− · · ·−
− [DX]m−1Xym ·

∣∣∣∣Y k
y1| · · · |Y k

ym−1|DY k
∣∣∣∣ .

To establish the desired expression appearing in the secondline of (5.11),
we factor out by[DX]m−1 and we develope all the remaining total differen-
tiation operatorsD. Sincey0 ≡ x, we havey0

x = 1, and this enables us to
contractXx +

∑m
l1
yl1

x Xyl1 as
∑m

l1=0 y
l1
x Xyl1 . So, we achieve the following
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computation (further explanations and comments just afterwards):
(5.13)



= [DX]m−1 ·
{

m∑

l1=0

yl1
x Xyl1 ·

∣∣∣∣Y k
y1 | · · · |Y k

ym

∣∣∣∣−

−
m∑

l1=0

yl1
x Xy1 ·

∣∣∣
∣∣∣Y k

yl1 |Y k
y2| · · · |Y k

ym

∣∣∣
∣∣∣−

− · · · −
m∑

l1=0

yl1
x Xym ·

∣∣∣
∣∣∣Y k

y1 | · · · |Y k
ym−1 |Y k

yl1

∣∣∣
∣∣∣
}

= [DX]m−1 ·
{

m∑

l1=0

yl1
x Xyl1 ·

∣∣∣∣Y k
y1 | · · · |Y k

ym

∣∣∣∣−Xy1 ·
∣∣∣∣Y k

x |Y k
y2 | · · · |Y k

ym

∣∣∣∣−

−y1
xXy1 ·

∣∣∣∣Y k
y1 |Y k

y2| · · · |Y k
ym

∣∣∣∣− · · ·−
−Xym ·

∣∣∣∣Y k
y1 | · · · |Y k

ym−1 |Y k
x

∣∣∣∣− ym
x Xym ·

∣∣∣∣Y k
y1| · · · |Y k

ym−1|Y k
ym

∣∣∣∣}

= [DX]m−1 ·
{
Xx ·

∣∣∣∣Y k
y1 | · · · |Y k

ym

∣∣∣∣−Xy1 ·
∣∣∣∣Y k

x |Y k
y2 | · · · |Y k

ym

∣∣∣∣− · · ·−
−Xym ·

∣∣∣∣Y k
y1 | · · · |Y k

ym−1 |Y k
x

∣∣∣∣}

= [DX]m−1 ·
{
∆(x|y1| · · · |ym)

}
.

For the passage to the equality of line 4, using the fact that adeterminant
having two identical columns vanishes, we observe that in each of them
sums

∑m
l1=0 appearing in lines 2 and 3 (including thecdots), there remains

only two non-vanishing determinants. For the passage to theequality of line
7, we just sum up all the linear combinations of determinantsappearing in
lines 4, 5 and 6. Finally, for the passage to the equality of line 9, we recog-
nize the development of the fundamental Jacobian determinant (3.2) along
its first line (Xx, Xy1, . . . , Xym), modulo some permutations of columns in
them×m minors. The proof is complete.

Our second task, similar but computationnally more heavy, is to compute
the determinant in the numerator of (5.8). First of all, we have to re-express
theAk defined implicitely between (5.3) and (5.5) using the total differenti-
ation operator to contract them as follows
(5.14)




Ak = DX · Y k
xx −DY k ·Xxx + 2

m∑

l1=1

yl1
x ·
[
DX · Y k

xyl1 −DY k ·Xxyl1

]
+

+

m∑

l1=1

m∑

l2=1

yl1
x y

l2
x ·
[
DX · Y k

yl1yl2 −DY k ·Xyl1yl2

]
.



83

Replacing this expression ofAk in (5.8), taking account of the expression of
the denominator already obtained in the second line of (5.11) and abbreviat-
ing ∆(x|y1| · · · |ym) as∆, we may write (5.8) in length and then develope it
by linearity as follows
(5.15)




yj
xx =

−1

[DX]m−1 ·∆ ·




∣∣∣∣Y k
y1 ·DX −Xy1 ·DY k| · · ·
· · · |j DX · Y k

xx −DY k · Y k
xx+

+2
m∑

l1=1

yl1
x ·
[
DX · Y k

xyl1 −DY k ·Xxyl1

]
+

+
m∑

l1=1

m∑

l2=1

yl1
x y

l2
x ·
[
DX · Y k

yl1yl2
−DY k ·Xyl1yl2

]
| · · ·

· · · |Y k
ym ·DX −Xym ·DY k

∣∣∣∣




=
−1

[DX]m−1 ·∆ ·




∣∣∣∣Y k
y1 ·DX −Xy1 ·DY k| · · ·
· · · |j DX · Y k

xx −DY k ·Xxx| · · ·
· · · |Y k

ym ·DX −Xym ·DY k
∣∣∣∣+

+ 2

m∑

l1=1

yl1
x ·
∣∣∣∣Y k

y1 ·DX −Xy1 ·DY k| · · ·

· · · |j DX · Y k
xyl1
−DY k ·Xxyl1 | · · ·

· · · |Y k
ym ·DX −Xym ·DY k

∣∣∣∣+

+

m∑

l1=1

m∑

l2=1

yl1
x y

l2
x ·
∣∣∣∣Y k

y1 ·DX −Xy1 ·DY k| · · ·

· · · |j DX · Y k
yl1yl2 −DY k ·Xyl1yl2 | · · ·
· · · |Y k

ym ·DX −Xym ·DY k
∣∣∣∣




.

As it is delicate to read, let us say that lines 2, 3 and 4 just express thej-th
colum |j Ak| of the determinant||B1k| · · · |j Ak| · · · |Bk

m||, after replacement
of Ak by its complete expression (5.14).

In lines 6, 7, 8; in lines 9, 10, 11; and in lines 12, 13, 14, there are
three families ofm×m determinants containing a linear combination (sous-
traction) having exactly two terms in each column. As in the proof of
Lemma 5.10, by multilinarity, we have to develope each such determinant.
In principle, for each development, we should get2m terms, but since the
obtained determinants vanish as soon as the columnDY k (modulo a multi-
plication by some factor) appears at least twice, it remainsonly (m+1) non-
vanishing determinants, those for which the columnDY k appears at most
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once. In addition, for each of the obtained determinant, thefactor[DX]m−1

appears (sometimes even the factor[DX]m), so that this factor compensates
the factor[DX]m−1 in the numerator. In sum, the continuation of the huge
computation yields:
(5.16)

yj
xx = − 1

∆
·




DX ·
∣∣∣∣Y k

y1| · · · |j Y k
xx| · · · |Y k

ym

∣∣∣∣−
−Xy1 ·

∣∣∣∣DY k| · · · |j Y k
xx| · · · |Y k

ym

∣∣∣∣− · · ·−
−Xxx ·

∣∣∣∣Y k
y1| · · · |j DY k| · · · |Y k

ym

∣∣∣∣− · · ·−
−Xym ·

∣∣∣∣Y k
y1 | · · · |j Y k

xx| · · · |DY k
∣∣∣∣+

+ 2
m∑

l1=1

yl1
x DX ·

∣∣∣
∣∣∣Y k

y1 | · · · |j Y k
xyl1
| · · · |Y k

ym

∣∣∣
∣∣∣−

− 2

m∑

l1=1

yl1
x Xy1 ·

∣∣∣
∣∣∣DY k| · · · |j Y k

xyl1 | · · · |Y k
ym

∣∣∣
∣∣∣− · · ·−

− 2

m∑

l1=1

yl1
x Xxyl1 ·

∣∣∣∣Y k
y1 | · · · |j DY k| · · · |Y k

ym

∣∣∣∣− · · ·−

− 2

m∑

l1=1

yl1
x Xym ·

∣∣∣
∣∣∣Y k

y1| · · · |j Y k
xyl1 | · · · |DY k

∣∣∣
∣∣∣+

+
m∑

l1=1

m∑

l2=1

yl1
x y

l2
x DX ·

∣∣∣
∣∣∣Y k

y1 | · · · |j Y k
yl1yl2 | · · · |Y k

ym

∣∣∣
∣∣∣−

−
m∑

l1=1

m∑

l2=1

yl1
x y

l2
x Xy1 ·

∣∣∣
∣∣∣DY k| · · · |j Y k

yl1yl2
| · · · |Y k

ym

∣∣∣
∣∣∣− · · ·−

−
m∑

l1=1

m∑

l2=1

yl1
x y

l2
x Xyl1yl2 ·

∣∣∣∣Y k
y1 | · · · |j DY k| · · · |Y k

ym

∣∣∣∣− · · ·−

−
m∑

l1=1

m∑

l2=1

yl1
x y

l2
x Xym ·

∣∣∣
∣∣∣Y k

y1 | · · · |j Y k
yl1yl2 | · · · |DY k

∣∣∣
∣∣∣




.

To establish the desired expression (5.4), we must developeall the total dif-
ferentiation operatorsD of the termsDX placed as factor and of the terms
DY k placed in various columns of determinants. We notice that indevelop-
ingDY k, we obtain columnsY k

yl (multiplied by the factoryl
x) and foronly

three (or two) values ofl = 0, 1, . . . , m, this column does not already appear
in the corresponding determinant, so that(m − 1) determinants vanish and
only 3 (or 2) remain nonzero. Taking account of these simplifications, we
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have the continuation

(5.17) −yj
xx ·∆ = I + II + III,

where the term I is the development of lines 1, 2, 3, 4 of (5.16); the term II is
the development of lines 5, 6, 7, 8 of (5.16); and the term III is the develop-
ment of lines 9, 10, 11, 12 of (5.16). So we get firstly (furtherexplanations
follows):

(5.18) I :=

m∑

l=0

yl
xXyl ·

∣∣∣∣Y k
y1 | · · · |j Y k

xx| · · · |Y k
ym

∣∣∣∣
1

−

−Xy1 ·
∣∣∣∣Y k

x | · · · |j Y k
xx| · · · |Y k

ym

∣∣∣∣−
− y1

xXy1 ·
∣∣∣∣Y k

y1 | · · · |j Y k
xx| · · · |Y k

ym

∣∣∣∣
1
−

− yj
xXyj ·

∣∣∣∣Y k
yj | · · · |j Y k

xx| · · · |Y k
ym

∣∣∣∣− · · ·−
−Xxx ·

∣∣∣∣Y k
y1 | · · · |j Y k

x | · · · |Y k
ym

∣∣∣∣−
− yj

xXxx ·
∣∣∣∣Y k

y1 | · · · |j Y k
yj | · · · |Y k

ym

∣∣∣∣− · · ·−
−Xym ·

∣∣∣∣Y k
y1 | · · · |j Y k

xx| · · · |Y k
x

∣∣∣∣−
− ym

x Xym ·
∣∣∣∣Y k

y1| · · · |j Y k
xx| · · · |Y k

ym

∣∣∣∣
1
−

− yj
xXym ·

∣∣∣∣Y k
y1 | · · · |j Y k

xx| · · · |Y k
yj

∣∣∣∣ ,
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and secondly (we discuss afterwards the annihilation of theunderlined
terms):

(5.19) II :=

2

m∑

l1=1

m∑

l=0

yl1
x y

l
xXyl ·

∣∣∣
∣∣∣Y k

y1| · · · |j Y k
xyl1 | · · · |Y k

ym

∣∣∣
∣∣∣

2

−

− 2

m∑

l1=1

yl1
x Xy1 ·

∣∣∣
∣∣∣Y k

x | · · · |j Y k
xyl1 | · · · |Y k

ym

∣∣∣
∣∣∣−

− 2
m∑

l1=1

yl1
x y

1
xXy1 ·

∣∣∣
∣∣∣Y k

y1| · · · |j Y k
xyl1
| · · · |Y k

ym

∣∣∣
∣∣∣

2

−

− 2

m∑

l1=1

yl1
x y

j
xXy1 ·

∣∣∣
∣∣∣Y k

yj | · · · |j Y k
xyl1 | · · · |Y k

ym

∣∣∣
∣∣∣− · · ·−

− 2

m∑

l1=1

yl1
x Xxyl1 ·

∣∣∣∣Y k
y1| · · · |j Y k

x | · · · |Y k
ym

∣∣∣∣−

− 2

m∑

l1=1

yl1
x y

j
xXxyl1 ·

∣∣∣∣Y k
y1| · · · |j Y k

yj | · · · |Y k
ym

∣∣∣∣− · · ·−

− 2
m∑

l1=1

yl1
x Xym ·

∣∣∣
∣∣∣Y k

y1| · · · |j Y k
xyl1
| · · · |Y k

x

∣∣∣
∣∣∣−

− 2
m∑

l1=1

yl1
x y

m
x Xym ·

∣∣∣
∣∣∣Y k

y1 | · · · |j Y k
xyl1
| · · · |Y k

ym

∣∣∣
∣∣∣

2

−

− 2

m∑

l1=1

yl1
x y

j
xXym ·

∣∣∣
∣∣∣Y k

y1 | · · · |j Y k
xyl1 | · · · |Y k

yj

∣∣∣
∣∣∣ ,
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and where thirdly (we are nearly the end of the proof):
(5.20)

III :=

m∑

l1=1

m∑

l2=1

m∑

l=0

yl1
x y

l2
x y

l
xXyl ·

∣∣∣
∣∣∣Y k

y1| · · · |j Y k
yl1yl2
| · · · |Y k

ym

∣∣∣
∣∣∣

3

−

−
m∑

l1=1

m∑

l2=1

yl1
x y

l2
x Xy1 ·

∣∣∣
∣∣∣Y k

x | · · · |j Y k
yl1yl2
| · · · |Y k

ym

∣∣∣
∣∣∣−

−
m∑

l1=1

m∑

l2=1

yl1
x y

l2
x y

1
xXy1 ·

∣∣∣
∣∣∣Y k

y1| · · · |j Y k
yl1yl2
| · · · |Y k

ym

∣∣∣
∣∣∣

3

−

−
m∑

l1=1

m∑

l2=1

yl1
x y

l2
x y

j
xXy1 ·

∣∣∣
∣∣∣Y k

yj | · · · |j Y k
yl1yl2 | · · · |Y k

ym

∣∣∣
∣∣∣− · · ·−

−
m∑

l1=1

m∑

l2=1

yl1
x y

l2
x Xyl1yl2 ·

∣∣∣∣Y k
y1 | · · · |j Y k

x | · · · |Y k
ym

∣∣∣∣−

−
m∑

l1=1

m∑

l2=1

yl1
x y

l2
x y

j
xXyl1yl2 ·

∣∣∣∣Y k
y1| · · · |j Y k

yj | · · · |Y k
ym

∣∣∣∣− · · ·−

−
m∑

l1=1

m∑

l2=1

yl1
x y

l2
x Xym ·

∣∣∣
∣∣∣Y k

y1 | · · · |j Y k
yl1yl2 | · · · |Y k

x

∣∣∣
∣∣∣−

−
m∑

l1=1

m∑

l2=1

yl1
x y

l2
x y

m
x Xym ·

∣∣∣
∣∣∣Y k

y1 | · · · |j Y k
yl1yl2
| · · · |Y k

ym

∣∣∣
∣∣∣

3

−

−
m∑

l1=1

m∑

l2=1

yl1
x y

l2
x y

j
xXym ·

∣∣∣
∣∣∣Y k

y1 | · · · |j Y k
yl1yl2
| · · · |Y k

yj

∣∣∣
∣∣∣ .

Now, we explain the annihilation of the underlined terms. Consider I: in the
first sum

∑m
l=0, all the terms except only the two corresponding tol = 0

and tol = j are annihilated by the other terms with1 appended: indeed,
one must take account of the fact that in the expression of I, we have two
sums represented by somecdots, the nature of which was defined without
ambiguity in the passage from (5.15) to (5.16).
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Similar simplifications occur for II and for III. Consequently, we obtain
firstly:

(5.21) I :=

Xx ·
∣∣∣∣Y k

y1| · · · |j Y k
xx| · · · |Y k

ym

∣∣∣∣+
+ yj

xXyj ·
∣∣∣∣Y k

y1| · · · |j Y k
xx| · · · |Y k

ym

∣∣∣∣−
−Xy1 ·

∣∣∣∣Y k
x | · · · |j Y k

xx| · · · |Y k
ym

∣∣∣∣−
− yj

xXyj ·
∣∣∣∣Y k

yj | · · · |j Y k
xx| · · · |Y k

ym

∣∣∣∣− · · ·−
−Xxx ·

∣∣∣∣Y k
y1 | · · · |j Y k

x | · · · |Y k
ym

∣∣∣∣−
− yj

xXxx ·
∣∣∣∣Y k

y1 | · · · |j Y k
yj | · · · |Y k

ym

∣∣∣∣− · · ·−
−Xym ·

∣∣∣∣Y k
y1 | · · · |j Y k

xx| · · · |Y k
x

∣∣∣∣−
− yj

xXym ·
∣∣∣∣Y k

y1 | · · · |j Y k
xx| · · · |Y k

yj

∣∣∣∣ ;

just above, the first two lines consist of the two terms in the sum underlined
at the first line of (5.18) which are not annihilated; secondly we obtain:

(5.22) II :=

2
m∑

l1=1

yl1
x Xx ·

∣∣∣
∣∣∣Y k

y1| · · · |j Y k
xyl1
| · · · |Y k

ym

∣∣∣
∣∣∣+

+ 2
m∑

l1=1

yl1
x y

j
x Xyj ·

∣∣∣
∣∣∣Y k

y1| · · · |j Y k
xyl1
| · · · |Y k

ym

∣∣∣
∣∣∣−

− 2
m∑

l1=1

yl1
x Xy1 ·

∣∣∣
∣∣∣Y k

x | · · · |j Y k
xyl1
| · · · |Y k

ym

∣∣∣
∣∣∣−

− 2

m∑

l1=1

yl1
x y

j
xXy1 ·

∣∣∣
∣∣∣Y k

yj | · · · |j Y k
xyl1 | · · · |Y k

ym

∣∣∣
∣∣∣− · · ·−

− 2

m∑

l1=1

yl1
x Xxyl1 ·

∣∣∣∣Y k
y1| · · · |j Y k

x | · · · |Y k
ym

∣∣∣∣−

− 2

m∑

l1=1

yl1
x y

j
xXxyl1 ·

∣∣∣∣Y k
y1 | · · · |j Y k

x | · · · |Y k
ym

∣∣∣∣− · · ·−

− 2
m∑

l1=1

yl1
x Xym ·

∣∣∣
∣∣∣Y k

y1| · · · |j Y k
xyl1 | · · · |Y k

x

∣∣∣
∣∣∣−

− 2
m∑

l1=1

yl1
x y

j
xXym ·

∣∣∣
∣∣∣Y k

y1| · · · |j Y k
xyl1
| · · · |Y k

yj

∣∣∣
∣∣∣ ;

similarly, the first two lines above consist of the two terms in the sum un-
derlined at the first line of (5.19) which are not annihilated; and thirdly we
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obtain:
(5.23)

III :=

m∑

l1=1

m∑

l2=1

yl1
x y

l2
x Xx ·

∣∣∣
∣∣∣Y k

y1 | · · · |j Y k
yl1yl2
| · · · |Y k

ym

∣∣∣
∣∣∣+

+
m∑

l1=1

m∑

l2=1

yl1
x y

l2
x y

j
xXyj ·

∣∣∣
∣∣∣Y k

y1 | · · · |j Y k
yl1yl2
| · · · |Y k

ym

∣∣∣
∣∣∣−

−
m∑

l1=1

m∑

l2=1

yl1
x y

l2
x Xy1 ·

∣∣∣
∣∣∣Y k

x | · · · |j Y k
yl1yl2
| · · · |Y k

ym

∣∣∣
∣∣∣−

−
m∑

l1=1

m∑

l2=1

yl1
x y

l2
x y

j
xXy1 ·

∣∣∣
∣∣∣Y k

yj | · · · |j Y k
yl1yl2 | · · · |Y k

ym

∣∣∣
∣∣∣− · · ·−

−
m∑

l1=1

m∑

l2=1

yl1
x y

l2
x Xyl1yl2 ·

∣∣∣∣Y k
y1| · · · |j Y k

x | · · · |Y k
ym

∣∣∣∣−

−
m∑

l1=1

m∑

l2=1

yl1
x y

l2
x y

j
xXyl1yl2 ·

∣∣∣∣Y k
y1| · · · |j Y k

yj | · · · |Y k
ym

∣∣∣∣− · · ·−

−
m∑

l1=1

m∑

l2=1

yl1
x y

l2
x Xym ·

∣∣∣
∣∣∣Y k

y1 | · · · |j Y k
yl1yl2
| · · · |Y k

x

∣∣∣
∣∣∣−

−
m∑

l1=1

m∑

l2=1

yl1
x y

l2
x y

j
xXym ·

∣∣∣
∣∣∣Y k

y1 | · · · |j Y k
yl1yl2 | · · · |Y k

yj

∣∣∣
∣∣∣ .

Collecting the odd lines of (5.21), we obtain exactly(m + 1) terms which
correspond to the development of the determinant∆(x| · · · |j xx| · · · |ym)
along its first line, modulo permutations of columns of the associated
m × m minors; collecting the even lines of (5.21), we obtain exactly
(m + 1) terms which correspond to the development of the determinant
−yj

x ·∆(xx|y1| · · · |ym) along its first lines, modulo permutations of columns
of the associatedm×m minors. Similar observations hold about II and III.
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In , we may rewrite the final expressions of these three terms:firstly

(5.24)





I = ∆(x| · · · |j xx| · · · |ym)− yj
x ·∆(xx|y1| · · · |ym),

II = 2

m∑

l1=1

yl1
x ·∆(x| · · · |j xyl1 | · · · |ym)−

− 2 yj
x

m∑

l1=1

yl1
x ·∆(xyl1|y1| · · · |ym),

III =
m∑

l1=1

m∑

l2=1

yl1
x y

l2
x ·∆(x| · · · |j yl1yl2| · · · |ym)−

− yj
x

m∑

l1=1

m∑

l2=1

yl1
x y

l2
x ·∆(yl1yl2|y1| · · · |ym).

Coming back to (5.17), we obtain the desired expression (5.4).
The proof of the — technical, though involving only linear algebra —

Lemma 3.32 is complete.
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Nonalgebraizable real analytic tubes inCn x

Joël Merker (with H. Gaussier)

Abstract. We give necessary conditions for certain real analytic tubegeneric sub-
manifolds inCn to be locally algebraizable. As an application, we exhibit fam-
ilies of real analytic non locally algebraizable tube generic submanifolds inCn.
During the proof, we show that the local CR automorphism group of a minimal,
finitely nondegenerate real algebraic generic submanifoldis a real algebraic local
Lie group. We may state one of the main results as follows. LetM be a real analytic
hypersurface tube inCn passing through the origin, having a defining equation of
the formv = ϕ(y), where(z,w) = (x+iy, u+iv) ∈ Cn−1×C. Assume thatM is
Levi nondegenerate at the origin and that the real Lie algebra of local infinitesimal
CR automorphisms ofM is of minimal possible dimensionn, i.e. generated by the
real parts of the holomorphic vector fields∂z1 , . . . , ∂zn−1 , ∂w. ThenM is locally
algebraizable only if every second derivative∂2

ykyl
ϕ is an algebraic function of the

collection of first derivatives∂y1ϕ, ..., ∂ymϕ.
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§1. INTRODUCTION

A real analytic submanifoldM in Cn is calledalgebraic if it can be repre-
sented locally by the vanishing of a collection of Nash algebraic real analytic
functions. We say thatM is locally algebraizableat one of its pointsp if
there exist some local holomorphic coordinates centered atp in whichM
is algebraic. For instance, every totally real, real analytic submanifold in
Cn of dimensionk ≤ n is locally biholomorphic to ak-dimensional lin-
ear real plane, hence locally algebraizable. Also, every complex manifold
is locally algebraizable. Although every real analytic submanifoldM is
clearly locally equivalent to its tangent plane by areal analytic (in general
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not holomorphic) equivalence, the question whetherM is biholomorphi-
cally equivalent to a real algebraic submanifold is subtle.In this article,
we study the question whether every real analytic CR submanifold is lo-
cally algebraizable. One of the interests of algebraizability lies in the reflec-
tion principle, which is better understood in the algebraiccategory. Indeed,
in the fundamental works of Pinchuk [Pi1975], [Pi1978] and of Webster
[We1977], [We1978] and in the recent works of Sharipov-Sukhov [SS1996],
Huang-Ji [HJ1998], Verma [Ve1999], Coupet-Pinchuk-Sukhov [CPS2000],
and Shafikov [Sha2000], [Sha2002], the extendability of germs of CR map-
pings with target in a real algebraic hypersurface is achieved. On the con-
trary, even if some results previously shown under an algebraization hypoth-
esis were proved recently under general assumptions (see the strong result
obtained by Diederich-Pinchuk [DP2003]), most of the results cited above
are still open in the case of a real analytic target hypersurface.

1.1. Brief history of the question. By the work of Moser and Webster
[MW1983, Thm. 1], it is known that every real analytic two-dimensional
surfaceS ⊂ C2 at an isolated elliptic (in the sense of Bishop) complex tan-
gencyp ∈ S is biholomorphic to one of the surfacesSγ,δ,s := {(z1, z2) ∈
C2 : y2 = 0, x2 = z1z̄1 + (γ + δ(x2)

s)(z2
1 + z̄2

1)}, wherep corresponds to
the origin, where0 < γ < 1/2 is Bishop’s invariant and whereδ = ±1 and
s ∈ N or δ = 0. The quantitiesγ, δ, s form a complete system of biholomor-
phic invariants for the surfaceS nearp. In particular, every elliptic surface
S ⊂ C2 is locally algebraizable. To the authors’ knowledge, it is unknown
whether there exist nonalgebraizable hyperbolic surfacesin C2. In fact, very
few examples of nonalgebraizable submanifolds are known. In [Eb1996],
the author constructed a nonminimal (and non Levi-flat) realanalytic hyper-
surfaceM through the origin inC2 which is not locally algebraizable (cf.
[BER2000, p. 330]). In a recent article [HJY] the authors prove that the
strongly pseudoconvex real analytic hypersurfaceImw = e|z|

2 − 1 passing
through the origin inC2 is not locally algebraizable at any of its points. Us-
ing an associated projective structure bundleY introduced by Chern, they
show that for every rigid algebraic hypersurface inCn, there exists an alge-
braic dependence relation between seven explicit Cartan-type holomorphic
invariant functions onY . However a computational approach shows that
whenM is of the specific formImw = e|z|

2 − 1, no algebraic relation can
be satisfied by these seven invariants.

1.2. Presentation of the main results.Our aim is to present a geometri-
cal approach of the problem, valid in arbitrary dimension and in arbitrary
codimension, and to exhibit a large class of nonalgebraizable real analytic
generic submanifolds. We consider the classT d

n of generic real analytic
submanifolds inCn passing through the origin, of codimensiond ≥ 1
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and of CR dimensionm = n − d ≥ 1, whose local CR automorphism
group isn-dimensional, generated by the real parts ofn holomorphic vec-
tor fields having holomorphic coefficientsX1, . . . , Xn which are linearly
independent at the origin and which commute:[Xi1 , Xi2 ] = 0. We shall
call T d

n the class ofstrong tubesof codimensiond. Indeed, since there
exists a straightened system of coordinatest = (t1, . . . , tn) over Cn in
whichXi = ∂ti , we observe that every submanifoldM ∈ T d

n is tubifiable
at the origin. By this, we mean that there exist holomorphic coordinates
t = (z, w) = (x + iy, u + iv) ∈ Cm × Cd vanishing at the origin in which
M is represented byd equations of the formvj = ϕj(y). HenceM is a tube,
i.e. a product of the submanifold{vj = ϕj(y), j = 1, . . . , d} ⊂ Rn

y,v

by the n-dimensional real spaceRn
x,u. SinceM ∈ T d

n , the only infin-
itesimal CR automorphisms ofM are the real parts of the vector fields
∂z1 , . . . , ∂zm, ∂w1 , . . . , ∂wd

, explaining the terminology. Notice that not ev-
ery tube belongs to the classT d

n . For instance in codimensiond = 1, the
Heisenberg spherev =

∑n−1
k=1 y

2
k and more generally the Levi nondegen-

erate quadricsv =
∑n−1

k=1 εk y
2
k, whereεk = ±1, have a CR automorphism

group of dimension(n+1)2−1 > n and so do not belong toT 1
n . We assume

thatM ∈ T d
n is minimal at the origin, namely the local CR orbit of0 in M

contains a neighborhood of0 in M . Furthermore, we assume thatM ∈ T d
n

is finitely nondegenerate at0, namely that there exists an integerℓ ≥ 1 such
thatSpan {Lβ∇t(rj)(0, 0) : β ∈ Nm, |β| ≤ ℓ, j = 1, . . . , d} = Cn, where
rj(t, t̄) = 0, j = 1, . . . , d are arbitrary real analytic defining functions forM
near0 satisfying∂r1∧· · ·∧∂rd 6= 0 onM , where∇t(rj)(t, t̄) is the holomor-

phic gradient with respect tot of rj and whereL
β

denotes(L1)
β1 · · · (Lm)βm

for an arbitrary basisL1, . . . , Lm of (0, 1)-vector fields tangent toM in
a neighborhood of0. In particular Levi nondegenerate hypersurfaces are
finitely nondegenerate. Finally, assuming only thatϕj(0) = 0, j = 1, . . . , d,
we shall observe in Lemma 3.2 below that a tubevj = ϕj(y) of codimension
d is finitely nondegenerate at the origin if and only if there exist multi-indices
β1
∗ , . . . , β

m
∗ ∈ Nm with |βk

∗ | ≥ 1 and integers1 ≤ j1
∗ , . . . , j

m
∗ ≤ d such that

the real mapping

(1.1) ψ(y) :=

(
∂|β

1
∗ |ϕj1

∗
(y)

∂yβ1
∗

, . . . ,
∂|β

m
∗ |ϕjm

∗
(y)

∂yβm
∗

)
=: y′ ∈ Rm

is of rankm at the origin inRm. Our main theorem provides a necessary
condition for the local algebraizability of strong tubes :

Theorem 1.1. Let M be a real analytic generic tube of codimensiond in
Cn given in coordinates(z, w) = (x + iy, u + iv) ∈ Cm × Cd by the
equationsvj = ϕj(y), whereϕj(0) = 0, j = 1, . . . , d. Assume thatM
is minimal and finitely nondegenerate at the origin, so the real mapping
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ψ(y) = y′ defined by(1.1)is of rankm at the origin inRm
y and lety = ψ′(y′)

denote the local inverse inψ(y). Assume thatM ∈ T d
n , namelyM is a

strong tube of codimensiond. If M is locally algebraizable at the origin,
then all the derivative functions∂y′

k
ψ′

l(y
′), where1 ≤ k, l ≤ m, are real

algebraic functions ofy′. Equivalently, every second derivative∂2
ykyl

ϕj(y) is
an algebraic function of the collection of first derivatives∂y1ϕj , . . . , ∂ymϕj.

By contraposition, every real analytic strong tubeM ∈ T d
n for which

one of the derivative functions∂y′
k
ψ′

l is not real algebraic is not locally alge-
braizable. We will argue in §8 that this is generically the case in the sense
of Baire. It is however natural to look for explicit examplesof nonalge-
braizable real analytic submanifolds inCn. Since the real parts of the vector
fields∂z1 , . . . , ∂zm , ∂w1 , . . . , ∂wd

are infinitesimal CR automorphisms of ev-
ery tubev = ϕ(y), we must provide some sufficient conditions insuring
that the dimension of the Lie algebra of such a tube is exactlyn. We shall
establish in §§7-8 below:

Corollary 1.2. The tube hypersurfaceMχ1,...,χn−1 in Cn of equationv =∑n−1
k=1[εky

2
k+y6

k+y9
ky1 · · · yk−1+y

n+8
k χk(y1, . . . , yn−1)], whereχ1, . . . , χn−1

are arbitrary real analytic functions, belongs to the classT 1
n of strong tubes.

Two such tubesMχ1,...,χn−1 andMbχ1,...,bχn−1 are biholomorphically equiva-
lent if and only ifχj = χ̂j for everyj. Furthermore, for a generic choice in
χ1, . . . , χn−1 in the sense of Baire(to be precised in §8), Mχ1,...,χn−1 is not
locally algebraizable at the origin.

Here we annihilate some Taylor coefficients inϕ and keep some others
to be nonzero to insure thatMχ is a strong tube. Furthermore, the terms
y9

ky1 · · · yk−1 insure that theMχ are pairwise not biholomorphically equiva-
lent. Using a classical direct algorithm (cf. [Bs1991], [St1991]), or the Lie
theory of symmetries of differential equations, combined with Theorem 1.1
we may provide some other explicit strong tubes which are notlocally alge-
braizable (see §§7-8 for the proof):

Corollary 1.3. The following five explicit tubes belong toT 1
2 and are not

locally algebraizable at the origin: v = sin(y2), v = tan(y2), v = eey−1−1,
v = sinh(y2) andv = tanh(y2).

In these five examples, the algebraic independence in∂yϕ and in∂2
yyϕ

is clear; however, checking that each hypersurface is indeed a strong tube
requires some formal computations,see§7. One may also check by a di-
rect computation that in a neighborhood of every pointp = (zp, wp) with
zp 6= 0, the hypersurfaceMHJY of global equationImw = e|z|

2 − 1 is a
strong tube (see§7.5). Since it can be represented in a neighborhood ofp

under the tube formv′ = e|zp|2(ey′−1) − 1 by means of the local change of
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coordinatesz′ = 2i ln(z/zp), w′ = (w − wp) e
−|zp|2 , applying Theorem 1.1

and inspecting the functione|zp|2(ey′−1)−1, we may check that it isnot alge-
braizable at such pointsp with zp 6= 0 (see§7.5). It follows trivially that the
hypersurfaceMHJY is also not locally algebraizable at all the pointsp with
zp = 0, giving the result of [HJY, Theorem 1.1]. Using the same strategy as
for Theorem 1.1, we obtain more generally the following criterion:

Theorem 1.4. LetMϕ : v = ϕ(zz̄) be a Levi nondegenerate real analytic
hypersurface inC2 passing through the origin whose Lie algebra of local
infinitesimal CR automorphisms is generated by∂w and iz ∂z. If Mϕ is lo-
cally algebraizable at the origin, then the first derivative∂rϕ in ϕ (r ∈ R)
is algebraic. For instance, the following seven explicit examples are not lo-
cally algebraizable at the origin: v = ezz̄ − 1, v = sin(zz̄), v = tan(zz̄),
v = sinh(zz̄), v = tanh(zz̄), v = sin(sin(zz̄)) andv = eezz̄−1 − 1.

Finally, using the same recipe as for Theorems 1.1 and 1.4, weshall pro-
vide a very simple criterion for the local nonalgebraizability of some hyper-
surfaces having a local Lie CR automorphism group of dimension equal to
one exactly. We consider the classRn of Levi nondegenerate real analytic
hypersurfaces passing through the origin inCn (n ≥ 2) such that the Lie al-
gebra of infinitesimal CR automorphisms ofM is generated by exactly one
holomorphic vector fieldX1 with holomorphic coefficients not all vanishing
at the origin. We callRn the class ofstrongly rigid hypersurfaces, in order
to distinguish them from the so-calledrigid ones whose local CR automor-
phism group may be of dimension larger than1. By straighteningX1, we
may assume thatX1 = ∂w and thatM is given by a real analytic equation
of the formv = ϕ(z, z̄) = ϕ(z1, . . . , zn−1, z̄1, . . . , z̄n−1). By making some
elementary changes of coordinates (cf. §3.3), we can furthermore assume
without loss of generality thatϕ(z, z̄) =

∑n−1
k=1 εk |zk|2 + χ(z, z̄), where

εk = ±1 andχ(0, z̄) ≡ ∂zk
χ(0, z̄) ≡ 0.

Theorem 1.5.LetM : v = ϕ(z, z̄) =
∑n−1

k=1 εk |zk|2 +χ(z, z̄) be a strongly
rigid hypersurface inCn with χ(0, z̄) ≡ ∂zk

χ(0, z̄) ≡ 0. If M is locally
algebraizable at the origin, then all the first derivatives∂zk

ϕ are algebraic
functions of(z, z̄).

This criterion enables us to exhibit a whole family of non locally alge-
braizable hypersurfaces inCn :

Corollary 1.6. The rigid hypersurfacesMχ1,...,χn−1 in Cn of equationv =∑n−1
k=1 [εk |zk|2 + |zk|10 + |zk|14 + |zk|16(zk + z̄k) + |zk|18|z1|2 · · · |zk−1|2 +

|zk|2n+16 χk(z, z̄)], where theχk are arbitrary real analytic functions, be-
long to the classRn of strongly rigid hypersurfaces. Two such tubes
Mχ1,...,χn−1 andMbχ1,...,bχn−1 are biholomorphically equivalent if and only if
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χk = χ̂k for k = 1, . . . , n − 1. Furthermore, for a generic choice of a
(n− 1)-tuple of real analytic functions(χ1, . . . , χn−1) in the sense of Baire
(to be precised in §8),Mχ1,...,χn−1 is not locally algebraizable at the origin.

Finally, by computing generators of the Lie algebra of localinfinitesimal
CR automorphisms of some explicit examples, we obtain:

Corollary 1.7. The following seven explicit examples of hypersurfaces in
C2 are strongly rigidand are not locally algebraizable at the origin: v =
zz̄ + z2z̄2 sin(z + z̄), v = zz̄ + z2z̄2 exp(z + z̄), v = zz̄ + z2z̄2 cos(z + z̄),
v = zz̄+z2z̄2 tan(z+z̄), v = zz̄+z2z̄2 sinh(z+z̄), v = zz̄+z2z̄2 cosh(z+z̄)
andv = zz̄ + z2z̄2 tanh(z + z̄).

1.3. Content of the paper. To prove Theorem 1.1 we consider an algebraic
equivalentM ′ of M . The main technical part of the proof consists in show-
ing that an arbitrary real algebraic elementM ′ of T d

n can be straightened in
some local complexalgebraic coordinatest′ ∈ Cn in order that its infinites-
imal CR automorphisms are the real parts ofn holomorphic vector fields of
the formX ′

i = c′i(t
′
i) ∂t′i

, i = 1, . . . , n, where the variables are separated and
the functionsc′i(t

′
i) are algebraic. For this, we need to show that the auto-

morphism group of a minimal finitely nondegenerate real algebraic generic
submanifold inCn is a local real algebraic Lie group, a notion defined in
§2.3. A large part of this article (§§4, 5, 6) is devoted to provide an explicit
representation formula for the local biholomorphic self-transformations of
a minimal finitely nondegenerate generic submanifold,seeespecially The-
orem 2.1 and Theorem 4.1. Finally, using the specific simplified form of
the vector fieldsX ′

i and assuming that there exists a biholomorphic equiva-
lenceΦ : M → M ′ satisfyingΦ∗(∂ti) = c′i(t

′
i) ∂t′i

, we show by elementary
computations that all the first order derivatives of the mapping ψ′(y′) must
be algebraic. We follow a similar strategy for the proofs of Theorems 1.4
and 1.5. Finally, in §§7-8, we provide the proofs of Corollaries 1.2, 1.3, 1.6
and 1.7.

1.4. Acknowledgment. We acknowledge interesting discussions with
Michel Petitot François Boulier at the University of Lille 1.

§2. PRELIMINARIES

We recall in this section the basic properties of the objectswe will deal
with.

2.1. Nash algebraic functions and manifolds.In this subsection, letK =
R or C. Let (x1, . . . , xn) denote coordinates overKn. Throughout the
article, we shall use the norm|x| := max(|x1|, . . . , |xn|) for x ∈ Kn.
Let K be an open polydisc centered at the origin inKn, namelyK =



99

{x ∈ Kn : |x| < ρ} for someρ > 0. Let f : K → K be a K-
analytic function, defined by a power series converging normally in K .
We say thatf is (Nash)K-algebraic if there exists a nonzero polynomial
P (X1, . . . , Xn, F ) ∈ K[X1, . . . , Xn, F ] in (n + 1) variables such that the
relationP (x1, . . . , xn, f(x1, . . . , xn)) = 0 holds for all(x1, . . . , xn) ∈ K .
If K = R, we say thatf is real algebraic. If K = C, we say thatf is com-
plex algebraic. The category ofK-algebraic functions is stable under ele-
mentary algebraic operations, under differentiation and under composition.
Furthermore, implicit solutions ofK-algebraic equations (for which the real
analytic implicit function theorem applies) are againK-algebraic mappings.
The theory ofK-algebraic manifolds is then defined by the usual axioms of
manifolds, for which the authorized changes of chart areK-algebraic map-
pings only (cf. [Za1995]). In this paper, we shall very often use the stability
of algebraicity under differentiation.

2.2. Infinitesimal CR automorphisms. LetM ⊂ Cn be a generic subman-
ifold of codimensiond ≥ 1 and CR dimensionm = n− d ≥ 1. Let p ∈M ,
let t = (t1, . . . , tn) be some holomorphic coordinates vanishing atp and for
someρ > 0, let ∆n(ρ) := {t ∈ Cn : |t| < ρ} be an open polydisc centered
at p. We consider the Lie algebraHol(∆n(ρ)) of holomorphic vector fields
of the formX =

∑n
j=1 aj(t) ∂/∂tj , where theaj are holomorphic functions

in ∆n(ρ). Here,Hol(∆n(ρ)) is equipped with the usual Jacobi-Lie bracket
operation. We may consider the complex flowexp(σX)(q) of a vector field
X ∈ Hol(∆n(ρ)). It is a holomorphic map of the variables(σ, q) which
is well defined in some connected open neighborhood of{0} × ∆n(ρ) in
C×∆n(ρ).

Let K denote the real vector fieldK := X + X, considered as areal
vector field overR2n ∼= Cn. Again, the real flow ofK is defined in some
connected open neighborhood of{0}×∆n(ρ)R in R×∆n(ρ)R. We remind
the following elementary relation between the flow ofK and the flow ofX.
For a real time parameterσ := s ∈ R, the flowexp(sX)(q) coincides with
the real flow ofX +X, namelyexp(sX)(q) = exp(s(X +X))(qR), where
for q ∈ Cn, we denoteqR the corresponding real point inR2n. In the sequel,
we shall always identify∆n(ρ) and its real counterpart∆n(ρ)R.

Let now Hol(M,∆n(ρ)) denote the real subalgebra of the vector
fields X ∈ Hol(∆n(ρ)) such thatX + X is tangent toM ∩ ∆n(ρ).
We also denote byAutCR(M,∆n(ρ)) the Lie algebra of vector
fields of the formX + X, where X belongs toHol(M,∆n(ρ)), so
AutCR(M,∆n(ρ)) = 2 Re Hol(M,∆n(ρ)). By the above considerations,
the local flowexp(sX)(q) of X with s ∈ R real makes a one-parameter
family of local biholomorphic transformations ofM . In the sequel, we shall
always identifyHol(M,∆n(ρ)) and AutCR(M,∆n(ρ)), namely we shall
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identifyX andX + X and say by some abuse of language thatX itself is
an infinitesimal CR automorphism.

In the algebraic category, the main drawback of infinitesimal CR auto-
morphism is that they do not have algebraic flow. For instance, the complex
dilatation vector fieldX = iz ∂z has transcendent flow, even if it is an in-
finitesimal CR automorphism of every algebraic hypersurface in C2 whose
equation is of the formv = ϕ(zz̄), even if the coefficient ofX is alge-
braic. Thus instead of infinitesimal CR automorphisms whichgenerate one-
parameter groups of biholomorphic transformations ofM , we shall study
algebraically dependent one-parameter families of biholomorphic transfor-
mations (not necessarily making a one parameter group). To begin with, we
need to introduce some precise definitions about local algebraic Lie trans-
formation groups.

2.3. Local Lie group actions in theK-algebraic category. Often in real or
in complex analytic geometry, the interest cannot be focalized on global Lie
transformation groups, but only on local transformations which are close to
the identity. For instance, the transformation group of a small piece of a real
analytic CR manifold inCn which is not contained in a global, large or com-
pact CR manifold is almost never a true, global transformation group. Con-
sequently the usual axioms of Lie transformation groups must be localized.
Philosophically speaking, the local point of view is often the most adequate
and the richest one, because a given analytico-geometric object often pos-
sesses much more local invariant than global invariants, ifany. Historically
speaking, the local Lie transformation groups were first studied, before the
introduction of the now classical notion of global Lie group. Especially, in
his first masterpiece work [Lie1880] on the subject, Sophus Lie essentially
dealt with local “Lie” groups: he classified all continuous local transfor-
mation groups acting on an open subset ofC2. This general classification
provided afterwards in the years 1880–1890 many applications to the local
study of differential equations: local normal forms, localsolvability,etc.

In this paragraph we define precisely local actions of local Lie groups and
we focus especially on theK-algebraic category.

Let c ∈ N∗, let g = (g1, . . . , gc) ∈ Kc and let two positive numbers
satisfy0 < δ2 < δ1. We formulate the desired definition by means of the
two precise polydiscs∆c(δ2) ⊂ ∆c(δ1) ⊂ Kc. A local K-algebraic Lie
group of dimensionc consists of the following data:

(1) A K-algebraicmultiplication mappingµ : ∆c(δ2)×∆c(δ2)→ ∆c(δ1)
which is locally associative (µ(g, µ(g′, g′′)) = µ(µ(g, g′), g′′)), when-
ever µ(g′, g′′) ∈ ∆c(δ2), µ(g, g′) ∈ ∆c(δ2) and which satisfies
µ(0, g) = µ(g, 0) = g, where the origin0 ∈ Kc corresponds to the
identity element in the group structure.
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(2) A K-algebraicinversion mappingι : ∆c(δ2) → ∆c(δ1) satisfying
µ(g, ι(g)) = µ(ι(g), g) = 0 andι(0) = 0 wheneverι(g) ∈ ∆c(δ2).

Here, the integerc ∈ N∗ is thedimensionof G. We shall say that com-
position and inversion are defined locally in a neighborhoodof the identity
element. In theK-analytic category, the corresponding definition is similar.

Now, we can define the notion of localK-algebraic Lie group action. Let
n ∈ N∗, letx = (x1, . . . , xn) ∈ Kn and let two positive numbers satisfy0 <
ρ2 < ρ1. LetG be a localK-algebraic Lie group as defined just above. We
shall formulate the desired definition by means of the two precise polydiscs
∆n(ρ2) ⊂ ∆n(ρ1). This pair of polydiscs represents alocal K-algebraic
manifoldup to changes ofK-algebraic coordinates. Alocal K-algebraic
Lie group action on a localK-algebraic manifoldconsists of aK-algebraic
action mappingx′ = Φ(x; g) defined over∆n(ρ2) × ∆c(δ2) with values in
∆n(ρ1) which satisfies:

(1) Φ(Φ(x; g); g′)) = Φ(x;µ(g, g′)) wheneverΦ(x; g) ∈ ∆n(ρ2) and
µ(g, g′) ∈ ∆c(δ2), where the local group multiplicationµ(g, g′) is K-
algebraic as above;

(2) Φ(x; e) = x andΦ(Φ(x; g); ι(g)) = x wheneverΦ(x; g) ∈ ∆n(ρ2)
and ι(g) ∈ ∆c(ρ2), where the inverse group mappingg 7→ ι(g) is
K-algebraic as above.

In this definition, it is allowed to suppose thatx ∈ Cn and g ∈ Rc,
which is the case to be considered in the sequel. By differentiation,
every local K-algebraic action gives rise to vector fields defined over
∆n(ρ2) which are infinitesimal generators of the action. Indeed, let
us consider the algebraically dependent one-parameter families of com-
plex algebraic biholomorphic transformationsΦ(x; 0, . . . , 0, gi, 0, . . . , 0) =:
Φi(x; gi) ≡ (Φi,1(x; gi), . . . ,Φi,n(x; gi)) ∈ Kn, which we shall also de-
note byΦi,gi

(x). In general, such a family does not make a one-parameter
group of transformations, but we can nevertheless introduce the vector fields
Xi(Φi,gi

(x); gi) := ∂gi
Φi(x; gi) =

∑n
l=1 ∂gi

Φi,l(x; gi) ∂/∂xl. We notice that
the coefficients of these vector fields do in general depend onthe group pa-
rametergi ∈ G.

In fact, in the algebraic category, there is no hope to modifythe coordi-
nates on the group in order that the infinitesimal generatorsof the action
are independent of the parameter coordinatesgj. For instance, the trivial
one-dimensional action (complex dilatation) defined by(z, w) 7→ ((1 +
g)z, w) =: Φ(z, w; g), where(z, w) ∈ C2 andg ∈ C is clearly an algebraic
action. Here, the infinitesimal generatorX(x; g) = (1+g)−1z∂z depends on
the parameterg. The only way to avoid the dependence upong of the coeffi-
cient ofX is to change coordinates on the group by setting1 + g := eσ, σ ∈
C, whence the action is represented by(z, w) 7→ (eσz, w) =: Φ(z, w; σ).



102

Indeed, from the group propertyΦ(Φ(z, w; σ); σ′) ≡ Φ(z, w; σ + σ′), it is
classical and immediate to deduce that if we define the parameter indepen-
dent vector fieldX0(z, w) := ∂σΦ(z, w; σ)|σ=0 = z ∂z, then it holds that
∂σΦ(z, w; σ) = eσz ∂z = X0(Φ(z, w; σ)). So the infinitesimal generator
of the action is independent of the parameterg. However, the main trouble
here is that the algebraicity of the action is necessarily lost since the flow of
X0 is not algebraic (the reader may check that each right (or left) invariant
vector field on an algebraic local Lie group defines in generala nonalgebraic
one-parameter subgroup,e.g.for SO(2,R), SL(2,C)).

Consequently we may allow the infinitesimal generators of analge-
braic local Lie group actionx′ = Φ(x; g), defined byXi(x; gi) :=
[∂gi

Φi](Φ
−1
i,gi

(x); gi) to depend on the group parametergi, even if the fam-
ilies (Φi,gi

(x))gi∈K do not constitute one-dimensional subgroups of transfor-
mations.

2.4. Algebraicity of complex flow foliations. Suppose now thatM is a real
algebraic generic submanifold inCn, for instance a hypersurface which is
Levi nondegenerate at a “center” pointp ∈ M corresponding to the ori-
gin in the coordinatest = (t1, . . . , tn). Let X ∈ Hol(M) be an infin-
itesimal CR automorphism. Even if, for fixed reals, the biholomorphic
mappingt 7→ exp(sX)(t) is complex algebraic,i.e. then components of
this biholomorphism are complex algebraic functions by Webster’s theo-
rem [We1977], we know by considering the infinitesimal CR automorphism
X1 := i(z + 1)∂z of the strong tubeImw = |z + 1|2 + |z + 1|6 − 2 in C2

passing through the origin, that the flow ofX is not necessarily algebraic
with respect to all variables(s, t).

Nevertheless, we shall show that the local CR automorphism group of
M is a local algebraic Lie group whose general transformations are of the
form t′ = H(t; e1, . . . , ec), wheret ∈ Cn and(e1, . . . , ec) ∈ Rc and where
H is algebraic with respect to all its variables. Thus the “time” dependent
vector fields defined byXi(t; ei) := [∂ei

Hi](H
−1
i,ei

(t); ei), whereHi,ei
(t) :=

Hi(t; ei) := H(t; 0, . . . , 0, ei, 0, . . . , 0), have an algebraic flow, simply given
by (t, ei) 7→ Hi(t; ei). It follows that each foliation defined by the complex
integral curves of the time dependent complex vector fieldsXi, i = 1, . . . , c,
is a complex algebraic foliation,see§3 below. Now, we can state the main
technical theorem of this paper, whose proof is postponed to§4, §5 and §6.

Theorem 2.1. Let M ⊂ Cn be a real algebraicconnected geometrically
smooth generic submanifold of codimensiond ≥ 1 and CR dimensionm =
n − d ≥ 1. Let p ∈ M and assume thatM is finitely nondegenerate and
minimal atp. Then for every sufficiently small nonempty open polydisc∆1

centered atp, the following three properties hold:
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(1) The complex Lie algebraHol(M,∆1) is of finite dimensionc ∈ N

which depends only on the local geometry ofM in a neighborhood of
p.

(2) There exists a nonempty open polydisc∆2 ⊂ ∆1 also centered atp
and aCn-valued mappingH(t; e) = H(t; e1, . . . , ec) withH(t; 0) ≡ t
which is defined in a neighborhood of the origin inCn×Rc and which
is algebraic with respect to both its variablest ∈ Cn ande ∈ Rc such
that for every holomorphic maph : ∆2 → ∆1 with h(∆2 ∩ M) ⊂
∆1 ∩M which is sufficiently close to the identity map, there existsa
uniquee ∈ Rc such thath(t) = H(t; e).

(3) The mapping(t, e) 7→ H(t; e) constitutes aK-algebraic local Lie
transformation group action. More precisely, there exist alocal mul-
tiplication mapping(e, e′) 7→ µ(e, e′) and a local inversion mapping
e 7→ ι(e) such thatH, µ andι satisfy the axioms of local algebraic Lie
group action as defined in §2.3.

(4) Thec “time dependent” holomorphic vector fields

(2.1) Xi(t; ei) := [∂ei
Hi](H

−1
i,ei

(t); ei),

whereHi,ei
(t) := Hi(t; ei) := H(t; 0, . . . , 0, ei, 0, . . . , 0), have al-

gebraic coefficients and have an algebraic flow, given by(t, ei) 7→
Hi(t; ei).

In the case whereM is real analytic, the same theorem holds true with the
word “algebraic” everywhere replaced by the word “analytic”.

A special case of Theorem 2.1 was proved in [BER1999b] where,ap-
parently, the authors do not deal with the notion of local Liegroups and
consider the isotropy group of the pointp, namely the group of holomorphic
self-maps ofM fixing p. The consideration of the complete local Lie group
of biholomorphic self-maps of a piece ofM in a neighborhood ofp (not
only the isotropy group ofp) is crucial for our purpose, since we shall have
to deal with strong tubesM ∈ T d

n for which the isotropy group ofp ∈ M
is trivial. Sections §4, §5 and §6 are devoted to the proof of Theorem 4.1, a
precise statement of Theorem 2.1. We mention that our methodof proof of
Theorem 2.1 gives a non optimal bound for the dimension ofHol(M,∆1).
To our knowledge, the upper boundc ≤ (n + 1)2 − 1 is optimal only in
codimensiond = 1 and in the Levi nondegenerate case.

§3. PROOF OFTHEOREM 1.1

We take in this section Theorem 2.1 for granted. As explainedin §1.3
above, we shall conduct the proof of Theorem 1.1 in two essential steps
(§§3.1 and 3.2). The strategy for the proof of Theorems 1.4 and 1.5 is similar
and we prove them in §§3.3 and 3.4. LetM ∈ T d

n be a strong tube of
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codimensiond passing through the origin inCn given by the equationsvj =
ϕj(y), j = 1, . . . , d. Assume thatM is biholomorphically equivalent to a
real algebraic generic submanifoldM ′.

First step.We show that an arbitrary real algebraic elementM ′ ∈ T d
n can be

straightened in some local complex algebraic coordinatest′ = (t′1, ..., t
′
n) ∈

Cn in order that its infinitesimal CR automorphisms are then holomorphic
vector fields of the specific formX ′

i = c′i(t
′
i) ∂t′i

, i = 1, . . . , n, where the
functionsc′i(t

′
i) are algebraic.

Second step.Assuming that there exists a biholomorphic equivalenceΦ :
M → M ′ satisfyingΦ∗(∂ti) = c′i(t

′) ∂t′i
, we prove by direct computation

that all the first order derivatives of the mappingψ′(y′) must be algebraic.

3.1. Proof of the first step. Let t′ = Φ(t) be such an equivalence, with
Φ(0) = 0 andM ′ := Φ(M) real algebraic. LetXi := ∂ti , i = 1, . . . , n,
be then infinitesimal CR automorphisms ofM and setX ′

i := Φ∗(Xi). Of
course, we have[X ′

i1
, X ′

i2
] = Φ∗([Xi1 , Xi2 ]) = 0, so the CR automorphism

group ofM ′ is alson-dimensional and commutative. Let us choose complex
algebraic coordinatest′ in a neighborhood of0 ∈ M ′ such thatX ′

i|0 =
∂t′i
|0. Let us apply Theorem 2.1 to the real algebraic submanifoldM ′, noting

all the datas with dashes. There exists an algebraic mappingH ′(t′; e) =
H ′(t′; e1, . . . , en) such that every local biholomorphic self-map ofM ′ writes
uniquely t′ 7→ H ′(t′; e), for somee ∈ Rn. In particular, for everyi =
1, . . . , n and every smalls ∈ R, there existses ∈ Rn depending ons such
thatexp(sX ′

i)(t
′) ≡ H ′(t′; es). From the commutativity of the flows of the

X ′
i, i.e. from exp(s1X

′
i1
(exp(s2X

′
i2
(t′)))) ≡ exp(s2X

′
i2
(exp(s1X

′
i1
(t′)))),

we get

(3.1) H ′(H ′(t′; e2); e1) ≡ H ′(H ′(t′; e1); e2).

This shows that the biholomorphismst′ 7→ H ′
e(t

′) := H ′(t′; e) commute
pairwise. In particular, if we define

(3.2) G′
i(t

′; ei) := H ′(t′; 0, . . . , 0, ei, 0, . . . , 0),

we haveG′
i1
(G′

i2
(t′; e2); e1) ≡ G′

i2
(G′

i1
(t′; e1); e2).

Next, after making a linear change of coordinates in thee-space, we can
insure that∂ei

G′
i(0; ei)|ei=0 = ∂t′i

|0 = X ′
i|0 for i = 1, . . . , n. Finally, com-

plexifying the real variableei in a complex variableǫi, we get mappings
G′

i(t
′
i; ǫi) which are complex algebraic with respect to both variablest′ ∈ Cn

andǫi ∈ C and which commute pairwise. We can now state and prove the
following crucial proposition (where we have dropped the dashes) accord-
ing to which we can straighten commonly then one-parameter families of
biholomorphismst′ 7→ G′

i(t
′; ǫi).
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Proposition 3.1. Let t 7→ Gi(t; ǫi), i = 1, . . . , n, ben one complex param-
eter families of complex algebraic biholomorphic maps froma neighbor-
hood of0 in Cn onto a neighborhood of0 in Cn satisfyingGi(t; 0) ≡ t,
∂ǫi
Gi(0; ǫi)|ǫi=0 = ∂ti |0 and pairwise commuting:Gi1(Gi2(t; ǫ2); ǫ1) ≡

Gi2(Gi1(t; ǫ1); ǫ2). Then there exists a complex algebraic biholomorphism
of the formt′ 7→ Φ′(t′) =: t of Cn fixing the origin withdΦ′(0) = Id such
that if we setG′

i(t
′; ǫi) := Φ′−1(Gi(Φ

′(t′); ǫi)), wheret′ = Φ(t) denote the
inverse oft = Φ′(t′), then we have

(3.3) G′
i(t

′; ǫi) ≡ (t′1, . . . , t
′
i−1, G

′
i,i(t

′
i; ǫi), t

′
i+1, . . . , t

′
n),

where the functionsG′
i,i are complex algebraic,depend only ont′i (and on

ǫi) and satisfyG′
i,i(t

′
i; 0) ≡ t′i and∂ǫi

G′
i,i(0; ǫi)|ǫi=0 = 1.

Proof. First of all, we define the complex algebraic biholomorphism

(3.4) Φ′
1 : (t′1, t

′
2, . . . , t

′
n) 7−→ G1(0, t

′
2, . . . , t

′
n; t′1) =: t.

We havedΦ′
1(0) = Id, becauseG1(t; 0) ≡ t and∂ǫ1G1(0; ǫ1)|ǫ1=0 = ∂t1 |0.

Furthermore, since∂ǫ1G1(0; ǫ1)|ǫ1=0 is transversal to{(0, t2, . . . , tn)}, it
also follows that a small neighborhood of the origin inCn

t is algebraically
foliated by the(n − 1)-parameter family of complex curvesC ′

t′2,...,t′n
:=

{G1(0, t
′
2, . . . , t

′
n; t′1) : |t′1| < δ} whereδ > 0 is small andt′2, . . . , t

′
n are

fixed. The existence of this foliation shows that the relation

(3.5) t∗ ∼ t iff there existsǫ1 such thatt∗ = G1(t; ǫ1)

is a local equivalence relation, whose equivalence classesare the leaves
C ′

t′2,...,t′n
(seeFIGURE 1).

FIGURE 1: LOCAL ALGEBRAIC STRAIGHTENING OF THE ORBITS OFG1(t; ǫ1)

t1
0

t2, . . . , tn

C
′

t′2,...,t′n

G1(G1(0, t′2, . . . , t′n; t′1); ǫ1)

G1(0, t′2, . . . , t′n; t′1)
G1(0, t′2, . . . , t′n; 0)

∼ t
t∗

Consequently, as we clearly have

(3.6) (0, t′2, . . . , t
′
n) ∼ G1(0, t

′
2, . . . , t

′
n; t′1) ∼ G1(G1(0, t

′
2, . . . , t

′
n; t′1); ǫ1),

using the transitivity of the relation∼, it follows that there exists a complex
numberεt′,ǫ1 depending ont′ and onǫ1 such that

(3.7) G1(G1(0, t
′
2, . . . , t

′
n; t′1); ǫ1) = G1(0, t

′
2, . . . , t

′
n; εt′,ǫ1).
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By the very definition (3.4) ofΦ′
1, this is equivalent to

(3.8) Φ1(G1(Φ
′
1(t

′); ǫ1)) = (εt′,ǫ1, t
′
2, . . . , t

′
n),

where t′ = Φ1(t) denotes the inverse oft = Φ′
1(t

′). Finally, since the
left hand side of (3.8) is clearly a complex algebraic mapping of (t′; ǫ1), it
follows that there exists a complex algebraic functionG′

1,1(t
′; ǫ1) such that

we can write

(3.9) Φ1(G1(Φ
′
1(t

′); ǫ1)) ≡ (G′
1,1(t

′; ǫ1), t
′
2, . . . , t

′
n).

So we have straightened the first family by means ofΦ′
1.

Next, we drop the dashes and we restart withG1(t; ǫ1) =
(G1,1(t; ǫ1), t2, . . . , tn). Then, similarly as above, by introducing the
complex algebraic biholomorphism

(3.10) Φ′
2 : (t′1, t

′
2, t

′
3, . . . , t

′
n) 7−→ G2(t

′
1, 0, t

′
3, . . . , t

′
n; t′2),

which satisfiesdΦ′
2(0) = Id, and by denoting byt′ = Φ2(t) the inverse of

t = Φ′
2(t

′), we get again that if we setG′
2(t

′; ǫ2) := Φ2(G2(Φ
′
2(t

′); ǫ2)), then

(3.11) G′
2(t

′; ǫ2) ≡ (t′1, G
′
2,2(t

′; ǫ2), t
′
3, . . . , t

′
n),

where the complex algebraic functionG′
2,2(t

′; ǫ2) satisfies
∂ǫ2G

′
2,2(0; ǫ2)|ǫ2=0 = 1 andG′

2,2(t
′; 0) ≡ t′2.

We also have to consider the modification of the first family ofbiholo-
morphismsG′

1(t
′; ǫ1) := Φ2(G1(Φ

′
2(t

′); ǫ1)). Using in an essential way the
commutativity, we may compute

(3.12)






Φ′
2(G

′
1(t

′; ǫ1)) = G1(Φ
′
2(t

′); ǫ1)

= G1(G2(t
′
1, 0, t

′
3, . . . , t

′
n; t′2); ǫ1)

= G2(G1(t
′
1, 0, t

′
3, . . . , t

′
n; ǫ1); t

′
2)

= G2(G1,1(t
′
1, 0, t

′
3, . . . , t

′
n; ǫ1), 0, t

′
3, . . . , t

′
n; t′2)

= Φ′
2(G1,1(t

′
1, 0, t

′
3, . . . , t

′
n; ǫ1), t

′
2, t

′
3, . . . , t

′
n).

It follows that

(3.13) G′
1(t

′; ǫ1) ≡ (G1,1(t
′
1, 0, t

′
3, . . . , t

′
n; ǫ1), t

′
2, t

′
3, . . . , t

′
n)

whence

(3.14) G′
1,1(t

′; ǫ1) := G1,1(t
′
1, 0, t

′
3, . . . , t

′
n; ǫ1)

does not depend ont′2. Finally, inserting (3.11) and (3.13) in the commuta-
tivity relationG′

1(G
′
2(t

′; ǫ2); ǫ1) ≡ G′
2(G

′
1(t

′; ǫ1); ǫ2), we find

(3.15)

{
G′

1,1(t
′
1, G

′
2,2(t

′; ǫ2), t
′
3, . . . , t

′
n; ǫ1) ≡ G′

1,1(t
′; ǫ1),

G′
2,2(G

′
1,1(t

′; ǫ1), t
′
2, t

′
3, . . . , t

′
n; ǫ2) ≡ G′

2,2(t
′; ǫ2).
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The first relation gives nothing, since we already know thatG′
1,1 is indepen-

dent oft′2. By differentiating the second relation with respect toǫ1 at ǫ1 = 0,
we find thatG′

2,2 is independent oft′1.
In summary, after the change of coordinatesΦ′

2 ◦ Φ′
1(t

′) = t which is
tangent to the identity map att′ = 0, we obtained that

(3.16)

{
G′

1(t
′; ǫ1) = (G′

1,1(t
′
1, t

′
3, . . . , t

′
n), t′2, t

′
3, . . . , t

′
n),

G′
2(t

′; ǫ2) = (t′1, G
′
2,2(t

′
2, t

′
3, . . . , t

′
n), t

′
3, . . . , t

′
n).

Using these arguments, the proof of Proposition 3.1 clearlyfollows by in-
duction.

Now, we come back to our CR manifoldM ′ having the one-parameter
families of algebraic biholomorphismsG′

i(t
′; ei) given by (3.2) and pairwise

commuting. Applying Proposition 3.1, after a change of complex algebraic
coordinates of the formt′ = Ψ′′(t′′), we may assume that theG′′

i (t
′′; ǫi) are

algebraic and can be written in the specific form

(3.17) G′′
i (t

′′; ǫi) ≡ (t′′1, . . . , t
′′
i−1, G

′′
i,i(t

′′
i ; ǫi), t

′′
i+1, . . . , t

′′
n),

with ∂ǫi
G′′

i,i(0; ǫi)|ǫi=0 = 1. Let t′′ = Ψ′(t′) denote the inverse oft′ =
Ψ′′(t′′). We thus havet′′ = Ψ′(t′) = Ψ′(Φ(t)), where we remind thatt′ =
Φ(t) provides the equivalence between the strong tubeM and the algebraic
CR genericM ′.

SinceΨ′ is algebraic, the imageM ′′ := Ψ′(M ′) is also algebraic. Let
r′j(t

′, t̄′) = 0, j = 1, . . . , d, be defining equations forM ′. Thenr′′j (t
′′, t̄′′) :=

r′j(Ψ
′′(t′′),Ψ′′(t′′)) = 0 are defining equations forM ′′. By assumption, for

ǫi := ei ∈ R real, the family of algebraic biholomorphismsG′
i(t

′; ǫi) maps
a small piece ofM ′ through the origin intoM ′. It follows trivially that
G′′

i (t
′′; ǫi) ≡ Ψ′(G′

i(Ψ
′′(t′′); ǫi)) maps a small piece ofM ′′ through the origin

into M ′′. Furthermore, sincedΨ′′(0) = Id, it follows that if we denote
X ′′

i := Ψ′
∗(X

′
i), thenX ′′

i |0 = ∂t′′i
|0.

Next, thanks to the specific form (3.17), by differentiating
∂ǫi
G′′

i (t
′′; ǫi)|ǫi=0, we getn vector fields of the formZ ′′

i = c′′i (t
′′
i ) ∂t′′i

.
By construction, the functionsc′′i (t

′′
i ) are algebraic and satisfyc′′i (0) = 1.

Differentiating with respect toei the identityr′′j (G
′′
i (t

′′; ei), G
′′
i (t

′′; ei)) = 0
for r′′j (t

′′, t̄′′) = 0, i.e. for t′′ ∈ M ′′, we see thatZ ′′
i is tangent toM ′′,

i.e. we see thatZ ′′
i is an infinitesimal CR automorphism ofM ′′. Conse-

quently, there exist real constantsλi,l such thatZ ′′
i =

∑n
l=1 λi,lX

′′
l . Since

Z ′′
i |0 = X ′′

i |0 = ∂t′′i
|0, we have in factλi,l = 1 for i = l andλi,l = 0 for

i 6= l. SoZ ′′
i = X ′′

i and we have shown that

(3.18) (Ψ′ ◦ Φ)∗(Xi) = X ′′
i = Z ′′

i = c′′i (t
′′
i ) ∂t′′i

.
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We shall call a CR generic manifoldM ′′ having infinitesimal CR auto-
morphisms of the formX ′′

i = c′′i (t
′′
i ) ∂t′′i

with c′′i (0) 6= 0 a pseudotube. Such
a pseudotube is not in general a product byRn. In fact, there is no hope
to tubify all algebraic peudotubes in algebraic coordinates, as shows the el-
ementary exampleImw = |z + 1|2 + |z + 1|6 − 2 having infinitesimal
CR automorphisms∂w and i(z + 1)∂z, since the only change of coordi-
nates for whichΦ∗(∂w) = ∂w′ andΦ∗(i(z + 1)∂z) = ∂z′ is z + 1 = eiz′ ,
w = w′, which transformsM into M ′ of nonalgebraic defining equation
Imw′ = e−2y′

+ e−6y′
.

The constructions of this paragraph may be represented by the following
symbolic picture.

M ′

v′Cn
t′

M

Cn
t v x, u

v′′

M ′′

Cn
t′′ x′′, u′′′

y′′

y′
y Φ

M ′ algebraic

x′, u′

M ′′ algebraic pseudotube

M strong tube

Φ′′ := Ψ′ ◦ Φ

FIGURE 2: ALGEBRAIC STRAIGHTENINGΨ′ OF M ′

Ψ′

Summary and conclusion of the first step.To conclude, let us denote for
simplicity M ′′ again byM ′, the coordinatest′′ again byt′ and t′′ = Ψ′ ◦
Φ(t) by t′ = Φ(t). After the above straightenings, we have shown that
the infinitesimal CR automorphismsX ′

i := Φ∗(Xi) of the algebraic generic
manifoldM ′ are of the sympathetic formX ′

i = c′i(t
′
i) ∂t′i

, i = 1, . . . , n, with
algebraic coefficientsc′i(t

′
i) satisfyingc′i(0) = 1.

3.2. Proof of the second step.We characterize first finite nondegeneracy
for tubes of codimensiond in Cn.

Lemma 3.2. Let M be a tube of codimensiond in Cn equipped with co-
ordinates(z, w) = (x + iy, u + iv) ∈ Cm × Cd given by the equations
vj = ϕj(y), j = 1, . . . , d, whereϕj(0) = 0. ThenM is finitely nondegener-
ate at the origin if and only if there existm multi-indicesβ1

∗ , . . . , β
m
∗ ∈ Nm
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with |βk
∗ | ≥ 1 and integersj1

∗ , . . . , j
m
∗ with 1 ≤ jk

∗ ≤ d such that the real
mapping

(3.19) ψ(y) :=

(
∂|β

1
∗ |ϕj1

∗
(y)

∂yβ1
∗

, . . . ,
∂|β

m
∗ |ϕjm

∗
(y)

∂yβm
∗

)
=: y′ ∈ Rm

is of rankm at the origin inRm.

Proof. We follow the definition of finite nondegeneracy given in §1.2. Let
rj(t, t̄) := vj − ϕj(y) = 0 be the defining equations ofM . Let Lk :=

∂z̄k
+
∑d

j=1 ϕj,z̄k
∂w̄j

, k = 1, . . . , m, be a basis of(1, 0)-vector fields tangent
toM . We write the first order terms in the Taylor series ofϕj(y) asϕj(y) =∑n

l=1 λj,l yl + O(|y|2). Then the holomorphic gradient ofrj is given by
(3.20)



∇t(rj) = (∂z1rj, . . . , ∂zmrj, ∂w1rj, . . . , ∂wd
rj)

= i2−1(∂y1ϕj, . . . , ∂ymϕj, 0, . . . , 0,−1, 0, . . . , 0)

= i2−1(λj,1, · · · , λj,m, 0, . . . , 0,−1, 0, . . . , 0), at the origin.

On the other hand, since forβ = (β1, . . . , βm) ∈ Nm with |β| ≥ 1 the

order|β| derivationL
β

:= L
β1

1 · · ·L
βm

m acts on functions ofy as the operator
(2i)−|β| ∂β

y , we can compute
(3.21){

L
β
(∇t(rj)) = (L

β
∂z1ϕj , . . . , L

β
∂zmϕj, 0, . . . , 0, . . . , 0)

= i−|β|+12−|β|−1 (∂β
y ∂y1ϕj , . . . , ∂

β
y ∂ymϕj, 0, . . . , 0, . . . , 0).

By inspecting the expressions (3.20) and (3.21), we see that
Span{(Lβ

(∇t(rj)))(0) : β ∈ Nm, j = 1, . . . , d} = Cn if and only
if Span{(∂β

y ∂y1ϕj(0), . . . , ∂β
y ∂ymϕj(0)) : β ∈ Nm, |β| ≥ 1, j =

1, . . . , d} = Rm. This last condition is clearly equivalent to the one stated
in Lemma 3.2.

We can prove now that the inverse mappingψ′(y′) of the mapping
ψ(y) defined by (1.1) (or (3.19)) has algebraic first order derivatives.
By Step 1, there exists a biholomorphic transformationΦ mapping the
strong tubeM onto the algebraic pseudotubeM ′ with the property that
Φ∗(∂ti) = c′i(t

′
i) ∂t′i

. Writing Φ(t) = (h1(t), . . . , hn(t)), we haveΦ∗(∂ti) =∑n
l=1 hl,ti(t) ∂t′l

= c′i(t
′
i) ∂t′i

, so hi(t) depends only onti which yields
Φ(t) = (h1(t1), . . . , hn(tn)). We shall use the convenient notationt′i =
hi(ti) and ti = h′i(t

′
i) for the inverseh′i := h−1

i , i = 1, . . . , n. If accord-
ingly, Φ′(t′) = t denotes the inverse ofΦ(t) = t′, we haveΦ′

∗(c
′
i(t

′
i) ∂t′i

) =
c′i(t

′
i) h

′
i,t′i

(t′i) ∂ti = ∂ti , which shows thatc′i(t
′
i) h

′
i,t′i

(t′i) ≡ 1. Sincec′i(0) =

1, we see thath′i(t
′
i) =

∫ t′i
0

1/[c′i(σ)] dσ is the complex primitive of an alge-
braic function. This observation will be important.
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After a permutation of the coordinates, we may assume thatM ′ is given
in the coordinatest′ = (z′, w′) ∈ Cm × Cd by the real defining equations
Imw′

j = ϕ′
j(z

′, z̄′,Rew′), j = 1, . . . , d, where the functionsϕ′
j are algebraic

and vanish at the origin. Solving in terms ofw′ by means of the algebraic
implicit function theorem, we can representM ′ by the algebraic complex
defining equations

(3.22) w′
j = Θ

′
j(z

′, z̄′, w̄′), j = 1, . . . , d,

where Θ
′

satisfies the vectorial functional equationw′ ≡
Θ

′
(z′, z̄′,Θ′(z̄′, z′, w′)) (which we shall not use). According to the

splitting (z′, w′) of coordinates, it is convenient to modify our previous no-
tation by writingzk = f ′

k(z
′
k), k = 1, . . . , m andwj = g′j(w

′
j), j = 1, . . . , d

instead ofti = h′i(t
′
i), i = 1, . . . , n, and also

(3.23)

{
X ′

k = a′k(z
′
k) ∂z′

k
, k = 1, . . . , m, a′k(0) = 1,

Y ′
j = b′j(w

′
j) ∂w′

j
, j = 1, . . . , d, b′j(0) = 1,

instead ofX ′
i = c′i(t

′
i) ∂t′i

. The relationc′i(t
′
i) h

′
i,t′i

(t′i) ≡ 1 rewrites down in
the form

(3.24)

{
a′k(z

′
k) f

′
k,z′

k
(z′k) ≡ 1,

b′j(w
′
j) g

′
j,w′

j
(w′

j) ≡ 1.

We remind that the derivatives of thef ′
k and of theg′j are algebraic. Let now

t′ = (z′, w′) ∈ M ′, thus satisfying (3.22). Thenh′(t′) = (f ′(z′), g′(w′))
belongs toM , namely we have forj = 1, . . . , d:
(3.25)

g′j(w
′
j)− ḡ′j(w̄′

j)

2i
= ϕj

(
f ′

1(z
′
1)− f̄ ′

1(z̄
′
1)

2i
, . . . ,

f ′
m(z′m)− f̄ ′

m(z̄′m)

2i

)
,

wherei =
√
−1 here. Replacingw′

j by Θ
′
j(z

′, z̄′, w̄′) in the left hand side,
we get the following identity between converging power series of the2m+d
complex variables(z′, z̄′, w̄′):
(3.26)
g′j(Θ

′
j(z

′, z̄′, w̄′))− ḡ′j(w̄′
j)

2i
≡ ϕj

(
f ′

1(z
′
1)− f̄ ′

1(z̄
′
1)

2i
, . . . ,

f ′
m(z′m)− f̄ ′

m(z̄′m)

2i

)
.

Let us differentiate this identity with respect toz′k, for k = 1, . . . , m. Taking
into account the relations (3.24), we obtain
(3.27)
a′k(z

′
k) Θ

′
j,z′

k
(z′, z̄′, w̄′)

b′j(Θ
′
j(z

′, z̄′, w̄′))
≡ ∂ϕj

∂yk

(
f ′

1(z
′
1)− f̄ ′

1(z̄
′
1)

2i
, . . . ,

f ′
m(z′m)− f̄ ′

m(z̄′m)

2i

)
.
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Clearly, the left hand side is an algebraic functionA ′
j,k(z

′, z̄′, w̄′). Then dif-
ferentiating again with respect to the variablesz′k the relations (3.27), we see
that for every multi-indexβ ∈ Nm with |β| ≥ 1, and everyj = 1, . . . , d,
there exists an algebraic functionA ′

j,β(z
′, z̄′, w̄′) such that the following

identity holds:
(3.28)

A ′
j,β(z

′, z̄′, w̄′) ≡ ∂β1+···+βmϕj

∂yβ1

1 · · ·∂βm
ym

(
f ′

1(z
′
1)− f̄ ′

1(z̄
′
1)

2i
, . . . ,

f ′
m(z′m)− f̄ ′

m(z̄′m)

2i

)
.

Differentiating (3.28) with respect tōw′, we see immediately thatA ′
j,β is

in fact independent of̄w′. Furthermore, we see thatA ′
j,β is real, namely

A ′
j,β(z

′, z̄′) ≡ A
′
j,β(z̄

′, z′). Now we extract from (3.28) them identities
written for β := βk

∗ , j := jk
∗ , k = 1, . . . , m and we use the invertibility of

the mappingψ defined in (3.19) (recall thatψ′(y′) = y denotes the inverse
of y′ = ψ(y)), which yields

(3.29)
f ′

k(z
′
k)− f̄ ′

k(z̄
′
k)

2i
≡ ψ′

k(A
′

j1
∗ ,β1

∗
(z′, z̄′), . . . ,A ′

jm
∗ ,βm

∗
(z′, z̄′)),

for k = 1, . . . , m. For simplicity, we shall writeA ′
k(z

′, z̄′) instead of
A ′

jk
∗ ,βk

∗
(z′, z̄′). Finally, we differentiate (3.29) with respect toz′k, which

yields, taking into account (3.24):
(3.30)




1

2i a′k(z
′
k)
≡

m∑

l=1

∂ψ′
k

∂y′l
(A ′

1(z
′, z̄′), . . . ,A ′

m(z′, z̄′))
∂A ′

l

∂z′k
(z′, z̄′),

0 ≡
m∑

l=1

∂ψ′
k

∂y′l
(A ′

1(z
′, z̄′), . . . ,A ′

m(z′, z̄′))
∂A ′

l

∂z′ek
(z′, z̄′), k̃ 6= k.

It follows from these relations (3.30) viewed in matrix formthat the con-
stant matrix(

∂A ′
l

∂z′
k

(0, 0))1≤l,k≤m is invertible, because the diagonal matrix

(δ
ek
k [2ia′k(z

′
k)]

−1)1≤k,ek≤m is evidently invertible atz′k = 0 (recalla′k(0) = 1).
Consequently, there exist algebraic functionsB′

k,l(z
′, z̄′) so that

(3.31)
∂ψ′

k

∂y′l
(A ′

1(z
′, z̄′), . . . ,A ′

m(z′, z̄′)) ≡ B′
k,l(z

′, z̄′).

Next, setting̃y′k = A ′
k(iy

′,−iy′), k = 1, . . . , mwe see, from the invertibility

of the matrix(
∂A ′

k

∂z′
l

(0, 0))1≤k,l≤m and from the reality ofA ′
k(z

′, z̄′), that the

Jacobian determinant at the origin of the mappingy′ 7→ A ′(iy′,−iy′) = ỹ′k
is nonzero. Thus there are real algebraic functionsC ′

k so that we can express
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y′ in terms ofỹ′ asy′k = C ′
k(ỹ

′). Finally, we get

(3.32)
∂ψ′

k

∂y′l
(ỹ′1, . . . , ỹ

′
m) = B′

k,l(iC
′(ỹ′),−iC ′(ỹ′)),

where the right hand sides are algebraic; this shows that thepartial deriva-
tives∂y′lψ

′
k are algebraic functions of̃y′.

To obtain the equivalent formulation of Theorem 1.1, we observe the fol-
lowing.

Lemma 3.3. For every k, l = 1, . . . , m, the functions∂y′
k
ψ′

l(y
′) are

algebraic functions ofy′ if and only if for everyk1, k2 = 1, . . . , m,
the second derivative∂2

yk1
yk2

(y) is an algebraic function ofψ(y) =

(∂y1ϕ(y), . . . , ∂ymϕ(y)).

Proof. Differentiating the identitiesyk ≡ ψ′
k(ψ(y)), k = 1, . . . , m, with

respect toyl, we get

(3.33) δl
k ≡

m∑

j=1

∂y′
j
ψ′

k(ψ(y)) ∂yj
ψj(y) ≡

m∑

j=1

∂y′
j
ψ′

k(y
′) ∂2

ymyl
ϕ(y).

Applying Cramer’s rule, we see that there exist universal rational functions
Rk,l such that

(3.34)

{
∂2

ykyl
ϕ(y) ≡ Rk,l({∂y′

k2
ψ′

k1
(y′)}1≤k1,k2≤m})

≡ Rk,l({∂y′
k2
ψ′

k1
(∂y1ϕ(y), . . . , ∂ymϕ(y))}1≤k1,k2≤m}).

This implies the equivalence of Lemma 3.3.

In conclusion, taking Theorem 2.1 for granted, the proof of Theorem 1.1
is now complete.

3.3. Proof of Theorem 1.5.LetM : v = ϕ(z, z̄) be a rigid Levi nondegen-
erate hypersurface inCn passing through the origin. We may assume that
v =

∑n−1
k=1 εk |zk|2 +ϕ3(z, z̄), whereεk = ±1 and we may writeϕ3(z, z̄) =∑n−1

k=1 [z̄k ϕ
3
k(z) + zkϕ̄

3
k(z̄)] + ϕ4(z, z̄), with ϕ4(0, z̄) ≡ ϕ4

zk
(0, z̄) ≡ 0 and

ϕ3
k = O(2). After making the change of coordinatesz′k := zk + εk ϕ

3
k(z),

w′ := w, we come to the simple equationv′ =
∑n−1

k=1 εk |z′k|2 + χ′(z′, z̄′),
whereχ′(0, z̄′) ≡ χz′

k
(0, z̄′) ≡ 0, considered in Theorem 1.5.

Assume thatM is strongly rigid, locally algebraizable and letM ′ be an
algebraic equivalent ofM . Let t′ = h(t) be such an equivalence, or in our
previous notationz′ = f(z, w) andw′ = g(z, w). We notez = f ′(z′, w′)
andw = g′(z′, w′) the inverse equivalence. SinceM is strongly rigid,
namelyHol(M) is generated by the single vector fieldX1 := ∂w, it fol-
lows thatHol(M ′) is also one-dimensional, generated by the single vector
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field X ′
1 := h∗(X1). Taking again Theorem 2.1 for granted and proceed-

ing as in the first step of the proof of Proposition 3.1, we may algebraically
straighten the complex foliation induced byX ′

1 to the “vertical” foliation
by w′-lines. Equivalently, we may assume thatX ′

1 = b′(z′, w′) ∂w′ with b′

algebraic andb′(0) = 1. The assumptionh∗(∂w) = b′(z′, w′) ∂w′ yields that
f ′(z′, w′) is independant ofw′ and thatb′(z′, w′) g′w′(z′, w′) ≡ 1, so that as
in (3.24) above, the derivativeg′w′ is algebraic. Letw′ = Θ

′
(z′, z̄′, w̄′) be

the complex defining equation ofM ′ in these coordinates. The assumption
h′(M ′) = M yields the following power series identity

(3.35) g′(z′,Θ
′
(z′, z̄′, w̄′))− ḡ′(z̄′, w̄′) ≡ 2i ϕ(f ′(z′), f̄ ′(z̄′)).

By differentiating this identity with respect toz′k, we get
(3.36)

∂z′k
g′(z′,Θ

′
(z′, z̄′, w̄′))+

∂z′
k
Θ

′
(z′, z̄′, w̄′)

b′(Θ
′
(z′, z̄′, w̄′))

≡ 2i

n−1∑

l=1

∂zl
ϕ(f ′(z′), f̄ ′(z̄′)) ∂z′k

f ′
l (z

′).

We notice that the second term in the left hand side of (3.36) is algebraic.
By differentiating in turn (3.36) with respect tōz′k and using the algebraicity
of ∂2

z′kw′g′(z′, Θ̄′(z′, z̄′, w̄′)), we obtain that there exist algebraic functions
A ′

k1,k2
(z′, z̄′) such that

(3.37)

A ′
k1,k2

(z′, z̄′) ≡
n−1∑

l1,l2=1

∂2
zl1

z̄l2
ϕ(f ′(z′), f̄ ′(z̄′)) ∂z′

k1
f ′

l1
(z′) ∂z̄′

k2
f̄ ′

l2
(z̄′).

Without loss of generality, we may assume thath′ is tangent to the iden-
tity map att′ = 0. Then settinḡz′ := 0 in (3.37) and using the fact that
∂2

zl1
z̄l2
ϕ(z, 0) = δl2

l1
εl1 + ∂2

zl1
z̄l2
χ(z, 0) ≡ δl2

l1
εl1 by the properties ofχ in

Theorem 1.5 we get, since∂z̄′
k2
f̄ ′

l2
(0) = δk2

l2
:

(3.38) A ′
k1,k2

(z′, 0) ≡ εk2 ∂z′
k1
f ′

k2
(z′),

which shows that all the first order derivatives∂z′
k
f ′

l (z
′) are algebraic.

Next, since the canonical transformation to normalizing coordinates is al-
gebraic and preserves the “horizontal” coordinatesz′ (cf. [CM1974]), hence
does not perturb the complex foliation induced byX ′

1, we may also assume
thatM ′ is given in normal coordinates, namely that the functionΘ′ satis-
fiesΘ′(0, z̄′, w̄′) ≡ Θ′(z′, 0, w̄′) ≡ w̄′. Since the coordinates are normal for
bothM andM ′, it follows by settingz̄′ := 0 and w̄′ := 0 in (3.35) that
g′(z′, 0) ≡ 0. Consequently,∂z′

k
g′(z′, 0) ≡ 0. Finally, by settingz′ := 0 and

w̄′ := 0 in (3.36), we see that the first term in the left hand side vanishes and
that the second term is algebraic with respect toz̄′, so we obtain that there
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exist algebraic functionsB
′
k(z̄

′) such that

(3.39) B
′
k(z̄

′) ≡
n−1∑

l=1

∂zl
ϕ(0, f̄ ′(z̄′)) ∂z′

k
f ′

l (0) ≡ εk f̄
′
k(z̄

′).

We have proved that the componentsf ′
k(z

′) are all algebraic.
Finally, coming back to the relation (3.36), we want to provethat the

derivatives∂zl
ϕ(f ′(z′), f̄ ′(z̄′)) are all algebraic. However, the first term

of (3.36) is not algebraic in general. Fortunately, using the fact that
Θ

′
= w̄′ + O(2), we see that there exists a unique algebraic solution

w̄′ = Λ
′
(z′, z̄′) of the implicit equationΘ

′
(z′, z̄′, w̄′) = 0, namely satis-

fying Θ
′
(z′, z̄′,Λ

′
(z′, z̄′)) ≡ 0. Then by replacinḡw′ by Λ

′
in (3.36), we get

that there exist algebraic functionsC ′
k(z

′, z̄′) such that

(3.40) C ′
k(z

′, z̄′) ≡
n−1∑

l=1

∂zl
ϕ(f ′(z′), f̄ ′(z̄′)) ∂z′

k
f ′

l (z
′).

Since f ′ is tangent to the identity map, we can solve by Cramer’s
rule this linear system for the derivatives∂zl

ϕ, which yields that the
∂zl
ϕ(f ′(z′), f̄ ′(z̄′)) are all algebraic. Sincef ′(z′) is also algebraic, we

obtain in sum that the derivatives∂zl
ϕ(z, z̄) are all algebraic. In conclusion,

taking Theorem 2.1 for granted, the proof of Theorem 1.5 is complete.

3.4. Proof of Theorem 1.4.Let M : v = ϕ(zz̄) in C2 with Hol(M) gen-
erated by∂w and iz∂z. Without loss of generality, we can assume that
ϕ(r) = r + O(r2). LetM ′ be an algebraic equivalent ofM . Let t = h′(t′),
or z = f ′(z′, w′), w = g′(z′, w′) be a local holomorphic equivalence sat-
isfying h′(M ′) = M . Let t′ = h(t) be its inverse. ThenHol(M ′) is
two-dimensional and generated byh∗(∂w) andh∗(iz∂z). First of all, us-
ing the algebraicity of the CR automorphism group ofM ′ and proceeding
as in the proof of Proposition 3.1, we can prove that there exist two gener-
ators ofHol(M ′) of the formX ′

1 = b′(w′) ∂w′ andX ′
2 = a′(z′) ∂z′ where

b′ and a′ are algebraic and satisfyb′(0) = 1 and a′(z′) = iz′ + O(z′2).
Furthermore, we may assume thath′ is tangent to the identity map and that
h′∗(b

′(w′) ∂w′) = ∂w andh′∗(a
′(z′) ∂z′) = iz∂z. As in (3.24), it follows that

b′(w′) g′w′(w′) ≡ 1 anda′(z′) f ′
z′(z

′) ≡ if ′(z′). Letw′ = Θ
′
(z′, z̄′, w̄′) be the

complex algebraic equation ofM ′. Then we get the following power series
identity:

(3.41) g′(Θ
′
(z′, z̄′, w̄′))− ḡ′(w̄′) ≡ 2i ϕ(f ′(z′)f̄ ′(z̄′)),
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which yields after differentiating with respect toz′:
(3.42){

Θ
′
z′(z

′, z̄′, w̄′)/[b′(Θ
′
(z′, z̄′, w̄′))] ≡ 2i ∂z′f(z′) f̄ ′(z̄′) ∂rϕ(f ′(z′)f̄ ′(z̄′))

≡ − 2 f ′(z′)f̄ ′(z̄′) ∂rϕ(f ′(z′)f̄ ′(z̄′))/[a′(z′)].

Here, we consider the functionϕ as a functionϕ(r) of the real variable
r ∈ R. Since the left hand side is an algebraic function anda′(z′) is also
algebraic, there exists an algebraic functionA ′(z′, z̄′) such that we can write

(3.43) A ′(z′, z̄′) ≡ f ′(z′)f̄ ′(z̄′) ∂rϕ(f ′(z′)f̄ ′(z̄′)).

Next, using the propertyϕ(r) = r + O(r2), differentiating (3.43) with
respect toz̄′ at z̄′ = 0, we obtain thatf ′(z′) is algebraic. Coming back
to (3.43), this yields that∂rϕ(f ′(z′)f̄ ′(z̄′)) is algebraic. Sincef ′(z′) is also
algebraic, we finally obtain that∂rϕ(r) is algebraic. Excepting the examples
which will be treated in §7.5, the proof of Theorem 1.4 is complete.

The next three sections are devoted to the statement of Theorem 4.1,
which implies directly Theorem 2.1 (§4), and to its proof (§§5-6).

§4. LOCAL L IE GROUP STRUCTURE FOR THECR AUTOMORPHISM

GROUP

4.1. Local representation of a real algebraic generic submanifold. We
consider a connected real algebraic (or more generally, real analytic) generic
submanifoldM in Cn of codimensiond ≥ 1 and CR dimensionm =
n − d ≥ 1. Pick a pointp ∈ M and consider some holomorphic coordi-
natest = (t1, . . . , tn) = (z1, . . . , zm, w1, . . . , wd) ∈ Cm × Cd vanishing
at p in which T0M = {Imw = 0}. If we denotew = u + iv, it fol-
lows that there exists (Nash) real algebraic power seriesϕj(z, z̄, u) with
ϕj(0) = 0 anddϕj(0) = 0 such that the defining equations ofM are of
the form vj = ϕj(z, z̄, u), j = 1, . . . , d in a neighborhood of the origin.
By means of the algebraic implicit function theorem, we can solve with re-
spect tow̄ the equationswj − w̄j = 2i ϕj(z, z̄, (w + w̄)/2), j = 1, . . . , d,
which yieldsw̄j = Θj(z̄, z, w) for some power seriesΘj which are com-
plex algebraic with respect to their2m + d variables. Here, we have
Θj = wj + O(2), sinceT0M = {Imw = 0}. Without loss of gener-
ality, we shall assume that the coordinates are normal, namely the func-
tionsΘj(z̄, z, w) satisfyΘj(0, z, w) ≡ wj andΘj(z̄, 0, w) ≡ wj. It may be
shown that the power seriesΘj = wj + O(2) satisfy the vectorial functional
equationΘ(z̄, z,Θ(z, z̄, w̄)) ≡ w̄ in C{z, z̄, w̄}d and conversely that to ev-
ery such power series mapping satisfying this vectorial functional equation,
there corresponds a unique real algebraic generic manifoldM (cf. for in-
stance the manuscript [GM2001c] for the details). So we can equivalently
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takew̄j = Θj(z̄, z, w) or wj = Θj(z, z̄, w̄) as complex defining equations
for M .

For arbitraryρ > 0, we shall often consider the open polydisc∆n(ρ) :=
{t ∈ Cn : |t| < ρ} where we denote by|t| := max1≤i≤n |ti| the usual
polydisc norm. Without loss of generality, we may assume that the power
seriesΘj converge normally in the polydic∆2m+d(2ρ1), whereρ1 > 0. In
fact, we shall successively introduce some other positive constants (radii)
0 < ρ5 < ρ4 < ρ3 < ρ2 < ρ1 afterwards. Finally, we defineM as:

(4.1) M = {(z, w) ∈ ∆n(ρ1) : w̄j = Θj(z̄, z, w), j = 1, . . . , d}.

Next, letρ2 arbitrary with0 < ρ2 < ρ1. For h′, h ∈ O(∆n(ρ1),C
n), we

define

(4.2) ||h′ − h||ρ2 := sup {|h′(t)− h(t)| : t ∈ ∆n(ρ2)}.

Fork ∈ N, we shall also consider theC k norms
(4.3)
||Jkh′−Jkh||ρ2 := sup {|∂α

t h
′(t)−∂α

t h(t)| : t ∈ ∆n(ρ2), α ∈ Nn, |α| ≤ k}.

For k ∈ N andt ∈ ∆n(ρ1), we denote byJkh(t) the collection of partial
derivatives(∂α

t hi(t))1≤i≤n, |α|≤k of length≤ k of the componentsh1, . . . , hn,
so Jkh(t) ∈ CNn,k , whereNn,k := n (n+k)!

n! k!
. In particular, the expression

Jkh(0) = (∂α
t hi(0))1≤i≤n, |α|≤k denotes thek-jet of h at 0. So, the space

of k-jets at the origin of holomorphic mappingsh ∈ O(∆n(ρ1),C
n) may

be identified with the complex linear spaceCNn,k . We denote the natural
coordinates onCNn,k by (Jα

i )1≤i≤n, |α|≤k. Sometimes, we abbreviate this
collection of coordinates byJk ≡ (Jα

i )1≤i≤n, |α|≤k. Finally, we denote byJk
Id

thek-jet at the origin of the identity mapping. We introduce the important
set of holomorphic self-mappings ofM defined by
(4.4){

H ρ2,ρ1

M,k,ε := {h ∈ O(∆n(ρ1),C
n) : ||Jkh− Jk

Id||ρ2 < ε,

h(M ∩∆n(ρ2)) ⊂M ∩∆n(ρ1)}.

Here,k ∈ N andε > 0 is a small positive number that we shall shrink many
times in the sequel.
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We may now state the main theorem of §4, §5 and §6, namely The-
orem 4.1, which provides a complete parametrized description of the set
H ρ2,ρ1

M,k,ε of local biholomorphic self-mappings ofM , with k equal to an in-
tegerκ0 depending onM . During the course of the (rather long) proof, for
technical reasons, we shall have to introduce first a third positive radiusρ3

with 0 < ρ3 < ρ2 < ρ1 which is related to the finite nondegeneracy ofM ,
and then afterwards a fourth positive radiusρ4 with 0 < ρ4 < ρ3 < ρ2 < ρ1,
which is related to the minimality ofM . This is why the radius notation
“ρ4” appears after “ρ2” and “ρ1” without mention of “ρ3” (cf. FIGURE 3).

Theorem 4.1. Assume that the real algebraic generic submanifoldM de-
fined by(4.1) is minimal and finitely nondegenerate at the origin. As above,
fix two radii ρ1 andρ2 with 0 < ρ2 < ρ1. Then there exists aneveninteger
κ0 ∈ N∗ which depends only on the local geometry ofM near the origin,
there existsε > 0, there existsρ4 > 0 with ρ4 < ρ2, there exists a complex
algebraicCn-valued mappingH(t, Jκ0) which is defined fort ∈ Cn with
|t| < ρ4 and forJκ0 ∈ CNn,κ0 (whereNn,κ0 = n (n+κ0)!

n! κ0!
) with |Jκ0−Jκ0

Id | < ε
and which depends only onM and there exists a geometrically smooth real
algebraic totally real submanifoldE of CNn,κ0 passing through the identity
jet Jκ0

Id which depends only onM , which is defined by

(4.5) E = {Jκ0 : |Jκ0 − Jκ0

Id | < ε, Cl(J
κ0 , Jκ0) = 0, l = 1, . . . , υ},

where theCl(J
κ0 , Jκ0), l = 1, . . . , υ, are real algebraic functions defined on

the polydisc{|Jκ0 − Jκ0

Id | < ε}, and which can be constructed algorithmi-
cally by means only of the defining equations ofM , such that the following
six statements hold:
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(1) Every local biholomorphic self-mappingh ∈ H ρ2,ρ1

M,κ0,ε ofM (which is
defined on the large polydisc∆n(ρ1)) is represented by

(4.6) h(t) = H(t, Jκ0h(0)),

on the smallest polydisc∆n(ρ4). In particular, eachh ∈ H ρ2,ρ1

M,κ0,ε is
a complex algebraic biholomorphic mapping. Furthermore, theκ0-jet
of h at the origin belongs to the real algebraic submanifoldE, namely
we haveCl(J

κ0h(0), Jκ0 h̄(0)) = 0, l = 1, . . . , υ.
(2) Conversely, shrinkingε if necessary, given an arbitrary jetJκ0 in E

there exists a smaller positive radiusρ5 < ρ4 such that the mapping
defined byh(t) := H(t, Jκ0) for |t| < ρ5 sendsM ∩ ∆n(ρ5) CR-
diffeomorphically onto its image which is contained inM ∩ ∆n(ρ4).
We may therefore say that the setH ρ2,ρ1

M,κ0,ε of local biholomorphic self-
mappings ofM is parametrized by the real algebraic submanifoldE.

(3) For every choice of two smaller positive radiiρ̃1 ≤ ρ1 andρ̃2 ≤ ρ2 with
ρ̃2 < ρ̃1, there exists a positive radius̃ρ4 ≤ ρ4 with ρ̃4 < ρ̃2, and a pos-
itive ε̃ ≤ ε such that the same complex algebraic mappingH(t, Jκ0)
as in statement(1) above represents all local biholomorphic self-
mappings̃h ∈ H eρ2,eρ1

M,κ0,eε of M , namely we havẽh(t) = H(t, Jκ0h̃(0))

for all |t| < ρ̃4 as in (4.6). Furthermore, the corresponding real al-
gebraic totally real submanifold̃E coincides withE in the polydisc
{|Jκ0 − Jκ0

Id | < ε̃} and it is defined by the same real algebraic equa-
tionsCl(J

κ0, Jκ0) = 0, l = 1, . . . , υ, as in equation(4.5). In fact,
the algebraic mappingH(t, Jκ0) and the real algebraic totally real
submanifoldE depend only on the local geometry ofM in a neighbor-
hood of the origin, namely on the germ ofM at 0.

(4) The setH ρ2,ρ1

M,κ0,ε, equipped with the law of composition of holomorphic
mappings, is a real algebraic local Lie group. More precisely, let the
positive integerc0 denote the real dimension ofE, which is indepen-
dent ofρ1, ρ2 and consider a parametrization

(4.7) Rc0 ∋ e = (e1, . . . , ec0) 7→ jκ0(e) ∈ E ⊂ CNn,κ0

of the real algebraic totally real submanifoldE. Then there exist a real
algebraic associative local multiplication mapping(e, e′) 7→ µ(e, e′)
and a real algebraic local inversion mappinge 7→ ι(e) such that if we
defineH(t; e) := H(t, jκ0(e)), thenH(H(t; e); e′) ≡ H(t;µ(e, e′))
andH(t; e)−1 ≡ H(t; ι(e)), with the local Lie transformation group
axioms, as defined in§2.3, being satisfied byH, µ andι.

(5) For i = 1, . . . , c0, consider the one-parameter families of trans-
formations defined byH(t; 0, . . . , 0, ei, 0, . . . , 0) =: Hi(t; ei) =:
Hi,ei

(t). Then for eachi = 1, . . . , c0, the vector fieldXi|(t;ei) :=
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[∂i,ei
Hei

(t′)]t′=H−1
ei

(t), is defined fort ∈ ∆n(ρ5) and |ei| < ε, has al-
gebraic coefficients depending on the “time” parameterei, and has
an algebraic flow, since this coincides with the algebraic mapping
(t, ei) 7→ Hi,ei

(t).
(6) Letρ5 be as in statement(2). Then the dimensionc0 of the real Lie al-

gebraHol(M,∆n(ρ5)) is finite, bounded by the fixed integerNn,κ0 :=

n (n+κ0)!
n! κ0!

. Furthermore, each vector fieldX ∈ Hol(M,∆n(ρ5)) has
complex algebraic coefficients.

If M is real analytic, the same theorem holds with the word “algebraic”
replaced everywhere by the word “analytic”.

We shall explain below how the integerκ0 is related to the minimality
and to the finite nondegeneracy ofM at the origin. The next §5 and §6
are devoted to the proof Theorem 4.1, namely the existence ofthe mapping
H(t, Jκ0), the existence of the real algebraic totally real submanifold E and
the completion of the proof of properties(1-6).

§5. MINIMALITY AND FINITE NONDEGENERACY

5.1. Local CR geometry of complexified real analytic genericsubmani-
folds. Let ζ ∈ Cm andξ ∈ Cd denote some independent coordinates corre-
sponging to the complexification of the variablesz̄ andw̄, which we denote
symbolically byζ := (z̄)c andξ := (w̄)c, where the letter “c” stands for the
word “complexified”. We also writeτ := (t̄)c, so τ = (ζ, ξ) ∈ Cn. The
extrinsic complexificationM := (M)c ofM is the complex submanifold of
codimensiond defined by

(5.1) M := {(z, w, ζ, ξ) ∈ ∆n(ρ1)×∆n(ρ1) : ξ = Θ(ζ, z, w)}.

If M is (real, Nash) algebraic, so isM . As remarked, we can choose the
equivalent defining equationw = Θ(z, ζ, ξ) for M . In the remainder of §5,
we shall essentially deal withM instead ofM . In fact,M clearly imbeds
in M as the intersection ofM with the antiholomorphic diagonalΛ :=
{(t, τ) ∈ Cn ×Cn : τ = t̄}.

Following [Me1998], [Me2001], we shall complexify a conjugate
pair of generating families of CR vector fields tangent toM , namely
L1, . . . , Lm of type (1, 0) and their conjugatesL1, . . . , Lm which
are of type (0, 1). Here, we can explicitely choose the generators
Lk = ∂/∂zk +

∑d
j=1 [∂Θj/∂zk(z, z̄, w̄)] ∂/∂wj for k = 1, . . . , m. Then

their complexification yields a pair of collections ofm vector fields defined
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over∆n(ρ1)×∆n(ρ1) by

(5.2)





Lk :=
∂

∂zk

+
d∑

j=1

∂Θj

∂zk

(z, ζ, ξ)
∂

∂wj

, k = 1, . . . , m,

L k :=
∂

∂ζk
+

d∑

j=1

∂Θj

∂ζk
(ζ, z, w)

∂

∂ξj
, k = 1, . . . , m.

The reader may check directly thatLk(wj − Θj(z, ζ, ξ)) ≡ 0, which
shows that the vector fieldsLk are tangent toM . Similarly, L k(ξj −
Θj(ζ, z, w)) ≡ 0, so the vector fieldsL k are also tangent toM . Fur-
themore, we may check the commutation relations[Lk,Lk′] = 0 and
[L k,L k′] = 0 for all k, k′ = 1, . . . , m. It follows from the Frobenius
theorem that the twom-dimensional distributions spanned by each of these
two collections ofm vector fields has the integral manifold property. This
is not surprising since the vector fieldsLk are the vector fields tangent to
the intersection ofM with the sets{τ = τp = ct.}, which are clearlym-
dimensional complex integral manifolds. Following [Me1998], [Me2001],
we denote these manifolds bySτp := {(t, τp) : w = Θ(z, ζp, ξp)}, where
τp is a constant, and we call themcomplexified Segre varieties. Similarly,
the integral manifolds of the vector fieldsL k are theconjugate complexi-
fied Segre varietiesS tp := {(tp, τ) : ξ = Θ(ζ, zp, wp)}, wheretp is fixed.
The union of the manifoldsSτp induces a local complex algebraic foliation
F of M bym-dimensional leaves. Similarly, there is a second foliation F
whose leaves are theS tp .

The following symbolic picture summarizes our constructions. However,
we warn the reader that the codimensiond ≥ 1 of the union of the two
foliationsF andF in M is not visible in this two-dimensional figure.

The complexification of a real analytic

whose leaves coincide with the complexified

These leaves also coincide with the intersection

CR-generic manifoldM carries two
complex foliationsFL andFL directed
by the complefixied CR-vector fieldsL andL

Segre varietiesSτp andS tp
.

of M with the horizontal slices{τ = τp}
and with the vertical slices{t = tp}.

0

{t = tp}

F

S tp

Λ

{τ = τp}

tp t

L

τp

M

F

L

Sτp

FIGURE 4: GEOMETRY OF THE COMPLEXIFICATIONM

Now, we introduce the “multiple” flows of the two collectionsof con-
jugate vector fields(Lk)1≤k≤m and (L k)1≤k≤m. For an arbitrary point



121

p = (wp, zp, ζp, ξp) ∈ M and for an arbitrary complex “multitime” pa-
rameterz1 = (z1,1, . . . , z1,m) ∈ Cm, we define
(5.3){

Lz1(zp, wp, ζp, ξp) := exp(z1L )(p) := exp(z1,1L1(· · · (exp(z1,mLm(p))) · · · )) :=

:= (zp + z1,Θ(zp + z1, ζp, ξp), ζp, ξp).

With this formal definition, there exists a maximal connected open subsetΩ
of M ×Cm containingM ×{0} such thatLz1(p) ∈M for all (z1, p) ∈ Ω.
Analogously, for(ζ1, p) running in a similar open subsetΩ, we may also
define the map

(5.4) L ζ1(zp, wp, ζp, ξp) := (zp, wp, ζp + ζ1,Θ(ζp + ζ1, zp, wp)).

We notice that the two maps given by (5.3) and (5.4) are holomorphic in their
variables. SinceM is real algebraic, they are moreover complex algebraic.

5.2. Segre chains.Let us start from the pointp being the origin and let us
move alternately in the direction ofS or of S , namely we consider the two
mapsΓ1(z1) := Lz1(0) andΓ1(z1) := L z1

(0). Next, we start from these
endpoints and we move in the other direction, namely, we consider the two
maps

(5.5) Γ2(z1, z2) := L z2
(Lz1(0)), Γ2(z1, z2) := Lz2(L z1

(0)),

wherez1, z2 ∈ Cm. Also, we defineΓ3(z1, z2, z3) := Lz3(L z2
(Lz1(0))),

etc. By induction, for every positive integerk, we obtain two maps
Γk(z1, . . . , zk) andΓk(z1, . . . , zk). In the sequel, we shall often use the no-
tation z(k) := (z1, . . . , zk) ∈ Cmk. SinceΓk(0) = Γk(0) = 0, for every
k ∈ N∗, there exists a sufficiently small open polydisc∆mk(δk) centered at
the origin inCmk with δk > 0 such thatΓk(z(k)) andΓk(z(k)) belong toM
for all z(k) ∈ ∆mk(δk).

We also exhibit a simple link between the mapsΓk and Γk. Let σ be
the antiholomorphic involution defined byσ(t, τ) := (τ̄ , t̄). Sincew =
Θ(z, ζ, ξ) if and only if ξ = Θ(ζ, z, w), this involution mapsM ontoM
and it also fixes the antidiagonalΛ pointwise. Using the definitions (5.3)
and (5.4), we see readily thatσ(Lz1(0)) = L z̄1

(0). It follows generally that
σ(Γk(z(k))) = Γk(z(k)).

Next, we observe thatΓk+1(z(k), 0) = Γk(z(k)), sinceL0 andL 0 coincide
with the identity map. So the ranks at the origin of the mapsΓk increase with
k.

Definition 5.1. The real analytic generic manifoldM is said to bemini-
mal at p if the mapsΓk are of (maximal possible) rank equal to2m + d =
dimC M at the origin in∆mk(δk) for all k large enough.

The following fundamental properties are established in [Me1998],
[Me2001].
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Theorem 5.2. The minimality ofM at 0 is a biholomorphically invariant
property. It depends neither on the choice of a defining equation for M
nor on the choice of a system of generating complexified CR vector fields
(Lk)1≤k≤m and(L k)1≤k≤m. Also, minimality is equivalent to the fact that
the Lie algebra generated by the complexified CR vector fields(Lk)1≤k≤m

and (L k)1≤k≤m spansTM in a neighborhood of0. Furthermore, there
exists an invariant integerν0, called theSegre typeof M at 0 satisfying
ν0 ≤ d + 1 which is the smallest integer such that the mappingsΓk andΓk

are of generic rank equal to2m+d over∆mk(δk) for all k ≥ ν0+1. Finally,
with this integerν0, the odd integerµ0 := 2ν0 + 1, called theSegre typeM
at 0 is the smallest integer such that the mappingsΓk and Γk are of rank
equal to2m+ d at the origin in∆mk(δk).

Let µ0 := 2ν0 + 1 be the Segre type ofM at0 (notice that this is always
odd). In the remainder of this section, we assume thatM is minimal at0 and
we exploit the rank condition onΓk. More precisely we choose a positiveη
with 0 < η ≤ δµ0 such thatΓµ0 has rank2m+d at every point of the polydisc
∆mµ0(η). Without loss of generality, we can also assume thatΓµ0(∆mµ0(η))
containsM ∩ (∆n(ρ4) × ∆n(ρ4)). Simple examples in the hypersurface
case show thatρ4 << ρ1 and in fact, one has necessarily an inequality of
the formρ4 ≤ (ρ1)

N , whereN is a certain integer depending on the vector
fields(Lk)1≤k≤m and(L k)1≤k≤m (cf. [Be1996]).

5.3. Finite nondegeneracy.The last ingredient for Theorem 4.1 consists in
developing the equations ofM in powers ofz̄ as follows

(5.6) w̄j =
∑

β∈Nm

(z̄)β Θj,β(t), j = 1, . . . , d,

where the functionsΘj,β(t) are holomorphic in the polydisc∆n(2ρ1). So
we may introduce the holomorphic mapsψk(t) := (Θj,β(t))1≤j≤d, |β|≤k with

values inCd (m+k)!
m! k! . Obviously, the ranks at the origin of theψk increase with

k.

Definition 5.3. The generic manifoldM is said to befinitely nondegenerate
at 0 if there exists a positive integerk such that the rank at the origin of the
mapψk is equal ton.

It may be checked that this definition depends neither on the system of
coordinates nor on the choice of a collection ofd defining equations for
M and that it coincides with the definition given in §1.2. IfM is finitely
nondegenerate at0 we denote byℓ0 the smallest integerk given by definition
5.3 and we say thatM is ℓ0-nondegenerate at the origin.
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Finite nondegeneracy is interesting for the following reason. In the sequel,
we shall have to consider an infinite collection of equationsof the form

(5.7) Θj,β(t) +
∑

γ∈Nm
∗

(ζ)γ (β + γ)!

β! γ!
Θj,β+γ(t) = ωj,β,

whereNm
∗ := Nm\{0}, wherej runs from1 to d, whereβ runs in Nm

and where the right hand sidesωj,β are independent complex variables. For
β = 0, the equations (5.7) write simplyΘj(ζ, t) = ωj,0. By definition,
if M is ℓ0-nondegenerate at0, there existsn integersj1

∗ , . . . , j
n
∗ with 1 ≤

ji
∗ ≤ d andn multi-indicesβ1

∗ , . . . , β
n
∗ ∈ Nm with |βi

∗| ≤ ℓ0 such that
the local holomorphic self-mappingt 7→ (Θjk

∗ ,βk
∗
(t))1≤k≤n of Cn is of rank

n at the origin. Considering the equations (5.7) forj = j1
∗ , . . . , j

n
∗ and

β = β1
∗ , . . . , β

n
∗ and applying the implicit function theorem, we observe that

we can solvet in terms of(ζ, ωj1
∗,β1

∗
, . . . , ωjn

∗ ,βn
∗
) by means of a holomorphic

mapping, namely

(5.8) t = Ψ(τ, ωj1
∗ ,β1

∗
, . . . , ωjn

∗ ,βn
∗
).

Without loss of generality, we may assume thatΨ is holomorphic for|ζ | <
ρ̃3 and|ωji

∗,βi
∗
| < ρ̃3, where0 < ρ̃3 < ρ2 < ρ1.

§6. ALGEBRAICITY OF LOCAL CR AUTOMORPHISM GROUPS

6.1. Fundamental reflection identity for the mapping. So M is ℓ0-
nondegenerate at the origin. Recall thatµ0 = 2ν0 + 1 is the Segre type
of M and introduce the new integerκ0 := ℓ0(µ0 + 1). Notice thatκ0 is
even. Let us take an arbitrary local holomorphic self maph of M close to
the identity in the setH ρ2,ρ1

M,κ0,ε, i.e. with k := κ0 in the definition (4.4). We
denote the maph by (h1, . . . , hn) = (f1, . . . , fm, g1, . . . , gd), according to
the splittingt = (z, w) of the coordinates. The complexificationhc := (h, h̄)
induces a local holomorphic self map of the complexificationM . More pre-
cisely, for all(t, τ) ∈M with |t|, |τ | ≤ ρ2, we have(h(t), h̄(τ)) ∈M and
|h(t)|, |h(τ)| < ρ1, so we can write

(6.1) ḡj(τ) = Θj(f̄(τ), h(t)),

for j = 1, . . . , d. Sinceh is a biholomorphism andT c
0M = {w = 0}, it

follows that the determinant

(6.2) det (L kf̄l(τ))1≤k,l≤n,

which is aK-analytic function of(t, τ) ∈M , does not vanish at the origin.
Shrinkingε if necessary, we can assume that for every holomorphic map
h ∈ H ρ2,ρ1

M,κ0,ε, the determinant (6.2) does not vanish for all|t|, |τ | < ρ2. We
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now differentiate (6.2) by applying the vector fieldsL 1, . . . ,L m, which
gives

(6.3) L kḡj(τ) =

m∑

l=1

∂Θj

∂ζl
(f̄(τ), h(t)) L kf̄l(τ),

for k = 1, . . . , m andj = 1, . . . , d. For fixedj, we consider them equa-
tions (6.3) as an affine system satisfied by the partial derivatives∂Θj/∂ζl.
By Cramer’s rule, there exists universal polynomialsΩj,k in their variables
such that

(6.4)
∂Θj

∂ζk
(f̄(τ), h(t)) =

Ωj,k({L l h̄(τ)}1≤l≤m)

det (L kf̄l(τ))1≤k,l≤n

for all (t, τ) ∈M with |t|, |τ | < ρ2 and fork = 1, . . . , m, j = 1, . . . , d.
Applying the derivationsL k to (6.4) we see by induction that for every

multi-indexβ ∈ Nm
∗ and for everyj = 1, . . . , d, there exists a universal

polynomialΩj,β in its variables such that

(6.5)
1

β!

∂|β|Θj

∂ζβ
(f̄(τ), h(t)) =

Ωj,β({L γ h̄(τ)}|γ|≤|β|)

[det (L kf̄l(τ))1≤k,l≤n]2|β|−1
,

for all (t, τ) ∈ M with |t|, |τ | < ρ2. Here, forγ = (γ1, . . . , γm) ∈ Nm,
we denote byL γ the derivation(L 1)

γ1 . . . (L m)γm . Next, denoting by
ωj,β(t, τ) the right hand side of (6.5) and developing the left hand sidein
power series using (5.7), we may write

(6.6) Θj,β(h(t)) +
∑

γ∈Nm
∗

(f̄(τ))γ Θj,β+γ(h(t)) = ωj,β(t, τ).

Recall thatM is ℓ0-nondegenerate at0. Using (5.8), we can solveh(t) in
terms of the derivatives of̄h(τ), namely

(6.7)





h(t) = Ψ

(
f̄(τ),

Ωj1
∗ ,β1

∗
({L γ h̄(τ)}|γ|≤|β1

∗|)

[det (L kf̄l(τ))1≤k,l≤n]2|β
1
∗ |−1

, . . .

. . . ,
Ωjn

∗ ,βn
∗
({L γ h̄(τ)}|γ|≤|βn

∗ |)

[det (L kf̄l(τ))1≤k,l≤n]2|βn
∗ |−1

)
=

= Ψ(f̄(τ), ωj1
∗,β1

∗
(t, τ), . . . , ωjn

∗ ,βn
∗
(t, τ)).

Here, the maximal length of the multi-indicesβ1
∗ , . . . , β

n
∗ is equal toℓ0. Ac-

cording to (5.8), the representation (6.7) ofh(t) holds provided|ḡ(τ)| < ρ̃3

and|ωji
∗,βi

∗
| < ρ̃3. Since the coordinates are normal, we haveΘj(z̄, 0, 0) ≡

0, or equivalentlyΘj,β(0) = 0 for all j = 1, . . . , d and allβ ∈ Nm. It follows
from (6.6) and fromh(0) = 0 thatωj,β(0) = 0, for all j = 1, . . . , d and all
β ∈ Nm. Consequently, there exists a radiusρ3 ∼ ρ̃3 with 0 < ρ3 < ρ2 < ρ1
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such that|ωji
∗,βi

∗
(t, τ)| < ρ̃3, i = 1, . . . , n and such that|ḡ(τ)| < ρ̃3 for all

h ∈H ρ2,ρ1

M,κ0,ε and for all(t, τ) ∈M with |t|, |τ | < ρ3.
In conclusion, the relation (6.7) holds for allh ∈ H ρ2,ρ1

M,κ0,ε and for all
(t, τ) ∈M with |t|, |τ | < ρ3.

Next, using the explicit expressions of the vector fieldsL k given in (5.2),
we may develop the higher order derivativesL γ h̄(τ) as polynomials in the
|γ|-jet (∂γ′

τ h̄(τ))|γ′|≤|γ| of h̄(τ) with coefficients being certain holomorphic
functions of(t, τ) obtained as certain polynomials with respect to the partial
derivatives of the functionsΘj(ζ, t).

To be more explicit in this desired new representation of (6.7), we remind
first our jet notation. For eachi = 1, . . . , n and eachα ∈ Nn, we introduced
a new independentcoordinateJα

i corresponding to the partial derivative
∂α

τ h̄i(τ) (or ∂α
t hi(t)). The space ofk-jets of holomorphic mappings̄h(τ) is

then the complex spaceCn (n+k)!
n! k! with coordinates(Jα

i )1≤i≤n, |α|≤k. It will be
convenient to use the abbreviationsJk := (Jα

i )1≤i≤n, |α|≤k andJkh̄(τ) :=
(∂α

τ h̄i(τ))1≤i≤n, |α|≤k.
So pursuing with (6.7), we argue that for everyγ ∈ Nm, there exists

a polynomial in the jetJ |γ|h̄(τ) with holomorphic cooeficients depending
only onΘ such that

(6.8) L γ h̄(τ) ≡ Pγ(t, τ, J
|γ|h̄(τ)).

Putting all these expressions in (6.7), we obtain an important relation be-
tweenh and theℓ0-jet of h̄ which we may now summarize. At first, as
κ0 = ℓ0(µ0 + 1) ≥ ℓ0, observe that for everyh ∈ H ρ2,ρ1

M,κ0,ε, we have
||J ℓ0h − J ℓ0

Id ||ρ2 ≤ ||Jκ0h − Jκ0

Id ||ρ2 ≤ ε. Shrinking ε if necessary, we
have proved the following lemma.

Lemma 6.1. There exists a complex algebraicCn-valued mapping
Π(t, τ, J ℓ0) defined for|t|, |τ | < ρ3 and for |J ℓ0 − J ℓ0

Id | < ε which depends
only on the defining functionsξj − Θj(ζ, t) of M , such that for every
local holomorphic self-mappingh ∈ H ρ2,ρ1

M,κ0,ε of M (hence satisfying

||J ℓ0h− J ℓ0
Id ||ρ2 < ε), the relation

(6.9) h(t) = Π(t, τ, J ℓ0h̄(τ))

holds for all(t, τ) ∈M with |t|, |τ | < ρ3.

6.2. Reflection identity for arbitrary jets. Let nowΥj andΥj be the vector
fields tangent toM defined by
(6.10)

Υj :=
∂

∂wj
+

d∑

l=1

Θl,wj
(ζ, t)

∂

∂ξl
, Υj :=

∂

∂ξj
+

d∑

l=1

Θl,ξj
(z, τ)

∂

∂wl
,
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for j = 1, . . . , d. We observe that the collection of2m + d vector fields
Lk, L k, Υj spanTM . The same holds for the collectionLk, L k, Υj. We
also have the commutation relations[Υj ,L k] = 0 and [Υj ,Lk] = 0. We
observe thatΥγh(t) = ∂γ

wh(t) for all γ ∈ Nd. Let α = (β, γ) ∈ Nm × Nd.
By expandingL β Υγ h(t) using the explicit expressions (5.2), we obtain
a polynomialQβ,γ(t, τ, (∂

α′

t h(t))|α′|≤|α|), whereQβ,γ is a polynomial in its
last variables with coefficients depending onΘ and its partial derivatives.
Conversely, sinceLk|0 = ∂zk

at the origin, we can invert these formulas, so
there exist polynomialsPα in their last variables with coefficients depending
only onΘ such that

(6.11) ∂α
t h(t) = Pα(t, τ, (L β′

Υγ′

h(t))|β′|≤|β|, |γ′|≤|γ|).

Lemma 6.2. For everyℓ ∈ N, there exists a complex algebraic mapping
Πℓ with values inCNn,ℓ defined for|t|, |τ | < ρ3 and |J ℓ0 − J ℓ0

Id | < ε which
is relatively polynomial with respect to the higher order jets Jα

i with |α| ≥
ℓ0 + 1, i = 1, . . . , n, such that for every local holomorphic self-mapping
h ∈H ρ2,ρ1

M,κ0,ε, the two conjugate relations

(6.12)

{
J ℓh(t) = Πℓ(t, τ, J

ℓ0+ℓh̄(τ)),

J ℓh̄(τ) = Πℓ(τ, t, J
ℓ0+ℓh(t)).

hold for all (t, τ) ∈M with |t|, |τ | < ρ3.

Proof. Applying the derivationsL β Υγ to (6.9), and using the chain rule,
we obtain

(6.13) L β Υγ h(t) = Πβ,γ(t, τ, J
ℓ0+|β|+|γ|h̄(τ)),

where the functionΠβ,γ (as the functionΠ) is holomorphic for|t|, |τ | < ρ3

and|J ℓ0−J ℓ0
Id | < ε and relatively polynomial with respect to the jetsJα

i with
|α| ≥ ℓ0 + 1. Applying (6.11), we obtain the functionΠℓ, which completes
the proof.

6.3. Substitutions of reflection identities.Let πt(t, τ) := t andπτ (t, τ) :=
τ denote the two canonical projections. We writehc(t, τ) := (h(t), h̄(τ)).
We make the following slight abuse of notation: instead of rigorously writ-
ing h(πt(t, τ)), we writeh(t, τ) = h(t) andh̄(t, τ) = h̄(τ).

Let x ∈ Cν and letQ(x) = (Q1(x), . . . ,Q2n(x)) ∈ C{x}2n. As the
multiple flow of L given by (5.3) does not act on the(z, w) variables, we
have the trivial but important propertyh(L z1

(Q(x))) = h(Q(x)). More
generally, for every multi-indexα ∈ Nn, we have∂α

t h(L z1
(Q(x))) =

∂α
t h(Q(x)). Analogously, we have∂α

τ h̄(Lz1(Q(x))) = ∂α
τ h̄(Q(x)). Since
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for k even, we haveΓk(z(k)) = L zk
(Γk−1(z(k−1))), the following two prop-

erties hold:

(6.14)

{
J ℓh(Γk(z(k))) = J ℓh(Γk−1(z(k−1))), if k is even;

J ℓh̄(Γk(z(k))) = J ℓh̄(Γk−1(z(k−1))), if k is odd.

Let nowκ0 := ℓ0(µ0 + 1) be the product of the Levi type with the Segre
type of M plus 1 and consider the open subset of theκ0-order jet space
CNn,κ0 defined by the inequality|Jκ0 − Jκ0

Id | < ε. Let z(k) ∈ ∆mk as in §5.6
above. Since the mapsΓk are holomorphic and satisfyΓk(0) = 0, we may
chooseδ > 0 sufficiently small in order that the following two conditions
are satisfied for everyk ≤ µ0 and for and for every|z(k)| < δ:

(6.15) |Γk(z(k))| < ρ3 and |Jκ0h(Γk(z(k)))− Jκ0

Id | < ε.

This choice ofδ is convenient to make several susbtitutions by means of
formulas (6.12). The formulas (6.16) that we will obtain below strongly
differ from the previous formulas (6.12), because they depend on the jet of
h at the origin only.

Lemma 6.3. Shrinkingε if necessary, for every integerk ≤ µ0 + 1 and
for every integerℓ ≥ 0, there exists a complex algebraic mappingΠℓ,k with
values inCNn,ℓ defined for|t|, |τ | < ρ3 and for |Jkℓ0 − Jkℓ0

Id | < ε, which
is relatively polynomial with respect to the higher order jets Jα

i with |α| ≥
kℓ0 +1, i = 1, . . . , n, and which depends only on the defining functionsξj−
Θj(ζ, t) of M , such that the following two families of conjugate identities
are satisfied

(6.16)

{
J ℓh(Γk(z(k))) = Πℓ,k(Γk(z(k)), J

kℓ0+ℓh̄(0)), if k is odd;

J ℓh̄(Γk(z(k))) = Πℓ,k(Γk(z(k)), J
kℓ0+ℓh̄(0)), if k is even.

Proof. Fork = 1, replacing(t, τ) by Γ1(z(1)) in the first relation (6.12) and
using the second property (6.14), we get

(6.17)

{
J ℓh(Γ1(z(1))) = Πℓ(Γ1(z(1)), J

ℓ0+ℓh̄(Γ1(z(1)))) =

= Πℓ(Γ1(z(1)), J
ℓ0+ℓh̄(0)),

so the lemma holds true fork = 1 if we simply chooseΠℓ,1 := Πℓ. By
induction, suppose that the lemma holds true fork ≤ µ0. To fix the ideas,
let us assume that thisk is even (the odd case is completely similar). Then
replacing the arguments(t, τ) in the first relation (6.12) byΓk+1(z(k+1)),
using again the second property (6.14), and using the induction assumption,
namely using the conjugate of the second relation (6.16) with ℓ replaced by
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ℓ0 + ℓ, we get
(6.18)




J ℓh(Γk+1(z(k+1))) = Πℓ(Γk+1(z(k+1)), J
ℓ0+ℓh̄(Γk+1(z(k+1)))) =

= Πℓ(Γk+1(z(k+1)), J
ℓ0+ℓh̄(Γk(z(k)))) =

= Πℓ(Γk+1(z(k+1)),Πℓ0+ℓ,k(Γk(z(k)), J
kℓ0+ℓ0+ℓh̄(0))) =:

=: Πℓ,k+1(Γk+1(z(k+1)), J
(k+1)ℓ0+ℓh̄(0)),

which yields the desired formula at levelk+1. For the above formal compo-
sition formulas to be correct, we possibly have to shrinkε. Finally, a direct
inspection of relative polynomialness shows thatΠℓ,k+1 is polynomial with
respect to the jet variablesJα

i with |α| ≥ (k + 1)ℓ0 + 1, i = 1, . . . , n. The
proof of Lemma 6.21 is complete.

6.4. Algebraic parameterization of CR mappings by their jetat the ori-
gin. Finally, as in the paragraph after Theorem 5.2, we chooseρ4 > 0 suf-
ficiently small such thatΓµ0 maps the polydisc∆mµ0(η) submersively onto
an open neighborhood of the origin inM which contains the open subset
M ∩ (∆n(ρ4) × ∆n(ρ4)). From the relationΓµ0+1(z(µ0), 0) ≡ Γµ0(z(µ0)),
it follows trivially that Γµ0+1 also induces a submersion from∆m(µ0+1)(η)
ontoM ∩(∆n(ρ4)×∆n(ρ4)). It follows that the compositionπt◦Γµ0+1 also
maps submersively the polydisc∆m(µ0+1)(η) onto an open neighborhood of
the origin inCn which contains∆n(ρ4). Consequently, in the representation
obtained in Lemma 6.21 withℓ = 0 andk := µ0 + 1 = 2ν0 + 2 (which is
even), namely in the representation

(6.19) h̄(Γµ0+1(z(µ0+1))) = Π0,µ0+1(Γµ0+1(z(µ0+1)), J
(µ0+1)ℓ0 h̄(0)),

we can write an arbitraryt ∈ ∆n(ρ4) in the formΓµ0+1(z(µ0+1)), and fi-
nally, conjugating(6.19), we obtain a complex algebraic mappingH with
the property thath(t) = H(t, J (µ0+1)ℓ0h(0)). We may now summarize what
we have proved so far.

Theorem 6.4.LetM be a real algebraic generic submanifold inCn passing
through the origin, of codimensiond ≥ 1 and of CR dimensionm = n−d ≥
1. Assume thatM is ℓ0-nondegenerate at0. Assume thatM is minimal at
0, let ν0 be the Segre type ofM at 0 and letµ0 := 2ν0 + 1 be the Segre
type ofM at 0. Let κ0 := (µ0 + 1)ℓ0. Let t = (z, w) ∈ Cm × Cd be
holomorphic coordinates vanishing at0 with T0M = {Imw = 0} and
let ρ1 > 0 be such thatM is represented by the complex analytic defining
equationsξj = Θj(ζ, t), j = 1, . . . , d in ∆n(ρ1). Then there existε > 0,
ρ4 > 0 and there exists a complex algebraicCn-valued mappingH(t, Jκ0)
defined for|t| < ρ4 and for |Jκ0 − Jκ0

Id | < ε which satisfiesH(t, Jκ0

Id ) ≡ t
and which depends only on the defining functionsw̄j −Θj(z̄, t) of M , such
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that for every local holomorphic self-mappingh ofM belonging toH ρ2,ρ1

M,κ0,ε,
we have the representation formula

(6.20) h(t) = H(t, Jκ0h(0)),

for all t ∈ Cn with |t| < ρ4. Furthermore the mappingH depends neither on
the choice of smaller radiĩρ1 ≤ ρ1, ρ̃2 ≤ ρ2, ρ̃3 ≤ ρ3 andρ̃4 ≤ ρ4 satisfying
0 < ρ̃4 < ρ̃3 < ρ̃2 < ρ̃1 nor on the choice of a smaller constantε̃ < ε,
so that the first sentence of property(3) in Theorem 4.1 holds true. Finally,
if M is real analytic, the same statement holds with the word “algebraic”
everywhere replaced by the word “analytic”.

It remains now to construct the submanifoldE whose existence is stated
in Theorem 4.1 and to establish thatH ρ2,ρ1

M,κ0,ε may be endowed with the struc-
ture of a local real algebraic Lie group.

6.5. Local real algebraic Lie group structure. In order to construct this
submanifoldE, we introduce theκ0-th jet mappingJ κ0 : H ρ2,ρ1

M,κ0,ε →
CNn,κ0 defined byJ κ0(h) := (∂α

t h(0))|α|≤κ0 = Jκ0h(0). The following
lemma is crucial.

Lemma 6.5. Shrinkingε if necessary, the set

(6.21) E := J κ0(H ρ2,ρ1

M,κ0,ε) = {Jκ0h(0) : h ∈H ρ2,ρ1

M,κ0,ε}
is a real algebraic totally real submanifold of the polydisc{Jκ0 ∈ CNn,κ0 :
|Jκ0 − Jκ0

Id | < ε}.
Proof. Let h ∈ H ρ2,ρ1

M,κ0,ε. Substituting the representation formulah(t) =
H(t, Jκ0h(0)) given by Theorem 6.4 in the defining equations ofM , we get

(6.22) rj(H(t, Jκ0h(0)), H(τ, Jκ0 h̄(0))) = 0,

for j = 1, . . . , d and(t, τ) ∈ M with |t|, |τ | < ρ4. As (t, τ) ∈ M , we
replaceξ by Θ(ζ, t) and we use the2m+ d coordinates(t, ζ) onM . So, by
expanding the functions (6.22) in power series with respectto (t, ζ), we can
write
(6.23)
rj(H(t, Jκ0), H(ζ,Θ(ζ, t), Jκ0)) =

∑

α∈Nn, β∈Nm

tα ζβ Cj,α,β(J
κ0, Jκ0).

Here, we obtain an infinite collection of complex-valued real algebraic func-
tionsCj,α,β defined in{|Jκ0 − Jκ0

Id | < ε} with the property that a mapping
H(t, Jκ0) sendsM ∩∆n(ρ4) intoM if and only if

(6.24) Cj,α,β(J
κ0 , Jκ0) = 0, ∀ j, α, β.

Consequently, the setE defined by the vanishing of all the equations (6.24)
is a real algebraic subset.



130

It follows from the representation formula (6.20) that the mappingJ κ0

is injective and from the Cauchy integral formula thatJ κ0 is continuous
on its domain of definitionH ρ2,ρ1

M,κ0,ε endowed with the topology of uniform
convergence on compact sets.

On the reverse side, letJκ0 ∈ E. Then the mappingh(t) := H(t, Jκ0)
defined for|t| < ρ4 mapsM ∩ ∆n(ρ4) into M . Applying Theorem 6.4
to this mappingh(t), with ρ1 replaced byρ4, we deduce that there exists
a radiusρ6 < ρ4 such that we can representh(t) = H(t, Jκ0h(0)) for
|t| < ρ6, with the same mappingH, as stated in the end of Theorem 6.4.
By differentiating this representation with respect tot at t = 0, we de-
duce thatJκ0h(0) = ([∂α

t H(t, Jκ0h(0))]t=0)|α|≤κ0
. Consequently, since

h(t) = H(t, Jκ0) by definition, we getJκ0 = ([∂α
t H(t, Jκ0)]t=0)|α|≤κ0

. In
conclusion, we proved thatJ κ0(H(t, Jκ0)) = Jκ0 for everyJκ0 ∈ E, so
J κ0 has a continuous local inverse onE, formally defined byH(t, Jκ0).

It follows from the above two paragraphs that the mappingJ κ0 is a local
homeomorphism from a neighborhood of the identity inH ρ2,ρ1

M,κ0,ε onto its
imageE.

Furthermore, we claim that the real algebraic subsetE is in fact geo-
metrically smooth at every point, namely it is a real algebraic submanifold.
Indeed, letJκ0

1 be a regular point ofE whereE is of maximal geomet-
rical dimensionc0, with Jκ0

1 arbitrarily close to the identity jetJκ0
Id . Let

h1 ∈ H ρ2,ρ1

M,κ0,ε such thatJκ0
1 = J κ0(h1). Let U1 be a small neighborhood

of Jκ0
1 in CNn,κ0 in whichE ∩U1 is a regularc0-dimensional real algebraic

submanifold and consider the complex algebraic mapping defined overU1

by

(6.25) F1(J
κ0) := ([∂α

t (h−1
1 (H(t, Jκ0)))]t=0)|α|≤κ0 ∈ CNn,κ0 .

We haveF1(J
κ0
1 ) = Jκ0

Id and the restriction ofF1 toE∩U1 induces a home-
omorphism onto its image, which is a neighborhood ofJκ0

Id inE. We remind
that the mappingJκ0 → ([∂α

t (H(t, Jκ0))]t=0)|α|≤κ0 restricted toE ∩ U1 is
the identity and consequently of constant rank equal toc0. As h1 is invert-
ible, it follows from the chain rule by developing (6.25) that F1|E∩U1 is also
of locally constant rank equal toc0. This proves thatE is ac0-dimensional
real algebraic submanifold inCNn,κ0 throughJκ0

Id . More generally, this rea-
soning shows thatE is geometrically smooth at every point.

Finally, applying Lemma 6.3 with the odd integerk = µ0 = 2ν0 + 1
(instead ofk = µ0 + 1), we get a new, different representation formula
h(t) = H̃(t, J ℓ0µ0 h̄(0)) (notice h̄(0)). Accordingly, we can define a real
algebraic submanifold̃E. It is clear that we can identifyE andẼ, since they
both parametrize the local biholomorphic self-mappings ofM , so they are
algebraically equivalent by means of the natural projection from theℓ0(µ0 +
1)-th jet space onto theℓ0µ0-th jet space. Next, we see by differentiating
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h(t) = H̃(t, J ℓ0µ0 h̄(0)) with respect tot that

(6.26) J ℓ0µ0h(0) = ([∂α
t H̃(t, J ℓ0µ0 h̄(0))]t=0)|α|≤ℓ0µ0 .

Consequently, ifK is the holomorphic map defined by

(6.27) K(J ℓ0µ0) := ([∂α
t H̃(t, J ℓ0µ0 ]t=0)|α|≤ℓ0µ0),

we get the equalityJ ℓ0µ0 = K(J ℓ0µ0) for everyJ ℓ0µ0 ∈ Ẽ, which proves
that Ẽ is totally real. It follows thatE is totally real, which completes the
proof.

Lemma 6.6. The submanifoldE is naturally equipped with a local real
algebraic Lie group structure in a neighborhood ofJκ0

Id .

Proof. Indeed, let us parametrizeE by a real algebraic mapping

(6.28) Rc0 ∋ (e1, . . . , ec0) 7−→ jκ0(e) ∈ CNn,κ0 ,

wherec0 is the dimension ofE. Here, to avoid excessive formal complexity,
we shall avoid to mention all the polydiscs of variation of the variables. For
e ∈ E, we shall use the notation

(6.29) H(t; e) := H(t, jκ0(e)).

Let e ∈ E ande′ ∈ E, setJκ0 := jκ0(e) and ′Jκ0 := jκ0(e
′). Then we can

define the Lie group multiplicationµJ by

(6.30) µJ(′Jκ0, Jκ0) := ([∂α
t (H(H(t, Jκ0), ′Jκ0))]t=0)|α|≤κ0

.

Accordingly, in terms of the coordinates(e1, . . . , ec0) onE, the Lie group
multiplicationµ is defined by

(6.31) µ(e, e′) := (jκ0)
−1(µJ(jκ0(e

′), jκ0(e))) ∈ Rc0

It follows from the algebraicity of the mappingsH andjκ0 that the mappings
µJ andµ are algebraic.

We must check the associativity ofµ, namely µ(µ(e, e′), e′′) =
µ(e, µ(e′, e′′)). So we seth(t) := H(t, jκ0(e)), h

′(t) := H(t, jκ0(e
′))

and h′′(t) := H(t, jκ0(e
′′)). By the definition (6.30), we have

µJ(jκ0(e), jκ0(e
′)) = Jκ0(h ◦ h′)(0). Applying then Theorem 6.4, we

getH(t, Jκ0(h ◦ h′)(0)) ≡ (h ◦ h′)(t). Consequently, using again (6.30)
and the associativity of the composition of mappings, we maycompute
(6.32)




µJ(µJ(jκ0(e), jκ0(e
′)), jκ0(e

′′)) = µJ(Jκ0((h ◦ h′)(0), jκ0(e
′′))

= Jκ0((h ◦ h′) ◦ h′′)(0)

= Jκ0(h ◦ (h′ ◦ h′′))(0)

= µJ(jκ0(e), J
κ0(h′ ◦ h′′)(0))

= µJ(jκ0(e), µJ(jκ0(e), jκ0(e
′))),
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which proves the associativity.
Finally, we may define an algebraic inversion mappingι as follows.

First of all, for Jκ0 close toJκ0
Id , the mappingh(t) := H(t, Jκ0) =

t +
∑

α∈Nn tα Hα(Jκ0) is an invertible algebraic biholomorphic mapping.
Here, the coefficientsHα(Jκ0) are algebraic functions ofJκ0 which vanish
at Jκ0

Id (sinceH(t, Jκ0

Id ) ≡ t in Theorem 6.4). From the algebraic implicit
function theorem, it follows that the local inverseh−1(t) writes uniquely in
the formh−1(t) = t+

∑
α∈Nn tα H̃α(Jκ0) =: H̃(t, Jκ0), where theH̃α(Jκ0)

are algebraic functions ofJκ0 also satisfyingH̃α(Jκ0
Id ) = 0. Consequently,

choosinge ∈ E such thatJκ0 = jκ0(e), we can define

(6.33) ιJ(Jκ0) := ([∂α
t H̃(t, Jκ0)]t=0)|α|≤κ0

.

Accordingly, in terms of the coordinates(e1, . . . , ec0) onE, the Lie group
inverse mapping is defined by

(6.34) ι(e) := (jκ0)−1(iJ (jκ0(e))).

Of course, with this definition we haveιJ (Jκ0

Id ) = Jκ0

Id . Finally, we leave to
the reader to verify thatµJ(jκ0(e), iJ(jκ0(e))) = Jκ0

Id . This completes the
proof of property(4) of Theorem 4.1.

End of proof of Theorem 4.1.We notice that statement(5) does not need
to be proved. Furthermore that the dimensional inequalityc0 ≤ (n+κ0)!

n! κ0!
in

(6) follows from the fact each local biholomorphic mapping in the local
Lie groupH ρ2,ρ1

M,κ0,ε
∼= E writes uniquely ash(t) = H(t, Jκ0h(0)), so the

complex dimension of the local Lie groupE is ≤ (n+κ0)!
n! κ0!

, the dimension
of theκ0-th jet space. AsE is totally real, the real dimension ofE is also
≤ (n+κ0)!

n! κ0!
. Finally, it follows that the real local Lie algebra of vector fields

Hol(M,∆n(ρ5)) is of dimension≤ (n+κ0)!
n! κ0!

. The proof of Theorem 4.1 is
complete.

§7. DESCRIPTION OF EXPLICIT FAMILIES OF STRONG TUBES INCn

7.1. Introduction. Theorems 1.1, 1.4 and 1.5 provide sufficient conditions
for some real analytic real submanifold inCn to be not locally algebraizable.
For the sake of completeness, we exhibit explicit examples of such nonal-
gebraizable submanifolds which are effectively strong tubes and effectively
nonalgebraizable, proving corollaries 1.2, 1.3, 1.6 and 1.7. Consequently we
will deal with the two following families of nonalgebraizable real analytic
Levi nondegenerate hypersurfaces inCn (n ≥ 2) : the Levi nondegenerate
strong tube hypersurfaces inCn and the strongly rigid hypersurfaces inCn.
For heuristic reasons, we shall sometimes start with the casen = 2 and treat
the general casen ≥ 2 afterwards. In fact, our goal will be to construct
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infinite families of pairwise non biholomorphically equivalent and non lo-
cally algebraizable hypersurfaces. Our computations for the construction of
families of manifolds with a control on the structure of their automorphism
group are all based on the Lie theory of symmetries of differential equa-
tions. For the convenience of the reader, we recall briefly the procedure (see
[Su2001a,b], [GM2001a,b,c] for more details).

7.2. Hypersurfaces and differential equations.Let M be a real analytic
hypersurface inCn. Assume thatM is Levi nondegenerate at one of its
pointsp. Then there exist some local holomorphic coordinates(z, w) =
(z, u + iv) ∈ Cn−1 × C vanishing atp such thatM is given by the real
analytic equation

(7.1) v = ϕ(z, z̄, u) = ε1|z1|2 + · · ·+ εn−1|zn−1|2 + ψ(z, z̄, u),

whereεk = ±1, k = 1, . . . , n − 1 and whereψ = O(3). Passing to the
extrinsic complexificationM of M , we may consider the variables̄z and
w̄ as independent complex parametersζ ∈ Cn−1 and ξ ∈ C. Then the
associated complex defining equation is of the form

(7.2) w = Θ(z, ζ, ξ) = ξ + 2i(ε1z1ζ1 + · · ·+ εn−1zn−1ζn−1 + Ξ(z, ζ, ξ)),

whereΞ = O(3). By [Me1998] (cf. §5.1 above), forτp = (ζp, ξp) fixed, the
family of complexified Segre varietiesSτp := {(t, τp) : w = Θ(z, τp)} is
invariantly and biholomorphically attached toM .

Following [Se1931] and [Su2001a,b], we may consider this family as a
family of graphs of the solutions of a second order completely integrable
system of partial differential equations as follows. By differentiating the left
and the right hand sides of (7.2) with respect tozk, we get

(7.3) ∂zk
w = ∂zk

Θ(z, τ) = 2i(εkζk + ∂zk
Ξ(z, τ)),

for k = 1, . . . , n − 1. Here, we considerw as a function ofz. Using
the analytic implicit function theorem to solveτ in the 1 + (n − 1) = n
equations (7.2) and (7.3), we may expressτ in terms ofw, of z and of the
first order derivativewzl

, which yields

(7.4) τ = Π(z, w, (∂zl
w)1≤l≤n−1),

whereΠ is holomorphic in its variables. If we take the second derivative
wzk1

zk2
of w and replace the value ofτ , we get the desired system of partial

differential equations:
(7.5)

∂2
zk1

zk2
w = ∂2

zk1
zk2

Θ(z, τ) = ∂2
zk1

zk2
Θ(z,Π(z, w, (∂zl

w)1≤l≤n−1)) =:

=: Fk1,k2(z, w, (∂zl
w)1≤l≤n−1).
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Here, k1, k2 = 1, . . . , n − 1 and theFk1,k2 ≡ Fk2,k1 are holomorphic in
their variables. We denote byEM this system of partial differential equa-
tions (here, to constructEM , we have used the Levi nondegeneracy ofM but
we note that ifM were finitely nondegenerate the same conclusion would
be true, by considering some derivatives ofw of larger order). Since the so-
lutions ofEM are precisely the complexified Segre varietiesSτ , the system
EM is completely integrable.

To study the local geometry ofM , we may consider on one hand the
real Lie algebra of infinitesimal CR automorphisms ofM (cf. §2.2), namely
AutCR(M) = 2 Re Hol(M). On the other hand, following the general ideas
of Lie (cf. the modern restitution by Olver in [Ol1986, Ch 2]), we may con-
sider the Lie algebra of infinitesimal generators of the local symmetry group
of the system of partial differential equationsEM , which we shall denote by
Sym(EM). By definition,Sym(EM) consists of holomorphic vector fields
in the(z, w)-space whose local flow transforms the graph of every solution
of EM (namely a complexified Segre variety) into the graph of another so-
lution of EM (namely into another complexified Segre variety). The link
betweenAutCR(M) andSym(EM) is as follows: by [Ca1932, p. 30–32],
one can prove thatAutCR(M) is a maximally real subspace ofSym(EM)
(seealso [Su2001a,b], [GM2001a,b,c]).

The computation of explicit generators ofSym(EM) may be performed
using the Lie theory of symmetries of differential equations. By inspecting
some examples, it appears that dealing withSym(EM) generally shortens
the complexity of the computation ofAutCR(M) by at least one half.

The Lie procedure to computeSym(EM) is as follows. LetJ2
n−1,1(C)

denote the space of second order jets of a functionw(z1, . . . , zn−1)
of (n − 1) complex variables, equipped with independent coordi-
nates (z, w,W 1

l ,W
2
k1,k2

) corresponding to (z, w, wzl
, wzk1

zk2
), where

l = 1, . . . , n − 1, wherek1, k2 = 1, . . . , n − 1, and where we of course
identify W 2

k1,k2
with W 2

k2,k1
. To the systemEM , we associate the complex

submanifold ofJ2
n−1,1(C) defined by replacing the derivatives ofw by the

independent jet variables in the systemEM , which yields (cf. (7.5)):

(7.6) W 2
k1,k2

= Fk1,k2(z, w, (W
1
l )1≤l≤n−1),

for k1, k2 = 1, . . . , n−1. Let∆M denote this submanifold. By Lie’s theory,
every vector fieldX =

∑n−1
k=1 Q

k(z, w) ∂zk
+R(z, w) ∂w defined in a neigh-

borhood of the origin inCn can be uniquely lifted to a vector fieldX(2) in
J2

n−1,1(C), which is called thesecond prolongationof X (by definition, the
lift X(2) shows how the flow ofX transforms second order jets of graphs of
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functionsw(z)). The coefficientsR1
l andR2

k1,k2
of the second prolongation

(7.7) X(2) =

n−1∑

k=1

Qk ∂

∂zk
+R

∂

∂w
+

n−1∑

l=1

R1
l

∂

∂W 1
l

+

n−1∑

k1,k2=1

R2
k1,k2

∂

∂W 2
k1,k2

,

are completely determined by the following universal formulas
(cf. [Ol1986], [Su2001a,b], [GM2001a]):
(7.8)




R1
l = ∂zl

R+
∑

m1

[δm1

l ∂wR− ∂zl
Qm1 ]W 1

m1
+
∑

m1,m2

[−δm1

l ∂wQ
m2 ] W 1

m1
W 1

m2
.

R2
k1,k2

= ∂2
zk1

zk2
R+

∑

m1

[
δm1
k1
∂2

zk2
wR + δm1

k2
∂2

zk1
wR − ∂2

zk1
zk2
Qm1

]
W 1

m1
+

+
∑

m1,m2

[
δm1,m2

k1, k2
∂2

w2R− δm1

k1
∂2

zk2
wQ

m2 − δm1

k2
∂2

zk1
wQ

m2

]
W 1

m1
W 1

m2
+

+
∑

m1,m2,m3

[
−δm1,m2

k1, k2
∂2

w2Qm3
]
W 1

m1
W 1

m2
W 1

m3
+

+
∑

m1,m2

[
δm1,m2

k1, k2
∂wR− δm1

k1
∂zk2

Qm2 − δm1

k2
∂zk1

Qm2

]
W 2

m1,m2
+

+
∑

m1,m2,m3

[
−δm1,m2

k1, k2
∂wQ

m3 − δm2,m3

k1, k2
∂wQ

m1 − δm3,m1

k1, k2
∂wQ

m2
]
W 1

m1
W 2

m2,m3
.

In these formulas, byδm
l we denote the Kronecker symbol equal to1 if l =

m and to0 otherwise. The multiple Kronecker symbolδm1,m2

l1, l2
is defined to

be the productδm1

l1
·δm2

l2
. Finally, in the sums

∑
m1

,
∑

m1,m2
and

∑
m1,m2,m3

,
the integersm1, m2, m3 run from 1 to n − 1. We would like to mention
that in [GM2001a], we also provide some explicit expressionof the k-th
prolongationX(k) for k ≥ 3.

Then theLie criterion states thata holomorphic vector fieldX belongs
to Sym(EM) if and only if its second prolongationX(2) is tangent to∆M

([Ol1986, Ch 2]). This gives the following equations:

(7.9) R2
k1,k2
−

n−1∑

k=1

Qk ∂zk
Fk1,k2 − R∂wFk1,k2 −

n−1∑

l=1

R1
l ∂W 1

l
Fk1,k2 ≡ 0,

where1 ≤ k1, k2 ≤ n−1 and where each occurence ofW 2
l1,l2

is replaced by
its valueFl1,l2 on∆M . By developping (7.9) in power series with respect to
the variablesW 1

l , we get an expression of the form

(7.10)
∑

l1,...,ln−1≥0

W 1
l1 · · ·W 1

ln−1
Φl1,...,ln−1 ≡ 0,
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where each termΦl1,...,ln−1 is a certain linear partial differential expression
involving the derivatives ofQ1, . . . , Qn−1, R up to order two with coeffi-
cients being holomorphic functions of(z, w). The determination of a sys-
tem of generatorsX1, . . . , Xc of Sym(EM) is obtained by solving the in-
finite collection of these linear partial differential equationsΦl1,...,ln−1 = 0
(cf. [Ol1986], [Su2001a,b], [GM2001a,b,c]). We shall apply this general
procedure to provide different families of nonalgebraizable real analytic hy-
persurfaces inCn.

7.3. Hypersurfaces inC2 with control of their CR automorphism group.
The goal of this paragraph is to construct some classes of strong tubes,
namely tubes having the smallest possible CR automorphism group. We
start with the casen = 2 and study afterwards the casen ≥ 3 in the next
subparagraph. LetMχ be the strong tube hypersurface inC2 defined by the
equation

(7.11) Mχ : v = ϕ(y) := y2 + y6 + y9 + y10 χ(y).

whereχ is a real analytic function defined in a neighborhood of the origin
in R.

Lemma 7.1. The hypersurfacesMχ are pairwise not biholomorphically
equivalent strong tubes.

Proof. To check thatMχ is a strong tube, it suffices to show that every hy-
persurface of the formv = y2 + y6 + O(y9) is a strong tube (the termy9

will be used afterwards). Writingv = (w − w̄)/2i andy = (z − z̄)/2i,
consideringw as a function ofz andw̄, z̄ as constants, the differentiation of
w with respect toz in (7.11) yields:

(7.12) ∂zw = 2y + 6y5 + O(y8).

The implicit function theorem yields:

(7.13) y = (1/2)∂zw − (3/25)(∂zw)5 + O((∂zw)8).

One further differentiation of equation (7.12) with respect to z gives:

(7.14) ∂2
zzw = −i− (15i) y4 + O(y7).

Replacingy in this equation by its value obtained in (7.13), we obtain the
following second order ordinary equationEM satisfied by∂zw and∂2

zzw:

(7.15) ∂2
zzw = −i− (15i/24)(∂zw)4 + O((∂zw)7).

In the four dimensional jet spaceJ2
1,1(C) equipped with the coordinates

(z, w,W 1,W 2) the equation of the corresponding complex hypersurface
∆M is of course:

(7.16) W 2 = −i− (15i/24)(W 1)4 + O((W 1)7).
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Then the Lie criterion states that a holomorphic vector fieldX = Q∂z +
R∂w belongs toSym(EM) if and only if its second prolongationX(2) =
Q∂z + R∂w + R1 ∂W 1 + R2 ∂W 2 is tangent to∆M , where the coefficients
R1 andR2 are given by the formulas (7.8) specified forn = 2, namely:
(7.17)



R1 = ∂zR+ [∂wR− ∂zQ]W 1 − ∂wQ (W 1)2.

R2 = ∂2
zzR+ [2∂2

zwR− ∂2
zzQ]W 1 + [∂2

wwR− 2∂2
zwQ] (W 1)2 − ∂2

wwQ (W 1)3+

+ [∂wR− 2∂zQ]W 2 − 3∂wQW
1W 2.

The tangency condition yields the following equation whichis satisfied on
∆M , i.e. after replacingW 2 by its value given by (7.16):

(7.18) R2 + (15i/22)R1(W 1)3 + O((W 1)6) = 0.

By expanding equation (7.18) in powers ofW 1 up to order five, we obtain
the following system of six linear partial differential equations which must
be satisfied by the derivatives ofQ andR up to order two:

(7.19)





(e0) : ∂2
zzR − i(∂wR− 2∂zQ) ≡ 0.

(e1) : 2∂2
zwR− ∂2

zzQ ≡ 0.

(e2) : ∂2
wwR− 2∂2

zwQ ≡ 0.

(e3) : −∂2
wwQ+ 15i

22 ∂zR ≡ 0.

(e4) : −15i
24 (∂wR− 2∂zQ) + 15i

22 (∂wR − ∂zQ) ≡ 0.

(e5) : −15i
24 (−3∂wQ)− 15i

22 (∂wQ) ≡ 0.

It follows from the equation(e5) that∂wQ ≡ 0 which implies∂2
wwQ ≡ 0.

Then by equation(e3) we obtain∂zR ≡ 0, implying∂2
zzR ≡ 0. From equa-

tion (e0) we get∂wR ≡ 2∂zQ and, from equation(e4), we get∂wR ≡ ∂zQ.
Consequently∂zR ≡ ∂wR ≡ ∂zQ ≡ ∂wQ ≡ 0. Since the two vector fields
∂z and∂w evidently belong toSym(EM), it follows thatdimCSym(EM) =
2. Finally, this implies that dimRAutCR(M) = 2 and thatAutCR(M) is
generated by∂w + ∂w̄ and∂z + ∂z̄.

Next, letχ(y) andχ′(y′) be two real analytic functions, and assume that
Mχ andM ′

χ′ are biholomorphically equivalent. Lett′ = h(t) be such an
equivalence. Reasoning as in §4 and taking into account thatboth are strong
tubes, we see thath∗(∂z) andh∗(∂w) must be linear combinations of∂z′ and
∂w′ with real coefficients. It follows thath must be linear, of the formz′ =
az+ bw,w′ = cz+dw, wherea, b, c andd are real. SinceT0Mχ = {v = 0}
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andT0M
′
χ′ = {v′ = 0}, we havec = 0. Next, in the equation

(7.20)




d(y2 + y6 + y9 + y10χ(y)) ≡ [ay + b(y2 + y6 + y9 + y10χ(y))]2+

+ [ay + b(y2 + y6 + y9 + y10χ(y))]6 + [ay + b(y2 + y6 + y9 + y10χ(y))]9+

+ [ay + b(y2 + y6 + y9 + y10χ(y))]10χ′(ay + b(y2 + y6 + y9 + y10χ(y))),

we firstly see thatb = 0, and then from

(7.21) d(y2 + y6 + y9 + y10χ(y)) ≡ a2y2 + a6y6 + a9y9 + a10y10χ′(ay),

we see thata = d = 1. In other words,h = Id, whencey′ = y and
χ′(y′) ≡ χ(y). This proves Lemma 7.1.

In the remainder of §7, we shall exhibit other classes of hypersurfaces
with a control on their CR automorphism group. Since the computations are
generally similar, we shall summarize them.

7.4. Some classes of strong tube hypersurfaces inCn. Generalizing
Lemma 7.1, we may state:

Lemma 7.2. The real analytic hypersurfacesMχ1,...,χn−1 ⊂ Cn of equation

(7.22) v =

n−1∑

k=1

[εk y
2
k + y6

k + y9
ky1 · · · yk−1 + yn+8

k χk(y1, . . . , yn−1)],

whereεk = ±1, are pairwise not biholomorphically equivalent strong tubes.

Proof. The associated system of partial differential equations isof the form
(7.23){

∂2
zkzk

w = − iεk − (15i/24) (∂zk
w)4 + O((∂z1w)7) + · · ·+ O((∂zn−1w)7),

∂2
zk1

zk2
w = 0, for k1 6= k2.

Using the formulas (7.8) and inspecting the coefficients of the monomials in
theW 1

l up to order five in the(n−1) equations extracted from the set of Lie
equations
(7.24){

R2
k,k + (15i/22)(W 2

k )R1
k + O((W 1

1 )6) + · · ·+ O((W 1
n−1)

6) = 0,

R2
k1,k2

= 0, for k1 6= k2,

we get∂zl
R ≡ ∂wR ≡ ∂zl

Qk ≡ ∂wQ
k ≡ 0 for l, k = 1, . . . , n − 1. Thus,

Mχ1,...,χn−1 is a strong tube.
Next, reasoning as in the end of the proof of Lemma 7.1, we see first

that an equivalence betweenMχ1,...,χn−1 andM ′
χ′

1,...,χ′
n−1

must be of the form

z′k =
∑n−1

l=1 λl
k zl, w′ = µw, whereλl

k, 1 ≤ l, k ≤ n − 1 andµ are real.
Inspecting the terms of degree9, 10, . . . , n + 7, we getλl

k = 0 if k 6= l, i.e.
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y′k = λk
k yk andw′ = µw. Finally,λk

k = 1 andµ = 1, which completes the
proof.

7.5. Families of strongly rigid hypersurfaces.Alongside the same recipe,
we can study some classes of hypersurfaces of the formv = ϕ(zz̄).

Lemma 7.3. The Lie algebraHol(Mχ) of the rigid real analytic hypersur-
facesMχ in C2 of equationv = ϕ(zz̄) = zz̄ + z5z̄5 + z7z̄7 + z8z̄8χ(zz̄)
is two-dimensional and generated by∂w and iz∂z . Furthermore,Mχ is bi-
holomorphically equivalent toM ′

χ′ if and only ifχ = χ′.

Proof. The associated differential equation is of the form

(7.25) ∂2
zzw = [5z3/4](∂zw)5 − [21z5/32](∂zw)7 + O((∂zw)9).

Extracting from the associated Lie equations (7.10) the coefficients of the
monomials(W 1)4, (W 1)5, (W 1)6 and (W 1)7, we obtain four equations
which are solved byz∂zQ−Q ≡ 0, ∂wQ ≡ 0, ∂zR ≡ 0 and∂wR ≡ 0. Next,
if Mχ andM ′

χ′ are biholomorphically equivalent, reasoning as in §4, taking
into account thath∗(iz∂z) andh∗(∂w) are linear combinations ofiz′∂z′ and
∂w′ with real coefficients, we see first thatz′ = λ z eγw/2i andw′ = µw for
some three real constantsγ, λ 6= 0 andµ 6= 0. Replacingz′ andw′ in the
equation ofM ′

χ′ , we getγ = 0, µ = 1 andλ ± 1. In other words,z′ = ±z
andw′ = w, which entailsχ′(z′z̄′) ≡ χ(zz̄), as claimed.

Perturbing this family we may exhibit other strongly rigid hypersurfaces :

Lemma 7.4. The Lie algebraHol(Mχ) of the real analytic hypersurfaces
Mχ in C2 of equationv = ϕ(z, z̄) = zz̄ + z5z̄5 + z7z̄7 + z8z̄8(z + z̄) +
z10z̄10χ(z, z̄) is one-dimensional and generated by∂w. Furthermore,Mχ is
biholomorphically equivalent toM ′

χ′ if and only ifχ = χ′.

Proof. We already know thatz∂zQ − Q ≡ ∂wQ ≡ ∂zR ≡ ∂wR ≡ 0.
Extracting from the associated Lie equations (7.10) the coefficient of the
monomials(W 1)8, we also getQ ≡ 0. Next, letMχ andM ′

χ′ be bi-
holomorphically equivalent. Lett′ = h(t) be such an equivalence. Us-
ing h∗(∂w) = µ ∂w′, whereµ ∈ R is nonzero, we getz′ = f(z) and
w′ = µw + g(z). Next from the equation
(7.26){
µ(zz̄ + z5z̄5 + z7z̄7 + z8z̄8(z + z̄) + O(z9z̄9)) + [g(z)− ḡ(z̄)]/2i ≡
≡ f(z)f̄(z̄) + f(z)5f̄(z̄)5 + f(z)7f̄(z̄)7 + f(z)8f̄(z̄)8(f(z) + f̄(z̄)) + O(z9z̄9),

we get firstlyf(z) =
√
|µ|eiθz by differentiating with respect tōz at z̄ = 0

and secondlyµ = eiθ = 1, which completes the proof.

We provide a second family of strongly rigid hypersurfaces in C2 with a
one-dimensional Lie algebra :
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Lemma 7.5. The Lie algebraHol(Mχ) of the real analytic hypersurfaces
Mχ ⊂ C2 of equationv = zz̄ + z5z̄5(z + z̄) + z10z̄10χ(z, z̄) is one-
dimensional and generated by∂w. FurthermoreMχ is biholomorphically
equivalent toM ′

χ′ if and only ifχ = χ′.

Proof. The derivatives∂zw and∂2
z2w of w with respect toz are given by :

(7.27)

{
∂zw = 2iz̄ + 12iz5z̄5 + 10iz4z̄6 + O(z̄10)),

∂2
zzw = 60iz4z̄5 + 40iz3z̄6 + O(z̄10).

Replacinḡz in the second equation by its expression given by the first equa-
tion we obtain the following second order differential equation, interpreted
in the jet space :
(7.28)
W2 = [15z4/8] (W 1)5− [5iz3/8] (W 1)6 − [225z9/64] (W 1)9 + O((W 1)10).

Solving the partial differential equations involvingQ, ∂zQ, ∂wQ, ∂zR and
∂wR given in the coefficients of(W 1)4, (W 1)5, (W 1)6, (W 1)7 and(W 1)9

we obtainQ ≡ ∂zQ ≡ ∂wQ ≡ ∂zR ≡ ∂wR ≡ 0 which is the desired infor-
mation. Finally, proceeding exactly as in the end of the proof of Lemma 7.4,
we see that theMχ are pairwise biholomorphically not equivalent.

The dimension ofHol(M) for the five examples of Corollary 1.3, for the
seven examples of Theorem 1.4, for the seven examples of Corollary 1.7
and for the hypersurfacev = ezz̄ − 1 at a pointp with zp 6= 0 was com-
puted with the packagediffalg of Maple Release 6. Since at a point
p with zp 6= 0 the hypersurfacev = ezz̄ − 1 is biholomorphically equiv-
alent to the hypersurfaceMa of equationv = ϕa(y) := ea(ey−1) − 1
with a = |zp|2, this defines a strong tube. Applying Theorem 1.1 and
Lemma 3.3, we see thatMa is not locally algebraizable at the origin, be-
causeϕa

yy(y) = aeyea(ey−1) + a2e2yea(ey−1) andϕa
y(y) = aeyea(ey−1) are

algebraically independent. Finally all the examples of Corollary 1.3, The-
orem 1.4 and Corollary 1.6 are not locally algebraic since they satisfy the
required transcendence conditions.

§8. ANALYTICITY VERSUS ALGEBRAICITY

Intuitively there seems to be much more analytic mappings, manifolds
and varieties than algebraic ones. Our goal is to elaborate aprecise statement
about this. By complexification, every local real analytic object yields a lo-
cal complex analytic object, so we shall only work in the holomorphic cate-
gory. Let∆n be the complex polydisc of radius one inCn and∆n its closure.
Let k ∈ N. We consider the spaceOk(∆n) := O(∆n) ∩ C k(∆n) of holo-
morphic functions extending up to the boundary as a functionof classC k

. This is a Banach space for theC k norm ||ϕ||k :=
∑k

l=0 supz∈∆n
|ϕzl(z)|.
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The last statements of Corollaries 1.2 and 1.6 are a direct consequence of
the following lemma.

Lemma 8.1. The set of holomorphic functionsϕ ∈ Ok(∆n) such that there
exists a polynomialP such that

(8.1) P (z, jkϕ(z)) ≡ 0,

is of first category, namely it can be represented as the countable union of
nowhere dense closed subsets. Conversely, the set of functionsϕ ∈ Ok(∆n)
such that there is no algebraic dependence relation like(8.1) is generic in
the sense of Baire, namely it can be represented as the countable intersection
of everywhere dense open subsets.

Proof. Let N ∈ N. Consider the setFN of functionsϕ such that there ex-
ists a polynomial of degreeN satisfying (8.1). It suffices to show thatFN

is closed and that its complement is everywhere dense. Suppose that a se-
quence(ϕ(m))m∈N converges toϕ ∈ Ok(∆n). Let the zero-set of a degree
N polynomialP (m)

N (z, Jk) contain the graph of thek-jet of ϕ(m). The coef-
ficients ofP (m)

N belong to a certain complex projective spacePA(C), where
the integerA = A(n, k) is independent ofm. By compactness ofPA(C),
passing to a subsequence if necessary, theP

(m)
N converge to a nonzero poly-

nomialPN . By continuity,PN(z, jkϕ(z)) = 0 for all z ∈ O(∆n). We claim
that the complement of the union of theFN is dense inOk(∆n). Indeed,
let ϕ(z) be such that there exists a degreeN polynomialP satisfying (8.1).
Fix z0 ∈ ∆n having rational real and imaginary parts. Then the complex
numbersz0, ∂α

z ϕ(z0), |α| ≤ k, are algebraically dependent. By a Canto-
rian argument, there exists complex numbersχα

0 arbitrarily close to∂α
z ϕ(z0)

such thatz0, χα
0 are algebraically independent. Letχ(z) be a polynomial

with ∂α
z (z0) = χα

0 − ∂α
t ϕ(z0). We can chooseχ to be arbitrarily close to

zero in theC k(∆n) norm. Then the functionϕ(z) + χ(z) is not Nash alge-
braic.
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Symmetries of partial differential equations

Joël Merker (with Hervé Gaussier)

Abstract. We establish a link between the study of completely integrable systems
of partial differential equations and the study of generic submanifolds inCn. Us-
ing the recent developments of Cauchy-Riemann geometry we provide the set of
symmetries of such a system with a Lie group structure. Finally we determine the
precise upper bound of the dimension of this Lie group for some specific systems
of partial differential equations.
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1. INTRODUCTION

To study the geometry of a real analytic Levi nondegenerate hypersur-
faceM in C2, one of the principal ideas of H. Poincaré, of B. Segre and
of É. Cartan in the fundamental memoirs [20], [Se1931], [Se1932], [3] was
to associate toM a system(EM) of (partial) differential equations, in order
to solve the so-called equivalence problem. Establishing anatural corre-
spondence between the local holomorphic automorphisms ofM and the Lie
symmetries of(EM) they could use the classification results on differential
equations achieved by S. Lie in [5] and pursued by A. Tresse in[Tr1896].

Starting with such a correspondence, we shall establish a general link be-
tween the study of a real analytic generic submanifold of codimensionm
in Cn+m and the study of completely integrable systems of analytic partial
differential equations. We shall observe that the recent theories in Cauchy-
Riemann (CR) geometry may be transposed to the setting of partial differ-
ential equations, providing some new information on their Lie symmetries.

Indeed consider forK = R or C aK-analytic system(E ) of the following
general form:

(E ) uj
xα(x) = F j

α

(
x, u(x), (u

j(q)

xβ(q)(x))1≤q≤p

)
.
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Here x = (x1, . . . , xn) ∈ Kn, u = (u1, . . . , um) ∈ Km, the integers
j(1), . . . , j(p) satisfy1 ≤ j(q) ≤ m for q = 1, . . . , p, andα and the mul-
tiindicesβ(1), . . . , β(p) ∈ Nn satisfy |α|, |β(q)| ≥ 1. We also require
(j, α) 6= (j(1), β(1)), . . . , (j(p), β(p)). For j = 1, . . . , m andα ∈ Nn, we
denote byuj

xα the partial derivative∂|α|uj/∂xα. We assume that the sys-
tem(E ) is completely integrable, namely that the Pfaffian system naturally
associated in the jet space is involutive in the sense of Frobenius. We note
that in that case (E ) is locally solvable, meaning that through every point
(x∗, u∗, u∗β, u

∗
α) in the jet space, satisfyingu∗α = Fα(x∗, u∗, u∗β) (written in

a condensed form), there exists a localK-analytic solutionu = u(x) of
(E ) satisfyingu(x∗) = u∗ anduxβ(x∗) = u∗β. Consequently the Lie theory
([Ol1986]) may be applied to such systems. We shall associate with (E ) the
submanifold of solutionsM in Kn+2m+p given byK-analytic equations of
the form

(7.28) uj = Ωj(x, ν, χ), j = 1, . . . , m,

whereν ∈ Km and whereχ ∈ Kp. Moreover the integerm+ p is the num-
ber of initial conditions for the general solutionu(x) := Ω(x, ν, χ) of (E ),
whose existence and uniqueness follow from complete integrability. Pre-
cisely, the parametersν, χ correspond to the datau(0), (u

j(q)

xβ(q)(0))1≤q≤p. In
the special case where the system(E ) is constructed from a generic sub-
manifoldM as in [Se1931], [24] (see also Subsection 2.2 below), the corre-
sponding submanifold of solutions is exactly the extrinsiccomplexification
of M .

A pointwiseK-analytic transformation(x′, u′) = Φ(x, u) defined in a
neighbourhood of the origin and sufficiently close to the iedntity map-
ping is called aLie symmetry of (E ) if it transforms the graph of ev-
ery solution to the graph of an other local solution. A vectorfield X =∑n

l=1 Q
l(x, u) ∂/∂xl+

∑m
j=1 R

j(x, u) ∂/∂uj is called aninfinitesimal sym-
metry of (E ) if for every s close to zero inK the local diffeomorphism
(x, u) 7→ exp(sX)(x, u) associated to the flow ofX is a Lie symmetry of
E . According to [Ol1986] (Chapter 2) the infinitesimal symmetries of (E )
form a Lie algebra of vector fields defined in a neighbourhood of the origin
in Kn × Km, denoted bySym(E ). Inspired by recent developments in CR
geometry we shall provide in Section 2 nondegeneracy conditions onM in-
suring firstly thatSym(E ) may be identified with the Lie algebraSym(M )
of vector fields of the form
(7.28)

n∑

l=1

Ql(x, u)
∂

∂xl

+
m∑

j=1

Rj(x, u)
∂

∂uj
+

m∑

j=1

Πj(ν, χ)
∂

∂νj
+

p∑

q=1

Λq(ν, χ)
∂

∂χq

,
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which are tangent toM , and secondly thatSym(M ) ∼= Sym(E ) is finite
dimensional. The strength of this identification is to provide some (non opti-
mal) bound on the dimension ofSym(E ) for arbitrary systems of partial dif-
ferential equations with an arbitrary number of variables,see Theorem 6.4.

In the second part of the paper (Sections 3, 4 and 5), using theclassical Lie
theory (cf. [5], [Ol1986], [Ol1995] and [BK1989]), we provide an optimal
upper bound on the dimension ofSym(E ) for a completely integrableK-
analytic system(E ) of the following form:

(E ) uj
xα = F j

α(x, u(x), (uxβ(x))1≤|β|≤κ−1), α ∈ Nn, |α| = κ, j = 1, . . . , m.

This system is a special case of the system studied in Section2. For
instance thehomogeneoussystem(E0) : uj

xk1
···xkκ

(x) = 0 is com-
pletely integrable. The solutions of (E0) are the polynomials of the form
uj(x) =

∑
β∈Nn, |β|≤κ−1 λ

j
β x

β , j = 1, . . . , m, whereλj
β ∈ K and a Lie sym-

metry of (E0) is a transformation stabilizing the graphs of polynomials of
degree≤ κ− 1. We prove the following Theorem:

Theorem 6.4.Let (E ) be theK-analytic system of partial differential equa-
tions of orderκ ≥ 2, with n independent variables andm dependent vari-
ables, defined just above. Assume that(E ) is completely integrable. Then
the Lie algebraSym(E ) of its infinitesimal symmetries satisfies the follow-
ing estimates:
(7.28){

dimK(Sym(E )) ≤ (n+m+ 2)(n+m), if κ = 2,
dimK(Sym(E )) ≤ n2 + 2n+m2 +mCκ−1

n+κ−1, if κ ≥ 3,

where we denoteCκ−1
n+κ−1 := (n+κ−1)!

n! (κ−1)!
. Moreover the inequalities (7.28) be-

come equalities for the homogeneous system(E0).

We remark that there is no combinatorial formula interpolating these two
estimates. Theorem 6.4 is a generalization of the followingresults. For
n = m = 1, S. Lie proved that the dimension of theLie algebraSym (E )
is less than or equal to 8 ifκ = 2 and is less than or equal toκ + 4 if
κ ≥ 3, these bounds being reached for the homogeneous system (cf. [5]).
For n = 1, m ≥ 1 andκ = 2, F. González-Gascón and A. González-
López proved in [11] that the dimension ofSym (E ) is less than or equal
to (m + 3)(m + 1). Forn = 1, m ≥ 1 andκ = 2, using the equivalence
method due to É. Cartan, M. Fels [Fe1995] proved that the dimension of
Sym (E ) is less than or equal tom2 + 4m+ 3, with equality if and only if
the system (E ) is equivalent to the systemuj

x2 = 0, j = 1, . . . , m. He also
generalized this result to the casen = 1, m ≥ 1, κ = 3. Forn ≥ 1, m ≥ 1
andκ = 2, A. Sukhov proved in [24] that the dimension ofSym (E ) is less
than or equal to(n + m + 2)(n + m) (the first inequality in Theorem 6.4),
with equality for the homogeneous systemuj

xk1
xk2

= 0.
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Consequently, for the caseκ = 2, we will only give the general form of
the Lie symmetries of the homogeneous system (E0) (see Subsection 5.2).
We will prove Theorem 6.4 for the caseκ ≥ 3. The formulas obtained in
Sections 3, 4 and 5 were checked with the help of MAPLE release6.

Acknowledgment.This article was written while the first author had a six
months delegation position at the CNRS. He thanks this institution for pro-
viding him this research opportunity. The authors are indebted to Gérard
Henry, the computer ingénieur (LATP, UMR 6632 CNRS), for histechnical
support.

2. SUBMANIFOLD OF SOLUTIONS

2.1. Preliminary. Let K = R or C. Let n ≥ 1 and letx = (x1, . . . , xn) ∈
N. We denote byK{x} the local ring ofK-analytic functionsϕ = ϕ(x)
defined in some neighbourhood of the origin inKn. If ϕ ∈ K{x} we denote
by ϕ̄ the function inK{x} satisfyingϕ(x) ≡ ϕ̄(x̄). Recall that aK-analytic
functionϕ defined in a domainU ⊂ Kn is calledK-algebraic(in the sense
of Nash) if there exists a nonzero polynomialP = P (X1, . . . , Xn,Φ) ∈
K[X1, . . . , Xn,Φ] such thatP (x, ϕ(x)) ≡ 0 onU . All the considerations in
this paper will be local: functions, submanifolds and mappings will always
be defined in a small connected neighbourhood of some point (most often
the origin) inKn.

2.2. System of partial differential equations associated to a generic sub-
manifold of Cn+m. LetM be a real algebraic or analytic local submanifold
of codimensionm in Cn+m, passing through the origin. We assume thatM
is generic, namelyT0M + iT0M = T0C

n+m. Classically (cf. [BER1999])
there exists a choice of complex linear coordinatest = (z, w) ∈ Cn × Cm

centered at the origin such thatT0M = {Imw = 0} and such that there
existm complex algebraic or analytic defining equations representingM as
the set of(z, w) in a neighbourhood of the origin inCn+m which satisfy

(7.28) w1 = Θ1(z, z̄, w̄), . . . . . . , wm = Θm(z, z̄, w̄).

Furthermore, the mappingΘ = (Θ1, . . . ,Θm) satisfies the functional equa-
tion

(7.28) w ≡ Θ(z, z̄,Θ(z̄, z, w)),

which reflects the reality of the generic submanifoldM . It follows in
particular from (7.28) that the local holomorphic mappingCm ∋ w̄ 7→
(Θj(0, 0, w̄))1≤j≤m ∈ Cm is of rankm at w̄ = 0.

Generalizing an idea due to B. Segre in [Se1931] and [Se1932], exploited
by É. Cartan in [3] and more recently by A. Sukhov in [24], [25], [Su2002],
we shall associate toM a system of partial differential equations. For this,
we need some general nondegeneracy condition, which generalizes Levi
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nondegeneracy. Letℓ0 ∈ N with ℓ0 ≥ 1. We shall assume thatM is ℓ0-
finitely nondegenerate at the origin,cf. [BER1999], [Me2003], [8]. This
means that there exist multiindicesβ(1), . . . , β(n) ∈ Nn with |β(k)| ≥ 1
for k = 1, . . . , n andmax1≤k≤n |β(k)| = ℓ0, and integersj(1), . . . , j(n)
with 1 ≤ j(k) ≤ m for k = 1, . . . , n such that the local holomorphic map-
ping
(7.28)

Cn+m ∋ (z̄, w̄) 7−→
(
(Θj(0, z̄, w̄))1≤j≤m,

(
Θj(k),zβ(k)(0, z̄, w̄)

)
1≤k≤n

)
∈ Cm+n

is of rank equal ton + m at (z̄, w̄) = (0, 0). Here, we denote the partial
derivative∂|β|Θj(0, z̄, w̄)/∂zβ simply by Θj,zβ(0, z̄, w̄). ThenM is Levi
nondegenerate at the origin if and only ifℓ0 = 1. By complexifying the
variablesz̄ andw̄, we get new independent variablesζ ∈ Cn andξ ∈ Cm

together with a complex algebraic or analyticm-codimensional submanifold
M in C2(n+m) of equations

(7.28) wj = Θj(z, ζ, ξ), j = 1, . . . , m,

called theextrinsic complexification ofM . In the defining equations (7.28)
of M , following [Se1931] and [24], we may consider the “dependent
variables”w1, . . . , wm as algebraic or analytic functions of the “indepen-
dent variables”z = (z1, . . . , zn), with additional dependence on the extra
“parameters”(ζ, ξ) ∈ Cn+m. Then by applying the differential operator
∂|α|/∂zα to (7.28), we obtainwj,zα(z) = Θj,zα(z, ζ, ξ). Writing these equa-
tions for (j, α) = (j(k), β(k)) with k = 1, . . . , n, we obtain a system of
m+ n equations

(7.28)

{
wj(z) = Θj(z, ζ, ξ), j = 1, . . . , m,

wj(k),zβ(k)(z) = Θj(k),zβ(k)(z, ζ, ξ), k = 1, . . . , n.

In this system (7.28), by the assumption ofℓ0-finite nondegeneracy (7.28),
the algebraic or analytic implicit function theorem allowsto solve the pa-
rameters(ζ, ξ) in terms of the variables(zk, wj(z), wj(k),zβ(k)(z)), providing
a local algebraic or analyticCn+m-valued mappingR such that(ζ, ξ) =
R
(
zk, wj(z), wj(k),zβ(k)(z)

)
. Finally, for every pair(j, α) different from

(1, 0), . . . , (m, 0), (j(1), β(1)), . . . , (j(n), β(n)), we may replace(ζ, ξ) by
R in the differentiated expressionwj,zα(z) = Θj,zα(z, ζ, ξ). This yields

(7.28)
wj,zα(z) = Θj,zα

(
z, R(zk, wj(z), wj(k),zβ(k)(z))

)

=: Fj,α

(
zk, wj(z), wj(k),zβ(k)(z)

)
.

This is thesystem of partial differential equations associated withM . As
argued by B. Segre in [Se1931], the geometric study of generic submani-
folds of Cn may gain much information from the study of their associated
systems of partial differential equations (cf. [24], [25]). The next paragraphs
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are devoted to provide ageneral one-to-one correspondencebetween com-
pletely integrable systems of analytic partial differential equations and their
associated “submanifolds of solutions” (to be defined precisely below) like
M above. Afterwards, we shall observe that conversely, the study of sys-
tems of analytic partial differential equations also gainsmuch information
from the direct study of their associated submanifolds of solutions.

2.3. Completely integrable systems of partial differential equations.
Let now n, m, p ∈ N with n, m, p ≥ 1, let κ ∈ N with κ ≥ 2
and let u = (u1, . . . , um) ∈ Km. Consider a collection ofp multi-
indices β(1), . . . , β(p) ∈ Nn with |β(q)| ≥ 1 for q = 1, . . . , p and
max1≤q≤p |β(q)| = κ − 1. Consider alsop integersj(1), . . . , j(p) with
1 ≤ j(q) ≤ m for q = 1, . . . , p. Inspired by (7.28), we consider a
general system of partial differential equations ofn independent variables
(x1, . . . , xn) andm dependent variables(u1, . . . , um) which is of the fol-
lowing form:

(E ) uj
xα(x) = F j

α

(
x, u(x), (u

j(q)

xβ(q)(x))1≤q≤p

)
,

where(j, α) 6= (j(1), β(1)), . . . , (j(p), β(p)) andj = 1, . . . , m, |α| ≤ κ.
Here, we assume thatu = 0 is a local solution of the system(E ) and that
the functionsF j

α areK-algebraic orK-analytic in a neighbourhood of the
origin in Kn+m+p. Among such systems are included ordinary differential
equations of any orderκ ≥ 2, systems of second order partial differential
equation as studied in [24],etc.

Throughout this article, we shall assume the system(E ) completely inte-
grable. By analyzing the application of the Frobenius theorem in jet spaces,
one can show (we will not develop this) that the general solution of the sys-
tem (E ) is given byu(x) := Ω(x, ν, χ), where the parametersν ∈ Kn

and χ ∈ Kn essentially correspond to the “initial conditions”u(0) and
(u

j(q)

xβ(q)(0))1≤q≤p, andΩ is aK-analyticKn-valued mapping. In the case of
a generic submanifold as in Subsection 2.2 above, we recoverthe mapping
Θ. In the sequel, we shall use the following terminology: the coordinates
(x, u) will be called thevariablesand the coordinates(ν, χ) will be called
the parametersor the initial conditions. In Subsection 2.5 below, we shall
introduce a certain duality where the rôles between variables and parameters
are exchanged.

2.4. Associated submanifold of solutions.The existence of the function
Ω and the analogy with Subsection 2.2 leads us to introduce thesubmani-
fold of solutions associated to the completely integrable system(E ), which
by definition is them-codimensionalK-analytic submanifold ofKn+2m+p,
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equipped with the coordinates(x, u, ν, χ), defined by the Cartesian equa-
tions

(7.28) uj = Ωj(x, ν, χ), j = 1, . . . , m.

Let us denote this submanifold byM . We stress that in general such a sub-
manifold cannot coincide with the complexification of a generic subman-
ifold of Cm+n, for instance becauseK may be equal toR or, if K = C,
because the integerp is not necessarily equal ton. Also, even ifK = C and
n = p, the mappingΩ does not satisfy a functional equation like (7.28). In
fact, it may be easily established that the submanifold of solutions of a com-
pletely integrable system of partial differential equations like(E ) coincides
with the complexification of a generic submanifoldif and only if K = C,
p = n and the mappingΩ satisfies a functional equation like (7.28).

Let now M be a submanifold ofKn+2n+p of the form (7.28), but not
necessarily constructed as the submanifold of solutions ofa system(E ). We
shall always assume thatΩj(0, ν, χ) ≡ νj . We say thatM is solvable with
respect to the parametersif there exist multiindicesβ(1), . . . , β(p) ∈ Nn

with |β(q)| ≥ 1 for q = 1, . . . , p and integersj(1), . . . , j(p) with 1 ≤
j(q) ≤ m for q = 1, . . . , p such that the localK-analytic mapping
(7.28)

Km+p ∋ (ν, χ) 7−→
(
(Ωj(0, ν, χ)1≤j≤m,

(
Ωj(q),xβ(q)(0, ν, χ)

)
1≤q≤p

)
∈ Km+p

is of rank equal tom+p at(ζ, χ) = (0, 0) (notice that sinceΩj(0, ν, χ) ≡ νj ,
then them first components of the mapping (7.28) are already of rankm).
We remark that the submanifold of solutions of a system(E ) is automat-
ically solvable with respect to the variables, the multiindicesβ(q) and the
integersj(q) being the same as in the arguments of the right hand side terms
F j

α in (E ).

2.5. Dual system of defining equations.SinceΩj(0, ν, χ) ≡ νj , we may
solve the equations (7.28) with respect toν by means of the analytic implicit
function theorem, getting an equivalent system of equations forM :

(7.28) νj = Ω∗
j (χ, x, u), j = 1, . . . , m.

We call this thedual system of defining equations forM . By construction,
we have the functional equation

(7.28) u ≡ Ω(x,Ω∗(χ, x, u), χ),

implying the identityΩ∗
j (0, x, u) ≡ uj. We say thatM is solvable with

respect to the variablesif there exist multiindicesδ(1), . . . , δ(n) ∈ Np with
|δ(l)| ≥ 1 for l = 1, . . . , n and integersj(1), . . . , j(n) with 1 ≤ j(l) ≤ m
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for l = 1, . . . , m such that the localK-analytic mapping
(7.28)

Kn+m ∋ (x, u) 7−→
(

(Ω∗
j (0, x, u))1≤j≤m,

(
Ω∗

j(l), χδ(l)(0, x, u)
)

1≤l≤n

)
∈ Km+n

is of rank equal ton+m at(x, u) = (0, 0) (notice that sinceΩ∗
j (0, x, u) ≡ uj,

them fisrt components of the mapping (7.28) are already of rankm).
In the case whereM is the complexification of a generic submanifold

then the solvability with respect to the parameters is equivalent to the solv-
ability with respect to the variables sinceΩ∗ ≡ Ω. However we notice that
a submanifoldM of solutions of a system(E ) is not automatically solvable
with respect to the variables, as shows the following trivial example.

Example1. Let n = 2, m = 1 and let(E ) denote the systemux2 = 0,
ux1x1 = 0, whose general solutions areu(x) = ν + x1χ =: Ω(x1, x2, ν, χ).
Notice that the variablex2 is absent from the dual equationν = u−x1χ1 =:
Ω∗(χ, x1, x2, u). It follows thatM is not solvable with respect to the vari-
ables.

2.6. Symmetries of (E ), their lift to the jet space and their lift to the
parameter space.We denote byJ κ

n,m the space of jets of orderκ of K-
analytic mappingsu = u(x) from Kn to Km. Let

(7.28) (xl, u
j, U i1

l1
, U i1

l1,l2
, . . . , U i1

l1,...,lκ
) ∈ Kn+m Cκ

κ+n

denote the natural coordinates onJ κ
n,m. Here, the superscriptsj, i1 and

the subscriptsl, l1, l2, . . . , lκ satisfyj, i1 = 1, . . . , m and l, l1, l2, . . . , lκ =
1, . . . , n. The independent coordinateU i1

l1,...,lλ
corresponds to the partial de-

rivativeui1
xl1

...xlλ
. Finally, by symmetry of partial differentiation, we identity

every coordinateU i1
l1,...,lλ

with the coordinatesU i1
σ(l1),...,σ(lλ), whereσ is an ar-

bitrary permutation of the set{1, . . . , λ}. With these identifications, theκ-th
order jet spaceJ κ

n,m is of dimensionn+mCκ
κ+n, whereCq

p := p!
q! (p−q)!

de-
notes the binomial coefficient. Also, we shall sometimes usean equivalent
notation for coordinates onJ κ

n,m:

(7.28) (xl, u
j, U i

β) ∈ Kn+m Cn
κ+n ,

whereβ ∈ Nn satisfies|β| ≤ κ and where the independent coordinateU i
β

corresponds to the partial derivativeui
xβ .

associated to the system(E ) is the so-calledskeleton∆E , which is the
K-analytic submanifold of dimensionn+m+ p in J κ

n,m simply defined by
replacing the partial derivatives of the dependent variablesuj by the inde-
pendent jet variables in(E ):

(7.28) U j
α = F j

α

(
x, u, (U

j(q)
β(q))1≤q≤p

)
,
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for (j, α) 6= (j(1), β(1)), . . . , (j(p), β(p)) and j = 1, . . . , m, |α| ≤ κ.
Clearly, the natural coordinates on the submanifold∆E of J κ

n,m are the
n+m+ p coordinates

(7.28)
(
x, u, (U

j(q)
β(q))1≤q≤p

)
.

Let h = h(x, u) be a localK-analytic diffeomorphism ofKn+m close to the
identity mapping and letπκ : J κ

n,m → Kn+m be the canonical projection.
According to [Ol1986] (Chapter 2) there exists a unique lifth(κ) of h to
J κ

n,m such thatπκ◦h(κ) = h◦πκ. The components ofh(κ) may be computed
by means of universal combinatorial formulas and they are rational functions
of the jet variables (7.28), their coefficients being partial derivatives of the
components ofh, seefor instance §3.3.5 of [BK1989]. By definition,h is a
local symmetry of(E ) if h transforms the graph of every local solution of
(E ) into the graph of another local solution of(E ). This definition seems to
be rather uneasy to handle, because of the abstract quantification of “every
local solution”, but we have the following concrete characterization forh to
be a local symmetry of(E ), cf. Chapter 2 in [Ol1986].

Lemma 8.1. The following conditions are equivalent:

(1) The local transformationh is a local symmetry of(E ).
(2) Its κ-th prolongationh(κ) is a local self-transformation of the skeleton

∆E of (E ).

These considerations have an infinitesimal version. Indeed, let X =∑n
l=1 Q

l(x, u) ∂/∂xl +
∑m

j=1 R
j(x, u) ∂/∂uj be a local vector field with

K-analytic coefficients which is defined in a neighbourhood ofthe origin in
Kn+m. Let s ∈ K and consider the flow ofL as the one-parameter family
hs(x, u) := exp(sX)(x, u) of local transformations. We recall thatX is
an infinitesimal symmetryof (E ) if for every smalls ∈ K, the mapping
hs(x, u) := exp(sX)(x, u) is a local symmetry of(E ). By differentiating
with respect tos the κ-th prolongation(hs)

(κ) of hs at s = 0, we obtain
a unique vector fieldX(κ) on theκ-th jet space, called theκ-th prolonga-
tion ofX and which satisfies(πk)∗(X

(κ)) = X. In Subsections 3.1 and 3.2
below, we shall analyze the combinatorial formulas for the coefficients of
X(κ), since they will be needed to prove Theorem 6.4.

Let XE be the projection to the restricted jet spaceKm+n+p, equipped
with the coordinates (7.28), of the restriction ofX(κ) to ∆E , namely

(7.28) XE := (πκ,p)∗(X
(κ)|∆E

).

The following Lemma, called theLie criterion, is the concrete characteriza-
tion for X to be an infinitesimal symmetry of(E ) and is a direct corollary
of Lemma 8.1,cf. Chapter 2 in [Ol1986]. This criterion will be central in
the next Sections 3, 4 and 5.
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Lemma 8.1. The following conditions are equivalent:

(1) The vector fieldX is an infinitesimal symmetry of(E ).
(2) Its κ-th prolongationX(κ) is tangent to the skeleton∆E .

We denote bySym(E ) the set of infinitesimal symmetries of (E ). Since
it may be easily checked that(cX + dY )(κ) = cX(κ) + dY (κ) and that
[X(κ), Y (κ)] = ([X, Y ])(κ), seeTheorem 2.39 in [Ol1986], it follows from
Lemma 8.1(2) thatSym(E ) is a Lie algebra of locally defined vector fields.
Our main question in this section is the following:under which natural
conditions isSym(E ) finite-dimensional ?

Example2. We observe that the Lie algebraSym(E ) of the system (E )
presented in Example 1 is infinite-dimensional, since it includes all vector
fields of the formX = Q2(x1, x2, u) ∂/∂x2, as may be verified. As we will
argue in Proposition 3.1 below, this phenomenon is typical,the main reason
lying in the first order relationux2 = 0.

By analyzing the construction of the submanifold of solutionsM associ-
ated to the system(E ), we may establish the following correspondence (we
shall not develop its proof).

Proposition 3.1. To every infinitesimal symmetryX =∑n
l=1 Q

l(x, u) ∂/∂xl +
∑m

j=1 R
j(x, u) ∂/∂uj of (E ), there corresponds a

unique vector field of the form

(7.28) X =
m∑

j=1

Πj(ν, χ)
∂

∂νj
+

p∑

q=1

Λq(ν, χ)
∂

∂χq

,

whose coefficients depend only on the parameters(ν, χ), such thatX + X
is tangent to the submanifold of solutionsM .

This leads us to define the Lie algebraSym(M ) of vector fields of the
form
(7.28)

n∑

l=1

Ql(x, u)
∂

∂xl

+
m∑

j=1

Rj(x, u)
∂

∂uj
+

m∑

j=1

Πj(ν, χ)
∂

∂νj
+

p∑

q=1

Λq(ν, χ)
∂

∂χq

which are tangent toM . We shall say that the submanifoldM is degenerate
if there exists a nonzero vector field of the formX =

∑n
l=1 Q

l(x, u) ∂/∂xl+∑m
j=1 R

j(x, u) ∂/∂uj which is tangent toM , which means that the cor-
respondingX part is zero. In this case, we claim thatSym(M ) is
infinite dimensional. Indeed there exists then a nonzero vector field
T =

∑n
l=1Q

l(x, u)∂/∂xl +
∑m

j=1R
j(x, u)∂/∂uj tangent toM . Con-

sequently, for everyK-analytic functionA(x, u), the vector fieldA(x, u)T
belongs toSym(M ), henceSym(M ) is infinite dimensional.
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By developing the dual defining functions ofM with respect to the pow-
ers ofχ, we may write

(7.28) νj = Ω∗
j (χ, x, u) =

∑

γ∈Np

χγΩ∗
j,γ(x, u),

where the functionsΩ∗
j,γ(x, u) areK-analytic in a neighbourhood of the ori-

gin, we may formulate a criterion forM to be non degenerate with respect
to the variables (whose proof is skipped).

Proposition 3.1. The submanifoldM is not degenerate with respect to the
variables if and only if there exists an integerk such that the generic rank of
the localK-analytic mapping

(7.28) (x, u) 7−→
(
Ω∗

j,γ(x, u)
)
1≤j≤m, γ∈Np, |γ|≤k

is equal ton+m.

Seeking for conditions which insure thatSym(M ) is finite-dimensional,
it is therefore natural to assume that the generic rank of themapping (7.28)
is equal ton + m. Furthermore, to simplify the presentation, we shall as-
sume that therank at (x, u) = (0, 0) (not only the generic rank)of the
mapping (7.28) is equal ton + m for k large enough. This is a “Zariski-
generic” assumption. Coming back to (7.28), we observe thatthis means
exactly thatM is solvable with respect to the variables. Then we denote by
ℓ∗0 the smallest integerk such that the rank at(x, u) = (0, 0) of the map-
ping (7.28) is equal ton+m and we say thatM is ℓ∗0-solvable with respect
to the variables. Also, we denote byℓ0 the integermax1≤q≤p |β(q)| and we
say thatM is ℓ0-solvable with respect to the parameters.

2.7. Fundamental isomorphism betweenSym(E ) and Sym(M ). In the
remainder of this Section 2, we shall assume thatM is ℓ0-solvable with
respect to the parameters andℓ∗0-solvable with respect to the variabes. In
this case, viewing the variables(ν1, . . . , νm) in the dual equationsνj =
Ω∗

j (χ, x, u) of M as a mapping ofχ with (dual) “parameters”(x, u) and
proceeding as in Subsection 2.2, we may construct adual system of com-
pletely integrable partial differential equationsof the form

(E ∗) νj
χγ (χ) = Gj

γ

(
χ, ν(χ), (ν

j(l)

χδ(l)(χ))1≤l≤n

)
,

where(j, γ) 6= (j(1), δ(1)), . . . , (j(n), δ(n)). This system has its own infin-
itesimal symmetry Lie algebraSym(E ∗).

Theorem 6.4. If M is both solvable with respect to the parameters and
solvable with respect to the variables, we have the following two isomor-
phisms:

(7.28) Sym(E ) ∼= Sym(M ) ∼= Sym(E ∗),



155

namelyX ←→ X + X ←→X .

In Subsection 2.10 below, we shall introduce a second geometric condi-
tion which is in general necessary forSym(M ) to be finite-dimensional.

2.8. Local (pseudo)groupSym(M ) of point transformations of M . We
shall study the geometry of a localK-analytic submanifoldM of Kn+2m+p

whose equations and dual equations are of the form

(7.28)

{
uj = Ωj(x, ν, χ), j = 1, . . . , m,

νj = Ω∗
j (χ, x, u), j = 1, . . . , m.

Let t := (x, u) ∈ Kn+m andτ := (ν, χ) ∈ Kn+m. We are interested in
describing the set of localK-analytic transformations of the spaceKn+2m+p

which are of the specific form

(7.28) (t, τ) 7−→ (h(t), φ(τ)),

and which stabilizeM , in a neighborhood of the origin. We denote the local
Lie pseudogroup of such transformations (possibly infinite-dimensional) by
Sym(M ). Importantly, each transformation ofSym(M ) stabilize both the
sets{t = ct.} and the sets{τ = ct.}. Of course, the Lie algebra ofSym(M )
coincides withSym(M ) defined above.

2.9. Fundamental pair of foliations on M . Let p0 ∈ Kn+2m+p be a fixed
point of coordinates(tp0, τp0). Firstly, we observe that the intersectionM ∩
{τ = τp0} consists of then-dimensionalK-analytic submanifold of equation
u = Ω(x, τp0). As τp0 varies, we obtain a localK-analytic foliation ofM by
n-dimensional submanifolds. Let us denote this first foliation byFp and call
it the foliation of M with respect to parameters. Secondly, and dually, we
observe that the intersectionM ∩{t = tp0} consists of thep-dimensionalK-
analytic submanifold of equationν = Ω∗(χ, tp0). As tp0 varies, we obtain
a localK-analytic foliation ofM by p-dimensional submanifolds. Let us
denote this second foliation byFv and call it thefoliation ofM with respect
to the variables. We call(Fp,Fv) thefundamental pair of foliations onM .

2.10. Covering property of the fundamental pair of foliations. We wish
to formulate a geometric condition which says that startingfrom the origin
in M and following alternately the leaves ofFp and the leaves ofFv, we
cover a neighborhood of the origin inM . Let us introduce two collections
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(Lk)1≤k≤n and(L ∗
q )1≤q≤p of vector fields whose integral manifolds coin-

cide with the leaves ofFp andFv:

(7.28)






Lk :=
∂

∂xk
+

m∑

j=1

∂Ωj

∂xk
(x, ν, χ)

∂

∂uj
, k = 1, . . . , n,

L ∗
q :=

∂

∂χq
+

m∑

j=1

∂Ω∗
j

∂χq
(χ, x, u)

∂

∂νj
, k = 1, . . . , n.

Let p0 be a fixed point inM of coordinates(xp0 , up0, νp0, χp0) ∈ Kn+2m+p,
let x1 := (x1,1, . . . , x1,n) ∈ Kn be a “multitime” parameter and define the
multiple flow map
(7.28){

Lx1(xp0, up0, νp0, χp0) := exp(x1L )(p0) := exp(x1,nLn(· · · (exp(x1,1L1(p0))) · · · )) :=

:= (xp0 + x1,Ω(xp0 + x1, νp0, χp0), νp0, χp0).

Similarly, forχ = (χ1,1, . . . , χ1,p) ∈ Kp, define the multiple flow map
(7.28)

L ∗
χ1

(xp0 , up0, νp0, χp0) := (xp0, up0,Ω
∗(χp0 + χ1, xp0 , up0), χp0 + χ1).

We may define now the mappings which correspond to start from the origin
and to move alternately along the two foliationsFp andFv. If the first
movement consists in moving along the foliationFv, we define

(7.28)






Γ1(x1) := Lx1(0),

Γ1(x1, χ1) := L ∗
χ1

(Lx1(0)),

Γ3(x1, χ1, x2) := Lx2(L
∗
χ1

(Lx1(0))),

Γ4(x1, χ1, x2, χ2) := L ∗
χ2

(Lx2(L
∗
χ1

(Lx1(0)))).

Generally, we may define the mapsΓk([xχ]k), where [xχ]k =
(x1, χ1, x2, χ2, . . . ) with exactly k terms and where eachxl belongs
to Kn and eachχl belongs toKp. On the other hand, if the first movement
consists in moving along the foliationFp, we start withΓ∗

1(χ1) := L ∗
χ1

(0),
Γ∗

2(χ1, x1) := Lx1(L
∗
χ1

(0)), etc., and generally we may define the maps
Γ∗

k([χx]k), where[χx]k = (χ1, x1, χ2, x2, . . . ), with exactlyk terms. The
range of both mapsΓk andΓ∗

k is contained inM . We callΓk thek-th chain
andΓ∗

k thek-th dual chain.

Definition 5.3. The pair of foliations(Fp,Fv) is calledcovering at the ori-
gin if there exists an integerk such that the generic rank ofΓk is (maximal
possible) equal to dimK M . Since the dual(k+1)-th chainΓ∗

k+1 for χ1 = 0
identifies with thek-th chainΓk, it follows that the same property holds for
the dual chains.
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In terms of Sussmann’s approach [27], this means that thelocal orbit of
the two systems of vector fields(Lk)1≤k≤n and(L ∗

q )1≤q≤p is of maximal di-
mension. Reasoning as in [27] (using the so-calledbackward trickin Control
Theory,seealso [Me2003]), it may be shown that there exists the smallest
even integer2µ0 such that the ranks of the two mapsΓ2µ0 andΓ∗

2µ0
at the

origin (not only their generic rank) inKnµ0+pµ0 are both equal to dimK M .
This means thatΓ2µ0 andΓ∗

2µ0
are submersive onto a neighborhood of the

origin in M . We callµ0 the type of the pair of foliations(Fp,Fv). It may
also be established thatµ0 ≤ m+ 2.

Example2.46. We give an example of a submanifold which is both1-
solvable with respect to the parameters and with respect to the variables
but whose pair of foliations is not covering: withn = 1, m = 2 and
p = 1, this is given by the two equationsu1 = ν1, u2 = ν2 + xχ1.
Then Sym(M ) is infinite-dimensional since it contains the vector fields
a(u1) ∂/∂u1 +a(ν1) ∂/∂ν1, wherea is an arbitraryK-analytic function. For
this reason, we shall assume in the sequel that the pair of foliations(Fp,Fv)
is covering at the origin.

2.11. Estimate on the dimension of the local symmetry group of the
submanifold of solutions. We may now formulate the main theorem of
this section, which shows that, under suitable nondegeneracy conditions,
Sym(M ) is a finite dimensional local Lie group of local transformations. If
t ∈ Kn+m, we denote by|t| := max1≤k≤n+m |tk|. If (h, φ) ∈ Sym(M )
we denote byJk

t h(0) thek-th order jet ofh at the origin and byJk
τ φ(0) the

k-th order jet ofφ at the origin. Also, we shall assume thatM is either
K-algebraic orK-analytic. Of course, theK-algebraicity of the submanifold
of solutions does not follow from theK-algebraicity of the right hand sides
F j

α of the system of partial differential equations(E ).

Theorem 6.4. Assume that theK-algebraic orK-analytic submanifold of
solutionsM of the completely integrable system of partial differential equa-
tions(E ) is bothℓ0-sovable with respect to the parameters andℓ∗0-solvable
with respect to the variables. Assume that the fundamental pair of foliations
(Fp,Fv) is covering at the origin and letµ0 be its type at the origin. Then
there existsε0 > 0 such that for everyε with 0 < ε < ε0, the following four
properties hold:

(a) The (pseudo)groupSym(M ) of localK-analytic diffeomorphisms de-
fined for{(t, τ) ∈ Kn+2m+p : |t| < ε, |τ | < ε} which are of the
form (t, τ) 7→ (h(t), φ(τ)) and which stabilizeM is a local Lie pseu-
dogroup of transformations of finite dimensiond ∈ N.

(b) Letκ0 := µ0(ℓ0 + ℓ∗0). Then there exist twoK-algebraic orK-analytic
mappingsHκ0 and Φκ0 which depend only onM and which may be
constructed algorithmically by means of the defining equations ofM
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such that every element(h, φ) ∈ Sym(M ), sufficiently close to the
identity mapping, may be represented by

(7.28)

{
h(t) = Hκ0(t, J

κ0
t h(0)),

φ(τ) = Φκ0(τ, J
κ0
τ φ(0)).

Consequently, every element ofSym(M ) is uniquely determined by
its κ0-th jet at the origin and the dimensiond of the Lie algebra
Sym(M ) is bounded by the number of components of the vector
(Jκ0

t h(0), Jκ0
τ φ(0)), namely we have

(7.28)
dimK Sym(E ) = dimK Sym(M ) ≤ (n+m)Cκ0

n+m+κ0
+(m+p)Cκ0

m+p+κ0
.

(c) There existsε′ with 0 < ε′ < ε and aK-algebraic orK-analytic map-
ping (HM , ΦM ) which may be constructed algorithmically by means
of the defining equations ofM , defined in a neighbourhood of the
origin in Kn+2m+p × Kd with values inKn+2m+p and which sati-
fies(HM (t, 0), ΦM (τ, 0)) ≡ (t, τ), such that every element(h, φ) ∈
Sym(M ) defined on the set{(t, τ) ∈ Kn+2m+p : |t| < ε′, |τ | < ε′},
sufficiently close to the identity mapping and stabilizingM may be
represented as(h(t), φ(τ)) ≡ (HM (t, sh,φ), ΦM (τ, sh,φ)) for a unique
elementsh,φ ∈ Kd depending on the mapping(h, φ).

(d) The mapping(t, τ, s) 7−→ (HM (t, s),ΦM (τ, s)) defines a localK-
algebraic orK-analytic Lie group of localK-algebraic orK-analytic
transformations stabilizingM .

2.12. Applications. The proof of Theorem 6.4, which possesses strong
similarities with the proof of Theorem 4.1 in [8], will not bepresented.
It seems that Theorem 6.4, together with the argumentation on the neces-
sity of assumptions thatM be solvable with respect to the variables and
that its fundamental pair of foliations be covering, is a newresult about
the finite-dimensionality of a completely integrable system of partial differ-
ential equations having an arbitrary number of independentand dependent
variables. The main interest lies in the fact that we obtain the algorithmically
constructible representation formula (7.28) together with the local Lie group
structure mapping(HM , ΦM ). In particular, we get as a corollary that every
transformation(h(t), φ(τ)) given by a formal power series (not necessarily
convergent) is as smooth as the applications(Hκ0, Φκ0) are, namely every
formal element ofSym(M ) is necessarilyK-algebraic orK-analytic. As a
counterpart of its generality, Theorem 3 does not provide optimal bounds,
as shows the following illustration.

Example2.46. Let n = m = 1, let κ ≥ 3 and let(E ) denote the ordi-
nary differential equationuxκ(x) = F (x, u(x), ux(x), . . . , uxκ−1(x)). Then
the submanifold of solutionsM is of the formu = ν + xχ1 + · · · +
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xκ−1χκ−1 + O(|x|κ) + O(|χ|2). It may be checked thatℓ0 = κ− 1, ℓ∗0 = 1
andµ0 = 3, henceκ0 = 3κ. Then the dimension estimate in (7.28) is:
dimK Sym(E ) ≤ 2C3κ

2+3κ + κC3κ
4κ . This bound is much larger than the op-

timal bound dimK Sym(E ) ≤ κ+ 4 due to S. Lie (cf. [5]; seealso the case
n = m = 1 of Theorem 6.4).

Untill now we focused on providing the set of Lie symmetries of a general
system of partial differential equations with a local Lie group structure. As
a byproduct we obtained the (non optimal) dimensional upperbound (7.28)
of Theorem 6.4. In the next Sections 3, 4 and 5, using the classical Lie
algorithm based on the Lie criterion (see Lemma 8.1), we provide an optimal
bound for some specific systems of partial differential equations, answering
an open problem raised in [Ol1995] page 206.

3. LIE THEORY FOR PARTIAL DIFFERENTIAL EQUATIONS

3.1. Prolongation of vector fields to the jet spaces.Consider the follow-
ing K-analytic system(E ) of non linear partial differential equations:

(7.28) uj
xk1

···xkκ
(x) = F j

k1,...,kκ

(
x, u(x), ui1

xl1
(x), . . . , ui1

xl1
···xlκ−1

(x)
)
,

where1 ≤ k1 ≤ · · · ≤ kκ ≤ n, 1 ≤ j ≤ m, andF j
k1,...,kκ

are analytic
functions ofn + mCκ−1

n+κ−1 variables, defined in a neighbourhood of the
origin. We assume that(E ) is completely integrable. The Lie theory con-
sists in studying theinfinitesimal symmetriesX =

∑n
l=1 Q

l(x, u) ∂/∂xl +∑m
j=1 R

j(x, u) ∂/∂uj of (E ). Consider theskeletonof (E ), namely the
complex subvariety∆E of codimensionmCκ

κ+n−1 in the jet spaceJ κ
n,m,

defined by

(7.28) U j
k1,...,kκ

= F j
k1,...,kκ

(
x, u, U i1

l1
, . . . , U i1

l1,...,lκ−1

)
,

wherej, i1 = 1, . . . , m andk1, . . . , kκ, l1, . . . , lκ−1 = 1, . . . , n. For k =
1, . . . , n letDk be thek-th operator of total differentiation, characterized by
the property that for every integerλ ≥ 2 and for every analytic function
P = P (x, u, U i1

l1
, . . . , U i1

l1,...,lλ−1
) defined in the jet spaceJ λ−1

n,m , the operator
Dk is the unique formal infinite differential operator satisfying the relation

(7.28)





[DkP ]
(
x, u(x), ui1

xl1
(x), . . . , ui1

xl1
···xlλ−1

(x)
)
≡

∂

∂xk

[
P
(
x, u(x), ui1

xl1
(x), . . . , ui1

xl1
···xlλ−1

(x)
)]
.
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Note that this identity involves only the troncature ofDk to orderλ, denoted
byDλ

k , and defined by

(7.28)





Dλ
k :=

∂

∂xk
+

m∑

i1=1

U i1
k

∂

∂ui1
+

m∑

i1=1

n∑

l1=1

U i1
k,l1

∂

∂U i1
l1

+ · · ·+

+

m∑

i1=1

n∑

l1,...,lλ−1=1

U i1
k,l1,...,lλ−1

∂

∂U i1
l1,...,lλ−1

.

According to Theorem 2.36 of [Ol1986], theprolongation of orderκ of a
vector fieldX =

∑n
l=1 Q

l(x, u) ∂/∂xl +
∑m

j=1 R
j(x, u) ∂/∂uj , denoted by

X(κ), is the unique vector field on the spaceJ κ
n,m of the form

(7.28)



X(κ) = X +

m∑

j=1

n∑

k1=1

R
j
k1

∂

∂U j
k1

+

m∑

j=1

n∑

k1,k2=1

R
j
k1,k2

∂

∂U j
k1,k2

+ · · ·+

+

m∑

j=1

n∑

k1,...,kκ=1

R
j
k1,...,kκ

∂

∂U j
k1,k2,...,kκ

,

corresponding to the infinitesimal action of the flow ofX on the jets of order
κ of the graphs of mapsu = u(x), and whose coefficients are computed
recursively by the formulas

(7.28)






R
j
k1

:= D1
k1

(Rj)−
n∑

l1=1

D1
k1

(Ql1)U j
l1
,

R
j
k1,k2

:= D2
k2

(Rj
k1

)−
n∑

l1=1

D1
k2

(Ql1)U j
k1,l1

,

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

R
j
k1,k2,...,kλ

:= Dλ
kλ

(Rj
k1,...,kλ−1

)−
n∑

l1=1

D1
kλ

(Ql1)U j
k1,...,kλ−1,l1

.

For a better comprehension of the general computation, let us start by com-
putingRκ in the casen = m = 1.

3.2. Computation of Rκ when n = m = 1. A direct application of the
preceding formulas leads to the following classical expressions:
(7.28)



R1 = Rx + [Ru −Qx]U
1 + [−Qu] (U1)

2.

R2 = Rx2 + [2Rxu −Qx2 ]U1 + [Ru2 − 2Qxu] (U
1)2 + [−Qu2 ] (U1)3+

+ [Ru − 2Qx]U
2 + [−3Qu]U

1U2.
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Observe that these expressions are polynomial in the jet variables, their co-
efficients being differential expressions involving a partial derivative ofR
(with a positive integer coefficient) and a partial derivative ofQ (with a neg-
ative integer coefficient). We have also:
(7.28)



R3 = Rx3 + [3Rx2u −Qx3 ]U1 + [3Rxu2 − 3Qx2u] (U
1)2+

+ [Ru3 − 3Qxu2] (U1)3 + [−Qu3 ] (U1)4 + [3Rxu − 3Qx2]U2+

+ [3Ru2 − 9Qxu]U
1U2 + [−6Qu2 ] (U1)2U2 + [−3Qu] (U

2)2+

+ [Ru − 3Qx]U
3 + [−4Qu]U

1U3.

R4 = Rx4 + [4Rx3u −Qx4 ]U1 + [6Rx2u2 − 4Qx3u] (U
1)2+

+ [4Rxu3 − 6Qx2u2] (U1)3 + [Ru4 − 4Qxu3] (U1)4 + [−Qu4 ] (U1)5+

+ [6Rx2u − 4Qx3 ]U2 + [12Rxu2 − 18Qx2u]U
1U2+

+ [6Ru3 − 24Qxu2 ] (U1)2U2 + [−10Qu3 ] (U1)3U2+

+ [3Ru2 − 12Qxu] (U
2)2 + [−15Qu2 ]U1(U2)2 + [4Rxu − 6Qx2 ]U3+

+ [4Ru2 − 16Qxu]U
1U3 + [−10Qu2 ] (U1)2U3 + [−10Qu]U

2U3+

+ [Ru − 4Qx]U
4 + [−5Qu]U

1U4.

Remark that all the brackets involved in equations (7.28) are of the form
[λRxaub+1 − µQxa+1ub ], whereλ, µ ∈ N anda, b ∈ N.

In what follows we will not need the complete form ofRκ but only the
following partial form:

Lemma 8.1. For κ ≥ 4:
(7.28)



Rκ = Rxκ +
[
C1

κ Rxκ−1u −Qxκ

]
U1 +

[
C2

κ Rxκ−2u − C1
κQxκ−1

]
U2+

+
[
C2

κ Rx2u − C3
κ Qx3

]
Uκ−2 +

[
C1

κ Rxu − C2
κ Qx2

]
Uκ−1+

+
[
C1

κ Ru2 − κ2Qxu

]
U1 Uκ−1 +

[
−C2

κ+1Qu

]
U2Uκ−1+

+
[
Ru − C1

κ Qx

]
Uκ +

[
−C1

κ+1Qu

]
U1Uκ+

+ Remainder,

where the termRemainderdenotes the remaining terms in the expansion of
Rκ.

We note that the formula (7.28) is valid forκ = 3, comparing with (7.28),
with the convention that the termsUκ−2 andUκ−1 vanish (they coincide with
U1 andU2), and replacing the coefficient−C2

κ+1Qu = −C2
4 Qu = −6Qu

of the monomialU2 Uκ−1 by−3Qu, as it appears in (7.28). The proof goes
by a straightforward computation, applying the recursive definition of this
partial formula.
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3.3. Computation of Rκ in the general case.Following the exact same
scheme as in the casen = 1 we give the general partial formula for
Rκ. We start with the first three families of coefficientsRj

k1
, R

j
k1,k2

and

R
j
k1,k2,k3

. Let δq
p be the Kronecker symbol, equal to1 if p = q and to0 if

p 6= q. More generally, thegeneralized Kronecker symbolsare defined by
δq1,...,qk
p1,...,pk

:= δq1
p1
δq2
p2
· · · δqk

pk
.

By convention, the indicesj, i1, i2, . . . , iλ run in the set{1, . . . , m}, the
indicesk, k1, k2, . . . , kλ andl, l1, l2, . . . , lλ running in{1, . . . , n}. Hence we
will write

∑m
i1=1

∑m
i2=1 · · ·

∑m
iλ=1 as

∑
i1,...,iλ

and
∑n

l1=1

∑n
l2=1 · · ·

∑n
lλ=1

as
∑

l1,...,lλ
. The lettersi1, i2, . . . , iλ andl1, l2, . . . , lλ will always be used for

the summations in the development ofR
j
k1,k2,...,kλ

. We will always use the

indicesj andk1, k2, . . . , kλ to write the coefficientRj
k1,k2,...,kλ

.
We have:

(7.28)





R
j
k1

= Rj
xk1

+
∑

i1

∑

l1

[
δl1
k1
Rj

ui1
− δj

i1
Ql1

xk1

]
U i1

l1
+

+
∑

i1,i2

∑

l1,l2

[
−δj

i2
δl1
k1
Ql2

ui1

]
U i1

l1
U i2

l2
.

ForRj
k1,k2

we have:
(7.28)



R
j
k1,k2

= Rj
xk1

xk2
+
∑

i1

∑

l1

[
δl1
k2
Rj

xk1
ui1

+ δl1
k1
Rj

xk2
ui1
− δj

i1
Ql1

xk1
xk2

]
U i1

l1
+

+
∑

i1,i2

∑

l1,l2

[
δl1,l2
k1,k2

Rj

ui1ui2
− δj

i2

(
δl1
k1
Ql2

xk2
ui1

+ δl1
k2
Ql2

xk1
ui1

)]
U i1

l1
U i2

l2
+

+
∑

i1,i2,i3

∑

l1,l2,l3

[
−δj

i3
δl1,l2
k1,k2

Ql3
ui1ui2

]
U i1

l1
U i2

l2
U i3

l3
+

+
∑

i1

∑

l1,l2

[
δl1,l2
k1,k2

Rj

ui1
− δj

i1
δl1
k2
Ql2

xk1
− δj

i1
δl1
k1
Ql2

xk2

]
U i1

l1,l2
+

+
∑

i1,i2

∑

l1,l2,l3

[
−δj

i2
δl1,l2
k1,k2

Ql3
ui1
− δj

i2
δl3,l1
k1,k2

Ql2
ui1
− δj

i1
δl2,l3
k1,k2

Ql1
ui2

]
U i1

l1
U i2

l2,l3
.

Since we also treat systems of orderκ ≥ 3, it is necessary to compute
R

j
k1,k2,k3

. We write this as follows:

(7.28) R
j
k1,k2,k3

= I + II + III,
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where the first term I involves only polynomials inU i1
l1

:
(7.28)



I = Rj
xk1

xk2
xk3

+
∑

i1

∑

l1

[
δl1
k1
Rj

xk2
xk3

ui1
+ δl1

k2
Rj

xk1
xk3

ui1
+ δl1

k3
Rj

xk1
xk2

ui1
−

−δj
i1
Ql1

xk1
xk2

xk3

]
U i1

l1
+
∑

i1,i2

∑

l1,l2

[
δl1,l2
k1,k2

Rj

xk3
ui1ui2

+ δl1,l2
k3,k1

Rj

xk2
ui1ui2

+

+δl1,l2
k2,k3

Rj

xk1
ui1ui2

− δj
i2
δl1
k1
Ql2

xk2
xk3

ui1
− δj

i2
δl1
k2
Ql2

xk1
xk3

ui1
−

−δj
i2
δl1
k3
Ql2

xk1
xk2

ui1

]
U i1

l1
U i2

l2
+
∑

i1,i2,i3

∑

l1,l2,l3

[
δl1,l2,l3
k1,k2,k3

Rj

ui1ui2ui3
−

−δj
i3
δl1,l2
k1,k2

Ql3
xk3

ui1ui2
− δj

i3
δl1,l2
k2,k3

Ql3
xk1

ui1ui2
−

−δj
i3
δl1,l2
k1,k3

Ql3
xk2

ui1ui2

]
U i1

l1
U i2

l2
U i3

l3
+

+
∑

i1,i2,i3,i4

∑

l1,l2,l3,l4

[
−δj

i4
δl1,l2,l3
k1,k2,k3

Ql4
ui1ui2ui3

]
U i1

l1
U i2

l2
U i3

l3
U i4

l4
,

the second term II involves at least once the monomialU i1
l1,l2

:

(7.28)



II =
∑

i1

∑

l1,l2

[
δl1,l2
k1,k2

Rj

xk3
ui1

+ δl1,l2
k3,k1

Rj

xk2
ui1

+ δl1,l2
k2,k3

Rj

xk1
ui1
−

−δj
i1

(
δl1
k1
Ql2

xk2
xk3

+ δl1
k2
Ql2

xk1
xk3

+ δl1
k3
Ql2

xk1
xk2

)]
U i1

l1,l2
+

+
∑

i1,i2

∑

l1,l2,l3

[
δl1,l2,l3
k1,k2,k3

Rj

ui1ui2
+ δl3,l1,l2

k1,k2,k3
Rj

ui1ui2
+ δl2,l3,l1

k1,k2,k3
Rj

ui1ui2
−

−δj
i1

(
δl2,l3
k1,k2

Ql1
xk3

ui2
+ δl2,l3

k3,k1
Ql1

xk2
ui2

+ δl2,l3
k2,k3

Ql1
xk1

ui2

)
−

−δj
i2

(
δl1,l2
k1,k2

Ql3
xk3

ui1
+ δl1,l2

k3,k1
Ql3

xk2
ui1

+ δl1,l2
k2,k3

Ql3
xk1

ui1
+

+δl3,l1
k1,k2

Ql2
xk3

ui1
+ δl3,l1

k3,k1
Ql2

xk2
ui1

+ δl3,l1
k2,k3

Ql2
xk1

ui1

)]
U i1

l1
U i2

l2,l3
+

+
∑

i1,i2,i3

∑

l1,l2,l3,l4

[
−δj

i3

(
δl1,l2,l3
k1,k2,k3

Ql4
ui1ui2

+ δl1,l4,l2
k1,k2,k3

Ql3
ui1ui2

+

δl3,l1,l2
k1,k2,k3

Ql4
ui1ui2

)
− δj

i1

(
δl3,l2,l4
k1,k2,k3

Ql1
ui2ui3

+ δl4,l3,l2
k1,k2,k3

Ql1
ui2ui3

+

+δl2,l3,l4
k1,k2,k3

Ql1
ui1ui2

)]
U i1

l1
U i2

l2
U i3

l3,l4
+
∑

i1,i2

∑

l1,l2,l3,l4

[
−δj

i2

(
δl1,l2,l3
k1,k2,k3

Ql4
ui1

+

+δl3,l1,l2
k1,k2,k3

Ql4
ui1

+ δl2,l3,l1
k1,k2,k3

Ql4
ui1

)]
U i1

l1,l2
U i2

l3,l4
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and the third term III involves at least once the monomialU i1
l1,l2,l3

(note that
there is no term involving simultaneouslyU i1

l1,l2
andU i1

l1,l2,l3
):

(7.28)



III =
∑

i1

∑

l1,l2,l3

[
δl1,l2,l3
k1,k2,k3

Rj

ui1
− δj

i1

(
δl1,l2
k2,k3

Ql3
xk1

+ δl1,l2
k3,k1

Ql3
xk2

+

+δl1,l2
k1,k2

Ql3
xk3

)]
U i1

l1,l2,l3
+
∑

i1,i2

∑

l1,l2,l3,l4

[
−δj

i1
δl2,l3,l4
k1,k2,k3

Ql1
ui2
−

−δj
i2

(
δl1,l2,l3
k1,k2,k3

Ql4
ui1

+ δl4,l1,l2
k1,k2,k3

Ql3
ui1

+ δl3,l4,l1
k1,k2,k3

Ql2
ui1

)]
U i1

l1
U i2

l2,l3,l4
.

Before giving the partial expression ofRκ we introduce some notations. For
p ∈ N with p ≥ 1, let Sp be the group of permutations of{1, 2, . . . , p}. For
q ∈ N with 1 ≤ q ≤ p − 1, let Sq

p be the set of permutationsσ ∈ Sp such
thatσ(1) < σ(2) < · · · < σ(q) andσ(q + 1) < σ(q + 2) < · · · < σ(p). Its
cardinal isCq

p . Let Cp be the group of cyclic permutations of{1, 2, . . . , p}.
Reasoning recursively from the formula ofR

j
k1,k2,k3

given by (7.28), we may
generalize Lemma 8.1:

Lemma 8.1. For everyκ ≥ 4 and for everyj = 1, . . . , m, k1, . . . , kκ =
1, . . . , n, we have:

(7.28) R
j
k1,k2,...,kκ

= I1 + · · ·+ I9 + Remainder

whereI1 = Rj
xk1

xk2
...xkκ

,

I2 =
∑

i1

∑

l1



∑

σ∈S1
κ

δl1
kσ(1)

Rj

xkσ(2)
···xkσ(κ)

ui1
− δj

i1
Ql1

xk1
...xkκ


U i1

l1
,

I3 =
∑

i1

∑

l1,l2



∑

σ∈S2
κ

δl1,l2
kσ(1),kσ(2)

Rj

xkσ(3)
···xkσ(κ)

ui1
−

−δj
i1



∑

σ∈S1
κ

δl1
kσ(1)

Ql2
xkσ(2)

···xkσ(κ)




U i1

l1,l2
,

I4 =
∑

i1

∑

l1,...,lκ−2



∑

σ∈S
κ−2
κ

δ
l1,......,lκ−2

kσ(1),...,kσ(κ−2)
Rj

xkσ(κ−1)
xkσ(κ)

ui1
−

−δj
i1



∑

σ∈S
κ−3
κ

δ
l1,......,lκ−3

kσ(1),...,kσ(κ−3)
Qlκ−2

xkσ(κ−2)
xkσ(κ−1)

xkσ(κ)




U i1

l1,...,lκ−2
,
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I5 =
∑

i1

∑

l1,...,lκ−1



∑

σ∈S
κ−1
κ

δ
l1,......,lκ−1

kσ(1),...,kσ(κ−1)
Rj

xkσ(κ)
ui1
−

−δj
i1



∑

σ∈S
κ−2
κ

δ
l1,......,lκ−2

kσ(1),...,kσ(κ−2)

lκ−1
xkσ(κ−1)

xkσ(κ)




U i1

l1,...,lκ−1
,

I6 =
∑

i1,i2

∑

l1,...,lκ



∑

τ∈Cκ

δ
lτ(1),...,lτ(κ)

k1,......,kκ
Rj

ui1ui2
− δj

i1



∑

σ∈S
κ−1
κ

δl1,......,lκ
kσ(1),...,kσ(κ−1)

Ql1
xkσ(κ)

ui2


−

−δj
i2



∑

σ∈S
κ−1
κ

(
δ

l1,......,lκ−1

kσ(1),...,kσ(κ−1)
Qlκ

xkσ(κ)
ui1

+ · · ·+ δl3,......,l1
kσ(1),...,kσ(κ−1)

Ql2
xkσ(κ)

ui2

)


×

× U i1
l1
U i2

l2,...,lκ
,

I7 =
∑

i1,i2

∑

l3,...,lκ+1

[
−δj

i1

(
δ

l2,...,lκ+1

k1,...,kκ
Ql1

ui2
+ · · ·+ δ

lκ+1,...,l2
k1,...,kκ

Ql1
ui2

)
−

−δj
i2



∑

τ∈S2
κ

δ
lτ(1),...,lτ(κ)

k1,......,kκ
Q

lκ+1

ui1




U i1

l1,l2
U i2

l3,...,lκ+1
,

I8 =
∑

i1

∑

l1,...,lκ


δl1,...,lκ

k1,...,kκ
Rj

ui1
− δj

i1



∑

σ∈S
κ−1
κ

δ
l1,......,lκ−1

kσ(1),...,kσ(κ−1)
Qlκ

xkσ(κ)




U i1

l1,...,lκ
,

I9 =
∑

i1,i2

∑

l1,...,lκ+1

[
−δj

i1
δ

l2,...,lκ+1

k1,...,kκ
Ql1

ui2
− δj

i2

(
δl1,...,lκ
k1,...,kκ

Q
lκ+1

ui1
+ · · ·+ δl3,...,l1

k1,...,kκ
Ql2

ui1

)]
×

× U i1
l1
U i2

l2,...,lκ+1

and where the termRemainder denotes the remaining terms in the expan-
sion ofRj

k1,k2,...,kκ
.

In I6 the summation on the upper indices(l1, . . . , lκ) gets on all the cir-
cular permutations of{1, 2, . . . , κ} except the identity. InI7 the summation
gets on all the circular permutations of{2, 3, . . . , κ + 1}. In I9 the sum-
mation gets on all the circular permutations of{1, 2, . . . , κ + 1} except the
one transforming(l1, l2, . . . , lκ+1) into (l2, l3, . . . , l1). Forκ = 3, comparing
with (7.28), we see that the formula remains valid, with the same conven-
tions as in the casen = 1.

3.4. Lie criterion and defining equations of Sym(E ). We recall the Lie
criterion, presented in Subsection 2.6 (seeTheorem 2.71 of [Ol1986]):

A vector fieldX is an infinitesimal symmetry of the completely integrable
system(E ) if and only if its prolongationX(κ) of orderκ is tangent to the
skeleton∆E in the jet spaceJ κ

n,m.
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The set of infinitesimal symmetries of(E ) forms a Lie algebra, since we
have the relation[X,X ′](κ) = [X(κ), X ′(κ)] (cf. [Ol1986]). We will denote
by Sym(E ) this Lie algebra. The aim of the forecoming Section is to obtain
precise bounds on the dimension of the Lie algebraSym(E ) of infinitesimal
symmetries of (E ). For simplicity we start with the casen = m = 1.

4. OPTIMAL UPPER BOUND ON DIMKSym(E ) WHEN n = m = 1.

4.1. Defining equations forSym(E ). Applying the Lie criterion, the tan-
gency condition ofX(κ) to ∆E is equivalent to the identity:
(7.28)

Rκ −
[
Q
∂F

∂x
+R

∂F

∂u
+ R1 ∂F

∂U1
+ R2 ∂F

∂U2
+ · · ·+ Rκ−1 ∂F

∂Uκ−1

]
≡ 0,

on the subvariety∆E , that is to a formal identity inK{x, u, U1, . . . , Uκ−1},
in which we replace the variableUκ by F (x, u, U1, . . . , Uκ−1) in the two
monomialsUκ andU1 Uκ of Rκ, cf. Lemma 8.1. ExpandingF and its par-
tial derivatives in power series of the variables(U1, . . . , Uκ−1) with analytic
coefficients in(x, u), we may rewrite (7.28) as follows:

(7.28)






∑

µ1,...,µκ−1≥0

[
Φµ1,...,µκ−1 (x, u, (Qxkul)k+l≤κ, (Rxkul)k+l≤κ)

]
×

×(U1)µ1 . . . (Uκ−1)µκ−1 ≡ 0,

where the expressions

(7.28) Φµ1,...,µκ−1 (x, u, (Qxkul)k+l≤κ, (Rxkul)k+l≤κ)

arelinear with respect to the partial derivatives((Qxkul)k+l≤κ, (Rxkul)k+l≤κ),
with analytic coefficients in(x, u). By construction these coefficients es-
sentially depend on the expansion ofF . The tangency condition (7.28)
is equivalent to the following infinite linear system of partial differential
equations, calleddefining equations ofSym(E ):

(7.28) Φµ1,...,µκ−1 (x, u, (Qxkul(x, u))k+l≤κ, (Rxkul(x, u))k+l≤κ) = 0,

satisfied by(Q(x, u), R(x, u)). The Lie method consists in studying the
solutions of this linear system of partial differential equations.

4.2. Homogeneous system.As mentioned in the introduction, we focus
our attention on the caseκ ≥ 3. Denote by(E0) the homogeneous equa-
tion uxκ = 0 of orderκ. The general solutionu =

∑κ−1
l=0 λl x

l consists of
polynomials of degree≤ κ − 1 and the defining equation (7.28) reduces to
Rκ = 0. Using the expression (7.28), expanding (7.28), (7.28) andconsider-
ing only the coefficients of the five monomialsct.,Uκ−2,Uκ−1,U1 Uκ−1 and
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U2 Uκ−1, we obtain the five following partial differential equations, which
are sufficient to determineSym(E0):

(7.28)






Rxκ = 0,

Rx2u −
(κ− 2)

3
Qx3 = 0,

Rxu −
(κ− 1)

2
Qx2 = 0,

Ru2 − κQxu = 0,

Qu = 0.

The general solution of this system is evidently:

(7.28)

{
Q = A+B x+ C x2,

R = (κ− 1)C xu+Du+ E0 + E1 x+ · · ·+ Eκ−1 xκ−1,

where the(κ + 4) constantsA, B, C, D, E0, E1, . . . , Eκ−1 are arbitrary.
Computing explicitely the flows of the(κ + 4) generators∂/∂x, x∂/∂x,
x2 ∂/∂x + (κ − 1) xu ∂/∂u, u ∂/∂u, ∂/∂u, x ∂/∂u, . . . , xκ−1 ∂/∂u, we
check easily that they stabilize the graphs of polynomials of degree≤ κ−1.
Moreover they span a Lie algebra of dimension(κ+4) and the general form
of a Lie symmetry is:

(7.28) (x, u) 7−→
(
α0 + α1x

1 + εx
,
βu+ γ0 + γ1x+ · · ·+ γκ−1x

κ−1

(1 + εx)κ−1

)
.

4.3. Nonhomogeneous system.Consider forκ ≥ 3 the equation (7.28) af-
ter replacing the variableUκ by F . Let Φ(Uλ) denote an arbitrary term
of the form φ(x, u)Uλ, whereφ(x, u) is an analytic function. We con-
sider the five following termsΦ(ct.), Φ(Uκ−2), Φ(Uκ−1), Φ(U1 Uκ−1)
and Φ(U2 Uκ−1). Since some multiplications of monomials appear in
the expression (7.28), we must be aware of the fact thatΦ(U1 Uκ−1) ≡
Φ(U1) Φ(Uκ−1) andΦ(U2 Uκ−1) ≡ Φ(U2) Φ(Uκ−1). Consequently in the
expansion of (7.28) we must take into account the seven typesof monomials
Φ(ct.), Φ(U1), Φ(U2), Φ(Uκ−2), Φ(Uκ−1), Φ(U1 Uκ−1) andΦ(U2 Uκ−1).
The (κ + 1) derivatives∂F/∂x, ∂F/∂u, ∂F/∂U1, . . . , ∂F/∂Uκ−1 appear-
ing in the brackets of (7.28), and the termF appearing in the expression
of Rκ after replacingUκ by F (cf. the last two monomialsUκ andU1 Uκ

in (7.28)) may all contain the seven monomialsct., U1, U2, Uκ−2, Uκ−1,
U1 Uκ−1 andU2 Uκ−1. For F and its(κ + 1) first derivatives we use the
generic simplified notation
(7.28)
Φ(ct.)+Φ(U1)+Φ(U2)+Φ(Uκ−2)+Φ(Uκ−1)+Φ(U1 Uκ−1)+Φ(U2 Uκ−1),
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to name the seven monomials appearinga priori. Hence, expanding (7.28),
picking up the only terms which may contain the five monomialswe are
interested in, and using the formula of Lemma 8.1 forRλ (1 ≤ λ ≤ κ), we
obtain the following expression:
(7.28)



Rxκ +
[
C2

κ Rx2u − C3
κ Qx3

]
Uκ−2 +

[
C1

κ Rxu − C2
κ Qx2

]
Uκ−1+

+
[
C1

κ Ru2 − κ2Qxu

]
U1 Uκ−1 +

[
−C2

κ+1Qu

]
U2 Uκ−1+

+
{
Ru − C1

κ Qx +
[
−C1

κ+1Qu

]
U1
}
×

×
{
Φ(ct.) + Φ(U1) + Φ(U2) + Φ(Uκ−2) + Φ(Uκ−1) + Φ(U1 Uκ−1) + Φ(U2 Uκ−1)

}
−

−
{
Q+R+Rx + [Ru −Qx]U

1 +Rx2 + [2Rxu −Qx2 ]U1+

+ [Ru − 2Qx]U
2 + · · ·+Rxκ−3 +

[
C1

κ−3Rxκ−4u −Qxκ−3

]
U1+

+
[
C2

κ−3Rxκ−5u − C1
κ−3Qxκ−4

]
U2 +Rxκ−2+

+
[
C1

κ−2Rxκ−3u −Qxκ−2

]
U1 +

[
C2

κ−2Rxκ−4u − C1
κ−2Qxκ−3

]
U2+

+
[
Ru − C1

κ−2Qx

]
Uκ−2 +

[
−C1

κ−1Qu

]
U1 Uκ−2+

+Rxκ−1 +
[
C1

κ−1Rxκ−2u −Qxκ−1

]
U1+

+
[
C2

κ−1Rxκ−3u − C1
κ−1Qxκ−2

]
U2 +

[
C1

κ−1Rxu − C2
κ−1Qx2

]
Uκ−2+

+
[
C1

κ−1Ru2 − (κ− 1)2Qxu

]
U1 Uκ−2 +

[
Ru − C1

κ−1Qx

]
Uκ−1+

+
[
−C1

κ Qu

]
U1 Uκ−1

}
×

×
{
Φ(ct.) + Φ(U1) + Φ(U2) + Φ(Uκ−2) + Φ(Uκ−1) + Φ(U1 Uκ−1) + Φ(U2 Uκ−1)

}

+ Remainder ≡ 0.

Here the termRemainder consists of the monomials, in the jet variables,
different from the five ones we are concerned with. The first four lines before
the sign “−” developRκ and the third line consists of the factorF replaced
by (7.28). In the last line (note that this is multiplied by the nine preceding
lines) we replaced the(κ+1) first partial derivatives ofF appearing in (7.28)
by the term (7.28) which we factorized.

By expanding the product appearing in this expression (7.28), and equal-
ing to zero the coefficients of the five monomialsct., Uκ−2, Uκ−1, U1 Uκ−1
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andU2 Uκ−1, we obtain the five following partial differential equations
(7.28)



Rxκ = Π(x, u,Q,Qx, R,Rx, . . . , Rxκ−1, Ru),

C2
κ Rx2u − C3

κ Qx3 = Π(x, u,Q,Qx, Qx2 , R,Rx, . . . , Rxκ−1 , Ru, Rxu),

C1
κ Rxu − C2

κ Qx2 = Π(x, u,Q,Qx, R,Rx, . . . , Rxκ−1, Ru),

C1
κ Ru2 − κ2Qxu = Π(x, u,Q,Qx, . . . , Qxκ−1 , Qu, R,Rx, . . . Rxκ−1 ,

Ru, Rxu, . . . , Rxκ−2u),

−C2
κ+2Qu = Π(x, u,Q,Qx, . . . , Qxκ−2 , R,Rx, . . . Rxκ−1 ,

Ru, Rxu, . . . , Rxκ−3u).

Here by conventionΠ denotes any linear quantity inQ,R and some of their
derivatives, of the form

(7.28)





Π(x, u,Qxa1ub1 , . . . , Qxapubp , Rxc1ud1 , . . . , Rxcq udq ) =

=

p∑

i=1

φi(x, u)Qxaiubi (x, u) +

q∑

j=1

ψj(x, u)Rxcj udj (x, u),

where φi and ψj are analytic in (x, u). For instance, the dif-
ferentiation of Π(x, u,Q,R,Ru) with respect to x gives the ex-
pression Π(x, u,Q,Qx, R,Rx, Rxu). Let us introduce the follow-
ing collection of (κ + 4) partial derivatives of (Q,R) defined by
J := (Q,Qx, Qx2, R,Rx, . . . , Rxκ−1 , Ru). The aim is now to make
linear substitutions on the system (7.28) to obtain the system (7.28) where
the five second members depend only on the collectionJ . The desired
estimate dimK Sym(E ) ≤ κ+ 4 will follow from (7.28).

Let us differentiate the third equation of (7.28) with respect tox. Dividing
byC1

κ we obtain:
(7.28)

Rx2u −
(κ− 1)

2
Qx3 = Π(x, u,Q,Qx, Qx2 , R,Rx, . . . , Rxκ, Ru, Rxu).

SolvingRx2u andQx3 by the second equality in (7.28) and by (4.3) we find

(7.28)

{
Qx3 = Π(x, u,Q,Qx, Qx2, R,Rx, . . . , Rxκ , Ru, Rxu),

Rx2u = Π(x, u,Q,Qx, Qx2, R,Rx, . . . , Rxκ , Ru, Rxu).

ReplacingRxκ by its value given by the first equality in (7.28) we obtain for
Qx3:

(7.28) Qx3 = Π(x, u,Q,Qx, Qx2 , R,Rx, . . . , Rxκ−1 , Ru, Rxu).

If we write the third equality in (7.28) as

(7.28) Rxu = Π(x, u,Q,Qx, Qx2, R,Rx, . . . , Rxκ−1, Ru),



170

we may replaceRxu in (7.28). This gives the desired dependence ofQx3 on
the collectionJ :

(7.28) Qx3 = Π(x, u,Q,Qx, Qx2 , R,Rx, . . . , Rxκ−1 , Ru).

We may now differentiate the equalities (7.28) and (7.28) with respect tox
up to the orderl. At each differentiation we replaceQx3 , Rxu andRxκ by
their values in (7.28), in (7.28) and in the first equality in (7.28) respectively.
We obtain forl ∈ N:

(7.28)

{
Qxl+3 = Π(x, u,Q,Qx, Qx2 , R,Rx, . . . , Rxκ−1, Ru),

Rxl+1u = Π(x, u,Q,Qx, Qx2 , R,Rx, . . . , Rxκ−1, Ru).

Replacing these values in the fifth equality of (7.28), we obtain

(7.28) Qu = Π(x, u,Q,Qx, Qx2 , R,Rx, . . . , Rxκ−1 , Ru).

By replacing the fourth equality of (7.28) we obtain finally

(7.28) Ru2 = Π(x, u,Q,Qx, Qx2 , R,Rx, . . . , Rxκ−1 , Ru).

To summarize, using the first equality of (7.28), using (7.28), (7.28), (7.28)
and (7.28), we obtained the desired system:

(7.28)






Rxκ = Π(x, u,Q,Qx, Qx2, R,Rx, . . . , Rxκ−1, Ru),

Qu = Π(x, u,Q,Qx, Qx2, R,Rx, . . . , Rxκ−1, Ru),

Ru2 = Π(x, u,Q,Qx, Qx2, R,Rx, . . . , Rxκ−1, Ru),

Rxu = Π(x, u,Q,Qx, Qx2, R,Rx, . . . , Rxκ−1, Ru),

Qx3 = Π(x, u,Q,Qx, Qx2, R,Rx, . . . , Rxκ−1, Ru).

We recall that the termsΠ are linear expressions of the form (7.28). Let us
differentiate every equation of system (7.28) with respecttox at an arbitrary
order and let us replace in the right hand side the termsRxκ,Rxu andQx3 that
may appear at each step by their value in (7.28), and then differentiate with
respect tou at an arbitrary order. We deduce thatall the partial derivatives
of the five functionsRxκ , Qu, Ru2 , Rxu andQx3 are also linear functions
of the(κ + 4) partial derivatives(Q,Qx, Qx2, R,Rx, . . . , Rxκ−1, Ru). Thus
the analytic functionsQ andR are determined uniquely by the value at the
origin of the(κ+ 4) partial derivatives(Q,Qx, Qx2 , R,Rx, . . . , Rxκ−1 , Ru).
This ends the proof of the inequality dimK Sym (E ) ≤ κ+ 4.

5. OPTIMAL UPPER BOUND ON DIMK Sym(E ) IN THE GENERAL

DIMENSIONAL CASE

5.1. Defining equations forSym(E ). In the general dimensional case, the
tangency condition of the prolongationXκ of X to the skeleton gives the
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following equations forj = 1, . . . , m andk1, . . . , kκ = 1, . . . , n:
(7.28)




R
j
k1,...,kκ

−
[

n∑

l=1

Ql
∂F j

k1,...,kκ

∂xl

+
m∑

i=1

Ri
∂F j

k1,...,kκ

∂ui
+

+
∑

i1

∑

l1

Ri1
l1

∂F j
k1,...,kκ

∂U i1
l1

+ · · ·+
∑

i1

∑

l1,...,lκ−1

Ri1
l1,...,lκ−1

∂F j
k1,...,kκ

∂U i1
l1,...,lκ−1



 ≡ 0,

on ∆E , by replacing the variablesU i1
l1,...,lκ

by F i1
l1,...,lκ

wherever they appear.

Let us expandF j
k1,...,kκ

and their partial derivatives and use the fact that

R
j
k1,...,kλ

are polynomials expressions of the jets variables(U i1
l1
, . . . , U i1

l1,...,lλ
),

with coefficients being linear expressions of the partial derivatives of order
≤ λ+1 ofQl andRj . We obtain forj = 1, . . . , m andk1, . . . , kκ = 1, . . . , n
some identities of the form
(7.28)



∑

i1, ...,l1,...

Φj;i1,......
k1,...,kκ; l1,......

(
x, u, (Ql

xαuβ )1≤l≤n, |α|+|β|≤κ+1, (R
j
xαuβ)1≤j≤m, |α|+|β|≤κ+1

)
×

×U i1
l1

. . . U
iµ1
lµ1
× U

iµ1+1
lµ1+1,lµ1+2 · · ·U

iµ1+µ2−1

lµ1+2µ2−1 U
iµ1+µ2
lµ1+2µ2

× · · · · · · ≡ 0,

satisfied if and only if the functionsQl andRj are solutions of the following
system of partial differential equations
(7.28)
Φj,i1,......

k1,...,kκ; l1,......

(
x, u, (Ql

xαuβ)1≤l≤n, |α|+|β|≤κ+1, (R
j
xαuβ)1≤j≤m, |α|+|β|≤κ+1

)
= 0.

5.2. Homogeneous system.We start by giving the general form of the
symmetries of the homogeneous system in the caseκ = 2. Then we prove
the equality dimK(Sym(E0)) = n2+2n+m2+mCκ−1

n+κ−1 in the caseκ ≥ 3.

In the caseκ = 2 we obtain:

(7.28)






Ql(x, u) = Al +
n∑

k1=1

Bl
k1
xk1 +

m∑

i1=1

C l
i1
ui1+

+

n∑

k1=1

Dk1 xl xk1 +

m∑

i1=1

Ei1 xl u
i1,

Rj(x, u) = F j +

n∑

k1=1

Gj
k1
xk1 +

m∑

i1=1

Hj
i1
ui1+

+

n∑

k1=1

Dk1 xk1 u
j +

m∑

i1=1

Ei1 u
i1 uj.
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Here the(n+m)(n+m+2) constantsAl, Bl
k1
, C l

i1 , Dk1 , Ei1 , F
j, Gj

k1
, Hj

i1
∈

K are arbitrary. Moreover one can check that the vector space spanned by
the(n +m)(n+m+ 2) vector fields

(7.28)





∂

∂xk1

, xk1

∂

∂xk2

, ui1
∂

∂xk1

,

xk1

(
x1

∂

∂x1

+ · · ·+ xn
∂

∂xn

+ u1 ∂

∂u1
+ · · ·+ um ∂

∂um

)
,

ui1

(
x1

∂

∂x1
+ · · ·+ xn

∂

∂xn
+ u1 ∂

∂u1
+ · · ·+ um ∂

∂um

)
,

∂

∂ui1
, xk1

∂

∂ui1
, ui1

∂

∂ui2

is stable under the Lie bracket action and that the flow of eachof these
generators is a Lie symmetry of the system(E0). This proves thatSym(E0)
is indeed aLie algebra with dimension(n + m)(n + m + 2). Finally the
corresponding transformations close to the identity mapping are projective,
represented by the formula:

(7.28)





(x, u) 7−→
((

αl,0 +
∑n

k=1 αl,k xk +
∑m

i=1 αl,n+i u
i

1 +
∑n

k=1 γk xk +
∑m

i=1 γn+i ui

)

1≤l≤n

,

(
βj,0 +

∑n
k=1 βj,k xk +

∑m
i=1 βj,n+i u

i

1 +
∑n

k=1 γk xk +
∑m

i=1 γn+i ui

)

1≤j≤m

)
.

It is clear that these transformations preserve all the solutions of (E0) :
uj

xk1
xk2

= 0, the graphs of affine maps fromKn to Km.
In the caseκ ≥ 3 we consider the homogeneous system(E0) in which the

second membersF j
k1,...,kκ

vanish identically. Its solutions are the graphs of
polynomial maps of degree≤ (κ − 1) from Kn to Km. The defining equa-
tions of its Lie algebra of infinitesimal symmetries areR

j
k1,...,kκ

= 0, after
having replaced the variablesU i1

l1,...,lκ
by 0 = F i1

l1,...,lκ
in I8 andI9 in (7.28).

We will keep in this system the only equations coming from thevanishing
of the coefficients of the five families of monomialsct.,U i1

l1,...,lκ−2
, U i1

l1,...,lκ−1
,

U i1
l1
U i2

l2,...,lκ
andU i1

l1,l2
U i2

l3,...,lκ+1
(this is inspired from the computations in

Subsection 4.2). The coefficients of these five monomials families already
appear in the expression (7.28). Moreover we fixl1 = l2 = · · · = lκ+1 = l
andi1 = i2, except for the coefficient of the monomialU i1

l U i2
l,...,l, where we

fix first i1 = i2 and theni1 6= i2. This provides the six partial differential
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linear equations:
(7.28)



0 = Rj
xk1

xk2
···xkκ

,

0 =
∑

σ∈S
κ−2
κ

δl,.........,l
kσ(1),...,kσ(κ−2)

Rj

xkσ(κ−1)
xkσ(κ)

ui1
−

− δj
i1



∑

σ∈S
κ−3
κ

δl,.........,l
kσ(1),...,kσ(κ−3)

Ql
xkσ(κ−2)

xkσ(κ−1)
xkσ(k)


 ,

0 =
∑

σ∈S
κ−1
κ

δl,.........,l
kσ(1),...,kσ(κ−1)

Rj

xkσ(κ)
ui1
−

− δj
i1




∑

σ∈S
κ−2
κ

δl,.........,l
kσ(1),...,kσ(κ−2)

Ql
xkσ(κ−1)

xkσ(κ)



 ,

0 = κ δl,......,l
k1,...,kκ

Rj

ui1ui1
− κ δj

i1




∑

σ∈S
κ−1
κ

δl,.........,l
kσ(1),...,kσ(κ−1)

Ql
xkσ(κ)

ui1



 ,

0 = 2κ δl,......,l
k1,...,kκ

Rj

ui1ui2
− κ δj

i1




∑

σ∈S
κ−1
κ

δl,.........,l
kσ(1),...,kσ(κ−1)

Ql
xkσ(κ)

ui2



−

− κ δj
i2




∑

σ∈S
κ−1
κ

δl,.........,l
kσ(1),...,kσ(κ−1)

Ql
xkσ(κ)

ui1



 , i1 6= i2,

0 = − C2
κ+1 δ

j
i1
δl,......,l
k1,...,kκ

Ql
ui1 .

To solve the system (7.28) we fix the indicesk1 = · · · = kκ = l andj = i1 in
the sixth equation, implyingQl

ui1
= 0. Hence the terms followingδj

i1
andδj

i2
in the fourth and in the fifth equations vanish identically. Let us choose the
indicesk1 = · · · = kκ in the fourth and the fifth equations (this last equation
is satisfied only fori1 6= i2). We obtain first three simple equations, without
any restriction on the indices:

(7.28)






0 = Rj
xk1

xk2
···xkκ

,

0 = Ql
ui1 ,

0 = Rj

ui1ui2
.

Finally we specify the indices in the third equation of (7.28) as follows:
l = kκ = · · · = k3 = k2 = k1 ; then l = kκ = · · · = k3 = k2 6= k1 ;
finally l = kκ = · · · = k3, k3 6= k2, k3 6= k1. This gives the three following
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equations:

(7.28)






0 = C1
κ R

j

xk1
ui1
− C2

κ δ
j
i1
Qk1

xk1
xk1
,

0 = Rj

xk1
ui1
− C1

κ−1 δ
j
i1
Qk2

xk1
xk2
, k2 6= k1,

0 = − δj
i1
Qk3

xk1
xk2
, k3 6= k1, k3 6= k2.

We specify the indices in the second equation of (7.28) as follows: l =
kκ = · · · = k3 = k2 = k1 ; then l = kκ = · · · = k3 = k2 6= k1 ; then
l = kκ = · · · = k3, k3 6= k2, k3 6= k1 ; finally l = kκ = · · · = k4, l 6= k1,
l 6= k2, l 6= k3. This gives the four following equalities:

(7.28)





0 = C2
κ R

j

xk1
xk1

ui1
− C3

κ δ
j
i1
Qk1

xk1
xk1

xk1
,

0 = C1
κ−1R

j

xk1
xk2

ui1
− C2

κ−1 δ
j
i1
Qk2

xk1
xk2

xk2
, k2 6= k1,

0 = Rj

xk1
xk2

ui1
− C1

κ−2 δ
j
i1
Qk3

xk1
xk2

xk3
, k3 6= k1, k3 6= k2,

0 = − δj
i1
Ql

xk1
xk2

xk3
, l 6= k1, l 6= k2, l 6= k3.

Let us differentiate now the equations (7.28) with respect to the variablesxl

as follows: we differentiate (7.28)1 with respect toxk1 ; then we differentiate
(7.28)2 with respect toxk2 ; finally we differentiate (7.28)3 with respect to
xk3 . This gives the three following equations:

(7.28)





0 = C1
κ R

j

xk1
xk1

ui1
− C2

κ δ
j
i1
Qk1

xk1
xk1

xk1
,

0 = Rj

xk1
xk2

ui1
− C1

κ−1 δ
j
i1
Qk2

xk1
xk2

xk2
, k2 6= k1,

0 = − δj
i1
Qk3

xk1
xk2

xk3
, k3 6= k1, k3 6= k2.

The seven equations given by the systems (7.28) and (7.28) may be con-
sidered as three systems of two equations (of two variables)with a nonzero
determinant, to which we add the last equation (7.28)4. We get immediately:

(7.28)






0 = Rj

xk1
xk1

ui1
= δj

i1
Qk1

xk1
xk1

xk1
,

0 = Rj

xk1
xk2

ui1
= δj

i1
Qk2

xk1
xk2

xk2
, k2 6= k1,

0 = Rj

xk1
xk2

ui1
= δj

i1
Qk3

xk1
xk2

xk3
, k3 6= k1, k3 6= k2,

0 = δj
i1
Ql

xk1
xk2

xk3
, l 6= k1, l 6= k2, l 6= k3.

It follows from these relations and from the relationsQl
ui1

= Rj
ui1ui2

= 0

obtained in (7.28) that all the third order partial derivatives ofQl vanish
identically, this being also satisfied by the third order partial derivatives of
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Rj containing at least one partial derivative with respect toui1:

(7.28)





0 = Ql
xk1

xk2
xk3

= Ql
xk1

xk2
ui1 = Ql

xk1
ui1ui2 = Ql

ui1ui2ui3 ,

0 = Rj

xk1
xk2

ui1
= Rj

xk1
ui1ui2

= Rj

ui1ui2ui3
.

It follows from the equations (7.28) and (7.28) that all the functionsQl are
polynomials of degree≤ 2 with respect to the variablesxk1 and all the func-
tionsRj are a sum of a polynomial of degree≤ (κ− 1) in the variablesxk1

and of monomials of the formui1 andxk1u
i1 . Let us develop now the rela-

tions (7.28) separately forj = i1 andj 6= i1. We obtain the five equations:

(7.28)





0 = C1
κ R

i1
xk1

ui1
− C2

κ Q
k1
xk1

xk1
,

0 = C1
κ R

j

xk1
ui1
, j 6= i1,

0 = Ri1
xk1

ui1
− C1

κ−1Q
k2
xk1

xk2
, k2 6= k1,

0 = Rj

xk1
ui1
, j 6= i1,

0 = −Qk3
xk1

xk2
, k3 6= k1, k3 6= k2.

According to the equations (7.28), (7.28), (7.28), we have the following
form of the general solution:
(7.28)



Ql(x, u) = Al +
n∑

k1=1

Bl
k1
xk1 +

n∑

k1=1

Ck1 xk1 xl,

Rj(x, u) =
n∑

k1=1

(κ− 1)Ck1 xk1 u
j +

m∑

i1=1

Dj
i1
ui1 + Ej,0 +

n∑

k1=1

Ej,1
k1
xk1+

+ · · ·+
∑

1≤k1≤···≤kκ−1≤n

Ej,κ−1
k1,...,kκ−1

xk1 · · ·xkκ−1 .

Here then+n2+n+m2+mCκ−1
n+κ−1 constantsAl, Bl

k1
, Ck1, D

j
i1
, Ej,0, Ej,1

k1
,

. . . , Ej,κ−1
k1,...,kκ−1

∈ K are arbitrary. Moreover one can check that the vector
space spanned by the vector fields
(7.28)



∂

∂xk1

, xk1

∂

∂xk2

,

xk1

(
x1

∂

∂x1

+ · · ·+ xn
∂

∂xn

+ (κ− 1)

(
u1 ∂

∂u1
+ · · ·+ um ∂

∂um

))
,

ui1
∂

∂ui2
,

∂

∂ui1
, xk1

∂

∂ui1
, . . . . . . , xk1 · · ·xkκ−1

∂

∂ui1
,

is stable under the Lie bracket action and that the flow of eachof these
generators is indeed a Lie symmetry of the system(E0). Finally the Lie
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symmetries of(E0) have the following form:
(7.28)

(x, u) 7−→
((

αl,0 +
∑n

k=1 αl,k xk

1 +
∑n

k=1 εk xk

)

1≤l≤n

,

(∑m
i1=1 βj

i1
ui1 + γ0,j +

∑n
k1=1 γ1,j

k1
xk1 + · · ·+∑k1≤···≤kκ−1

γκ−1,j
k1,...,kκ−1

xk1 · · ·xkκ−1

[1 +
∑n

k=1 εk xk]κ−1

)

1≤j≤m


 .

We note again that these transformations preserve the solutions of (E0) :
uj

xk1
···xkκ

= 0, namely the graphs of polynomial maps of degree≤ (κ − 1)

from Kn to Km.

5.3. Nonhomogeneous system.Let κ ≥ 3. Let us expand the defining
equations (7.28) as done in (7.28). We will write only the coefficients
of the five monomial familiesct., U i1

l1,...,lκ−2
, U i1

l1,...,lκ−1
, U i1

l1
U i2

l2,...,lκ
and

U i1
l1,l2

U i2
l3,...,lκ+1

. Moreover, we fix alwaysl1 = l2 = · · · = lκ = lκ+1 = l
andi1 = i2, except for the fourth family of monomials where we distinguish
the two casesi1 = i2 andi1 6= i2. Thus we obtain six linear equations of
partial derivatives, the members on the left side (coming from the expres-
sion of Rj1

k1,...,kκ
given by Lemma 8.1) coincide with the members on the

right hand side of (7.28). Furthermore, the members on the right hand side
are exactly the same as those obtained in (7.28), with more indices! We use
the lettersl′, k′1, . . . , k

′
κ = 1, . . . , n andj′, i′1 = 1, . . . , m for the indices of

the arguments of the expressionsΠ, obtaining the six following equations,
which generalize the equations (7.28):

(7.28)

[1] : Rj
xk1

xk2
···xkκ

= Π

(
x, u,Ql′, Ql′

xk′
1

, Rj′, Rj′

xk′
1

, . . . , Rj′

xk′
1
···xk′

κ−1

, Rj′

ui′
1

)
,

[1] : Rj
xk1

xk2
···xkκ

= Π

(
x, u,Ql′, Ql′

xk′
1

, Rj′, Rj′

xk′
1

, . . . , Rj′

xk′
1
···xk′

κ−1

, Rj′

ui′
1

)
.

[2] :
∑

σ∈S
κ−2
κ

δl,.........,l
kσ(1),...,kσ(κ−2)

Rj

xkσ(κ−1)
xkσ(κ)

ui1
−

− δj
i1




∑

σ∈S
κ−3
κ

δl,.........,l
kσ(1),...,kσ(κ−3)

Ql
xkσ(κ−2)

xkσ(κ−1)
xkσ(k)



 =

= Π

(
x, u,Ql′, Ql′

xk′
1

, Ql′

xk′
1
xk′

2

, Rj′, Rj′

xk′
1

, . . . , Rj′

xk′
1
···xk′

κ−1

, Rj′

ui′
1
, Rj′

xk′1
ui′

1

)
.
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[3] :
∑

σ∈S
κ−1
κ

δl,.........,l
kσ(1),...,kσ(κ−1)

Rj

xkσ(κ)
ui1
−

− δj
i1



∑

σ∈S
κ−2
κ

δl,.........,l
kσ(1),...,kσ(κ−2)

Ql
xkσ(κ−1)

xkσ(κ)


 =

= Π

(
x, u,Ql′, Ql′

xk′
1

, Rj′, Rj′

xk′
1

, . . . , Rj′

xk′
1
···xk′

κ−1

, Rj′

ui′
1

)
.

[4] : κ δl,......,l
k1,...,kκ

Rj

ui1ui1
− κ δj

i1



∑

σ∈S
κ−1
κ

δl,.........,l
kσ(1),...,kσ(κ−1)

Ql
xkσ(κ)

ui1


 =

= Π

(
x, u,Ql′, Ql′

xk′1

, . . . , Ql′

xk′1
···xk′

κ−1

, Ql′

ui′1
, Rj′, Rj′

xk′1

, . . . , Rj′

xk′1
···xk′

κ−1

,

, Rj′

ui′
1
, Rj′

xk′1
ui′

1
, . . . , Rj′

xk′1
···xk′

κ−2
ui′

1

)
.

[5] : 2κ δl,......,l
k1,...,kκ

Rj

ui1ui2
− κ δj

i1




∑

σ∈S
κ−1
κ

δl,.........,l
kσ(1),...,kσ(κ−1)

Ql
xkσ(κ)

ui2



−

− κ δj
i2




∑

σ∈S
κ−1
κ

δl,.........,l
kσ(1),...,kσ(κ−1)

Ql
xkσ(κ)

ui1



 , i1 6= i2.

= Π

(
x, u,Ql′, Ql′

xk′
1

, . . . , Ql′

xk′
1
···xk′

κ−1

, Ql′

ui′
1
, Rj′, Rj′

xk′
1

, . . . , Rj′

xk′
1
···xk′

κ−1

,

, Rj′

ui′1
, Rj′

xk′
1
ui′1
, . . . , Rj′

xk′
1
···xk′

κ−2
ui′1

)
.

[6] : −C2
κ+1 δ

j
i1
δl,......,l
k1,...,kκ

Ql
ui1 =

= Π

(
x, u,Ql′, Ql′

xk′1

, . . . , Ql′

xk′1
···xk′

κ−2

, Rj′, Rj′

xk′1

, . . . , Rj′

xk′1
···xk′

κ−1

,

, Rj′

ui′1
, Rj′

xk′
1
ui′1
, . . . , Rj′

xk′
1
···xk′

κ−3
ui′1

)
.

Then we get the following Lemma:
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Lemma 8.1. Let J denote the collection ofn + n2 + n + mCκ−1
n+κ−1 + m2

partial derivatives

(7.28) J :=

(
Ql′ , Ql′

xk′
1

, Qk′
1

xk′
1
xk′

1

, Rj′, Rj′

xk′
1

, . . . , Rj′

xk′
1
···xk′

κ−1

, Rj′

ui′
1

)
.

After linear combinations on the system (7.28) we obtain thefollowing equa-
tions:

(7.28)





Π(x, u, J) = Rj
xk1

···xkκ
,

Π(x, u, J) = Ql
ui1 ,

Π(x, u, J) = Rj

ui1ui2
,

Π(x, u, J) = Ql
xk1

xk2
xk3
,

Π(x, u, J) = Rj

xk1
ui1
,

Π(x, u, J) = Qk1
xk1

xk2
, k1 6= k2,

Π(x, u, J) = Ql
xk1

xk2
, l 6= k1, l 6= k2.

Moreover all the partial derivatives (with respect toxl andui) up to order
three of the coefficientsQl andRj of the vector fieldX ∈ Sym(E ) are of
the formΠ(x, u, J). Hence every functionQl andRj is uniquely determined
by the values at the origin of then + n2 + n + mCκ−1

n+κ−1 + m2 partial
derivatives (7.28). This implies that dimK Sym(E ) ≤ n2 + 2n + m2 +
mCκ−1

n+κ−1.

Proof. Since the second part of Lemma 8.1 is immediate let us establish only
the identities (7.28). We first specify the indices in the equation (7.28)[3] as
follows: l = kκ = · · · = k3 = k2 = k1 ; thenl = kκ = · · · = k3 = k2 6=
k1 ; and finally l = kκ = · · · = k3, k3 6= k2, k3 6= k1. This gives three
equations whose members on the right hand side are the same asthose in
the equation (7.28) and whose members on the left hand side are the same
as those in the equation (7.28)[3]:
(7.28)



Π

(
x, u,Ql′ , Ql′

xk′
1

, Rj′ , Rj′
xk′

1

, . . . , Rj′
xk′

1
···xk′

κ−1

, Rj′

ui′
1

)
= C1

κ Rj
xk1

ui1
− C2

κ δj
i1

Qk1
xk1

xk1
,

Π

(
x, u,Ql′ , Ql′

xk′1

, Rj′ , Rj′

xk′1

, . . . , Rj′

xk′1
···xk′

κ−1

, Rj′

ui′
1

)
= Rj

xk1
ui1
− C1

κ−1 δj
i1

Qk2
xk1

xk2
, k2 6= k1,

Π

(
x, u,Ql′ , Ql′

xk′
1

, Rj′ , Rj′
xk′

1

, . . . , Rj′
xk′

1
···xk′

κ−1

, Rj′

ui′
1

)
= −δj

i1
Qk3

xk1
xk2

, k3 6= k1, k3 6= k2.

We remark that these three equations (after specializationof j = i1 or
of j 6= i1 and after some easy linear combinations) provide directly the
fifth, sixth and seventh equations of (7.28). In particular we may replace
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the values of the partial derivativesRj′

xj′
1
ui′

1
andQl′

xk′1
xk′2

with k′1 6= k′2 or

l′ 6= k′1, l
′ 6= k′2 appearing in the expressionsΠ of the second member

of (7.28)[1] by their values just obtained from the fifth, the sixth and the
seventh equations of (7.28). This gives the first equation of(7.28).

Then we specify the indices in (7.28)[2] as follows:l = kκ = · · · = k3 =
k2 = k1 ; then l = kκ = · · · = k3 = k2 6= k1 ; thenl = kκ = · · · = k3,
k3 6= k2, k3 6= k1 ; and finallyl = kκ = · · · = k4, l 6= k1, l 6= k2, l 6= k3.
This gives four equations, whose members on the right hand side are the
same as those in (7.28) and the members on the left hand side are the same
as those in (7.28)[2]:

(7.28)




Π

(
x, u,Ql′ , Ql′

xk′
1

, Ql′
xk′

1
xk′

2

, Rj′ , Rj′
xk′

1

, . . . , Rj′
xk′

1
···xk′

κ−1

, Rj′

ui′1
, Rj′

xk′1
ui′1

)
=

= C2
κ Rj

xk1
xk1

ui1
− C3

κ δj
i1

Qk1
xk1

xk1
xk1

,

Π

(
x, u,Ql′ , Ql′

xk′1

, Ql′

xk′1
xk′2

, Rj′ , Rj′

xk′1

, . . . , Rj′

xk′1
···xk′

κ−1

, Rj′

ui′
1
, Rj′

xk′
1
ui′

1

)
=

= C1
κ−1 Rj

xk1
xk2

ui1
− C2

κ−1 δj
i1

Qk2
xk1

xk2
xk2

, k2 6= k1,

Π

(
x, u,Ql′ , Ql′

xk′
1

, Ql′
xk′

1
xk′

2

, Rj′ , Rj′
xk′

1

, . . . , Rj′
xk′

1
···xk′

κ−1

, Rj′

ui′1
, Rj′

xk′
1
ui′1

)
=

= Rj
xk1

xk2
ui1
− C1

κ−2 δj
i1

Qk3
xk1

xk2
xk3

, k3 6= k1, k3 6= k2,

Π

(
x, u,Ql′ , Ql′

xk′
1

, Ql′
xk′

1
xk′

2

, Rj′ , Rj′
xk′

1

, . . . , Rj′
xk′

1
···xk′

κ−1

, Rj′

ui′
1
, Rj′

xk′1
ui′

1

)
=

= −δj
i1

Ql
xk1

xk2
xk3

, l 6= k1, l 6= k2, l 6= k3.

Using the fifth, the sixth and the seventh equations of (7.28)just obtained,
we may replace the partial derivativesRj′

xj′1
ui′

1
andQl′

xk′
1
xk′

2

with k′1 6= k′2 or

l′ 6= k′1, l
′ 6= k′2 appearing in the expressionsΠ of (7.28), providing four new

equations in which the arguments ofΠ are the desired ones:(x, u, J), where
J is defined in (7.28):
(7.28)



Π(x, u, J) = C2
κ R

j

xk1
xk1

ui1
− C3

κ δ
j
i1
Qk1

xk1
xk1

xk1
,

Π(x, u, J) = C1
κ−1R

j

xk1
xk2

ui1
− C2

κ−1 δ
j
i1
Qk2

xk1
xk2

xk2
, k2 6= k1,

Π(x, u, J) = Rj

xk1
xk2

ui1
− C1

κ−2 δ
j
i1
Qk3

xk1
xk2

xk3
, k3 6= k1, k3 6= k2,

Π(x, u, J) = − δj
i1
Ql

xk1
xk2

xk3
, l 6= k1, l 6= k2, l 6= k3.
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Let us differentiate now the equations (7.28) with respect to the variables
xl as follows: first we differentiate (7.28)1 with respect toxk1 ; then we
differentiate (7.28)2 with respect toxk2 ; finally we differentiate (7.28)3 with
respect toxk3 . The arguments in the expressionsΠ in the equation (7.28)
contain now the termsRj′

xk′1
···xk′κ

; we replace them by their value given in

the first equation of (7.28) already obtained. The argumentsalso contain the
termsRj′

xj′1
ui′1

andQl′

xk′
1
xk′

2

with k′1 6= k′2 or l′ 6= k′1, l
′ 6= k′2. We replace

them by their value given by the fifth, the sixth and the seventh equations
of (7.28). We obtain three new equations in which the arguments of the
expressionsΠ are the desired ones:(x, u, J), whereJ is defined in (7.28):

(7.28)





Π (x, u, J) = C1
κ R

j

xk1
xk1

ui1
− C2

κ δ
j
i1
Qk1

xk1
xk1

xk1
,

Π (x, u, J) = Rj

xk1
xk2

ui1
− C1

κ−1 δ
j
i1
Qk2

xk1
xk2

xk2
, k2 6= k1,

Π (x, u, J) = −δj
i1
Qk3

xk1
xk2

xk3
, k3 6= k1, k3 6= k2.

The seven equations (7.28) and (7.28) may be considered as three systems
of two linear equations of two variables with a nonzero determinant, the
seventh equation being the last equation in (7.28). We immediately obtain:
(7.28)




Π(x, u, J) = Rj

xk1
xk1

ui1
= δj

i1
Qk1

xk1
xk1

xk1
,

Π(x, u, J) = Rj

xk1
xk2

ui1
= δj

i1
Qk2

xk1
xk2

xk2
, k2 6= k1,

Π(x, u, J) = Rj

xk1
xk2

ui1
= δj

i1
Qk3

xk1
xk2

xk3
, k3 6= k1, k3 6= k2,

Π(x, u, J) = δj
i1
Ql

xk1
xk2

xk3
, k3 6= k1, k3 6= k2,

giving the fourth equation in (7.28).
It remains now to obtain the second and the third equations in(7.28).

Let us write firstly equation (7.28)[6] with the choice of the indicesj = i1,
l = k1 = · · · = kκ. This gives the equation:
(7.28)



Ql
ui1 = Π

(
x, u,Ql′, Ql′

xk′1

, . . . , Ql′

xk′1
···xk′

κ−2

, Rj′, Rj′

xk′1

, . . . , Rj′

xk′1
···xk′

κ−1

,

, Rj′

ui′
1
, Rj′

xk′1
ui′

1
, . . . , Rj′

xk′1
···xk′

κ−3
ui′

1

)
.

We observe first that the differentiation with respect to thevariablesxl of
one of the expressionsΠ(x, u, J) remains an expressionΠ(x, u, J). Indeed
we see from (7.28) that there appears, in the partial derivative Jxl

, deriva-
tivesQl′

xk′1
xk′2

with k′1 6= k′2 or l′ 6= k′1, l
′ 6= k′2. We may replace them

by their value obtained in the sixth and the seventh equations of (7.28). It
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also appears some derivativesQl′

xk′1
xk′2

xk′3

(we replace them by their value

obtained in the fourth equation of (7.28)), some derivativesRj′

xk′
1
···xk′κ

(we

replace them by their value obtained in the first equation of (7.28)) and
some derivativesRj′

xk′
1
ui′

1
(we replace them by their value obtained in the

fifth equation of (7.28)). Consequently we may write:

(7.28) [Π(x, u, J)]xl
= Π(x, u, J).

It follows that any derivative with respect toxl (to any order) of the fourth
and the fifth equations of (7.28) provides expressions of theform Π(x, u, J).
In other words for any integerλ ≥ 3 and any integerµ ≥ 1 we have

(7.28)





Π(x, u, J) = Ql
xk1

xk2
xk3

···xkλ
,

Π(x, u, J) = Rj

xk1
···xkµui1

.

We may replace then these values in the equation (7.28), replacing also the
derivativesQl′

xk′1
xk′2

with k′1 6= k′2 or l′ 6= k′1, l
′ 6= k′2 by their values ob-

tained in the sixth and the seventh equations of (7.28). Thisgives the second
equation of (7.28).

We also remark that by a differentiation with respect to the variablesxl,
the second equationQl

ui1
= Π(x, u, J) just obtained implies, using (7.28):

(7.28) Π(x, u, J) = Ql
xk1

ui1 .

It remains finally to write (7.28)[4] first with the choice of indicesl = k1 =
· · · = kκ, j = i1 then with the choice of indicesl = k1 = · · · = kκ, j 6= i1.
We also write (7.28)[5] first with the choice of indicesl = k1 = · · · = kκ,
j = i2 then with the choice of indicesl = k1 = · · · = kκ, j 6= i1, j 6= i2.
We obtain four new equations:
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(7.28)




Ri1
ui1ui1

− κQk1

xk1
ui1

= Π

(
x, u,Ql′ , Ql′

xk′1

, . . . , Ql′

xk′1
···xk′

κ−1

, Ql′

ui′
1
, Rj′ , Rj′

xk′1

, . . . , Rj′

xk′1
···xk′

κ−1

,

, Rj′

ui′
1
, Rj′

xk′
1
ui′

1
, . . . , Rj′

xk′
1
···xk′

κ−2
ui′

1

)
,

Rj
ui1ui1

= Π

(
x, u,Ql′ , Ql′

xk′
1

, . . . , Ql′
xk′

1
···xk′

κ−1

, Ql′

ui′1
, Rj′ , Rj′

xk′
1

, . . . , Rj′
xk′

1
···xk′

κ−1

,

, Rj′

ui′1
, Rj′

xk′
1
ui′1

, . . . , Rj′

xk′
1
···xk′

κ−2
ui′1

)
, j 6= i1,

2Ri2
ui1ui2

− κQk1

xk1
ui1

= Π

(
x, u,Ql′ , Ql′

xk′1

, . . . , Ql′

xk′1
···xk′

κ−1

, Ql′

ui′
1
, Rj′ , Rj′

xk′1

, . . . , Rj′

xk′1
···xk′

κ−1

,

, Rj′

ui′
1
, Rj′

xk′
1
ui′

1
, . . . , Rj′

xk′
1
···xk′

κ−2
ui′

1

)
, i1 6= i2,

Rj
ui1ui2

= Π

(
x, u,Ql′ , Ql′

xk′
1

, . . . , Ql′
xk′

1
···xk′

κ−1

, Ql′

ui′1
, Rj′ , Rj′

xk′
1

, . . . , Rj′
xk′

1
···xk′

κ−1

,

, Rj′

ui′1
, Rj′

xk′
1
ui′1

, . . . , Rj′

xk′
1
···xk′

κ−2
ui′1

)
, i1 6= i2, j 6= i2, j 6= i2.

Using the equations of (7.28) we already obtained (namely all except the
second equation), using (7.28) and (7.28), we may simplify these four equa-
tions:

(7.28)





Π(x, u, J) = Ri1
ui1ui1

,

Π(x, u, J) = Rj

ui1ui1
, j 6= i1,

Π(x, u, J) = Ri1
ui1ui2

, i1 6= i2,

Π(x, u, J) = Rj

ui1ui2
, i1 6= i2, j 6= i1, j 6= i2.

This gives the second equation of (7.28), completing the proof of Lemma 8.1
and consequently the proof of Theorem 6.4.
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Nonrigid spherical

real analytic hypersurfaces inC2

Joël Merker

Abstract. A Levi nondegenerate real analytic hypersurfaceM of C2 represented
in local coordinates(z,w) ∈ C2 by a complex defining equation of the form
w = Θ(z, z, w) which satisfies an appropriate reality condition, is spherical if and
only if its complex graphing functionΘ satisfies an explicitly written sixth-order
polynomial complex partial differential equation. In the rigid case (known before),
this system simplifies considerably, but in the general nonrigid case, its combinato-
rial complexity shows well why the two fundamental curvature tensors constructed
by Élie Cartan in 1932 in his classification of hypersurfaceshave, since then, never
been reached in parametric representation.
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§1. INTRODUCTION

A real analytic hypersurfaceM in C2 is calledsphericalat one of its
points p if there exists a nonempty open neighborhoodUp of p in C2

such thatM ∩ Up is biholomorphic to a piece of the unit sphereS3 ={
(z, w) : |z|2 + |w|2 = 1

}
. WhenM is connected, sphericality at one

point is known to propagate all overM , for it is equivalent to the vanish-
ing of two certainreal analyticcurvature tensors that were constructed by
Élie Cartan in [3]. However, the intrinsic computational complexity, in the
Cauchy-Riemann (CR for short) context, of Élie Cartan’s algorithm to de-
rive an absolute parallelism on some suitable eight-dimensional principal
bundleP → M prevents from controlling explicitly all the appearing dif-
ferential forms. As a matter of fact, the effective computation, in terms of a
defining equation forM , of the two fundamental differential invariants the
vanishing of which characterizes sphericality, appears nowhere in the litera-
ture (see e.g.[23, 5, 11] and the references therein as well), except notably
when one makes the assumption that, in some suitable local holomorphic
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coordinates(z, w) = (x + iy, u + iv) vanishing at the pointp, the defin-
ing equation is of the so-calledrigid form u = ϕ(x, y) with the variablev
missing, or even of the so-called (simpler)tube form u = ϕ(x), with the
two variablesy andv missing,see[11] which showed recently a renewed
interest, in CR geometry, for explicit characterizations of sphericality. But
in general, a real analytic hypersurfaceM ⊂ C2 is represented atp by areal
equationu = ϕ(x, y, v) whose graphing functionϕ depends entirely arbi-
trarily uponv also, and then apparently, the characterization of sphericality
is still unknown.

On the other hand, in the studies [12, 13, 14, Me2005a, Me2005b] de-
voted to the CR reflection principle, it was emphasized that all the adequate
invariants of CR mappings between CR manifolds:Pair of Segre foliations,
Segre chains, Complexified CR orbits, Jets of complexified Segre varietes,
Rigidity of formal CR mappings, Nondegeneracy conditions, CR-reflection
function5, can be viewed correctly only whenM is represented by a so-
calledcomplex defining equationof the form:

w = Θ
(
z, z, w

)
,

where the functionΘ ∈ C
{
z, z, w

}
, vanishing at the origin, is the unique

function obtained by solving with respect tow the equation: w+w
2

=

ϕ
(

z+z
2
, z−z

2i
, w−w

2i

)
; then the fact thatϕ wasreal is reflected, in terms of this

new functionΘ(z, z, w), by the constraint that, together with its complex
conjugateΘ

(
z, z, w

)
, it satisfies the functional equation6:

w ≡ Θ
(
z, z, Θ(z, z, w)

)
.

Accordingly, the author suspected since a few years —cf. the Open Ques-
tion 2.35 in [19] — that sphericality ofM at p should and could be ex-
pressed adequately in terms ofΘ. The classical assumption thatM beLevi
nondegenerateat the pointp (see e.g.[11]) — which is the origin of our
present system of coordinates(z, w) — may then be expressed here (cf.
[Me2005a, Me2005b]) by requiring thatΘzΘzw−ΘwΘzz does not vanish at
the origin. In particular, this guarantees that the following explicit rational
expression whose numerator is a polynomial in the fourth-order jetJ4

z,z,wΘ,
is well defined and analytic in some sufficiently small neighborhood of the

5 For a presentation of these concepts, the reader is referredto the extensive introduc-
tions of [14, Me2005b] and also to [19] for more about why dealing only with complex
defining equations is natural and unavoidable when one wantsto insert CR geometry in the
wider universe of completely integrable systems of real or complex analytic partial differ-
ential equations.

6 More will be said shortly in Section 2 below.
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origin:

AJ
4(Θ) :=

1

[ΘzΘzw −ΘwΘzz]3

{
Θzzzz

(
ΘwΘw

∣∣∣∣
Θz Θw

Θzz Θzw

∣∣∣∣
)
−

− 2Θzzzw

(
ΘzΘw

∣∣∣∣
Θz Θw

Θzz Θzw

∣∣∣∣
)

+ Θzzww

(
ΘzΘz

∣∣∣∣
Θz Θw

Θzz Θzw

∣∣∣∣
)

+

+ Θzzz

(
ΘzΘz

∣∣∣∣
Θw Θww

Θzw Θzww

∣∣∣∣− 2ΘzΘw

∣∣∣∣
Θw Θzw

Θzw Θzzw

∣∣∣∣+ ΘwΘw

∣∣∣∣
Θw Θzz

Θzw Θzzz

∣∣∣∣
)

+

+ Θzzw

(
−ΘzΘz

∣∣∣∣
Θz Θww

Θzz Θzww

∣∣∣∣+ 2ΘzΘw

∣∣∣∣
Θz Θzw

Θzz Θzzw

∣∣∣∣−ΘwΘw

∣∣∣∣
Θz Θzz

Θzz Θzzz

∣∣∣∣
)}

.

We hope, then, that the following precise statement will filla gap in our
understanding of the vanishing of CR curvature tensors.

Main (and unique) theorem. An arbitrary, not necessarily rigid, real ana-
lytic hypersurfaceM ⊂ C2 which is Levi nondegenerate at one of its points
p and has a complex defining equation of the form:

w = Θ
(
z, z, w

)

in some system of local holomorphic coordinates(z, w) ∈ C2 centered atp,
is spherical atp if and only if its graphing complex functionΘ satisfies the
following explicit sixth-order algebraic partial differential equation:

0 ≡
( −Θw

ΘzΘzw −ΘwΘzz

∂

∂z
+

Θz

ΘzΘzw −ΘwΘzz

∂

∂w

)2[
AJ

4(Θ)
]

identically inC
{
z, z, w

}
.

Here, it is understood that the first-order derivation in parentheses is ap-
plied twice to the fourth-order rational differential expressionAJ4(Θ). The
factor 1

[ΘzΘzw−ΘwΘzz]7
then appears, and after clearing out this denominator,

one obtains a universalpolynomialdifferential expressionAJ6(Θ) depend-
ing upon the sixth-order jetJ6

z,z,wΘ and having integer coefficients. A partial
expansion is provided in Section 5, and the already formidable incompress-
ible length of this expansion perhaps explains the reason why no reference
in the literature provides the explicit expressions, in terms of some defining
function forM , of Élie Cartan’s two fundamental differential invariants7

which can (in principle) be used to classify real analytic hypersurfaces of
C2 up to biholomorphisms, and to at least characterize sphericality.

Suppose in particular for instance thatM is rigid, given by a complex
equation of the formw = −w + Ξ(z, z), that is to say withΘ(z, z, w)
of the form−w + Ξ(z, z), so that the reality condition simply reads here:
Ξ(z, z) ≡ Ξ(z, z). Then as a corollary-exercise, sphericality is explicitly

7 See[3] and also [23], where the tight analogy with second-orderordinary differential
equations is well explained.
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characterized by a much simpler partial differential equation that we can
write down in expanded form:

0 ≡ Ξz2z4

(
Ξzz

)4 − 6
Ξz2z3 Ξzz2

(
Ξzz

)5 − 4
Ξz2z2 Ξzz3

(
Ξzz

)5 − Ξz2z Ξzz4

(
Ξzz

)5 +

+ 15
Ξz2z2

(
Ξzz2

)2
(
Ξzz

)6 + 10
Ξzz3 Ξz2z Ξzz2

(
Ξzz

)6 − 15
Ξz2z

(
Ξzz2

)3
(
Ξzz

)7 ,

and this equation should of course hold identically inC
{
z, z
}

.

Now, here is a summarized description of our arguments of proof. Beni-
amino Segre ([23]) in 1931 and in fact much earlier Sophus Liehimself in
the 1880’s (see e.g.Chapter 10 of Volume I of theTheorie der Transforma-
tionsgruppen[8]) showed how to elementarily associate a unique second-
order ordinary differential equation:

wzz(z) = Φ
(
z, w(z), wz(z)

)

to the Levi nondegenerate equationw = Θ(z, z, w) by eliminating the two
variablesz andw, viewed as parameters, from the two equationsw = Θ
andwz = Θz. We check in great details the semi-known result thatM is
spherical at the origin if and only if its associated differential equation is
equivalent, under some appropriate local holomorphic point transformation
(z, w) 7−→ (z′, w′) =

(
z′(z, w), w′(z, w)

)
fixing the origin, to the simplest

possible equationw′
z′z′(z

′) = 0 having null right-hand side, whose obvious
solutions are just the affine complex lines. But since the doctoral dissertation
of Arthur Tresse (defended in 1895 under the direction of Liein Leipzig),
it is known that, attached to any such differential equationare two explicit
differential invariants:

I1 := Φwzwzwzwz and:

I2 := DD
(
Φwzwz

)
− Φwz D

(
Φwzwz

)
− 4 D

(
Φwwz

)
+

+ 6 Φww − 3 Φw Φwzwz + 4 Φwz Φwwz ,

where D :=∂z + wz ∂w + Φ(z, w, wz) ∂wz ,

depending both upon the fourth-order jet ofΦ, which, together with all their
covariant differentiations, enable one (in principle8) to completely deter-
mine when two arbitrarily given differential equations areequivalent one to
another9. A very well-known application is: the vanishing of bothI1 and

8 To our knowledge, the only existing reference where this strategy is seriously en-
deavoured in order to classify second-order ordinary differential equationsyxx(x) =
F
(
x, y(x), yx(x)

)
is [HK1989], but only for certain point transformations — called there

“fiber-preserwing” — of the special form(x, y) 7→ (x′, y′) =
(
x′(x), y′(x, y)

)
, the first

component of which is independent ofy.
9 Three decades earlier, Christoffel in his famous memoir [4]of 1869 devoted to the

equivalence problem for Riemannian metrics discovered that the covariant differentiations
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I2 characterizes equivalence tow′
z′z′(z

′) = 0. So in order to characterize
sphericality, one only has to reexpress the vanishing ofI1 and ofI2 in terms
of the complex defining functionΘ(z, z, w). For this, we apply the tech-
niques of computational differential algebra developed in[19] which enable
us here to explicitly execute the two-ways transfer betweenalgebraic ex-
pressions in the jet ofΦ and algebraic expressions in the jet ofΘ. It then
turns out that the two equations which one obtains by transferring to Θ the
vanishing ofI1 and ofI2 areconjugate one to another, so that a single equa-
tion suffices, and it is precisely the one enunciated in the theorem. In fact,
this coincidence is caused by the famous projective duality, explainede.g.
by Lie and Scheffers in Chapter 10 of [12] and restituted in modern lan-
guage in [1, 5]. It is indeed well known that to any second-order ordinary
differential equation (E ): yxx(x) = F

(
x, y(x), yx(x)

)
is canonically associ-

ated a certaindualsecond-order ordinary differential equation, call it (E ∗):
baa(a) = F ∗(a, ba(a), baa(a)

)
, which has the crucial property that:

I1(E ) is a nonzero multiple of I2(E ∗)

and symmetrically also: I2(E ) is a nonzero multiple of I1(E ∗).

The doctoral dissertation [10] of Koppisch (Leipzig 1905) cited onlypassim
by Élie Cartan in [Ca1924] contains the analytical details of this correspon-
dence, which was well reconstituted recently in [5] within the context of
projective Cartan connections. But the differential equation which is dual to
the onewzz(z) = Φ

(
z, w(z), wz(z)

)
associated tow = Θ(z, z, w) is easily

seen to be just itscomplex conjugate(E ): wzz(z) = Φ
(
z, w(z), wz

)
, and

then as a consequence,I1
(E )

= I1(E ) is the conjugate ofI1(E ), and similarly also

I2
(E )

= I2(E ) is the conjugate ofI2(E ). So it is no mystery that, as said, the
sphericality ofM at the origin:

0 ≡ I1(E ) and 0 ≡ I2(E ) = nonzero · I1
(E )

= nonzero · I1(E ),

can in a simpler way be characterized by the vanishing of the two mutually
conjugate(complex) equations:

0 ≡ I1(E ) and 0 ≡ I1(E ),

which of course amount to justone(complex) equation.
To conclude this introduction, we would like to mention firstly that none

of our computations — especially those of Sections 4 and 5 — was per-
formed with the help of any computer, and secondly that the effective char-
acterization of sphericality in higher complex dimensionn > 3 will appear
soon [21].

of the curvature provide a full list of differential invariants for positive definite quadratic
infinitesimal metrics.
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§2. SEGRE VARIETIES AND DIFFERENTIAL EQUATIONS

Real analytic hypersurfaces inC2. Let us consider an arbitrary real ana-
lytic hypersurfaceM in C2 and let us localize it around one of its points, say
p ∈M . Then there exist complex affine coordinates:

(z, w) =
(
x+ iy, u+ iv

)

vanishing atp in which TpM = {u = 0}, so thatM is represented in a
neighborhood ofp by a graphed defining equation of the form:

u = ϕ(x, y, v),

where the real-valued function:

ϕ = ϕ(x, y, v) =
∑

k,l,m∈N

k+l+m>2

ϕk,l,m x
kylvm ∈ R

{
x, y, u

}
,

which possesses entirely arbitrary real coefficientsϕk,l,m, vanishes at the
origin: ϕ(0) = 0, together with all its first order derivatives:0 = ∂xϕ(0) =
∂yϕ(0) = ∂vϕ(0). All studies in the analytic reflection principle10 show
without doubt that the adequate geometric concepts:Pair of Segre foliations,
Segre chains, Complexified CR orbits, Jets of complexified Segre varietes,
Rigidity of formal CR mappings, Nondegeneracy conditions, CR-reflection
function, can be viewed correctly only whenM is represented by a so-called
complex defining equation. Such an equation may be constructed by simply
rewriting the initial real equation ofM as:

w+w
2

= ϕ
(

z+z
2
, z−z

2i
, w−w

2i

)
,

and then by solving11 the so written equation with respect tow, which yields
an equation of the shape12:

w = Θ
(
z, z, w

)
=

∑

α, β, γ ∈ N

α+β+γ>1

Θα,β,γ z
α zβ wγ ∈ C

{
z, z, w

}
,

whose right-hand side converges of course near the origin(0, 0, 0) ∈ C ×
C × C and hascomplexcoefficientsΘα,β,γ ∈ C. The paradox that any
suchcomplexequation provides in facttwo real defining equations for the
real hypersurfaceM which isone-codimensional, and also in addition the
fact that one could as well have chosen to solve the above equation with
respect tow, instead ofw, these two apparent “contradictions” are corrected

10 The reader might for instance consult the survey [18], pp. 5–44 or the mem-
oirs [Me2005a, Me2005b], and look also at some of the concerned references therein.

11 Thanks todϕ(0) = 0, the holomorphic implicit function theorem readily applies.
12 Notice that sincedϕ(0) = 0, one hasΘ = −w + order 2 terms.
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by means of a fundamental, elementary statement that transfers toΘ (in a
natural way) the condition of reality:

ϕ(x, y, u) =
∑

k+l+m>1

ϕk,l,m x
kylvm =

∑

k+l+m>1

ϕk,l,m x
kylvm = ϕ(x, y, v)

enjoyed by the initial definining functionϕ.

Theorem. ([18], p. 1913) The complex analytic functionΘ = Θ(z, z, w)
with Θ = −w + O(2) together with its complex conjugate14:

Θ = Θ
(
z, z, w) =

∑

α, β, γ∈N

Θα,β,γ z
α zβ wγ ∈ C

{
z, z, w

}

satisfy the two(equivalent by conjugation) functional equations:

(7.28)
w ≡ Θ

(
z, z,Θ(z, z, w)

)
,

w ≡ Θ
(
z, z,Θ(z, z, w)

)
.

Conversely, given a local holomorphic functionΘ(z, z, w) ∈ C{z, z, w},
Θ = −w + O(2) which, in conjunction with its conjugateΘ(z, z, w), satis-
fies this pair of equivalent identities, then the two zero-sets:
{
0 = −w + Θ

(
z, z, w

)}
and

{
0 = −w + Θ

(
z, z, w

)}

coincide and define a localone-codimensionalreal analytic hypersurface
M passing through the origin inC2.

As before, letM be an arbitrary real analytic hypersurface passing
through the origin inC2 equipped with coordinates(z, w), and assume that
T0M = {u = 0}. Without loss of generality, we can and we shall assume
that the coordinates are chosen in such a way that a certain standard conve-
nient normalization condition holds.

Theorem. ([Me2005a], p. 12)There exists a local complex analytic change
of holomorphic coordinatesh : (z, w) 7−→ (z′, w′) = h(z, w) fixing the
origin and tangent to the identity at the origin of the specific form:

z′ = z, w′ = g(z, w),

such that the imageM ′ := h(M) has a new complex defining equation
w′ = Θ′(z′, z′, w′) satisfying:

Θ′(0, z′, w′) ≡ Θ′(z′, 0, w′) ≡ −w′,

13 Compared to [18], we denote here byΘ the function denoted there byΘ.
14 According to a general, common convention, given a power series Φ(t) =∑
γ∈Nn Φγ tγ , t ∈ Cn, Φγ ∈ C, one defines the seriesΦ(t) :=

∑
γ∈Nn Φγ tγ by con-

jugating only its complex coefficients. Then the complex conjugation operator distributes
oneself simultaneously on functions and on variables:Φ(t) ≡ Φ(t̄), a trivial property which
is nonetheless frequently used in the formal CR reflection principle ([Me2005a, Me2005b]).



192

or equivalently, which has a power series expansion of the form:

Θ′(z′, z′, w′) = −w′ +
∑

α>1, β>1

Θ′
α,β,0 z′αz′β +

∑

γ>1

w′γ ∑

α>1, β>1

Θ′
α,β,γ z′αz′β.

Levi nondegenerate hypersurfaces.Leaving aside the real defining equa-
tion of M , let us now rename the complex defining equation ofM in such
normalized coordinates simply as before:w = Θ(z, z, w), dropping all the
prime signs. Quite concretely, the real analytic hypersurfaceM is said to be
Levi nondegenerateat the origin if the coefficientΘ1,1,0 of zz, which may be
checked to always be real because of the reality condition (7.28), isnonzero.
In fact, it is well known that Levi nondegeneracy is a biholomorphically in-
variant property,seefor instance [18], p. 158, but in more conceptual terms,
the following general characterization, which may be takenas a definition
here, holds true. One then readily checks that it is equivalent to Θ1,1,0 6= 0
in normalized coordinates.

Lemma. ([Me2005a, Me2005b, 19])The real analytic hypersurfaceM ⊂
C2 with 0 ∈ M represented in coordinates(z, w) by a complex defining
equation of the formw = Θ(z, z, w) is Levi nondegenerate at the origin if
and only if the map:

(
z, w

)
7−→

(
Θ(0, z, w), Θz(0, z, w)

)

has nonvanishing2× 2 Jacobian determinant at(z, w) = (0, 0).

After a possible real dilation of thez-coordinate, we can therefore assume
thatΘ1,1,0 = 1, and then we are provided with the following normalization:

(7.28) w = −w + zz + zz O
(
|z|+ |w|

)
,

that will be useful shortly. Another, even more convincing argument for
consigning to oblivion the real defining equationu = ϕ(x, y, v) dates back
to Beniamino Segre [23], who observed that to any real analytic M are as-
sociated two deeply linked objects.

1) The nowadays so-calledSegre varieties15 Sq associated to any point
q ∈ C2 near the origin of coordinates(zq, wq) that are the complex
curves defined by the equation:

Sq :=
{
0 = −w + Θ

(
z, zq, wq

)}
,

quite appropriately in terms of the fundamental complex defining func-
tion Θ; this equation isholomorphicjust because its antiholomorphic
terms are set fixed.

15 A presentation of the general theory, valuable for generic CR manifolds of arbitrary
codimensiond > 1 and of arbitrary CR dimensionm > 1 in Cm+d enjoying no specific
nondegeneracy condition, may be found in [Me2005a, Me2005b, 18].
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2) WhenM is Levi nondegenerate at the origin, a second-ordercomplex
ordinary differential equation16 of the form:

wzz(z) = Φ
(
z, w(z), wz(z)

)
,

whose solutions are exactly the Segre varieties ofM , parametrized by
the two initial conditionsw(0) andwz(0) which correspond bijectively
to the antiholomorphic variableszq andwq.

In fact, the recipe for deriving the second-order differential equation as-
sociated to a local Levi-nondegenerateM ⊂ C2 with 0 ∈M represented by
a normalized17 equation of the form (7.28) is very simple. Considering that
w = w(z) is given in the equation:

w(z) = Θ
(
z, z, w

)

as a function ofz with two supplementary (antiholomorphic) parametersz
andw that one would like to eliminate, we solve with respect toz andw,
just by means of the implicit function theorem18, the pair of equations:

[
w(z) = Θ

(
z, z, w

)
= −w + zz + zz O

(
|z| + |w|

)

wz(z) = Θz

(
z, z, w

)
= z + zO

(
|z|+ |w|

)

the second one being obtained by differentiating the first one with respect to
z, and this yields a representation:

z = ζ
(
z, w(z), wz(z)

)
and w = ξ

(
z, w(z), wz(z)

)

for certain two uniquely defined local complex analytic functions
ζ(z, w, wz) and ξ(z, w, wz) of three complex variables. By means of
these functions, we may then replacez andw in the second derivative:

wzz(z) = Θzz

(
z, z, w

)

= Θzz

(
z, ζ

(
z, w(z), wz(z)

)
, ξ
(
z, w(z), wz(z)

))

=: Φ
(
z, w(z), wz(z)

)
,

and this defines without ambiguity the associated differential equation.
More about differential equations will be said in §3 below.

16 This idea, usually attributed by contemporary CR geometersto B. Segre, dates in fact
back (at least) to Chapter 10 of Volume 1 of the 2 100 pages longTheorie der Transforma-
tionsgruppenwritten by Sophus Lie and Friedrich Engel between 1884 and 1893, where it
is even presented in the uppermost general context.

17 In fact, such a normalization was made in advance just in order to make things con-
crete and clear, but thanks to what the Lemma on p. 192 expresses in a biholomorphically
invariant way, everything which follows next holds in an arbitrary system of coordinates.

18 Justification: by our preliminary normalization, the2 × 2 Jacobian determinant
∂(Θ, Θz)
∂(z, w) computed at the origin equals

˛

˛

˛

˛

0 −1
1 0

˛

˛

˛

˛

, hence is nonzero. Without the prelim-

inary normalization, the condition of the Lemma on p. 192 also applies in any case.
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Of course, any spherical real analyticM ⊂ C2 must be Levi nondegen-
erate at every point, for the unit3-sphereS3 ⊂ C2 is. It is well known that
S3 minus one of its points, for instance:S3 \ {p∞} with p∞ := (0,−1), is
biholomorphic, through the so-calledCayley transform:

(z, w) 7−→
(

i z
1+w

, 1−w
2+2 w

)
=: (z′, w′) having inverse: (z′, w′) 7−→

( −2iz′

1+2w′ ,
1−2w′

1+2 w′

)

to the so-calledHeisenberg sphereof equation:

w′ = −w′ + z′z′,

in the target coordinate-space(z′, w′), and this model will be more conve-
nient to deal with for our purposes.

Proposition. A Levi nondegenerate local real analytic hypersurfaceM in
C2 is locally biholomorphic to a piece of the Heisenberg sphere(hence
spherical) if and only if its associated second-order ordinary complex differ-
ential equation is locally equivalent to the Newtonian freeparticle equation:
w′

z′z′(z
′) = 0, with identically vanishing right-hand side.

Proof. Indeed, any local equivalence ofM to the Heisenberg sphere trans-
forms its differential equation to the one associated with the Heisenberg
sphere, and then trivially:w′

z′(z
′) = z′, whencew′

z′z′(z
′) = 0.

Conversely, if the Segre varieties ofM are mapped to the solutions of
w′

z′z′(z
′) = 0, namely to the complex affine lines ofC2, the complex defining

equation of the transformedM ′ must necessarily be affine:

(7.28) w′ = λ
′(
z′, w′)+ z′ µ′(z′, w′) =: Θ′(z′, z′, w′),

with certain coefficients that are holomorphic with respectto (z′, w′). Then
λ
′
(0) = 0 since the origin is fixed, and ifµ′(0) is nonzero, one performs

the linear transformationz′ 7→ z′, w′ 7→ w′ − µ′(0) z′, which stabilizes both
w′

z′z′(z
′) = 0 and the form of (7.28), to insure then thatµ′(0) = 0.

Next, the second reality condition (7.28) now reads:

w′ ≡ λ
′(
z′, Θ

′(
z′, z′, w′))+ z′ µ′(z′, Θ

′(
z′, z′, w′)),

and by differentiating it with respect toz′, we get, without writing the argu-
ments for brevity:

0 ≡ λ
′
z′ + Θ

′
z′ λ

′
w′ + z′ µ′

z′ + z′ Θ
′
z′ µ

′
w′

≡ λ
′
z′ + µ′ λ

′
w′ + z′ µ′

z′ + z′ µ′ µ′
w′ ,

where we replaceΘ
′
z′ in the second line by its valueµ′(z′, w′). But with

all the arguments, this identity reads in full length as the following identity
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holding inC
{
z′, z′, w′}:

− λ
′
z′
(
z′, Θ

′(
z′, z′, w′))− z′ µ′

z′
(
z′, Θ

′(
z′, z′, w′)) ≡

≡ µ′(z′, w′)λ
′
w′

(
z′, Θ

′(
z′, z′, w′))+ z′ µ′(z′, w′)µ′

w′

(
z′, Θ

′(
z′, z′, w′)).

For convenience, it is better to take(z′, z′, w′) as arguments of this identity
instead of(z′, z′, w′), so we simply replacew′ in it by:

Θ′(z′, z′, w′),
we apply the first reality condition (7.28) and we get what we wanted to
pursue the reasonings:
(7.28)
−λ′z′

(
z′, w′)− z′ µ′

z′

(
z′, w′) ≡ µ′(z′, λ′(z′, w′) + z′ µ′(z′, w′)

)
·

·
[
λ
′
w′

(
z′, w′)+ z′ µ′

w′

(
z′, w′)],

i.e. an identity holding now inC
{
z′, z′, w′}. The left-hand side being affine

with respect toz′, the same must be true of each one of the two factors of the
right-hand side. In particular, the second order derivative of the first factor
with respect toz′ must vanish identically:

0 ≡ ∂z′∂z′
{
µ′(z′, λ′ + z′µ′

)}

≡ µ′
z′z′ + 2µ′ µ′

z′w′ + µ′µ′µ′
w′w′.

BecauseM ′ is Levi nondegenerate at the origin, the lemma on p. 192 to-
gether with the affine form (7.28) of the defining equation entails that the
map:

(7.28)
(
z′, w′) 7−→

(
λ
′
(z′, w′), µ′(z′, w′)

)

has nonvanishing Jacobian determinant at(z′, w′) = (0, 0). Consequently,
in the above identity (rewritten with some of the arguments):

0 ≡ µ′
z′z′

(
z′, λ

′
+z′ µ′)+2µ′ µ′

z′w′

(
z′, λ

′
+z′ µ′)+µ′µ′ µ′

w′w′

(
z′, λ

′
+z′ µ′),

we can considerz′, λ
′
andµ′ as being just three independent variables. Set-

ting µ′ = 0, we get0 ≡ µ′
z′z′

(
z′, λ

′)
, that is to say:µz′z′(z

′, w′) ≡ 0 and
then after division ofµ′, we are left with only two terms:

0 ≡ 2µ′
z′w′

(
z′, λ

′
+ z′ µ′)+ µ′ µ′

w′w′

(
z′, λ

′
+ z′ µ′).

Then again0 ≡ 2µz′w′(z′, w′) and finally also0 ≡ µw′w′(z′, w′). This means
that the function:

µ′(z′, w′) = c′1z
′ + c′2w

′,

with some two constantsc′1, c
′
2 ∈ C, is linear.
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Now, we claim thatc′2 = 0 in fact. Indeed, settingz′ = 0 in (7.28), we
get:

−λ′z′
(
0, w′)− z′ c′1 ≡

{
c′1 z

′ + c′2
(
λ
′
(0, w′)+ z′c′2w

′)} ·
[
λ
′
w′(0, w′)+ z′c′2

]
.

The coefficientc′2c
′
2c

′
2 of (z′)2w′ in the right-hand side must vanish, soc′2 =

0. Since the rank at the origin of the map (7.28) equals2, necessarilyµ′ 6≡ 0,
so c′1 6= 0, and thenc′1 = 1 after a suitable dilation of thez′-axis. Next,
rewriting the identity (7.28):

−λ′z′
(
z′, w′)− z′ ≡ z′

[
λ
′
w′

(
z′, w′)],

we finally getλ
′
z′ ≡ 0 andλ

′
w′ ≡ −1, which means in conclusion that:

λ′(z′, w′) ≡ −w′ and µ′(z′, w′) ≡ z′,

so that the equation ofM ′ is the one:w′ = −w′ + z′z′ of the Heisenberg
sphere in the target coordinates(z′, w′).

Thanks to this proposition, in order to characterize the sphericality of a
local real analytic hypersurfaceM ⊂ C2 explicitly in terms of its complex
defining functionΘ, our strategy19 will be to:

� characterize the local equivalence tow′
z′z′(z

′) = 0 of the associated
differential equation:

(7.28) wzz(z) = Θzz

(
z, ζ

(
z, w(z), wz(z)

)
, ξ
(
z, w(z), wz(z)

))
,

explicitly in terms of the three functionsΘzz, ζ andξ;

� eliminate any occurence of the two auxiliary functionsζ andξ so as
to re-express the obtained result only in terms of the sixth-order jetJ6

z,z,wΘ.

§3. GEOMETRY OF ASSOCIATED SUBMANIFOLDS OF SOLUTIONS

The characterization we will obtain holds in fact inside a broader context
than just CR geometry, in terms of what we called in [19] thesubmanifold of
solutionsassociated to any second-order ordinary differential equation, no
matter whether it comes or not from a Levi nondegenerateM ⊂ C2. In fact,
the elementary foundations towards a general theory embracing all systems
of completely integrable partial differential equations was laid down [19],
especially by producing explicit prolongation formulas for infinitesimal Lie
symmetries, with many interesting problems that are still wide open as soon
as the number of (independent or dependent) variables increases: construc-
tion of Cartan connections; production of differential invariants; full classi-
fication according to the Lie symmetry group.

19 — indicated already as the accessible Open Question 2.35 in [19] —
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Fortunately for our present purposes here, the geometry, the classification,
and the Lie transformation group features of second order ordinary differen-
tial equations are essentially completely understood since the groundbreak-
ing works of Lie [Lie1883], followed by a prized thesis by Tresse [Tr1896]
and later by a celebrated memoir of Élie Cartan,seealso [GTW1989] and
the references therein.

Accordingly, lettingx ∈ K andy ∈ K be two real or complex variables
(with henceK = R or C throughout), consider any second-order ordinary
differential equation:

yxx(x) = F
(
x, y(x), yx(x)

)

having localK-analytic right-hand sideF , and denote it by (E ) for short. In
the space of first-order jets of arbitrary graphing functionsy = y(x) that we
equip with three independent coordinates denoted(x, y, yx), let us introduce
the vector field:

D :=
∂

∂x
+ yx

∂

∂y
+ F (x, y, yx)

∂

∂yx
,

whose integral curves inside the three-dimensional space(x, y, yx) corre-
spond, classically, to solving the equationyxx(x) = F (x, y(x), yx(x)) by
transforming it into a system of twofirst-order differential equations with
the two unknown functionsy(x) andyx(x).

Theorem. ([Lie1883, Tr1896, Ca1924, GTW1989, 17])A second-order or-
dinary differential equationyxx = F (x, y, yx) denoted(E ) with K-analytic
right-hand side possesses two fundamental differential invariants, namely:

I1(E ) := Fyxyxyxyx and:

I2(E ) := DD
(
Fyxyx

)
− Fyx D

(
Fyxyx

)
− 4 D

(
Fyyx

)
+

+ 6Fyy − 3Fy Fyxyx + 4Fyx Fyyx ,

while all other differential invariants are deduced fromI1(E ) and I2(E ) by co-
variant (in the sense of Tresse) or coframe (in the sense of Cartan) diffen-
tiations. Moreover, local equivalence toy′x′x′(x′) = 0 holds under some
invertible localK-analytic point transformation:

(x, y) 7−→ (x′, y′) =
(
x′(x, y), y′(x, y)

)

if and only if both invariants vanish:

0 = I1(E ) = I2(E ).

In order to characterize sphericality of anM ⊂ C2, it is then natural and
advisable to study what the vanishing of the above two differential invariants
gives when applied to the second order ordinary differential equation (7.28)
enjoyed by the defining functionΘ. This goal will be pursued in §4 below.



198

For the time being, with the aim of extending such a kind of characteriza-
tion to a broader scope, following §2 of [19], let us now recall how one may
in a natural way construct asumanifold of solutionsME associated to the
differential equation (E ) which, when (E ) comes from a Levi nondegenerate
local real analytic hypersurfaceM ⊂ C2, regives without any modification
its complex defining equationw = Θ

(
z, z, w).

To begin with, in the first-order jet space(x, y, yx) that we simply draw
as a common three-dimensional space:

x0

b

a, b

y

x

ya

0

D

D

D D

D

exp(xD)(0, a, b)

M(E )

yx

we duplicatethe two dependent coordinates(y, yx) by introducing a new
subspace of coordinates(a, b) ∈ K × K, and we draw a vertical plane con-
taining the two new axes that are just parallel copies (for the moment, just
look at the left-hand side). Then the leaves of the local foliation associated
to the integral curves of the vector fieldD are uniquely determined by their
intersection with this plane, because thanks to the presence of ∂

∂x
in D, all

these curves are approximately directed by thex-axis in a neighborhood of
the origin: no tangent vector can be vertical. But we claim that all such in-
tersection points of coordinates(0, b, a) ∈ K×K×K correspond bijectively
to the two initial conditionsy(0) ≡ b andyx(0) = a for solving uniquely the
differential equation. In fact, the flow ofD at timex starting from all such
points(0, b, a) of the duplicated vertical plane:

exp(xD)(0, b, a) =:
(
x, Q(x, a, b), S(x, a, b)

)

(seeagain the diagram) expresses itself in terms of two certain local K-
analytic functionsQ andS that satisfy, by the very definition of the flow of
our vector field∂x + yx ∂y +F ∂yx, the following two differential equations:

d

dx
Q(x, a, b) = S(x, a, b) and:

d

dx
S(x, a, b) = F

(
x,Q(x, a, b), S(x, a, b)

)

together with the (obious) initial condition forx = 0:

(0, b, a) = exp(0 D)(0, b, a) =
(
0, Q(0, a, b), S(0, a, b)

)
.
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We noticepassimthatS ≡ Qx (no two symbols were in fact needed), and
most importantly, we emphasize that in this way, we have viewed in a some-
what geometric-minded way of thinking that thegeneral solution:

y = y(x) = Q
(
x, yx(0), y(0)

)
= Q(x, a, b)

to the original differential equation arises naturally as the first (amongst two)
graphing function for the integral curves ofD in the first order jet space,
these curves being parametrized by(a, b).

Definition. Thesumanifold of solutions20 M(E ) associated with the second-
order ordinary differential equation (E ): yxx(x) = F

(
x, y(x), yx(x)

)
is

the localK-analytic submanifold of the four-dimensional Euclidean space
Kx ×Ky ×Ka ×Kb represented as the zero-set:

0 = −y +Q(x, a, b),

whereQ(x, a, b) is the general localK-analytic solution of (E ), satisfying
therefore:

Qxx

(
x, a, b) ≡ F

(
x, Q(x, a, b), Qx(x, a, b)

)
,

andQ(0, a, b) = b,Qx(0, a, b) = a.

Conversely, let us assume we are given a submanifoldM of Kx × Ky ×
Ka × Kb of the specific equationy = Q(x, a, b), for a certain localK-
analytic functionQ of the three variables(x, a, b). Call (x, y) thevariables,
(a, b) the parameters, and callM solvable with respect to the parameters(at
the origin) if the map:

(a, b) 7−→
(
Q(0, a, b), Qx(0, a, b)

)

has rank two at the central point(a, b) = (0, 0). Of course, the submanifold
of solutions associated to any second-order ordinary differential equation
is solvable with respect to parameters, for in this caseQ(0, a, b) ≡ b and
Qx(0, a, b) ≡ a.

Similarly as what we did for deriving2) on p. 193, if an arbitrarily given
submanifoldM of Kx × Ky × Ka × Kb is assumed to be solvable with
respect to parameters, then viewingy in y = Q(x, a, b) as a parametrized
function ofx, the implicit function theorem enables one to solve(a, b) in the
two equations: [

y(x) = Q(x, a, b)

yx(x) = Qx(x, a, b),

20 At this point, the reader is referred to [19] for more about how one can develope the
whole theory of Lie symmetries of partial differential equations intrinsically within sub-
manifolds of solutions only; the theory of Cartan connections associated to certain exterior
differential systems could (and should also) be transferred to submanifolds of solutions.
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to yield both a representation fora and and a representation forb of the form:

(7.28)

[
a = A

(
x, y(x), yx(x)

)

b = B
(
x, y(x), yx(x)

)
,

for certain two localK-analytic functionsA andB of three independent
variables(x, y, yx), that one may insert afterwards in the second order de-
rivative:

yxx(x) = Qxx

(
x, a, b

)

= Qxx

(
x, A(x, y(x), yx(x)), B(x, y(x), yx(x))

)

=: F
(
x, y(x), yx(x)

)
,

which yields the differential equation (EM ) associated to the submanifold
M solvable with respect to the parameters. In summary:
Proposition. ([19]) There is a one-to-one correspondence:

(EM ) = (E )←→M = M(E )

between second-order ordinary differential equations(E ) of the general
form:

yxx(x) = F
(
x, y(x), yx(x)

)

and submanifolds(of solutions) M of equation:

y = Q(x, a, b)

that are solvable with respect to the parameters, and this correspondence
satisfies: (

EM(E )

)
= (E ) and M(EM ) = M .

We now claim that solvability with respect to the parametersis an in-
variant condition, independently of the choice of coordinates. Indeed, let
y = Q(x, a, b) be any submanifold of solutions, call itM , and let:

(
x, y, a, b

)
7−→

(
x′(x, y), y′(x, y), a, b

)

be an arbitrary local K-analytic diffeomorphism fixing the origin
which leaves untouched the parameters. The vector of coordinates(
1, Qx(x, a, b), 0, 0

)
based at the point

(
x,Q(x, a, b), a, b

)
of M is sent,

through such a diffeomorphism, to a vector whosex′-coordinate equals:
d
dx

[
x′(x,Q)

]
= x′x +Qx x

′
y. Therefore the implicit function theorem insures

that, provided the expression:

x′x(x, y) +Qx(x, a, b) x
′
y(x, y) 6= 0

does not vanish, the imageM ′ of M through such a diffeomorphism can
still be represented, locally in a neighborhood of the origin, as a graph of a
similar form:

y′ = Q′(x′, a, b
)
,
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for a certain localK-analytic new functionQ′ = Q′(x′, a, b). SinceM : y =
Q(x, a, b) is sent toM ′ : y′ = Q′(x′, a, b), it follows thatx′(x, y), y′(x, y),
Q(x, a, b) andQ′(x′, a, b) are all linked by the following fundamental iden-
tity:

(7.28) y′
(
x, Q(x, a, b)

)
≡ Q′(x′(x, Q(x, a, b)), a, b

)
,

which holds inC
{
x, a, b

}
.

Claim. If M is solvable with respect to the parameters (at the origin), then
M ′ is also solvable with respect to the parameters (at the origin too), and
conversely.

Proof. The assumption thatM is solvable with respect to the parameters is
equivalent to the fact that its first orderx-jet map:

(
x, a, b

)
7−→

(
x, Q(x, a, b), Qx(x, a, b)

))

is (locally) of rank three. One should therefore look at the same first order jet
map attached toM ′, represented in the right part of the following diagram:

(x, a, b) //

��

(
x′(x, Q(x, a, b)), a, b

)

��

(x′, a, b)

��(
x, Q(x, a, b), Qx(x, a, b)

) X ?
//
(
x′, Q′(x′, a, b), Q′

x′(x′, a, b)
) (

x′, Q′(x′, a, b), Q′
x′(x′, a, b)

)
,

and ask how these twox- and x′-jet maps can be related to each other,
namely search for a map:

X ?:
(
x, Q, Qx

)
7−→

(
x, Q′, Q′

x

)

which would close up the diagram and make it commutative.
The answer for the second component of the sought map is simply:

X2 :
(
x, Q, Qx

)
7−→ y′

(
x, Q

)
,

since (9) indeed shows that composing the right vertical arrow with the upper
horizontal one gives the same result, concerning a second component, as
composing the bottom horizontal arrow with the left vertical one.

The answer for the third component of the sought map then proceeds by
differentiating with respect tox the fundamental identity (9), which yields,
without writing the arguments:

y′x +Qx y
′
y ≡

[
x′x +Qx x

′
y

]
Q′

x′,

and sincex′x +Qx x
′
y 6= 0 by assumption, it suffices to set:

X3 :
(
x, Q, Qx

)
7−→

y′x(x,Q) +Qx y
′
y(x,Q)

x′x(x,Q) +Qx x′y(x,Q)
,
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in order to complete the commutativity of the diagram, namely to get:

Q′
x′

(
f(x,Q(x, a, b)), a, b

)
≡
y′x(x,Q(x, a, b)) +Qx(x, a, b) y

′
y(x,Q(x, a, b))

x′x(x,Q(x, a, b)) +Qx(x, a, b) x′y(x,Q(x, a, b))
,

as was required. But now considering instead the inverse diffeomorphisme
changes nothing to the reasonings, hence we have at the same time a right-
inverse:

(x, a, b) //

x-jet

��

(
x′(x, Q(x, a, b)), a, b

)
//

x′-jet

��

(x, a, b)

x-jet

��(
x, Q(x, a, b), Qx(x, a, b)

) X
//
(
x′, Q′(x′, a, b), Q′

x′(x′, a, b)
) X−1

//
(
x, Q(x, a, b), Q(x, a, b)

)

of our commutative diagram, so that thex-jet map and thex′-jet map have
coinciding ranks at pairs of points which correspond one to another.

We are now in a position to generalize the characterization of sphericality
derived earlier on p. 223.

Proposition. A second-order ordinary differential equationyxx(x) =
F (x, y(x), yx(x)) with K-analytic right-hand side is equivalent, under some
invertible local K-analytic point transformation(x, y) 7→ (x′, y′), to the
free particle Newtonian equationy′x′x′(x′) = 0 if and only if its associated
submanifold of solutionsy = Q(x, a, b) is equivalent, under some localK-
analytic map in which variables are separated from parameters:

(x, y, a, b) 7−→
(
x′(x, y), y′(x, y), a′(a, b), b′(a, b)

)

to the affine submanifold of solutions of equationy′ = b′ + x′a′.

Before proceeding to the proof, let us observe that when one looks at a
real analytic hypersurfaceM ⊂ C2, the corresponding transformation in
the parameter space is constrained to be theconjugate transformationof the
local biholomorphism:

(
z, w, z, w

)
7−→

(
z′(z, w), w′(z, w), z′(z, w), w′(z, w)

)
,

while one has more freedom for general differential equations, in the sense
that transformations of variables and transformations of parameters are en-
tirely decoupled.

Proof. One direction is clear: ify = Q(x, a, b) is equivalent to:

(7.28) y′ = b′ + x′a′ = b′(a, b) + x′a′(a, b),

then its associated differential equationyxx(x) = F
(
x, y(x), yx(x)

)
is

equivalent, through the same diffeomorphism(x, y) 7→ (x′, y′) of the vari-
ables, to the differential equation associated with (7.28), which trivially is:
y′x′x′(x′) = 0.
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Conversely, ifyxx(x) = F
(
x, y(x), yx(x)

)
is equivalent, through a dif-

feomorphism(x, y) 7→ (x′, y′), to y′x′x′(x′) = 0, then its submanifold
of solutionsy = Q(x, a, b) is transformed toy′ = Q′(x′, a, b) and since
y′x′x′(x′) = 0, the functionQ′ is necessarily of the form:

y′ = b′(a, b) + x′ a′(a, b).

Because the condition of solvability with respect to the parameters is in-
variant, the rank of(a, b) 7→

(
a′(a, b), b′(a, b)

)
is again equal to2, which

concludes the proof.

Coming now back to the wanted characterization of sphericality, our more
general goal now amounts to characterize,directly in terms of its fundamen-
tal solution functionQ(x, a, b), the local equivalence toy′x′x′(x′) = 0 of a
second-order ordinary differential equationyxx(x) = F

(
x, y(x), yx(x)

)
.

Afterwards at the end, it will suffice to replaceQ(x, a, b) simply by
Θ(z, z, w) in the obtained equations.

But before going further, let us explain how a certain generalized projec-
tive duality will simplify our task, as already said in the Introduction. Thus,
let (E ): yxx(x) = F

(
x, y(x), yx(x)

)
be a differential equation as above

having general solutiony = Q(x, a, b) = −b+xa+O(x2), with initial con-
ditionsb = −y(0) anda = yx(0). The implicit function theorem enables us
to solveb in the equationy = Q(x, a, b) of the associated submanifold of
solutionsM(E ) in terms of the other quantities, which yields an equation of
the shape:

b = Q∗(a, x, y) = −y + ax+ O(x2),

for some new localK-analytic functionQ∗ = Q∗(a, x, y). Then similarly as
previously, we may eliminatex andy from the two equations:

b(a) = Q∗(a, x, y) = −y + ax+ O(x2)

ba(a) = Q∗
a(a, x, y) = x+ O(x2),

that is to say:x = X
(
a, b(a), ba(a)

)
andy = Y

(
a, b(a), ba(a)

)
, and we then

insert these two solutions in:

baa(a) = Q∗
aa(a, x, y)

= Q∗
aa

(
a, X(a, b(a), ba(a)), Y (a, b(a), ba(a))

)

=: F ∗(a, b(a), ba(a)
)
.

We shall call the so obtained second-order ordinary differential equation the
dualof yxx(x) = F

(
x, y(x), yx(x)

)
.

In the case of a hypersurfaceM ⊂ C2, solvingw in the equationw =
Θ(z, z, w) gives nothing else but theconjugateequationw = Θ(z, z, w),
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just by virtue of the reality identities (7.28). It also follows rather trivially
that the dual differential equation:

wzz(z) = Θzz

(
z, ζ(z, w(z), wz(z)), ξ(z, w(z), wz(z))

)

= Φ
(
z, w(z), wz(z)

)

is also just theconjugatedifferential equation.
To the differential equationyxx = F and to its dualbaa = F ∗ are associ-

ated two submanifolds of solutions:

M = M(E ) :=
{(
x, y, a, b

)
∈ K×K×K×K : y = Q(x, a, b)

}
,

together with:

M ∗ = M(E ∗) :=
{(
a, b, x, y

)
∈ K×K×K×K : b = Q∗(a, x, y)

}
,

and as one obviously guesses, the duality, when viewed within submanifolds
of solutions, just amounts to permute variables and parameters:

M ∋ (x, y, a, b)←→ (a, b, x, y) ∈M ∗.

In the CR case, if we denote bỹz andw̃ two independent complex vari-
ables which correspond to the complexifications ofz andw (respectively of
course), the duality takes place between the so-calledextrinsic complexifi-
cation([13, 14, Me2005a, Me2005b, 18, 19]):

M = M c :=
{(
z, w, z̃, w̃

)
∈ C× C× C×C : w = Θ

(
z, z̃, w̃

)}

of M in one hand, and in the other hand, its own transformation21:

M ∗ = ∗c(M c) :=
{(
z̃, w̃, z, w

)
∈ C× C× C×C : w̃ = Θ

(
z̃, z, w

)}

under the involution:

∗c
(
z, w, z̃, w̃

)
:=
(
z̃, w̃, z, w

)

which clearly is the complexification of the natural antiholomorphic involu-
tion:

∗
(
z, w, z, w

)
:=
(
z, w, z, w

)

that fixesM pointwise, as it fixes any otherreal analytic subset ofC2. Here,
one hasM ∗ = ∗(M ) — which is 6= M in general — and of course also(
M ∗)∗ = M .
So in terms of the coordinates(x, a, b) on M and of the coordinates

(a, x, y) onM ∗, the duality is the map:

(x, a, b) 7−→
(
a, x, Q(x, a, b)

)

with inverse:
(a, x, y) 7−→

(
x, a,Q∗(a, x, y)

)
.

21 Be careful not to write
{(

z, w, z̃, w̃
)
: w̃ = Θ

(
z̃, z, w

)}
, because this would regive

the same subsetM of C2 × C2, due to the reality identities (7.28).
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But we may also express the duality from the first jet(x, y, yx)-space to the
first jet (a, b, ba)-space by simply composing the following three maps, the
central one being the dualityM →M ∗:



(a, x, y)
↓(

a, Q∗(a, x, y), Q∗
a(a, x, y)

)


 ◦

(
(x, a, b)→

(
a, x, Q(x, a, b)

))
◦




(
x, A(x, y, yx), B(x, y, yx)

)

↑
(x, y, yx)


 ,

which in sum gives us the map:

(x, y, yx) 7−→
(
A(x, y, yx), Q∗(A(x, y, yx), x, Q

(
x,A(x, y, yx), B(x, y, yx)

))
,

Q∗
a

(
A(x, y, yx), x, Q

(
x,A(x, y, yx), B(x, y, yx)

))
)
.

With the approximations, one checks that:

(x, y, yx) 7−→
(
yx + · · · , −y + xyx + · · · , x+ · · ·

)
,

where the remainder terms “+ · · · ” are all O(x2). For the differential equa-
tion yxx(x) = 0 of affine lines, these remainders disappear completely and
we recover the classical projective duality written in inhomogeneous coor-
dinates ([5], pp. 156–157). Furthermore, one shows (see e.g.[5]) that the
above duality map within first order jet spaces is acontact transformation,
namely through it, the pullback of the standard contact formdb−bada in the
target space is a nonzero multiple of the standard contact form dy− yxdx in
the source space.

But what matters more for us is the following. The two fundamental
differential invariants ofbaa(a) = F ∗(a, b(a), ba(a)

)
are functions exactly

similar to the ones written on p. 197, namely:

I1(E ∗) := F ∗
babababa

I2(E ∗) := D∗D∗(F ∗
baba

)
− F ∗

ba
D∗(F ∗

baba

)
− 4 D∗(F ∗

bba

)
+

+ 6F ∗
bb − 3F ∗

b F
∗
baba

+ 4F ∗
ba
F ∗

bba
,

whereD∗ := ∂a + ba ∂b + F ∗(a, b, ba) ∂ba . Then according to Koppisch
([10]), through the duality map,I1(E ) is transformed to a nonzero multiple of
I2(E ∗), and simultaneously also,I2(E ) is transformed to a nonzero multiple22 of
I1(E ∗), so that:

0 = I1(E ) ⇐⇒ I2(E ∗) = 0

0 = I2(E ) ⇐⇒ I1(E ∗) = 0.

Consequently, the differential equation (E ): yxx(x) = F
(
x, y(x), yx(x)

)
is

equivalent toy′x′x′(x′) = 0 if and only if:

Fyxyxyxyx = 0 and F ∗
babababa

= 0 .

22 To be precise, both factors of multiplicity ([5], p. 165) arenonvanishing in a neigh-
borood of the origin, but for our purposes, it suffices just that they are not identically zero
power series.
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This observation has essentially no practical interest, because the compu-
tation ofF ∗ in terms ofF relies upon the composition of three maps . . .
except notably in the CR case, since the duality in this case is complex con-
jugation:Φ∗ = Φ. In summary, we have established the following.

Proposition. An arbitrary, not necessarily rigid, real analytic hypersurface
M ⊂ C2 which is Levi nondegenerate at one of its pointsp and has a com-
plex definining equation of the form:

w = Θ
(
z, z, w

)

in some system of local holomorphic coordinates(z, w) ∈ C2 centered atp,
is spherical atp if and only if the right-hand sideΦ of its uniquely associated
second-order ordinary complex differential equation:

wzz(z) = Φ
(
z, w(z), wz(w)

)

satisfies thesinglefourth-order partial differential equation:

0 ≡ Φwzwzwzwz

(
z, w, wz

)
.

It now only remains to re-express this fourth-order partialdifferential
equation in terms of the complex graphing functionΘ(z, z, w) for M . We
will achieve this more generally forFyxyxyxyx.

§4. EFFECTIVE DIFFERENTIAL CHARACTERIZATION

OF SPHERICALITY INC2

Reminding the reasonings and notations introduced in a neighborhood of
equation (7.28), the transformation:

(
x, y, yx

)
7−→

(
x, a, b

)

and its inverse are given by the two triples of functions:


x = x

a = A(x, y, yx)

b = B(x, y, yx)

and



x = x

y = Q(x, a, b)

yx = Qx(x, a, b).

Equivalently, one has the two pairs of identically satisfiedequations:

a ≡ A
(
x, Q(x, a, b), Qx(x, a, b)

)

b ≡ B
(
x, Q(x, a, b), Qx(x, a, b)

) and
y ≡ Q

(
x, A(x, y, yx), B(x, y, yx)

)

yx ≡ Qx

(
x, A(x, y, yx), B(x, y, yx)

)
.

Differentiating the second column of equations with respect to x, toy and to
yx yields:

0 = Qx +QaAx +QbBx 0 = Qxx +Qxa Ax +QxbBx

1 = QaAy +QbBy 0 = Qxa Ay +QxbBy

0 = QaAyx +QbByx 1 = QxaAyx+QxbByx .
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Then thanks to a straightforward application of the rule of Cramer for2× 2
linear systems, we derive six useful formulas.

Lemma. ([19], p. 9) All the six first order derivativesAx, Ay, Ayx, Bx,
By, Byx of the two functionsA andB with respect to their three arguments
(x, y, yx) may be expressed as follows in terms of the second jetJ2(Q) of
the defining functionQ:

Ax =
QbQxx −QxQxb

Qa Qxb −QbQxa
, Bx =

QxQxa −Qa Qxx

QaQxb −Qb Qxa
,

Ay =
Qxb

Qa Qxb −QbQxa
, By =

−Qxa

Qa Qxb −QbQxa
,

Ayx =
−Qb

Qa Qxb −QbQxa
, Byx =

Qa

QaQxb −QbQxa
.

For future abbreviation, we shall denote the single appearing denomina-
tor — which evidently is the common determinant of all the three2 × 2
linear systems involved above — simply by a square symbol:

∆ := QaQxb −QbQxa.

The two-ways transfer between functionsG defined in the(x, y, yx)-space
and functionsT defined in the(x, a, b)-space, namely the one-to-one corre-
spondence:

G(x, y, yx)←→ T (x, a, b)

may be read very concretely as the following two equivalent identities:

G(x, y, yx) ≡ T
(
x, A(x, y, yx), B(x, y, yx)

)

G
(
x, Q(x, a, b), Qx(x, a, b)

)
≡ T (x, a, b),

holding in K{x, y, yx} and in K{x, a, b} respectively. By differentiating
the first identity, the chain rule shows how the three first-order derivation
operators (basic vector fields)∂x, ∂y and∂yx living in the (x, y, yx)-space
are transformed into the(x, a, b)-space:

∂

∂x
=

∂

∂x
+

(
Qb Qxx −Qx Qxb

∆

)
∂

∂a
+

(
Qx Qxa −Qa Qxx

∆

)
∂

∂b

∂

∂y
=

(
Qxb

∆

)
∂

∂a
+

(−Qxa

∆

)
∂

∂b

∂

∂yx

=

(−Qb

∆

)
∂

∂a
+

(
Qa

∆

)
∂

∂b
.

Lemma. The total differentiation operatorD = ∂x+yx ∂y+F ∂yx associated
to yxx = F (x, y, yx) simply transfers to the basic derivation operator along
thex-direction:

D←→ ∂x.
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Proof. Reading the three formulas just preceding, by adding the first one to
the second one multiplied byyx = Qx together with the third one multiplied
by F = Qxx, one visibly sees that the coefficients of both∂

∂a
and ∂

∂b
do

vanish in the obtained sum, as announced.

Keeping in mind — so as to avoid any confusion — that the same letterx
is used to denote simultaneously the independent variable of the differential
equationyxx = F (x, y, yx) and the non-parameter variable of the associated
submanifold of solutionsy = Q(x, a, b), we may now write this two-ways
transferD ←→ ∂x exactly as we did in the above three equations, namely
simply as an equality between two derivations living in the(x, y, yx)-space
and in the(x, a, b)-space:

D = ∂x.

Lemma. WithG = G(x, y, yx) being any localK-analytic function in the
(x, y, yx)-space, the three second-order derivativesGyxyx,Gyyx andGyy ex-
press as follows in terms of the second-order jetJ2

x,a,b(T ) of the defining
functionT :

Gyxyx
=

Qb Qb

∆2
Taa −

2 Qa Qb

∆2
Tab +

Qa Qa

∆2
Tbb+

+
Ta

∆3

(
Qa Qa

∣∣∣∣
Qb Qbb

Qxb Qxbb

∣∣∣∣− 2 Qa Qb

∣∣∣∣
Qb Qab

Qxb Qxab

∣∣∣∣+ Qb Qb

∣∣∣∣
Qb Qaa

Qxb Qxaa

∣∣∣∣
)

+

+
Tb

∆3

(
− Qa Qa

∣∣∣∣
Qa Qbb

Qxa Qxbb

∣∣∣∣+ 2 Qa Qb

∣∣∣∣
Qa Qab

Qxa Qxab

∣∣∣∣−Qb Qb

∣∣∣∣
Qa Qaa

Qxa Qxaa

∣∣∣∣
)

Gyyx
= − Qb Qxb

∆2
Taa +

Qa Qxb + Qb Qxa

∆2
Tab −

Qa Qxa

∆2
Tbb+

+
Ta

∆3

(
− Qa Qxa

∣∣∣∣
Qb Qbb

Qxb Qxbb

∣∣∣∣+
(
Qa Qxb + Qb Qxa

) ∣∣∣∣
Qb Qab

Qxb Qxab

∣∣∣∣−Qb Qxb

∣∣∣∣
Qb Qaa

Qxb Qxaa

∣∣∣∣
)

+

+
Tb

∆3

(
Qa Qxa

∣∣∣∣
Qa Qbb

Qxa Qxbb

∣∣∣∣−
(
Qa Qxb + Qb Qxa

) ∣∣∣∣
Qa Qab

Qxa Qxab

∣∣∣∣+ Qb Qxb

∣∣∣∣
Qa Qaa

Qxa Qxaa

∣∣∣∣
)

Gyy =
Qxb Qxb

∆2
Taa −

2 Qxa Qxb

∆2
Tab +

Qxa Qxa

∆2
Tbb+

+
Ta

∆3

(
Qxa Qxa

∣∣∣∣
Qb Qbb

Qxb Qxbb

∣∣∣∣− 2 Qxa Qxb

∣∣∣∣
Qb Qab

Qxb Qxab

∣∣∣∣+ Qxb Qxb

∣∣∣∣
Qb Qaa

Qxb Qxaa

∣∣∣∣
)

+

+
Tb

∆3

(
− Qxa Qxa

∣∣∣∣
Qa Qbb

Qxa Qxbb

∣∣∣∣+ 2 Qxa Qxb

∣∣∣∣
Qa Qab

Qxa Qxab

∣∣∣∣−Qxb Qxb

∣∣∣∣
Qa Qaa

Qxa Qxaa

∣∣∣∣
)

.

Proof. We apply the operator∂
∂yx

, wiewed in the(x, a, b)-space, to the first
order derivativeGyx, namely we consider:

∂yx

(
Gyx

)
=

∂

∂yx

[
− Qb

∆
Ta +

Qa

∆
Tb

]
,
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and we then expand carefully the result by collecting somewhat in advance
the obtained terms with respect to the derivatives ofT :

Gyxyx
=

(
− Qb

∆

∂

∂a
+

Qa

∆

∂

∂b

)[
− Qb

∆
Ta +

Qa

∆
Tb

]

=

(
Qb

∆

Qab

∆
− Qb

∆

Qb ∆a

∆2

)
Ta +

Qb

∆

Qb

∆
Taa+

+

(
− Qb

∆

Qaa

∆
+

Qb

∆

Qa ∆a

∆2

)
Tb −

Qb

∆

Qa

∆
Tab+

+

(
− Qa

∆

Qbb

∆
+

Qa

∆

Qb ∆b

∆2

)
Ta −

Qa

∆

Qb

∆
Tab+

+

(
Qa

∆

Qab

∆
− Qa

∆

Qa ∆b

∆2

)
Tb +

Qa

∆

Qa

∆
Tbb.

The terms involvingTaa, Tab, Tbb are exactly the ones exhibited by the lemma
for the expression ofGyxyx. In the four large parentheses which are coeffi-
cients ofTa, Tb, Ta, Tb, we replace the occurences of∆a, ∆a, ∆b, ∆b simply
by:

∆a = QxbQaa +Qa Qxab −QxaQab −QbQxaa

∆b = QxbQab +QaQxbb −QxaQbb −QbQxab,

and the total sum of terms coefficiented byTa in our expression now be-
comes:
Ta

∆3

(
Qb Qab

[
Qa Qxb −Qb Qxa

]
−Qb Qb

[
Qxb Qaa + Qa Qxab −Qxa Qab −Qb Qxaa

]
−

− Qa Qbb

[
Qa Qxb −Qb Qxa

]
+ Qa Qb

[
Qxb Qab + Qa Qxbb −Qxa Qbb −Qb Qxab

])
=

=
Ta

∆3

(
Qa Qb Qxb Qab −Qb Qb Qxa Qab81

−Qb Qb Qxb Qaa −Qa Qb Qb Qxab+

+ Qb Qb Qxa Qab81
+ Qb Qb Qb Qxaa−

− Qa Qa Qxb Qbb + Qa Qb Qxa Qbb82
+ Qa Qb Qxb Qab + Qa Qa Qb Qxbb−

− Qa Qb Qxa Qbb82
−Qa Qb Qb Qxab

)
=

=
Ta

∆3

(
Qa Qa

[
Qb Qxbb −Qxb Qbb

]
− 2 Qa Qb

[
Qb Qxab −Qxb Qab

]
+

+ Qb Qb

[
Qb Qxaa −Qxb Qaa

])
,

so that we now have effectively reconstituted the three2 × 2 determinants
appearing in the second line of the expression claimed by thelemma for
the transfer ofGyxyx to the(x, a, b)-space. The treatment of the coefficient
of Tb

∆3 makes only a few differences, hence will be skipped here (butnot
in the manuscript). Finally, the two remaining expressionsfor Gyyx and
forGyy are obtained by performing entirely analogous algebrico-differential
computations.

End of the proof of the Main Theorem.Applying the above formula for
Gyxyx with x := z, with a := z, with b := w, with ∆ := ΘzΘzw − ΘwΘzz,
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with G := Φ and withT := Θzz, we exactly get the expressionAJ4(Θ) of
the Introduction, and then its further derivative∂yx∂yx

[
Gyxyx

]
= Gyxyxyxyx

is exactly:

0 ≡
( −Θw

ΘzΘzw −ΘwΘzz

∂

∂z
+

Θz

ΘzΘzw −ΘwΘzz

∂

∂w

)2[
AJ

4(Θ)
]

=:
AJ

6(Θ)

[ΘzΘzw −ΘwΘzz]7
.

As we have said, the vanishing of the second invariant ofwzz(z) =
Φ
(
z, w(z), wz(z)

)
amounts to the complex conjugation of the above equa-

tion, which is then obviously redundant. Thus, the proof of the Main The-
orem is now complete, but we will nevertheless discuss in a specific final
section whatAJ6(Θ) would look like in purely expanded form.

§5. SOME COMPLETE EXPANSIONS:
EXAMPLES OF EXPRESSION SWELLINGS

Coming back to the non-CR context with the submanifold of solutions
M(E ) =

{
y = Q(x, a, b)

}
, let us therefore figure out how to expand the

expression differentiated twice:

Gyxyxyxyx =

„

−
Qb

∆

∂

∂a
+

Qa

∆

∂

∂b

«2

Qb Qb

∆2
Taa −

2Qa Qb

∆2
Tab +

Qa Qa

∆2
Tbb+

+
Ta

∆3

„

Qa Qa

˛

˛

˛

˛

Qb Qbb

Qxb Qxbb

˛

˛

˛

˛

− 2Qa Qb

˛

˛

˛

˛

Qb Qab

Qxb Qxab

˛

˛

˛

˛

+ Qb Qb

˛

˛

˛

˛

Qb Qaa

Qxb Qxaa

˛

˛

˛

˛

«

+

+
Tb

∆3

„

− Qa Qa

˛

˛

˛

˛

Qa Qbb

Qxa Qxbb

˛

˛

˛

˛

+ 2 Qa Qb

˛

˛

˛

˛

Qa Qab

Qxa Qxab

˛

˛

˛

˛

− Qb Qb

˛

˛

˛

˛

Qa Qaa

Qxa Qxaa

˛

˛

˛

˛

«ff

,

which would make the Main Theorem a bit more precise and explicit.
First of all, we notice that, in the formulas forGyxyx, for Gyyx, for Gyy,

all the appearing2× 2 determinants happen to be modifications of the basic
Jacobian-like∆-determinant:

∆
(
a|b
)

:= ∆ =

∣∣∣∣
Qa Qb

Qxa Qxb

∣∣∣∣ ,

and we will denote them accordingly by employing the following (formally
and intuitively clear) notations:

∆
(
b|bb
)

:=

∣∣∣∣
Qb Qbb

Qxb Qxbb

∣∣∣∣ ∆
(
b|ab

)
:=

∣∣∣∣
Qb Qab

Qxb Qxab

∣∣∣∣ ∆
(
b|aa

)
:=

∣∣∣∣
Qb Qaa

Qxb Qxaa

∣∣∣∣

∆
(
a|bb

)
:=

∣∣∣∣
Qa Qbb

Qxa Qxbb

∣∣∣∣ ∆
(
a|ab

)
:=

∣∣∣∣
Qa Qab

Qxa Qxab

∣∣∣∣ ∆
(
a|aa

)
:=

∣∣∣∣
Qa Qaa

Qxa Qxaa

∣∣∣∣ ,

the bottom line always coinciding with the differentiationwith respect to
x of the top line. These abbreviations will be very appropriate for the next
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explicit computation, so let us rewrite the formula forGyxyx using this newly
introduced formalism:

Gyxyx =
1

∆(a|b)3
{

Taa

[
Qb Qb ∆(a|b)

]
+ Tab

[
− 2Qa Qb ∆(a|b)

]
+ Tbb

[
Qa Qa ∆(a|b)

]
+

+ Ta

[
Qa Qa ∆(b|bb)− 2Qa Qb ∆(b|ab) + Qb Qb ∆(b|aa)

]
+

+ Tb

[
− Qa Qa ∆(a|bb) + 2Qa Qb ∆(a|ab)−Qb Qb ∆(a|aa)

]}
.

Then the twelve partial derivatives with respect toa and with respect tob of
all the six determinants∆

(
∗|∗
)

appearing in the the second line are easy to
write down:

∂
∂b

[
∆
(
b|bb
)
] = ∆

(
bb|bb

)
0
+ ∆

(
b|bbb

)
∂
∂a

[
∆
(
b|bb
)
] = ∆

(
ab|bb

)
+ ∆

(
b|abb

)

∂
∂b

[
∆
(
b|ab

)
] = ∆

(
bb|ab

)
+ ∆

(
b|abb

)
∂
∂a

[
∆
(
b|ab

)
] = ∆

(
ab|ab

)
0
+ ∆

(
b|aab

)

∂
∂b

[
∆
(
b|aa

)
] = ∆

(
bb|aa

)
+ ∆

(
b|aab

)
∂
∂a

[
∆
(
b|aa

)
] = ∆

(
ab|aa

)
+ ∆

(
b|aaa

)

∂
∂b

[
∆
(
a|bb

)
] = ∆

(
ab|bb

)
+ ∆

(
a|bbb

)
∂
∂a

[
∆
(
a|bb

)
] = ∆

(
aa|bb

)
+ ∆

(
a|abb

)

∂
∂b

[
∆
(
a|ab

)
] = ∆

(
ab|ab

)
0
+ ∆

(
a|abb

)
∂
∂a

[
∆
(
a|ab

)
] = ∆

(
aa|ab

)
+ ∆

(
a|aab

)

∂
∂b

[
∆
(
a|aa

)
] = ∆

(
ab|aa

)
+ ∆

(
a|aab

)
∂
∂a

[
∆
(
a|aa

)
] = ∆

(
aa|aa

)
0
+ ∆

(
a|aaa

)
,

and the underlined terms vanish for the trivial reason that any 2×2 determi-
nant, two columns of which coincide, vanishes. Consequently, we may now
endeavour the computation of the third order derivative:

Gyxyxyx =

(
− Qb

∆

∂

∂a
+
Qa

∆

∂

∂b

)[
Gyxyx

]
.

When applying the two derivations in parentheses to:

Gyxyx = 1
∆3

{
expression

}

we start out by differentiating1
∆3 multiplied by expression, and then we

differentiateexpression. Before any contraction, the full expansion of:

∆5Gyxyxyx =

(we indeed clear out the denominator∆5) is then:

= Taa

ˆ
3QbQbQb∆(a|b)∆(aa|b) + 3QbQbQb∆(a|b)∆(a|ab) − 3QaQbQb∆(a|b)∆(ab|b) − 3QaQbQb∆(a|b)∆(a|bb)

˜
+

+ Tab

ˆ
− 6QaQbQb∆(a|b)∆(aa|b) − 6QaQbQb∆(a|b)∆(a|ab) + 6QaQaQb∆(a|b)∆(ab|a) + 6QaQaQb∆(a|b)∆(a|bb)

˜
+

+ Tbb

ˆ
3QaQaQb∆(a|b)∆(aa|b) + 3QaQaQb∆(a|b)∆(a|ab) − 3QaQaQa∆(a|b)∆(ab|b) − 3QaQaQa∆(a|b)∆(a|bb)

˜
+

+Ta

h
3QaQaQb∆(b|bb)∆(aa|b) + 3QaQaQb∆(b|bb)∆(a|ab) − 3QaQaQa∆(b|bb)∆(ab|b) − 3QaQaQa∆(b|bb)∆(a|bb)−

− 6QaQbQb∆(b|ab)∆(aa|b) − 6QaQbQb∆(b|ab)∆(a|ab) + 6QaQaQb∆(b|ab)∆(ab|b) + 6QaQaQb∆(b|ab)∆(a|bb)+

+ 3QbQbQb∆(b|aa)∆(aa|b) + 3QbQbQb∆(b|aa)∆(a|ab) − 3QaQbQb∆(b|aa)∆(ab|b) − 3QaQbQb∆(b|aa)∆(a|bb)
i
+
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+Tb

h
3QaQaQb∆(a|bb)∆(aa|b) + 3QaQaQb∆(a|bb)∆(a|ab) − 3QaQaQa∆(a|bb)∆(ab|b) − 3QaQaQa∆(a|bb)∆(a|bb)−

− 6QaQbQb∆(a|ab)∆(aa|b) − 6QaQbQb∆(a|ab)∆(a|ab) + 6QaQaQb∆(a|ab)∆(ab|b) + 6QaQaQb∆(a|ab)∆(a|bb)+

+ 3QbQbQb∆(a|aa)∆(aa|b) + 3QbQbQb∆(a|aa)∆(a|ab) − 3QaQbQb∆(a|aa)∆(ab|b) − 3QaQbQb∆(a|aa)∆(a|bb)
i
+

+∆(a|b)Taaa

ˆ
− QbQbQb∆(a|b)

˜
+ Taab

ˆ
3QaQbQb∆(a|b)

˜
+ Tabb

ˆ
− 3QaQaQb∆(a|b)

˜
+ Tbbb

ˆ
QaQaQa∆(a|b)

˜
+

+∆(a|b)Taa

ˆ
− 2QbQbQab∆(a|b) − QbQbQb∆(aa|b) − QbQbQb∆(a|ab)+

+ 2QaQbQb∆(a|b) + QaQbQbQb∆(ab|b) + QaQbQb∆(a|bb)
˜
+

+∆(a|b)Tab

ˆ
2QbQbQaa∆(a|b) + 2QaQbQab∆(a|b) + 2QaQbQb∆(aa|b) + 2QaQbQb∆(a|ab)−
− 2QaQbQab∆(a|b) − 2QaQaQbb∆(a|b) − 2QaQaQb∆(ab|b) − 2QaQaQb∆(a|bb)

˜
+

+∆(a|b)Tbb

ˆ
− 2QaQbQaa∆(a|b) − QaQaQb∆(aa|b) − QaQaQb∆(a|ab)+

+ 2QaQaQab∆(a|b) + QaQaQa∆(ab|b) + QaQaQa∆(a|bb)
˜
+

+∆(a|b)Taa

ˆ
− QaQaQb∆(b|bb) + 2QaQbQb∆(b|ab) − QbQbQb∆(b|aa)

˜
+

+∆(a|b)Tab

ˆ
QaQaQa∆(b|bb) − 2QaQaQb∆(b|ab) + QaQbQb∆(b|aa)

˜
+

+∆(a|b)Tba

ˆ
QaQaQb∆(a|bb) − 2QaQbQb∆(a|ab) + QbQbQb∆(a|aa)

˜
+

+∆(a|b)Tbb

ˆ
− QaQaQa∆(a|bb) + 2QaQaQb∆(a|ab) − QaQbQb∆(a|aa)

˜
+

+∆(a|b)Ta

h
− 2QaQbQaa∆(b|bb) − QaQaQb∆(ab|bb) − QaQaQb∆(b|abb)+

+ 2QbQbQaa∆(b|ab) + 2QaQbQab∆(b|ab) + 2QaQbQb∆(ab|ab)
0

+ 2QaQbQb∆(b|aab)−
− 2QbQbQab∆(b|aa) − QbQbQb∆(ab|aa) − QbQbQb∆(b|aaa)+

+ 2QaQaQab∆(b|bb) + QaQaQa∆(bb|bb)
0

+ QaQaQa∆(b|bbb)−
− 2QaQbQab∆(b|ab) − 2QaQaQbb∆(b|ab) − 2QaQaQb∆(bb|ab) − 2QaQaQb∆(b|abb)+

+ 2QaQbQbb∆(b|aa) + QaQbQb∆(bb|aa) + QaQbQb∆(b|aab)
i
+

+∆(a|b)Tb

h
2QaQbQaa∆(a|bb) + QaQaQb∆(aa|bb) + QaQaQb∆(a|abb)−

− 2QbQbQaa∆(a|ab) − 2QaQbQab∆(a|ab) − 2QaQbQb∆(aa|ab)
0
− 2QaQbQb∆(a|aab)+

+ 2QbQbQab∆(a|aa) + QbQbQb∆(aa|aa) + QbQbQb∆(a|aaa)−
− 2QaQaQab∆(a|bb) − QaQaQa∆(ab|bb)

0
− QaQaQa∆(a|bbb)+

+ 2QaQbQab∆(a|ab) + 2QaQaQbb∆(a|ab) + 2QaQaQb∆(ab|ab) + 2QaQaQb∆(a|abb)−

− 2QaQbQbb∆(a|aa) − QaQbQb∆(ab|aa) − QaQbQb∆(a|aab)
i
.

The simplification (collecting all terms) gives:

Gyxyxyx =
1

[∆(a|b)]5



Taaa

ˆ

− Q
3
b∆(a|b)2

˜

+ Taab

ˆ

3QaQ
2
b∆(a|b)2

˜

+

+ Tabb

ˆ

− 3Q
2
aQb∆(a|b)2

˜

+ Tbbb

ˆ

Q
3
a∆(a|b)2

˜

+

+Taa

h

− 2Q
2
bQab∆(a|b)2 + 2QaQbQbb∆(a|b)2 + 3Q

3
b∆(a|b)∆(aa|b) + 2Q

3
b∆(a|b)∆(a|ab)−

− 4QaQ
2
b∆(a|b)∆(ab|b) − 2QaQ

2
b∆(a|b)∆(a|bb) − Q

2
aQb∆(a|b)∆(b|bb)

i

+

+Tab

h

− 2Q
2
aQbb∆(a|b)2 + 2QbQbQaa∆(a|b)2 + Q

3
a∆(a|b)∆(b|bb) + 6Q

2
aQb∆(a|b)∆(ab|b)+

+ Q
3
b∆(a|b)∆(a|aa) − 6QaQ

2
b∆(a|b)∆(a|ab) + 5Q

2
aQb∆(a|b)∆(a|bb) − 5QaQ

2
b∆(a|b)∆(aa|b)

i

+

+Tbb

h

− 2QaQbQaa∆(a|b)2 + 2Q
2
aQab∆(a|b)2 − 3Q

3
a∆(a|b)∆(a|bb) − 2Q

3
a∆(a|b)∆(ab|b)+

+ 4Q
2
aQb∆(a|b)∆(a|ab) + 2Q

2
aQb∆(a|b)∆(aa|b) − QaQ

2
b∆(a|b)∆(a|aa)

i

+
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+Ta

h
3Q2

aQb∆(aa|b)∆(b|bb) + 3Q2
aQb∆(a|ab)∆(b|bb) − 3Q3

a∆(ab|b)∆(b|bb) − 3Q3
a∆(a|bb)∆(b|bb)−

− 6QaQ2
b∆(aa|b)∆(b|ab) − 6QaQ2

b∆(a|ab)∆(b|ab) + 6Q2
aQb∆(ab|b)∆(b|ab) + 6Q2

aQb∆(a|bb)∆(b|ab)−

− 3Q3
b∆(aa|b)∆(b|aa) − 3Q3

b∆(a|ab)∆(b|aa) + 3QaQ2
b∆(ab|b)∆(b|aa) + 3QaQ2

b∆(a|bb)∆(b|aa)−

− 2QaQbQaa∆(a|b)∆(b|bb) + 2Q2
bQaa∆(a|b)∆(b|ab) + 2QaQbQab∆(a|b)∆(b|ab) − 2Q2

bQab∆(a|b)∆(b|aa)−

− Q2
aQb∆(a|b)∆(ab|bb) − Q2

aQb∆(a|b)∆(b|abb) + 2QaQ2
b∆(a|b)∆(b|aab) − Q3

b∆(a|b)∆(ab|aa) − Q3
b∆(a|b)∆(b|aaa)+

+ 2Q2
aQab∆(a|b)∆(b|bb) − 2QaQbQab∆(a|b)∆(b|ab) − 2Q2

aQbb∆(a|b)∆(b|ab) + 2QaQbQbb∆(a|b)∆(b|aa)+

+ Q3
a∆(a|b)∆(b|bbb) − 2Q2

aQb∆(a|b)∆(bb|ab) − 2Q2
aQb∆(a|b)∆(b|abb) + QaQ2

b∆(a|b)∆(bb|aa) + QaQ2
b∆(a|b)∆(b|aab)

i
+

+Tb

h
3Q2

aQb∆(a|bb)∆(aa|b) + 3Q2
aQb∆(a|bb)∆(a|ab) − 3Q3

a∆(a|bb)∆(ab|b) − 3Q3
a∆(a|bb)∆(a|bb)−

− 6QaQ2
b∆(a|ab)∆(aa|b) − 6QaQ2

b∆(a|ab)∆(a|ab) + 6Q2
aQb∆(a|ab)∆(ab|b) + 6QaQaQb∆(a|ab)∆(a|bb)+

+ 3Q2
b∆(a|aa)∆(aa|b) + 3Q2

b∆(a|aa)∆(a|ab) − 3QaQ2
b∆(a|aa)∆(ab|b) − 3QaQ2

b∆(a|aa)∆(a|bb)+

+ 2QaQbQaa∆(a|b)∆(a|bb) − 2Q2
bQaa∆(a|b)∆(a|ab) − 2QaQbQab∆(a|b)∆(a|ab) + 2Q2

bQab∆(a|b)∆(a|aa)+

+ Q2
aQb∆(a|b)∆(aa|bb) + Q2

aQb∆(a|b)∆(a|abb) − 2QaQ2
b∆(a|b)∆(a|aab) + Q3

b∆(a|b)∆(aa|aa) + Q3
b∆(a|b)∆(a|aaa)−

− 2Q2
aQab∆(a|b)∆(a|bb) + 2QaQbQab∆(a|b)∆(a|ab) + 2Q2

aQbb∆(a|b)∆(a|ab) − 2QaQbQbb∆(a|b)∆(a|aa)−

− Q3
a∆(a|b)∆(a|bbb) + 2Q2

aQb∆(a|b)∆(ab|ab) + 2Q2
aQb∆(a|b)∆(a|abb) − QaQ2

b∆(a|b)∆(ab|aa) − QaQ2
b∆(a|b)∆(a|aab)

i
.

The full expansion ofGyxyxyxyx will not be presented here.
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Vanishing Hachtroudi curvature

and local equivalence

to the Heisenberg pseudosphere
Joël Merker

Abstract. To any completely integrable second-order system of real orcomplex
partial differential equations:

yxk1xk2 = Fk1,k2

(
x1, . . . , xn, y, yx1, . . . , yxn

)

with 1 6 k1, k2 6 n and withFk1,k2 = Fk2,k1 in n > 2 independent variables
(x1, . . . , xn) and in one dependent variabley, Mohsen Hachtroudi associated in
1937 a normal projective (Cartan) connection, and he computed its curvature. By
means of a natural transfer of jet polynomials to the associated submanifold of
solutions, what the vanishing of the Hachtroudi curvature gives can be precisely
translated in order to characterize when both families of Segre varieties and of con-
jugate Segre varieties associated to a Levi nondegenerate real analytic hypersurface
M in Cn (n > 3) can be straightened to be affine complex (conjugate) lines.In
continuation to a previous paper devoted to the quite distinct C2-case, this then
characterizes in an effective way those hypersurfaces ofCn+1 in higher complex
dimensionn + 1 > 3 that are locally biholomorphic to a piece of the(2n + 1)-
dimensional Heisenberg quadric, without any special assumption on their defining
equations.

arxiv.org/abs/0910.2861/
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§1. INTRODUCTION

The explicit characterization of pseudosphericality of anarbitrary real an-
alytic local hypersurface sitting in the complex Euclideanspace has been
(re)studied recently by Isaev in [11], who employed the famous Chern(-
Moser) tensorial approach [CM1974, Ch1975] to the concerned equivalence
problem. But in the growing literature devoted to Lie-groupsymmetries
of Cauchy-Riemann manifolds, only a very few articles underline that, al-
ready in his 1937 Ph.D. thesis [Ha1937] under the direction of his Élie Car-
tan — who was around the same period also the master of Chern —,the
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Iranian mathematician Mohsen Hachtroudi (cited briefly only in [Ch1975])
constructed directly anexplicit normal projective Cartan connection canon-
ically associated to any completely integrable system of real or complex
partial differential equations:

(7.28) yxk1xk2 (x) = Fk1,k2

(
x1, . . . , xn, y, yx1 , . . . , yxn

)

in n > 2 independent variablesx1, . . . , xn and in one dependent vari-
able y, by endeavouring in a successful way to generalize the celebrated
paper [Ca1924]. Chern’s clever observation in 1974 that Hachtroudi’s
37 years-old approach was intrinsically related to the nascent higher-
dimensional CR geometry was followed, in his two papers in question, by
his technical contribution of redoing (only)partsof Hachtroudi’s effective
computations, following the alternative (heavier, thoughessentially equiv-
alent) strategy of constructinga posteriorithe projective connection, after
having reinterpreted at the beginning the problem in terms of the wide and
powerfulCartan Method of Equivalence. Thus, one should be aware, histori-
cally speaking, that in the original reference [Ha1937], much more complete
geometric and computational aspects were published long before, though
they were expressed in a purely analytic and somewhat elliptic language
which, unfortunately for us at present times, does not transmit in words and
with figures all the underlying geometric meanings which were clear then to
Élie Cartan.

Because Hachtroudi was able to write down explicitly his curvature ten-
sors, he deduced the second-order system (7.28) — below — of partial
differential equations that the functionsFk1,k2 should satisfy in order that
the system (7.28) be equivalent, through a point transformation (x, y) 7→
(x′, y′) =

(
x′(x, y), y′(x, y)

)
to the simplest system:y′

x′k1x′k2
(x′) = 0, with

all right-hand sides being zero. In the present article, a companion and a
follower of a preceding one [22] devoted to the quite different C2-case, we
will apply, to the higher-dimensional characterization ofpseudosphericality,
this effective necessary and sufficient condition (7.28) due to Hachtroudi
which, however andinexplicably, is totally inextant in the two contributions
of Chern. We hope in this way to complete the explicit characterization of
pseudosphericality for rigid or even tube hypersurfaces that was obtained re-
cently by Isaev in [11], because apparently, the general (nonrigid) case was
still open in the specialized field.

We now start the exposition. LetM be a local real analytic inCn+1.
Though the basic definitions, lemmas and propositions of thetheory are
valid in any complex dimensionn + 1 > 2, there is a strong computational
difference between the two characterizations of sphericality for n = 1 (com-
pare [21]) and of pseudosphericality forn > 2 (presently), so that, in order
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to fix the ideas, it will be assumed throughout the paper — and recalled
when necessary — that the CR dimensionn is always> 2.

Locally in a neighborhood of one of its pointsp, the hypersurfaceM may
be represented, in any system of local holomorphic coordinates:

t = (w, z) ∈ Cn × C

vanishing atp for which thew-axis is not complex-tangent toM at p, by a
so-calledcomplexdefining equation — Section 2 provides further informa-
tions — of the form:

(7.28) w = Θ
(
z, z, w) = Θ

(
z, t
)
,

or equivalently in a more expanded form which exhibits all the indices:

w = Θ
(
z1, . . . , zn, z1, . . . , zn, w

)
= Θ

(
z1, . . . , zn, t1, . . . , tn, tn+1

)
.

ThenM localized atp is calledpseudospherical(atp) if it is biholomorphic
to a piece of one Heisenberg pseudosphere:

(7.28) Imw′ = |z′1|2 + · · ·+ |z′q|2 − |z′q+1|2 − · · · − |z′n|2,
for someq with 0 6 q 6 n, the number of positive eigenvalues of the
nondegenerate Levi form. Next, let us introduce the following Jacobian-like
determinant:

∆ :=

∣∣∣∣∣∣∣∣

Θz1 · · · Θzn Θw

Θz1z1 · · · Θz1zn Θz1w

·· · · · ·· ··
Θznz1 · · · Θznzn Θznw

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

Θt1 · · · Θtn Θtn+1

Θz1t1 · · · Θz1tn Θz1tn+1

·· · · · ·· ··
Θznt1 · · · Θzntn Θzntn+1

∣∣∣∣∣∣∣∣
.

For any indexµ ∈ {1, . . . , n, n + 1} and for any indexℓ ∈ {1, . . . , n}, let
also∆µ

[01+ℓ]
denote the same determinant, but with itsµ-th column replaced

by the transpose of the line(0 · · ·1 · · ·0) with 1 at the(1+ ℓ)-th place, and0
elsewhere, its other columns being untouched. One easily convinces oneself
(but see also Section 2) thatM is Levi-nondegenerate atp — which is the
origin of our system of coordinates — if and only if∆ does not vanish at the
origin, whence∆ is nowhere zero in some sufficiently small neighborhood
of the origin. Similarly, for any indicesµ, ν, τ ∈ {1, . . . , n, n + 1}, denote
by ∆τ

[t
µ
t
ν
]
the same determinant as∆, but with only itsτ -th column replaced

by the transpose of the line:
(
Θt

µ
t
ν Θz1t

µ
t
ν · · · Θznt

µ
t
ν

)
,

other columns being again untouched. All these determinants ∆, ∆µ
[01+ℓ]

,
∆τ

[t
µ
t
ν
]

are visibly universal differential expressions dependingupon the

second-order jetJ2
z,z,wΘ and upon the third-order jetJ3

z,z,wΘ.

Main Theorem. An arbitrary, not necessarily rigid, real analytic hypersur-
faceM ⊂ Cn+1 with n > 2 which is Levi nondegenerate at one of its points
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p and has a complex defining equation of the form(7.28) in some system
of local holomorphic coordinatest = (z, w) ∈ Cn × C vanishing atp, is
pseudospherical atp if and only if its complex graphing functionΘ satisfies
the following explicit nonlinear fourth-order system of partial differential
equations:

0 ≡

n+1
X

µ=1

n+1
X

ν=1

»

∆µ

[01+ℓ1
] · ∆

ν
[01+ℓ2

]



∆ ·
∂4Θ

∂zk1∂zk2∂tµ∂tν

−

n+1
X

τ=1

∆τ
[tµtν ] ·

∂3Θ

∂zk1∂zk2∂t
τ

ff

−

−
δk1,ℓ1
n+2

n
X

ℓ′=1

∆µ

[01+ℓ′ ]
· ∆ν

[01+ℓ2
]



∆ ·
∂4Θ

∂zℓ′∂zk2∂tµ∂tν

−
n+1
X

τ=1

∆τ
[tµtν ] ·

∂3Θ

∂zℓ′∂zk2∂t
τ

ff

−

−
δk1,ℓ2
n+2

n
X

ℓ′=1

∆µ

[01+ℓ1
] · ∆

ν
[01+ℓ′ ]



∆ ·
∂4Θ

∂zℓ′∂zk2∂tµ∂tν

−

n+1
X

τ=1

∆τ
[tµtν ] ·

∂3Θ

∂zℓ′∂zk2∂t
τ

ff

−

−
δk2,ℓ1
n+2

n
X

ℓ′=1

∆µ

[01+ℓ′ ]
· ∆ν

[01+ℓ2
]



∆ ·
∂4Θ

∂zk1∂zℓ′∂tµ∂tν

−

n+1
X

τ=1

∆τ
[tµtν ] ·

∂3Θ

∂zk1∂zℓ′∂t
τ

ff

−

−
δk2,ℓ2
n+2

n
X

ℓ′=1

∆µ

[01+ℓ1
] · ∆

ν
[01+ℓ′ ]



∆ ·
∂4Θ

∂zk1∂zℓ′∂tµ∂tν

−
n+1
X

τ=1

∆τ
[tµtν ] ·

∂3Θ

∂zk1∂zℓ′∂t
τ

ff

+

+ 1
(n+1)(n+2)

·
ˆ

δk1,ℓ1δk2,ℓ2 + δk2,ℓ1δk1,ℓ2

˜

·

·

n
X

ℓ′=1

n
X

ℓ′′=1

∆µ

[01+ℓ′ ]
· ∆ν

[01+ℓ′′ ]



∆ ·
∂4Θ

∂zℓ′∂zℓ′′∂tµ∂tν

−

n+1
X

τ=1

∆τ
[tµtν ] ·

∂3Θ

∂zℓ′∂zℓ′′∂t
τ

ff

,

for all pairs of indices(k1, k2) with 1 6 k1, k2 6 n, and for all pairs of
indices(ℓ1, ℓ2) with 1 6 ℓ1, ℓ2 6 n.

The written system is effective: no implicit formal expression is involved
and pseudosphericality is characterized directly and onlyin terms ofΘ.

Now, here is a summarized description of our arguments of proof. A
bit similarly as for theC2-case — but with major differences afterwards —
which was already studied in [21], we may associate to any such Levi
nondegenerate real analytic local hypersurfaceM ⊂ Cn+1 of equation
w = Θ(z, z, w) a uniquely defined system of second-order partial differ-
ential equations:

(7.28) wzk1
zk2

(z) = Φk1,k2

(
z, w(z), wz(w)

)
(1 6k1, k2 6n)

with Φk1,k2 = Φk2,k1, simply by eliminating the two variablesz andw,
viewed as parameters, from the set ofn + 1 equations23:

w(z) = Θ
(
z, z, w

)
, wz1(z) = ∂Θ

∂z1

(
z, z, w

)
, . . . . . . , wzn(z) = ∂Θ

∂zn

(
z, z, w

)
,

— the assumption that the Jacobian determinant∆ is nonvanishing at
the origin being precisely the one which guarantees, technically speaking,
that the classical (holomorphic) implicit function theorem applies — and

23 This process appears for instance in the references [8, Ha1937, Ch1975, Su2001,
Su2002, 1, 19].
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then by replacing the so obtained values forz and w in all second or-
der derivatives ∂2Θ

∂zk1
zk2

(
z, z, w

)
, see (7.28) below. Trivially, this system

is completely integrable, for we just derived it from its general solution
w(z) := Θ

(
z, z, w

)
, where(z, w) are understood as parameters.

As we said, Hachtroudi showed that the curvature of the projective nor-
mal (Cartan) connection he associated with the system (7.28) vanishes if and
only if the right-hand side functionsFk1,k2 satisfy the following explicit dif-
ferential system, which islinear in terms of their second-order derivatives
(all of which, notably, appear only with respect to theyxℓ):
(7.28)

0 ≡ ∂2Fk1,k2

∂yxℓ1yxℓ2

−

− 1
n+2

n∑

ℓ′=1

(
δk1,ℓ1

∂2Fℓ′,k2

∂yxℓ′∂yxℓ2

+ δk1,ℓ2

∂2Fℓ′,k2

∂yxℓ1∂yxℓ′

+ δk2,ℓ1

∂2Fk1,ℓ′

∂yxℓ′∂yxℓ2

+ δk2,ℓ2

∂2Fk1,ℓ′

∂yxℓ1∂yxℓ′

)
+

+ 1
(n+1)(n+2)

[
δk1,ℓ1δk2,ℓ2 + δk2,ℓ1δk1,ℓ2

] n∑

ℓ′=1

n∑

ℓ′′=1

∂2Fℓ′,ℓ′′

∂yxℓ′∂yxℓ′′

(1 6 k1, k2 6 n)

(1 6 ℓ1, ℓ2 6 n)
.

Hachtroudi also showed that this latter condition, better known nowa-
days amongst theSeveral Complex Variablescommunity asvanishing of
Chern(-Moser) curvatureto which it indeed amounts, characterizes the
local equivalence, through a point transformation(x, y) 7→ (x′, y′) =(
x′(x, y), y′(x, y)

)
, to the simplest system:y′

x′k1x′k2
(x′) = 0. We then

remind the semi-known fact thatM is pseudospherical if and only if its
associated second-order system (7.28) is equivalent, through a local biholo-
morphism(z, w) 7→ (z′, w′) =

(
z′(z, w), w′(z, w)

)
fixing the origin, to the

simplest systemw′
z′
k1

z′
k2

(z′) = 0. So we may apply to the functionsΦk1,k2

Hachtroudi’s vanishing curvature equations (7.28), but still, the Φk1,k2 are
not expressed in terms ofΘ, for they were constructed by employing some
unpleasant implicit functions when solving above forz andw. Fortunately,
here similarly as in [21], we may apply the techniques of computational dif-
ferential algebra sketched in [19] in order to explicitly express any algebraic
expressions in the second-order jet of theΦk1,k2 in terms of the fourth-order
jet of Θ, and the appropriate general equation which we shall need:

∂2Φk1,k2

∂wzℓ1
∂wzℓ2

=
1

∆3

n+1∑

µ=1

n+1∑

ν=1

∆µ

[01+ℓ1
] ·∆ν

[01+ℓ2
]

{
∆ · ∂4Θ

∂zk1∂zk2∂t
µ
∂t

ν −
n+1∑

τ=1

∆τ
[t

µ
t
ν
] ·

∂3Θ

∂zk1∂zk2∂t
τ

}

will be obtained in Section 4 below, after rather lengthy butelementary cal-
culations, parts of which are inspired from [17]. It is now essentially clear
how one obtains the (boxed) long fourth-order differentialequations stated
in the theorem, but in any case, some complete details will beprovided at
the very end of the paper.
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To conclude this extensive introduction which was designedfor read-
ers wanting to quickly embrace the contents, we would like todraw the
attention on the work [22], whose manual calculations wherefinalized in
manuscript form already in 200324, and which will soon confirm the above
theorem by following another route,viz. by calculating explicitly the so-
called Chern(-Moser) tensor differential forms, which might interest some
contemporary CR geometers better than the (essentially equivalent) original
Cartan-Hachtroudi(-Tanaka) approach.

§2. SEGRE VARIETIES AND DIFFERENTIAL EQUATIONS

Real analytic hypersurfaces inCn+1. Let us therefore consider an arbi-
trary real analytic hypersurfaceM in Cn+1 with n > 2, and let us localize
it around one of its points, sayp ∈ M . Then there exist complex affine
coordinates:

(z, w) = (z1, . . . , zn, w) =
(
x1+

√
−1 y1, . . . , xn+

√
−1 yn, u+iv

)
=
(
x+

√
−1 y, u+

√
−1 v

)

vanishing atp in which TpM = {u = 0}, so thatM is represented in a
neighborhood ofp by a graphed defining equation of the form:

u = ϕ(x, y, v) = ϕ
(
x1, . . . , xn, y1, . . . , yn, v

)
,

where the real-valued function:

ϕ = ϕ(x, y, v) =
∑

k∈Nn, l∈Nn, m∈N

|k|+|l|+m>2

ϕk,l,m x
kylvm ∈ R

{
x, y, u

}
,

which possesses entirely arbitrary real coefficientsϕk,l,m, vanishes at the
origin: ϕ(0) = 0, together with all its first order derivatives:0 = ∂xkϕ(0) =
∂ylϕ(0) = ∂vϕ(0). By simply rewriting this initial real equation ofM as:

w+w
2

= ϕ
(

z+z
2
, z−z

2
√
−1
, w−w

2
√
−1

)
,

and then by solving the so written equation with respect tow, one obtains
an equation of the shape:

w = Θ
(
z, z, w

)
=

∑

k∈Nn, l∈Nn, m ∈ N

|k|+|l|+m>1

Θk,l,m z
k zl wm ∈ C

{
z, z, w

}
,

whose right-hand side converges of course near the origin(0, 0, 0) ∈ Cn ×
Cn × C and whose coefficientsΘk,l,m ∈ C arecomplex. Sincedϕ(0) = 0,
one hasΘ = −w + order 2 terms.

The paradox that any suchcomplexequation provides in facttwo real
defining equations for thereal hypersurfaceM which isone-codimensional,

24 At the conferenceCauchy-Riemann Analysis and Geometry organized by Ingo Lieb
and Gerd Schmalz at theMax-Planck Institutof Bonn, 22–27 September 2003, the author
gave a talk the title of which was “Explicit Chern-Moser tensors”.
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and also in addition the fact that one could as well have chosen to solve the
above equation with respect tow, instead ofw, these two apparent “con-
tradictions” are corrected by means of a fundamental, elementary statement
that transfers toΘ (in a natural way) the condition of reality:

ϕ(x, y, u) =
∑

|k|+|l|+m>1

ϕk,l,m x
kylvm =

∑

|k|+|l|+m>1

ϕk,l,m x
kylvm = ϕ(x, y, v)

enjoyed by the initial definining functionϕ. In the sequel, we shall work
exclusively withΘ; the reader is referred to [21] for justifications and moti-
vations.

Theorem. ([18], p. 19)The complex analytic functionΘ = Θ(z, z, w) with
Θ = −w + O(2) together with its complex conjugate:

Θ = Θ
(
z, z, w) =

∑

k∈Nn, l∈Nn, m∈N

Θk,l,m z
k zl wm ∈ C

{
z, z, w

}

satisfy the two(equivalent by conjugation) functional equations:

(7.28)
w ≡ Θ

(
z, z,Θ(z, z, w)

)
,

w ≡ Θ
(
z, z,Θ(z, z, w)

)
.

Conversely, given a local holomorphic functionΘ(z, z, w) ∈ C{z, z, w},
Θ = −w + O(2) which, in conjunction with its conjugateΘ(z, z, w), satis-
fies this pair of equivalent identities, then the two zero-sets:
{
0 = −w + Θ

(
z, z, w

)}
and

{
0 = −w + Θ

(
z, z, w

)}

coincide and define a localone-codimensionalreal analytic hypersurface
M passing through the origin inCn+1.

Levi nondegeneracy.Within the hierarchy of nondegeneracy conditions
for real hypersurfaces initiated by Diederich and Webster ([DW1980], see
also [Me2005a, Me2005b] for generalizations and a unification), Levi non-
degeneracy is the most studied. The classical definition maybe found
in [Bo1991] and in the survey of Chirka [Ch1991], but the following ba-
sic equivalent characterization can also be understood as adefinition in the
present paper. One may show ([Me2005a, Me2005b, 18]) that itis biholo-
morphically invariant.

Lemma. ([18], p. 28) The real analytic hypersurfaceM ⊂ Cn+1 with
0 ∈ M represented in coordinates(z1, . . . , zn, w) by a complex defining
equation of the formw = Θ(z, z, w) is Levi nondegenerate at the origin if
and only if the map:

(
z1, . . . , zn, w

)
7−→

(
Θ
(
0, z, w

)
, ∂Θ

∂z1

(
0, z, w

)
, . . . , ∂Θ

∂zn

(
0, z, w

))
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has nonvanishing(n+1)× (n+1) Jacobian determinant at(z, w) = (0, 0).

It follows then that this Jacobian determinant, not restricted to the origin:

(7.28) ∆ = ∆
(
z, z, w

)
:=

∣∣∣∣∣∣∣∣

Θz1
· · · Θzn

Θw

Θz1z1 · · · Θz1zn Θz1w

·· · · · ·· ··
Θznz1 · · · Θznzn Θznw

∣∣∣∣∣∣∣∣

does not vanish in some small neighborhood of the origin inCn × Cn × C.
Levi nondegeneracy at the central point,i.e. ∆ 6= 0 locally, will be assumed
throughout the present paper.

Associated system of partial differential equations.At least since the
publication in 1888 by Lie and Engel in Leipzig of theTheorie der Trans-
formationsguppen, it is known in a very general context —seeChapter 10
of [8] and also [23, Ha1937, Ch1975, Fa1980, 19, 1, 21] — that,to the
whole family ofSegre varieties:

Sz,w :=
{
(z, w) ∈ Cn ×C : w = Θ

(
z, z, w

)}

parametrized by then + 1 antiholomorphic variables
(
z1, . . . , zn, w

)
, one

may canonically associate a completely integrable second-order system of
partial differential equations whose general solution is precisely the function
Θ
(
z, z, w

)
. Indeed, consideringw as a functionw = w(z) of (z1, . . . , zn)

in the defining equation ofM , one differentiates it once with respect to each
variablez1, . . . , zn so that one gets then + 1 equations:

w(z) = Θ
(
z, z, w

)
, wz1(z) = ∂Θ

∂z1

(
z, z, w

)
, . . . . . . , wzn(z) = ∂Θ

∂zn

(
z, z, w

)
.

Then by means of the implicit function theorem — which applies precisely
thanks to the nonvanishing of∆ —, one may clearly solve for then + 1
antiholomorphic “parameters”(z, w), and this procedure provides a repre-
sentation:

z1 = ζ1
(
z, w(z), wz(z)

)
, . . . , zn = ζn

(
z, w(z), wz(z)

)
, w = ξ

(
z, w(z), wz(z)

)

with certain n + 1 uniquely defined local complex analytic functions
ζi(z, w, wz) and ξ(z, w, wz) of 2n + 1 complex variables. Utilizing these
functions, one is then pushed to replacez andw in all possible second-order
derivative:

(7.28)

wzk1
zk2

(z) = ∂2Θ
∂zk1

∂zk2

(
z, z, w

)

= ∂2Θ
∂zk1

∂zk2

(
z, ζ

(
z, w(z), wz(z)

)
, ξ
(
z, w(z), wz(z)

))

=: Φk1,k2

(
z, w(z), wz(z)

)
(k1, k2 =1 ···n),
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and this defines without ambiguity the associated system of partial differ-
ential equations. It is of second order. It iscomplete: all second-order
derivatives are functions of derivatives of lower order6 1. In a sense to be
precised right now, it is alsocompletely integrablebecause by construction,
its general solution isΘ

(
z, z, w

)
.

Geometric characterization of pseudosphericality.It is well known that
the unitsphere:

S2n+1 =
{
(z1, . . . , zn, w) ∈ Cn × C : |z1|2 + · · ·+ |zn|2 + |w|2 = 1

}

in Cn minus one of its points, for instance:S2n+1 \ {p∞} with p∞ :=
(0, . . . , 0,−1), is biholomorphic, through the so-calledCayley transform:

(z1, . . . , zn, w) 7−→
(

i z1

1+w
, . . . , i zn

1+w
, 1−w

2+2 w

)
=: (z′1, . . . , z

′
n, w

′)

having inverse:

(z′1, . . . , z
′
n, w

′) 7−→
( −2iz′1

1+2w′ , . . . ,
−2iz′n
1+2w′ ,

1−2w′

1+2 w′

)
= (z1, . . . , zn, w)

to the so-calledstandard Heisenberg sphereof equation:

w′ = −w′ + z′1z
′
1 + · · ·+ z′nz

′
n

which sits in the target space(z′, w′). Hence in the particular case when the
Levi form ofM has only positive eigenvalues, namely whenq = n in (7.28),
it follows clearly thatM is sphericalin the sense given in the Introduction if
and only if there exists a nonempty open neighborhoodU0 of 0 in Cn+1 such
thatM ∩U0 is biholomorphic to a piece of the unit sphere. In general, there
aren − q negative eigenvalues in the Levi form, and this justifies adding a
“pseudo”.

Proposition. A Levi nondegenerate local real analytic hypersurfaceM in
Cn+1 is locally biholomorphic to a piece of the Heisenberg pseudosphere
(hence pseudospherical) if and only if its associated second-order ordinary
complex differential equation is locally equivalent to thesecond-order sys-
tem:

w′
z′
k1

z′
k2

(z′) = 0 (1 6k1, k2 6n),

with identically vanishing right-hand side.

Proof. Then = 1 case, treated in great details by a previous reference [21],
generalizes here with rather evident adaptations, hence will be skipped. As
n > 2 throughout the present paper, one may also argue by slicingCn+1 by
all possible copies ofC2 which pass through the origin and which contain
thew-axis, so as to be able to apply the alreaday detailedn = 1 case.

Geometrically, the local equivalence ofM to the Heisenberg pseudo-
sphere means that, through some suitable local biholomorphism (z, w) 7→
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(z′, w′) fixing the origin, both its Segre varieties and its conjugateSegre
varieties ([Me2005a, Me2005b, 18]):

Sz,w :=
{
(z, w) : w = Θ

(
z, z, w

)}
and Sz,w :=

{
(z, w) : w = Θ

(
z, z, w

)}

are mapped to the Segre and conjugate Segre varieties of the Heisenberg
pseudosphere:

S ′
z′,w′ =

{
w′ = −w′ + z′z′

}
and

{
w′ = −w′ + z′z′

}

which, visibly, are plain complex affine lines.

§3. GEOMETRY OF ASSOCIATED SUBMANIFOLDS OF SOLUTIONS

Completely integrable systems of partial differential equations. The
characterization of pseudosphericality we are dealing with holds in a con-
text more general than just CR geometry25. Accordingly, letK denote ei-
ther the fieldC of complex numbers or the fieldR of real numbers, let
x = (x1, . . . , xn) ∈ Kn with againn > 2 — since the casen = 1 was al-
ready studied in [21] —, lety ∈ K, and consider a system of the form (7.28).
We will assume that it iscompletely integrablein the sense that the natural
commutativity of partial derivatives enjoyed trivially bythe left-hand sides:

∂2yxk1xk2

/
∂yxk3 = ∂2yxk1xk3

/
∂yxk2

(1 6k1, k2, k3 6n)

imposes immediately to the right-hand side functionsFk1,k2 that they satisfy
the so-calledcompatibility conditions:

Dk3

(
Fk1,k2

)
= Dk2

(
Fk1,k3

)
,

where we have introduced the followingn total differentiationoperators:

Dk := ∂
∂xk + yxk

∂
∂y

+
n∑

ℓ=1

Fk,l
∂

∂y
xℓ

(1 6k 6n)

living on the first-order jet space(x1, . . . , xn, y, yx1, . . . , yxn). One verifies
that these compatibility conditions amount to the fact thatthen-dimensional
tangential distribution spanned byD1, . . . ,Dn in the (2n + 1)-dimensional
first-order jet space satisfies the classical Frobenius integrability condition[
Dk′, Dk′′

]
= 0, and then the Clebsch-Frobenius theorem tells us that

this distribution comes from a local foliation byn-dimensional manifolds
graphed over thex-space that are naturally parametrized byn + 1 auxiliary
constants (transversal directions) — call thema1, . . . , an, b ∈ K —, namely

25 We will be very brief here, the reader being referred to [19, 21] for the general theo-
retical considerations.
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the leaves of this local foliation may be explicitly represented as sets of the
shape:
{(
x1, . . . , xn, Q

(
x1, . . . , xn, a1, . . . , an, b

)
,

S1
(
x1, . . . , xn, a1, . . . , an, b

)
, . . . , Sn

(
x1, . . . , xn, a1, . . . , an, b

))}
,

wherex1, . . . , xn vary freely and whereQ, S1, . . . , Sn are certain graphing
functions. In fact, the functionsSk are the first-order derivatives:

S1 = Qx1 , . . . . . . , Sn = Qxn

of the functionQ, because by definition the integral curves of every vector
field Dk must be contained in such leaves, so that one has:

∂Q
∂xk = yxk

∣∣
any leaf = Sk

and furthermore also:
∂Sl

∂xk = F k,l
∣∣
any leaf,

whence we see that thefundamental graphing functionQ = Q(x, a, b) hap-
pens to be thegeneral solutionto the initially given system of partial differ-
ential equations:

Qxk1xk2 (x, a, b) ≡ Fk1,k2

(
x, Q(x, a, b), Qx1(x, a, b), . . . , Qxn(x, a, b)

)

(1 6k1, k2 6n).

In the CR case, the fundamental function which is the generalsolution to
the associated system of partial diffential equations (7.28) is obviously the
complex defining functionΘ

(
z, z, w

)
, where then + 1 quantities(z, w),

viewed as independent variables, play the role of the constants(a, b).
As in then = 1 case, the constants(a1, . . . , an, b) are best interpreted as

a set ofn + 1 initial conditions
(
yx1(0), . . . , yxn(0),−y(0)

)
or integration

constants, so that we can assume without loss of generality that the first-
order terms in the fundamental functionQ are26:

Q(x, a, b) = − b+ x1a1 + · · ·+ xnan + O(|x|2).
It is then clear that the map:

(7.28)

(
a1, . . . , an, b

)
7−→

(
Q(0, a, b), Qx1(0, a, b), . . . , Qxn(0, a, b)

)

=
(
− b, a1, . . . , an

)

is of rankn + 1 at the origin, and this property remains also true whatever
one chooses as a fundamental functionQ(x, a, b), that is to say, without
necessarily assuming it to be normalized as above, which amounts to saying

26 We put a minus sign in front ofy(0) so as to match up with our choice of complex
defining equationw = −w + O(2).
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that27, in the parameter(a, b)-space, everything holds invariantly up to any
localK-analytic transformation(a, b) 7→ (a′, b′) which doesnot involve the
variables(x, y).

The way how one recovers the system of partial differential equations is
very similar to what we did in the CR case (7.28). Suppose indeed a bit more
generally that we are given any localK-analytic functionQ = Q(x, a, b)
having the property that its first-orderx-jet map (7.28) is of rankn + 1 at
(a, b) = (0, 0). Then in then+ 1 equations:

y(x) = Q(x, a, b), yx1 = Qx1(x, a, b), . . . . . . , Qxn(x, a, b),

we can solve, by means of the implicit function theorem, for the n + 1
constants(a1, . . . , an, b), and this yields a representation:

ak = Ak
(
x1, . . . , xn, y, yx1, . . . , yxn

)

b = B
(
x1, . . . , xn, y, yx1, . . . , yxn

)

for certain functionsA1, . . . , An, B of (2n+1) variables. Then by replacing
these obtained values for theak and forb in all the possible second-order
derivatives:

yxk1xk2 = Qxk1xk2 (x, a, b)

= Qxk1xk2

(
x,A(x, y, yx), B(x, y, yx)

)

= Fk1,k2

(
x, y, yx

)

it is rigorously clear that one may only recover the functions Fk1,k2 we
started with.

§4. EFFECTIVE DIFFERENTIAL CHARACTERIZATION

OF PSEUDOSPHERICALITY INCn+1

The2n+ 1 coordinates of the transformation considered at the moment:

(7.28)
(
x1, . . . , xn, y, yx1, . . . , yxn

)
7−→

(
x1, . . . , xn, a1, . . . , an, b

)

and those of its inverse are given by the collection of functions:



xj = xj

ak = Ak
(
x1, . . . , xn, y, yx1, . . . , yxn

)

b = B
(
x1, . . . , xn, y, yx1 , . . . , yxn

)
and




xj = xj

y = Q
(
x1, . . . , xn, a1, . . . , an, b

)

yxk = Qxk(x1, . . . , xn, a1, . . . , an, b
)
.

For uniformity and harmony, we shall admit by convention theequivalences
of notation:

b ≡ an+1 and B ≡ An+1.

27 Much more theoretical information is provided in [19].
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Then by differentiating with respect toyxℓ each one of the followingn + 1
identically satisfied equations:

y ≡ Q
(
x1, . . . , xn, A1

(
x1, . . . , xn, y, yx1 , . . . , yxn

)
, . . . ,

An
(
x1, . . . , xn, y, yx1 , . . . , yxn

)
, An+1

(
x1, . . . , xn, y, yx1 , . . . , yxn

))

yxk ≡ Qxk

(
x1, . . . , xn, A1

(
x1, . . . , xn, y, yx1 , . . . , yxn

)
, . . . ,

An
(
x1, . . . , xn, y, yx1 , . . . , yxn

)
, An+1

(
x1, . . . , xn, y, yx1 , . . . , yxn

))
,

we get the followingn+ n2 equations:

0 ≡ Qa1
∂A1

∂y
xℓ

+ · · ·+Qan
∂An

∂y
xℓ

+Qan+1
∂An+1

∂y
xℓ

δk,ℓ = Qxka1
∂A1

∂y
xℓ

+ · · ·+Qxkan
∂An

∂y
xℓ

+Qxkan+1
∂An+1

∂y
xℓ

(k, ℓ =1 ···n).

Fixing anyℓ ∈ {1, . . . , n}, thanks to the assumption (Levi nondegeneracy)
that the Jacobian determinant:

� = �
(
a1| · · · |an|an+1

)
:=

∣∣∣∣∣∣∣∣

Qa1 · · · Qan Qan+1

Qx1a1 · · · Qx1an Qx1an+1

...
. . .

...
...

Qxna1 · · · Qxnan Qxnan+1

∣∣∣∣∣∣∣∣
,

does not vanish, we may solve — just by means of Cramer’s rule —for the
n + 1 unknowns∂Aµ

∂y
xℓ

, the above system ofn + 1 equations, and this gives
us:

(7.28)
∂Aµ

∂yxℓ

=
�[0µ

1+ℓ
]

�
:=

�(a1| · · · |aµ−1|01+ℓ|aµ+1| · · · |an+1)

�(a1| · · · |aµ−1|aµ|aµ+1| · · · |an+1)
,

where01+ℓ is a specific notation to denote the column consisting ofn + 1
zeros piled up, except at the(1 + ℓ)-th level from its top, where instead of0,
one reads1, and where, as our notation with vertical bars helps to guess:

�
µ
[01+ℓ]

= �(a1| · · · |aµ−1|µ 01+ℓ|aµ+1| · · · |an+1) :=

:=

∣∣∣∣∣∣∣∣∣∣∣∣

Qa1 · · · Qaµ−1 0 Qaµ+1 · · · Qan+1

Qx1a1 · · · Qx1aµ−1 0 Qx1aµ+1 · · · Qx1an+1

·· · · · ·· ·· ·· · · · ··
Qxka1 · · · Qxkaµ−1 1 Qxkaµ+1 · · · Qxkan+1

·· · · · ·· ·· ·· · · · ··
Qxna1 · · · Qxnaµ−1 0 Qxnaµ+1 · · · Qxnan+1

∣∣∣∣∣∣∣∣∣∣∣∣

.

To avoid any ambiguity, we shall sometimes put the integerµ in the upper
index position of the vertical bar to indicate precisely which column is con-
cerned. As is clear, this notation allows one to view and to remember what
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are the involved partial derivatives of the fundamental functionQ that ap-
pear inside each column. In summary,�

µ
[01+ℓ]

comes from� by changing
just itsµ-th column, as Cramer’s rule classically says.

Next, the two-ways transfer between local functionsG defined in the
(x, y, yx)-space and local functionsT defined in the(x, a, b)-space, namely
the one-to-one correspondence:

G
(
x1, . . . , xn, y, yx1, . . . , yxn

)
←→ T

(
x1, . . . , xn, a1, . . . , an, b

)

through the diffeomorphism (7.28), may be viewed concretely, in the direc-
tion we are interested in, as the following identity:

G
(
x1, . . . , xn, y, yx1, . . . , yxn

)
≡

≡ T
(
x1, . . . , xn,

A1
(
x1, . . . , xn, y, yx1, . . . , yxn

)
, . . . , An

(
x1, . . . , xn, y, yx1, . . . , yxn

)
,

An+1
(
x1, . . . , xn, y, yx1, . . . , yxn

))

holding of course inC
{
x1, . . . , xn, y, yx1, . . . , yxn

}
. We therefore readily

deduce how the derivation∂
∂y

xℓ
is transferred to the(x, a, b)-space:

∂G

∂yxℓ

= ∂A1

∂y
xℓ
· ∂T
∂a1

+ · · ·+ ∂An

∂y
xℓ
· ∂T
∂an

+ ∂An+1

∂y
xℓ
· ∂T

∂an+1
.

By applying twice any two such derivations∂
/
∂yxℓ1 and∂

/
∂yxℓ2 to an ar-

bitrary functionG, we may see, after a few computations, what such a com-
posed differentiation corresponds to, in terms of the function T defined in
the(x, a, b)-space:

∂2G

∂yxℓ1∂yxℓ2

=

( n+1∑

µ=1

∂Aµ

∂y
xℓ1

∂

∂aµ

)[ n+1∑

ν=1

∂Aν

∂y
xℓ2

∂T

∂aν

]

=

n+1∑

µ=1

n+1∑

ν=1

∂Aµ

∂y
xℓ1

∂Aν

∂y
xℓ2

∂2T

∂aµ∂aν
+

n+1∑

µ=1

n+1∑

ν=1

∂Aµ

∂y
xℓ1

∂
∂aµ

[
∂Aν

∂y
xℓ2

] ∂T
∂aν

.

Here, by a helpful formal convention, the three Greek lettersµ, ν andτ will
be used as summation indices in the total set{1, . . . , n, n+1}, while the four
Latin lettersi, j, k, ℓ will always run in the restricted set{1, . . . , n}. Re-
placing then the partial derivatives of theAµ by their values (7.28) obtained
previously, we thus get:

∂2G

∂yxℓ1∂yxℓ2

=

n+1∑

µ=1

n+1∑

ν=1

�
µ

[01+ℓ1
]

�

�ν
[01+ℓ2

]

�

∂2T

∂aµ∂aν
+

+

n+1∑

µ=1

n+1∑

ν=1

{
�

µ

[01+ℓ1
]

�
·
� · ∂

∂aµ

(
�ν

[01+ℓ2
]

)
−�ν

[01+ℓ2
] · ∂

∂aµ

(
�
)

� ·�

}
∂T

∂aν
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Here, the coefficients of the∂2T
∂aµ∂aν will not be touched anymore, but the

coefficients of the∂T
∂aν must be subjected to further transformations towards

formal harmony, especially the numerator involving a subtraction.
First of all, let us rewrite in length the concerned partial derivative of the

appearing modified Jacobian determinant28:

∂
∂aµ

(
�ν

[01+ℓ2
]

)
= ∂

∂aµ

[
�
(
a1| · · · |aν−1|0[1+ℓ2]|aν+1| · · · |an+1

)]

= �
(
a1aµ| · · · |aν−1|0[1+ℓ2]|aν+1| · · · |an+1

)
+ · · ·+

+ �
(
a1| · · · |aν−1aµ|0[1+ℓ2]|aν+1| · · · |an+1

)

+ 0+

+ �
(
a1| · · · |aν−1|0[1+ℓ2]|aν+1aµ| · · · |an+1

)
+ · · ·+

+ �
(
a1| · · · |aν−1|0[1+ℓ2]|aν+1| · · · |an+1aµ

)
,

and also at the same time the partial derivative of the plain Jacobiant deter-
minant:

∂
∂aµ

(
�
)

= ∂
∂aµ

[
�
(
a1| · · · |aν−1|aν |aν+1| · · · |an+1

)]

= �
(
a1aµ| · · · |aν−1|aν |aν+1| · · · |an+1

)
+ · · ·+

+ �
(
a1| · · · |aν−1aµ|aν |aν+1| · · · |an+1

)
+

+ �
(
a1| · · · |aν−1|aνaµ|aν+1| · · · |an+1

)
+

+ �
(
a1| · · · |aν−1|aν |aν+1aµ| · · · |an+1

)
+ · · ·+

+ �
(
a1| · · · |aν−1|aν |aν+1| · · · |an+1aµ

)
.

Consequently, the numerator with a subtraction that we wantto simplify
may be rewritten in length as follows:

(7.28) � · ∂
∂aµ

(
�ν

[01+ℓ2
]

)
−�ν

[01+ℓ2
] · ∂

∂aµ

(
�
)

=

= �
(
a1| · · · |aν−1|aν |aν+1| · · · |an+1

)
·�
(
a1aµ| · · · |aν−1|0[1+ℓ2]|aν+1| · · · |an+1

)
8a

+ · · ·+

+ �
(
a1| · · · |aν−1|aν |aν+1| · · · |an+1

)
·�
(
a1| · · · |aν−1aµ|0[1+ℓ2]|aν+1| · · · |an+1

)
8b

+

+ 0+

+ �
(
a1| · · · |aν−1|aν |aν+1| · · · |an+1

)
·�
(
a1| · · · |aν−1|0[1+ℓ2]|aν+1aµ| · · · |an+1

)
8c

+ · · ·+

+ �
(
a1| · · · |aν−1|aν |aν+1| · · · |an+1

)
·�
(
a1| · · · |aν−1|0[1+ℓ2]|aν+1| · · · |an+1aµ

)
8d
−

28 Remind that, in order to differentiate a determinant, one should differentiate sepa-
rately each column once and then sum all the obtained terms.
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−�
(
a1| · · · |aν−1|0[1+ℓ2]|aν+1| · · · |an+1

)
·�
(
a1aµ| · · · |aν−1|aν |aν+1| · · · |an+1

)
8a
− · · · −

−�
(
a1| · · · |aν−1|0[1+ℓ2]|aν+1| · · · |an+1

)
·�
(
a1| · · · |aν−1aµ|aν |aν+1| · · · |an+1

)
8b
−

−�
(
a1| · · · |aν−1|0[1+ℓ2]|aν+1| · · · |an+1

)
·�
(
a1| · · · |aν−1|aνaµ|aν+1| · · · |an+1

)
OK
−

−�
(
a1| · · · |aν−1|0[1+ℓ2]|aν+1| · · · |an+1

)
·�
(
a1| · · · |aν−1|aν |aν+1aµ| · · · |an+1

)
8c
− · · ·−

−�
(
a1| · · · |aν−1|0[1+ℓ2]|aν+1| · · · |an+1

)
·�
(
a1| · · · |aν−1|aν |aν+1| · · · |an+1aµ

)
8d

.

The ante-penultimate underlined term “OK” will be kept untouched. To the
pairs of (subtracted)�-binomials that are underlined witha, b, c, d ap-
pended (including of course all terms present in the four “· · · ”), we need an
elementary instance of the Plücker identities.

To state it generally, letm > 2, let C1, C2, . . . , Cm, D,E be (m + 2)
column vectors inKm and introduce the following notation for them ×
(m+ 2) matrix consisting of these vectors:

[C1|C2| · · · |Cm|D|E] .

Extracting columns from this matrix, we shall constructm×m determinants
that are modification of the following “ground” determinant:

||C1| · · · |Cm|| ≡
∣∣∣∣C1| · · · |j1Cj1| · · · |j2Cj2| · · · |Cm

∣∣∣∣ .

We use a double vertical line in the beginning and in the end todenote a
determinant. Also, we emphasize two distinct columns, thej1-th and the
j2-th, wherej2 > j1, since we will modify them. For instance in this matrix,
let us replace these two columns by the columnD and by the columnE,
which yields the determinant:

∣∣∣∣C1| · · · |j1D| · · · |j2E| · · · |Cm

∣∣∣∣ .

In this notation, one should understand thatonly the j1-th and thej2-th
columns are distinct from the columns of the fundamentalm×m “ground”
determinant.

Lemma. ([17], p. 155)The following quadratic identity between determi-
nants holds true:
∣∣∣∣C1| · · · |j1D| · · · |j2E| · · · |Cn

∣∣∣∣ ·
∣∣∣∣C1| · · · |j1Cj1| · · · |j2Cj2| · · · |Cn

∣∣∣∣ =

=
∣∣∣∣C1| · · · |j1D| · · · |j2Cj2| · · · |Cn

∣∣∣∣ ·
∣∣∣∣C1| · · · |j1Cj1| · · · |j2E| · · · |Cn

∣∣∣∣−
−
∣∣∣∣C1| · · · |j1E| · · · |j2Cj2 | · · · |Cn

∣∣∣∣ ·
∣∣∣∣C1| · · · |j1Cj1| · · · |j2D| · · · |Cn

∣∣∣∣ .

Admitting this elementary statement without redoing its proof and ap-
plying it to all the above underlined pairs of (subtracted) monomials, after
checking that all final signs are “−”, we obtain the following neat expression
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for (7.28):

� · ∂
∂aµ

(
�ν

[01+ℓ2
]

)
−�ν

[01+ℓ2
] · ∂

∂aµ

(
�
)

=

= −�
(
0[1+ℓ2]| · · · |ν aν | · · · |an+1

)
·�
(
a1| · · · |ν a1aµ| · · · |an+1

)
− · · ·−

−�
(
a1| · · · |ν 0[1+ℓ2]| · · · |an+1

)
·�
(
a1| · · · |ν aνaµ| · · · |an+1

)
− · · ·−

−�
(
a1| · · · |ν aν | · · · |0[1+ℓ2]

)
·�
(
a1| · · · |ν an+1aµ| · · · |an+1

)
,

or equivalently, in contracted form:

� · ∂
∂aµ

(
�ν

[01+ℓ2
]

)
−�ν

[01+ℓ2
] · ∂

∂aµ

(
�
)

= −
n+1∑

τ=1

�τ
[01+ℓ2

] ·�ν
[aτ aµ].

Thanks to this sidework, coming back to the expression for∂
2G

∂y
xℓ1

∂y
xℓ2

we left

pending above, we obtain:

∂2G

∂yxℓ1∂yxℓ2

=
1

�2

n+1∑

µ=1

n+1∑

ν=1

{
�

µ
[01+ℓ1

] ·�ν
[01+ℓ2

]

} ∂2T

∂aµ∂aν
−

− 1

�3

n+1∑

µ=1

n+1∑

ν=1

n+1∑

τ=1

{
�

µ
[01+ℓ1

] ·�τ
[01+ℓ2

] ·�ν
[aµaτ ]

} ∂T

∂aν
.

To really finalize this expression, we factor everything by1
�3 and we ex-

change the two summation indicesν andτ in the second line:

∂2G

∂yxℓ1∂yxℓ2

=
1

�3

n+1∑

µ=1

n+1∑

ν=1

�
µ
[01+ℓ1

] ·�ν
[01+ℓ2

]

{
� · ∂2T

∂aµ∂aν
−

n+1∑

τ=1

�τ
[aµaν ] ·

∂T

∂aτ

}
.

End of proof of the Main Theorem.As already explained in the Introduc-
tion, one applies to the system (7.28) Hachtroudi’s characterization (7.28)
of equivalence to the systemw′

z′k1
z′k2

(z′) = 0 with x := z, with y := w, with

a := z, with b := w, with (a, b) := t, with Q := Θ, with � := ∆, with
G := Φk1,k2 and withT := ∂2Θ

∂zk1
∂zk2

. The denominator1
∆3 can be cleared

out, and we simply get the explicit fourth-order partial differential equation
satisfied byΘ. This completes the proof of our Main Theorem and the paper
may end up now.
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Journal of Mathematical Sciences (N. Y.), to appear

This memoir is divided in three parts29. Part I endeavours a general, new the-
ory (inspired by modern CR geometry) of Lie symmetries of completely integrable
PDE systems, viewed from their associated submanifold of solutions. Part II builds
general combinatorial formulas for the prolongations of vector fields to jet spaces.
Part III characterizes explicitly flatness of some systems of second order. The re-
sults presented here are original and did not appear in printelsewhere; most formu-
las of Parts II and III were checked by means of Maple Release 7.

§1. COMPLETELY INTEGRABLE SYSTEMS OF PARTIAL DIFFERENTIAL

EQUATIONS

1.1. General systems.Let K = R or C. Let n ∈ N with n > 1 and
let x = (x1, . . . , xn) ∈ Kn. Also, letm ∈ N with m > 1 and lety =
(y1, . . . , ym) ∈ Km. Forα ∈ Nn, we denote by a subscriptyxα the partial
derivative∂|α|y/∂xα of a local mapKn ∋ x 7→ y(x) ∈ Km.

Let κ ∈ N with κ > 1, let p ∈ N with p > 1, choose a collection of
p multiindicesβ(1), . . . , β(p) ∈ Nn with |β(q)| > 1 for q = 1, . . . , p and
max16q6p |β(q)| = κ, and choose integersj(1), . . . , j(p) with 1 6 j(q) 6

29Part II of [Me2005a] already appeared as [Me2005b].



234

m for q = 1, . . . , p. In the present Part I, we study the Lie symmetries of a
general system of analytic partial differential equationsof the form:

(E ) yj
xα(x) = F j

α

(
x, y(x),

(
y

j(q)

xβ(q)(x)
)
16q6p

)
,

wherej with 1 6 j 6 m andα ∈ Nn satisfy

(1.2)
(
j, α
)
6= (j, 0) and

(
j, α
)
6=
(
j(q), β(q)

)
.

In particular, all(κ + 1)-th partial derivatives of the unknowny = y(x)
depend on a certain precise set of derivatives of order6 κ: the system is
complete. In addition, all the other partial derivatives of order6 κ do also
depend on the same precise set of derivatives.

Here, we assume thatu = 0 is a local solution of the system (E ) and that
the functionsF j

α areK-algebraic (in the sense of Nash) orK-analytic, in a
neighborhood of the origin inKn+m+p. Even if our concern will be local
throughout, we will not introduce any special notation to speak of open sub-
sets and simply refer to variousKµ. We will study five concrete instances,
the first three ones being classical.

Example1.3. With n = m = κ = 1, a second order ordinary differential
equation

(E1) yxx = F (x, y, yx),

and more generallyyxκ+1 = F (x, y, yx, . . . , yxκ

)
, where x, y ∈ K,

see [Lie1883, EL1890, Tr1896, Ca1924, Se1931, Ca1932a, Ol1986,
Ar1988, BK1989, GTW1989, HK1989, Ib1992, Ol1995, N2003].

Example1.4. With n > 2, m = 1 andκ = 1, a complete system of second
order equations

(E2) yxi1xi2 = Fi1,i2

(
xi, y, yxk

)
, 1 6 i1, i2 6 n,

see [Ha1937, Ch1975, Su2001] and Part III below.

Example1.5. Dually, withn = 1, m > 2 andκ = 1, an ordinary system of
second order

(E3) yj
xx = F j

(
x, yj1, yj1

x

)
, j = 1, . . . , m,

see [Fe1995, Me2004] and the references therein.

Example1.6. With n = 1,m = 2 andκ = 1, a system of the form

(E4)

{
y2

x = F
(
x, y1, y2, y1

x

)

y1
xx = G

(
x, y1, y2, y1

x

)
.
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Differentiating the first equation with respect tox and substituting, we get
the missing equation:

(1.7)

y2
xx = Fx + y1

x Fy1 + y2
x Fy2 + y1

xx Fy1
x

= Fx + y1
x Fy1 + y2

x Fy2 +GFy1
x

=: H
(
x, y1, y2, y1

x

)
.

Example1.8. With n = 2,m = 1 andκ = 2, a system of the form

(E5)

{
yx2 = F

(
x1, x2, y, yx1, yx1x1

)

yx1x1x1 = G
(
x1, x2, y, yx1, yx1x1

)
.

Here, five equations are missing. Differentiating the first equation with re-
spect tox1 and substituting:

(1.9)

yx1x2 = Fx1 + yx1 Fy + yx1x1 Fy
x1

+ yx1x1x1 Fy
x1x1

= Fx1 + yx1 Fy + yx1x1 Fy
x1

+GFy
x1x1

=: H
(
x1, x2, y, yx1, yx1x1

)
,

and then similarly foryx2x2 , yx1x1x2, yx1x2x2 , yx2x2x2.

1.10. Finitely nondegenerate generic submanifolds ofCn+m. Exam-
ples 1.3, 1.4, 1.6 and 1.8 (butnot 1.5) are intrinsically linked to real sub-
manifolds of complex submanifolds.

Let M be a real algebraic or analytic local generic CR30 submanifold
of Cn+m of codimensionm > 1 and of CR dimensionn > 1, and let
p ∈M . Classically, there exists local holomorphic coordinatest = (z, w) ∈
Cn ×Cm centered atp in whichM is represented by

(1.11) wj = Θ
j
(z, z̄, w̄), j = 1, . . . , m,

for some localC-analytic mapΘ = (Θ1, . . . ,Θm) satisfying the identity

(1.12) w ≡ Θ
(
z, z̄,Θ(z̄, z, w)

)
,

reflecting the fact thatM is real.

Definition 1.13. ([BER1999, Me2005a, Me2005b, MP2005])M is finitely
nondegenerateif there exists an integerκ > 1 such that the local holomor-
phic map

(1.14) (z̄, w̄) 7−→
(
Θ

j

zβ(0, z̄, w̄)
)16j6m

|β|6κ

is of rankn+m at (z̄, w̄) = (0, 0).

30Fundamentals about Cauchy-Riemann geometry may be found in[Bo1991, BER1999,
Me2005a, Me2005b, MP2005].



236

From (1.12), the map̄w 7→ Θ(0, 0, w̄) is already of rankm at w̄ = 0.
One then verifies ([BER1999, Me2005a, Me2005b, MP2005]) that there ex-
ist multiindicesβ(1), . . . , β(n) ∈ Nn with |β(k)| > 1 for k = 1, . . . , n
andmax16k6n |β(k)| = κ together with integersj(1), . . . , j(n) with 1 6

j(k) 6 m such that the local holomorphic map
(1.15)

Cn+m ∋ (z̄, w̄) 7−→
((

Θ
j
(0, z̄, w̄)

)16j6m
,
(
Θ

j(k)

zβ(k)(0, z̄, w̄)
)

16k6n

)
∈ Cm+n

is of rankn+m at (z̄, w̄) = (0, 0).

1.16. Associated system of partial differential equations. Generalizing
an idea which goes back to B. Segre in [Se1931, Se1932] (n = m = 1),
applied by É. Cartan in [Ca1932a] and studied more recently in [Su2001,
GM2003a], we may associate toM a system of partial differential equa-
tions of the form (E ) as follows. Complexifying the variables̄z andw̄, we
introduce new independent variablesζ ∈ Cn andξ ∈ Cm together with the
complex algebraic or analyticm-codimensional submanifoldM of C2(n+m)

defined by

(1.17) wj = Θ
j
(z, ζ, ξ), j = 1, . . . , m.

We then consider the “dependent variables”wj as algebraic or analytic func-
tions of the “independent variables”zk, with additional dependence on the
extra “parameters”(ζ, ξ). Then by applying the differentiation∂|α|/∂zα

to (1.17), we getwj
zα(z) = Θ

j

zα(z, ζ, ξ). Assuming finite nondegeneracy
and writing these equations for(j, α) = (j(k), β(k)), we obtain a system of
m+ n equations:

(1.18)





wj(z) = Θ
j
(z, ζ, ξ), j = 1, . . . , m,

w
j(k)

zβ(k)(z) = Θ
j(k)

zβ(k)(z, ζ, ξ), k = 1, . . . , n.

By means of the implicit function theorem we can solve:

(1.19) (ζ, ξ) = R
(
zk, wj(z), w

j(k)

zβ(k)(z)
)
.

Finally, for every pair(j, α) different from (j, 0) and from (j(k), β(k)),
we may replace(ζ, ξ) by R in the differentiated expressionwj

zα(z) =

Θ
j

zα(z, ζ, ξ), which yields

(1.20)
wj

zα(z) = Θ
j

zα

(
z, R

(
zk, wj(z), w

j(k)

zβ(k)(z)
))

=: F j
α

(
zk, wj(z), w

j(k)

zβ(k)(z)
)
.

This is thesystem of partial differential equations associated toM .
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Example1.21. (Continued) Withn = m = 1, i.e. M ⊂ C2 andκ = 1, i.e.
M is Levi nondegenerate of equation

(1.22) w = w̄ + i zz̄ + O3,

wherez, z̄ are assigned weight 1 andw, w̄ weight 2, B. Segre [Se1931]
obtainedwzz = F (z, w, wz). J. Faran [Fa1980] found some examples of
such equations thatcannot come from aM ⊂ C2. But the following was
left unsolved.

Open problem1.23. Characterize equationsyxx = F (x, y, yx) associated to
a real analytic, Levi nondegenerate (i.e. κ = 1) hypersurfaceM ⊂ C2. Can
on read the reality condition (1.12) onF ? In case of success, generalize to
arbitraryM ⊂ Cn+m.

Example1.24. (Continued) Similarly, the system (E2) comes from a Levi
nondegenerate hypersurfaceM ⊂ Cn+1 ([Ha1937, CM1974, Ch1975,
Su2001]. Exercise: why (E3) cannot come from anyM ⊂ Cν ?

Example1.25. (Continued) Withn = 1, m = 2 andκ = 1, the system (E4)
comes from aM ⊂ C3 which is Levi nondegenerate and satisfies

(1.26) T cM + [T cM,T cM ] +
[
T cM, [T cM,T cM ]

]
= TM

at the origin, namely which has equations of the following form, after some
elementary transformations ([Be1997, BES2005]):

(1.27)
w1 = w̄1 + i zz̄ + O4,

w2 = w̄2 + i zz̄(z + z̄) + O4,

wherez, z̄ are assigned weight 1 andw1, w2, w̄1, w̄2 weight 2.

Example1.28. (Continued) Withn = 2, m = 1 andκ = 2, the system (E5)
comes from a hypersurfaceM ⊂ C3 of equation ([Eb1998, GM2003b,
FK2005a, FK2005b, Eb2006, GM2006]):

(1.29) w = w̄ + i
2 z1z̄1 + z1z1z̄2 + z̄1z̄1z2

1− z2z̄2
+ O4,

wherez1, z̄1, z2, z̄2 are assigned weight 1 andw, w̄ weight 2, with the
assumption that the Levi form has rank exactly one at every point, and with
the assumption thatM is 2-nondegenerate at0.

1.30. Jet spaces, contact forms and Frobenius integrability. Throughout
the present Part I, we assume that the system (E ) is completely integrable,
namely that the Pfaffian system naturally associated to (E ) in the appropriate
jet space is involutive in the sense of Frobenius. This holdsautomatically in
case (E ) comes from a generic submanifoldM ⊂ Cn+m. In general, we will
construct asubmanifold of solutionsassociated to (E ). So, we must explain
complete integrability.



238

We denote byJ κ
n,m the space ofκ-th jets of mapsKn ∋ x 7→ y(x) ∈ Km.

Let

(1.31)
(
xi, yj, yj

i1
, yj

i1,i2
, . . . . . . , yj

i1,i2,...,iκ

)
∈ Kn+m+mn+mn2+···+mnκ

,

denote the natural coordinates onJ κ
n,m ≃ Kn+m(1+n+···+nκ). For instance,

(x, y, y1) ∈J 1
1,1. We shall sometimes write them shortly:

(1.32)
(
xi, yj, yj

β

)
∈ Kn+m+m(n+···+nκ),

where β ∈ Nn varies and satisfies|β| 6 κ. Sometimes also, we
consider these jet coordinates only up to their symmetriesyj

i1,i2,...,iλ
=

yj
iσ(1),iσ(2),...,iσ(λ)

, whereσ is a permutation of{1, 2, . . . , λ}, so thatJ κ
n,m ≃

Kn+m Cκ
n+κ , with Cκ

n+κ := (n+κ)!
κ! n!

.
Having these notations at hand, we may develope the canonical system of

contact forms onJ κ
n,m ([Ol1995], [Stk2000]):

(1.33)





θj := dyj −
n∑

k=1

yj
k dx

k,

θj
i1

:= dyj
i1
−

n∑

k=1

yj
i1,k dx

k,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

θj
i1,...,iκ−1

:= dyj
i1,...,iκ−1

−
n∑

k=1

yj
i1,...,iκ−1,k dx

k.

For instance, withn = m = 1 andκ = 2, we haveθ1 = dy−y1 dx andθ1
1 =

dy1 − y2 dx. These (linearly independent) one-forms generate a subspace
C T κ

n,m of the cotangentT ∗J κ
n,m whose dimension equalsmCκ−1

n+κ−1. For
the duality between forms and vectors, the orthogonal(C T κ

n,m)⊥ in TJ κ
n,m

is spanned by then+mCκ
n+κ−1 vector fields:

(1.34)



Di :=
∂

∂xi
+

m∑

j1=1

yj1
i

∂

∂yj1
+ · · ·+

m∑

j1=1

n∑

k1,...,kκ−1=1

yj1
i,k1,...,kκ−1

∂

∂yj1
k1,...,kκ−1

,

T j1
i1,...,iκ

:=
∂

∂yj1
i1,...,iκ

,

the firstn ones being the total differentiation operators, considered in Part II.
Forn = m = 1, κ = 2, we get ∂

∂x
+ y1

∂
∂y

+ y2
∂

∂y1
and ∂

∂y2
.

Classically ([Ol1986, BK1989, Ol1995]), one associates to(E ) its skele-
ton∆E , namely the(n+m+ p)-dimensional submanifold ofJ κ+1

n,m simply
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defined by the graphed equations:

(1.35) yj
α = F j

α

(
x, y,

(
y

j(q)
β(q)

)
16q6p

)
,

for
(
j, α
)
6= (j, 0) and 6=

(
j(q), β(q)

)
with |α| 6 κ+ 1. Clearly, the natural

coordinates on∆E are:
(1.36)(

x, y,
(
y

j(q)
β(q)

)
16q6p

)
≡
(
x, y,

(
y

j(q)
l1(q),...,lλq (q)

)
16q6p

)
∈ Kn ×Km ×Kp,

whereλq := |β(q)| and
(
l1(q), . . . , lλq(q)

)
:= β(q).

Next, in view of the form (1.34) of the generators of(C T κ+1
n,m)⊥ and in

view of the equations of∆E , the intersection

(1.37) (C T κ+1
n,m)⊥ ∩ T∆E

is a vector subbundle ofT∆E that is generated byn linearly independent
vector fields obtained by restricting theDi to ∆E , which yields:

(1.38)





Di =
∂

∂xi
+

m∑

j=1

A
j
i

(
xi1 , yj1, y

j(q1)
β(q1)

) ∂

∂yj
+

+

p∑

q=1

B
q
i

(
xi1 , yj1, y

j(q1)
β(q1)

) ∂

∂y
j(q)
β(q)

,

i = 1, . . . , n, where the coefficientsAj
i andB

q
i are given by:

(1.39)

A
j
i :=

{
yj

i if the variableyj
i appears among thep variablesyj(q1)

β(q1)
;

F j
i otherwise;

B
q
i :=




y

j(q)
i,l1(q),...,lλq (q) if yj(q)

l1(q),...,lλq(q)
appears among thep variablesyj(q1)

β(q1)
;

F
j(q)
i,l1(q),...,lλq (q) otherwise.

Example1.40. For (E1), we getD = ∂
∂x

+ y1
∂
∂x

+ F (x, y, y1)
∂

∂y2
; exercise:

treat (E2) and (E3). For (E4), we getD = ∂
∂x

+ y1
1

∂
∂y1 + F ∂

∂y2 + G ∂
∂y1

1
. For

(E5), whose skeleton is writteny2 = F , y1,1,1 = G, y1,2 = H, y1,1,2 = K,
with F ,G,H,K being functions of

(
x1, x2, y, y1, y1,1

)
, we get

(1.41)

D1 =
∂

∂x1
+ y1

∂

∂y
+ y1,1

∂

∂y1
+G

∂

∂y1,1
,

D2 =
∂

∂x2
+ F

∂

∂y
+H

∂

∂y1

+K
∂

∂y1,1

.

Definition 1.42. The system (E ) is completely integrableif the n vector
fields (1.38) satisfy the Frobenius integrability condition, namely every Lie
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bracket[Di1 ,Di2 ], 1 6 i1, i2 6 n, is a linear combination of the vector fields
D1, . . . ,Dn.

Because of their specific form (1.38), we must then have in fact
[Di1 ,Di2] = 0. Forn = 1, the condition is of course void.

§2. SUBMANIFOLD OF SOLUTIONS

2.1. Fundamental foliation of the skeleton.As the vector fieldsDi com-
mute, they equip the skeleton∆E ≃ Kn+m+p with a foliation F∆E

by n-
dimensional integral manifolds which are (approximately)directed along
thex-axis. We draw a diagram (see only the left side).

x0

b

a, b

y

x

ya

0

D

D

D D

D

exp(xD)(0, a, b)

M(E )

yx

The (abstract, not numerical) integration of (E ) is thus straightforwardly
completed: the set of solutions coincides with the set of leaves ofF∆E

. This
is the true geometric content, viewed in the appropriate jetspace, of the
assumption of complete integrability.

2.2. General solution and submanifold of solutions.To construct the sub-
manifold of solutionsM(E ) associated to (E ) (sketched in the right hand
side), we execute some elementary analytico-geometric constructions.

At first, we duplicate the coordinates
(
y

j(q)
β(q), y

j
)
∈ Kp × Km by intro-

ducing a new subspace of coordinates(a, b) ∈ Kp × Km; thus, on the left
diagram, we draw a vertical plane together witha- andb-axes. The leaves
of the foliationF∆E

are uniquely determined by their intersections with this
plane, consisting of points of coordinates(0, a, b) ∈ Kn ×Kp ×Km.

Such points(0, a, b) correspond to theinitial conditions
(
y

j(q)

xβ(q)(0), y(0)
)

for the general solution of(E ). In fact, the (concatenated, multiple) flow of
{D1, . . . ,Dn} is given by
(2.3)
exp

(
xnDn

(
· · · (exp(x1D1(0, a, b))) · · ·

))
=
(
x,Π(x, a, b),Ω(x, a, b)

)
∈ Kn×Km×Kp,
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for some two local analytic mapsΠ = (Π1, . . . ,Πm) andΩ = (Ω1, . . . ,Ωp)
and the next lemma is straightforward.

Lemma 2.4. The general solution of(E ) is

(2.5) y(x) := Π(x, a, b),

where(a, b) varies inKp ×Km. Furthermore, forq = 1, . . . , p:

(2.6) Ωq(x, a, b) ≡ Π
j(q)

xβ(q)(x, a, b).

This leads to introducing a fundamental geometric object.

Definition 2.7. The submanifold of solutionsVS (E ) associated to (E ) is
the analytic submanifold ofKn

x ×Km
y ×Kp

a ×Km
b defined by the Cartesian

equations:

(2.8) 0 = −yj + Πj(x, a, b), j = 1, . . . , m.

There is a strong interplay between the study of(E ) and the geometry of
VS (E ). By construction, the diffeomorphism:
(2.9)



A : Kn+p+m [coordinates (xi, aq, bj)] −→ Kn+m+p

[
coordinates

(
xi, yj, y

j(q)
β(q)

)]

A (xi, aq, bj) :=
(
xi, Πj(x, a, b), Π

j(q)

xβ(q)(x, a, b),
)
,

sends thefoliation Fv by thevariablesx whose leaves are{a = cst., b =
cst.} (see the diagram), to the previous foliationF∆E

.

2.10.PDE system associated to a submanifold.Inversely, letM be a sub-
manifold ofKn

x ×Km
y ×Kp

a ×Km
b of the form

(2.11) yj = Πj(x, a, b), j = 1, . . . , m.

A necessary condition for it to be the complexification of a genericM ⊂
Cn+m is thatp = n (answer to an exercise above).

Definition 2.12. M is solvable with respect to the parametersif
b 7→ Π(0, 0, b) of rank m at b = 0 and if there existκ > 1, mul-
tiindices β(1), . . . , β(p) ∈ Nn with |β(q)| > 1 for q = 1, . . . , p
and max16q6p |β(q)| = κ, together with integersj(1), . . . , j(p) with
1 6 j(q) 6 m such that the localK-analytic map
(2.13)

Km+p ∋ (a, b) 7−→
((

Πj(0, a, b)
)16j6m

,
(
Π

j(q)

xβ(q)(0, a, b)
)

16q6p

)
∈ Km+p

is of rank equal tom+ p at (a, b) = (0, 0)
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WhenM is the submanifold of solutions of a system (E ), it is automati-
cally solvable with respect to the variables, the pairs(j(q), β(q)) being the
same as in the arguments of the right hand sidesF j

α in (E ). Proceeding as
in §1.16, we may associate toM a system of the form (E ). Since we need
introduce some new notation, let us repeat the argument.

Consideringy = y(x) = Π(x, a, b) as a function ofx with extra param-
eters(a, b) and applying∂|α|

/
∂xα, we getyj

xα(x) = Πj
xα(x, a, b). Writing

only the relevant(m+ p) equations:

(2.14)

{
yj(x) = Πj(x, a, b),

y
j(q)

xβ(q) = Π
j(q)

xβ(q)(x, a, b),

the assumption of solvability with respect to parameters enables to get

(2.15)





aq = Aq

(
xi, yj, y

j(q1)
β(q1)

)
,

bj = Bj
(
xi, yj1, y

j(q)
β(q)

)
.

For every(j, α) 6= (j, 0) and 6= (j(q), β(q)), we then replace(a, b) in yj
xα =

Πj
xα:

(2.16)
yj

xα(x) = Πj
xα

(
x,A

(
xi, yj1(x), y

j(q)
β(q)(x)

)
, B
(
xi, yj1(x), y

j(q)
β(q)(x)

))

=: F j
α

(
xi, yj1(x), y

j(q)

xβ(q)(x)
)
.

Proposition 2.17.There is a one-to-one correspondence

(2.18) (EM ) = (E )←→M = M(E ),

between completely integrable systems of partial differential equations of
the general form(E ) and submanifolds(of solutions) M of the form(2.11)
which are solvable with respect to the parameters. Of course

(2.19)
(
EM(E )

)
= (E ) and M(EM ) = M .

2.20. Transfer of total differentiations. We notice that the auxiliary func-
tionsAq andBj enable to express the inverse ofA:
(2.21)

A−1 :
(
xi1 , yj1, y

j(q1)
β(q1)

)
7−→

(
xi, Aq

(
xi1 , yj1, y

j(q1)
β(q1)

)
, Bj

(
xi1 , yj1, y

j(q1)
β(q1)

))
.

More importantly, the total differentiation operator considerably simplifies
when viewed onM . This observation is useful for translating differential
invariants of (E ) as differential invariants ofM .

Lemma 2.22.ThroughA, for i = 1, . . . , n, the pull-back of the total differ-
entiation operatorDi is simply ∂

∂xi , or equivalently:

(2.23) A∗

( ∂

∂xi

)
= Di.
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Proof. Let ℓ = ℓ
(
xi, yj, y

j(q)
β(q)

)
be any function defined on∆E . Composing

with A yields the functionΛ := ℓ ◦ A, i.e.

(2.24) Λ(x, a, b) ≡ ℓ
(
xi,Πj(x, a, b),Π

j(q)

xβ(q)(x, a, b)
)
.

Differentiating with respect toxi, we get, dropping the arguments:

(2.25)
∂Λ

∂xi
=

∂ℓ

∂xi
+

m∑

j=1

Πj
xi

∂ℓ

∂yj
+

p∑

q=1

Π
j(q)

xixβ(q)

∂ℓ

∂y
j(q)

xβ(q)

.

Replacing the appearingΠj
xα for which (j, α) 6= (j, 0) and 6= (j(q), β(q))

byF j
α, we recoverDi as defined by (1.38), whence∂Λ

∂xi = Diℓ.

2.26. Transfer of algebrico-differential expressions.The diffeomorphism
A may be used to translate algebrico-differential expressions fromM to (E )
and vice-versa:

(2.27) IM
(
Jλ+κ+1

x,a,b Π
)
←→ I(E )

(
Jλ

x,y,y1
F
)
.

Here,λ ∈ N, the letterJ is used to denote jets, andI = IM or = I(E ) is a
polynomial or more generally, a quotient of polynomials with respect to its
jet arguments. Notice the shift byκ+ 1 of the jet orders.

Example2.28. Supposen = m = 1 andκ = 1. ThenF = Πxx. As an
exercise, let us computeFx, Fy, Fy1 in terms ofJ3

x,a,b Π. We start with the
identity

(2.29) F (x, y, y1) ≡ Πxx

(
x,A(x, y, y1), B(x, y, y1)

)
,

that we differentiate with respect tox, to y and toy1:

(2.30)

Fx = Πxxx + ΠxxaAx + ΠxxbBx,

Fy = ΠxxaAy + ΠxxbBy,

Fy1 = ΠxxaAy1 + ΠxxbBy1 .

Thus, we need to computeAx,Ay,Ay1,Bx,By,By1 . This is easy: it suffices
to differentiate the two identities that defineA andB as implicit functions,
namely:

(2.31)
y ≡ Π

(
x,A(x, y, y1), B(x, y, y1)

)
and

y1 ≡ Πx

(
x,A(x, y, y1), B(x, y, y1)

)

with respect tox, to y and toy1, which gives six new identities:

(2.32)

0 = Πx + ΠaAx + ΠbBx, 0 = Πxx + ΠxaAx + ΠxbBx,

1 = ΠaAy + ΠbBy, 0 = ΠxaAy + ΠxbBy

0 = ΠaAy1 + ΠbBy1 , 1 = ΠxaAy1 + ΠxbBy1 ,

and to solve each of the three linear systems of two equationslocated in
a line, noticing that their common determinantΠb Πxa − Πa Πxb does not
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vanish at the origin, sinceΠ = b+xa+O3. By elementary Cramer formulas,
we get:

(2.33)





Ax =
−Πb Πxx + Πx Πxb

Πb Πxa − Πa Πxb

, Bx =
−Πx Πxa + Πa Πxx

Πb Πxa − Πa Πxb

,

Ay =
−Πxb

Πb Πxa − Πa Πxb

, By =
Πxa

Πb Πxa −Πa Πxb

,

Ay1 =
Πb

Πb Πxa − Πa Πxb

, By1 =
−Πa

Πb Πxa −Πa Πxb

.

Replacing in (2.30), no simplification occurs and we get whatwe wanted:
(2.34)




Fx = Πxxx +
Πxxa

[
− Πb Πxx + Πx Πxb

]
+ Πxxb

[
− Πx Πxa + Πa Πxx

]

Πb Πxa − Πa Πxb

,

Fy =
−Πxxa Πxb + Πxxb Πxa

Πb Πxa − Πa Πxb

,

Fy1 =
Πxxa Πb − Πxxb Πa

Πb Πxa − Πa Πxb
,

One seesDF = Fx + Πx Fy + Πxx Fy1 = Πxxx simply, as predicted by
Lemma 2.22.

Second order derivativesFxx, Fxy, Fxy1, Fyy, Fyy1 , Fy1y1 have still rea-
sonable complexity, when expressed in terms ofJ4

x,a,b Π. Beyond, the com-
putations explode.

Open question2.35. A second order ordinary differential equationyxx =
F (x, y, yx) has two fundamental differential invariants, namely ([Tr1896,
Ca1924, GTW1989, Ol1995]):
(2.36)

I1(E1) :=
∂4F

∂y4
1

and

I2(E1) := DD
(
Fy1y1

)
− Fy1 D

(
Fy1y1

)
− 4 D

(
Fyy1

)
+ 6Fyy − 3Fy Fy1y1 + 4Fy1 Fyy1 .

ComputeI1M1
andI2M1

.

Although the notion of diffeomorphism is clear and apparently obvious
from the intuitive, geometric and conceptual viewpoints, in concrete ap-
plications and in explicit computations, it almost never straightforward to
transfer algebrico-differential objects.

Open problem2.37. For general (E ) and M , build closed combinatorial
formulas executing the double translation (2.27).

2.38. Plan for the sequel.We will endeavour a general theory showing that
the study of systems (E ) and the study of submanifolds of solutionsM gives
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complementary views on the same object. In fact, Lie symmetries, equiv-
alence problems, Cartan connections, normal forms and classification lists
may be endeavoured on both sides, yielding essentially equivalent results,
though the translation is seldom straightforward. In Section 3, 4 and 5, we
review some features from the side (E ), before studying some aspects from
the side ofM . A more systematic and complete approach shall appear as a
monography.

§3. CLASSIFICATION PROBLEMS

3.1. Transformations ofPDE systems.Through a localK-analytic change
of variables close to the identity(x, y) 7→ ϕ(x, y) =: (x′, y′), the system (E )
transforms to a similar system, with primes:

(E ′) y′
j
x′α(x′) = F ′j

α

(
x′, y′(x′),

(
y′

j(q)

x′β(q)(x
′)
)
16q6p

)
.

Example3.2. Coming back temporarily to the notations of §1.12(II), with
n = m = κ = 1, assume thatyxx = f(x, y, yx) transforms to
YXX = F (X, Y, YX) through a local diffeomorphism(x, y) 7→ (X, Y ) =(
X(x, y), Y (x, y)

)
. How F is related tof ? By symmetry, it suffices to

computef in terms ofF ,X, Y . The prolongation toJ 2
1,1 of the diffeomor-

phism has components ([BK1989, Me2004]):

(3.3) YX =
Yx + yx Yy

Xx + yxXy
,

and
(3.4)

YXX =
1

[
Xx + yxXy

]3
(
yxx ·

∣∣∣∣
Xx Xy

Yx Yy

∣∣∣∣+
∣∣∣∣
Xx Xxx

Yx Yxx

∣∣∣∣+

+yx ·
{

2

∣∣∣∣
Xx Xxy

Yx Yxy

∣∣∣∣−
∣∣∣∣
Xxx Xy

Yxx Yy

∣∣∣∣
}

+

+yxyx ·
{∣∣∣∣

Xx Xyy

Yx Yyy

∣∣∣∣− 2

∣∣∣∣
Xxy Xy

Yxy Yy

∣∣∣∣
}

+

+yxyxyx ·
{
−
∣∣∣∣
Xyy Xy

Yyy Yy

∣∣∣∣
})

.
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It then suffices to replaceYXX above byF (X, Y, YX) and to solveyxx:
(3.5)

yxx =
1∣∣∣∣

Xx Xy

Yx Yy

∣∣∣∣

([
Xx + yxXy

]3
F

(
X, Y,

Yx + yx Yy

Xx + yxXy

)
−
∣∣∣∣
Xx Xxx

Yx Yxx

∣∣∣∣+

+yx ·
{
−2

∣∣∣∣
Xx Xxy

Yx Yxy

∣∣∣∣+
∣∣∣∣
Xxx Xy

Yxx Yy

∣∣∣∣
}

+

+yxyx ·
{
−
∣∣∣∣
Xx Xyy

Yx Yyy

∣∣∣∣+ 2

∣∣∣∣
Xxy Xy

Yxy Yy

∣∣∣∣
}

+

+yxyxyx ·
{∣∣∣∣

Xyy Xy

Yyy Yy

∣∣∣∣
})

=: f(x, y, yx).

Open problem3.6. Find general formulas expressing theF j
α in terms ofF ′j

α,
x′i, y′j.

Conversely, given two such systems (E ) and (E ′), when do they transform
to each other? Letπ′

κ,p denote the projection fromJ ′κ+1
n,m to ∆E ′ defined

by

(3.7) π′
κ,p

(
x′

i
, y′

j
, y′

j
i1 , . . . , y

′j
i1,...,iκ+1

)
:=
(
x′

i
, y′

j
, y′

j(q)
β(q)

)
.

Letϕ(κ+1) be the(κ+ 1)-th prolongation ofϕ (Section 1(II)).

Lemma 3.8. ([Ol1986, BK1989, Ol1995])The following three conditions
are equivalent:

(1) ϕ transforms(E ) to (E ′);

(2) its (κ+1)-th prolongationϕ(κ+1) : J κ+1
n,m →J ′κ+1

n,m maps∆E to ∆E ′ ;

(3) ϕ(κ+1) : J κ+1
n,m →J ′κ+1

n,m maps∆E to ∆E ′ and the associated map

(3.9) ΦE ,E ′ := π′
κ,p ◦

(
ϕ(κ+1)

∣∣
∆E

)

sends every leaf ofF∆E
to some leaf ofF∆E ′ .

Equivalence problem 3.10.Find an algorithm to decide whether two given
(E ) and(E ′) are equivalent.

Élie Cartan’s widely applicable method (not reviewed here;[Ca1937,
Ste1983, G1989, HK1989, Fe1995, Ol1995]) provides an answer “in prin-
ciple” to this question by reducing to an{e}-structure an initial G-structure
associated to (E ). Due to the incredible size-length-complexity of the un-
derlying computations, this approach almost never abutes:it is forced to
incompleteness. But in fact, the main question is to classify.
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Classification problem 3.11. Classify systems(E ), namely provide com-
plete lists of all possible such equations written in simplified “normal”, eas-
ily recognizable forms.

Both problems are deeply linked to the classification of Lie algebras of
local vector fields. Forn = 1, m = 1 andκ = 1, namely (E1): yxx =
F (x, y, yx), Lie and Tresse solved the two problems31. Table 7 of [Ol1986],
below reproduced, describes the results.

Symmetry group Dimension Invariant equation
(1) 0 yxx = F (x, y, yx)
(2) ∂y 1 yxx = F (x, yx)
(3) ∂x, ∂y 2 yxx = F (yx)
(4) ∂x, ex∂y 2 yxx − yx = F (yx − y)
(5) ∂x, ∂x − y∂y, x2∂x − 2xy∂y 3 yxx = 3y2

x

2y
+ cy3

(6) ∂x, x∂x − y∂y, 3 yxx = 6yyx − 4y3+
x2∂x − (2xy + 1)∂y +c(yx − y2)3/2

(7) ∂x, ∂y, x∂x + αy∂y, 3 yxx = c(yx)
α−2
α−1

α 6= 0, 1
2
, 1, 2

(8) ∂x, ∂y, x∂x + (x+ y)∂y 3 yxx = ce−yx

(9) ∂x, ∂y, y∂x, x∂y, y∂y, 8 yxx = 0
x2∂x + xy∂y, xy∂x + y2∂y

Table 1.

However, the author knows no modern reference offering a complete
proof of this classification, with precise insight on the assumptions (some
normal forms hold true only at a generic point). In addition,the above Lie-
Tresse list is still slightly incomplete in the sense that itdoes not precise
which are the conditions satisfied byF (Table 7 in [Ol1986]) insuring in the
first four lines thatSYM(E1) is indeed of small dimension0, 1 or 2.

Open question3.12. Specify some precise nondegeneracy conditions upon
F in the first four lines of Table 1.

§4. PUNCTUAL AND INFINITESIMAL L IE SYMMETRIES

4.1. Lie symmetries of(E ). Let ϕ = (φ, ψ) be a diffeomorphism ofKn
x ×

Kn
y as in (1.7)(II).

31The author knows no complete confirmation of the Lie-Tresse classification by means
of É. Cartan’s method of equivalence.
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Definition 4.2. ([Ol1986, Ol1995, BK1989])ϕ is a (local) Lie symmetry
of (E ) if it transforms the graph of every solution of (E ) into the graph of
another solution.

To explain, we must pass to jet spaces. Denote the componentsof the
(κ+ 1)-th prolongationϕ(κ+1) : J κ+1

n,m →J κ+1
n,m by

(4.3) ϕ(κ+1) =
(
φi1 , ψj1,Φj

i1
,Φj

i1,i2
, . . . . . . ,Φj

i1,i2,...,iκ+1

)
.

The restrictionϕ(κ+1)
∣∣
∆E

is obtained by replacing each jet variableyj
α by

F j
α, whenever(j, α) 6= (j, 0) and 6= (j(q), β(q)), and wherever it appears32

in theΦj
i1,...,iλ

.
Let πκ,p denote the projection fromJ κ+1

n,m to ∆E ≃ Km+n+p defined by

(4.4) πκ,p

(
xi, yj, yj

i1
, . . . , yj

i1,...,iκ+1

)
:=
(
xi, yj, y

j(q)
β(q)

)
,

and introduce the map

(4.5) ϕ∆E
:= πκ,p ◦

(
ϕ(κ+1)

∣∣
∆E

)
≡
(
ϕ(xi, yj),Φ

j(q)
β(q)

(
xi, yj, y

j(q1)
β(q1)

))
.

Lemma 4.6. ([Ol1986, Ol1995, BK1989], [∗]) The following three condi-
tions are equivalent:

(1) the diffeomorphismϕ is a Lie symmetry of(E );
(2) ϕ(κ+1)

∣∣
∆E

sends∆E to ∆E ;

(3) ϕ(κ+1)
∣∣
∆E

sends∆E to ∆E andϕ∆E
= πκ,p

(
ϕ(κ+1)

∣∣
∆E

)
is a symmetry

of the foliationF∆E
, namely it sends every leaf to some other leaf.

Then the set of Lie symmetries of(E ) constitutes a local Lie
(pseudo)group.

4.7. Infinitesimal Lie symmetries of(E ). Let

(4.8) L =
n∑

i=1

X i(x, y)
∂

∂xi
+

m∑

j=1

Y j(x, y)
∂

∂yj
,

be a (local) vector field onKn+m having analytic coefficients. Denote its
flow by ϕt(x, y) := exp(tL )(x, y), t ∈ K. As in Section 1(II), by differ-
entiating the prolongation(ϕt)

(κ+1) with respect tot at t = 0, we get the
prolonged vector fieldL (κ+1) onJ κ+1

n,m , having the general form (Part II):
(4.9)

L (κ+1) = L +

m∑

j=1

n∑

i1=1

Y
j
i1

∂

∂yj
i1

+· · ·+
m∑

j=1

n∑

i1,...,iκ+1=1

Y
j
i1,...,iκ+1

∂

∂yj
i1,...,iκ+1

,

with known explicit expressions for theYj
i1,...,iλ

.

32Remind from Section 1(II) that we have not (open problem) provided a complete ex-
plicit expression ofΦj

i1,...,iλ
for generaln > 1, m > 1 andλ > 1.
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Definition 4.10. L is aninfinitesimal symmetryof (E ) if for every smallt,
its time-t flow mapϕt is a Lie symmetry of (E ).

The restrictionL (κ+1)
∣∣
∆E

is obtained by replacing everyyj
α by F j

α in all

coefficientsYj
i1
, . . . ,Yj

i1,...,iκ+1
. Then the coefficients become functions of(

xi1 , yj1, y
j(q1)
β(q1)

)
only.

Lemma 4.11. ([Ol1986, Ol1995, BK1989], [∗]) The following three condi-
tions are equivalent:

(1) the vector fieldL is an infinitesimal Lie symmetry of(E );

(2) its (κ+ 1)-th prolongationL (κ+1) is tangent to the skeleton∆E ;

(3) L (κ+1) is tangent to∆E and the push-forward

(4.12) L∆E
:= (πκ,p)∗

(
L (κ+1)

∣∣
∆E

)

is an infinitesimal symmetry of the foliationF∆E
, namely for every

i = 1, . . . , n, the Lie bracket
[
L∆E

, Di

]
is a linear combination of

{D1, . . . ,Dn}.
According to [Ol1986, BK1989, Ol1995], the set of infinitesimal Lie sym-

metries constitutes a Lie algebra, with the property
[
L (κ+1), L ′(κ+1)

]
=[

L ,L ′](κ+1)
. We summarize by a diagram.

∆E

πκ

∆E

πκ,p πκ,p

πp πp

πκ

L∆E

Kn
x × Km

y LKn
x × Km

y

ϕ∆E

ϕ

ϕ(κ+1)

J κ+1
n,m J κ+1

n,m L (κ+1)

4.13. Sophus Lie’s algorithm.We describe the general process. Its com-
plexity will be exemplified in Section 5 (to be read simultaneously).

The tangency ofL (κ+1) to ∆E is expressed by applyingL (κ+1) to the
equations0 = −yj

α + F j
α, which yields:

(4.14) 0 = −Yj
α +

n∑

i=1

X i ∂F
j
α

∂xi
+

n∑

l=1

Y l ∂F
j
α

∂yl
+

p∑

q=1

Y
j(q)
β(q)

∂F j
α

∂y
j(q)
β(q)

,

for (j, α) 6= (j, 0) and 6= (j(q), β(q)). Restricting a coefficientYj
i1,...,iλ

to
∆E , namely replacing everywhere in it eachyj

α byF j
α, provides a specialized
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coefficient

(4.15) Ŷ
j
i1,...,iλ

= Ŷ
j
i1,...,iλ

(
xi1 , yj1, y

j(q1)
β(q1)

, Jλ
x,yX

i1 , Jλ
x,yY

j1
)
,

that dependslinearly on theλ-th jet of the coefficients ofL , as con-
firmed by an inspection of Part II’s formulas. Here, we use thejet notation
Jλ

x,yZ :=
(
∂α1

x ∂β1
y Z

)
|α1|+|β1|6λ

. We thus get equations

(4.16) 0 ≡ −Ŷj
α +

n∑

i=1

X i ∂F
j
α

∂xi
+

n∑

l=1

Y l ∂F
j
α

∂yl
+

p∑

q=1

Ŷ
j(q)
β(q)

∂F j
α

∂y
j(q)
β(q)

,

involving only the variables
(
xi1 , yj1, y

j(q1)
β(q1)

)
.

Next, we develope every such equation with respect to the powers of
y

j(q1)
β(q1)

:
(4.17)
0 ≡

∑

µ1,...,µp>0

(y
j(1)
β(1))

µ1 · · · (yj(p)
β(p))

µp Ψj
α,µ1,...,µp

(
xi1 , yj1, Jκ+1

x,y X i1 , Jκ+1
x,y Y j1

)
.

TheΨj
α,µ1,...,µp

arelinear with respect to
(
Jκ+1

x,y X i1 , Jκ+1
x,y Y j1

)
, with certain

coefficients analytic with respect to(x, y), which depend intrinsically (but
in a complex manner) on the right hand sidesF j

α.

Proposition 4.18. The vector fieldL is an infinitesimal Lie symmetry of
(E ) if and only if its coefficientsX i1 , Y j1 satisfy the linearPDE system:

(4.19) 0 = Ψj
α,µ1,...,µp

(
xi1 , yj1, Jκ+1

x,y X i1 , Jκ+1
x,y Y j1

)

for all (j, α) 6= (j, 0) and 6= (j(q), β(q)) and for all (µ1, . . . , µp) ∈ Np.

In all known instances, a finite number of these equations suffices.

Example4.20. With n = m = κ = 1, a second prolongationL (2) =
X ∂

∂x
+ Y ∂

∂y
+ Y1

∂
∂y1

+ Y2
∂

∂y2
is tangent to the skeleton0 = −y2 +

F (x, y, y1) of (E1) if and only if 0 = −Y2 + X Fx + Y Fy + Y1 Fy1 , or,
developing:
(4.21)



0 = −Yxx +
[
− 2 Yxy + Xxx

]
y1 +

[
− Yyy + 2 Xxy

]
(y1)

2 +
[
Xyy

]
(y1)

3+

+
[
− Yy + 2 Xx

]
F +

[
3 Xy

]
y1 F +

[
X
]
Fx +

[
Y
]
Fy+

+
[
Yx

]
Fy1 +

[
Yy −Xx

]
y1 Fy1 +

[
−Xy

]
(y1)

2 Fy1 .

DevelopingF =
∑

k>0 (y1)
k Fk(x, y), we may obtain equations (4.19).

§5. EXAMPLES

5.1. Second order ordinary differential equation. Pursuing the study of
(E1), according to Section 7 below, we may assume thatF = O(yx), or
equivalentlyF (x, y, 0) ≡ 0.
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Convention5.2. The lettersR will denote various functions of(x, y, y1),
changing with the context. Similarly,r = r(x, y), excluding the pure jet
variabley1. Hence, symbolically:

(5.3) R = r + y1 r + (y1)
2 r + (y1)

3 r + · · · .

So the skeleton is

(5.4) y2 = F (x, y, y1) = y1 R = y1 r + (y1)
2 r + (y1)

3 r + · · · .

Applying L (2), see (2.3)(II) for its expression, we get:

(5.5) 0 = −Y2 + X Fx + Y Fy + Y1 Fy1 .

Observe thatFx = (y1 R)x = r y1+r (y1)
2+· · · and similarly forFy, but that

(y1 R)y1 = r + r y1 + r (y1)
2 + · · · . Inserting aboveY1, Y2 given by (2.6)(II),

replacingy2 by y1 R and computingmod (y1)
4, we get:

(5.6)
0 ≡− Yxx +

[
− 2 Yxy + Xxx

]
y1 +

[
− Yyy + 2 Xxy

]
(y1)

2 +
[
Xyy

]
(y1)

3+

+
[
− Yy + 2 Xx

] (
y1 r + (y1)

2 r + (y1)
3 r
)

+
[
3 Xy

] (
(y1)

2 r + (y1)
3 r
)
+

+
[
X
] (
y1 r + (y1)

2 r + (y1)
3 r
)

+
[
Y
] (
y1 r + (y1)

2 r + (y1)
3 r
)
+

+
[
Yx

] (
r + y1 r + (y1)

2 r + (y1)
3 r
)
+

+
[
Yy −Xx

] (
y1 r + (y1)

2 r + (y1)
3 r
)

+
[
−Xy

] (
(y1)

2 r + (y1)
3 r
)
.

We gather the powerscst., y1, (y1)
2 and(y1)

3, equating their coefficients to
0:

(5.7)

0 = −Yxx + P
(
Yx

)
,

0 = −2 Yxy + Xxx + P
(
Yy,Xx,X ,Y ,Yx

)
,

0 = −Yyy + 2 Xxy + P
(
Yy,Xx,Xy,X ,Y ,Yx

)
,

0 = Xyy + P
(
Yy,Xx,Xy,X ,Y ,Yx

)

Convention5.8. The letterP will denote variouslinear combinations of
some precise partial derivatives ofX , Y which have analytic coefficients
in (x, y).

By cross-differentiations and substitutions in the above system, all
third, fourth, fifth, etc. order derivatives ofX ,Y may be expressed as
P
(
X ,Y ,Xx,Xy,Yx,Yy,Yxy,Yyy

)
.

Proposition 5.9. An infinitesimal Lie symmetryX ∂
∂x

+ Y ∂
∂y

of (E1) is
uniquely determined by the eight initial Taylor coefficients:

(5.10) X (0), Y (0), Xx(0), Xy(0), Yx(0), Yy(0), Yxy(0), Yyy(0).
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The bound dimSYM(E1) 6 8 is attained withF = 0, whence allP = 0
and

(5.11)





A := ∂y, E := y ∂y,

B := ∂x, F := y ∂x,

C := x ∂y, G := xx ∂x + xy ∂y,

D := x ∂x, H := xy ∂x + yy ∂y.

are infinitesimal generators of the group PGL3(K) = Aut(P2(K)) of pro-
jective transformations

(5.12) (x, y) 7→
(
αx+ βy + γ

λx+ µy + ν
,
δx+ ηy + ǫ

λx+ µy + ν
,

)

stabilizing the collections of all affine lines ofK2, namely the solutions of
the modelequationyxx = 0. Themodel Lie algebrapgl3(K) ≃ sl3(K) is
simple.

Theorem 5.13.The bound dimSYM(E1) 6 8 is attainedif and only if
(E1) is equivalent, through a diffeomorphism(x, y) 7→ (X, Y ), toYXX = 0.

Proof. The statement is well known ([Lie1883, EL1890, Tr1896, Se1931,
Ca1932a, Ol1986, HK1989, Ib1992, Ol1995, Sh1997, Su2001, N2003,
Me2004]). We provide a (new?) proof which has the advantage to en-
joy direct generalizations to allPDE systems whose model Lie algebras are
semisimple, for instance (E2), (E3) and (E5).

The Lie brackets between the eight generators (5.11) are:

A B C D E F G H

A 0 0 0 0 A B C D + 2E
B 0 0 A B 0 0 E + 2D F
C 0 −A 0 −C C D −E 0 G
D 0 −B C 0 0 −F G 0
E −A 0 −C 0 0 F 0 H
F −B 0 −D + E F −F 0 H 0
G −C −E − 2D 0 −G 0 H 0 0
H −D − 2E −F −G 0 −H 0 0 0

Table 2.
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Assuming that dimSYM(E1) = 8, taking account of (5.7), after making
some linear combinations, there must exist eight generators of the form

(5.14)






A′ := ∂y + O(1), E ′ := y ∂y + O(2),

B′ := ∂x + O(1), F ′ := y ∂x + O(2),

C ′ := x ∂y + O(2), G′ := xx ∂x + xy ∂y + O(3),

D′ := x ∂x + O(2), H ′ := xy ∂x + yy ∂y + O(3).

To insure that the Lie brackets between these vector fields are small pertur-
bations of the model ones, we can in advance replace(x, y) by (εx, εy), so
thatyxx = ε F

(
εx, εy, yx

)
is anO(ε), hence all the remaindersO(1), O(2)

andO(3) above are alsoO(ε). It follows that the structure constants for
A′, . . . , H ′ areε-close to those of Table 2.

Theorem 5.15. ([OV1994]) Every semisimple Lie algebra overR or C is
rigid: small deformations of the structure constants just give isomorphic Lie
algebras.

Consequently, there exists a change of basis close to the identity lead-
ing to new generatorsA′′, B′′, . . . , G′′, H ′′ having exactly the same structure
constants as in Table 2. ThenA′′(0) andB′′(0) are still linearly independent.
Since

[
A′′, B′′] = [A,B] = 0, there exist local coordinates(X, Y ) centered

at 0 in which A′′ = ∂X andB′′ = ∂Y . Since
[
A′′, C ′′] = [A,C] = 0

and
[
B′′, C ′′] = [B,C] = A, it follows thatC ′′ = X∂Y . The tangency to

0 = −Y2 + F (X, Y, Y1) (with F (0) = 0) of
(
∂X

)(2)
= ∂X , of

(
∂Y

)(2)
= ∂Y

and of
(
X∂Y

)(2)
= X∂Y + ∂Y1 yieldsF = 0.

Open question 5.16. Does this proof generalize toyxκ+1 =
F
(
x, y, yx, . . . , yxκ

)
?

5.17. Complete system of second order.We now summarize a general-
ization to (E2). According to Section 7 below, one may assume that the
submanifold of solutions isy = b+

∑n
i=1 a

i
[
xi + O(|x|2) + O(a) + O(b)

]
,

whenceyxi1xi2 = Fi1,i2

(
xi, y, yxk

)
with F (x, y, 0) ≡ 0. Applying to the

skeleton0 = −yi1,i2 + Fi1,i2

(
xi, y, yk

)
a second prolongationL (2) having

coefficientsYi1 given by (3.9)(II) andYi1,i2 given by (3.20)(II), we get

(5.18) 0 = −Yi1,i2 +

n∑

k=1

[
X k

]∂Fi1,i2

∂xk
+
[
Y
]∂Fi1,i2

∂y
+

n∑

k=1

[
Yk

]∂Fi1,i2

∂yk
.

Replacingyi1,i2 everywhere byFi1,i2 = y1 R + · · · + yn R, developping in
powers of the pure jet variablesyl and picking the coefficients ofcst., of yk,



254

of (yk)
2 and of(yk)

3, we get the linear system
(5.19)



Yxi1xi2 = P
(
Yxl

)

δk
i1 Yxi2y + δk

i2 Yxi1y −X k
xi1xi2 = P

(
Yy,X

l2
xl1
,X l,Y ,Yxl

)

δk,k
i1,i2

Yyy − δk
i1 X k

xi2y − δk
i2 X k

xi1y = P
(
Yy,X

l2
xl1
,X l

y ,X
l,Y ,Yxl

)

δk,k
i1,i2

X k
yy = P

(
Yy,X

l2
xl1
,X l

y ,X
l,Y ,Yxl

)
,

upon which obvious linear combinations yield a known generalization of
Proposition 5.9.

Proposition 5.20. ([Su2001, GM2003a])An infinitesimal Lie symmetry∑n
k=1 X k ∂

∂xk + Y ∂
∂y

is uniquely determined by then2 + 4n + 3 initial
Taylor coefficients:

(5.21) X l(0), Y (0), X l2
xl1

(0), X l
y (0), Yxl(0), Yy(0), Yxly(0), Yyy(0).

The bound dimSYM(E2) 6 n2 + 4n + 3 is attained withFi1,i2 = 0,
whence allP = 0 and
(5.22)



A := ∂y, E := y ∂y,

Bi := ∂xi, Fi := y ∂xi ,

Ci := xi ∂y, Gi := xi
(
x1 ∂x1 + · · ·+ xn ∂xn + y ∂y

)
+ xy ∂y,

Di,k := xi ∂xk , H := y
(
x1 ∂x1 + · · ·+ xn ∂xn + y ∂y

)
.

are infinitesimal generators of the group PGLn+2(K) = Aut(Pn+1(K)) of
projective transformations
(5.23)

(x, y) 7→
(
α1x

1 + · · ·+ αnx
n + βy + γ

λ1x1 + · · ·+ λnxn + µy + ν
,

δ1x
1 + · · ·+ δnx

n + ηy + ǫ

λ1x1 + · · ·+ λnxn + µy + ν
,

)

stabilizing the collections of all affine planes ofKn+1, namely the solutions
of the modelequationyxi1xi2 = 0. The model Lie algebrapgln+2(K) ≃
sln+2(K) is simple, hence rigid.

Theorem 5.24.The bound dimSYM(E2) 6 n2 +4n+3 is attainedif and
only if (E2) is equivalent, through a diffeomorphism(xi, y) 7→ (Xk, Y ), to
YXk1Xk2 = 0.

The proof, similar to that of Theorem 5.13, is skipped.
The study of (E3) also leads to the model algebrapgln+2(K) ≃ sln+2(K)

and an analog to Theorem 5.13 holds. Details are similar.

§6. TRANSFER OFL IE SYMMETRIES TO THE PARAMETER SPACE

6.1. Stabilization of foliations. As announced in §2.38, we now transfer
the theory of Lie symmetries to submanifolds of solutions.
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Restarting from §4.1, letϕ a Lie symmetry of (E ), namelyϕ∆E
stabilizes

F∆E
. The diffeomorphismA defined by (2.9) transformsFv to F∆E

. Conju-
gating, we get the self-transformationA−1◦ϕ∆E

◦A of the(x, a, b)-space that
must stabilize also the foliationFv. Equivalently, it must have expression:
(6.2)[
A−1 ◦ ϕ∆E

◦ A
]
(x, a, b) =

(
θ(x, a, b), f(a, b), g(a, b)

)
∈ Kn ×Kp ×Km,

where, importantly, the last two components are independent of the coordi-
natex, because the leaves ofFv are just{a = cst., b = cst}.

Lemma 6.3. To every Lie symmetryϕ of (E ), there corresponds a transfor-
mation of the parameters

(6.4) (a, b) 7−→
(
f(a, b), g(a, b)

)
=: h(a, b)

meaning thatϕ transforms the local solutionya,b(x) := Π(x, a, b) to the
local solutionyh(a,b)(x) = Π(x, h(a, b)).

Unfortunately, the expression ofA−1 ◦ϕ∆E
◦A does not clearly show that

f andg are independent ofx. Indeed, reminding the expressions ofA and
of Φ, we have:
(6.5)

ϕ∆E
◦A(x, a, b) =

(
ϕ(x,Π(x, a, b)),Φ

j(q)
β(q)

(
xi1 ,Πj1(x, a, b),Π

j(q1)

xβ(q1)(x, a, b)
))
.

To compose withA−1 whose expression is given by (2.21), it is useful to
splitϕ = (φ, ψ) ∈ Kn ×Km, so above we write

(6.6) ϕ(x,Π(x, a, b)) =
(
φ(x,Π(x, a, b)), ψ(x,Π(x, a, b))

)
,

and finally, droping the arguments:
(6.7)[
A−1 ◦ ϕ∆E

◦ A
]
(x, a, b) =

(
φi, Aq

(
φi1, ψj1,Φ

j(q1)
β(q1)

)
, Bj

(
φi1 , ψj1,Φ

j(q1)
β(q1)

))
.

In case (E ) = (E1), is an exercise to verify by computations that theAq(·)
and Bj(·) are independent ofx. In general however, the explicit ex-
pression ofΦj

i1,...,iλ
is unknown. Unfortunately also, nothing shows how(

f(a, b), g(a, b)
)

is uniquely associated toϕ(x, y). Further explanations are
needed.

6.8. Determination of parameter transformations. At first, we state a
geometric reformulation of the preceding lemma.

Lemma 6.9. Every Lie symmetry(x, y) 7→ ϕ(x, y) of (E ) induces a local
K-analytic diffeomorphism

(6.10) (x, y, a, b) 7−→
(
ϕ(x, y), h(a, b)

)
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of Kn
x × Km

y × Kp
a × Km

b that maps to itself the associated submanifold of
solutions

(6.11) ME =
{
(x, y, a, b) : y = Π(x, a, b)

}
.

Proof. In fact, we know that then-dimensional leaf
{(
x,Π(x, a, b)

)
: x ∈

Kn
}

is sent
{(
x,Π(x, h(a, b))

)
: x ∈ Kn

}
.

Equivalently, settingc := (a, b) and writing(ϕ, h) = (φ, ψ, h), we have
ψ = Π(φ, h) wheny = Π(x, c), namely

(6.12) ψ(x,Π(x, c)) ≡ Π
(
φ(x,Π(x, c)), h(c)

)

Proposition 6.13.There exists a universal rational map̂H such that

(6.14) h(c) ≡ Ĥ
(
Jκ+1

x,a,b Π(x, c), Jκ
x,yϕ(x,Π(x, c))

)

This shows unique determination ofh from ϕ, given (E ) or equivalently,
givenΠ.

Proof. Differentiating a functionχ(x,Π(x, c)) with respect toxk, k =
1, . . . , n, corresponds to applying toχ the vector field

(6.15) Lk :=
∂

∂xk
+

m∑

j=1

∂Πj

∂xk
(x, c)

∂

∂yj
, k = 1, . . . , n.

Thus, applyingLk to them scalar equations (6.12), we get

(6.16) Lk ψ
j =

n∑

l=1

∂Πj

∂xl
Lk φ

l,

for 1 6 k 6 n and1 6 j 6 m. It follows from the assumption thatϕ is a
local diffeomorphism thatdet

(
Lk φ

l(0)
)16l6n

16k6n
6= 0 also. So we may solve

the first derivativesΠx above: there exist universal polynomialsS
j
l such that

(6.17)
∂Πj

∂xl
=

S
j
l

({
Lk′ ϕi′

}16i′6n+m

16k′6n

)

det
(
Lk′ φl′

)16l′6n

16k′6n

.

Again, we apply theLk to these equations, getting, thanks to the chain rule:

(6.18)
n∑

l2=1

∂2Πj

∂xl1xl2
Lk φ

l2 =
R

j
l1,k

({
Lk′

1
Lk′

2
ϕi′
}16i′6n+m

16k′
1,k′

26n

)

[
det
(
Lk′ φl′

)16l′6n

16k′6n

]2 .
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Here, R
j
l1,k are universal polynomials. Solving the second derivatives

Πj

xl1xl2
, we get

(6.19)
∂2Πj

∂xl1xl2
=

S
j
l1,l2

({
Lk′

1
Lk′

2
ϕi′
}16i′6n+m

16k′
1,k′

26n

)

[
det
(
Lk′ φl′

)16l′6n

16k′6n

]3 .

By induction, for everyβ ∈ Nn:

(6.20)
∂|β|Πj

∂xβ
=

S
j
β

({
Lβ′
ϕi′
}16i′6n+m

|β′|6|β|

)

[
det
(
Lk′ φl′

)16l′6n

16k′6n

]2|β|+1
,

whereS
j
β are universal polynomials. Here, forβ ′ ∈ Nn, we denote byLβ′

the derivation of order|β ′| defined by(L1)
β′
1 · · · (Ln)β′

n.
Next, thanks to the assumption thatM is solvable with respect to the

parameters, there exist integersj(1), . . . , j(p) with 1 6 j(q) 6 m and mul-
tiindicesβ(1), . . . , β(p) ∈ Nn with |β(q)| > 1 andmax16q6p |β(q)| = κ
such that the localK-analytic map
(6.21)

Kp+m ∋ c 7−→
(
(
Πj(0, c)

)16j6m
,

(
∂|β(q)|Πj(q)

∂xβ(q)
(0, c)

)

16q6p

)
∈ Kp+m

has rankp + m at c = 0. We then consider in (6.20) only the(p + m)
equations written for(j, 0), (j(q), β(q)) and we solveh(c) by means of the
analytic implicit function theorem:
(6.22)

h = Ĥ


φ,

S
j(1)
β(1)

({
Lβ′
ϕi′
}16i′6n+m

|β′|6|β(1)|

)

det
[(

Lk′ φl′
)16l′6n

16k′6n

]2|β(1)|+1
, . . . ,

S
j(p)
β(p)

({
Lβ′
ϕi′
}16i′6n+m

|β′|6|β(p)|

)

det
[(

Lk′ φl′
)16l′6n

16k′6n

]2|β(p)|+1


 .

Finally, by developping every derivativeLβ′
ϕi′ (including Lk′φl′ as a spe-

cial case), taking account of the fact that the coefficients of the Lk′ depend
directly on Π, we get some universal polynomialPβ′

(
J
|β′|+1
x Π, J

|β′|
x,y ϕi′

)
.

Inserting above, we get the map̂H.

6.23. Pseudogroup of twin transformations.The previous considerations
lead to introducing the following.

Definition 6.24. By Gv,p, we denote the infinite-dimensional (pseudo)group
of localK-analytic diffeomorphisms

(6.25) (x, y, a, b) 7−→
(
ϕ(x, y), h(a, b)

)

that respect the separation between the variables and the parameters.
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A converse to Lemma 6.3 holds.

Lemma 6.26. Let M be a submanifoldy = Π(x, a, b) that is solvable
with respect to the parameters(a, b). If a local K-analytic diffeomorphism
(x, y, a, b) 7−→

(
ϕ(x, y), h(a, b)

)
of Kn

x ×Km
y ×Kp

a×Km
b belonging toGv,p

sendsM to M , then(x, y) 7→ ϕ(x, y) is a Lie symmetry of thePDE system
EM associated toM .

Proof. In fact, since(ϕ, h) respects the separation of variables and stabilizes
M , it respects the fundamental pair of foliations

(
Fv, Fp

)
, namely{(a, b) =

(a0, b0)}∩M is sent to{(a, b) = h(a0, b0)}∩M and{(x, y) = (x0, y0)}∩
M is sent to{(x, y) = ϕ(x0, y0)} ∩M . Henceϕ∆EM

also stabilizesF∆E
.

Corollary 6.27. Through the one-to-one correspondence(E ) ←→ M of
Proposition 2.17, Lie symmetries of(E ) correspond to elements ofGv,p

which stabilizeM .

Definition 6.28. Let Autv,p(M ) denote the local (pseudo)group of(ϕ, h) ∈
Gv,p stabilizingM . Let Lie(E ) denote the local (pseudo)group of Lie sym-
metries of (E ).

In summary:

(6.29) Lie(E ) ≃ Autv,p

(
M(E )

)
and Autv,p(M ) ≃ Lie

(
EM

)
.

6.30. Transfer of infinitesimal Lie symmetries. Let L ∈ SYM(E ), i.e.
L∆E

is tangent to∆E . Through the diffeomorphismA, the push-forward of
L∆E

must be of the form
(6.31)

A−1
∗ (L∆E

) =

n∑

k=1

Θi(x, a, b)
∂

∂xi
+

p∑

q=1

F q(a, b)
∂

∂aq
+

m∑

j=1

G j(a, b)
∂

∂bj
,

where the last two families ofK-analytic coefficientsF q andG j depend
only on(a, b).

Lemma 6.32. To every infinitesimal symmetryL of (E ), we can associate
an infinitesimal symmetry

(6.33) L ∗ :=

p∑

q=1

F q(a, b)
∂

∂aq
+

m∑

j=1

G j(a, b)
∂

∂bj

of the space of parameters which tells how the flow ofL acts infinitesimally
on the leaves ofF∆E

. Furthermore,L + L ∗ is tangent to the submanifold
of solutionsM(E ).

Considering the flow ofL + L ∗ reduces these assertions and the next to
the arguments of the preceding paragraphs. So we summarize.



259

Lemma 6.34.LetM be a submanifoldy = Π(x, a, b) that is solvable with
respect to the parameters(a, b). If a vector field that respects the separation
between variables and parameters, namely of the form
(6.35)

L +L ∗ =

n∑

i=1

X i(x, y)
∂

∂xi
+

m∑

j=1

Y j(x, y)
∂

∂yj
+

p∑

q=1

F q(a, b)
∂

∂aq
+

m∑

j=1

G j(a, b)
∂

∂bj

is tangent toM , thenL is an infinitesimal Lie symmetry of
(
EM

)

Corollary 6.36. Through the one-to-one correspondence(E ) ←→ M of
Proposition 2.17, infinitesimal Lie symmetries of(E ) correspond to vector
fieldsL + L ∗ tangent toM .

Definition 6.37. LetSYM(M ) denote the Lie algebra of vector fieldsL +
L ∗ tangent toM . LetSYM(E ) denote the Lie algebra of infinitesimal Lie
symmetries of (E ).

In summary:
(6.38)

SYM(E ) ≃ SYM
(
M(E )

)
and SYM

(
M
)
≃ SYM

(
EM

)
.

6.39. Dual defining equations.As in §2.10, letM ⊂ Kn
x×Km

y ×Kp
a×Km

b

given by0 = −yj + Πj(x, a, b) and assume if to be solvable with respect
to the parameters. In particular, we can solve thebj , obtainingdual defining
equations

(6.40) bj = Π∗j(a, x, y), j = 1, . . . , m,

for some localK-analytic map mapΠ∗ = (Π∗1, . . . ,Π∗m) satisfying

(6.41) b ≡ Π∗(a, x,Π(x, a, b)
)

and y ≡ Π
(
x, a,Π∗(a, x, y)

)
.

6.42. An algorithm for the computation of SYM(M ). The tangency to
M is expressed by applying the vector field (6.35) to0 = −yj +Πj(x, a, b),
which yields:
(6.43)

0 = −Y j(x, y) +
n∑

i=1

X i(x, y) Πj
xi(x, a, b) +

p∑

q=1

F q(a, b) Πj
aq(x, a, b)

+
m∑

l=1

G l(a, b) Πj
bl(x, a, b),

for j = 1, . . . , m and for(x, y, a, b) ∈ M . In fact, after replacing the vari-
abley by Π(x, a, b), these equations should be interpreted as power series
identities inK{x, a, b}.
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Denote by ∆(x, a, b) the determinant of the (invertible) matrix(
Πj

bl(x, a, b)
)
16l,j6m

and by D(x, a, b) its matrix of cofactors, so that

Π−1
b = [∆]−1 D. Hence we can solveG from (6.43):

(6.44)



G (a, b) ≡ D(x, a, b)

∆(x, a, b)

[
Y
(
x,Π(x, a, b)

)
−

n∑

i=1

X i
(
x,Π(x, a, b)

)
Πxi(x, a, b)−

−
p∑

q=1

F q(a, b) Πaq(x, a, b)

]
.

Next, we aim to solve theF q(a, b). Consequently, we gather all the other
terms in the brackets asΨ0

(
J1

x,a,bΠ,X ,Y
)
:

(6.45)

G (a, b) ≡ D(x, a, b)

∆(x, a, b)

[
−

p∑

q=1

F q(a, b) Πaq(x, a, b)

]
+

Ψ0

(
J1

x,a,bΠ,X ,Y
)

∆(x, a, b)
.

Here,Ψ0 is linear with respect to(X ,Y ), with polynomial coefficients of
degree one inJ1

x,a,bΠ.
Next, for k = 1, . . . , n, we differentiate this identity with respect toxk.

ThenG (a, b) disappears and we chase the denominator∆2:
(6.46)




0 ≡ [∆D]

[
−

p∑

q=1

F q(a, b) Πaqxk(x, a, b)

]
+

+ [∆Dxk
−∆xk

D]

[
−

p∑

q=1

F q(a, b) Πaq(x, a, b)

]
+

+ Ψk

(
J2

x,a,bΠ, J
1
x,yX , J1

x,yY
)
.

The Ψk are linear with respect to(J1
x,yX , J1

x,yY ), with polynomial coef-
ficients inJ2

x,a,bΠ. Then we further differentiate with respect tox and by
induction, for everyβ ∈ Nn, we get:
(6.47)



0 ≡ [∆D]

[
−

p∑

q=1

F q(a, b) Πaqxβ(x, a, b)

]
+

+
∑

|β1|<|β|
Dβ,β1

(
J |β1|+1Π

)
[
−

p∑

q=1

F q(a, b) Πaqxβ1 (x, a, b)

]
+

+ Ψβ

(
J
|β|+1
x,a,b Π, J |β|

x,yX , J |β|
x,yY ),
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where the expressionsDβ,β1 are certain m × m matrices with
polynomial coefficients in the jetJ |β1|+1

x,a,b Π, and where the terms

Ψβ

(
J
|β|+1
x,a,b Π, J

|β|
x,yX , J

|β|
x,yY

)
are linear with respect to

(
J
|β|
x,yX , J

|β|
x,yY

)
,

with polynomial coefficients inJ |β|+1
x,a,b Π.

Writing these identity for(j, β) = (j(q), β(q)), q = 1, . . . , p, reminding
max16q6p |β(q)| = κ, it follows from the assumption of solvability with
respect to the parameters (a boring technical check is needed) that we may
solve
(6.48)
F q(a, b) ≡ Φq

(
Jκ+1

x,a,bΠ(x, a, b), Jκ
x,yX (x,Π(x, a, b)), Jκ

x,yY (x,Π(x, a, b))
)
,

for q = 1, . . . , p, where each localK-analytic functionΦq is linear with re-
spect to(JκX , JκY ) and rational with respect toJκ+1Π, with denominator
not vanishing at(x, a, b) := (0, 0, 0).

Pursuing, we differentiate (6.48) with respect toxl for l = 1, . . . , n. Then
F q(a, b) disappears and we get:
(6.49)

0 ≡ Φq,l

(
Jκ+2

x,a,bΠ(x, a, b), Jκ+1
x,y X (x,Π(x, a, b)), Jκ+1

x,y Y (x,Π(x, a, b))
)
,

for 1 6 q 6 p and1 6 l 6 n. In (6.46), we then replace the functionsF q

by their valuesΦq:
(6.50)

0 ≡ Ψk,j

(
Jκ+1

x,a,bΠ(x, a, b), Jκ
x,yX (x,Π(x, a, b)), Jκ

x,yY (x,Π(x, a, b))
)
,

for 1 6 k 6 n and1 6 j 6 m. Then we replace the variableb byΠ∗(a, x, y)
in the two obtained systems (6.49) and (6.50); taking account of the func-
tional identityy ≡ Π

(
x, a,Π∗(a, x, y)

)
written in (6.41), we get

(6.51){
0 ≡ Φq,l

(
Jκ+2

x,a,bΠ(x, a,Π∗(a, x, y)), Jκ+1
x,y X (x, y), Jκ+1

x,y Y (x, y)
)
,

0 ≡ Ψk,j

(
Jκ+1

x,a,bΠ(x, a,Π∗(a, x, y)), Jκ
x,yX (x, y), Jκ

x,yY (x, y)
)
.

Finally, we develope these equations in power series with respect toa:

(6.52)





0 ≡
∑

γ∈Np

aγ Φq,l,γ

(
x, y, Jκ+1

x,y X (x, y), Jκ+1
x,y Y (x, y)

)
,

0 ≡
∑

γ∈Np

aγ Ψk,j,γ

(
x, y, Jκ

x,yX (x, y), Jκ
x,yY (x, y)

)
,

where the termsΦq,l,γ andΨk,j,γ are linear with respect to the jets ofX , Y .

Proposition 6.53.A vector field(6.35)belongs toSYM(M ) if and only if
X i,Y j satisfy the linearPDE system

(6.54)

{
0 ≡ Φq,l,γ

(
x, y, Jκ+1

x,y X (x, y), Jκ+1
x,y Y (x, y)

)
,

0 ≡ Πk,j,γ

(
x, y, Jκ

x,yX (x, y), Jκ
x,yY (x, y)

)
,
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where1 6 q 6 p, 1 6 l 6 n, 1 6 k 6 n andγ ∈ Np. ThenF q defined
by (6.48)andG j defined by(6.45)are independent ofx.

This provides a second algorithm, essentially equivalent to Sophus Lie’s.

Example6.55. Foryxx(x) = F (x, y(x), yx(x)), the first line of (6.54) is (the
second one is redundant):
(6.56)



0 ≡X [−ΠxaΠxxxΠb + ΠaΠxbΠxxx − ΠxΠxxaΠxb + ΠxaΠxΠxxb +

+ΠxxaΠxxΠb − ΠaΠxxbΠxx] +

+ Y [−ΠxaΠxxb + ΠxxaΠxb] +

+ Xx [−2ΠxxΠxaΠb + 2ΠxxΠaΠxb + ΠxΠbΠxxa − ΠxΠaΠxxb] +

+ Yx [−ΠbΠxxa + ΠaΠxxb] +

+ Xy

[
−3ΠxΠxxΠxaΠb + 3ΠxΠaΠxxΠxb + (Πx)

2ΠbΠxxa − (Πx)
2ΠaΠxxb

]
+

+ Yy [ΠxxΠbΠxa −ΠxxΠaΠxb − ΠxΠbΠxxa + ΠxΠaΠxxb] +

+ Xxx [−ΠxΠbΠxa + ΠxΠaΠxb] +

+ Xxy

[
−2(Πx)

2ΠbΠxa + 2(Πx)
2ΠaΠxb

]
+

+ Xy2

[
−(Πx)

3ΠbΠxa + (Πx)
3ΠaΠxb

]
+

+ Yxx [ΠbΠxa − ΠaΠxb] +

+ Yxy [2ΠxΠbΠxa − 2ΠxΠaΠxb] +

+ Yy2

[
(Πx)

2ΠbΠxa − (Πx)
2ΠaΠxb

]
.

We observe the similarity with (4.19): the expression is linear in the partial
derivatives ofX , Y of order6 2, but the coefficients in the equation above
are more complicated. In fact, after dividing by−Πb Πxa + Πa Πxb, this
equation coincides with (4.21), thanks toΠx = y1 and to the formulas (2.34)
for Fx, Fy, Fy1 .

6.57. Infinitesimal CR automorphisms of generic submanifolds. If the
system (E ) is associated to the complexificationM = (M)c of a generic
M ⊂ Cn+m as in §1.16, thena = (z̄)c = ζ , b = (w̄)c = ξ, and the vector
field L ∗ associated to an infinitesimal Lie symmetry

(6.58) L =

n∑

i=1

X i(z, w)
∂

∂zi
+

m∑

j=1

Y j(z, w)
∂

∂wj

of (E ) is simply the complexificationL of its conjugateL , namely

(6.59) L ∗ = L =
n∑

i=1

X
i
(ζ, ξ)

∂

∂ζ i
+

m∑

j=1

Y
j
(ζ, ξ)

∂

∂ξj
.
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Then the sumL + L is tangent toM and its flow stabilizes the two in-
variant foliations, obtained by intersectingM by {(z, w) = cst.} or by
{(ζ, ξ) = cst.}. In [Me2005a, Me2005b], these two foliations, denoted
F , F , are called (conjugate) Segre foliations, since its leavesare the com-
plexifications of the (conjugate) classical Segre varieties ([Se1931, Pi1975,
Pi1978, We1977, DW1980, BJT1985, DF1988, BER1999, Su2001,Su2002,
Su2003, GM2003a]) associated toM , viewed in its ambient spaceCn+m.
The next definition is also classical ([Be1979, Lo1981, EKV1985, Kr1987,
KV1987, Be1988, Vi1990, St1996, Be1997, BER1999, Lo2002, FK2005a,
FK2005b]):

Definition 6.60. By hol(M) is meant the Lie algebra of local holomorphic
vector fieldsL =

∑n
i=1 X i(z, w) ∂

∂zi +
∑m

j=1 Y j(z, w) ∂
∂wj whose real

flow exp
(
tL
)
(z, w) induces one-parameter families of local biholomorphic

transformations ofCn+m stabilizingM . Equivalently,

(6.61) 2 ReL = L + L

is tangent toM . Again equivalently,L + L is tangent toM = M c.

Then obviouslyhol(M) is a real Lie algebra.

Theorem 6.62. ([Ca1932a, BER1999, GM2004])The complexification
hol(M) ⊗ C identifies withSYM

(
E (M c)

)
. Furthermore, ifM is finitely

nondegenerate and minimal at the origin, both are finite-dimensional and
hol(M) is totally real inSYM

(
E (M c)

)
.

The minimality assumption is sometimes presented by sayingthat the Lie
algebra generated byT cM generatesTM at the origin ([BER1999]). How-
ever, it is more natural to proceed with the fundamental pairof foliations
associated toM ([Me2001, GM2004, Me2005a, Me2005b]). Anticipating
Sections 10 and 11 to which the reader is referred, we set.

Definition 6.63. A real analytic generic submanifoldM ⊂ Cn+m isminimal
at one of its pointsp if the fundamental pair of foliations of its complexifi-
cationM is covering atp (Definition 10.17).

Further informations may be found in Section 10. We concludeby for-
mulating applications of Theorems 5.13 and 5.24.

Corollary 6.64. The bound dimhol(M) 6 8 for a Levi nondegenerate hy-
persurfaceM ⊂ C2 is attained if and only if it is locally biholomorphic to
the sphereS3 ⊂ C2.

Corollary 6.65. The bound dimhol(M) 6 n2 + 4n + 3 for a Levi non-
degenerate hypersurfaceM ⊂ Cn+1 is attained if and only if it is locally
biholomorphic to the sphereS2n+1 ⊂ Cn+1.
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§7. EQUIVALENCE PROBLEMS AND NORMAL FORMS

7.1. Equivalences of submanifolds of solutions.As in §3.1, let (E ) and
(E ′) be twoPDEsystems and assume thatϕ transforms (E ) to (E ′). Defining
A′ similarly asA, it follows that

(7.2) A′−1 ◦ ΦE ,E ′ ◦ A(x, a, b) ≡
(
θ(x, a, b), f(a, b), g(a, b)

)
=: (x′, a′, b′)

transformsFv to F′
v, hence induces a map(a, b) 7→ (a′, b′). The arguments of

Section 6 apply here with minor modifications to provide two fundamental
lemmas.

Lemma 7.3. Every equivalence(x, y) 7→ (x′, y′) between toPDE systems
(E ) and (E ′) comes with an associated transformation(a, b) 7→ (a′, b′) of
the parameter spaces such that

(7.4) (x, y, a, b) 7−→ (x′, y′, a′, b′)

is an equivalence between the associated submanifolds of solutionsM(E ) →
M ′

(E ′).

Conversely, letM andM ′ be two submanifolds ofKn
x ×Km

y ×Kp
a×Km

b

and ofKn
x′ × Km

y′ × K
p
a′ × Km

b′ represented byy = Π(x, a, b) and byy′ =
Π′(x′, a′, b′), in thesamedimensions. Assume both are solvable with respect
to the parameters.

Lemma 7.5. Every equivalence

(7.6) (x, y, a, b) 7−→
(
ϕ(x, y), h(a, b)

)

betweenM andM ′ belonging toGv,p induces by projection the equivalence
(x, y) 7→ ϕ(x, y) between the associatedPDE systems

(
EM

)
and

(
E ′

M ′

)
.

7.7. Classification problems.Consequently, classifyingPDEsystems under
point transformations (Section 3) is equivalent to the following.

Equivalence problem 7.8.Find an algorithm to decide whether two given
submanifolds (of solutions)M andM ′ are equivalent through an element
of Gv,p.

Classification problem 7.9. Classify submanifolds (of solutions)M ,
namely provide a complete list of all possible such equations, including their
automorphism groupAutv,p(M ) ⊂ Gv,p.

7.10. Partial normal forms. Both problems above are of high complex-
ity. At least as a preliminary step, it is useful to try to simplify somehow
the defining equations ofM , by appropriate changes of coordinates be-
longing toGv,p. To begin with, the next lemma holds forM defined by
y = Π(x, a, b) with the only assumption thatb 7→ Π(0, 0, b) has rankm at
b = 0.
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Lemma 7.11. ([CM1974, BER1999, Me2005a], [∗]) In coordinatesx′ =
(x′1, . . . , x′n) andy′ = (y′1, . . . , y′m) an arbitrary submanifoldM ′ defined
byy′ = Π′(x′, a′, b′) or dually byb′ = Π′∗(a′, x′, y′) is equivalent to

(7.12) y = Π(x, a, b) or dually to b = Π∗(a, x, y)

with
(7.13)
Π(0, a, b) ≡ Π(x, 0, b) ≡ b or dually Π∗(0, x, y) ≡ Π∗(a, 0, y) ≡ y,

namelyΠ = b+ O(xa) andΠ∗ = y + O(ax).

Proof. We develope

(7.14) y′ = Π′(0, a′, b′) + Λ′(x′) + O(x′a′).

Sinceb′ 7→ Π′(0, a′, b′) has rankm at b′ = 0, the coordinate change

(7.15) b′′ := Π′(0, a′, b′), a′′ := a′, x′′ := x′, y′′ := y′,

transformsM ′ to M ′′ defined by

(7.16) y′′ = Π′′(x′′, a′′, b′′) := b′′ + Λ′(x′′) + O(x′′a′′).

Solvingb′′ by means of the implicit function theorem, we get

(7.17) b′′ = Π′′∗(a′′, x′′, y′′) = y′′ − Λ′(x′′) + O(a′′x′′),

and it suffices to sety := y′′ − Λ′(x′′), x := x′′ anda := a′′, b := b′′.

Taking account of solvability with respect to the parameters, finer normal-
izations holds.

Lemma 7.18. With n = m = κ = 1, every submanifold of solutionsy′ =
b′ + x′a′

[
1 + O1

]
of y′x′x′ = F ′(x′, y′, y′x′) is equivalent to

(7.19) yxx = b+ xa + O(x2a2).

Proof. Writing y′ = b′ +x′
[
a′ +a′ Λ′(a′, b′)+O(x′a′)

]
, whereΛ′ = O1, we

seta′′ := a′ + a′ Λ′(a′, b′), b′′ := b′, x′′ := x′, y′′ := y′, whencey′′ = b′′ +
x′′
[
a′′+O(x′′a′′)

]
. Duallyb′′ = y′′−a′′

[
x′′+x′′x′′ Λ′′(x′′, y′′)+O(x′′x′′a′′)

]
,

so we setx := x′′ + x′′x′′ Λ′′(x′′, y′′), y := y′′, a := a′′, b := b′′.

Corollary 7.20. Every second order ordinary differential equationy′x′x′ =
F ′(x′, y′, y′x′) is equivalent to

(7.21) yxx = (yx)
2 R(x, y, yx).
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7.22. Complete normal forms.The Moser theory of normal forms may be
transferred with minor modifications to submanifolds of solutions associated
to (E1) and to (E2).

Theorem 7.23.([CM1974, Ja1990], [∗]) A localK-analytic submanifold of
solutions associated to(E1):

(7.24) y′ = b′ + x′a′ + O3 =
∑

k′>0

∑

l′>0

Π′
k′,l′(b

′) x′
k′

a′
l′

can be mapped, by a transformation(x′, y′, a′, b′) 7→ (x, y, a, b) belonging
to Gv,p, to a submanifold of solutions of the specific form
(7.25)
y = b+ xa + Π2,4(b) x

2a4 + Π4,2(b) a
2x4 +

∑

k>2

∑

l>2

∑

k+l>7

Πk,l(b) x
kal.

Solving(a, b) from y = Π andyx = Πx with Π as above, we deduce the
following.

Corollary 7.26. Everyy′x′x′ = F ′(x′, y′, y′x′) is equivalent to
(7.27)

yxx = (yx)
2
[
x2 F2,2(y) + x3 r(x, y)

]
+ (yx)

4
[
F0,4(y) + x r(x, y)

]
+

+
∑

k>0

∑

l>0

∑

k+l>5

Fk,l(y) x
k (yx)

l.

For the completely integrable system (E2) having several dependent vari-
ables(x1, . . . , xn), n > 2, we have the following.

Theorem 7.28. ([CM1974], [∗]) A local K-analytic submanifold of solu-
tions associated to(E2):

(7.29) y′ = b′ +
∑

16k6n

x′
k
a′

k
+ O3

can be mapped, by a transformation(x′, y′, a′, b′) 7→ (x, y, a, b) belonging
to Gv,p, to a submanifold of solutions of the specific form:

(7.30) y = b+
∑

16k6n

xkak +
∑

k>2

∑

l>2

Πk,l(x, a, b)

where
(7.31)
Πk,l(x, a, b) :=

∑

k1+···+kn=k

∑

l1+···+ln=l

Πk1,...,kn,l1,...,ln(b) (x1)k1 · · · (xn)kn (a1)l1 · · · (an)ln

with the termsΠ2,2, Π2,3 andΠ3,3 satisfying:

(7.32) 0 = ∆ Π2,2 = ∆∆ Π2,3 = ∆∆ Π3,2 = ∆∆∆ Π3,3,



267

where

(7.33) ∆ :=
∑

16k6n

∂2

∂xk∂ak
.

Exercise: solving(ak, b) from y = Π andyxl = Πxl, with Π as above,
deduce a complete normal form for (E2).

Open problem7.34. Find complete normal forms for submanifolds of solu-
tions associated to (E4) and to (E5).

§8. STUDY OF TWO SPECIFIC EXAMPLES

8.1. Study of the Lie symmetries of(E4). Its submanifold of solutions pos-
sesses two equations:

(8.2) y1 = Π1(x, a, b1, b2) y2 = Π2(x, a, b1, b2).

For instance, a generic submanifoldM ⊂ C3 of CR dimension 1 and of
codimension 3 has equations of such a form.

AssumingVS (E4) to be twin solvable and having covering submanifold
of solutions (seeDefinition 10.17), it may be verified (forM ⊂ C3, see
[Be1997]) that at a Zariski-generic point, its equations are of the form:

(8.3)
y1 = b1 + xa + O(x2) + O(b1) + O(b2),

y2 = b2 + xa(x+ a) + O(x3) + O(b1) + O(b2).

The model has zero remainders with associated system

(8.4) y2
1 = 2x y1

1 + (y1
1)

2, y1
2 = 0,

the third equationy2
2 = 2 y1

1 being obtained by differentiating the first.
We may put the submanifold in partial normal form. Proceeding as

in [BES2005], some partial normalizations belonging toGv,p yield:
(8.5)
y1 = b1 + ax+ a2

[
Π1

3,2(b) x
3 + Π1

4,2(b) x
4 + · · ·

]
+ O(a3 x2),

y2 = b2 + a
[
x2 + Π2

4,1(b) x
4 + · · ·

]
+ a2

[
x+ Π2

3,2(b) x
3 + · · ·

]
+ O(a3 x2).

Redifferentiating, we get an appropriate, partially normalized system (E4):
(8.6)



y2
1 = y1

1

(
2x+ g1

)
+ (y1

1)
2
(
1 + g2

)
+ (y1

1)
3 s + (y1

1)
4 s + (y1

1)
5 s + (y1

1)
6 R,

y1
2 = (y1

1)
2 h + (y1

1)
3 R,

y2
2 = y1

1

(
2 + g1

x

)
+ (y1

1)
2
(
g2

x + (2x+ g1)h
)

+ (y1
1)

3 r + (y1
1)

4 r + (y1
1)

5 r + (y1
1)

6 R,

where, precisely:

• g1, g2 and h are functions of(x, y1, y2) satisfyinggj = O(xx) +
O(y1) + O(y2), j = 1, 2 andh = O(x) + O(y1) + O(y2);
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• r ands are unspecified functions, varying in the context, of(x, y1, y2)
with s = O(x) + O(y1) + O(y2), but possiblyr(0) 6= 0;

• R is a remainder function of all the variables(x, y1, y2, y1
1) parametriz-

ing ∆E4 .

Letting L = X ∂
∂x

+ Y 1 ∂
∂y1 + Y 2 ∂

∂y2 be a candidate infinitesimal Lie

symmetry and applyingL (2) = L + Y1
1

∂
∂y1

1
+ Y2

1
∂

∂y2
1

+ Y1
2

∂
∂y1

2
+ Y2

2
∂

∂y2
2

to ∆E4 , we obtain firstly, computingmod (y1
1)

5:

(8.7)

0 ≡ −Y2
1 +

[
X
](
y1

1(2 + g1
x) + (y1

1)
2 g2

x + (y1
1)

3 r + (y1
1)

4 r
)
+

+
[
Y 1
](
y1

1 r + (y1
1)

2 r + (y1
1)

3 r + (y1
1)

4 r
)
+

+
[
Y 2
](
y1

1 r + (y1
1)

2 r + (y1
1)

3 r + (y1
1)

4 r
)
+

+ Y1
1

(
2x+ g1 + y1

1(2 + 2 g2) + (y1
1)

2 s + (y1
1)

3 s + (y1
1)

4 s
)
,

and secondly, computingmod (y1
1)

2:

(8.8) 0 ≡ −Y1
2 + 2 y1

1 Y1
1 h.

The third Lie equation involvingY2
2 will be superfluous. Specializ-

ing (4.6)(II) tom = 2, we getY1
1 andY2

1:
(8.9)
Y1

1 = Y 1
x +

[
Y 1

y1 −Xx

]
y1

1 +
[
Y 1

y2

]
y2

1 +
[
−Xy1

]
(y1

1)
2 +

[
−Xy2

]
y1

1 y
2
1

Y2
1 = Y 2

x +
[
Y 2

y1

]
y1

1 +
[
Y 2

y2 −Xx

]
y2

1 +
[
−Xy1

]
y2

1 y
1
1 +

[
−Xy2

]
(y2

1)
2.

and alsoY1
2 andY2

2 (in fact superfluous):
(8.10)
Y1

2 = Y 1
xx +

[
2 Y 1

xy1 −Xxx

]
y1

1 +
[
2 Y 1

xy2

]
y2

1 +
[
Y 1

y1y1 − 2 Xxy1

]
(y1

1)
2+

+
[
2 Y 1

y1y2 − 2 Xxy2

]
y1

1 y
2
1 +

[
Y 1

y2y2

]
(y2

1)
2 +

[
−Xy1y1

]
(y1

1)
3+

+
[
− 2 Xy1y2

]
(y1

1)
2 y2

1 +
[
−Xy2y2

]
y1

1 (y2
1)

2 +
[
Y 1

y1 − 2 Xx

]
y1

2+

+
[
Y 1

y2

]
y2

2 +
[
− 3 Xy1

]
y1

1 y
1
2 +

[
−Xy2

]
y1

1 y
2
2 +

[
− 2 Xy2

]
y2

1 y
1
2,

Y2
2 = Y 2

xx +
[
2 Y 2

xy1

]
y1

1 +
[
2 Y 2

xy2 −Xxx

]
y2

1 +
[
Y 2

y1y1

]
(y1

1)
2+

+
[
2 Y 2

y1y2 − 2 Xxy1

]
y1

1 y
2
1 +

[
Y 2

y2y2 − 2 Xxy2

]
(y2

1)
2 +

[
−Xy1y1

]
(y1

1)
2 y2

1+

+
[
− 2 Xy1y2

]
y1

1 (y2
1)

2 +
[
−Xy2y2

]
(y2

1)
3 +

[
Y 2

y1

]
y1

2+

+
[
Y 2

y2 − 2 Xx

]
y2

2 +
[
− 2 Xy1

]
y1

1 y
2
2 +

[
−Xy1

]
y2

1 y
1
2 +

[
− 3 Xy2

]
y2

1 y
2
2.

InsertingY2
1 andY1

1 in the first Lie equation (8.7) in whichy2
1 is replaced by

the value (8.6)1 it has on∆E4 and still computingmod (y1
1)

5, we get, again
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with r, s being unspecified functions of(x, y1, y2) with s(0) = 0:
(8.11)
0 ≡− Y 2

x +
[
− Y 2

y1

]
y1

1+

+
[
− Y 2

y2 + Xx

] (
y1

1(2x+ g1) + (y1
1)

2(1 + g2) + (y1
1)

3 s + (y1
1)

4 s
)
+

+
[
Xy1

] (
(y1

1)
2(2x+ g1) + (y1

1)
3(1 + g2) + (y1

1)
4 s
)
+

+
[
Xy2

] (
(y1

1)
2[2x+ g1]2 + (y1

1)
3(4x+ 2g1)(1 + g2) + (y1

1)
4(1 + s)

)
+

+
[
X
] (
y1

1(2 + g1
x) + (y1

1)
2 g2

x + (y1
1)

3 r + (y1
1)

4 r
)
+

+
[
Y 1
] (
y1

1 r + (y1
1)

2 r + (y1
1)

3 r + (y1
1)

4 r
)
+

+
[
Y 2
] (
y1

1 r + (y1
1)

2 r + (y1
1)

3 r + (y1
1)

4 r
)
+

+
[
Y 1

x

] (
2x+ g1 + y1

1(2 + 2g2) + (y1
1)

2 s + (y1
1)

3 s + (y1
1)

4 s
)
+

+
[
Y 1

y1 −Xx

] (
y1

1(2x+ g1) + (y1
1)

2(2 + 2g2) + (y1
1)

3 s + (y1
1)

4 s
)
+

+
[
Y 1

y2

] (
y1

1[2x+ g1]2 + (y1
1)

2(2x+ g1)(3 + 3g2) + (y1
1)

3(2 + s) + (y1
1)

4 s
)
+

+
[
−Xy1

] (
(y1

1)
2(2x+ g1) + (y1

1)
3(2 + 2g2) + (y1

1)
4 s
)
+

+
[
−Xy2

] (
(y1

1)
2[2x+ g1]2 + (y1

1)
3(2x+ g1)(3 + 3g2) + (y1

1)
4(2 + s)

)
.

Collecting the coefficients of the monomialscst., y1
1, (y1

1)
2, (y1

1)
3, (y1

1)
4, we

get, after slight simplification (in the coefficient of(y1
1)

2, the term(2x +
g1)Xx annihilates with its opposite; in the coefficient of(y1

1)
3, two pairs

annihilate and then, we divide by[1 + g2]) a system of five linearPDE’s:
(8.12)
0 = −Y 2

x + (2x+ g1)Y 1
x ,

0 = −Y 2
y1 − (2x+ g1)Y 2

y2 + (2 + g1
x)X + r Y 1 + r Y 2+

+ (2 + 2g2)Y 1
x + (2x+ g1)Y 1

y1 + [2x+ g1]2Y 1
y2 ,

0 = −Y 2
y2 + Xx + g2

x[1 + g2]−1X + r Y 1 + r Y 2+

+ s Y 1
x + 2 Y 1

y1 − 2 Xx + (6x+ 3g2)Y 1
y2,

0 = s Y 2
y2 + s Xx + (1 + g2)Xy1 + (2x+ g1)(2 + 2g2)Xy2+

+ r X + r Y 1 + r Y 2 + s Y 1
x + s Y 1

y1 + s Xx + (2 + s) Y 1
y2−

− (2 + 2g2)Xy1 − (2x+ g1)(3 + 3g2)Xy2 ,

0 = s Y 2
y2 + s Xx + s Xy1 + (1 + s)Xy2 + r X + r Y 1 + r Y 2 + s Y 1

x + s Y 1
y1+

+ s Xx + s Y 1
y2 + s Xy1 − (2 + s)Xy2 .

We then simplify the remainders usings + s = s, r + s = r andr + r = r; we
divide (8.12)5 by (1 + s); we replaceXy2 obtained from (8.12)5 in (8.12)4;
we divide (8.12)4 by (1 + g2); we then solveXy1 from (8.12)4 and finally
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we insert it in (8.12)5; we get:
(8.13)
0 = −Y 2

x + (2x+ g1)Y 1
x ,

0 = −Y 2
y1 − (2x+ g1)Y 2

y2 + (2 + g1
x)X + (2 + 2g2)Y 1

x + (2x+ g1)Y 1
y1+

+ [2x+ g1]2Y 1
y2 + r Y 1 + r Y 2,

0 = −Y 2
y2 −Xx + 2 Y 1

y1 + (6x+ 3g2)Y 1
y2 + r Y 1 + r Y 2 + s Y 1

x +

+ g2
x[1 + g2]−1X ,

0 = −Xy1 + (2 + s)Y 1
y2 + r X + r Y 1 + r Y 2 + s Xx + s Y 1

x + s Y 1
y1 + s Y 2

y2 ,

0 = −Xy2 + r X + r Y 1 + r Y 2 + s Xx + s Y 1
x + s Y 1

y1 + s Y 1
y2 + s Y 2

y2 .

Similarly, developing the second equation (8.8) and computing mod (y1
1)

2,
we get:
(8.14)
0 ≡ −Y 1

xx +
[
− 2 Y 1

xy1 + Xxx

]
y1

1 +
[
− (4x+ 2g1)Yxy2 − (2 + h)Y 1

y2

]
+

+
[
2hY 1

x

]
y1

1.

Collecting the coefficients of the monomialscst., y1
1, we get two more linear

PDE’s:

(8.15)
0 = −Y 1

xx,

0 = −2 Y 1
xy1 + Xxx − (4x+ 2g1)Y 1

xy2 − (2 + h)Y 1
y2 + 2hY 1

x .

Proposition 8.16. Setting as initial conditions the five specific differential
coefficients

(8.17) P := P
(
X ,Y 1,Y 2,Y 1

x ,Xx

)
= r X +r Y 1+r Y 2+r Y 1

x +r Xx,

it follows by cross differentiations and by linear substitutions from the seven
equations(8.13)i, i = 1, 2, 3, 4, 5, (8.15)j , j = 1, 2, that Xy1 , Xy2 , Y 1

y1 ,
Y 1

y2, Y 2
x , Y 2

y1 , Y 2
y2 and Xxx, Xxy1 , Xxy2 , Y 1

xx, Y 1
xy1 , Y 1

xy2 are uniquely
determined as linear combinations of(X ,Y 1,Y 2,Y 1

x ,Xx), namely:

(8.18)






Y 2
x

1
= P, Xxx

2
= P, Y 1

xx
3
= P,

Xy1
4
= P, Y 1

y1

5
= P, Y 2

y1

6
= P, Xxy1

7
= P, Y 1

xy1

8
= P,

Xy2
9
= P, Y 1

y2

10
= P, Y 2

y2

11
= P, Xxy2

12
= P, Y 1

xy2

13
= P.

Then the expressionsP are stable under differentiation:

(8.19)

Px = P + r Y 2
x + r Y 1

xx + r Xxx = P,

Py1 = P + r Xy1 + r Y 1
y1 + r Y 2

y1 + r Y 1
xy1 + r Xxy1 = P,

Py2 = P + r Xy2 + r Y 1
y2 + r Y 2

y2 + r Y 1
xy2 + r Xxy2 = P,
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and moreover, all other, higher order partial derivatives of X , of Y 1 and of
Y 2 may be expressed asP

(
X ,Y 1,Y 2,Y 1

x ,Xx

)
.

Corollary 8.20. An infinitesimal Lie symmetry of(E4) is uniquely deter-
mined by the five initial Taylor coefficients

(8.21) X (0), Y 1(0), Y 2(0), Y 1
x (0), Xx(0).

Proof of the proposition.We notice that (8.18)1 and (8.18)3 are given for
free by (8.13)1 and by (8.15)1. Differentiating (8.13)3 with respect tox, we
get:
(8.22)
0 = −Yxy2 −Xxx + 2 Y 1

xy1 + (6 + 3g1
x)Y

1
y2 + (6x+ 3g1)Y 1

xy2 + r Y 1+

+ r Y 1
x + r Y 2 + r Y 2

x + r Y 1
x + s Y 1

xx + r X + g2
x[1 + g2]−1Xx.

By (8.15)1, s Y 1
xx vanishes. We replaceY 2

x thanks to (8.13)1. Differentiating
(8.13)1 with respect toy2, we may substract0 = −Yxy2 + (2x+ g1)Y 1

xy2 +

r Y 1
x . We get:

(8.23)
0 = −Xxx + 2 Y 1

xy1 + (4x+ 2g1)Y 1
xy2+

+ (6 + 3g1
x)Y

1
y2 + r X + r Y 1 + r Y 2 + r Y 1

x + g2
x[1 + g2]−1Xx.

By means of (8.15)2, we replace the first three terms and then solveY 1
y2:

(8.24) Y 1
y2 = r X + r Y 1 + r Y 2 + r Y 1

x + k∗ Xx,

introducing a notation for a new function that should be recorded:

(8.25) k∗ := g2
x[1 + g2]−1[4 + 3g1

x − h]−1.

This is (8.18)10. Next, we differentiate the obtained equation with respectto
x, getting:

(8.26) Y 1
xy2 = r X + r Y 1 + r Y 2 + r Y 1

x + r Xx + k∗ Xxx.

This is (8.18)13. We replace the obtained value ofY 1
y2 in (8.13)2, (8.13)3,

(8.15)2 and the obtained value ofY 1
xy2 in (8.15)2. This yields a new, simpler
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system of seven equations:
(8.27)
0 = −Y 2

x + (2x+ g1)Y 1
x ,

0 = −Y 2
y1 − (2x+ g1)Y 2

y2 + (2 + g1
x)X + (2 + 2g2)Y 1

x + (2x+ g1)Y 1
y1+

+ s X + r Y 1 + r Y 2 + s Y 1
x + k∗[2x+ g1]2Xx,

0 = −Y 2
y2 −Xx + 2 Y 1

y1 + s X + r Y 1 + r Y 2 + s Y 1
x + k∗(6x+ 3g1)Xx,

0 = −Xy1 + r X + r Y 1 + r Y 2 + s Y 1
x + s Xx + s Y 1

y1 + s Y 2
y2 ,

0 = −Xy2 + r X + r Y 1 + r Y 2 + s Y 1
x + s Xx + s Y 1

y1 + s Y 2
y2 ,

0 = −Y 1
xx,

0 = −2 Y 1
xy1 + Xxx

(
1− k∗(4x+ 2g1)

)
+ r X + r Y 1 + r Y 2 + r Y 1

x .+ s Xx.

Restarting from this system, we differentiate (8.27)3 with respect tox:

(8.28)
0 = −Y 2

xy2 −Xxx + 2 Y 1
xy1 + r X + r Y 1 + r Y 2+

+ r Xx + r Y 1
x + r Y 2

x + s Y 1
xx + k∗(6x+ 3g1)Xxx.

We replaceY 2
x , we eraseY 1

xx and we add (8.27)7:

(8.29) 0 = −Y 2
xy2 +k∗(2x+g1)Xxx + r X + r Y 1 + r Y 2 + r Y 1

x + r Xx.

We differentiate (8.27)2 with respect tox:
(8.30)
0 = −Y 2

xy1 − (2 + g1
x)Y

2
y2 − (2x+ g1)Y 2

xy2 + r X + (2 + g1
x)Xx+

+ s Y 1
x + (2 + 2g2)Y 1

xx + (2 + g1
x)Y

1
y1 + (2x+ g1)Y 1

xy1 + r Xx+

+ s Xx + r Y 1 + r Y 1
x + r Y 2 + r Y 2

x + r Y 1
x + s Y 1

xx + k∗[2x+ g1]2Xxx.

Differentiating (8.27)1 with respect toy1, we may substract0 = −Y 2
xy1 +

(2x + g1)Y 1
xy1 + r Y 1

x ; we replaceY 2
x and eraseY 1

xx; we substract (8.29)
multiplied by(2x+ g1); we get:

(8.31) 0 = −Y 2
y2 + (1 + s)Xx + Y 1

y1 + r X + r Y 1 + r Y 2 + r Y 1
x .

Comparing with (8.27)3 yields:

(8.32)
Y 1

y1 = (2 + s)Xx + r X + r Y 1 + r Y 2 + r Y 1
x ,

Y 2
y2 = (3 + s)Xx + r X + r Y 1 + r Y 2 + r Y 1

x .

These are (8.18)5 and (8.18)11. Differentiating these two equations with
respect tox, replacingY 2

x and erasingY 1
xx, we get:

(8.33)
Y 1

xy1 = (2 + s)Xxx + r X + r Y 1 + r Y 2 + r Y 1
x + r Xx,

Y 2
xy2 = (3 + s)Xxx + r X + r Y 1 + r Y 2 + r Y 1

x + r Xx.

We then replace this value ofY 2
xy2 in (8.29) and solveXxx: this yields

(8.18)2.
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To conclude, we replaceXxx so obtained in (8.27)7: this yields (8.18)8.
We replaceY 1

y1 andY 2
y2 from (8.32) in (8.27)4 and in (8.27)5: this yields

(8.18)4 and this yields (8.18)9. Thanks to (8.18)2 (got) we observe that

(8.34) Px = P + r Y 1
xx + r Y 2

x + r Xxx = P.

Differentiating (8.18)4 (got) and (8.18)9 (got) with respect tox then yields
(8.18)7 and (8.18)12. We replaceY 1

y1 andY 2
y2 from (8.18)5 (got) and (8.18)11

(got) in (8.27)2: this yields (8.18)6. Finally, to obtain the very last (8.18)13,
we differentiate (8.18)10 (got) with respect tox.

The proof of Proposition 8.16 is complete.

We claim that the bound dimSYM(E4) 6 5 is attained for the
model (8.4). Indeed, with0 = r = s and0 = g1 = g2 = h (whence
k∗ = 0) (8.24) isY 1

y2 = 0 and then the seven equations (8.27) are:

(8.35)






0 = −Y 2
x + 2xY 1

x ,

0 = −Y 2
y1 − 2xY 2

y2 + 2 X + 2 Y 1
x + 2xY 1

y1 ,

0 = −Y 2
y2 −Xx + 2 Y 1

y1,

0 = −Xy1 ,

0 = −Xy2 ,

0 = −Y 1
xx,

0 = −2 Y 1
xy1 + Xxx,

having the general solution

(8.36)





X = a− d+ e x,

Y 1 = b+ d x+ 2e y1,

Y 2 = c+ 2a y1 + 3e y2 + d xx.

depending on five parametersa, b, c, d, e ∈ K. Five generators ofSYM(E4)
are:

(8.37)






D := x ∂x + 2y1 ∂y1 + 3y2 ∂y2 ,

L1 := −∂x + x ∂y1 + xx ∂y2 ,

L ′
1 := ∂x + 2y1 ∂y2 ,

L2 := ∂y1 ,

L3 := ∂y2 .

The commutator table
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D L1 L ′
1 L2 L3

D 0 −L1 −L ′
1 −2 L2 −3 L3

L1 L1 0 −L2 0 0
L ′

1 L ′
1 L2 0 −2 L3 0

L2 2 L2 0 2 L3 0 0
L3 3 L3 0 0 0 0

Table 3.

shows that the subalgebra spanned byL1, L ′
1, L2, L3 is isomorphic to

the unique irreducible 4-dimensional nilpotent Lie algebra n1
4 ([OV1994,

BES2005]). ThenSYM(E4) is a semidirect product ofK with n1
4. The

author ignores whether it is rigid. The following accessible research will be
pursued in a subsequent publication.

Open problem8.38. Classify systems (E4) up to point transformations. De-
duce a complete classification, up to local biholomorphisms, of all real ana-
lytic generic submanifolds of codimension 2 inC3, valid at a Zariski-generic
point.

8.39. Almost everywhere rigid hypersurfaces.When studying and classi-
fying differential objects, it is essentially no restriction to assume their Lie
symmetry groups to be of dimension> 1, the study of objects having no in-
finitesimal symmetries being an independent field of research. In particular,
if M ⊂ Cn+1 (n > 1) is a connected real analytic hypersurface, we may
suppose that dimhol(M) > 1, at least. So letL be a nonzero holomorphic
vector field withL + L tangent toM .

Lemma 8.40. ([Ca1932a, St1996, BER1999])If in additionM is finitely
nondegenerate, then

(8.41) Σ :=
{
p ∈M : L (p) ∈ T c

pM
}

is a proper real analytic subset ofM .

In other words, at every pointp belonging to the Zariski-dense subset
M\Σ, the real nonzero vectorL (p) + L (p) ∈ TpM supplementsT c

pM .
StraighteningL in a neighborhood ofp, there exist local coordinatest =
(z1, . . . , zn, w) with T c

0M = {w = 0}, T0M = {Imw = 0}, whenceM
is given byImw = h(z, z̄,Rew), and withL = ∂

∂w
. The tangency of

∂
∂w

+ ∂
∂w̄

= ∂
∂u

to M entails thath is indendepent ofu. Then the complex
equation ofM is of the precise form

(8.42) w = w̄ + iΘ(z, z̄),

with Θ = 2h simply. The reality ofh readsΘ(z, z̄) ≡ Θ(z̄, z).
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Definition 8.43. A real analytic hypersurfaceM ⊂ Cn+1 is calledrigid at
one of its pointsp if there existsL ∈ hol(M) with

(8.44) TpM = T c
pM ⊕ R

(
L (p) + L (p)

)
.

Similar elementary facts hold for general submanifolds of solutions.

Lemma 8.45.Withn > 1 andm = 1, let M be a(connected) submanifold
of solutions that is solvable with respect to the parameters. If there exists a
nonzeroL + L ∗ ∈ SYM(M ), then at Zariski-generic pointsp ∈M , we
haveL (p) 6∈ Fv(p) and there exist local coordinates centered atp in which
L = ∂

∂y
, L ∗ = ∂

∂b
, whenceM has equation of the form

(8.46) y = b+ Π(x, a),

with Π independent ofb.

The associated system (EM ) has then equationsFα that are all indepen-
dent ofy.

8.47. Study of the Lie symmetries of(E5). In Example 1.28, it is thus
essentially no restriction to assume the hypersurfaceM ⊂ C3 to be rigid.

Theorem 8.48.([GM2003b, FK2005a, FK2005b])The model hypersurface
M0 of equation

(8.49) w = w̄ + i
2 z1z̄1 + z1z1z̄2 + z̄1z̄1z2

1− z2z̄2

has transitive Lie symmetry algebrahol(M0) isomorphic toso(3, 2) and
is locally biholomorphic to a neighborhood of every geometrically smooth
point of the tube

(8.50) (Rew′)2 = (Re z′1)
2 + (Re z′1)

3

over the standard cone ofR3. Both are Levi-degenerate with Levi form of
rank 1 at every point and are 2-nondegenerate. The associated PDE system
(EM0)

(8.51) yx2 =
1

4
(yx1)2, yx1x1x1 = 0

(plus other equations obtained by cross differentiation) has infinitesimal Lie
symmetry algebra isomorphic toso(5,C), the complexificationso(3, 2)⊗C.

Through tentative issues ([Eb2006, GM2006]), it has been suspected that
M0 is the right model in the category of real analytic hypersurfacesM ⊂ C3

having Levi form of rank 1 that are 2-nondegenerate everywhere. Based
on the rigidity of the simple Lie algebraso(5,C) (Theorem 5.15), Theo-
rem 8.105 below will confirm this expectation.
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8.52. Preparation. Thus, translating the considerations to thePDE lan-
guage, withn = 2 andm = 1, consider a submanifold of solutions of
the form

(8.53)
y = b+ Π(x, a)

= b+
2 x1a1 + x1x1a2 + a1a1x2

1− x2a2
+ O4,

whereO4 is a function of(x, a) only. The term2 x1a1 corresponds to a Levi
form of rank> 1 at every point. The termx1x1a2 guarantees solvability
with respect to the parameters (compare Definition 2.12). Let us develope

(8.54) Π(x, a) =
∑

k1,k2>0

∑

l1,l2>0

Πk1,k2,l1,l2 (x1)k1 (x2)k2 (a1)l1 (a2)l2 ,

with Πk1,k2,l1,l2 ∈ K. Of course,Π1,0,1,0 = 2, Π2,0,0,1 = 1 andΠ0,1,2,0 = 1.

Lemma 8.55.A transformation belonging toGv,p insures
(8.56)

Πk1,k2,0,0 = 0, k1 + k2 > 0, Π0,0,l1,l2 = 0, l1 + l2 > 0,

Πk1,k2,1,0 = 0, k1 + k2 > 2, Π1,0,l1,l2 = 0, l1 + l2 > 2,

Πk1,k2,2,0 = 0, k1 + k2 > 2, Π2,0,l1,l2 = 0, l1 + l2 > 2.

Proof. Lemma 7.11 achieves the first line. The monomialx1 being factored
by [a1+O2(a)], we seta1 := a1+O2(a) to achieveΠ1,0,l1,l2 = 0, l1+l2 > 2.
As in the proof of Lemma 7.18, we pass to the dual equationb = y−Π(x, a)
to completeΠk1,k2,1,0 = 0, k1 + k2 > 2. Finally, x1x1 is factored by[a2 +
O2(a)], so we proceed similarly to achieve the third line.

SinceΠ(x, a) is assumed to be independent ofb, the assumption that the
Levi form ofM ⊂ C3 has exactly rank 1 at every point translates to:

(8.57) 0 ≡
∣∣∣∣

Πx1a1 Πx1a2

Πx2a1 Πx2a2

∣∣∣∣ .

For later use, it is convenient to develope somehowΠ with respect to the
powers of(a1, a2):
(8.58)

y = b+
2 x1a1 + x1x1a2 + a1a1x2

1− x2a2
+

+ a2 b(x) + a1a2 d(x) + a2a2 e(x) + a1a1a1 f(x) + a1a1a2 g(x)+

+ (a1)4 R + (a1)3a2 R + a1(a2)2 R + (a2)3 R,

with R = R(x, a) being an unspecified remainder. Thanks to the previous
lemma, the coefficientsa of a1 andc of a1a1 must vanish. The functionb is
anO3.
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Lemma 8.59. The functionb depends only onx1, is an O3(x
1) and the

functiong satisfiesgx2x2(0) = 0.

Proof. Developing[1−x2a2]−1 = 1+x2a2 +(x2a2)2 +O3(x
2a2), inserting

the right hand side of
(8.60)
y − b = a1

[
2x1
]
+ a2

[
x1x1 + b(x)

]
+ a1a1

[
x2
]
+ a1a2

[
2x1x2 + d(x)

]
+

+ a2a2
[
x1x1x2 + e(x)

]
+ a1a1a1

[
f(x)

]
+ a1a1a2

[
x2x2 + g(x)

]
+

+ (a1)4 R + (a1)3a2 R + a1(a2)2 R + (a2)3 R

in the determinant (8.57) and selecting the coefficients ofcst., of a1, of a2

and ofa1a1, we get fourPDEs:

(8.61)

0 = 2bx2,

0 = 2dx2 − 2bx1,

0 = 4 ex2 − 2x1 dx2 − 2x1 bx1 − dx2 bx1 ,

0 = 2 gx2 − 2dx1 −
[
6x1 + 3bx1

]
fx2 .

The first one yieldsb = b(x1), which must be anO3(x
1), because the

whole remainder is anO4. Differentiating the fourth with respect tox2, it
then follows thatgx2x2(0) = 0.

8.62. AssociatedPDE system(E5). Next, differentiating (8.60) with respect
tox1, tox1x1 and tox1x1x1, we computeyx1 andyx1x1 , we substitutey1 and
y1,1 and we push the monomialsa2a2, a1a1a1 anda1a1a2 in the remainder:
(8.63)
y1 = 2a1 + a2[2x1 + bx1 ] + a1a2[2x2 + dx1] + (a2)2 R + (a1)3 R + (a1)2 a2 R,

y1,1 = a2[2 + bx1x1] + a1a2[dx1x1 ] + (a2)2 R + (a1)3 R + (a1)2 a2 R,

y1,1,1 = a2[bx1x1x1] + a1a2[dx1x1x1] + (a2)2 R + (a1)3 R + (a1)2a2 R.

Here, the written remaindercannot incorporatea1a1, so it is said that the
coefficient ofa1a1 does vanish in each equation above. Solving fora1 and
a2 from the first two equations, we get
(8.64)



a1 =
1

2
y1 − y1,1

[
2x1 + bx1

4 + 2bx1x1

]
− y1y1,1

[
2x2 + dx1

8 + 4bx1x1

]
+

+ (y1,1)
2
R + (y1)

3
R + (y1)

2y1,1 R,

a2 = y1,1

[
1

2 + bx1x1

]
− y1y1,1

[
dx1x1

2(2 + bx1x1)2

]
+ (y1,1)

2
R + (y1)

3
R + (y1)

2y1,1 R.
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We then get (notice the change of remainder):
(8.65)

a1a1 =
1

4
(y1)

2 − y1y1,1

[
2x1 + bx1

4 + 2bx1x1

]
− (y1)

2y1,1

[
2x2 + dx1

8 + 4bx1x1

]
+ (y1)

3
R + (y1,1)

2
R,

a1a2 = y1y1,1

[
1

4 + 2bx1x1

]
− (y1)

2y1,1

[
dx1x1

(4 + 2bx1x1)2

]
+ (y1)

3
R + (y1,1)

2
R,

a2a2 = (y1)
3
R + (y1,1)

2
R,

a1a1a1 = −(y1)
2y1,1

[
6x1 + 3bx1

16 + 8bx1x1

]
(y1)

3
R + (y1,1)

2
R,

a1a1a2 = (y1)
2 y1,1

[
1

8 + 4bx1x1

]
+ (y1)

3
R + (y1,1)

2
R.

Differentiating (8.60) with respect tox2, substitutingy2 for yx2 and replacing
dx2 by bx1 thanks to (8.61)2, we get
(8.66)
y2 = a1a1 + a1a2[2x1 + bx1 ] + a2a2[x1x1 + ex2 ] + a1a1a1[fx2] + a1a1a2[2x2 + gx2 ]+

+ (a1)4 R + (a1)3a2
R + a1(a2)2 R + (a2)3 R.

Replacing the monomials (8.65), we finally obtain:
(8.67)

y2 =
1

4
(y1)

2 + (y1)
2y1,1

[
2 gx2 − 2dx1 − (6x1 + 3bx1)fx2

16 + 8bx1x1

− (2x1 + bx1)dx1x1

(4 + 2bx1x1)2

]
+

+ (y1)
3 R + (y1,1)

2 R.

Thanks to (8.61)4, the first (big) coefficient of(y1)
2y1,1 is zero; then the

remainder coefficient is anO(x1), hence vanishes atx = 0, together with its
partial first derivative with respect tox2. Accordingly, bys∗ = s∗(x1, x2),
we will denote an unspecified function satisfying

(8.68) s∗(0) = 0 and s∗x2(0) = 0 .

Lemma 8.69. The skeleton of thePDE system(E5) associated to the sub-
manifold(8.58)possesses three main equations of the form
(∆E5)



y2 =
1

4
(y1)

2 + (y1)
3 r + (y1)

4 r + (y1)
5 r + (y1)

6 R+

+ y1,1

[
(y1)

2 s∗ + (y1)
3 r + (y1)

4 r + (y1)
5 r
]
+ (y1,1)

2 R,

y1,2 =
1

2
y1y1,1 + (y1)

3 r + (y1)
4 r + (y1)

5 r + (y1)
6 R+

+ y1,1

[
(y1)

2 r + (y1)
3 r + (y1)

4 r + (y1)
5 r
]
+ (y1)

6 R,

y1,1,1 = (y1)
3 r + (y1)

4 r + y1,1

[
r + y1 r + (y1)

2 r + (y1)
3 r
]
+

+ (y1,1)
2
[
r + y1 r + (y1)

2 r + (y1)
3 r
]
+ (y1,1)

3 R,
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where the letterr denotes an unspecified function of(x1, x2), and where the
coefficients∗ of (y1)

2y1,1 in the first equation satisfies(8.68).

Proof. To get the second equation, we compute:

(8.70)
y1,2 = a1a2[2 + bx1x1] + a1a1a2[gx1x2 ] + (a1)3 R + (a2)2 R

=
1

2
y1y1,1 + (y1)

2y1,1 r + (y1)
3 R + (y1,1)

2 R.

The third equation is got similarly from (8.63)3. To conclude, we de-
velope the first two equationsmod

[
(y1)

6, (y1,1)
2
]

and the third one
mod

[
(y1)

4, (y1,1)
3
]
.

This precise skeleton will be referred to as∆E5 in the sequel. With the
letter r, the computation rules arecst.r = r + r = r + s∗ = r · r = r;
sometimes,s∗ may be replaced plainly byr.

8.71. Infinitesimal Lie symmetries of (E5). Letting L = X 1 ∂
∂x1 +

X 2 ∂
∂x2 + Y ∂

∂y
be a candidate infinitesimal Lie symmetry and applying

(8.72)

L (3) = X 1 ∂

∂x1
+ X 2 ∂

∂x2
+ Y

∂

∂y
+ Y1

∂

∂y1

+ Y2
∂

∂y2

+

+ Y1,1
∂

∂y1,1
+ Y1,2

∂

∂y1,2
+ Y2,1

∂

∂y2,1
+ Y2,2

∂

∂y2,2
+

+ Y1,1,1
∂

∂y1,1,1

+ · · ·+ Y2,2,2
∂

∂y2,2,2

to the skeleton∆E5 , we obtain firstly, computingmod
[
(y1)

5, y1,1

]
:

(8.73)

0 ≡ −Y2 +
1

2
y1 Y1+

+ (y1)
3 r X 1 + (y1)

4 r X 1 + (y1)
3 r X 2 + (y1)

4 r X 2+

+ Y1

[
(y1)

2 r + (y1)
3 r + (y1)

4 r
]
+

+ Y1,1

[
(y1)

2 s∗ + (y1)
3 r + (y1)

4 r
]
,

secondly, computingmod
[
(y1)

5, y1,1

]
:

(8.74)

0 ≡ −Y1,2 +
1

2
y1 Y1,1+

+ (y1)
3 r X 1 + (y1)

4 r X 1 + (y1)
3 r X 2 + (y1)

4 r X 2+

+ Y1

[
(y1)

2 r + (y1)
3 r + (y1)

4 r
]
+

+ Y1,1

[
(y1)

2 r + (y1)
3 r + (y1)

4 r
]
,
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and thirdly, computingmod
[
(y1)

3, (y1,1)
2
]
:

(8.75)
0 ≡ −Y1,1,1 + y1,1 X 1 + y1,1 X 2+

+ y1,1 y1 X 1 + y1,1 y1 X 2 + y1,1 (y1)
2 X 1 + y1,1 (y1)

2 X 2+

+ Y1

[
(y1)

2 r
]
+ Y1,1

[
r + y1 r + (y1)

2 r
]
+ y1,1 Y1

[
r + y1 r + (y1)

2 r
]
+

+ y1,1 Y1,1

[
r + y1 r + (y1)

2 r
]
.

Specializing ton = 2 the formulas (3.9)(II), (3.20)(II) and (3.24)(II), we get
Y1, Y2, Y1,1, Y1,2 andY1,1,1:
(8.76)
Y1 = Yx1 +

[
Yy−X 1

x1

]
y1 +

[
−X 2

x1

]
y2 +

[
−X 1

y

]
(y1)

2 +
[
−X 2

y

]
y1y2.

(8.77)
Y2 = Yx2 +

[
−X 1

x2

]
y1 +

[
Yy−X 2

x2

]
y2 +

[
−X 1

y

]
y1y2 +

[
−X 2

y

]
y2y2.

(8.78)



Y1,1 = Yx1x1 +
[
2 Yx1y −X 1

x1x1

]
y1 +

[
−X 2

x1x1

]
y2 +

[
Yyy − 2 X 1

x1y

]
(y1)

2+

+
[
− 2 X 2

x1y

]
y1y2 +

[
−X 1

yy

]
(y1)

3 +
[
−X 2

yy

]
(y1)

2y2+

+
[
Yy − 2 X 1

x1

]
y1,1 +

[
− 2 X 2

x1

]
y1,2 +

[
− 3 X 1

y

]
y1y1,1+

+
[
−X 2

y

]
y2y1,1 +

[
− 2 X 2

y

]
y1y1,2.

(8.79)




Y1,2 = Yx1x2 +
[
Yx2y −X 1

x1x2

]
y1 +

[
Yx1y −X 2

x1x2

]
y2+

+
[
−X 1

x2y

]
(y1)

2 +
[
Yyy −X 2

x2y −X 1
x1y

]
y1y2 +

[
−X 2

x1y

]
y2y2+

+
[
−X 1

yy

]
(y1)

2y2 +
[
−X 2

yy

]
y1(y2)

2+

+
[
−X 1

x2

]
y1,1 +

[
Yy −X 2

x2 −X 1
x1

]
y1,2 +

[
−X 2

x1

]
y2,2+

+
[
− 2 X 1

y

]
y1y1,2 +

[
− 2 X 2

y

]
y2y1,2.
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(8.80)



Y1,1,1 = Yx1x1x1 +
[
3 Yx1x1y −X 1

x1x1x1

]
y1 +

[
−X 2

x1x1x1

]
y2+

+
[
3 Yx1yy − 3 X 1

x1x1y

]
(y1)

2 +
[
− 3 X 2

x1x1y

]
y1y2+

+
[
Yyyy − 3 X 1

x1yy

]
(y1)

3 +
[
− 3 X 2

x1yy

]
(y1)

2y2+

+
[
−X 1

yyy

]
(y1)

4 +
[
−X 2

yyy

]
(y1)

3y2+

+
[
3 Yx1y − 3 X 1

x1x1

]
y1,1 +

[
− 3 X 2

x1x1

]
y1,2+

+
[
3 Yyy − 9 X 1

x1y

]
y1y1,1 +

[
− 3 X 2

x1y

]
y2y1,1+

+
[
− 6 X 2

x1y

]
y1y1,2 +

[
− 6 X 1

yy

]
(y1)

2y1,1 +
[
− 3 X 2

yy

]
y1y2y1,1+

+
[
− 3 X 2

yy

]
(y1)

2 y1,2 +
[
− 3 X 1

y

]
(y1,1)

2 +
[
− 3 X 2

y

]
y1,1y1,2+

+
[
Yy − 3 X 1

x1

]
y1,1,1 +

[
− 3 X 2

x1

]
y1,1,2 +

[
− 4 X 1

y

]
y1y1,1,1+

+
[
−X 2

y

]
y2y1,1,1 +

[
− 3 X 2

y

]
y1y1,1,2.

InsertingY2, Y1,2, Y1,1,1, Y1, Y1,1 in the three Lie equations (8.73), (8.74),
(8.75), replacingy2, y1,2, y1,1,1 by the values they have on∆E5 , we get firstly
five linearPDEs by picking the coefficients ofcst., of y1, of (y1)

2, of (y1)
3,

of (y1)
4 in (8.73):

(8.81)



0 = Yx2,

0 = X 1
x2 +

1

2
Yx1,

0 = Yy + X 2
x2 − 2 X 1

x1 + r Yx1 + s∗ Yx1x1 ,

0 = 2 X 1
y + X 2

x1 + r X 1 + r X 2 + r Yx1 + r Yy + r X 1
x1+

+ r Yx1x1 + s∗ Yx1y + s∗ X 1
x1x1 ,

0 = X 2
y + r X 1 + r X 2 + r Yx1 + r Yy + r X 1

x1 + r X 2
x1 + r X 1

y +

+ r Yx1x1 + r Yx1y + r X 1
x1x1 + s∗ X 2

x1x1 + s∗ Yyy + s∗ X 1
x1y,

secondly, we get three more linearPDEs by picking the coefficients of(y1)
2,

of (y1)
3, of (y1)

4 in (8.74):
(8.82)




0 = 3 Yx1y + X 2
x1x2 + 4 X 1

x2y − 2 X 1
x1x1 + r X 1 + r X 2 + r Yx1 + r Yx1x1 ,

0 = 2 Yyy + 2 X 2
x2y − 6 X 1

x1y −X 2
x1x1 + r X 1 + r X 2 + r Yx1 + r Yy + r X 1

x1+

+ r Yx1x1 + r Yx1y + r X 1
x1x1 ,

0 = 4 X 1
yy + 3 X 2

x1y + r X 1 + r X 2 + r Yx1 + r Yy + r X 1
x1 + r X 2

x1 + r X 1
y +

+ r Yx1x1 + r Yx1y + r X 1
x1x1 + r X 2

x1x1 + r Yyy + r X 1
x1y.
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and thirdly, we get five more linearPDEs by picking the coefficients ofcst.,
of y1, of y1,1, of y1y1,1, of (y1)

2y1,1 in (8.75)
(8.83)



0 = Yx1x1x1 + r Yx1x1,

0 = −3 Yx1x1y + X 1
x1x1x1 + r Yx1x1 + r Yx1y + r X 1

x1x1,

0 = Yx1y −X 1
x1x1 + r X 1 + r X 2 + r Yx1 + r Yy + r X 1

x1 + r Yx1x1

0 = −3

2
X 2

x1x1 + 3 Yyy − 9 X 1
x1y + r X 1 + r X 2 + r X 1

x1 + r Yx1 + r Yy+

+ r X 2
x1 + r X 1

y + r Yx1x1 + r Yx1y + r X 1
x1x1,

0 = 6 X 1
yy +

15

4
X 2

x1y + r X 1 + r X 2 + r X 1
x1 + r Yx1 + r Yy + r X 2

x1 + r X 1
y + r X 2

y +

+ r Yx1x1 + r Yx1y + r X 1
x1x1 + r X 2

x1x1 + r Yyy + r X 1
x1y.

Proposition 8.84. Setting as initial conditions the ten specific differential
coefficients
(8.85)
P := P

(
X 1,X 2,Y ,X 1

y ,X
2

x2,Yx1,Yy,X
2

x1x2 ,Yx1x1 ,Yyy

)

= r X 1 + r X 2 + r Y + r X 1
y + r X 2

x2 + r Yx1 + r Yy + r X 2
x1x2 + r Yx1x1 + r Yyy,

it follows by cross differentiations and by linear substitutions from the
Lie equations(8.81)i, i = 1, 2, 3, 4, 5, (8.82)j, j = 1, 2, 3, (8.83)i, i =
1, 2, 3, 4, 5, that X 1

x1 , X 2
x1 , Yx2, X 1

x2 , X 2
y , X 1

x1y, X 2
x2x2, Yx1x2, X 1

x2y,
X 2

x2y, Yx1y, X 1
yy, Yx2y, X 2

x1x1x2, Yx1x1x1 , X 2
x1x2x2 Yx1x1x2, X 2

x1x2y, Yx1x1y,
Yx1yy, Yx2yy, Yyyy are uniquely determined as linear combinations of
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(
X 1,X 2,Y ,X 1

y ,X
2

x2,Yx1,Yy,X 2
x1x1,Yx1x1 ,Yyy

)
, namely:

(8.86)





X 1
x1

1
= P, X 2

x1

2
= P, Yx2

3
= P,

X 1
x2

4
= P, X 2

y
5
= P,

X 1
x1y

6
= P, X 2

x2x2

7
= P, Yx1x2

8
= P,

X 1
x2y

9
= P, X 2

x2y
10
= P, Yx1y

11
= P,

X 1
yy

12
= P, Yx2y

13
= P,

X 2
x1x1x2

14
= P, Yx1x1x1

15
= P,

X 2
x1x2x2

16
= P, Yx1x1x2

17
= P,

X 2
x1x2y

18
= P, Yx1x1y

19
= P,

Yx1yy
20
= P,

Yx2yy
21
= P,

Yyyy
22
= P.

Then the expressionsP are stable under differentiation with re-
spect to x1, to x2, to y and moreover, all other, higher order
partial derivatives of X 1, of X 2, of Y may be expressed as
P
(
X 1,X 2,Y ,X 1

y ,X
2

x2,Yx1,Yy,X 2
x1x2,Yx1x1 ,Yyy

)
.

Corollary 8.87. Every infinitesimal Lie symmetry of thePDE system(E5) is
uniquely determined by the ten initial Taylor coefficients
(8.88)
X 1(0),X 2(0),Y (0),X 1

y (0),X 2
x2(0),Yx1(0),Yy(0),X 2

x1x2(0),Yx1x1(0),Yyy(0).

Proof of the proposition.At first, (8.83)1 yields (8.86)15; (8.81)1 yields
(8.86)3; differentiating (8.81)1 with respect tox1 yields (8.86)8; differen-
tiating (8.81)1 with respect toy yields (8.86)13; differentiating (8.81)1 with
respect tox1x1 yields (8.86)17; and differentiating (8.81)1 with respect toyy
yields (8.86)21. Also, rewriting (8.81)2 as

(8.89) X 1
x2 = −1

2
Yx1,

we get (8.86)4; and rewriting (8.81)3 as

(8.90) X 1
x1 =

1

2
X 2

x2 +
1

2
Yy + r Yx1 + s∗ Yx1x1,

we get (8.86)1.
Next, differentiating (8.81)2 with respect tox1 and (8.81)3 with respect to

x2, we get, taking account of0 = Yx2y = Yx1x2 = Yx1x1x2, replacingXx1x2
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by−1
2
Yx1x1 and solving forX 2

x2x2:

(8.91)
0 = X 1

x1x2 +
1

2
Yx1x1 ,

X 2
x2x2 = −(1 + s∗x2) Yx1x1 + r Yx1.

This is (8.86)7. Differentiating (8.91)2 with respect tox1, taking account of
(8.83)1, we get (8.86)16:

(8.92) X 2
x1x2x2 = r Yx1 + r Yx1x1 .

We then replaceX 1
x1 from (8.90) in (8.81)4:

(8.93)
0 = X 2

x1 + 2 X 1
y + r X 1 + r X 2 + r X 2

x2 + r Yx1 + r Yy+

+ r Yx1x1 + s∗ Yx1y + s∗ X 1
x1x1 .

We differentiate this equation with respect tox2, knowingYx2 = 0:
(8.94)
0 = X 2

x1x2 + 2 X 1
x2y + r X 1 + r X 1

x2 + r X 2 + r X 2
x2 + r X 2

x2x2 + r Yx1 + r Yy+

+ r Yx1x1 + s∗x2 Yx1y + s∗x2 X 1
x1x1 + s∗ Xx1x1x2.

We replace:X 1
x2 from (8.89);X 2

x2x2 from (8.91)2; we differentiate (8.81)2
with respect tox1x1 to replaceX 1

x1x1x2 by r Yx1x1, thanks to (8.83)1; and we
reorganize:
(8.95)
2 X 1

x2y+s∗x2 Yx1y+s∗x2 X 1
x1x1 = −X 2

x1x2+r X 1+r X 2+r X 2
x2+r Yx1+r Yy+r Yx1x1 .

We differentiate (8.81)2 with respect toy and (8.81)3 with respect tox1:

(8.96)
X 1

x2y +
1

2
Yx1y = 0,

Yx1y − 2 X 1
x1x1 = −X 2

x1x2 + r Yx1 + r Yx1x1.

For the three unknownsX 1
x1x1, Yx1y, X 1

x2y, we solve the three equations
(8.95), (8.96)1, (8.96)2, remindings∗x2(0) = 0:
(8.97)

X 1
x1x1 = r X 1 + r X 2 + r X 2

x2 + r Yx1 + r Yy + r Yx1x1 + r X 2
x1x2,

Yx1y = r X 1 + r X 2 + r X 2
x2 + r Yx1 + r Yy + r Yx1x1 + r X 2

x1x2,

X 1
x2y = r X 1 + r X 2 + r X 2

x2 + r Yx1 + r Yy + r Yx1x1 + r X 2
x1x2.

We get (8.86)11 and (8.86)9.
Thus, we may replaceX 1

x1x1 andYx1y in (8.81)4 to get (8.86)2:
(8.98)
X 2

x1 = −2 X 1
y + r X 1 + r X 2 + r X 2

x2 + r Yx1 + r Yy + r Yx1x1 + r X 2
x1x2.

Next, we differentiate (8.83)3 with respect tox1 and we replace:X 1
x1 from

(8.90); X 2
x1 from (8.98); Yx1y from (8.97)2; X 1

x1x1 from (8.97)1; Yx1x1x1

from (8.83)1; and we compare with (8.83)2; we differentiate (8.96)1 with
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respect tox1 and (8.96)2 with respect tox1; solving, we obtain four new
relations:
(8.99)

X 1
x1x1x1 = r X 1 + r X 2 + r X 2

x2 + r Yx1 + r Yy + r Yx1x1 + r X 2
x1x2,

Yx1x1y = r X 1 + r X 2 + r X 2
x2 + r Yx1 + r Yy + r Yx1x1 + r X 2

x1x2,

X 2
x1x2y = r X 1 + r X 2 + r X 2

x2 + r Yx1 + r Yy + r Yx1x1 + r X 2
x1x2,

X 2
x1x1x2 = r X 1 + r X 2 + r X 2

x2 + r Yx1 + r Yy + r Yx1x1 + r X 2
x1x2.

We get (8.86)19 and (8.86)14.
Next, in (8.81)5, we replace:X 1

x1 from (8.90); X 2
x1 from (8.98); Yx1y

from (8.97)2; we get:

(8.100)
X 2

y = r X 1 + r X 2 + r X 1
y + r X 2

x2 + r Yx1 + r Yy + r Yx1x1+

+ s∗ X 2
x1x1 + s∗ Yyy + s∗ X 1

x1y.

We differentiate (8.98) with respect tox1 and we replace:X 1
x1 from (8.90);

X 2
x1 from (8.98);Yx1y from (8.97)2; Yx1x1x1 from (8.83)1; X 2

x1x1x2 from
(8.99)4; we get:
(8.101)
X 2

x1x1+2 X 1
x1y = r X 1+r X 2+r X 1

y +r X 2
x2+r Yx1+r Yy+r Yx1x1+r X 2

x1x2.

In (8.82)2, we replace:X 1
x1 from (8.90); X 1

x1x1 from (8.97)1; Yx1y from
(8.97)2; and we reorganize:
(8.102)
2 X 2

x2y−6 X 1
x1y−X 2

x1x1 = −2 Yyy+r X 1+r X 2+r X 2
x2+r Yx1+r Yy+r Yx1x1+r X 2

x1x2.

Differentiating (8.81)3 with respect toy, we replace:Yx1y from (8.97)2;
Yx1x1y from (8.99)2; and we reorganize:
(8.103)
X 2

x2y−2 X 1
x1y = −Yyy+r X 1+r X 2+r X 2

x2+r Yx1+r Yy+r Yx1x1+r X 2
x1x2.

For the three unknownsX 2
x1x1, X 1

x1y, X 2
x2y, we then solve the four equations

(8.101), (8.102), (8.103), (8.83)4 (in which we replace:X 1
x1 from (8.90);

X 2
x1 from (8.98);Yx1y from (8.97)2; X 1

x1x1 from (8.97)1):
(8.104)
X 2

x1x1 = r X 1 + r X 2 + r X 1
y + r X 2

x2 + r Yx1 + r Yy + r Yx1x1 + r X 2
x1x2 + r Yyy,

X 1
x1y = r X 1 + r X 2 + r X 1

y + r X 2
x2 + r Yx1 + r Yy + r Yx1x1 + r X 2

x1x2 + r Yyy,

X 2
x2y = r X 1 + r X 2 + r X 1

y + r X 2
x2 + r Yx1 + r Yy + r Yx1x1 + r X 2

x1x2 + r Yyy.

We get (8.86)6 and (8.86)10. Replacing thenX 2
x1x1 , X 1

x1y in (8.100) gives
(8.105)
X 2

y = r X 1+r X 2+r X 1
y +r X 2

x2 +r Yx1 +r Yy+r Yx1x1 +r X 2
x1x2 +r Yyy.

This is (8.86)5.
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Next, we differentiate (8.103) with respect tox1 and we replace:X 1
x1

from (8.90); X 2
x1 from (8.98); Yx1y from (8.97)2; Yx1x1x1 from (8.83)1;

X 2
x1x1x2 from (8.99)4; we get:

(8.106)
Yx1yy+X 2

x1x2y−2 X 1
x1x1y = r X 1+r X 2+r X 2

x2+r Yx1+r Yy+r Yx1x1+r X 2
x1x2 .

Also, we differentiate (8.83)3 with respect toy and we replace:X 2
y from

(8.105);Yx1y from (8.97)2; X 1
x1y from (8.104)2; Yx1x1y from (8.99)2; we

get:
(8.107)
Yx1yy−X 1

x1x1y = r X 1+r X 2+r X 1
y +r X 2

x2+r Yx1+r Yy+r Yx1x1+r X 2
x1x2+r Yyy.

Also, we replace in (8.82)3: X 1
x1 from (8.90);X 2

x1 from (8.98);Yx1y from
(8.97)2; X 1

x1x1 from (8.97)1; X 2
x1x1 from (8.104)1; X 1

x1y from (8.104)2; we
get:
(8.108)
4 X 1

yy+3 X 2
x1y = r X 1+r X 2+r X 1

y +r X 2
x2+r Yx1+r Yy+r Yx1x1+r X 2

x1x2+r Yyy.

We differentiate this equation with respect tox2 and we replace:4 X 1
x2yy

by−2 Yx1yy from (8.89);X 1
x2 from (8.98);X 1

x2y from (8.97)3; (notice0 =

Yx1x2 = Yx2y); X 2
x2x2 from (8.91)2; X 2

x1x2x2 from (8.92); we get:
(8.109)
−2 Yx1yy+3 X 2

x1x2y = r X 1+r X 2+r X 1
y +r X 2

x2+r Yx1+r Yy+r Yx1x1+r X 2
x1x2+r Yyy.

For the three unknownsX 1
x1x1y, Yx1yy, X 2

x1x2y, we solve the three equations
(8.106), (8.107), (8.108); we get:
(8.110)
X 1

x1x1y = r X 1 + r X 2 + r X 1
y + r X 2

x2 + r Yx1 + r Yy + r Yx1x1 + r X 2
x1x2 + r Yyy,

Yx1yy = r X 1 + r X 2 + r X 1
y + r X 2

x2 + r Yx1 + r Yy + r Yx1x1 + r X 2
x1x2 + r Yyy,

X 2
x1x2y = r X 1 + r X 2 + r X 1

y + r X 2
x2 + r Yx1 + r Yy + r Yx1x1 + r X 2

x1x2 + r Yyy.

We get (8.86)20 and (8.86)18.
Next, in (8.93), we replace:Yx1y from (8.97)2; X 1

x1x1 from (8.97)1; we
get:
(8.111)
X 2

x1 + 2 X 1
y = r X 1 + r X 2 + r X 2

x2 + r Yx1 + r Yy + r Yx1x1 + r X 2
x1x2.

We differentiate this equation with respect toy and we replace:X 2
y from

(8.105);X 2
x2y from (8.104)3; Yx1y from (8.97)2; Yx1x1y from (8.99)2; X

2
x1x2y

from (8.99)3; we get:
(8.112)
X 2

x1y+2 X 1
yy = r X 1+r X 2+r X 1

y +r X 2
x2+r Yx1+r Yy+r Yx1x1+r X 2

x1x2+r Yyy.
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For the two unknownsX 1
yy andX 2

x1y, we solve the two equations (8.108)
and (8.112); we get:
(8.113)
X 1

yy = r X 1 + r X 2 + r X 1
y + r X 2

x2 + r Yx1 + r Yy + r Yx1x1 + r X 2
x1x2 + r Yyy,

X 2
x1y = r X 1 + r X 2 + r X 1

y + r X 2
x2 + r Yx1 + r Yy + r Yx1x1 + r X 2

x1x2 + r Yyy.

We get (8.86)12.
Next, we differentiate (8.113)1 with respect tox1 and we replace:X 1

x1 ,
X 2

x1, X 1
x1y, Yx1y, Yx1x1x1 , X 2

x1x1x2 , Yx1yy; we get:
(8.114)
X 1

x1yy = r X 1+r X 2+r X 1
y +r X 2

x2+r Yx1+r Yy+r Yx1x1+r X 2
x1x2+r Yyy.

Also, we differentiate (8.113)2 with respect tox1 and we replace:
(8.115)
X 2

x1x1y = r X 1+r X 2+r X 1
y +r X 2

x2+r Yx1+r Yy+r Yx1x1+r X 2
x1x2+r Yyy.

Also, we differentiate (8.83)4 with respect toy; we replaceX 1
x1yy from

(8.114), we replaceX 2
x1x1y from (8.115); and we achieve other evident re-

placements; we get:
(8.116)
Yyyy = r X 1+r X 2+r X 1

y +r X 2
x2+r Yx1+r Yy+r Yx1x1+r X 2

x1x2+r Yyy.

This is (8.96)22, which completes the proof.

Theorem 8.117.The bound dimSYM(E5) 6 10 is attained if and only if
(E5) is equivalent, through a diffeomorphism(x1, x2, y) 7−→ (X1, X2, Y ),
to the model system

(8.118) YX2 = 0, YX1X1X1 = 0.

Proof. Firstly, settingr = s∗ = 0 everywhere, the solution to (8.81), (8.82),
(8.83) is
(8.119)

X 1 = k + (c+ j) x1 − b x2 − h y + e x1x1 − d x1x2 + f x1y − e x2y,

X 2 = g + 2h x1 + 2j x2 − d x2x2 + 2e x1x2 − f x1x1,

Y = a+ 2b x1 + 2c y + d x1x1 + 2e x1y + f yy,
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wherea, b, c, d, e, f, g, h, j, k ∈ K are arbitrary. Computing the third pro-
longations of the ten vector fields
(8.120)

∂

∂x1
,

∂

∂x2
,

∂

∂y
,

− x2 ∂

∂x1
+ 2x1 ∂

∂y
, x1 ∂

∂x1
+ 2y

∂

∂y
, x1 ∂

∂x1
+ 2x2 ∂

∂x2
, −y

∂

∂x1
+ 2x1 ∂

∂x2
,

− x1x2 ∂

∂x1
− x2x2 ∂

∂x2
+ x1x1 ∂

∂y
, (x1x1 − x2y)

∂

∂x1
+ 2x1x2 ∂

∂x2
+ 2x1y

∂

∂y
,

x1y
∂

∂x1
− x1x1 ∂

∂x2
+ yy

∂

∂y

one verifies that they all are tangent to the skeletony2 = 1
4
(y1)

2, y1,1,1 = 0.
Thus the bound is attained. One then verifies ([FK2005a]) that the spanned
Lie algebra is isomorphic toso(5,C).

Lemma 8.121.Assuming the normalizations of Lemma 8.54, the remainder
O4 in (8.53)is anO3(x

1, a1):
(8.122)

y = b+
2 x1a1 + x1x1a2 + a1a1x2

1− x2a2
+(x1)3 R+(x1)2a1 R+x1(a1)2 R+(a1)3 R.

Proof. Indeed, writing
(8.123)
y = b+ x1 Λ1,0 + a1 Λ0,1 + x1x1 Λ2,0 + x1a1 Λ1,1 + a1a1 Λ0,2 + O3(x

1, a1),

with Λi,j = Λi,j(x2, a2), and developing the determinant (8.54) with respect
to the powers of(x1, a1), the vanishing of the coefficients ofcst., of x1, of
a1 yields the system

(8.124)





0 ≡ Λ1,0
a2 Λ0,1

x2 ,

0 ≡ Λ1,1 Λ1,0
x2a2 − 2 Λ2,0

a2 Λ0,1
x2 − Λ1,1

x2 Λ1,0
a2 ,

0 ≡ Λ1,1 Λ0,1
x2a2 − Λ1,1

a2 Λ0,1
x2 − 2 Λ0,2

x2 Λ1,0
a2 .

If the first equation yieldsΛ1,0
a2 ≡ 0, replacing in the second, usingΛ2,0 =

a2 +O2, we deduce thatΛ0,1
x2 ≡ 0 also. Similarly,Λ0,1

x2 ≡ 0 impliesΛ1,0
a2 ≡ 0.

Since the coordinate system satisfies the normalizationΠ(0, a) ≡ Π(x, 0) ≡
0, necessarilyΛ1,0 = O(a2) andΛ0,1 = O(x2). We deduce:

(8.125) 0 ≡ Λ1,0 ≡ Λ0,1.
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Redeveloping the determinant, the vanishing of the coefficients ofx1x1, of
x1a1, of a1a1 yields the system

(8.126)





0 ≡ Λ1,1 Λ2,0
x2a2 − 2 Λ2,0

a2 Λ1,1
x2 ,

0 ≡ Λ1,1 Λ1,1
x2a2 − Λ1,1

a2 Λ1,1
x2 − 4 Λ2,0

a2 Λ0,2
x2 ,

0 ≡ Λ1,1 Λ0,2
x2a2 − 2 Λ0,2

x2 Λ1,1
a2 .

SinceΛ1,1(0) = 2 6= 0, we may divide byΛ1,1, obtaining aPDE system with
the three functionsΛ2,0

x2a2 , Λ1,1
x2a2 , Λ0,2

x2a2 in the left hand side. We observe that
the normalizations of Lemma 8.55 entail
(8.127)
Λ2,0 = a2 +O(x2a2), Λ1,1 = 2+O(x2a2), Λ0,2 = x2 +O(x2a2).

By cross differentiations in the mentionedPDE system, it follows that all the
Taylor coefficients ofΛ2,0, Λ1,1, Λ0,2 are uniquely determined. As already
discovered in [GM2003b], the unique solution

(8.128) Λ2,0 =
a2

1− x2a2
, Λ1,1 =

2

1− x2a2
, Λ0,2 =

x2

1− x2a2
,

guarantees, when the remainderO3(x
1, a1) vanishes, that the determi-

nant (8.45) indeed vanishes identically.

Conversely, suppose that dimSYM(E5) = 10 is maximal.
With ε 6= 0 small, replacing (x1, x2, y, a1, a2, b) by

(εx1, x2, ε2y, εa1, a2, εεb) in (8.122) and dividing byεε, the remain-
der terms become small:

(8.129) y = b+
2 x1a1 + x1x1a2 + a1a1x2

1− x2a2
+ O(ε).

Then all the remainders in the equations∆E5 of the skeleton areO(ε). We
get ten generators similar to (8.120), plus anO(ε) perturbation. Thanks to
the rigidity ofso(5,C), Theorem 5.15 provides a change of generators, close
to the10×10 identity matrix, leading to the same structure constants asthose
of the ten vector fields (8.120). As in the end of the proof of Theorem 5.13,
we may then straighten some relevant vector fields (exercise) and finally
check that their tangency to the skeleton implies that it is the model one.
Theorem 8.117 is proved.

Corollary 8.130. LetM ⊂ C3 be a connected real analytic hypersurface
whose Levi form has uniform rank 1 that is 2-nondegenerate atevery point.
Then

(8.131) dimhol(M) 6 10,

and the bound is attained if and only ifM is locally, in a neighborhood of
Zariski-generic points, biholomorphic to the modelM0.
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§9. DUAL SYSTEM OF PARTIAL DIFFERENTIAL EQUATIONS

9.1. Solvability with respect to the variables.Let M be as in §2.10 de-
fined byy = Π(x, a, b) or dually byb = Π∗(a, x, y).

Definition 9.2. M is solvable with respect to the variablesif there exist an
integerκ∗ > 1 and multiindicesδ(1), . . . , δ(n) ∈ Np with |δ(l)| > 1 for l =
1, . . . , n andmax16l6n |δ(l)| = κ∗, together with integersj(1), . . . , j(n)
with 1 6 j(l) 6 m such that the localK-analytic map
(9.3)

Kn+m ∋ (x, y) 7−→
((

Π∗j(0, x, y)
)16j6m

,
(
Π∗j(l)

aδ(l)(0, x, y)
)

16l6n

)
∈ Km+n

is of rank equal ton+m at (x, y) = (0, 0)

If M is a complexified generic submanifold, solvability with respect to
the parameters is equivalent to solvability with respect tothe variables, be-
causeΠ∗ = Π. This is untrue in general: withn = 2, m = 1, consider the
systemyx2 = 0, yx1x1 = 0, whose general solutions isy(x) = b+ x1a with
x2 absent.

To characterize generally such a degeneration property, wedevelope both

(9.4)

yj = Πj(x, a, b) =
∑

β∈Nn

xβ Πj
β(a, b) and

bj = Π∗j(a, x, y) =
∑

δ∈Np

aδ Π∗j
δ(x, y),

with analytic functionsΠj
β(a, b), Π∗j

δ(x, y) and we introduce twoK∞-valued
maps

(9.5)
Q∞ : (a, b) 7−→

(
Πj

β(a, b)
)16j6m

β∈Nn
and

Q∗
∞ : (x, y) 7−→

(
Π∗j

δ(x, y)
)16j6m

δ∈Np .

Sinceb 7→
(
Πj

0(0, b)
)16j6m

andy 7→
(
Π∗j

0(0, y)
)16j6m

are already both of
rankm at the origin, the generic ranks of these two maps, defined by testing
the nonvanishing of minors of their infinite Jacobian matrices, satisfy

(9.6)
genrk Q∞ = m+ pM and

genrk Q∗
∞ = m+ nM

for some two integers0 6 pM 6 p and0 6 nM 6 n. So at a Zariski-generic
point, the ranks areequal tom+ pM and tom+ nM .

Proposition 9.7. There exists a local properK-analytic subsetΣM of Kn
x ×

Km
y ×Kp

a ×Km
b whose equations, of the specific form

(9.8) ΣM =
{
rν(a, b) = 0, ν ∈ N, r∗µ(x, y) = 0 µ ∈ N

}
,



291

are obtained by equating to zero all(m+pM )×(m+pM ) minors ofJac Q∞
and all (m + nM ) × (m + nM ) minors ofJac Q∗

∞, such that for every
point p = (xp, yp, ap, bp) 6∈ ΣM , there exists a local change of coordinates
respecting the separation of the variables(x, y) and(a, b)

(9.9) (x, y, a, b) 7→
(
ϕ(x, y), h(a, b)

)
=: (x′, y′, a′, b′)

by whichM is transformed to a submanifoldM ′ centered and localized at
p′ = p having equations

(9.10) y′ = Π′(x′, a′, b′) and dually b′ = Π′∗(a′, x′, y′)

with Π′ andΠ′∗ independent of

(9.11)
(
x′nM+1, . . . , x

′
n

)
and of

(
a′pM+1, . . . , a

′
p

)
.

SoM ′, may be considered to be living inKnM

x′ × Km
y′ × K

pM

a′ × Km
b′ and

in such a smaller space, atp′ = p, it is solvable both with respect to the
parameters and to the variables.

Interpretation: by forgetting some innocuous variables, at a Zariski-
generic point, anyM is both solvable with respect to the parameters and
to the variables. These two assumptions will be held up to theend of this
Part I.

9.12. Dual system (E ∗) and isomorphisms SYM(E ) ≃
SYM

(
VS (E )

)
= SYM

(
VS (E ∗)

)
≃ SYM(E ∗). To a system

(E ), we associate its submanifold of solutionsM := VS (E ). Assuming
it to be solvable with respect to the variables and proceeding as in §2.10,
we can derive adual system of completely integrable partial differential
equationsof the form

(E ∗) bjaγ (a) = Gj
γ

(
a, b(a),

(
b
j(l)

aδ(l)(a)
)
16l6n

)
,

where (j, γ) 6= (j, 0) and 6= (j(l), δ(l)). Its submanifold of solutions
VS (E ∗) ≡ VS (E ) has equations dual to those ofVS (E ).

Theorem 9.13.Under the assumption of twin solvability, we have:

(9.14) SYM(E ) ≃ SYM
(
VS (E )

)
= SYM

(
VS (E ∗)

)
≃ SYM(E ∗),

throughL ←→ L + L ∗ = L ∗ + L ←→ L ∗.

§10. FUNDAMENTAL PAIR OF FOLIATIONS AND COVERING PROPERTY

10.1. Fundamental pair of foliations onM . As in §2, let (E ) andM =
VS (E ) be defined byy = Π(x, a, b) or dually byb = Π∗(a, x, y). Abbrevi-
ate

(10.2) z := (x, y) and c := (a, b).
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Every transformation(z, c) 7→
(
ϕ(z), h(c)

)
belonging toGv,p stabilizes both

{z = cst.} and{c = cst.}. Accordingly, the two foliations ofM

(10.3) Fv :=
⋃

c0

M ∩
{
c = c0

}
and Fp :=

⋃

z0

M ∩
{
z = z0

}

are invariant under changes of coordinates. We call(Fv, Fp) thefundamental
pair of foliationson M . The leaves of thefoliation by variablesFv aren-
dimensional:

(10.4) Fv(c0) =
{
(z, c0) : y = Π(x, c0)

}

The leaves of thefoliation byparametersFp arep-dimensional:

(10.5) Fp(c0) =
{
(z0, c) : b = Π∗(a, z0)

}

We draw a diagram. In it, the positive codimension is invisible:

(10.6) m = dimM − dimFv − dimFp > 1

Fv

M M

c

zFp

L

L∗

0

10.7. ChainsΓk and dual chainsΓ∗
k. Similarly as in [GM2004, Me2005a,

Me2005b, MP2005] (in a CR context), we introduce two collections
(Lk)16k6n and(L∗

q)16q6p of vector fields whose integral manifolds coincide
with the leaves ofFv and ofFp:

(10.8)





Lk :=
∂

∂xk
+

m∑

j=1

∂Πj

∂xk
(x, a, b)

∂

∂yj
, k = 1, . . . , n,

L∗
q :=

∂

∂aq
+

m∑

j=1

∂Π∗j

∂aq
(a, x, y)

∂

∂bj
, q = 1, . . . , p.
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Let (z0, c0) = (x0, y0, a0, b0) ∈M be a fixed point, letx1 := (x1
1, . . . , x

n
1 ) ∈

Kn and define the multiple flow map
(10.9){

Lx1(x0, y0, a0, b0) := exp(x1L)(p0) := exp
(
xn

1Ln

(
· · · (exp(x1

1L1(z0, c0))) · · · )
)

:=
(
x0 + x1,Π(x0 + x1, a0, b0), a0, b0

)
.

Similarly, for a1 = (a1
1, . . . , a

p
1) ∈ Kp, define the multiple flow map

(10.10) L∗
a1

(x0, y0, a0, b0) :=
(
x0, y0, a0 + a1,Π

∗(a0 + a1, x0, y0)
)
.

Starting from the(z0, c0) = (0, 0) and moving alternately alongFv, Fp, Fv,
etc., we obtain

(10.11)





Γ1(x1) := Lx1(0),

Γ2(x1, a1) := L∗
a1

(Lx1(0)),

Γ3(x1, a1, x2) := Lx2(L
∗
a1

(Lx1(0))),

Γ4(x1, a1, x2, a2) := L∗
a2

(Lx2(L
∗
a1

(Lx1(0)))),

and so on. Generally, we getchains Γk := Γk([xa]k), where [xa]k :=
(x1, a1, x2, a2, . . . ) with exactly k terms, where eachxl ∈ Kn and each
al ∈ Kp.

If, instead, the first movement consists in moving alongFp, we start with
Γ∗

1(a1) := L∗
a1

(0), Γ∗
2(a1, x1) := Lx1(L

∗
a1

(0)), etc., and generally we getdual
chainsΓ∗

k([ax]k), where[ax]k := (a1, x1, a2, x2, . . . ), with exactlyk terms.
BothΓk andΓ∗

k have range inM .
Fork = 1, 2, 3, · · · , integersek ande∗k are defined inductively by

(10.12)

{
e1 + e2 + e3 + · · ·+ ek = genrkK(Γk),

e∗1 + e∗2 + e∗3 + · · ·+ e∗k = genrkK(Γ∗
k).

By (10.9) and (10.10), it is clear thate1 = n, e2 = p, e∗1 = p, ande∗2 = n.

Example10.13. For yxx = 0, the submanifold of solutionsM is simply
y = b+ xa, whence

(10.14)





Γ1(x1) = (x1, 0, 0, 0),

Γ2(x1, a1) = (x1, 0, a1,−x1a1),

Γ3(x1, a1, x2) = (x1 + x2, x2a1, a1,−x1a1).

The rank at(0, 0, 0) of Γ3 is equal to two, not more. However, its generic
rank is equal to three. Similar observations hold for the twosubmanifolds
of solutionsy = b+ xxa + xaa andy = b+ xa1 + xxa2 (in K5).

Lemma 10.15. If genrkK(Γk+1) = genrkK(Γk), then for each positive in-
tegerl > 1, we havegenrkK(Γk+l) = genrkK(Γk). The same stabilization
property holds forΓ∗

k.
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10.16. Covering property. We now formulate a central concept.

Definition 10.17. The pair of foliations(Fv, Fp) is covering at the origin
if there exists an integerk such that the generic rank ofΓk is (maximal
possible) equal to dimK M . Since fora1 = 0, the dual(k + 1)-th chain
Γ∗

k+1 identifies with thek-th chainΓk, the same property holds for the dual
chains.

Example10.18. With n = 1, m = 2 andp = 1 the submanifold defined by
y1 = b1 andy2 = b2 + xa is twin solvable, but its pair of foliations is not
covering at the origin. ThenSYM(M ) is infinite-dimensional, since for
a = a(y1) an arbitrary function, it containsa(y1) ∂

∂y1 + a(b1) ∂
∂b1

.

Because we aim only to study finite-dimensional Lie symmetrygroups of
partial differential equations, in the remainder of this Part I, we will con-
stantly assume the covering property to hold.

By Lemma 10.15, there exist two well defined integersµ andµ∗ such
that e3, e4, . . . , eµ+1 > 0, but eµ+l = 0 for all l > 2 and similarly,
e∗3, e

∗
4, . . . , e

∗
µ∗+1 > 0, but e∗µ∗+l = 0 for all l > 2. Since the pair of foli-

ations is covering, we have the two dimension equalities

(10.19)

{
n + p+ e3 + · · ·+ eµ+1 = dimK M = n+m+ p,

p+ n + e∗3 + · · ·+ e∗µ∗+1 = dimK M = n+m+ p.

By definition, the ranges ofΓµ+1 and ofΓ∗
µ∗+1 cover (at least; more is true,

see: Theorem 10.28) an open subset ofM . Also, it is elementary to verify
the four inequalities

(10.20)
µ 6 1 +m, µ∗

6 1 +m,

µ 6 µ∗ + 1, µ∗ 6 µ+ 1.

In fact, sinceΓk+1 with x1 = 0 identifies withΓ∗
k, the second line follows.

Definition 10.21. The type of the covering pair of foliations(Fv, Fp) is the
pair of integers

(10.22) (µ, µ∗), with max(µ, µ∗) 6 1 +m.

Example10.23. (Continued) We write down the explicit expressions ofΓ4

and ofΓ5:
(10.24)




Γ4(x1, a1, x2, a2; 0) =
(
x1 + x2, x2a1, a1 + a2, −x1a1 − x1a2 − x2a2,

)
,

Γ5(x1, a1, x2, a2, x3; 0) =
(
x1 + x2 + x3, x2a1 + x3a1 + x3a2, a1 + a2

− x1a1 − x1a2 − x2a2

)
.

Here, dimM = 3. By computing its Jacobian matrix,Γ5 is of rank 3 at
every point(x1, a1, 0,−a1,−x1) ∈ K5 with a1 6= 0. Since (obviously)

(10.25) Γ5

(
x1, a1, 0,−a1,−x1

)
= 0 ∈M ,
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we deduce thatΓ5 is submersive (“covering”) from a small neighborhood of(
x1, a1, 0,−a1,−x1

)
in K5 onto a neighborhood of the origin inM .

10.26. Covering a neighborhood of the origin inM . For (z0, c0) ∈ M
fixed and close to the origin, we denote byΓk

(
[xa]k; (z0, c0)

)
and by

Γ∗
k

(
[ax]k; (z0, c0)

)
the (dual) chains issued from(z0, c0). For given pa-

rameters[xa]k = (x1, a1, x2, . . . ), we denote by[−xa]k the collection
(· · · ,−x2,−a1,−x2) with minus signs and reverse order; similarly, we in-
troduce[−ax]k. Notably, we haveL−x1(Lx1(0)) = 0 (becauseL−x1+x1(·) =
L0(·) = Id), and alsoL−x1(L

∗
−a1

(L∗
a1

(Lx1(0)))) = 0 and generally:

(10.27) Γk

(
[−xa]k; Γk([xa]k; 0)

)
≡ 0.

Geometrically speaking, by following backward thek-th chainΓk, we come
back to0.

Theorem 10.28. ([Me2005a, Me2005b], [∗]) The two mapsΓ2µ+1 and
Γ∗

2µ∗+1 are submersive onto a neighborhood of the origin inM . Pre-
cisely, there exist two points[xa]02µ+1 ∈ K(µ+1)n+µp and [ax]02µ∗+1 ∈
Kµ∗n+(µ∗+1)p arbitrarily close to the origin withΓ2µ+1([xa]

0
2µ+1) = 0 and

Γ∗
2µ∗+1([ax]

0
2µ∗+1) = 0 such that the two maps

(10.29)

{
K(µ+1)n+µp ∋ [xa]2µ+1 7−→ Γ2µ+1

(
[xa]2µ+1

)
∈M and

Kµ∗n+(µ∗+1)p ∋ [ax]2µ∗+1 7−→ Γ∗
2µ∗+1

(
[ax]2µ∗+1

)
∈M

are of rankn + m + p = dimK M at the points[xa]02µ and [ax]02µ∗ respec-
tively. In particular, the ranges of the two mapsΓ2µ+1 andΓ∗

2µ∗+1 cover a
neighborhood of the origin inM .

Let πz(z, c) := z andπc(z, c) := c be the two canonical projections. The
next corollary will be useful in Section 12. In the example above, it also
follows that the map

(10.30) [xa]4 7→ πc

(
Γ4([xa4])

)
=
(
a1 + a2, −x1a1 − x1a2 − x2a2

)
∈ K2

is of rank two at all points[xa]04 :=
(
x0

1, a
0
1, 0,−a0

1

)
with a0

1 6= 0.

Corollary 10.31. ([Me2005a, Me2005b], [∗]) There exist two points
[xa]02µ ∈ Kµ(n+p) and [ax]02µ∗ ∈ Kµ∗(n+p) arbitrarily close to the origin with
πc(Γ2µ([xa]02µ)) = 0 andπz

(
Γ∗

2µ∗([ax]02µ∗)) = 0 such that the two maps

(10.32)

{
Kµ(n+p) ∋ [xa]2µ 7−→ πc

(
Γ2µ([xa]2µ)

)
∈ Km+p and

Kµ∗(n+p) ∋ [ax]2µ∗ 7−→ πz

(
Γ∗

2µ∗([ax]2µ∗)
)
∈ Kn+m

are of rankm + p at the point[xa]02µ ∈ Kµ(n+p) and of rankn + m at the
point [ax]02µ∗ ∈ Kµ∗(n+p).
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In the casem = 1 (single dependent variabley ∈ K), the covering prop-
erty always hold withµ = µ∗ = 2.

§11. FORMAL AND SMOOTH EQUIVALENCES BETWEEN SUBMANIFOLDS

OF SOLUTIONS

11.1. Transformations of submanifolds of solutions.Lemma 7.3 shows
that every equivalenceϕ between twoPDE systems (E ) and (E ′) lifts as a
transformation which respects the separation between variables and param-
eters of the form
(11.2)
(x, y, a, b) 7−→

(
φ(x, y), ψ(x, y), f(a, b), g(a, b)

)
=
(
ϕ(x, y), h(a, b)

)
=: (x′, y′, a′, b′)

from the source submanifolds of solutionsM := VS (E ) to the target
M ′ := VS (E ′), whose equations are

(11.3)
y = Π(x, c) or dually b = Π∗(a, z) and

y′ = Π′(x′, c′) or dually b′ = Π′∗(a′, z′).

The study of transformations between submanifolds of solutions possesses
strong similarities with the study of CR mappings between CRmani-
folds ([Pi1975, We1977, DW1980, BJT1985, DF1988, BER1999,Me2005a,
Me2005b]). In fact, one may transfer the whole theory of the analytic reflec-
tion principle to this more general context. In the present §10 and in the next
§11, we select and establish some of the results that are useful to the Lie the-
ory. Some accessible open questions will also be formulated.

Maps of the form (11.2) send leaves ofFv and ofFp to leaves ofF′
v, and

of F′
p, respectively.

M

Kn+2m+p

0

Kn+2m+p

Fp

Fv

c

z

F
′
p

c′

z′0′

F
′
v

(ϕ, h)

(ϕ(z), h(c))

Γ∗([ax]2)

Γ∗([ax]3)

Γ∗(a1)

M ′
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11.4. Regularity and jet parametrization. Some strong rigidity properties
underly the above diagram. Especially, the smoothness of the two pairs(
Fv, Fp

)
and

(
F′

v, F′
p

)
governs the smoothness of(ϕ, h).

We shall study the regularity of apurely formal map (z′, c′) =(
ϕ(z), h(c)

)
, namelyϕ(z) ∈ K[[z]]n+m andh(c) ∈ K[[c]]p+m, assuming (E )

and (E ′) to be analytic. Concretely, the assumption that(ϕ, h) mapsM to
M ′ reads as one of the four equivalent identities:

(11.5)





ψ
(
x,Π(x, c)

)
≡ Π′(φ(x,Π(x, c)), h(c)

)
,

ψ(z) ≡ Π′(φ(z), h(a,Π∗(a, z)
)
,

g
(
a,Π∗(a, z)

)
≡ Π′∗(f(a,Π∗(a, z)), ϕ(z)

)
,

g(c) ≡ Π′∗(f(c), ϕ(x,Π(x, c))
)
,

in K[[x, c]]m and inK[[a, z]]m.

Theorem 11.6.Let (ϕ, h) := M → M ′ be a purely formal equivalence
between two localK-analytic submanifolds of solutions. Assume that the
fundamental pair of foliations(Fv, Fp) is covering at the origin, with type
(µ, µ∗) at the origin. Assume thatM ′ is bothκ-solvable with respect to the
parameters andκ∗-solvable with respect to the variables. Setℓ := µ∗(κ +
κ∗) and ℓ∗ := µ(κ∗ + κ). Then there exist twoKn+m-valued andKp+m-
valued localK-analytic mapsΦℓ andHℓ∗, constructible only by means of
Π, Π∗, Π′, Π′∗, such that the following two formal power series identities
hold:

(11.7)

{
ϕ(z) ≡ Φℓ

(
z, J ℓ

zϕ(0)
)
,

h(c) ≡ Hℓ∗
(
c, J ℓ∗

c h(0)
)
,

in K[[z]]n+m and inK[[c]]p+m, whereJ ℓ
zϕ(0) denotes theℓ-th jet ofh at the

origin and similarly forJ ℓ∗

c h(0). In particular, as a corollary, we have the
following two automatic regularity properties:

• ϕ(z) ∈ K{z}n+m andh(c) ∈ K{c}p+m are in fact convergent;
• if in addition M andM ′ are K-algebraic in the sense of Nash, then

Φℓ andHℓ∗ are alsoK-algebraic, whenceϕ(z) ∈ AK{z}n+m and
h(c) ∈ AK{c}p+m are in factK-algebraic.

Proof. We remind the explicit expressions of the two collections ofvector
fields spanning the leaves of the two foliationsFv andFp:

(11.8)





Lk :=
∂

∂xk
+

m∑

j=1

∂Πj

∂xk
(x, c)

∂

∂yj
, k = 1, . . . , n,

L∗
q :=

∂

∂aq
+

m∑

j=1

∂Π∗j

∂aq
(a, z)

∂

∂bj
, q = 1, . . . , p.
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Observe that differentiating the first line of (11.5) with respect toxk amounts
to applying the derivationLk. Similarly, differentiating the third line
of (11.5) with respect toaq amounts to applyingL∗

q. We thus get for
(z, c) ∈M

(11.9)






Lk ψ(z) =
n∑

l=1

∂Π′

∂x′l
(
φ(z), h(c)

)
Lk φ

l(z) and

L∗
q g(c) =

p∑

r=1

∂Π′∗

∂a′r
(
f(c), ϕ(z)

)
L∗

q f
r(c),

It follows from det
(

∂ϕk

∂zl

)
(0) 6= 0 anddet

(
∂hk

∂cl

)
(0) 6= 0 that the two formal

determinants

(11.10) det
(
Lk φ

l(z)
)16l6n

16k6n
and det

(
L∗

q f
r(c)
)16r6p

16q6p

have nonvanishing constant term. Consequently, these two matrices are in-
vertible in K[[z]] and inK[[c]]. So there exist universal polynomialsS

j
l and

S∗j
r such that

(11.11)






∂Π′j

∂x′l
(
ϕ(z), h(c)

)
=

S
j
l

({
Lk′ ϕi′(z)

}16i′6n+m

16k′6n

)

det
(
Lk′ φl′(z)

)16l′6n

16k′6n

and

∂Π′∗j

∂a′r
(
f(c), ϕ(z)

)
=

S∗j
r

({
L∗

q′ h
i′(c)

}16i′6p+m

16q′6p

)

det
(
L∗

q′ f
r′(c)

)16r′6p

16q′6p

,

for 1 6 j 6 m, for 1 6 l 6 n, for 1 6 r 6 p and for(z, c) ∈M .
Again, we apply the vector fieldsLk to the obtained first line and the

vector fieldsL∗
q to the obtained second line, getting, thanks to the chain rule:

(11.12)



n∑

l2=1

∂2Π′j

∂x′l1x′l2

(
φ(z), h(c)

)
Lk φ

l2(z) =
R

j
l1,k

({
Lk′

1
Lk′

2
ϕi′(z)

}16i′6n+m

16k′
1,k′

26n

)

[
det
(
Lk′ φl′(z)

)16l′6n

16k′6n

]2 and

p∑

r2=1

∂2Π′∗j

∂a′r1a′r2

(
f(c), ϕ(z)

)
L∗

q f
r2(c) =

R∗j
r1,q

({
L∗

q′1
L∗

q′2
hi′(c)

}16i′6p+m

16q′1,q′26p

)

[
det
(
L∗

q′ f
r′(c)

)16r′6p

16q′6p

]2 ,

for 1 6 j 6 m, for 1 6 l1, l2 6 n, for 1 6 r1, r2 6 p and for(z, c) ∈ M .
Here,Rj

l1,k andR∗j
r1,q are universal polynomials. Then applying once more
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Cramer’s rule, we get
(11.13)



∂2Π′j

∂x′l1x′l2
(
φ(z), h(c)

)
=

S
j
l1,l2

({
Lk′

1
Lk′

2
ϕi′(z)

}16i′6n+m

16k′
1,k′

26n

)

[
det
(
Lk′ φl′(z)

)16l′6n

16k′6n

]3 and

∂2Π′∗j

∂a′r1a′r2

(
f(c), ϕ(z)

)
=

S∗j
r1,r2

(
{L∗

q′1
L∗

q′2
hi′(c)}16i′6p+m

16q′1,q′26p

)

[
det
(
L∗

q′ f
r′(c)

)16r′6p

16q′6p

]3 .

By induction, for everyj with 1 6 j 6 m and every two multiindices
β ∈ Nn andδ ∈ Np, there exists two universal polynomialsS

j
β andS∗j

δ such
that

(11.14)






∂|β|Π′j

∂x′β
(
φ(z), h(c)

)
=

S
j
β

({
Lβ′
ϕi′(z)

}16i′6n+m

|β′|6|β|

)

[
det
(
Lk′ φl′(z)

)16l′6n

16k′6n

]2|β|+1
and

∂|γ|Π′∗j

∂a′δ
(
f(c), ϕ(z)

)
=

S∗j
δ

({
L∗δ′hi′(c)

}16i′6p+m

|δ′|6|δ|

)

[
det
(
L∗

q′ f
r′(c)

)16r′6p

16q′6p

]2|δ|+1
.

Here, forβ ′ ∈ Nn, we denote byLβ′
the derivation of order|β ′| defined by

(L1)
β′
1 · · · (Ln)

β′
n. Similarly, for δ′ ∈ Np, L∗δ′ denotes the derivation of order

|δ′| defined by(L∗
1)

δ′1 · · · (L∗
p)

δ′p.
Next, by the assumption thatM ′ is solvable with respect to the parame-

ters, there exist integersj(1), . . . , j(p) with 1 6 j(q) 6 m and multiindices
β(1), . . . , β(p) ∈ Nn with |β(q)| > 1 andmax16q6p |β(q)| = κ such that
the localK-analytic map
(11.15)

Kp+m ∋ c′ 7−→


(Π′j(0, c′)

)16j6m
,

(
∂|β(q)|Π′j(q)

∂x′β(q)
(0, c′)

)

16q6p


 ∈ Kp+m

is of rankp + m at c′ = 0. Similarly, by the assumption thatM ′ is solv-
able with respect to the variables, there exist integersj∼(1), . . . , j∼(n) with
1 6 j∼(l) 6 m and multiindicesδ(1), . . . , δ(p) ∈ Nn with |δ(q)| > 1 and
max16q6p |δ(q)| = κ∗ such that the localK-analytic map
(11.16)

Kn+m ∋ z′ 7−→
(
(
Π′∗j

(0, z′)
)16j6m

,

(
∂|δ(l)|Π′∗j∼(l)

∂a′δ(l)
(
0, z′

)
)

16l6n

)
∈ Kn+m

is of rankn + m at z′ = 0. We then consider from the first line of (11.14)
only the(p+m) equations written for(j, 0), (j(q), β(q)) and we solveh(c)
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by means of the analytic implicit function theorem; also, inthe second line
of (11.14), we consider the(n+m) equations written for(j, 0), (j∼(l), δ(l))
and we solveϕ(z). We get:

(11.17)






h(c) = Ĥ


φ(z),

S
j(1)
β(1)

({
Lβ′
ϕi′(z)

}16i′6n+m

|β′|6|β(1)|

)

det
[(

Lk′ φl′(z)
)16l′6n

16k′6n

]2|β(1)|+1
, . . .

. . . ,
S

j(p)
β(p)

({
Lβ′
ϕi′(z)

}16i′6n+m

|β′|6|β(p)|

)

det
[(

Lk′ φl′(z)
)16l′6n

16k′6n

]2|β(p)|+1


 ,

ϕ(z) = Φ̂


f(c),

S∗j∼(1)
δ(1)

({
L∗δ′hi′(c)

}16i′6p+m

|δ′|6|δ(1)|

)

[
det
(
L∗

q′ f
r′(c)

)16r′6p

16q′6p

]2|δ(1)|+1
, . . .

. . . ,
S∗j∼(n)

δ(n)

({
L∗δ′hi′(c)

}16i′6p+m

|δ′|6|δ(n)|

)

[
det
(
L∗

q′ f
r′(c)

)16r′6p

16q′6p

]2|δ(n)|+1


 ,

for (z, c) ∈M . The mapsĤ andΦ̂ depend only onΠ′, Π′∗.

Lemma 11.18.For everyβ ′ ∈ Nn, there exists a universal polynomialPβ′ in

the jet variablesJ |β′|
z havingK-analytic coefficients in(z, c) which depends

only onΠ, Π∗ such that, fori′ = 1, . . . , n+m:

(11.19) Lβ′

ϕi′(z) ≡ Pβ′

(
z, c, J |β′|

z ϕi′(z)
)
.

A similar property holds forL∗δ′hi′(c).

We deduce that there exist two localK-analytic mappingsΦ0
0 andH0

0 such
that we can write

(11.20)

{
ϕ(z) = Φ0

0

(
z, c, Jκ∗

c h(c)
)
,

h(c) = H0
0

(
z, c, Jκ

z ϕ(z)
)
,

for (z, c) ∈M . Concretely, this means that we have two equivalent pairs of
formal identities

(11.21)

ϕ(z) ≡ Φ0
0

(
z, a, Π∗(a, z), Jκ∗

c h(a,Π∗(a, z))
)

ϕ
(
x,Π(x, c)

)
≡ Φ0

0

(
x, Π(x, c), c, Jκ∗

c h(c)
)

h(c) ≡ H0
0

(
x, Π(x, c), c, Jκ

z ϕ(x,Π(x, c))
)

h
(
a,Π∗(a, z)

)
≡ H0

0

(
z, a, Π∗(a, z), Jκ

z ϕ(z)
)
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in K[[a, z]]n+m and inK[[x, c]]p+m. We notice that, whereasϕ andh area
priori only purely formal, by construction,Φ0

0 andH0
0 areK-analytic near(

0, 0, Jκ∗

c h(0)
)

and near
(
0, 0, Jκ

z ϕ(0)
)
.

Next, we introduce the following vector fields withK-analytic coefficients
tangent toM :

(11.22)





Vj :=
∂

∂yj
+

m∑

l=1

∂Π∗l

∂yj
(a, z)

∂

∂bl
, j = 1, . . . , m and

V∗
j :=

∂

∂bj
+

m∑

l=1

∂Πl

∂bj
(x, c)

∂

∂yl
, j = 1, . . . , m.

Indeed, we check thatVj1 [b
j2 − Π∗j2(a, z)] ≡ 0 and thatV∗

j1
[yj2 −

Πj2(x, c)] ≡ 0.

For δ′ ∈ Nm, we observe thatVδ′ϕ = ∂|δ′|ϕ

∂yδ′ . Applying thenLβ′
with

β ′ ∈ Nn, we get fori = 1, . . . , n+m:

(11.23) Lβ′

Vδ′ϕi(z) = Qβ′,δ′
(
z, c, J |β′|+|δ′|

z ϕi(z)
)
,

with Qβ′,δ′ universal. Since then +m vector fieldsLk andVj , having coef-
ficients depending on(z, c), span the tangent space toKn

x ×Km
y , the change

of basis of derivations yields, by induction, the following.

Lemma 11.24.For everyα ∈ Nn+m, there exists a universal polynomialPα

in its last variables with coefficients beingK-analytic in(z, c) and depend-
ing only onΠ, Π∗ such that, fori = 1, . . . , n +m:

(11.25) ∂α
z ϕ

i(z) ≡ Pα

(
z, c,

(
Lβ′

Vδ′ϕi(z)
)
|β′|+|δ′|6|α|

)
.

We are now in position to state and to prove the first fundamental technical
lemma which generalizes the two formulas (11.20) to arbitrary jets.

Lemma 11.26.For everyλ ∈ N, there exist two localK-analytic maps,Φλ
0

valued inK(n+m)Cλ
n+m+λ , andHλ

0 valued inK
(p+m)Cλ

p+m+λ , such that:

(11.27)

{
Jλ

z ϕ(z) ≡ Φλ
0

(
z, c, Jκ∗+λ

c h(c)
)
,

Jλ
c h(c) ≡ Hλ

0

(
z, c, Jκ+λ

z ϕ(z)
)
.

Proof. Consider for instance the first line. To obtain it, it sufficesto apply
the derivationsLβ′

Vδ′ with |β ′| + |δ′| 6 λ to the first line of (11.20), to use
the chain rule and to apply Lemma 11.24.

Let θ ∈ Kl, l ∈ N, letQ(θ) =
(
Q1(θ), . . . , Qn+2m+p(θ)

)
∈ K[[θ]]n+2m+p

and leta1 ∈ Kp. As the multiple flow ofL∗ given by (10.10) does not act on
the variables(x, y), we have the trivial but crucial property:
(11.28)

ϕ
(
L∗

a1
(Q(θ))

)
≡ ϕ

(
πz(L

∗
a1

(Q(θ)))
)
≡ ϕ (πz(Q(θ))) ≡ ϕ (Q(θ)) .
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At the end, we allow to suppress the projectionπz: this slight abuse of no-
tation will lighten slightly the writting of further formulas. More generally,
for λ ∈ N, a1 ∈ Kp, x1 ∈ Kn:

(11.29)
Jλ

z ϕ
(
L∗

a1
(Q(θ))

)
≡ Jλ

z ϕ
(
Q(θ)

)
and

Jλ
c h
(
Lx1(Q(θ))

)
≡ Jλ

c h
(
Q(θ)

)
.

As a consequence, for2k even and for2k + 1 odd, we have the following
four cancellation relations, useful below (we dropπz andπc afterJλ

z ϕ and
afterJλ

c h):

(11.30)





Jλ
z ϕ
(
Γ2k([xa]2k)

)
≡ Jλ

z ϕ
(
Γ2k−1([xa]2k−1)

)
,

Jλ
c h
(
Γ∗

2k([ax]2k)
)
≡ Jλ

c h
(
Γ∗

2k−1([ax]2k−1)
)
,

Jλ
z ϕ
(
Γ∗

2k+1([ax]2k+1)
)
≡ Jλ

z ϕ
(
Γ∗

2k([ax]2k)
)
,

Jλ
c h
(
Γ2k+1([xa]2k+1)

)
≡ Jλ

c h
(
Γ2k([xa]2k)

)
.

We are now in position to state and to prove the second main technical
proposition.

Proposition 11.31.For every even chain-length2k and for every jet-height
λ, there exist two localK-analytic maps,Φλ

2k valued inK(n+m)Cλ
n+m+λ , and

Hλ
2k valued inK

(p+m)Cλ
p+m+λ such that:

(11.32)

{
Jλ

z ϕ
(
Γ∗

2k

(
[ax]2k

))
≡ Φλ

2k

(
[ax]2k, J

k(κ+κ∗)+λ
z ϕ(0)

)
and

Jλ
c h
(
Γ2k

(
[xa]2k

))
≡ Hλ

2k

(
[xa]2k, J

k(κ+κ∗)+λ
c ϕ(0)

)
.

Similarly, for every odd chain length2k + 1 and for every jet eightλ, there
exist two localK-analytic maps,Φλ

2k+1 valued inK(n+m)Cλ
n+m+λ andHλ

2k+1

valued inK(p+m)Cλ
p+m+λ , such that:

(11.33){
Jλ

z ϕ
(
Γ2k+1

(
[xa]2k+1

))
≡ Φλ

2k+1

(
[xa]2k+1, J

kκ+(k+1)κ∗+λ
c h(0)

)
,

Jλ
c h
(
Γ∗

2k+1

(
[ax]2k+1

))
≡ Hλ

2k+1

(
[ax]2k+1, J

(k+1)κ+kκ∗+λ
z ϕ(0)

)
.

These maps depend only onΠ, Π∗, Π′, Π′∗.

Proof. For 2k + 1 = 1, we replace(z, c) by Γ1([xa]1) in the first line
of (11.27) and byΓ∗

1([ax]1) in the second line. Taking crucially account
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of the cancellation properties (11.29), we get:

(11.34)





Jλ
z ϕ
(
Γ1([xa]1)

)
≡ Φλ

0

(
Γ1([xa]1), J

κ∗+λ
c h

(
Γ1([xa]1)

))

≡ Φλ
0

(
Γ1([xa]1), J

κ∗+λ
c h(0))

)

=: Φλ
1

(
[xa]1, J

κ∗+λ
c h(0)

)
,

Jλ
c h
(
Γ∗

1([ax]1)
)
≡ Hλ

0

(
Γ∗

1([ax]1), J
κ+λ
z ϕ

(
Γ∗

1([ax]1)
))

≡ Hλ
0

(
Γ∗

1([ax]1), J
κ+λ
z ϕ(0)

)

=: Hλ
1

(
[ax]1, J

κ+λ
z ϕ(0)

)
.

Here, the third line definesΦλ
1 and the sixth line definesHλ

1 . Thus, the
proposition holds for2k + 1 = 1.

The rest of the proof proceeds by induction. We treat only theinduction
step from an odd chain-length2k + 1 to an even chain-length2k + 2, the
other induction step being similar.

To this aim, we replace the variables(z, c) in the first line of (11.27)
by Γ∗

2k+2([ax]2k+2). Taking account of the cancellation property and of the
induction assumption:
(11.35)

Jλ
z ϕ
(
Γ∗

2k+2

(
[ax]2k+2

))
≡ Φλ

0

(
Γ∗

2k+2([ax]2k+2), Jκ∗+λ
c h

(
Γ∗

2k+2([ax]2k+2)
))

≡ Φλ
0

(
Γ∗

2k+2([ax]2k+2), Jκ∗+λ
c h

(
Γ∗

2k+1([ax]2k+1)
))

≡ Φλ
0

(
Γ∗

2k+2([ax]2k+2), Hκ∗+λ
2k+1

(
[ax]2k+1, J (k+1)(κ+κ∗)+λ

c ϕ(0)
))

=: Φλ
2k+2

(
[ax]2k+2, J (k+1)(κ+κ∗)+λ

c ϕ(0)
)

,

The last line definesΦλ
2k+2. Similarly, we replace(z, c) in the second line

of (11.27) byΓ2k+2([xa]2k+2). Taking account of the cancellation property
and of the induction assumption:
(11.36)

Jλ
c h
(
Γ2k+2([xa]2k+2)

)
≡ Hλ

0

(
Γ2k+2([xa]2k+2), Jκ+λ

c ϕ
(
Γ2k+2([xa]2k+2)

))

≡ Hλ
0

(
Γ2k+2([xa]2k+2), Jκ+λ

c ϕ
(
Γ2k+1([xa]2k+1)

))

≡ Hλ
0

(
Γ2k+2([xa]2k+2), Φκ+λ

2k+1

(
[xa]2k+1, J (k+1)(κ+κ∗)+λ

c h(0)
))

=: Hλ
2k+2

(
[xa]2k+2, J (k+1)(κ+κ∗)+λ

c h(0)
)

.

This completes the proof.

End of the proof of Theorem 11.6.With (µ, µ∗) being the type of(Fv, Fp)
and with[ax]02µ∗ given by Corollary 10.31, the rank property (10.32) insures
the existence of an affine(n+m)-dimensional spaceH ⊂ Kµ∗(p+n) passing
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through[ax]02µ∗ and equipped with a local parametrization

(11.37) Kn+m ∋ s 7→ [ax]2µ∗(s) ∈ H
satisfying[ax]2µ∗(0) = [ax]02µ∗ , such that the map

(11.38) Kn+m ∋ s 7−→ πz

(
Γ∗

2µ∗([ax]2µ∗(s))
)

=: z(s) ∈ Kn+m

is a local diffeomorphism fixing0 ∈ Kn+m. Replacingz by z(s) in ϕ(z)
and applying the formula in the first line of (11.32) withλ = 0 and with
k = 2µ∗, we obtain

(11.39)

ϕ(z(s)) = ϕ
(
πz

(
Γ∗

2µ∗([ax]2µ∗(s)
))

= ϕ
(
Γ∗

2µ∗

(
[ax]2µ∗(s)

))

≡ Φ0
2µ∗

(
[ax]2µ∗(s), Jµ∗(κ+κ∗)

z ϕ(0)
)
.

Invertings 7→ z = z(s) asz 7→ s = s(z), we finally get

(11.40)
ϕ(z) = ϕ(z(s(z))) ≡ Φ0

2µ∗

(
[ax]2µ∗(s(z)), Jµ∗(κ+κ∗)

z ϕ(0)
)

=: Φℓ

(
z, Jµ∗(κ+κ∗)

z ϕ(0)
)
,

with ℓ := µ∗(κ+ κ∗), where the last line definesΦℓ. In conclusion, we have
derived the first line of (11.7). The second one is obtained similarly.

If Π, Π∗, Π′, Π′∗ are algebraic, so areΓk, Γ∗
k, Ĥ, Φ̂, Φλ

0 , Hλ
0 , Φλ

k, Hλ
k and

Φℓ,Hℓ∗.
The proof of Theorem 11.6 is complete.
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II: Explicit prolongations of infinitesimal Lie symmetries
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§1. JET SPACES AND PROLONGATIONS

1.1. Choice of notations for the jet space variables.Let K = R or C. Let
n > 1 andm > 1 be two positive integers and consider two sets of variables
x = (x1, . . . , xn) ∈ Kn and y = (y1, . . . , ym). In the classical theory
of Lie symmetries of partial differential equations, one considers certain
differential systems whose (local) solutions should be mappings of the form
y = y(x). We refer to [Ol1986] and to [BK1989] for an exposition of the
fundamentals of the theory. Accordingly, the variablesx are usually called
independent, whereas the variablesy are calleddependent. Not to enter in
subtle regularity considerations (as in [Me2005b]), we shall assumeC ∞-
smoothness of all functions throughout this paper.

Let κ > 1 be a positive integer. For us, in a very concrete way (without
fiber bundles), theκ-th jet spaceJ κ

n,m consists of the spaceKn+m+m
(n+m)!
n! m!

equipped with the affine coordinates

(1.2)
(
xi, yj, yj

i1
, yj

i1,i2
, . . . . . . , yj

i1,i2,...,iκ

)
,

having the symmetries

(1.3) yj
i1,i2,...,iλ

= yj
iσ(1),iσ(2),...,iσ(λ)

,

for every λ with 1 6 λ 6 κ and for every permutationσ of the set
{1, . . . , λ}. The variableyj

i1,i2,...,iλ
is an independent coordinate correspond-

ing to theλ-th partial derivative ∂λyj

∂xi1∂xi2 ···∂xiλ
. So the symmetries (1.3) are

natural.
In the classical Lie theory ([OL1979], [Ol1986], [BK1989]), all the geo-

metric objects: point transformations, vector fields,etc., are local, defined in
a neighborhood of some point lying in some affine spaceKN . However, in
this paper, the original geometric motivations are rapidlyforgotten in order
to focus on combinatorial considerations. Thus, to simplify the presenta-
tion, we shall not introduce any special notation to speak ofcertain local
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open subsets ofKn+m, or of the jet spaceJ κ
n,m = Kn+m+m

(n+m)!
n! m! , etc.: we

will always work in global affine spacesKN .

1.4. Prolongationϕ(κ) of a local diffeomorphismϕ to the κ-th jet space.
In this paragraph, we recall how the prolongation of a diffeomorphism to the
κ-th jet space is defined ([OL1979], [Ol1986], [BK1989]).

Let x∗ ∈ Kn be a central fixed point and letϕ : Kn+m → Kn+m be
a diffeomorphism whose Jacobian matrix is close to the identity matrix, at
least in a small neighborhood ofx∗. Let

(1.5) Jκ
x∗

:=
(
xi
∗, y

j
∗i1 , y

j
∗i1,i2

, . . . . . . , yj
∗i1,i2,...,iκ

)
∈ J κ

n,m

∣∣
x∗

be an arbitraryκ-jet based atx∗. The goal is to defined its transformation
ϕ(κ)(Jκ

x∗
) byϕ.

To this aim, choose an arbitrary mappingKn ∋ x 7→ g(x) ∈ Km defined
at least in a neighborhood ofx∗ and representing thisκ-th jet, i.e. satisfying

(1.6) yj
∗i1,...,iλ

=
∂λgj

∂xi1 · · ·∂xiλ
(x∗),

for every λ ∈ N with 0 6 λ 6 κ, for all indicesi1, . . . , iλ with 1 6

i1, . . . , iλ 6 n and for everyj ∈ N with 1 6 j 6 m. In accordance with
the splitting(x, y) ∈ Kn × Km of coordinates, split the components of the
diffeomorphismϕ asϕ = (φ, ψ) ∈ Kn × Km. Write (x, y) the coordinates
in the target space, so that the diffeomorphismϕ is:

(1.7) Kn+m ∋ (x, y) 7−→ (x, y) =
(
φ(x, y), ψ(x, y)

)
∈ Kn+m.

Restrict the variables(x, y) to belong to the graph ofg, namely puty := g(x)
above, which yields

(1.8)

{
x = φ(x, g(x)),

y = ψ(x, g(x)).

As the differential ofϕ at x∗ is close to the identity, the first family ofn
scalar equations may be solved with respect tox, by means of the implicit
function theorem. Denotex = χ(x) the resulting mapping, satisfying by
definition

(1.9) x ≡ φ (χ(x), g(χ(x))) .

Replacex by χ(x) in the second family ofm scalar equations (1.8) above,
which yields:

(1.10) y = ψ (χ(x), g(χ(x))) .

Denote simply by y = g(x) this last relation, whereg(·) :=
ψ (χ(·), g(χ(·))).

In summary, the graphy = g(x) has been transformed to the graphy =
g(x) by the diffeomorphismϕ.
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Define then thetransformed jetϕ(κ)
(
Jκ

x∗

)
to be theκ-th jet of g at the

pointx∗ := φ(x∗), namely:

(1.11) ϕ(κ)
(
Jκ

x∗

)
:=

(
∂λgj

∂xi1 · · ·∂xiλ
(x∗)

)16j6m

16i1,...,iλ6n, 06λ6κ

∈J κ
n,m

∣∣
x∗
.

It may be shown that this jet does not depend on the choice of a lo-
cal graphy = g(x) representing theκ-th jet Jκ

x∗
at x∗. Furthermore, if

πκ := J κ
n,m → Km denotes the canonical projection onto the first factor,

the following diagram commutes:

J κ
n,m

ϕ(κ)

//

πκ

��

J κ
n,m

πκ

��

Kn+m
ϕ

// Kn+m

.

1.12. Inductive formulas for theκ-th prolongation ϕ(κ). To present them,
we change our notations. Instead of(x, y), as coordinates in the target space
Kn ×Km, we shall use capital letters:

(1.13)
(
X1, . . . , Xn, Y 1, . . . , Y m

)
.

In the source spaceKn+m equipped with the coordinates(x, y), we use the
jet coordinates (1.2) on the associatedκ-th jet space. In the target space
Kn+m equipped with the coordinates(X, Y ), we use the coordinates

(1.14)
(
X i, Y j , Y j

Xi1
, Y j

Xi1Xi2
, . . . . . . , Y j

Xi1Xi2 ...Xiκ

)

on the associatedκ-th jet space; to avoid confusion withyi1 , yi1,i2, . . . in
subsequent formulas, we do not writeYi1 , Yi1,i2, . . . . In these notations, the
diffeomorphismϕ whose first order approximation is close to the identity
mapping in a neighborhood ofx∗ may be written under the form:

(1.15) ϕ :
(
xi′ , yj′

)
7→
(
X i, Y j

)
=
(
X i(xi′ , yj′), Y j(xi′ , yj′)

)
,

for someC ∞-smooth functionsX i(xi′ , yj′), i = 1, . . . , n, andY j(xi′ , yj′),
j = 1, . . . , m. The first prolongationϕ(1) of ϕ may be written under the
form:
(1.16)

ϕ(1) :
(
xi′ , yj′, yj′

i′1

)
7−→

(
X i(xi′ , yj′), Y j(xi′ , yj′), Y j

Xi1

(
xi′ , yj′, yj′

i′1

))
,

for some functionsY j

Xi1

(
xi′ , yj′, yj′

i′1

)
which depend on the pure first jet

variablesyj′

i′1
. The way how these functions depend on the first order par-

tial derivatives functionsX i
xi′ , X

i
yj′ , Y

j

xi′ , Y
j

yj′ and on the pure first jet
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variablesyj′

i′1
is provided (in principle) by the following compact formulas

([BK1989]):

(1.17)




Y j
X1

...
Y j

Xn


 =




D1
1X

1 · · · D1
1X

n

... · · · ...
D1

nX
1 · · · D1

nX
n




−1


D1
1Y

j

...
D1

nY
j


 ,

where, fori′ = 1, . . . , n, the symbolD1
i′ denotes thei′-th first order total

differentiation operator:

(1.18) D1
i′ :=

∂

∂xi′
+

m∑

j′=1

yj′

i′
∂

∂yj′
.

Striclty speaking, these formulas (1.17) are not explicit,because an in-
verse matrix is involved and because the termsD1

i′X
i, D1

i′Y
j are not de-

veloped. However, it would be feasible and elementary to write down the
corresponding totally explicit complete formulas for the functionsY j

Xi1
=

Y j

Xi1

(
xi′ , yj′, yj′

i′1

)
.

Next, the second prolongationϕ(2) is of the form
(1.19)

ϕ(2) :
(
xi′ , yj′, yj′

i′1
, yj′

i′1,i′2

)
7−→

(
ϕ(1)

(
xi′ , yj′, yj′

i′1

)
, Y j

Xi1Xi2

(
xi′ , yj′, yj′

i′1
, yj′

i′1,i′2

))
,

for some functionsY j

Xi1Xi2

(
xi′ , yj′, yj′

i′1
, yj′

i′1,i′2

)
which depend on the pure

first and second jet variables. Fori = 1, . . . , n, the expressions ofY j

Xi1Xi

are given by the following compact formulas (again [BK1989]):

(1.20)




Y j

Xi1X1

...
Y j

Xi1Xn


 =




D1
1X

1 · · · D1
1X

n

... · · · ...
D1

nX
1 · · · D1

nX
n




−1



D2
1Y

j

Xi1

...
D2

nY
j

Xi1


 ,

where, fori′ = 1, . . . , n, the symbolD2
i′ denotes thei′-th second order total

differentiation operator:

(1.21) D2
i′ :=

∂

∂xi′
+

m∑

j′=1

yj′

i′
∂

∂yj′
+

m∑

j′=1

n∑

i′1=1

yj′

i′,i′1

∂

∂yj′

i′1

.

Again, these formulas (1.20) are not explicit in the sense that an inverse
matrix is involved and that the termsD1

i′X
i, D2

i′Y
j

Xi1
are not developed. It

would already be a nontrivial computational task to develope these expres-
sions and to find out some nice satisfying combinatorial formulas.

In order to present the general inductive non-explicit formulas for the
computation of theκ-th prolongationϕ(κ), we need some more notation.
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Let λ ∈ N be an arbitrary integer. Fori′ = 1, . . . , n, letDλ
i′ denotes thei′-th

λ-th order total differentiation operators, defined precisely by:
(1.22)




Dλ
i′ :=

∂

∂xi′
+

m∑

j′=1

yj′

i′
∂

∂yj′
+

m∑

j′=1

n∑

i′1=1

yj′

i′,i′1

∂

∂yj′

i′1

+
m∑

j′=1

n∑

i′1,i′2=1

yj′

i′,i′1,i′2

∂

∂yj′

i′1,i′2

+

+ · · ·+
m∑

j′=1

n∑

i′1,i′2,...,i′
λ−1=1

yj′

i′,i′1,i′2,...,i′
λ−1

∂

∂yj′

i′1,i′2,...,i′
λ−1

.

Then, fori = 1, . . . , n, the expressions ofY j

Xi1 ···Xiλ−1Xi
are given by the

following compact formulas (again [BK1989]):
(1.23)


Y j

Xi1 ···Xiλ−1X1

...
Y j

Xi1 ···Xiλ−1Xn


 =




D1

1X
1 · · · D1

1X
n

... · · · ...
D1

nX
1 · · · D1

nX
n




−1



Dλ
1Y

j

Xi1 ···Xiλ−1

...
Dλ

nY
j

Xi1 ···Xiλ−1


 .

Again, these inductive formulas are incomplete and unsatisfactory.

Problem1.24. Find totally explicit complete formulas for theκ-th prolon-
gationϕ(κ).

Except in the casesκ = 1, 2, we have not been able to solve this prob-
lem. The caseκ = 1 is elementary. Complete formulas in the particular
casesκ = 2, n = 1, m > 1 andn > 1, m = 1 are implicitely provided
in [Me2004] and in Section ?(?), where one observes the appearance of some
modifications of the Jacobian determinant of the diffeomorphismϕ, inserted
in a clearly understandable combinatorics. In fact, there is a nice dictionary
between the formulas forϕ(2) and the formulas for the second prolongation
L (2) of a vector fieldL which were written in equation (43) of [GM2003a]
(seealso equations (2.6), (3.20), (4.6) and (5.3) in the next paragraphs). In
the passage fromϕ(2) to L (2), a sort of formal first order linearization may
be observed and the reverse passage may be easily guessed. However, for
κ > 3, the formulas forϕ(κ) explode faster than the formulas for theκ-th
prolongationL (κ) of a vector fieldL . Also, the dictionary betweenϕ(κ)

and L (κ) disappears. In fact, to elaborate an appropriate dictionary, we
believe that one should introduce before a sort of formal(κ − 1)-th order
linearizations ofϕ(κ), finer than the first order linearizationL (κ). To be op-
timistic, we believe that the final answer to Problem 1.24 is,nevertheless,
accessible after hard work.

The present article is devoted to present totally explicit complete formulas
for the κ-th prolongationL (κ) of a vector fieldL to J κ

n,m, for n > 1
arbitrary, form > 1 arbitrary and forκ > 1 arbitrary.
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1.25. Prolongation of a vector field to theκ-th jet space. Consider a vec-
tor field

(1.26) L =

n∑

i=1

X i(x, y)
∂

∂xi
+

m∑

j=1

Y j(x, y)
∂

∂yj
,

defined inKn+m. Its flow:

(1.27) ϕt(x, y) := exp (tL ) (x, y)

constitutes a one-parameter family of diffeomorphisms ofKn+m close to
the identity. The lift(ϕt)

(κ) to theκ-th jet space constitutes a one-parameter
family of diffeomorphisms ofJ κ

n,m. By definition, theκ-th prolongation
L (κ) of L to the jet spaceJ κ

n,m is the infinitesimal generator of(ϕt)
(κ),

namely:

(1.28) L (κ) :=
d

dt

∣∣∣∣
t=0

[
(ϕt)

(κ)
]
.

1.29. Inductive formulas for theκ-th prolongation L (κ). As a vector field
defined inKn+m+m (n+m)!

n! m! , theκ-th prolongationL (κ) may be written under
the general form:
(1.30)





L (κ) =

n∑

i=1

X i ∂

∂xi
+

m∑

j=1

Y j ∂

∂yj
+

+
m∑

j=1

n∑

i1=1

Y
j
i1

∂

∂yj
i1

+
m∑

j=1

n∑

i1,i2=1

Y
j
i1,i2

∂

∂yj
i1,i2

+ · · ·+

+

m∑

j=1

n∑

i1,...,iκ=1

Y
j
i1,...,iκ

∂

∂yj
i1,...,iκ

.

Here, the coefficientsYj
i1

, Y
j
i1,i2

, . . . , Y
j
i1,i2,...,iκ

are uniquely determined
in terms of partial derivatives of the coefficientsX i andY j of the orig-
inal vector fieldL , together with the pure jet variables

(
yj

i1
, . . . , yj

i1,...,iκ

)
,

by means of the followingfundamental inductive formulas([OL1979],
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[Ol1986], [BK1989]):
(1.31)





Y
j
i1

:= D1
i1

(
Y j
)
−

n∑

k=1

D1
i1

(
X k

)
yj

k,

Y
j
i1,i2

:= D2
i2

(
Y

j
i1

)
−

n∑

k=1

D1
i2

(
X k

)
yj

i1,k,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Y
j
i1,i2,...,iκ

:= Dκ
iκ

(
Y

j
i1,i2,...,iκ−1

)
−

n∑

k=1

D1
iκ

(
X k

)
yj

i1,i2,...,iκ−1,k,

where, for everyλ ∈ N with 0 6 λ 6 κ, and for everyi ∈ N with 1 6 i′ 6

n, thei′-th λ-th order total differentiation operatorDλ
i′ was defined in (1.22)

above.

Problem1.32. Applying these inductive formulas, find totally explicit com-
plete formulas for theκ-th prolongationL (κ).

The present article is devoted to provide all the desired formulas.

1.33. Methodology of induction. We have the intention of presenting our
results in a purely inductive style, based on several thorough visual compar-
isons between massive formulas which will be written and commented in
four different cases:

(i) n = 1 andm = 1; κ > 1 arbitrary;
(ii) n > 1 andm = 1; κ > 1 arbitrary;
(iii) n = 1 andm > 1; κ > 1 arbitrary;
(iv) general case:n > 1 andm > 1; κ > 1 arbitrary.

Accordingly, we shall particularize and slightly lighten our notations in
each of the three (preliminary) cases (i) [Section 2], (ii) [Section 3] and (iii)
[Section 4].

§2. ONE INDEPENDENT VARIABLE AND ONE DEPENDENT VARIABLE

2.1. Simplified adapted notations.Assumen = 1 andm = 1, let κ ∈ N

with κ > 1 and simply denote the jet variables by:

(2.2) (x, y, y1, y2, . . . , yκ) ∈J κ
1,1.

Theκ-th prolongation of a vector fieldL = X ∂
∂x

+ Y ∂
∂y

will be denoted
by:

(2.3) L (κ) = X
∂

∂x
+ Y

∂

∂y
+ Y1

∂

∂y1
+ Y2

∂

∂y2
+ · · ·+ Yκ

∂

∂yκ
.
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The coefficientsY1, Y2, . . . , Yκ are computed by means of the inductive
formulas:

(2.4)






Y1 := D1(Y )−D1(X ) y1,

Y2 := D2(Y1)−D1(X ) y2,

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
Yκ := Dκ(Yκ−1)−D1(X ) yκ,

where, for1 6 λ 6 κ:

(2.5) Dλ :=
∂

∂x
+ y1

∂

∂y
+ y2

∂

∂y1
+ · · ·+ yλ

∂

∂yλ−1
.

By direct elementary computations, forκ = 1 and forκ = 2, we obtain the
following two very classical formulas :
(2.6)



Y1 = Yx + [Yy −Xx] y1 + [−Xy] (y1)
2,

Y2 = Yx2 + [2 Yxy −Xx2 ] y1 + [Yy2 − 2 Xxy] (y1)
2 + [−Xy2 ] (y1)

3+

+ [Yy − 2 Xx] y2 + [−3 Xy] y1 y2.

Our main objective is todevise the general combinatorics. Thus, to attain
this aim, we have to achieve patiently formal computations of the next coef-
ficientsY3, Y4 andY5. We systematically use parentheses[·] to single out
every coefficient of the polynomialsY3, Y4 andY5 in the pure jet variables
y1, y2, y3, y4 andy5, putting every sign inside these parentheses. We always
put the monomials in the pure jet variablesy1, y2, y3, y4 and y5 after the
parentheses. For completeness, let us provide the intermediate computation
of the third coefficientY3. In detail:

Y3 = D3 (Y2)−D1 (X ) y3

=

(
∂

∂x
+ y1

∂

∂y
+ y2

∂

∂y1
+ y3

∂

∂y2

)(
Yx2 + [2 Yxy −Xx2] y1+

+ [Yy2 − 2 Xxy] (y1)
2 + [−Xy2 ] (y1)

3+

+ [Yy − 2 Xx] y2 + [−3 Xy] y1 y2

)

(2.7)
= Yx3

1
+ [2 Yx2y −Xx3 ] y1

2
+ [Yxy2 − 2 Xx2y] (y1)

2

3
+ [−Xxy2 ] (y1)

3

4
+

+ [Yxy − 2 Xx2] y2 6
+ [−3 Xxy] y1y2 7

+ [Yx2y] y1
2

+

+ [2 Yxy2 −Xx2y] (y1)
2

3
+ [Yy3 − 2 Xxy2] (y1)

3

4
+ [−Xy3 ] (y1)

4

5
+
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+ [Yy2 − 2 Xxy] y1y2
7

+ [−3 Xy2 ] (y1)
2y2

8
+ [2 Yxy −Xx2] y2 6

+

+ [Yy2 − 2 Xxy] 2 y1y2
7

+ [−Xy2 ] 3(y1)
2y2

8
+ [−3 Xy] (y2)

2

9
+

+ [Yy − 2 Xx] y3 10
+ [−3 Xy] y1y3 11

−

− [Xx] y3 10
− [Xy] y1y3 11

.

We have underlined all the terms with a number appended. Eachnumber
refers to the order of appearance of the terms in the final simplified expres-
sion ofY3, also written in [BK1989] with different notations:
(2.8)



Y3 = Yx3 + [3 Yx2y −Xx3] y1 + [3 Yxy2 − 3 Xx2y] (y1)
2+

+ [Yy3 − 3 Xxy2 ] (y1)
3 + [−Xy3 ] (y1)

4 + [3 Yxy − 3 Xx2] y2+

+ [3 Yy2 − 9 Xxy] y1y2 + [−6 Xy2 ] (y1)
2y2 + [−3 Xy] (y2)

2+

+ [Yy − 3 Xx] y3 + [−4 Xy] y1y3.

After similar manual computations, the intermediate details of which we
will not copy in this Latex file, we get the desired expressions ofY4 and of
Y5. Firstly:
(2.9)



Y4 = Yx4 +
[
4Yx3y −Xx4

]
y1 +

[
6Yx2y2 − 4Xx3y

]
(y1)

2+

+
[
4Yxy3 − 6Xx2y2

]
(y1)

3 +
[
Yy4 − 4Xxy3

]
(y1)

4 +
[
−Xy4

]
(y1)

5+

+
[
6Yx2y − 4Xx3

]
y2 +

[
12Yxy2 − 18Xx2y

]
y1y2+

+
[
6Yy3 − 24Xxy2

]
(y1)

2y2 +
[
−10Xy3

]
(y1)

3y2+

+
[
3Yy2 − 12Xxy

]
(y2)

2 +
[
−15Xy2

]
y1(y2)

2+

+ [4Yxy − 6Xx2 ] y3 +
[
4Yy2 − 16Xxy

]
y1y3 +

[
−10Xy2

]
(y1)

2y3+

+ [−10Xy] y2y3 + [Yy − 4Xx] y4 + [−5Xy] y1y4.
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Secondly:
(2.10)



Y5 = Yx5 +
[
5Yx4y −Xx5

]
y1 +

[
10Yx3y2 − 5Xx4y

]
(y1)

2+

+
[
10Yx2y3 − 10Xx3y2

]
(y1)

3 +
[
5Yxy4 − 10Xx2y3

]
(y1)

4+

+
[
Yy5 − 5Xxy4

]
(y1)

5 +
[
−Xy5

]
(y1)

6 +
[
10Yx3y − 5Xx4

]
y2+

+
[
30Yx2y2 − 30Xx3y

]
y1y2 +

[
30Yxy3 − 60Xx2y2

]
(y1)

2y2+

+
[
10Yy4 − 50Xxy3

]
(y1)

3y2 +
[
−15Xy4

]
(y1)

4y2+

+
[
15Yxy2 − 30Xx2y

]
(y2)

2 +
[
15Yy3 − 75Xxy2

]
y1(y2)

2+

+
[
−45Xy3

]
(y1)

2(y2)
2 +

[
−15Xy2

]
(y2)

3+

+
[
10Yx2y − 10Xx3

]
y3 +

[
20Yxy2 − 40Xx2y

]
y1y3+

+
[
10Yy3 − 50Xxy2

]
(y1)

2y3 +
[
−20Xy3

]
(y1)

3y3+

+
[
10Yy2 − 50Xxy

]
y2y3 +

[
−60Xy2

]
y1y2y3 + [−10Xy] (y3)

2+

+ [5Yxy − 10Xx2 ] y4 +
[
5Yy2 − 25Xxy

]
y1y4 +

[
−15Xy2

]
(y1)

2y4+

+ [−15Xy] y2y4 + [Yy − 5Xy] y5 + [−6Xy] y1y5.

2.11. Formal inspection, formal intuition and formal induction. Now,
we have to comment these formulas. We have written in length the five
polynomialsY1, Y2, Y3, Y4 andY5 in the pure jet variablesy1, y2, y3, y4

andy5. Except the first “constant” termYxκ, all the monomials in the ex-
pression ofYκ are of the general form

(2.12) (yλ1)
µ1 (yλ2)

µ2 · · · (yλd
)µd ,

for some positive integerd > 1, for some collection of strictly increasing jet
indices:

(2.13) 1 6 λ1 < λ2 < · · · < λd 6 κ,

and for some positive integersµ1, . . . , µd > 1. This and the next combina-
torial facts may be confirmed by reading the formulas givingY1, Y2, Y3,
Y4 andY5. It follows that the integerd satisfies the inequalityd 6 κ + 1.
To include the first “constant” termYxκ, we shall make the convention that
puttingd = 0 in the monomial (2.12) yields the constant term1.

Furthermore, by inspecting the formulas givingY1, Y2, Y3, Y4 andY5,
we see that the following inequality should be satisfied:

(2.14) µ1λ1 + µ2λ2 + · · ·+ µdλd 6 κ+ 1.

For instance, in the expression ofY4, the two monomials(y1)
3y2 andy1(y2)

2

do appear, but the two monomials(y1)
4y2 and(y1)

2(y2)
2 cannot appear. All

coefficients of the pure jet monomials are of the general form:

(2.15)
[
AYxαyβ+1 − BXxα+1yβ

]
,
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for some nonnegative integersA,B, α, β ∈ N. SometimesA is zero, but
B is zero only for the (constant, with respect to pure jet variables) term
Yxκ. Importantly,X is differentiated once more with respect tox andY is
differentiated once more with respect toy. Again, this may be confirmed by
reading all the terms in the formulas forY1, Y2, Y3, Y4 andY5.

In addition, we claim that there is a link between the couple(α, β) and
the collection{µ1, λ1, . . . , µd, λd}. To discover it, let us write some of the
monomials appearing in the expressions ofY4 (first column) and ofY5

(second column), for instance:
(2.16)



[6 Yx2y2 − 4 Xx3y] (y1)
2, [5 Yxy4 − 10 Xx2y3 ] (y1)

4,

[12 Yxy2 − 18 Xx2y] y1y2, [30 Yxy3 − 60 Xx2y2 ] (y1)
2y2,

[−10 Xy3 ] (y1)
3y2, [−15 Xy4 ] (y1)

4y2,

[4 Yy2 − 16 Xxy] y1y3, [10 Yy2 − 50 Xxy] y2y3,

[−10 Xy2 ] (y1)
2y3, [−60 Xy2] y1y2y3.

After some reflection, we discover the hidden intuitive rule: the partial
derivatives ofY and ofX associated with the monomial(yλ1)

µ1 · · · (yλd
)µd

are, respectively:

(2.17)

{
Yxκ−µ1λ1−···−µdλd yµ1+···+µd ,

Xxκ−µ1λ1−···−µdλd+1 yµ1+···+µd−1 .

This may be checked on each of the10 examples (2.16) above.
Now that we have explored and discovered the combinatorics of the pure

jet monomials, of the partial derivatives and of the complete sum givingYκ,
we may express that it is of the following general form:

(2.18)





Yκ = Yxκ +

κ+1∑

d=1

∑

16λ1<···<λd6κ

∑

µ1>1,...,µd>1

∑

µ1λ1+···+µdλd6κ+1[
A(µ1,λ1),...,(µd,λd)

κ · Yxκ−µ1λ1−···−µdλd yµ1+···+µd−
−B(µ1,λ1),...,(µd,λd)

κ ·Xxκ−µ1λ1−···−µdλd+1 yµ1+···+µd−1

]
·

· (yλ1)
µ1 · · · (yλd

)µd.

Here, we separate the first termYxκ from the general sum; it is the constant
term in Yκ, which itself is a polynomial with respect to the jet variables
yλ. In this general formula, the only remaining unknowns are the nonnega-
tive integer coefficientsA(µ1,λ1),...,(µd,λd)

κ ∈ N andB(µ1,λ1),...,(µd,λd)
κ ∈ N. In

Section 3 below, we shall explain how we have discovered their exact value.
At present, even if we are unable to devise their explicit expression, we

may observe that the value of the special integer coefficients A(µ1,1)
µ1 and

B
(µ1,1)
µ1 which are attached to the monomialsct., y1, (y1)

2, (y1)
3, (y1)

4 and
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(y1)
5 are simple. Indeed, by inspecting the first terms in the expressions of

Y1, Y2, Y3, Y4 andY5, we of course recognize the binomial coefficients.
In general:

Lemma 2.19.For κ > 1,
(2.20)



Yκ = Yxκ +

κ∑

λ=1

[(
κ

λ

)
Yxκ−λyλ −

(
κ

λ− 1

)
Xxκ−λ+1yλ−1

]
(y1)

λ+

+ [−Xyκ ] (y1)
κ + remainder,

where the termremainder collects all remaining monomials in the pure jet
variables.

In addition, let us remind what we have observed and used in a previous
co-signed work.

Lemma 2.21. ([GM2003a], p. 536)For κ > 4, nine among the monomials
of Yκ are of the following general form:
(2.22)



Yκ = Yxκ +
[
C1

κ Yxκ−1y −Xxκ

]
y1 +

[
C2

κ Yxκ−2y − C1
κ Xxκ−1

]
y2+

+
[
C2

κ Yx2y − C3
κ Xx3

]
yκ−2 +

[
C1

κ Yxy − C2
κ Xx2

]
yκ−1+

+
[
C1

κ Yy2 − κ2 Xxy

]
y1yκ−1 +

[
−C2

κ Xy

]
y2yκ−1+

+
[
Yy − C1

κ Xx

]
+
[
−C1

κ+1 Xy

]
y1yκ + remainder,

where the termremainder denotes all the remaining monomials, and where
Cλ

κ := κ!
(κ−λ)! λ!

is a notation for the binomial coefficient which occupies less
space in Latex “equation mode” than the classical notation

(2.23)

(
κ

λ

)
.

Now, we state directly the final theorem, without further inductive or in-
tuitive information.

Theorem 2.24.For κ > 1, we have:
(2.25)

Yκ = Yxκ +

κ+1∑

d=1

∑

16λ1<···<λd6κ

∑

µ1>1,...,µd>1

∑

µ1λ1+···+µdλd6κ+1[
κ · · · (κ− µ1λ1 − · · · − µdλd + 1)

(λ1!)µ1 µ1! · · · (λd!)µd µd!
· Yxκ−µ1λ1−···−µdλd yµ1+···+µd−

−κ · · · (κ− µ1λ1 − · · · − µdλd + 2)(µ1λ1 + · · ·+ µdλd)

(λ1!)µ1 µ1! · · · (λd!)µd µd!
·

·Xxκ−µ1λ1−···−µdλd+1 yµ1+···+µd−1

]
(yλ1)

µ1 · · · (yλd
)µd.
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Once the correct theorem is formulated, its proof follows byaccessible
induction arguments which will not be developed here. It is better to con-
tinue through and to examine thorougly the case of several variables, since
it will help us considerably to explain how we discovered theexact values
of the integer coefficientsA(µ1,λ1),...,(µd,λd)

κ andB(µ1,λ1),...,(µd,λd)
κ .

2.26. Verification and application. Before proceeding further, let us
rapidly verify that the above general formula (2.25) is correct by inspecting
two instances extracted fromY5.

Firstly, the coefficient of(y1)
3y3 in Y5 is obtained by puttingκ = 5,

d = 2, λ1 = 1, µ1 = 3, λ2 = 3 andµ2 = 1 in the general formula (2.25),
which yields:

(2.27)

[
0− 5 · 4 · 3 · 2 · 1 · 6

(1!)3 3! (3!)1 1!
Xy3

]
= [−20 Xy3 ] .

This value is the same as in the original formula (2.10): confirmation.
Secondly, the coefficient ofy1(y2)

2 in Y5 is obtained byκ = 5, d = 2,
λ1 = 1, µ1 = 1, λ2 = 2 andµ2 = 2 in the general formula (2.25), which
yields:
(2.28)[

5 · 4 · 3 · 2 · 1
(1!)1 1! (2!)2 2!

Yy3 − 5 · 4 · 3 · 2 · 5
(1!)1 1! (2!)2 2!

Xxy2

]
= [15 Yy3 − 75 Xxy2] .

This value is the same as in the original formula (2.10); again: confirmation.
Finally, applying our general formula (2.25), we deduce thevalue ofY6

without having to useY5 and the induction formulas(2.4), which shortens
substantially the computations.
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For the pleasure, we obtain:
(2.29)



Y6 = Yx6 +
[
6Yx5y −Xx6

]
y1 +

[
15Yx4y2 − 6Xx5y

]
(y1)

2+

+
[
20Yx3y3 − 15Xx4y2

]
(y1)

3 +
[
15Yx2y4 − 20Xx3y3

]
(y1)

4+

+
[
6Yxy5 − 15Xx2y4

]
(y1)

5 +
[
Yy6 − 6Xxy5

]
(y1)

6 +
[
−Xy6

]
(y1)

7+

+
[
15Yx4y − 6Xx5

]
y2 +

[
60Yx3y2 − 45Xx4y

]
y1y2+

+
[
90Yx2y3 − 120Xx3y2

]
(y1)

2y2 +
[
60Yxy4 − 150Xx2y3

]
(y1)

3y2+

+
[
15Yy5 − 90Xxy4

]
(y1)

4y2 +
[
−21Xy5

]
(y1)

5y2+

+
[
45Yx2y2 − 60Xx3y

]
(y2)

2 +
[
90Yxy3 − 225Xx2y2

]
y1(y2)

2+

+
[
45Yy4 − 270Xxy3

]
(y1)

2(y2)
2 +

[
−210Xy4

]
(y1)

3(y2)
2+

+
[
15Yy3 − 90Xxy2

]
(y2)

3 +
[
−105Xy3

]
y1(y2)

3+

+
[
20Yx3y − 15Xx4

]
y3 +

[
60Yx2y2 − 80Xx3y

]
y1y3+

+
[
60Yxy3 − 150Xx2y2

]
(y1)

2y3 +
[
20Yy4 − 120Xxy3

]
(y1)

3y3+

+
[
−35Xy4

]
(y1)

4y3 +
[
60Yxy2 − 150Xx2y

]
y2y3+

+
[
60Yy3 − 360Xxy2

]
y1y2y3 +

[
−210Xy3

]
(y1)

2y2y3+

+
[
−105Xy2

]
(y2)

2y3 +
[
10Yy2 − 60Xxy

]
(y3)

2+

+
[
−70Xy2

]
y1(y3)

2 +
[
15Yx2y − 20Xx3

]
y4+

+
[
30Yxy2 − 75Xx2y

]
y1y4 +

[
15Yy3 − 90Xxy2

]
(y1)

2y4+

+
[
−35Xy3

]
(y1)

3y4 +
[
15Yy2 − 90Xxy

]
y2y4+

+
[
−105Xy2

]
y1y2y4 + [−35Xy] y3y4 + [6Yxy − 15Xx2 ] y5+

+
[
6Yy2 − 36Xxy

]
y1y5 +

[
−21Xy2

]
(y1)

2y5 + [−21Xy] y2y5+

+ [Yy − 6Xy] y6 + [−7Xy] y1y6.

2.30. Deduction of the classical Faà di Bruno formula.Let x, y ∈ K and
let g = g(x), f = f(y) be twoC ∞-smooth functionsK → K. Consider
the compositionh := f ◦ g, namelyh(x) = f(g(x)). For λ ∈ N with
λ > 1, simply denote bygλ the λ-th derivative dλg

dxλ and similarly forhλ.

Also, abbreviatefλ := dλf
dyλ .



319

By the classical formula for the derivative of a composite function, we
haveh1 = f1 g1. Further computations provide the following list of subse-
quent derivatives ofh:
(2.31)




h1 = f1 g1,

h2 = f2 (g1)
2 + f1 g2,

h3 = f3 (g1)
3 + 3 f2 g1 g2 + f1 g3,

h4 = f4 (g1)
4 + 6 f3 (g1)

2 g2 + 3 f2 (g2)
2 + 4 f2 g1 g3 + f1 g4,

h5 = f5 (g1)
5 + 10 f4 (g1)

3 g2 + 15 f3 (g1)
2 g3 + 10 f3 g1 (g2)

2+

+ 10 f2 g2 g3 + 5 f2 g1 g4 + f1 g5,

h6 = f6 (g1)
6 + 15 f5 (g1)

4 g2 + 45 f4 (g1)
2 (g2)

2 + 15 f3 (g2)
3+

+ 20 f4 (g1)
3 g3 + 60 f3 g1 g2 g3 + 10 f2 (g3)

2 + 15 f3 (g1)
2 g4+

+ 15 f2 g2 g4 + 6 f2 g1 g5 + f1 g6.

Theorem 2.32.For every integerκ > 1, theκ-th derivative of the composite
functionh = f ◦ g may be expressed as an explicit polynomial in the partial
derivatives off and ofg having integer coefficients:
(2.33)

dκh

dxκ
=

κ∑

d=1

∑

16λ1<···<λd6κ

∑

µ1>1,...,µd>1

∑

µ1λ1+···+µdλd=κ

κ!

(λ1!)µ1 µ1! · · · (λd!)µd µd!

dµ1+···+µdf

dyµ1+···+µd

(
dλ1g

dxλ1

)µ1

· · · · · ·
(
dλdg

dxλd

)µd

.

This is the classicalFaà di Bruno formula. Interestingly, we observe that
this formula is included as a subpart of the general formula for Yκ, after a
suitable translation. Indeed, in the formulas forY1, Y2, Y3, Y4, Y5, Y6 and
in the general sum forYκ, pick only the terms for whichµ1λ1+· · ·+µdλd =
κ and dropX , which yields:

(2.34)

κ∑

d=1

∑

16λ1<···<λd6κ

∑

µ1>1,...,µd>1

∑

µ1λ1+···+µdλd=κ[
κ!

µ1!(λ1!)µ1 · · ·µd!(λd!)µd
Yyµ1+···+µd

]
(yλ1)

µ1 · · · (yλd
)µd .

The similarity between the two formulas (2.33) and (2.34) isnow clearly
visible.

The Faà di Bruno formula may be established by means of substitutions of
power series ([F1969], p. 222), by means of the umbral calculus ([CS1996]),
or by means of some induction formulas, which we write for completeness.
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Define the differential operators
(2.35)

F2 := g2
∂

∂g1
+ g1

(
f2

∂

∂f1

)
,

F3 := g2
∂

∂g1
+ g3

∂

∂g2
+ g1

(
f2

∂

∂f1
+ f3

∂

∂f2

)
,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Fλ := g2
∂

∂g1
+ g3

∂

∂g2
+ · · ·+ gλ

∂

∂gλ−1
+ g1

(
f2

∂

∂f1
+ f3

∂

∂f2
+ · · · + fλ

∂

∂fλ−1

)
.

Then we have

(2.36)

h2 = F 2(h1),

h3 = F 3(h2),

· · · · · · · · · · · · · · ·
hλ = F λ(hλ−1).

§3. SEVERAL INDEPENDENT VARIABLES AND ONE DEPENDENT

VARIABLE

3.1. Simplified adapted notations.As announced after the statement of
Theorem 2.24, it is only after we have treated the case of several independent
variables that we will understand perfectly the general formula (2.25), valid
in the case of one independent variable and one dependent variable. We will
discover massive formal computations, exciting our computational intuition.

Thus, assumen > 1 andm = 1, let κ ∈ N with κ > 1 and simply denote
(instead of (1.2)) the jet variables by:

(3.2)
(
xi, y, yi1, yi1,i2, . . . , yi1,i2,...,iκ

)
.

Also, instead of (1.30), denote theκ-th prolongation of a vector field by:
(3.3)



L (κ) =

n∑

i=1

X i ∂

∂xi
+ Y

∂

∂y
+

n∑

i1=1

Yi1

∂

∂yi1

+

n∑

i1,i2=1

Yi1,i2

∂

∂yi1,i2

+

+ · · ·+
n∑

i1,i2,...,iκ=1

Yi1,i2,...,iκ

∂

∂yi1,i2,...,iκ

.
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The induction formulas are

(3.4)





Yi1 := D1
i1

(Y )−
n∑

k=1

D1
i1

(
X k

)
yk,

Yi1,i2 := D2
i2

(Yi1)−
n∑

k=1

D1
i2

(
X k

)
yi1,k,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Yi1,i2,...,iκ := Dκ
iκ

(
Yi1,i2,...,iκ−1

)
−

n∑

k=1

D1
iκ

(
X k

)
yi1,i2,...,iκ−1,k,

where the total differentiation operatorsDλ
i′ are defined as in (1.22), drop-

ping the sums
∑m

j′=1 and the indicesj′.

3.5. Two instructing explicit computations. To begin with, let us compute
Yi1. WithD1

i1 = ∂
∂xi1

+ yi1
∂
∂y

, we have:

(3.6)

Yi1 = Di1 (Y )−
n∑

k1=1

D1
i1

(
X k1

)
yk1

= Yxi1 + Yy yi1 −
n∑

k1=1

X k1

xi1
yk1 −

n∑

k1=1

X k1
y yi1 yk1.

Searching for formal harmony and for coherence with the formula (2.6)1,
we must include the termYy yi1 inside the sum

∑n
k1=1 [·] yk1. Using the

Kronecker symbol, we may write:

(3.7) Yy yi1 ≡
n∑

k1=1

[
δk1
i1

Yy

]
yk1.

Also, we may rewrite the last term of (3.6) with a double sum:

(3.8) −
n∑

k1=1

X k1
y yi1 yk1 ≡

n∑

k1,k2=1

[
−δk1

i1
X k2

y

]
yk1yk2.

From now on and up to equation (3.39), we shall abbreviate anysum
∑n

k=1

from 1 to n as
∑

k. Putting everything together, we get the final desired
perfect expression ofYi1:

(3.9) Yi1 = Yxi1 +
∑

k1

[
δk1
i1

Yy −X k1

xi1

]
yk1 +

∑

k1,k2

[
−δk1

i1
X k2

y

]
yk1yk2.

This completes the first explicit computation.
The second one is aboutYi1,i2. It becomes more delicate, because several

algebraic transformations must be achieved until the final satisfying formula
is obtained. Our goal is to present each step very carefully,explaining every
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tiny detail. Without such a care, it would be impossible to claim that some of
our subsequent computations, for which we will not provide the intermediate
steps, may be redone and verified. Consequently, we will expose our rules
of formal computation thoroughly.

Replacing the value ofY1 just obtained in the induction formula(3.4)2

and developing, we may conduct the very first steps of the computation:

Yi1,i2 = D2
i2 (Yi1)−

∑

k1

D1
i2

(
X k1

)
yi1,k1

=


 ∂

∂xi2
+ yi2

∂

∂y
+
∑

k1

yi2,k1

∂

∂yk1




Yxi1 +

∑

k1

[
δk1
i1

Yy −X k1

xi1

]
yk1+

+
∑

k1,k2

[
−δk1

i1
X k2

y

]
yk1yk2


−

∑

k1

[
X k1

xi2
+ yi2 X k1

y

]
yi1,k1

(3.10)

=

(
∂

∂xi2

)
Yxi1 +

∑

k1

[
δk1
i1

Yy −X k1

xi1

]
yk1 +

∑

k1,k2

[
−δk1

i1
X k2

y

]
yk1yk2


+

+

(
yi2

∂

∂y

)
Yxi1 +

∑

k1

[
δk1
i1

Yy −X k1

xi1

]
yk1 +

∑

k1,k2

[
−δk1

i1
X k2

y

]
yk1yk2


+

+



∑

k1

yi2,k1

∂

∂yk1




Yxi1 +

∑

k1

[
δk1
i1

Yy −X k1

xi1

]
yk1 +

∑

k1,k2

[
−δk1

i1
X k2

y

]
yk1yk2


+

+
∑

k1

[
−X k1

xi2

]
yk1,i1 +

∑

k1

[
−X k1

y

]
yi2yi1,k1

= Yxi1xi2 +
∑

k1

[
δk1
i1

Yxi2y −X k1

xi1xi2

]
yk1 +

∑

k1,k2

[
−δk1

i1
X k2

xi2y

]
yk1yk2+

+ Yxi1y yi2 +
∑

k1

[
δk1
i1

Yyy −X k1

xi1y

]
yk1yi2 +

∑

k1,k2

[
−δk1

i1
X k2

yy

]
yk1yk2yi2+

+
∑

k1

[
δk1
i1

Yy −X k1

xi1

]
yi2,k1 +

∑

k1,k2

[
−δk1

i1
X k2

y

]
yk2yi2,k1 +

∑

k1,k2

[
−δk1

i1
X k2

y

]
yk1yi2,k2+

+
∑

k1

[
−X k1

xi2

]
yk1,i1 +

∑

k1

[
−X k1

y

]
yi2yi1,k1.

Some explanations are needed about the computation of the last two terms
of line 11, i.e. about the passage from line 7 of (3.10) just above to line 11.
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We have to compute:

(3.11)

(
∑

k1

yi2,k1

∂

∂yk1

)


∑

k1,k2

[
−δk1

i1
X k2

y

]
yk1yk2



 .

This term is of the form

(3.12)

(
∑

k1

Ak1

∂

∂yk1

)


∑

k1,k2

[Bk1,k2 ] yk1yk2



 ,

where the termsBk1,k2 are independent of the pure first jet variablesyxk . By
the rule of Leibniz for the differentiation of a product, we may write
(3.13)(
∑

k1

Ak1

∂

∂yk1

)

∑

k1,k2

[Bk1,k2 ] yk1yk2


 =

=
∑

k1,k2

[Bk1,k2 ] yk2




∑

k′

1

Ak′

1

∂

∂yk′

1

(yk1)



+
∑

k1,k2

[Bk1,k2 ] yk1




∑

k′

2

Ak′

2

∂

∂yk′

2

(yk2)





=
∑

k1,k2

[Bk1,k2 ] yk2 Ak1 +
∑

k1,k2

[Bk1,k2 ] yk1 Ak2 .

This is how we have written line 11 of (3.10).
Next, the first termYxi1y yi2 in line 10 of (3.10) is not in a suitable shape.

For reasons of harmony and coherence, we must insert it inside a sum of the
form

∑
k1

[·] yk1. Hence, using the Kronecker symbol, we transform:

(3.14) Yxi1y yi2 ≡
∑

k1

[
δk1
i2

Yxi1y

]
yk1.

Also, we must “summify” the seven other terms, remaining in lines 10, 11
and 12 of (3.10). Sometimes, we use the symmetryyi2,k1 ≡ yk1,i2 without
mention. Similarly, we get:
∑

k1

[
δk1
i1

Yyy −X k1

xi1y

]
yk1yi2 ≡

∑

k1,k2

[
δk1
i1
δk2
i2

Yyy − δk2
i2

X k1

xi1y

]
yk1yk2,

∑

k1,k2

[
−δk1

i1
X k2

yy

]
yk1yk2yi2 ≡

∑

k1,k2,k3

[
−δk1

i1
δk3
i2

X k2
yy

]
yk1yk2yk3,

∑

k1

[
δk1
i1

Yy −X k1

xi1

]
yk1,i2 ≡

∑

k1,k2

[
δk1
i1
δk2
i2

Yy − δk2
i2

X k1

xi1

]
yk1,k2,

(3.15)

∑

k1,k2

[
−δk1

i1
X k2

y

]
yk2yk1,i2 =

∑

k1,k2

[
−δk2

i1
X k1

y

]
yk1yk2,i2

≡
∑

k1,k2,k3

[
−δk2

i1
δk3
i2

X k1
y

]
yk1yk2,k3,
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∑

k1,k2

[
−δk1

i1
X k2

y

]
yk1yk2,i2 ≡

∑

k1,k2,k3

[
−δk1

i1
δk3
i2

X k2
y

]
yk1yk2,k3,

∑

k1

[
−X k1

xi2

]
yk1,i1 ≡

∑

k1,k2

[
−δk2

i1
X k1

xi2

]
yk1,k2,

∑

k1

[
−X k1

y

]
yi2yk1,i1 =

∑

k2

[
−X k2

y

]
yi2yk2,i1

≡
∑

k1,k2,k3

[
−δk1

i2
δk3
i1

X k2
y

]
yk1yk2,k3.

In the sequel, for products of Kronecker symbols, it will be convenient to
adopt the following self-evident contracted notation:

(3.16) δk1
i1
δk2
i2
≡ δk1,k2

i1, i2
; generally : δk1

i1
δk2
i2
· · · δkλ

iλ
≡ δk1,k2,··· ,kλ

i1, i2, ··· ,iλ .

Re-inserting plainly these eight summified terms (3.14), (3.15) in the last
expression (3.10) ofYi1,i2 (lines 10, 11 and 12), we get:
(3.17)

Yi1,i2 = Yxi1xi2 1
+
∑

k1

[
δk1
i1

Yxi2y −X k1

xi1xi2

]
yk1

2

+
∑

k1,k2

[
−δk1

i1
X k2

xi2y

]
yk1yk2

3

+

+
∑

k1

[
δk1
i2

Yxi1y

]
yk1

2

+
∑

k1,k2

[
δk1,k2
i1, i2

Yyy − δk2
i2

X k1

xi1y

]
yk1yk2

3

+

+
∑

k1,k2,k3

[
−δk1,k3

i1, i2
X k2

yy

]
yk1yk2yk3

4

+
∑

k1,k2

[
δk1,k2
i1, i2

Yy − δk2
i2

X k1

xi1

]
yk1,k2

5

+

+
∑

k1,k2,k3

[
−δk2,k3

i1, i2
X k1

y

]
yk1yk2,k3

6

+
∑

k1,k2,k3

[
−δk1,k3

i1, i2
X k2

y

]
yk1yk2,k3

6

+

+
∑

k1,k2

[
−δk2

i1
X k1

xi2

]
yk1,k2

5

+
∑

k1,k2,k3

[
−δk1,k3

i2, i1
X k2

y

]
yk1yk2,k3

6

.
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Next, we gather the underlined terms, ordering them according to their num-
ber. This yields 6 collections of sums of monomials in the pure jet variables:
(3.18)

Yi1,i2 = Yxi1xi2 +
∑

k1

[
δk1
i1

Yxi2y + δk1
i2

Yxi1y −X k1

xi1xi2

]
yk1+

+
∑

k1,k2

[
δk1,k2

i1, i2
Yyy − δk1

i1
X k2

xi2y
− δk2

i2
X k1

xi1y

]
yk1yk2+

+
∑

k1,k2,k3

[
−δk1,k3

i1, i2
X k2

yy

]
yk1yk2yk3+

+
∑

k1,k2

[
δk1,k2

i1, i2
Yy − δk2

i2
X k1

xi1
− δk2

i1
X k1

xi2

]
yk1,k2+

+
∑

k1,k2,k3

[
−δk2,k3

i1, i2
X k1

y − δk1,k3
i1, i2

X k2
y − δk1,k3

i2, i1
X k2

y

]
yk1yk2,k3.

To attain the real perfect harmony, this last expression hasstill to be worked
out a little bit.

Lemma 3.19.The final expression ofYi1,i2 is as follows:
(3.20)




Yi1,i2 = Yxi1xi2 +
∑

k1

[
δk1
i1

Yxi2y + δk1
i2

Yxi1y −X k1

xi1xi2

]
yk1+

+
∑

k1,k2

[
δk1,k2

i1, i2
Yyy − δk1

i1
X k2

xi2y
− δk1

i2
X k2

xi1y

]
yk1yk2+

+
∑

k1,k2,k3

[
−δk1,k2

i1, i2
X k3

yy

]
yk1yk2yk3+

+
∑

k1,k2

[
δk1,k2

i1, i2
Yy − δk1

i1
X k2

xi2
− δk1

i2
X k2

xi1

]
yk1,k2+

+
∑

k1,k2,k3

[
−δk1,k2

i1, i2
X k3

y − δk3,k1

i1, i2
X k2

y − δk2,k3

i1, i2
X k1

y

]
yk1yk2,k3.

Proof. As promised, we explain every tiny detail.
The first lines of (3.18) and of (3.20) are exactly the same. For the trans-

formations of terms in the second, in the third and in the fourth lines, we
use the following device. LetΥk1,k2 be an indexed quantity which is sym-
metric: Υk1,k2 = Υk2,k1. LetAk1,k2 be an arbitrary indexed quantity. Then
obviously:

(3.21)
∑

k1,k2

Ak1,k2 Υk1,k2 =
∑

k1,k2

Ak2,k1 Υk1,k2.

Similar relations hold with a quantityΥi1,i2,...,iλ which is symmetric with
respect to itsλ indices. Consequently, in the second, in the third and in
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the fourth lines of (3.18), we may permute freely certain indices in some of
the terms inside the brackets. This yields the passage from lines 2, 3 and 4
of (3.18) to lines 2, 3 and 4 of (3.20).

It remains to explain how we pass from the fifth (last) line of (3.18) to the
fifth (last) line of (3.20). The bracket in the fifth line of (3.18) contains three
terms:[−T1 − T2 − T3]. The termT3 involves the productδk1,k3

i2, i1
, which we

rewrite asδk3,k1

i1, i2
, in order thati1 appears beforei2. Then, we rewrite the three

terms in the new order[−T2 − T3 − T1], which yields:

(3.22)
∑

k1,k2,k3

[
−δk1,k3

i1, i2
X k2

y − δk3,k1

i1, i2
X k2

y − δk2,k3

i1, i2
X k1

y

]
yk1yk2,k3.

It remains to observe that we can permutek2 andk3 in the first term−T2,
which yields the last line of (3.20). The detailed proof is complete.

3.23. Final perfect expression ofYi1,i2,i3 . Thanks to similar (longer) com-
putations, we have obtained an expression ofYi1,i2,i3 which we consider to
be in final harmonious shape. Without copying the intermediate steps, let us
write down the result. The comments which are necessary to read it and to
interpret it start just below.

Yi1,i2,i3 = Yxi1xi2xi3 +
∑

k1

[
δk1
i1

Yxi2xi3y + δk1
i2

Yxi1xi3y + δk1
i3

Yxi1xi2y −X k1

xi1xi2xi3

]
yk1+

+
∑

k1,k2

[
δk1,k2
i1, i2

Yxi3y2 + δk1,k2
i3, i1

Yxi2y2 + δk1,k2
i2, i3

Yxi1y2−

−δk1
i1

X k2

xi2xi3y
− δk1

i2
X k2

xi1xi3y
− δk1

i3
X k2

xi1xi2y

]
yk1yk2+

+
∑

k1,k2,k3

[
δk1,k2,k3
i1, i2, i3

Yy3 − δk1,k2
i1, i2

X k3

xi3y2 − δk1,k2
i1, i3

X k3

xi2y2 − δk1,k2
i2, i3

X k3

xi1y2

]
yk1yk2yk3+

+
∑

k1,k2,k3,k4

[
−δk1,k2,k3

i1, i2, i3
X k4

y3

]
yk1yk2yk3yk4+

(3.24)

+
∑

k1,k2

[
δk1,k2

i1, i2
Yxi3y + δk1,k2

i3, i1
Yxi2y + δk1,k2

i2, i3
Yxi1y−

−δk1
i1

X k2

xi2xi3
− δk1

i2
X k2

xi1xi3
− δk1

i3
X k2

xi1xi2

]
yk1,k2+

+
∑

k1,k2,k3

[
δk1,k2,k3

i1, i2, i3
Yy2 + δk3,k1,k2

i1, i2, i3
Yy2 + δk2,k3,k1

i1, i2, i3
Yy2−

−δk1,k2

i1, i2
X k3

xi3y
− δk3,k1

i1, i2
X k2

xi3y
− δk2,k3

i1, i2
X k1

xi3y
−

−δk1,k2
i1, i3

X k3

xi2y
− δk3,k1

i1, i3
X k2

xi2y
− δk2,k3

i1, i3
X k1

xi2y
−

−δk1,k2

i2, i3
X k3

xi1y
− δk3,k1

i2, i3
X k2

xi1y
− δk2,k3

i2, i3
X k1

xi1y

]
yk1yk2,k3+
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+
∑

k1,k2,k3,k4

[
−δk1,k2,k3

i1, i2, i3
X k4

y2 − δk2,k3,k1
i1, i2, i3

X k4

y2 − δk3,k2,k1
i1, i2, i3

X k4

y2 −

−δk3,k4,k1
i1, i2, i3

X k2

y2 − δk3,k1,k4
i1, i2, i3

X k2

y2 − δk1,k3,k4
i1, i2, i3

X k2

y2

]
yk1yk2yk3,k4+

+
∑

k1,k2,k3,k4

[
−δk1,k2,k3

i1, i2, i3
X k4

y − δk2,k3,k1
i1, i2, i3

X k4
y − δk3,k1,k2

i1, i2, i3
X k4

y

]
yk1,k2yk3,k4+

+
∑

k1,k2,k3

[
δk1,k2,k3

i1, i2, i3
Yy − δk1,k2

i1, i2
X k3

xi3
− δk1,k2

i1, i3
X k3

xi2
− δk1,k2

i2, i3
X k3

xi1

]
yk1,k2,k3+

+
∑

k1,k2,k3,k4

[
−δk1,k2,k3

i1, i2, i3
X k4

y − δk4,k1,k2

i1, i2, i3
X k3

y − δk3,k4,k1

i1, i2, i3
X k2

y − δk2,k3,k4

i1, i2, i3
X k1

y

]
yk1yk2,k3,k4.

3.25. Comments, analysis and induction.First of all, by comparing this
expression ofYi1,i2,i3 with the expression (2.8) ofY3, we easily guess a part
of the (inductional) dictionary beween the casesn = 1 and the casen > 1.
For instance, the three monomials[·](y1)

3, [·] y1y2 and[·] (y1)
2 y2 in Y3 are

replaced inYi1,i2,i3 by the following three sums:
(3.26)∑

k1,k2,k3

[·] yk1yk2yk3,
∑

k1,k2,k3

[·] yk1yk2,k3, and
∑

k1,k2,k3,k4

[·] yk1yk2yk3,k4.

Similar formal correspondences may be observed for all the monomials of
Y1, Yi1 , of Y2, Yi1,i2 and ofY3, Yi1,i2,i3 . Generally and inductively speak-
ing, the monomial

(3.27) [·] (yλ1)
µ1 · · · (yλd

)µd

appearing in the expression (2.25) ofYκ should be replaced by a certain
multiple sum generalizing (3.26). However, it is necessaryto think, to pause
and to search for an appropriate formalism before writing down the desired
multiple sum.

The jet variableyλ1 should be replaced by a jet variable corresponding to
a λ1-th partial derivative, sayyk1,...,kλ1

, wherek1, . . . , kλ1 = 1, . . . , n. For
the moment, to simplify the discussion, we leave out the presence of a sum
of the form

∑
k1,...,kλ1

. Theµ1-th power(yλ1)
µ1 should be replacednot by(

yk1,...,kλ1

)µ1

, but by a product ofµ1 different jet variablesyk1,...,kλ1
of length

λ, with all indiceskα = 1, . . . , n being distinct. This rule may be confirmed
by inspecting the expressions ofYi1, of Yi1,i2 and ofYi1,i2,i3. Soyk1,...,kλ1

should be developed as a product of the form

(3.28) yk1,...,kλ1
ykλ1+1,...,k2λ1

· · · yk(µ1−1)λ1+1,...,kµ1λ1
,

where

(3.29) k1, . . . , kλ1, . . . , kµ1λ1 = 1, . . . , n.
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Consider now the product(yλ1)
µ1 (yλ2)

µ2 . How should it develope in the
case of several independent variables? For instance, in theexpression of
Yi1,i2,i3 , we have developed the product(y1)

2 y2 as yk1yk2yk3,k4. Thus, a
reasonable proposal of formalism would be that the product(yλ1)

µ1 (yλ2)
µ2

should be developed as a product of the form

(3.30)
yk1,...,kλ1

ykλ1+1,...,k2λ1
· · · yk(µ1−1)λ1+1,...,kµ1λ1

ykµ1λ1+1,...,kµ1λ1+λ2
· · · ykµ1λ1+(µ2−1)λ2+1,...,kµ1λ1+µ2λ2

,

where

(3.31) k1, . . . , kλ1, . . . , kµ1λ1 , . . . , kµ1λ1+µ2λ2 = 1, . . . , n.

However, when trying to write down the development of the general mono-
mial (yλ1)

µ1 (yλ2)
µ2 · · · (yλd

)µd , we would obtain the complicated product

(3.32)

yk1,...,kλ1
ykλ1+1,...,k2λ1

· · · yk(µ1−1)λ1+1,...,kµ1λ1

ykµ1λ1+1,...,kµ1λ1+λ2
. . . ykµ1λ1+(µ2−1)λ2+1,...,kµ1λ1+µ2λ2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ykµ1λ1+···+µd−1λd−1+1,...,kµ1λ1+···+µd−1λd−1+λd
· · ·

· · · ykµ1λ1+···+µd−1λd−1+(µd−1)λd+1,...,kµ1λ1+···+µdλd
.

Essentially, this product is still readable. However, in it, some of the in-
tegerskα have a too long indexα, often involving a sum. Such a length
of α would be very inconvenient in writing down and in reading thegen-
eral Kronecker symbolsδ

kα1 ,...,kαλ

i1,......,iλ
which should appear in the final expres-

sion of Yi1,...,iκ. One should read in advance Theorem 3.73 below to ob-
serve the presence of such multiple Kronecker symbols.Consequently, for
α = 1, . . . , µ1λ1, . . . , µ1λ1 + · · ·+ µdλd, we have to denote the indices
kα differently.

Notational convention3.33. We denoted collection ofµd groups ofλd (a
priori distinct) integerskα = 1, . . . , n by

(3.34)

k1:1:1, . . . , k1:1:λ1︸ ︷︷ ︸
λ1

, . . . , k1:µ1:1, . . . , k1:µ1:λ1︸ ︷︷ ︸
λ1︸ ︷︷ ︸

µ1

,

k2:1:1, . . . , k2:1:λ2︸ ︷︷ ︸
λ2

, . . . , k2:µ2:1, . . . , k2:µ2:λ2︸ ︷︷ ︸
λ2︸ ︷︷ ︸

µ2

,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kd:1:1, . . . , kd:1:λd︸ ︷︷ ︸
λd

, . . . , kd:µd:1, . . . , kd:µd:λd︸ ︷︷ ︸
λd︸ ︷︷ ︸

µd

.
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Correspondingly, we identify the set
(3.35)
{1, . . . , λ1, . . . , µ1λ1, . . . . . . , µ1λ1 + µ2λ2, . . . . . . , µ1λ1 + µ2λ2 + · · · + µdλd}

of all integersα from 1 to µ1λ1 + µ2λ2 + · · · + µdλd with the following
specific set

(3.36) {1:1:1, . . . , 1:1:λ1︸ ︷︷ ︸
λ1

, . . . , 1:µ1:λ1

︸ ︷︷ ︸
µ1λ1

, . . . , 2:µ2 :λ2

︸ ︷︷ ︸
µ1λ1+µ2λ2

, . . . , d :µd :λd

︸ ︷︷ ︸
µ1λ1+µ2λ2+···+µdλd

},

written in a lexicographic way which emphasizes clearly thesubdivision in
d collections ofµd groups ofλd integers.

With this notation at hand, we see that the development, in several in-
dependent variables, of the general monomial(yλ1)

µ1 · · · (yλd
)µd , may be

written as follows:
(3.37)
yk1:1:1,...,k1:1:λ1

· · · yk1:µ1:1,...,k1:µ1:λ1
· · · ykd:1:1,...,kd:1:λd

· · · · · · ykd:µd:1,...,kd:µd:λd
.

Formally speaking, this expression is better than (3.32). Using product sym-
bols, we may even write it under the slightly more compact form

(3.38)
∏

16ν16µ1

yk1:ν1:1,...,k1:ν1:λ1
· · ·

∏

16νd6µd

ykd:νd:1,...,kd:νd:λd
.

Now that we have translated the monomial, we may add all the summation
symbols: the general expression ofYκ (which generalizes our three previous
examples (3.26)) will be of the form:
(3.39)

Yκ = Yxi1 ···xiκ +

κ+1∑

d=1

∑

16λ1<···<λd6κ

∑

µ1>1,...,µd>1

∑

µ1λ1+···+µdλd6κ+1

n∑

k1:1:1,...,k1:1:λ1
=1

· · ·
n∑

k1:µ1:1,...,k1:µ1:λ1
=1

· · · · · ·
n∑

kd:1:1,...,kd:1:λd
=1

· · ·
n∑

kd:µd:1,...,kd:µd:λd
=1

[?]
∏

16ν16µ1

yk1:ν1:1,...,k1:ν1:λ1
· · ·

∏

16νd6µd

ykd:νd:1,...,kd:νd:λd
.

From now on, up to the end of the article, to be very precise, wewill restitute
the bounds

∑n
k=1 of all the previously abbreviated sums

∑
k. This is justi-

fied by the fact that, since we shall deal in Section 5 below simultaneously
with several independent variables(x1, . . . , xn) and with several dependent
variables(y1, . . . , ym), we shall encounter sums

∑m
l=1, not to be confused

with sums
∑n

k=1.
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3.40. Combinatorics of the Kronecker symbols.Our next task is to deter-
mine what appears inside the brackets[?] of the above equation. We will
treat this rather delicate question very progressively. Inductively, we have to
guess how we may pass from the bracketed term of (2.25), namely from

(3.41)

[
κ · · · (κ− µ1λ1 − · · · − µdλd + 1)

(λ1!)µ1 µ1! · · · (λd!)µd µd!
· Yxκ−µ1λ1−···−µdλd yµ1+···+µd−

−κ · · · (κ− µ1λ1 − · · · − µdλd + 2)(µ1λ1 + · · ·+ µdλd)

(λ1!)µ1 µ1! · · · (λd!)µd µd!
·

·Xxκ−µ1λ1−···−µdλd+1 yµ1+···+µd−1

]
,

to the corresponding (still unknown) bracketed term[?].
First of all, we examine the following term, extracted from the complete

expression ofYi1,i2,i3 (first line of (3.24)):

(3.42)
n∑

k1=1

[
δk1
i1

Yxi2xi3y + δk1
i2

Yxi1xi3y + δk1
i3

Yxi1xi2y −X k1

xi1xi2xi3

]
yk1.

Here, the coefficient[3 Yx2y −Xx3] of the monomialy1 in Y3 is replaced
by the above bracketed terms.

Let us precisely analyze the combinatorics. Here,Xx3 is replaced by
X k1

xi1xi2xi3
, where the lower indicesi1, i2, i3 come fromYi1,i2,i3 and where

the upper indexk1 is the summation index. Also, the integer3 in 3 Yx2y is
replaced by a sum of exactly three terms, each involving a single Kronecker
symbolδk

i , in which the lower index is always an indexi = i1, i2, i3 and in
which the upper index is always equal to the summation indexk1. By the
way, more generally, we immediately observe that all the successive positive
integers

(3.43) 1, 3, 1, 3, 3, 1, 3, 1, 3, 3, 3, 9, 6, 3, 1, 3, 4

appearing in the formula (2.8) forY3 are replaced, in the formula (3.24) for
Yi1,i2,i3 , by sums of exactly the same number of terms involving Kronecker
symbols. This observation will be a precious guide. Finally, in the symbol
δk1
i , if i is chosen among the set{i1, i2, i3}, for instance ifi = i1, it follows

that the development ofYx2y necessarily involves the remaining indices, for
instanceYxi2xi3y. Since there are three choices fori = i1, i2, i3, we recover
the number3.

Next, comparing[Yyy − 2 Xxy] (y1)
2 with the term

(3.44)
n∑

k1,k2=1

[
δk1,k2

i1, i2
Yyy − δk1

i1
X k1

xi2y
− δk1

i2
X k1

xi1y

]
yk1yk2,

extracted from the complete expression ofYi1,i2 (second line of (3.18)),
we learn and we guess that the number of Kronecker symbols beforeYxγyδ
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must be equal to the number of indiceskα minusγ. This rule is confirmed
by examining the term (second and third line of (3.24))

(3.45)

∑

k1,k2

[
δk1,k2

i1, i2
Yxi3y2 + δk1,k2

i3, i1
Yxi2y2 + δk1,k2

i2, i3
Yxi1y2−

−δk1
i1

X k2

xi2xi3y
− δk1

i2
X k2

xi1xi3y
− δk1

i3
X k2

xi1xi2y

]
yk1yk2,

developing[3 Yxy2 − 3 Xx2y] (y1)
2.

Also, we may examine the following term

(3.46)

n∑

k1,k2=1

[
δk1,k2

i1, i2
Yxi3xi4y2 + δk1,k2

i1, i3
Yxi2xi4y2 + δk1,k2

i1, i4
Yxi2xi3y2+

+δk1,k2

i2, i3
Yxi1xi4y2 + δk1,k2

i2, i4
Yxi1xi3y2 + δk1,k2

i3, i4
Yxi1xi2y2−

−δk1
i1

X k1

xi2xi3xi4y
− δk1

i2
X k1

xi1xi2xi3y
− δk1

i3
X k1

xi1xi2xi4y
−

−δk1
i4

X k1

xi1xi2xi3y

]
yk1yk2,

extracted fromYi1,i2,i3,i4 and developing[6 Yx2y2 − 4 Xx3y] (y1)
2. We

would like to mention that we have not written the complete expression of
Yi1,i2,i3,i4 , because it would cover two and a half printed pages.

By inspecting the way how the indices are permuted in the multiple Kro-
necker symbols of the first two lines of this expression (3.46), we observe
that the six terms correspond exactly to the six possible choices of two com-
plementary ordered couples of integers in the set{1, 2, 3, 4}, namely

(3.47)
{1, 2} ∪ {3, 4}, {1, 3} ∪ {2, 4}, {1, 4} ∪ {2, 3},
{2, 3} ∪ {1, 4}, {2, 4} ∪ {1, 3}, {3, 4} ∪ {1, 2}.

At this point, we start to devise the general combinatorics.Before proceed-
ing further, we need some notation.

3.48. Permutation groups.For everyp ∈ N with p > 1, we denote bySp

the full permutation group of the set{1, 2, . . . , p− 1, p}. Its cardinal equals
p!. The lettersσ andτ will be used to denote an element ofSp. If p > 2, and
if q ∈ N satisfies1 6 q 6 p−1, we denote bySq

p the subset of permutations
σ ∈ Sp satisfying the two collections of inequalities
(3.49)
σ(1) < σ(2) < · · · < σ(q) and σ(q+1) < σ(q+2) < · · · < σ(p).

The cardinal ofSq
p equalsCq

p = p!
q! (p−q)!

.
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Lemma 3.50.For κ > 1, the development of(2.20)to several independent
variables(x1, . . . , xn) is:
(3.51)

Yi1,i2,...,iκ = Yxi1xi2 ···xiκ +

n∑

k1=1



∑

τ∈S1
κ

δk1
iτ(1)

Y
x

iτ(2) ···xiτ(κ)y
−X k1

xi1xi2 ···xiκ


 yk1+

+
n∑

k1,k2=1



∑

τ∈S2
κ

δk1, k2
iτ(1),iτ(2)

Y
x

iτ(3) ···xiτ(κ)y2 −
∑

τ∈S1
κ

δk1
iτ(1)

X k2

x
iτ(2) ···xiτ(κ)y


 yk1yk2+

+

n∑

k1,k2,k3=1



∑

τ∈S3
κ

δk1, k2, k3
iτ(1),iτ(2),iτ(3)

Y
x

iτ(4) ···xiτ(κ)y3−

−
∑

τ∈S2
κ

δk1, k2
iτ(1),iτ(2)

X k3

x
iτ(3) ···xiτ(κ)y2


 yk1yk2yk3+

+ · · · · · ·+

+

n∑

k1,...,kκ=1


δk1,...,kκ

i1,..., iκ
Yyκ −

∑

τ∈S
κ−1
κ

δ
k1,......,kκ−1

iτ(1),...,iτ(κ−1)
X kκ

x
iτ(κ)yκ−1


 yk1 · · · ykκ+

+

n∑

k1,...,kκ,kκ+1=1

[
−δk1,...,kκ

i1,..., iκ
X

kκ+1
yκ

]
yk1 · · · ykκykκ+1 + remainder.

Here, the termremainder collects all remaining monomials in the pure jet
variablesyk1,...,kλ

.

3.52. Continuation. Thus, we have devised how the part ofYi1,...,iκ which
involves only the jet variablesykα must be written. To proceed further, we
shall examine the following term, extracted fromYi1,i2,i3 (lines 12 and 13
of (3.24))
(3.53)∑

k1,k2,k3,k4

[
−δk1,k2,k3

i1, i2, i3
X k4

y2 − δk2,k3,k1

i1, i2, i3
X k4

y2 − δk3,k2,k1

i1, i2, i3
X k4

y2 −

−δk3,k4,k1

i1, i2, i3
X k2

y2 − δk3,k1,k4

i1, i2, i3
X k2

y2 − δk1,k3,k4

i1, i2, i3
X k2

y2

]
yk1yk2yk3,k4,

which developes the term[−6 Xy2 ] (y1)
2y2 of Y3 (third line of (2.8)). Dur-

ing the computation which led us to the final expression (3.24), we organized
the formula in order that, in the six Kronecker symbols, the lower indices
i1, i2, i3 are all written in the same order. But then,what is the rule for the
appearance of the four upper indicesk1, k2, k3, k4?

In April 2001, we discovered the rule by inspecting both (3.53) and
the following complicated term, extracted from the complete expression of
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Yi1,i2,i3,i4 written in one of our manuscripts:

(3.54)

∑

k1,k2,k3

[
δk1,k2,k3

i1, i2, i3
Yxi4y2 + δk2,k1,k3

i1, i2, i3
Yxi4y2 + δk2,k3,k1

i1, i2, i3
Yxi4y2+

+ δk1,k2,k3

i1, i2, i4
Yxi3y2 + δk2,k1,k3

i1, i2, i4
Yxi3y2 + δk2,k3,k1

i1, i2, i4
Yxi3y2+

+ δk1,k2,k3

i1, i3, i4
Yxi2y2 + δk2,k1,k3

i1, i3, i4
Yxi2y2 + δk2,k3,k1

i1, i3, i4
Yxi2y2+

+ δk1,k2,k3

i2, i3, i4
Yxi1y2 + δk2,k1,k3

i2, i3, i4
Yxi1y2 + δk2,k3,k1

i2, i3, i4
Yxi1y2−

− δk1,k2

i1, i2
X k3

xi3xi4y
− δk2,k1

i1, i2
X k3

xi3xi4y
− δk2,k3

i1, i2
X k1

xi3xi4y
−

− δk1,k2

i1, i3
X k3

xi2xi4y
− δk2,k1

i1, i3
X k3

xi2xi4y
− δk2,k3

i1, i3
X k1

xi2xi4y
−

− δk1,k2

i1, i4
X k3

xi2xi3y
− δk2,k1

i1, i4
X k3

xi2xi3y
− δk2,k3

i1, i4
X k1

xi2xi3y
−

− δk1,k2

i2, i3
X k3

xi1xi4y
− δk2,k1

i2, i3
X k3

xi1xi4y
− δk2,k3

i2, i3
X k1

xi1xi4y
−

− δk1,k2

i2, i4
X k3

xi1xi3y
− δk2,k1

i2, i4
X k3

xi1xi3y
− δk2,k3

i2, i4
X k1

xi1xi3y
−

−δk1,k2

i3, i4
X k3

xi1xi2y
− δk2,k1

i3, i4
X k3

xi1xi2y
− δk2,k3

i3, i4
X k1

xi1xi2y

]
yk1yk2,k3.

This sum developes the term[12 Yxy2 − 18 Xx2y] y1y2 of Y3 (third line
of (2.9)). Let us explain what are the formal rules.

In the bracketed terms of (3.53), there are no permutation ofthe indices
i1, i2, i3, but there is a certain unknown subset of all the permutations of the
four indicesk1, k2, k3, k4. In the bracketed terms of (3.54), two combina-
torics are present:

• there are some permutations of the indicesi1, i2, i3, i4 and
• there are some permutations of the indicesk1, k2, k3.

Here, the permutations of the indicesi1, i2, i3, i4 are easily guessed, since
they are the same as the permutations which were introduced in §3.48 above.
Indeed, in the first four lines of (3.54), we see the four decompositions
(3.55)
{i1, i2, i3}∪{i4}, {i1, i2, i4}∪{i3}, {i1, i3, i4}∪{i2}, {i2, i3, i4}∪{i1},
of the set{i1, i2, i3, i4}, and in the last six lines of (3.54), we see the six
decompositions

(3.56)
{i1, i2} ∪ {i3, i4}, {i1, i3} ∪ {i2, i4}, {i1, i4} ∪ {i2, i3},
{i2, i3} ∪ {i1, i4}, {i2, i4} ∪ {i1, i3}, {i3, i4} ∪ {i1, i2},

so that (3.54) may be written under the form
(3.57)
∑

k1,k2,k3



∑

τ∈S3
4

∑

σ∈?

δ
kτ(1),kτ(2),kτ(3)

iτ(1),iτ(2),iτ(3)
Y

x
iτ(4)y2 −

∑

τ∈S2
4

∑

σ∈?

δ
kτ(1),kτ(2)

iτ(1),iτ(2)
X

kτ(3)

x
iτ(3)x

iτ(4)y


 yk1yk2,k3,
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where in the two above sums
∑

σ∈?, the letterσ denotes a permutation of
the set{1, 2, 3} and where the sign? refers to two (still unknown) subset of
the full permutation groupS3. The only remaining question is to determine
how the indiceskα are permuted in(3.53)and in(3.54).

The answer may be guessed by looking at the permutations of the set
{k1, k2, k3, k4} which stabilize the monomialyk1yk2yk3,k4 in (3.53): we
clearly have the following four symmetry relations betweenmonomials:

(3.58) yk1yk2yk3,k4 ≡ yk2yk1yk3,k4 ≡ yk1yk2yk4,k3 ≡ yk2yk1yk4,k3,

and nothing more. Then the number6 of bracketed terms in (3.53) is ex-
actly equal to the cardinal24 = 4! of the full permutation group of the set
{k1, k2, k3, k4} divided by the number4 of these symmetry relations. The
set of permutationsσ of {1, 2, 3, 4} satisfying these symmetry relations

(3.59) ykσ(1)
ykσ(2)

ykσ(3),kσ(4)
≡ yk1yk2yk3,k4

consitutes a subgroup ofS4 which we will denote byH(2,1),(1,2)
4 . Further-

more, the coset

(3.60) F
(2,1),(1,2)
4 := S4/H

(2,1),(1,2)
4

possesses the six representatives

(3.61)

(
1 2 3 4
1 2 3 4

)
,

(
1 2 3 4
2 3 1 4

)
,

(
1 2 3 4
3 2 1 4

)
,

(
1 2 3 4
3 4 1 2

)
,

(
1 2 3 4
3 1 4 2

)
,

(
1 2 3 4
1 3 4 2

)
,

which exactly appear as the permutations of the upper indices of our exam-
ple (3.53). Of course, the question arises whether the choice of such six
representatives in the quotientS4/H

(2,1),(1,2)
4 is legitimate.

Fortunately, we observe that after conjugation by any permutationσ ∈
H

(2,1),(1,2)
4 , we do not perturb any of the six terms of (3.53), for instancethe

third term of (3.53) is not perturbed, as shown by the following computation

(3.62)

∑

k1,k2,k3,k4

[
−δ

kσ(3),kσ(2),kσ(1)

i1, i2, i3
X

kσ(4)

y2

]
yk1yk2yk3,k4 =

=
∑

k1,k2,k3,k4

[
−δk3,k2,k1

i1, i2, i3
X

kσ(4)

y2

]
ykσ−1(1)

ykσ−1(2)
ykσ−1(3),kσ−1(4)

=
∑

k1,k2,k3,k4

[
−δk3,k2,k1

i1, i2, i3
X

kσ(4)

y2

]
yk1yk2yk3,k4

thanks to the symmetry (3.59). Thus, as expected, the choiceof 6 arbitrary
representativesσ ∈ F

(2,1),(1,2)
4 in the bracketed terms of (3.53) is free. In
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conclusion, we have shown that (3.53) may be written under the form:

(3.63)
∑

k1,k2,k3,k4


−

∑

σ∈F
(2,1),(1,2)
4

δ
kσ(1),kσ(2),kσ(3)

i1, i2, i3
X

kσ(4)

y2


 yk1yk2yk3,k4,

This rule is confirmed by inspecting (3.54) (as well as all theother
terms ofYi1,i2,i3 and ofYi1,i2,i3,i4). Indeed, the permutationsσ of the set
{k1, k2, k3} which stabilize the monomialyk1yk2,k3 consist just of the iden-
tity permutation and the transposition ofk2 andk3. The cosetS3/H

(1,1),(1,2)
3

has the three representatives

(3.64)

(
1 2 3
1 2 3

)
,

(
1 2 3
2 1 3

)
,

(
1 2 3
2 3 1

)
,

which appear in the upper index position of each of the ten lines of (3.54).
It follows that (3.54) may be written under the form

(3.65)

∑

k1,k2,k3



∑

τ∈S3
4

∑

σ∈F
(1,1),(1,2)
3

δ
kσ(1),kσ(2),kσ(3)

iτ(1),iτ(2),iτ(3)
Y

x
iτ(4)y2−

−
∑

σ∈S2
4

∑

τ∈F
(1,1),(1,2)
3

δ
kσ(1),kσ(2)

iτ(1),iτ(2)
X

kσ(3)

x
iτ(3)x

iτ(4)y


 yk1yk2,k3.

3.66. General complete expression ofYi1,...,iκ. As in the incomplete ex-
pression (3.39) ofYi1,...,iκ, consider integers1 6 λ1 < · · · < λd 6 κ and
µ1 > 1, . . . , µd > 1 satisfyingµ1λ1+· · ·+µdλd 6 κ+1. By Hµ1λ1+···+Hµdλd

,
we denote the subgroup of permutationsτ ∈ Sµ1λ1+···+Hµdλd

that leave un-
changed the general monomial (3.38), namely that satisfy

(3.67)

∏

16ν16µ1

ykσ(1:ν1:1),...,kσ(1:ν1:λ1)
· · ·

∏

16νd6µd

ykσ(d:νd:1),...,kσ(d:νd:λd)
=

=
∏

16ν16µ1

yk1:ν1:1,...,k1:ν1:λ1
· · ·

∏

16νd6µd

ykd:νd:1,...,kd:νd:λd
.

The structure of this group may be described as follows. For every e =
1, . . . , d, an arbitrary permutationσ of the set
(3.68)
{e : 1 :1, . . . , e : 1 :λe︸ ︷︷ ︸

λe

, e : 2 :1, . . . , e : 2 :λe︸ ︷︷ ︸
λe

, · · · , e : µe :1, . . . , e : µe :λe︸ ︷︷ ︸
λe︸ ︷︷ ︸

µe

}
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which leaves unchanged the monomial

(3.69)
∏

16νe6µe

ykσ(e:νe:1),...,kσ(e:νe:λe)
=

∏

16νe6µe

yke:νe:1,...,ke:νe:λe
.

uniquely decomposes as the composition of

• µe arbitrary permutations of theµe groups ofλe integers{e : νe :
1, . . . , e :νe :λe}, of total cardinal(λe!)

µe ;
• an arbitrary permutation between theseµe groups, of total cardinalµe!.

Consequently

(3.70) Card
(
H

(µ1,λ1),...,(µd,λd)
µ1λ1+···+µdλd

)
= µ1!(λ1!)

µ1 · · ·µd!(λd!)
µd .

Finally, define the coset

(3.71) F
(µ1,λ1),...,(µd,λd)
µ1λ1+···+µdλd

:= Sµ1λ1+···+µdλd
/H

(µ1,λ1),...,(µd,λd)
µ1λ1+···+µdλd

with

(3.72)

Card
(
F

(µ1,λ1),...,(µd,λd)
µ1λ1+···+µdλd

)
=

Card (Sµ1λ1+···+µdλd
)

Card
(
H

(µ1,λ1),...,(µd,λd)
µ1λ1+···+µdλd

)

=
(µ1λ1 + · · ·+ µdλd)!

µ1!(λ1!)µ1 · · ·µd!(λd!)µd
.

In conclusion, by means of this formalism, we may write down the complete
generalization of Theorem 2.24 to several independent variables.
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Theorem 3.73.For everyκ > 1 and for every choice ofκ indicesi1, . . . , iκ
in the set{1, 2, . . . , n}, the general expression ofYi1,...,iκ is as follows:
(3.74)

Yi1,...,iκ = Yxi1 ···xiκ +
κ+1∑

d=1

∑

16λ1<···<λd6κ

∑

µ1>1,...,µd>1

∑

µ1λ1+···+µdλd6κ+1

n∑

k1:1:1,...,k1:1:λ1
=1

· · ·
n∑

k1:µ1:1,...,k1:µ1:λ1
=1

· · · · · ·
n∑

kd:1:1,...,kd:1:λd
=1

· · ·
n∑

kd:µd:1,...,kd:µd:λd
=1




∑

σ∈F
(µ1,λ1),...,(µd,λd)

µ1λ1+···+µdλd

∑

τ∈S
µ1λ1+···+µdλd
κ

δ
kσ(1:1:1),...,kσ(1:µ1:λ1),...,kσ(d:µd:λd)

iτ(1),...,iτ(µ1λ1),...,iτ(µ1λ1+···+µdλd)

∂κ−µ1λ1−···−µdλd+µ1+···+µdY

∂xiτ(µ1λ1+···+µdλd+1) · · · ∂xiτ(κ) (∂y)µ1+···+µd
−

−
∑

σ∈F
(µ1,λ1),...,(µd,λd)

µ1λ1+···+µdλd

∑

τ∈S
µ1λ1+···+µdλd−1
κ

δ
kσ(1:1:1),...,kσ(1:µ1:λ1),...,kσ(d:µd:λd−1)

iτ(1),...,iτ(µ1λ1),...,iτ(µ1λ1+···+µdλd−1)

∂κ−µ1λ1−···−µdλd+µ1+···+µdX kσ(d:µd:λd)

∂xiτ(µ1λ1+···+µdλd) · · · ∂xiτ(κ) (∂y)µ1+···+µd−1




·

·
∏

16ν16µ1

yk1:ν1:1,...,k1:ν1:λ1
· · ·

∏

16νd6µd

ykd:νd:1,...,kd:νd:λd
.

Since the fundamental monomials appearing in the last line of (3.74) just
above are not independent of each other, this formula has still to be modified
a little bit. We refer to Section 6 for details.

3.75. Deduction of a multivariate Faà di Bruno formula. Let n ∈ N with
n > 1, let x = (x1, . . . , xn) ∈ Kn, let g = g(x1, . . . , xn) be aC ∞-smooth
function fromKn to K, let y ∈ K and letf = f(y) be aC ∞ function from
K to K. The goal is to obtain an explicit formula for the partial derivatives
of the compositionh := f ◦ g, namelyh(x1, . . . , xn) := f(g(x1, . . . , xn)).
For λ ∈ N with λ > 1 and for arbitrary indicesi1, . . . , iλ = 1, . . . , n, we
shall abbreviate the partial derivative ∂λg

∂xi1 ···∂xiλ
by gi1,...,iλ and similarly for

hi1,...,iλ . The derivativedλf
dyλ will be abbreviated byfλ.
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Appying the chain rule, we may compute:
(3.76)

hi1 = f1 [gi1 ] ,

hi1,i2 = f2 [gi1 gi2 ] + f1 [gi1,i2 ] ,

hi1,i2,i3 = f3 [gi1 gi2 gi3 ] + f2 [gi1 gi2,i3 + gi2 gi1,i3 + gi3 gi1,i2 ] + f1 [gi1,i2,i3] ,

hi1,i2,i3,i4 = f4 [gi1 gi2 gi3 gi4 ] + f3 [gi2 gi3 gi1,i4 + gi3 gi1 gi2,i4 + gi1 gi2 gi3,i4+

+gi1 gi4 gi2,i3 + gi2 gi4 gi1,i3 + gi3 gi4 gi1,i2 ] +

+ f2 [gi1,i2 gi3,i4 + gi1,i3 gi2,i4 + gi1,i4 gi2,i3] +

+ f2 [gi1 gi2,i3,i4 + gi2 gi1,i3,i4 + gi3 gi1,i2,i4 + gi4 gi1,i2,i3] +

+ f1 [gi1,i2,i3,i4] .

Introducing the derivations
(3.77)

F 2
i :=

n∑

k1=1

gk1,i
∂

∂gk1

+ gi

(
f2

∂

∂f1

)
,

F 3
i :=

n∑

k1=1

gk1,i
∂

∂gk1

+

n∑

k1,k2=1

gk1,k2,i
∂

∂gk1,k2

+ gi

(
f2

∂

∂f1
+ f3

∂

∂f2

)
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F λ
i :=

n∑

k1=1

gk1,i
∂

∂gk1

+
n∑

k1,k2=1

gk1,k2,i
∂

∂gk1,k2

+ · · ·+

+
n∑

k1,...,kλ−1=1

gk1,...,kλ−1,i
∂

∂gk1,...,kλ−1

+

+ gi

(
f2

∂

∂f1
+ f3

∂

∂f2
+ · · ·+ fλ

∂

∂fλ−1

)
,

we observe that the following induction relations hold:

(3.78)

hi1,i2 = F 2
i2 (hi1) ,

hi1,i2,i3 = F 3
i3

(hi1,i2) ,

. . . . . . . . . . . . . . . . . . . . .

hi1,i2,...,iλ = F λ
iλ

(
hi1,i2,...,iλ−1

)
.

To obtain the explicit version of the Faà di Bruno in the case of several
variables(x1, . . . , xn) and one variabley, it suffices to extract from the ex-
pression ofYi1,...,iκ provided by Theorem 3.73 only the terms corresponding
toµ1λ1 + · · ·+µdλd = κ, dropping all theX terms. After some simplifica-
tions and after a translation by means of an elementary dictionary, we obtain
a statement.
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Theorem 3.79. For every integerκ > 1 and for every choice of indices
i1, . . . , iκ in the set{1, 2, . . . , n}, the κ-th partial derivative of the com-
posite functionh = h(x1, . . . , xn) = f(g(x1, . . . , xn)) with respect to the
variablesxi1 , . . . , xiκ may be expressed as an explicit polynomial depend-
ing on the derivatives off , on the partial derivatives ofg and having integer
coefficients:
(3.80)

∂κh

∂xi1 · · ·∂xiκ
=

κ∑

d=1

∑

16λ1<···<λd6κ

∑

µ1>1,...,µd>1

∑

µ1λ1+···+µdλd=κ

dµ1+···+µdf

dyµ1+···+µd




∑

σ∈F
(µ1,λ1),...,(µd,λd)
κ

∏

16ν16µ1

∂λ1g

∂xiσ(1:ν1:1) · · ·∂xiσ(1:ν1:λ1)
. . .

. . .
∏

16νd6µd

∂λdg

∂xiσ(d:νd:1) · · ·∂xiσ(d:νds:λd)



.

In this formula, the cosetF(µ1,λ1),...,(µd,λd)
κ was defined in equation (3.71);

we have made the identification:

(3.81) {1, . . . , κ} ≡ {1:1 :1, . . . , 1:µ1 :λ1, . . . . . ., d :1 :1, . . . , d :µd :λd};

and also, for the sake of clarity, we have restituted the complete (not abbre-
viated) notation for the (partial) derivatives off and ofg.

We refer to Section 6 for the final writing of the above formula(3.80).

§4. ONE INDEPENDENT VARIABLE AND SEVERAL DEPENDENT

VARIABLES

4.1. Simplified adapted notations.Assumen = 1 andm > 1, let κ ∈ N

with κ > 1 and simply denote the jet variables by (instead of (1.2)):

(4.2)
(
x, yj, yj

1, y
j
2, . . . , y

j
κ

)
∈J κ

1,m.

Instead of (1.30), denote theκ-th prolongation of a vector field by:

(4.3)





L (κ) = X
∂

∂x
+

m∑

j=1

Y j ∂

∂yj
+

m∑

j=1

Y
j
1

∂

∂yj
1

+

m∑

j=1

Y
j
2

∂

∂yj
2

+

+ · · ·+
m∑

j=1

Yj
κ

∂

∂yj
κ

.
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The induction formulas are:

(4.4)





Y
j
1 := D1

(
Y j
)
−D1 (X ) yj

1,

Y
j
2 := D2

(
Y

j
1

)
−D1 (X ) yj

2,

· · · · · · · · · · · ·
Y

j
λ := Dλ

(
Y

j
λ−1

)
−D1 (X ) yj

λ,

where the total differentiation operatorsDλ are denoted by (instead
of (1.22)):

(4.5) Dλ :=
∂

∂x
+

m∑

l=1

yl
1

∂

∂yl
+

m∑

l=1

yl
2

∂

∂yl
1

+ · · ·+
m∑

l=1

yl
λ

∂

∂yl
λ−1

.

Applying the definitions in the first two lines of (4.4), we compute, we sim-
plify and we organize the results in a harmonious way, using in an essential
way the Kronecker symbol. Here, the computations are more elementary
than the computations ofYi1 and ofYi1,i2 achieved thoroughly in the previ-
ous Section 3, so that we do not provide a Latex track of the details. Firstly
and secondly:
(4.6)



Y
j
1 = Y j

x +

m∑

l1=1

[
Y j

yl1
− δj

l1
Xx

]
yl1
1 +

m∑

l1,l2=1

[
−δj

l1
Xyl2

]
yl1
1 yl2

1 ,

Y
j
2 = Y j

x2 +

m∑

l1=1

[
2Y j

xyl1
− δj

l1
Xx2

]
yl1
1 +

m∑

l1,l2=1

[
Y j

yl1yl2
− δj

l1
2Xxyl2

]
yl1
1 yl2

1 +

+
∑

l1,l2,l3

[
−δj

l1
Xyl2yl3

]
yl1
1 yl2

1 yl3
1 +

∑

l1

[
Y j

yl1
− δj

l1
2Xx

]
yl1
2 +

+

m∑

l1,l2=1

[
−δj

l1
Xyl2 − δj

l2
2Xyl1

]
yl1
1 yl2

2 .

Thirdly:
(4.7)

Y
j
3 = Y j

x3 +
m∑

l1=1

[
3Y j

x2yl1
− δj

l1
Xx3

]
yl1
1 +

m∑

l1,l2=1

[
3Y j

xyl1yl2
− δj

l1
3Xx2yl2

]
yl1
1 yl2

1 +

+
∑

l1,l2,l3

[
Y j

yl1yl2yl3
− δj

l1
3Xxyl2yl3

]
yl1
1 yl2

1 yl3
1 +

+
∑

l1,l2,l3,l4

[
−δj

l1
Xyl2yl3yl4

]
yl1
1 yl2

1 yl3
1 yl4

1 +
m∑

l1=1

[
3Y j

xyl1
− δj

l1
3Xx2

]
yl1
2 +
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+

m∑

l1,l2=1

[
3Y j

yl1yl2
− δj

l1
3Xxyl2 − δj

l2
6Xxyl1

]
yl1
1 yl2

2 +

+

m∑

l1,l2,l3=1

[
−δj

l1
3Xyl2yl3 − δj

l3
3Xyl1yl2

]
yl1
1 yl2

1 yl3
2 +

m∑

l1,l2=1

[
−δj

l3
3Xyl2

]
yl1
2 yl2

2 +

+

m∑

l1=1

[
Y j

yl1
− δj

l1
3Xx

]
yl1
3 +

m∑

l1,l2=1

[
−δj

l1
Xyl2 − δj

l2
3Xyl1

]
yl1
1 yl2

3 .

Fourthly:

Y
j
4 = Y j

x4 +
m∑

l1=1

[
4Y j

x3yl1
− δj

l1
Xx4

]
yl1
1 +

m∑

l1,l2=1

[
6Y j

x2yl1yl2
− δj

l1
4Xx3yl2

]
yl1
1 yl2

1 +

+

m∑

l1,l2,l3=1

[
4Y j

xyl1yl2yl3
− δj

l1
6Xx2yl2yl3

]
yl1
1 yl2

1 yl3
1 +

+

m∑

l1,l2,l3,l4=1

[
Y j

xyl1yl2yl3yl4
− δj

l1
4Xxyl2yl3yl4

]
yl1
1 yl2

1 yl3
1 yl4

1 +

+

m∑

l1,l2,l3,l4,l5=1

[
−δj

l1
Xyl2yl3yl4yl5

]
yl1
1 yl2

1 yl3
1 yl4

1 yl5
1 +

m∑

l1=1

[
6Y j

x2yl1
− δj

l1
4Xx3

]
yl1
2 +

(4.8)

+
m∑

l1,l2=1

[
12Y j

xyl1yl2
− δj

l1
6Xx2yl2 − δj

l2
12Xx2yl1

]
yl1
1 yl2

2 +

+
m∑

l1,l2,l3=1

[
6Y j

yl1yl2yl3
− δj

l1
12Xxyl2yl3 − δj

l3
12Xxyl1yl2

]
yl1
1 yl2

1 yl3
2 +

+
m∑

l1,l2,l3,l4=1

[
−δj

l1
6Xyl2yl3yl4 − δj

l4
4Xyl1yl2yl3

]
yl1
1 yl2

1 yl3
1 yl4

2 +
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+

m∑

l1,l2=1

[
3Y j

yl1yl2
− δj

l1
12Xxyl2

]
yl1
2 yl2

2 +

+

m∑

l1,l2,l3=1

[
−δj

l1
3Xyl2yl3 − δj

l2
12Xyl1yl3

]
yl1
1 yl2

2 yl3
2 +

m∑

l1=1

[
4Y j

xyl1
− δj

l1
6Xx2

]
yl1
3 +

+

m∑

l1,l2=1

[
4Y j

yl1yl2
− δj

l1
4Xxyl2 − δj

l2
12Xxyl1

]
yl1
1 yl2

3 +

+

m∑

l1,l2,l3=1

[
−δj

l1
4Xyl2yl3 − δj

l3
6Xyl1yl2

]
yl1
1 yl2

1 yl3
3 +

+

m∑

l1,l2=1

[
−δj

l1
4Xyl2 − δj

l2
6Xyl1

]
yl1
2 yl2

3 +

+
m∑

l1=1

[
Y j

yl1
− δj

l1
4Xx

]
yl1
4 +

m∑

l1,l2=1

[
−δj

l1
Xyl2 − δj

l2
4Xyl1

]
yl1
1 yl2

4 .

4.9. Inductive elaboration of the general formula. Now we compare the
formula (2.9) forY4 with the above formula (4.8) forYj

4. The goal is
to find the rules of transformation and of development by inspecting sev-
eral instances, in order to devise how to transform and to develope the for-
mula (2.25) to several dependent variables.

First of all, we have to develope the general monomial(yλ1)
µ1 · · · (yλd

)µd .
In every monomial present in the expressions ofY

j
1, of Y

j
2, of Y

j
3 and of

Y
j
4 above, we see that the numberα of indiceslβ appearing in all the sums∑m
l1,...,lα=1 is exactly equal toµ1 + · · ·+ µd. To denote theseµ1 + · · ·+ µd

indiceslβ, we shall use the notation:

(4.10) l1:1, . . . , l1:µ1︸ ︷︷ ︸
µ1

, . . . , ld:1, . . . , ld:µd︸ ︷︷ ︸
µd︸ ︷︷ ︸

µ1+···+µd

,

inspired by Convention 3.33. With such a choice of notation,we may avoid
long subscripts in the indiceslβ, like lµ1+···+µd

. It follows that the develop-
ment of the general monomial(yλ1)

µ1 · · · (yλd
)µd to several dependent vari-

ables yieldsmµ1+···+µd possible choices:

(4.11)
∏

16ν16µ1

y
l1:ν1
λ1
· · · · · ·

∏

16νd6µd

y
ld:νd

λd
,

where the indicesl1:1, . . . , l1:µ1 , . . . , ld:1, . . . , ld:µd
take their values in the set

{1, 2, . . . , m}. Consequently, the general expression ofYj
κ must be of the
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form:

(4.12)

Yj
κ = Y j

xκ +
κ+1∑

d=1

∑

16λ1<···<λd6κ

∑

µ1>1,...,µd>1

∑

µ1λ1+···+µdλd6κ+1

m∑

l1:1=1

· · ·
m∑

l1:µ1=1

· · · · · ·
m∑

ld:1=1

· · ·
m∑

ld:µd
=1

[?]

∏

16ν16µ1

y
l1:ν1
λ1

· · · · · ·
∏

16νd6µd

y
ld:νd

λd
,

where the term in brackets[?] is still unknown. To determine it, let us
examine a few instances.

According to (4.8) (fourth line), the term[6 Yx2y − 4 Xx3] y2 of Y4 de-

velopes as
∑m

l1=1

[
6 Y j

x2yl1
− δj

l1
4 Xx3

]
yl1

2 in Y
j
4. Here, 6 Yx2y just be-

comes6 Y j

x2yl1
. Thus, we suspect that the termκ···(κ−µ1λ1−···−µdλd+1)

(λ1!)µ1 µ1!···(λd!)µd µd!
·

Yxκ−µ1λ1−···−µdλd yµ1+···+µd of the second line of (2.25) should simply be de-
veloped as

(4.13)

κ(κ− 1) · · · (κ− µ1λ1 − · · · − µdλd + 1)

(λ1!)µ1 µ1! · · · (λd!)µd µd!
·

· ∂κ−µ1λ1−···−µdλd+µ1+···+µdY j

(∂x)κ−µ1λ1−···−µdλd∂yl1:1 · · · ∂yl1:µ1 · · · ∂yld:1 · · · ∂yld:µd

.

This rule is confirmed by inspecting all the other monomials of Y
j
1, of Y

j
2,

of Yj
3 and ofYj

4.
It remains to determine how we must develope the term inX appearing

in the last two lines of (2.25). To begin with, let us rewrite in advance this
term in the slightly different shape, emphasizing a factorization:
(4.14)
κ · · · (κ− µ1λ1 − · · · − µdλd + 2)

(λ1!)µ1 µ1! · · · (λd!)µd µd!

[
(µ1λ1 + · · · + µdλd)Xxκ−µ1λ1−···−µdλd+1 yµ1+···+µd−1

]
.
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Then we examine four instances extracted from the complete expression of
Y

j
4:

(4.15)





m∑

l1,l2,l3=1

[
4Y j

xyl1yl2yl3
− δj

l1
6Xx2yl2yl3

]
yl1
1 yl2

1 yl3
1 ,

m∑

l1,l2=1

[
12Y j

xyl1yl2
− δj

l1
6Xx2yl2 − δj

l2
12Xx2yl1

]
yl1
1 yl2

2 ,

m∑

l1,l2,l3,l4=1

[
−δj

l1
6Xyl2yl3yl4 − δj

l4
4Xyl1yl2yl3

]
yl1
1 yl2

1 yl3
1 yl4

2 ,

m∑

l1,l2,l3=1

[
−δj

l1
4Xyl2yl3 − δj

l3
6Xyl1yl2

]
yl1
1 yl2

1 yl3
3 ,

and we compare them to the corresponding terms ofY4:

(4.16)





[
4Yxy3 − 6Xx2y2

]
(y1)

3,
[
12Yxy2 − 18Xx2y

]
y1y2,[

−10Xy3

]
(y1)

3y2,[
−10Xy2

]
(y1)

2y3.

In the development from (4.16) to (4.15), we see that the fourintegers just
beforeX , namely6 = 6, 18 = 6 + 12, 10 = 6 + 4 and10 = 4 + 6, are
split in a certain manner. Also, a single Kronecker symbolδj

lα
is added as a

factor.What are the rules?
In the second splitting18 = 6 + 12, we see that the relative weight of

6 and of12 is the same as the relative weight of1 and 2 in the splitting
3 = 1 + 2 issued from the lower indices of the corresponding monomial
yl1

1 y
l2
2 . Similarly, in the third splitting10 = 6 + 4, the relative weight of

6 and of4 is the same as the relative weight of1 + 1 + 1 and of2 issued
from the lower indices of the corresponding monomialyl1

1 y
l2
1 y

l3
1 y

l4
2 . This

rule may be confirmed by inspecting all the other monomials ofY2, Y
j
2,

of Y3, Y
j
3 and ofY4, Y

j
4. For a generalκ > 1, the splitting of integers

just amounts to decompose the sum appearing inside the brackets of (4.14)
asµ1λ1, µ2λ2, . . . , µdλd. In fact, when we wrote (4.14), we emphasized in
advance the decomposable factor(µ1λ1 + · · ·+ µdλd).

Next, we have to determine what is the subscriptα in the Kronecker sym-
bol δj

lα
. We claim that in the four instances (4.15), the subscriptα is in-

trinsically related to weight splitting. Indeed, recall that in the second line
of (4.15), the number6 of the splitting18 = 6 + 12 is related to the number
1 in the splitting3 = 1 + 2 of the lower indices of the monomialyl1

1 y
l2
2 . It

follows that the indexlα must bethe indexl1 of the monomialyl1
1 . Similarly,

also in the second line of (4.15), the number12 of the splitting18 = 6 + 12
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being related to the number2 in the splitting3 = 1 + 2 of the lower indices
of the monomialyl1

1 y
l2
2 , it follows that the indexlα attached to the secondX

term must be the indexl2 of the monomialyl2
2 .

This rule is still ambiguous. Indeed, let us examine the third line of (4.15).
We have the splitting10 = 6 + 4, homologous to the splitting of relative
weights5 = (1+1+1)+2 in the monomialyl1

1 y
l2
1 y

l3
1 y

l4
2 . Of course, it is clear

that we must choose the indexl4 for the Kronecker symbol associated to the
secondX term−4 Xy3 , thus obtaining−δj

l4
4 Xyl1yl2yl3 . However, since

the monomialyl1
1 y

l2
1 y

l3
1 has three indicesl1, l2 andl3, there arises a question:

what indexlα must we choose for the Kronecker symbolδj
lα

attached to the
first X term6 Xy3 : the indexl1, the indexl2 or the indexl3?

The answer is simple:any of the three indicesl1, l2 or l3 works. Indeed,
since the monomialyl1

1 y
l2
1 y

l3
1 is symmetric with respect to all permutations

of the set of three indices{l1, l2, l3}, we have
(4.17)

m∑

l1,l2,l3,l4=1

[
−δj

l1
6Xyl2yl3yl4

]
yl1
1 yl2

1 yl3
1 yl4

2 =

m∑

l1,l2,l3,l4=1

[
−δj

l2
6Xyl1yl3yl4

]
yl1
1 yl2

1 yl3
1 yl4

2 =

=

m∑

l1,l2,l3,l4=1

[
−δj

l3
6Xyl1yl2yl4

]
yl1
1 yl2

1 yl3
1 yl4

2 .

In fact, we have systematically used such symmetries duringthe intermedi-
ate computations (not exposed here) which we achieved manually to obtain
the final expressions ofYj

1, of Yj
2, of Yj

3 and ofYj
4. To fix ideas, we have

always choosen the first index. Here, the first index isl1; in the first sum of
line 9 of (4.8), the first indexlα for the second weight12 is l2.

This rule may be confirmed by inspecting all the monomials ofY
j
2, of

Y
j
3, of Y

j
4 (and also ofYj

5, which we have computed in a manuscript, but
not copied in this Latex file).

From these considerations, we deduce that for the general formula, the
weight decomposition is simplyµ1λ1, . . . , µdλd and that the Kronecker sym-
bol δj

α is intrinsically associated to the weights. In conclusion,building on
inductive reasonings, we have formulated the following statement.

Theorem 4.18.For one independent variablex, for several dependent vari-
ables(y1, . . . , ym) and forκ > 1, the general expression of the coefficient
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Yj
κ of the prolongation(4.3)of a vector field is:

(4.19)

Yj
κ = Y j

xκ +

κ+1∑

d=1

∑

16λ1<···<λd6κ

∑

µ1>1,...,µd>1

∑

µ1λ1+···+µdλd6κ+1

m∑

l1:1=1

· · ·
m∑

l1:µ1=1

· · · · · ·
m∑

ld:1=1

· · ·
m∑

ld:µd
=1

κ(κ− 1) · · · (κ− µ1λ1 + · · ·+ µdλd + 2)

(λ1!)µ1 µ1! · · · (λd!)µd µd!




(κ− µ1λ1 − · · · − µdλd + 1)
∂κ−µ1λ1−···−µdλd+µ1+···+µdY j

(∂x)κ−µ1λ1−···−µdλd∂yl1:1 · · · ∂yl1:µ1 · · · ∂yld:1 · · · ∂yld:µd

−

− δj
l1:1

µ1λ1
∂κ−µ1λ1−···−µdλd+µ1+···+µdX

(∂x)κ−µ1λ1−···−µdλd+1∂̂yl1:1 · · · ∂yl1:µ1 · · · ∂yld:1 · · · ∂yld:µd

−

− · · · −

− δj
ld:1

µdλd
∂κ−µ1λ1−···−µdλd+µ1+···+µdX

(∂x)κ−µ1λ1−···−µdλd+1∂yl1:1 · · · ∂yl1:µ1 · · · ∂̂yld:1 · · · ∂yld:µd




·

·
∏

16ν16µ1

y
l1:ν1
λ1

· · · · · ·
∏

16νd6µd

y
ld:νd

λd
.

Here, the notation̂∂yl means that the partial derivative is dropped.

Since the fundamental monomials appearing in the last line of (4.19) just
above are not independent of each other, this formula has still to be modified
a little bit. We refer to Section 6 for details.

4.20. Deduction of a multivariate Faà di Bruno formula. Letm ∈ N with
m > 1, let y = (y1, . . . , ym) ∈ Km, let f = f(y1, . . . , ym) be aC ∞-smooth
function fromKm to K, let x ∈ K and letg1 = g1(x), . . . , gm = gm(x)
be C ∞ functions fromK to K. The goal is to obtain an explicit formula
for the derivatives, with respect tox, of the compositionh := f ◦ g, namely
h(x) := f (g1(x), . . . , gm(x)). Forλ ∈ N with λ > 1, and forj = 1, . . . , m,
we shall abbreviate the derivativedλgj

dxλ by gj
λ and similarly forhλ. The partial

derivatives ∂λf

∂yl1 ···∂ylλ
will be abbreviated byfl1,...,lλ.
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Appying the chain rule, we may compute:
(4.21)

h1 =

m∑

l1=1

fl1 gl1
1 ,

h2 =

m∑

l1,l2=1

fl1,l2 gl1
1 gl2

1 +

m∑

l1=1

fl1 gl1
2 ,

h3 =

m∑

l1,l2,l3=1

fl1,l2,l3 gl1
1 gl2

1 gl3
1 + 3

m∑

l1,l2=1

fl1,l2 gl1
1 gl2

2 +

m∑

l1=1

fl1 gl1
3 ,

h4 =

m∑

l1,l2,l3,l4=1

fl1,l2,l3,l4 gl1
1 gl2

1 gl3
1 gl4

1 + 6

m∑

l1,l2,l3=1

fl1,l2,l3 gl1
1 gl2

1 gl3
2 +

+ 3
m∑

l1,l2=1

fl1,l2 gl1
2 gl2

2 + 4
m∑

l1,l2=1

fl1,l2 gl1
1 gl2

3 +
m∑

l1=1

fl1 gl1
4 ,

h5 =
m∑

l1,l2,l3,l4,l5=1

fl1,l2,l3,l4,l5 gl1
1 gl2

1 gl3
1 gl4

1 gl5
1 + 10

m∑

l1,l2,l3,l4=1

fl1,l2,l3,l4 gl1
1 gl2

1 gl3
1 gl4

2 +

+ 15
m∑

l1,l2,l3=1

fl1,l2,l3 gl1
1 gl2

2 gl3
2 + 10

m∑

l1,l2,l3=1

fl1,l2,l3 gl1
1 gl2

1 gl3
3 +

+ 10

m∑

l1,l2=1

fl1,l2 gl1
2 gl2

3 + 5

m∑

l1,l2=1

fl1,l2 gl1
1 gl2

4 +

m∑

l1=1

fl1 gl1
5 .

Introducing the derivations
(4.22)

F 2 :=
m∑

l1=1

gl1
2

∂

∂gl1
1

+
m∑

l1=1

gl1
1




m∑

l2=1

fl1,l2

∂

∂fl2


 ,

F 3 :=

m∑

l1=1

gl1
2

∂

∂gl1
1

+

m∑

l1=1

gl1
3

∂

∂gl1
2

+

m∑

l1=1

gl1
1




m∑

l2=1

fl1,l2

∂

∂fl2

+

m∑

l2,l3=1

fl1,l2,l3

∂

∂fl2,l3


 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F λ :=
m∑

l1=1

gl1
2

∂

∂gl1
1

+
m∑

l1=1

gl1
3

∂

∂gl1
2

+ · · ·+
m∑

l1=1

gl1
λ

∂

∂gl1
λ−1

+

+

m∑

l1=1

gl1
1




m∑

l2=1

fl1,l2

∂

∂fl2

+

m∑

l2,l3=1

fl1,l2,l3

∂

∂fl2,l3

+ · · ·+
m∑

l2,...,lλ=1

fl1,l2,...,lλ

∂

∂fl2,...,lλ


 ,
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we observe that the following induction relations hold:

(4.23)

h2 = F 2 (h1) ,

h3 = F 3 (h2) ,

. . . . . . . . . . . . . . .

hλ = F λ (hλ−1) .

To obtain the explicit version of the Faà di Bruno in the case of one variablex
and several variables(y1, . . . , ym), it suffices to extract from the expression
of Yj

κ provided by Theorem 4.18 only the terms corresponding toµ1λ1 +
· · ·+ µdλd = κ, dropping all theX terms. After some simplifications and
after a translation by means of an elementary dictionary, wemay formulate
a statement.

Theorem 4.24.For every integerκ > 1, theκ-th partial derivative of the
composite functionh = h(x) = f (g1(x), . . . , gm(x)) with respect tox may
be expressed as an explicit polynomial depending on the partial derivatives
of f , on the derivatives ofg and having integer coefficients:
(4.25)

dκh

dxκ
=

κ∑

d=1

∑

16λ1<···<λd6κ

∑

µ1>1,...,µd>1

∑

µ1λ1+···+µdλd=κ

κ!

(λ1!)µ1 µ1! · · · (λd!)µd µd!

m∑

l1:1,...,l1:µ1=1

· · ·
m∑

ld:1,...,ld:µd
=1

∂µ1+···+µdf

∂yl1:1 · · ·∂yl1:µ1 · · ·∂yld:1 · · ·∂yld:µd

∏

16ν16µ1

dλ1gl1:ν1

dxλ1
· · ·

∏

16νd6µd

dλdgld:νd

dxλd
.

We refer to Section 6 for the final writing of the above formula(4.25).

§5. SEVERAL INDEPENDENT VARIABLES AND SEVERAL DEPENDENT

VARIABLES

5.1. Expression ofYj
i1

, of Y
j
i1,i2

and of Y
j
i1,i2,i3

. Applying the induc-
tion (1.31) and working out the obtained formulas until theytake a perfect
shape, we obtain firstly:
(5.2)

Y
j
i1

= Y j
xi1

+
m∑

l1=1

n∑

k1=1

[
δk1
i1

Y j

yl1
− δj

l1
X k1

xi1

]
yl1

k1
+

m∑

l1,l2=1

n∑

k1,k2=1

[
−δj

l2
δk1
i1

X k2

yl1

]
yl1

k1
yl2

k2
.
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Secondly:
(5.3)

Y
j
i1,i2

= Y j
xi1xi2

+

m∑

l1=1

n∑

k1=1

[
δk1
i1

Y j

xi2yl1
+ δk1

i2
Y j

xi1yl1
− δj

l1
X k1

xi1xi2

]
yl1

k1
+

+

m∑

l1,l2=1

n∑

k1,k2=1

[
δk1,k2
i1, i2

Y j

yl1yl2
− δj

l2
δk1
i1

X k2

xi2yl1
− δj

l2
δk1
i2

X k2

xi1yl1

]
yl1

k1
yl2

k2
+

+

m∑

l1,l2,l3=1

n∑

k1,k2,k3=1

[
−δj

l3
δk1,k2

i1, i2
X k3

yl1yl2

]
yl1

k1
yl2

k2
yl3

k3
+

+

m∑

l1=1

n∑

k1,k2=1

[
δk1,k2

i1, i2
Y j

yl1
− δj

l1
δk1
i1

X k2

xi2
− δj

l1
δk1
i2

X k2

xi1

]
yl1

k1,k2
+

+
m∑

l1,l2=1

n∑

k1,k2,k3=1

[
−δj

l1
δk2,k3

i1, i2
X k1

yl2
− δj

l2
δk3,k1

i1, i2
X k2

yl1
− δj

l2
δk1,k2

i1, i2
X k3

yl1

]
yl1

k1
yl2

k2
yl3

k3
.

Thirdly:

Y
j
i1,i2,i3

= Y j
xi1xi2xi3

+

m∑

l1=1

n∑

k1=1

[
δk1
i1

Y j

xi2xi3yl1
+ δk1

i2
Y j

xi1xi3yl1
+ δk1

i3
Y j

xi1xi2yl1
− δj

l1
X k1

xi1xi2xi3

]
yl1

k1
+

+
m∑

l1,l2=1

n∑

k1,k2=1

[
δk1,k2
i1, i2

Y j

xi3yl1yl2
+ δk1,k2

i3, i1
Y j

xi2yl1yl2
+ δk1,k2

i2, i3
Y j

xi1yl1yl2
−

−δj
l2

δk1
i1

X k2

xi2xi3yl1
− δj

l2
δk1
i2

X k2

xi1xi3yl1
− δj

l2
δk1
i3

X k2

xi1xi2yl1

]
yl1

k1
yl2

k2
+

+

m∑

l1,l2,l3=1

n∑

k1,k2,k3=1

[
δk1,k2,k3
i1, i2, i3

Y j

yl1yl2yl3
− δj

l3
δk1,k2
i1, i2

X k3

xi3yl1yl2
−

−δj
l3

δk1,k2
i1, i3

X k3

xi2yl1yl2
− δj

l3
δk1,k2
i2, i3

X k3

xi1yl1yl2

]
yl1

k1
yl2

k2
yl3

k3
+

+
m∑

l1,l2,l3,l4=1

n∑

k1,k2,k3,k4=1

[
−δj

l4
δk1,k2,k3

i1, i2, i3
X k4

yl1yl2yl3

]
yl1

k1
yl2

k2
yl3

k3
yl4

k4
+

+
m∑

l1=1

n∑

k1,k2=1

[
δk1,k2
i1, i2

Y j

xi3yl1
+ δk1,k2

i3, i1
Y j

xi2yl1
+ δk1,k2

i2, i3
Y j

xi1yl1
−

−δj
l1

δk1
i1

X k2

xi2xi3
− δj

l1
δk1
i2

X k2

xi1xi3
− δj

l1
δk1
i3

X k2

xi1xi2

]
yl1

k1,k2
+
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(5.4)

+

m∑

l1,l2=1

n∑

k1,k2,k3=1

[
δk1,k2,k3

i1, i2, i3
Y j

yl1yl2
+ δk3,k1,k2

i1, i2, i3
Y j

yl1yl2
+ δk2,k3,k1

i1, i2, i3
Y j

yl1yl2
−

−δj
l1

δk2,k3

i1, i2
X k1

xi3yl2
− δj

l1
δk2,k3

i1, i3
X k1

xi2yl2
− δj

l1
δk2,k3

i2, i3
X k1

xi1yl2
−

−δj
l2

δk3,k1
i1, i2

X k2

xi3yl1
− δj

l2
δk3,k1
i1, i3

X k2

xi2yl1
− δj

l2
δk3,k1
i2, i3

X k2

xi1yl1
−

−δj
l2

δk1,k2

i1, i2
X k3

xi3yl1
− δj

l2
δk1,k2

i1, i3
X k3

xi2yl1
− δj

l2
δk1,k2

i2, i3
X k3

xi1yl1

]
yl1

k1
yl2

k2,k3
+

+

m∑

l1,l2,l3=1

n∑

k1,k2,k3,k4=1

[
−δj

l3
δk1,k2,k3
i1, i2, i3

X k4

yl1yl2
− δj

l3
δk2,k3,k1
i1, i2, i3

X k4

yl1yl2
− δj

l3
δk3,k2,k1
i1, i2, i3

X k4

yl1yl2
−

−δj
l2

δk3,k4,k1
i1, i2, i3

X k2

yl1yl3
− δj

l2
δk3,k1,k4
i1, i2, i3

X k2

yl1yl3
−

−δj
l2

δk1,k3,k4

i1, i2, i3
X k2

yl1yl3

]
yl1

k1
yl2

k2
yl3

k3,k4
+

+
m∑

l1,l2=1

n∑

k1,k2,k3,k4=1

[
−δj

l2
δk1,k2,k3
i1, i2, i3

X k3

yl1
− δj

l2
δk2,k4,k1
i1, i2, i3

X k3

yl1
− δj

l2
δk4,k1,k2
i1, i2, i3

X k3

yl1

]
yl1

k1,k2
yl2

k3,k4
+

+

m∑

l1=1

n∑

k1,k2,k3=1

[
δk1,k2,k3

i1, i2,ß3
Y j

yl1
− δj

l1
δk1,k2
i1, i2

X k3

xi3
− δj

l1
δk1,k2
i1, i3

X k3

xi2
− δj

l1
δk1,k2
i2, i3

X k3

xi1

]
yl1

k1,k2,k3
+

+

m∑

l1,l2=1

n∑

k1,k2,k3,k4=1

[
−δj

l2
δk1,k2,k3

i1, i2, i3
X k4

yl1
− δj

l2
δk4,k1,k2

i1, i2, i3
X k3

yl1
− δj

l2
δk3,k4,k1

i1, i2, i3
X k2

yl1
−

−δj
l1

δk2,k3,k4
i1, i2, i3

X k1

yl2

]
yl1

k1
yl2

k2,k3,k4
.

5.5. Final synthesis.To obtain the general formula forYj
i1,...,iκ

, we have to
achieve the synthesis between the two formulas (3.74) and (4.19). We start
with (3.74) and we modify it until we reach the final formula for Y

j
i1,...,iκ

.
We have to add theµ1+· · ·+µd sums

∑m
l1:1=1 · · ·

∑m
l1:µ1=1 · · · · · ·

∑m
ld:1=1 · · ·

∑m
ld:µd

=1,
together with various indiceslα. About these indices, the only point which
is not obvious may be analyzed as follows.

A permutationσ ∈ F
(µ1,λ1),...,(µd,λd)
µ1λ1+···+µdλd

yields the list:
(5.6)

σ(1 :1 :1), . . . , σ(1 :1 :λ1), . . . σ(1 :µ1 :1), . . . , σ(1 :µ1 :λ1), . . .

. . . , σ(d :1 :1), . . . , σ(1 :1 :λd), . . . σ(d :µd :1), . . . , σ(d :µd :λd),

In the sixth line of (3.74), the last termσ(d : µd : λd) of the above list
appears as the subscript of the upper indexkσ(d:µd :λd) of the termX kσ(d:µd:λd) .
According to the formal rules of Theorem 4.19, we have to multiply the
partial derivative ofX kσ(d:µd:λd) by a certain Kronecker symbolδj

lα
. The

question is:what is the subscriptα and how to denote it?
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As explained before the statement of Theorem 4.19, the subscript α is
obtained as follows. The termσ(d : µd : λd) is of the form(e : νd : γe), for
somee with 1 6 e 6 d, for someνe with 1 6 νe 6 µe and for someγe with
1 6 γe 6 λe. The single pure jet variable

(5.7) y
le:νe

ke:νe:1,...,ke:νe:γe ,...,ke:νe:λe

appears inside the total monomial

(5.8)
∏

16ν16µ1

y
l1:ν1
k1:ν1:1,...,k1:ν1:λ1

· · ·
∏

16νd6µd

y
ld:νd

kd:νd:1,...,kd:νd:λd
,

placed at the end of the formula forY
j
i1,...,iκ (seein advance formula (5.13)

below; this total monomial generalizes to several dependent variables the
total monomial appearing in the last line of (3.74)). According to the rule
explained before the statement of Theorem 4.18, the indexlα must be equal
to le:νe, sincele:νe is attached to the monomial (5.7). Coming back to the
termσ(d :µd :λd), we shall denote this index by

(5.9) le:νe =: lπ(e:νe:γe) =: lπσ(d:µd :λd),

where the symbolπ denotes the projection from the set

(5.10) {1:1 :1, . . . , 1:µ1 :λ1, . . . . . . , d :1 :1, . . . , d :µd :λd}

to the set

(5.11) {1:1, . . . , 1:µ1, . . . , d :1, . . . , d :µd}

simply defined byπ(e :νe :γe) := (e :νe).
In conclusion, by means of this formalism, we may write down the com-

plete generalization of Theorems 2.24, 3.73 and 4.18 to several independent
variables and several dependent variables

Theorem 5.12.For j = 1, . . . , m, for everyκ > 1 and for every choice ofκ
indicesi1, . . . , iκ in the set{1, 2, . . . , n}, the general expression ofY

j
i1,...,iκ
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is as follows:
(5.13)

Y
j
i1,...,iκ

= Y j
xi1 ···xiκ

+

κ+1∑

d=1

∑

16λ1<···<λd6κ

∑

µ1>1,...,µd>1

∑

µ1λ1+···+µdλd6κ+1

m∑

l1:1=1

· · ·
m∑

l1:µ1=1

· · · · · ·
m∑

ld:1=1

· · ·
m∑

ld:µd
=1

n∑

k1:1:1,...,k1:1:λ1
=1

· · ·
n∑

k1:µ1:1,...,k1:µ1:λ1
=1

· · · · · ·
n∑

kd:1:1,...,kd:1:λd
=1

· · ·
n∑

kd:µd:1,...,kd:µd:λd
=1




∑

σ∈F
(µ1,λ1),...,(µd,λd)

µ1λ1+···+µdλd

∑

τ∈S
µ1λ1+···+µdλd
κ

δ
kσ(1:1:1),...,kσ(1:µ1:λ1),...,kσ(d:µd:λd)

iτ(1),...,iτ(µ1λ1),...,iτ(µ1λ1+···+µdλd)
·

· ∂κ−µ1λ1−···−µdλd+µ1+···+µdY j

∂xiτ(µ1λ1+···+µdλd+1) · · · ∂xiτ(κ)∂yl1:1 · · · ∂yld:µd

−

−
∑

σ∈F
(µ1,λ1),...,(µd,λd)

µ1λ1+···+µdλd

∑

τ∈S
µ1λ1+···+µdλd−1
κ

δ
kσ(1:1:1),...,kσ(1:µ1:λ1),...,kσ(d:µd:λd−1)

iτ(1),...,iτ(µ1λ1),...,iτ(µ1λ1+···+µdλd−1)
·

· δj
lπσ(d:µd:λd)

· ∂κ−µ1λ1−···−µdλd+µ1+···+µdX kσ(d:µd:λd)

∂xiτ(µ1λ1+···+µdλd) · · · ∂xiτ(κ)∂yl1:1 · · · ̂∂ylπσ(d:µd:λd) · · · ∂yld:µd




·

·
∏

16ν16µ1

y
l1:ν1
k1:ν1:1,...,k1:ν1:λ1

· · ·
∏

16νd6µd

y
ld:νd

kd:νd:1,...,kd:νd:λd

.

In this formula, the cosetF(µ1,λ1),...,(µd,λd)
µ1λ1+···+µdλd

was defined in equation (3.71);
as in Theorem 3.73, we have made the identification:

(5.14) {1, . . . , κ} ≡ {1:1 :1, . . . , 1:µ1 :λ1, . . . . . ., d :1 :1, . . . , d :µd :λd}.
Since the fundamental monomials appearing in the last line of (4.19) just

above are not independent of each other, this formula has still to be modified
a little bit. We refer to Section 6 for details.

5.15. Deduction of the most general multivariate Faà di Bruno formula.
Let n ∈ N with n > 1, let x = (x1, . . . , xn) ∈ Kn, letm ∈ N with m > 1,
let gj = gj(x1, . . . , xn), j = 1, . . . , m, beC ∞-smooth functions fromKn

to Km, let y = (y1, . . . , ym) ∈ Km and letf = f(y1, . . . , ym) be aC ∞

function fromKm to K. The goal is to obtain an explicit formula for the
partial derivatives of the compositionh := f ◦ g, namely

(5.16) h(x1, . . . , xn) := f
(
g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)

)
.

For j = 1, . . . , m, for λ ∈ N with λ > 1 and for arbitrary indices
i1, . . . , iλ = 1, . . . , n, we shall abbreviate the partial derivative∂λgj

∂xi1 ···∂xiλ
by
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gj
i1,...,iλ

and similarly forhi1,...,iλ. For arbitrary indicesl1, . . . , lλ = 1, . . . , m,

the partial derivative ∂λf

∂yl1 ···∂ylλ
will be abbreviated byfl1,...,lλ .

Appying the chain rule, we may compute:
(5.17)

hi1 =
m∑

l1=1

fl1

[
gl1
i1

]
,

hi1,i2 =
m∑

l1,l2=1

fl1,l2

[
gl1
i1

gl2
i2

]
+

m∑

l1=1

fl1

[
gl1
i1,i2

]
,

hi1,i2,i3 =
m∑

l1,l2,l3=1

fl1,l2,l3

[
gl1
i1

gl2
i2

gl3
i3

]
+

m∑

l1,l2=1

fl1,l2

[
gl1
i1

gl2
i2,i3

+ gl1
i2

gl2
i1,i3

+ gl1
i3

gl2
i1,i2

]
+

+
m∑

l1=1

fl1

[
gl1
i1,i2,i3

]
,

hi1,i2,i3,i4 =

m∑

l1,l2,l3,l4=1

fl1,l2,l3,l4

[
gl1
i1

gl2
i2

gl3
i3

gl4
i4

]
+

m∑

l1,l2,l3=1

fl1,l2,l3

[
gl1
i2

gl2
i3

gl3
i1,i4

+ gl1
i3

gl2
i1

gl3
i2,i4

+ gl1
i1

gl2
i2

gl3
i3,i4

+

+gl1
i1

gl2
i4

gl3
i2,i3

+ gl1
i2

gl2
i4

gl3
i3,i1

+ gl1
i3

gl2
i4

gl3
i1,i2

]
+

+
m∑

l1,l2=1

fl1,l2

[
gl1
i1,i2

gl2
i3,i4

+ gl1
i1,i3

gl2
i2,i4

+ gl1
i1,i4

gl2
i2,i3

]
+

+
m∑

l1,l2=1

fl1,l2

[
gl1
i1

gl2
i2,i3,i4

+ gl1
i2

gl2
i1,i3,i4

+ gl1
i3

gl2
i1,i2,i4

+ gl1
i4

gl2
i1,i2,i3

]
+

+
m∑

l1=1

fl1

[
gl1
i1,i2,i3,i4

]
.

Introducing the derivations

F 2
i :=

n∑

k1=1

m∑

l1=1

gl1
k1,i

∂

∂gl1
k1

+

m∑

l1=1

gl1
i




m∑

l2=1

fl1,l2

∂

∂fl2


 ,

F 3
i :=

n∑

k1=1

m∑

l1=1

gl1
k1,i

∂

∂gl1
k1

+
n∑

k1,k2=1

m∑

l1=1

gl1
k1,k2,i

∂

∂gl1
k1,k2

+

+
m∑

l1=1

gl1
i




m∑

l2=1

fl1,l2

∂

∂fl2

+
m∑

l2,l3=1

fl1,l2,l3

∂

∂fl2,l3


 ,

(5.18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .
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F λ
i :=

n∑

k1=1

m∑

l1=1

gl1
k1,i

∂

∂gl1
k1

+

n∑

k1,k2=1

m∑

l1=1

gl1
k1,k2,i

∂

∂gl1
k1,k2

+ · · ·+

+

n∑

k1,k2,...,kλ−1=1

m∑

l1=1

gk1,k2,...,kλ−1,i
∂

∂gl1
k1,...,kλ−1

+

+

m∑

l1=1

gl1
i




m∑

l2=1

fl1,l2

∂

∂fl2

+

m∑

l2,l3=1

fl1,l2,l3

∂

∂fl2,l3

+

+ · · ·+
∑

l2,l3,...,lλ

fl1,l2,l3,...,lλ

∂

∂fl2,l3,...,lλ


 ,

we observe that the following induction relations hold:

(5.19)

hi1,i2 = F 2
i2

(hi1) ,

hi1,i2,i3 = F 3
i3

(hi1,i2) ,

. . . . . . . . . . . . . . . . . . . . .

hi1,i2,...,iλ = F λ
iλ

(
hi1,i2,...,iλ−1

)
.

To obtain the explicit version of the Faà di Bruno in the case of several
variables(x1, . . . , xn) and several variables(y1, . . . , ym), it suffices to ex-
tract from the expression ofYj

i1,...,iκ
provided by Theorem 5.12 only the

terms corresponding toµ1λ1 + · · ·+ µdλd = κ, dropping all theX terms.
After some simplifications and after a translation by means of an elemen-
tary dictionary, we obtain the fourth and the most general multivariate Faà
di Bruno formula.

Theorem 5.20. For every integerκ > 1 and for every choice of indices
i1, . . . , iκ in the set{1, 2, . . . , n}, theκ-th partial derivative of the composite
function

(5.21) h = h(x1, . . . , xn) = f
(
g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)

)
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with respect to the variablesxi1 , . . . , xiκ may be expressed as an explicit
polynomial depending on the partial derivatives off , on the partial deriva-
tives of thegj and having integer coefficients:
(5.22)

∂κh

∂xi1 · · ·∂xiκ
=

κ∑

d=1

∑

16λ1<···<λd6κ

∑

µ1>1,...,µd>1

∑

µ1λ1+···+µdλd=κ

m∑

l1:1,...,l1:µ1=1

· · ·
m∑

ld:1,...,ld:µd
=1

∂µ1+···+µdf

∂yl1:1 · · ·∂yl1:µ1 · · ·∂yld:1 · · ·∂yld:µd




∑

σ∈F
(µ1,λ1),...,(µd,λd)
κ

∏

16ν16µ1

∂λ1gl1:ν1

∂xiσ(1:ν1:1) · · ·∂xiσ(1:ν1:λ1)
. . .

. . .
∏

16νd6µd

∂λdgld:νd

∂xiσ(d:νd:1) · · ·∂xiσ(d:νd:λd)



.
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III: Systems of second order
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§1. EXPLICIT CHARACTERIZATIONS OF FLATNESS

In 1883, S. Lie obtained the following explicit characterization of the
local equivalence of a second order ordinary differential equation (E1):
yxx = F (x, y, yx) to the Newtonian free particle equation with one degree
of freedomYXX = 0. All the functions are assumed to be analytic.

Theorem 1.1. ([Lie1883], pp. 362–365)Let K = R of C. Let x ∈ K

and y ∈ K. A local second order ordinary differential equationyxx =
F (x, y, yx) is equivalent under an invertible point transformation(x, y) 7→
(X(x, y), Y (x, y)) to the free particle equationYXX = 0 if and only if the
following two conditions are satisfied:

(i) Fyxyxyxyx = 0, or equivalentlyF is a degree three polynomial inyx,
namely there exist four functionsG,H, L andM of (x, y) such thatF
can be written as

(1.2) F (x, y, yx) = G(x, y)+yx·H(x, y)+(yx)
2 ·L(x, y)+(yx)

3 ·M(x, y);

(ii) the four functionsG, H, L andM satisfy the following system of two
second order quasi-linear partial differential equations:

(1.3)



0 = −2Gyy +
4

3
Hxy −

2

3
Lxx+

+ 2 (GL)y − 2GxM − 4GMx +
2

3
H Lx −

4

3
HHy,

0 = −2

3
Hyy +

4

3
Lxy − 2Mxx+

+ 2GMy + 4Gy M − 2 (HM)x −
2

3
Hy L+

4

3
LLx.

Open question1.4. Deduce an explicit necessary and sufficient condition
for the associated submanifold of solutionsy = Π(x, a, b) to be locally
equivalent toY = B +XA.
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AssumingF = F (x, yx) to be independent ofy, or equivalently assuming
M(E1) to be:

(1.5) y = b+ Π(x, a),

the author has checked that equivalence toY = B + XA holds if and only
if two differential rational expressions annihilate:

(1.6)

0 =
Πx2a4

(
Πxa

)4 − 6
Πx2a3 Πxa2

(
Πxa

)5 + 15
Πx2a2

(
Πxa2

)2
(
Πxa

)6 − 4
Πx2a2 Πxa3

(
Πxa

)5

− Πx2a Πxa4

(
Πxa

)5 + 10
Πxa3 Πx2a Πxa2

(
Πxa

)6 − 15
Πx2a

(
Πxa2

)3
(
Πxa

)7 and

0 =
Πx4a2

(
Πxa

)2 − 6
Πx3a2 Πx2a(

Πxa

)3 − 4
Πx3a Πx2a2

(
Πxa

)3 − Πx4a Πxa2

(
Πxa

)3 +

+ 15
Πx2a2

(
Πx2a

)2
(
Πxa

)4 + 10
Πx3a Πx2a Πxa2

(
Πxa

)4 − 15

(
Πx2a

)3
Πxa2

(
Πxa

)5 .

As an application, this characterizes local sphericity of arigid hypersurface
w = w̄ + iΘ(z, z̄) of C2. The answer for a generaly = Π(x, a, b), together
with a proof, will appear elsewhere.

A modern restitution of Lie’s original proof of Theorem 1.1 may be found
in [Me2004]. In this reference, we generalize Theorem 1.1 toseveral depen-
dent variablesy = (y1, y2, . . . , ym). In the present Part III, we will instead
pass to several independent variablesx = (x1, x2, . . . , xn).

Theorem 1.7. Let K = R or C, let n ∈ N, supposen > 2 and consider a
system of completely integrable partial differential equations inn indepen-
dent variablesx = (x1, . . . , xn) ∈ Kn and in one dependent variabley ∈ K

of the form:

(1.8) yxj1xj2 (x) = F j1,j2
(
x, y(x), yx1(x), . . . , yxn(x)

)
, 1 6 j1, j2 6 n,

whereF j1,j2 = F j2,j1. Under a local change of coordinates(x, y) 7→
(X, Y ) = (X(x, y), Y (x, y)), this system(1.8) is equivalent to thesimplest
“flat” system

(1.9) YXj1Xj2 = 0, 1 6 j1, j2 6 n,

if and only if there existarbitrary functionsGj1,j2, H
k1
j1,j2

, Lk1
j1

andMk1 of
the variables(x, y), for 1 6 j1, j2, k1 6 n, satisfying the two symmetry
conditionsGj1,j2 = Gj2,j1 andHk1

j1,j2
= Hk1

j2,j1
, such that the equation(1.8)
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is of the specific cubic polynomial form:
(1.10)

yxj1xj2 = Gj1,j2+
n∑

k1=1

yxk1

(
Hk1

j1,j2
+

1

2
yxj1 L

k1
j2

+
1

2
yxj2 L

k1
j1

+ yxj1yxj2 M
k1

)
,

for j1, j2 = 1, . . . , n.

It may seem quite paradoxical and counter-intuitive (or even false?) that
everysystem (1.10), forarbitrary choices of functionsGj1,j2, H

k1
j1,j2

, Lk1
j1

andMk1 , is automaticallyequivalent toYXj1Xj2 = 0. However, a strong
hidden assumption holds: that ofcomplete integrability. Shortly, this crucial
condition amounts to say that

(1.11) Dj3

(
F j1,j2

)
= Dj2

(
F j1,j3

)
,

for all j1, j2, j3 = 1, . . . , n, where, forj = 1, . . . , n, theDj are thetotal
differentiation operatorsdefined by

(1.12) Dj :=
∂

∂xj
+ yxj

∂

∂y
+

n∑

l=1

F j,l ∂

∂yxl

.

These conditions are non-void precisely whenn > 2. More concretely,
developing out (1.11) when theF j1,j2 are of the specific cubic polynomial
form (1.10), after some nontrivial manual computation, we obtain the com-
plicated cubic differential polynomial in the variablesyxk. Equating to zero
all the coefficients of this cubic polynomial, we obtain fourfamiles (I’), (II’),
(III’) and (IV’) of first order partial differential equations satisfied byGj1,j2,
Hk1

j1,j2
, Lk1

j1
andMk1 :

(I’)

{
0 = Gj1,j2,xj3 −Gj1,j3,xj2 +

n∑

k1=1

Hk1
j1,j2

Gk1,j3 −
n∑

k1=1

Hk1
j1,j3

Gk1,j2.

(II’)





0 = δk1
j3
Gj1,j2,y − δk1

j2
Gj1,j3,y +Hk1

j1,j2,xj3
−Hk1

j1,j3,xj2
+

+
1

2
Gj1,j3 L

k1
j2
− 1

2
Gj1,j2 L

k1
j3

+

+
1

2
δk1
j1

n∑

k2=1

Gk2,j3 L
k2
j2
− 1

2
δk1
j1

n∑

k2=1

Gk2,j2 L
k2
j3

+

+
1

2
δk1
j2

n∑

k2=1

Gk2,j3 L
k2
j1
− 1

2
δk1
j3

n∑

k2=1

Gk2,j2 L
k2
j1

+

+

n∑

k2=1

Hk1

k2,j3
Hk2

j1,j2
−

n∑

k2=1

Hk1

k2,j2
Hk2

j1,j3
.
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(III’)



0 =
∑

σ∈S2

(
δ

k2)

j3
H

kσ(1)

j1,j2,y − δ
kσ(2)

j2
H

kσ(1)

j1,j3,y+

+
1

2
δ

kσ(2)

j2
L

kσ(1)

j1,xj3
− 1

2
δ

kσ(2)

j3
L

kσ(1)

j1,xj2
+

+
1

2
δ

kσ(2)

j1
L

kσ(1)

j2,xj3
− 1

2
δ

kσ(2)

j1
L

kσ(1)

j3,xj2
+

+δ
kσ(2)

j2
Gj1,j3 M

kσ(1) − δkσ(2)

j3
Gj1,j2 M

kσ(1)+

+δ
kσ(1),kσ(2)

j1, j2

n∑

k3=1

Gk3,j3 M
k3 − δkσ(1),kσ(2)

j1, j3

n∑

k3=1

Gk3,j2 M
k3+

+
1

2
δ

kσ(1)

j1

n∑

k3=1

H
kσ(2)

k3,j3
Lk3

j2
− 1

2
δ

kσ(1)

j1

n∑

k3=1

H
kσ(2)

k3,j2
Lk3

j3
+

+
1

2
δ

kσ(1)

j2

n∑

k3=1

H
kσ(2)

k3,j3
Lk3

j1
− 1

2
δ

kσ(1)

j3

n∑

k3=1

H
kσ(2)

k3,j2
Lk3

j1
+

+
1

2
δ

kσ(1)

j3

n∑

k3=1

Hk3
j1,j2

L
kσ(2)

k3
− 1

2
δ

kσ(1)

j2

n∑

k3=1

Hk3
j1,j3

L
kσ(2)

k3

)
.

(IV’)



0 =
∑

σ∈S3

(
1

2
δ

kσ(3),kσ(2)

j3, j1
L

kσ(1)

j2,y −
1

2
δ

kσ(3),kσ(2)

j2, j1
L

kσ(1)

j3,y +

+δ
kσ(3),kσ(2)

j2, j1
M

kσ(1)

xj3
− δkσ(3),kσ(2)

j3, j1
M

kσ(1)

xj2
+

+δ
kσ(3),kσ(1)

j2, j1

n∑

k4=1

H
kσ(2)

k4,j3
Mk4 − δkσ(3),kσ(1)

j3, j1

n∑

k4=1

H
kσ(2)

k4,j2
Mk4+

+
1

4
δ

kσ(1),kσ(3)

j1, j3

n∑

k4=1

L
kσ(2)

k4
Lk4

j2
− 1

4
δ

kσ(1),kσ(3)

j1, j2

n∑

k4=1

L
kσ(2)

k4
Lk4

j3

)
.

(These systems (I’), (II’), (III’) and (IV’) should be distinguished from the
systems (I), (II), (III) and (IV) of Theorem 1.7 in [Me2004],although they
are quite similar.) Here, the indicesj1, j2, j3, k1, k2, k3 vary in{1, 2, . . . , n}.
By S2 and by S3, we denote the permutation group of{1, 2} and of
{1, 2, 3}. To facilitate hand- and Latex-writing, partial derivatives are de-
noted as indices after a comma; for instance,Gj1,j2,xj3 is an abreviation for
∂Gj1,j2/∂x

j3 . To deduce (I’), (II’), (III’) and (IV’) from equation (1.11), we
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use the fact that every cubic polynomial equation of the form

(1.13)

0 ≡ A+

n∑

k1=1

Bk1 · yxk1 +

n∑

k1=1

n∑

k2=1

Ck1,k2 · yxk1 yxk2+

+
n∑

k1=1

n∑

k2=1

n∑

k2=1

Dk1,k2,k3 · yxk1 yxk2 yxk3

is equivalent to the annihilation of the following symmetric sums of its co-
efficients:
(1.14)



0 = A,

0 = Bk1 ,

0 = Ck1,k2 + Ck2,k1,

0 = Dk1,k2,k3 +Dk3,k1,k2 +Dk2,k3,k1 +Dk2,k1,k3 +Dk3,k2,k1 +Dk1,k3,k2.

for all k1, k2, k3 = 1, . . . , n.
In conclusion, the functionsGj1,j2, H

k1
j1,j2

, Lk1
j1

andMk1 in the statement
of Theorem 1.7 are far from being arbitrary: they satisfy thecomplicated
system of first order partial differential equations (I’), (II’), (III’) and (IV’)
above.

Our proof of Theorem 1.7 is similar to the one provided in [Me2004], in
the case of systems of second order ordinary differential equations, so that
most steps of the proof will be summarized.

In the end of this paper, we will delineate a complicated system of sec-
ond order partial differential equations satisfied byGj1,j2, H

k1
j1,j2

, Lk1
j1

and
Mk1 which is the exact analog of the system described in the abstract. The
main technical part of the proof of Theorem 1.7 will be to establish that
this second order system is a consequence, by linear combinations and by
differentiations, of the first order system (I’), (II’), (III’) and (IV’).

Open question1.15. Are Theorems 1.1 and 1.7 true under weaker smooth-
ness assumptions, namely with aC 2 or aW 1,∞

loc right-hand side ?

We refer to [Ma2003] for inspiration and appropriate tools.

Open question1.16. Deduce from Theorem 1.7 an explicit necessary and
sufficient condition for the associated submanifold of solutions y = b +
Π(xi, ak, b) to be locally equivalent toY = B +X1A1 + · · ·+XnAn.

As an application, this would characterize local sphericity of a Levi non-
degenerate hypersurfaceM ⊂ Cn+1 with n > 2.

Generalizing the Lie-Tresse classification would be a greatachievement.
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Open problem1.17. Forn = 2 establish a complete list of normal forms of
all possible systems (1.?) according to their Lie symmetry group. In case of
success, classify Levi nondegenerate real analytic hypersurfaces ofC3 up to
biholomorphisms.

§2. COMPLETELY INTEGRABLE SYSTEMS OF

SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS

2.1. Prolongation of a point transformation to the second order jet
space. Let K = R or C, let n ∈ N, supposen > 2, let x = (x1, . . . , xn) ∈
Kn and lety ∈ K. According to the main assumption of Theorem 1.7, we
have to consider a localK-analytic diffeomorphism of the form

(2.2)
(
xj1 , y

)
7−→

(
Xj(xj1 , y), Y (xj1 , y)

)
,

which transforms the system (1.8) to the systemYXi1Xi2 = 0, 1 6 j1, j2 6

n. Without loss of generality, we shall assume that this transformation is
close to the identity. To obtain the precise expression (2.35) of the trans-
formed system (1.8), we have to prolong the above diffeomorphism to the
second order jet space. We introduce the coordinates(xj , y, yxj1 , yxj1xj2 ) on
the second order jet space. Let

(2.3) Dk :=
∂

∂xk
+ yxk

∂

∂y
+

n∑

l=1

yxkxl

∂

∂yxl

,

be thek-th total differentiation operator. According to [Ol1986,BK1989,
Ol1995], for the first order partial derivatives, one has the(implicit, com-
pact) expression:

(2.4)




YX1

...
YXn


 =




D1X
1 · · · D1X

n

... · · · ...
DnX

1 · · · DnX
n




−1


D1Y
...

DnY


 ,

where(·)−1 denotes the inverse matrix, which exists, since the transforma-
tion (2.2) is close to the identity. For the second order partial derivatives,
again according to [Ol1986, BK1989, Ol1995], one has the (implicit, com-
pact) expressions:

(2.5)




YXjX1

...
YXjXn


 =




D1X
1 · · · D1X

n

... · · · ...
DnX

1 · · · DnX
n




−1


D1YXj

...
DnYXj


 ,

for j = 1, . . . , n. Let DX denote the matrix(DiX
j)

16j6n
16i6n , wherei is the

index of lines andj the index of columns, letYX denote the column matrix
(YXi)16i6n and letDY be the column matrix(DiY )16i6n.
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By inspecting (2.5) above, we see that the equivalence between (i), (ii)
and(iii) just below is obvious:

Lemma 2.6. The following conditions are equivalent:

(i) the differential equationsYXjXk = 0 hold for1 6 j, k 6 n;
(ii) the matrix equationsDk(YX) = 0 hold for1 6 k 6 n;
(iii) the matrix equationsDX ·Dk(YX) = 0 hold for1 6 k 6 n;
(iv) the matrix equations0 = Dk(DX)·YX−Dk(DY ) hold for1 6 k 6 n.

Formally, in the sequel, it will be more convenient to achieve the explicit
computations starting from condition(iv), since no matrix inversion at all is
involved in it.

Proof. Indeed, applying the total differentiation operatorDk to the matrix
equation (2.4) written under the equivalent form0 = DX · YX − DY , we
get:

(2.7) 0 = Dk(DX) · YX +DX ·Dk(YX)−Dk(DY ),

so that the equivalence between(iii) and(iv) is now clear.

2.8. An explicit formula in the casen = 2. Thus, we can start to develope
explicitely the matrix equations

(2.9) 0 = Dk(DX) · YX −Dk(DY ).

In it, some huge formal expressions are hidden behind the symbolDk. Pro-
ceeding inductively, we start by examinating the casen = 2 thoroughly. By
direct computations which require to be clever, we reconstitute some3 × 3
determinants in the four (in fact three) developed equations (2.9). After
some work, the first equation is:
(2.10)

0 = yx1x1 ·

∣∣∣∣∣∣

X1
x1 X1

x2 X1
y

X2
x1 X2

x2 X2
y

Yx1 Yx2 Yy

∣∣∣∣∣∣
+

∣∣∣∣∣∣

X1
x1 X1

x2 X1
x1x1

X2
x1 X2

x2 X2
x1x1

Yx1 Yx2 Yx1x1

∣∣∣∣∣∣
+

+ yx1 ·



2

∣∣∣∣∣∣

X1
x1 X1

x2 X1
x1y

X2
x1 X2

x2 X2
x1y

Yx1 Yx2 Yx1y

∣∣∣∣∣∣
−

∣∣∣∣∣∣

X1
x1x1 X1

x2 X1
y

X2
x1x1 X2

x2 X2
y

Yx1x1 Yx2 Yy

∣∣∣∣∣∣



+

+ yx2 ·




−

∣∣∣∣∣∣

X1
x1 X1

x1x1 X1
y

X2
x1 X2

x1x1 X2
y

Yx1 Yx1x1 Yy

∣∣∣∣∣∣




+
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+ yx1 yx1 ·






∣∣∣∣∣∣

X1
x1 X1

x2 X1
yy

X2
x1 X2

x2 X2
yy

Yx1 Yx2 Yyy

∣∣∣∣∣∣
− 2

∣∣∣∣∣∣

X1
x1y X1

x2 X1
y

X2
x1y X2

x2 X2
y

Yx1y Yx2 Yy

∣∣∣∣∣∣




+

+ yx1 yx2 ·



−2

∣∣∣∣∣∣

X1
x1 X1

x1y X1
y

X2
x1 X2

x1y X2
y

Yx1 Yx1y Yy

∣∣∣∣∣∣



+

+ yx1 yx1 yx1 ·



−

∣∣∣∣∣∣

X1
yy X1

x2 X1
y

X2
yy X2

x2 X2
y

Yyy Yx2 Yy

∣∣∣∣∣∣



+

+ yx1 yx1 yx2 ·



−

∣∣∣∣∣∣

X1
x1 X1

yy X1
y

X2
x1 X2

yy X2
y

Yx1 Yyy Yy

∣∣∣∣∣∣



 .

This formula and the two next (2.22), (2.23) have been checked by Sylvain
Neut and Michel Petitot with the help of Maple.

2.11. Comparison with the coefficients of the second prolongation of
a vector field. At present, it is useful to make an illuminating digression
which will help us to devise what is the general form of the development of
the equations (2.9). Consider an arbitrary vector field of the form

(2.12) L :=

n∑

k=1

X k ∂

∂xk
+ Y

∂

∂y
,

where the coefficientsX k and Y are functions of(xi, y). According
to [Ol1986, BK1989, Ol1995], there exists a unique prolongation L (2) of
this vector field to the second order jet space, of the form

(2.13) L (2) := L +

n∑

j1=1

Yj1

∂

∂yxj1

+

n∑

j1=1

n∑

j2=1

Yj1,j2

∂

∂yxj1xj2

,

where the coefficientsYj1, Yj1,j2 may be computed by means of formu-
las (3.4) of Section 3(II). In Part II, we obtained the following perfect for-
mulas:
(2.14)



Yj1,j2 = Yxj1xj2 +
n∑

k1=1

yxk1 ·
{
δk1
j1

Yxj2y + δk1
j2

Yxj1y −X k1

xj1xj2

}
+

+

n∑

k1=1

n∑

k2=1

yxk1 yxk2 ·
{
δk1,k2

j1, j2
Yyy − δk1

j1
X k2

xj2y
− δk1

j2
X k2

xj1y

}
+

+

n∑

k1=1

n∑

k2=1

n∑

k3=1

yxk1 yxk2 yxk3 ·
{
−δk1,k2

j1, j2
X k3

yy

}
,
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for j1, j2 = 1, . . . , n. The expression ofYj1 does not matter for us here.
Specifying this formula to the the casen = 2 and taking account of the
symmetryY1,2 = Y2,1 we get the following three second order coefficients:
(2.15)



Y1,1 = Yx1x1 + yx1 ·
{
2 Yx1y −X 1

x1x1

}
+ yx2 ·

{
−X 2

x1x1

}
+

+ yx1 yx1 ·
{
Yyy − 2 X 1

x1y

}
+ yx1 yx2 ·

{
−2 X 2

x1y

}
+

+ yx1 yx1 yx1 ·
{
−X 1

yy

}
+ yx1 yx1 yx2 ·

{
−X 2

yy

}
,

Y1,2 = Yx1x2 + yx1 ·
{
Yx2y −X 1

x1x2

}
+ yx2 ·

{
Yx1y −X 2

x1x2

}
+

+ yx1 yx1 ·
{
−X 1

x2y

}
+ yx1 yx2 ·

{
Yyy −X 1

x1y −X 2
x2y

}
+

+ yx2 yx2 ·
{
−X 2

x1y

}
+

+ yx1 yx1 yx2 ·
{
−X 1

yy

}
+ yx1 yx2 yx2 ·

{
−X 2

yy

}
,

Y2,2 = Yx2x2 + yx1 ·
{
−X 1

x2x2

}
+ yx2 ·

{
2 Yx2y −X 2

x2x2

}
+

+ yx1 yx2 ·
{
−2 X 1

x2y

}
+ yx2 yx2 ·

{
Yyy − 2 X 2

x2y

}
+

+ yx1 yx2 yx2 ·
{
−X 1

yy

}
+ yx2 yx2 yx2 ·

{
−X 2

yy

}
.

We would like to mention that the computation ofYj1,j2, 1 6 j1, j2 6 2,
above is easier than the verification of (2.10). Based on the three formu-
las (2.15), we claim that we can guess the second and the thirdequations,
which would be obtained by developing and by simplifying (2.9), namely
with yx1x2 and withyx2x2 instead ofyx1x2 in (2.10). Our dictionary to trans-
late from the first formula (2.15) to (2.10) may be described as follows.
Begin with theJacobian determinant

(2.16)

∣∣∣∣∣∣

X1
x1 X1

x2 X1
y

X2
x1 X2

x2 X2
y

Yx1 Yx2 Yy

∣∣∣∣∣∣

of the change of coordinates (2.2). Since this change of coordinates is close
to the identity, we may consider that the following Jacobianmatrix approx-
imation holds:

(2.17)




X1
x1 X1

x2 X1
y

X2
x1 X2

x2 X2
y

Yx1 Yx2 Yy


 ∼=




1 0 0
0 1 0
0 0 1


 .

The jacobian matrix has three columns. There are six possible second order
derivatives with respect to the variables(x1, x2, y), namely

(2.18) (·)x1x1, (·)x1x2 , (·)x2x2, (·)x1y, (·)x2y, (·)yy.

In the Jacobian determinant (2.16), by replacing any one of the three
columns of first order derivatives with a column of second order deriva-
tives, we obtain exactly3× 6 = 18 possible determinants. For instance, by
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replacing the third column by the second order derivative(·)x1y or the first
column by the second order derivative(·)x1x1, we get:

(2.19)

∣∣∣∣∣∣

X1
x1 X1

x2 X1
x1y

X2
x1 X2

x2 X2
x1y

Yx1 Yx2 Yx1y

∣∣∣∣∣∣
or

∣∣∣∣∣∣

X1
x1x1 X1

x2 X1
y

X2
x1x1 X2

x2 X2
y

Yx1x1 Yx2 Yy

∣∣∣∣∣∣
.

We recover the two determinants appearing in the second lineof (2.10). On
the other hand, according to the approximation (2.17), these two determi-
nants are essentially equal to

(2.20)

∣∣∣∣∣∣

1 0 X1
x1y

0 1 X2
x1y

0 0 Yx1y

∣∣∣∣∣∣
= Yx1y or to

∣∣∣∣∣∣

X1
x1x1 0 0

X2
x1x1 1 0

Yx1x1 0 1

∣∣∣∣∣∣
= X1

x1x1.

Consequently, in the second line of (2.10), up to a change to calligraphic
letters, we recover the coefficient

(2.21) 2 Yx1y −X 1
x1x1

of yx1 in the expression ofY1,1 in (2.15). In conclusion, we have discovered
how to pass symbolically from the first equation (2.15) to theequation (2.10)
and conversely.

Translating the second equation (2.15), we deduce,without any further
computation, that the second equation which would be obtained by develop-
ing (2.9) in length, is:

(2.22)

0 = yx1x2 ·

∣∣∣∣∣∣

X1
x1 X1

x2 X1
y

X2
x1 X2

x2 X2
y

Yx1 Yx2 Yy

∣∣∣∣∣∣
+

∣∣∣∣∣∣

X1
x1 X1

x2 X1
x1x2

X2
x1 X2

x2 X2
x1x2

Yx1 Yx2 Yx1x2

∣∣∣∣∣∣
+

+ yx1 ·





∣∣∣∣∣∣

X1
x1 X1

x2 X1
x2y

X2
x1 X2

x2 X2
x2y

Yx1 Yx2 Yx2y

∣∣∣∣∣∣
−

∣∣∣∣∣∣

X1
x1x2 X1

x2 X1
y

X2
x1x2 X2

x2 X2
y

Yx1x2 Yx2 Yy

∣∣∣∣∣∣



+

+ yx2 ·





∣∣∣∣∣∣

X1
x1 X1

x2 X1
x1y

X2
x1 X2

x2 X2
x1y

Yx1 Yx2 Yx1y

∣∣∣∣∣∣
−

∣∣∣∣∣∣

X1
x1 X1

x1x2 X1
y

X2
x1 X2

x1x2 X2
y

Yx1 Yx1x2 Yy

∣∣∣∣∣∣



+
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+ yx1 yx1 ·




−

∣∣∣∣∣∣

X1
x2y X1

x2 X1
y

X2
x2y X2

x2 X2
y

Yx2y Yx2 Yy

∣∣∣∣∣∣




+

+ yx1 yx2 ·





∣∣∣∣∣∣

X1
x1 X1

x2 X1
yy

X2
x1 X2

x2 X2
yy

Yx1 Yx2 Yyy

∣∣∣∣∣∣
−

∣∣∣∣∣∣

X1
x1y X1

x2 X1
y

X2
x1y X2

x2 X2
y

Yx1y Yx2 Yy

∣∣∣∣∣∣
−

−

∣∣∣∣∣∣

X1
x1 X1

x2y X1
y

X2
x1 X2

x2y X2
y

Yx1 Yx2y Yy

∣∣∣∣∣∣



+ yx2 yx2



−

∣∣∣∣∣∣

X1
x1 X1

x1y X1
y

X2
x1 X2

x1y X2
y

Yx1 Yx1y Yy

∣∣∣∣∣∣



+

+ yx1 yx1 yx2 ·



−

∣∣∣∣∣∣

X1
yy X1

x2 X1
y

X2
yy X2

x2 X2
y

Yyy Yx2 Yy

∣∣∣∣∣∣



+

+ yx1 yx2 yx2 ·



−

∣∣∣∣∣∣

X1
x1 X1

yy X1
y

X2
x1 X2

yy X2
y

Yx1 Yyy Yy

∣∣∣∣∣∣



 .

Using the third equation (2.15), we also deduce,without any further compu-
tation, that the third equation which would be obtained by developing (2.9)
in length, is:
(2.23)

0 = yx2x2 ·

∣∣∣∣∣∣

X1
x1 X1

x2 X1
y

X2
x1 X2

x2 X2
y

Yx1 Yx2 Yy

∣∣∣∣∣∣
+

∣∣∣∣∣∣

X1
x1 X1

x2 X1
x2x2

X2
x1 X2

x2 X2
x2x2

Yx1 Yx2 Yx2x2

∣∣∣∣∣∣
+

+ yx1 ·



−

∣∣∣∣∣∣

X1
x2x2 X1

x2 X1
y

X2
x1x2 X2

x2 X2
y

Yx2x2 Yx2 Yy

∣∣∣∣∣∣



+

+ yx2 ·



2

∣∣∣∣∣∣

X1
x1 X1

x2 X1
x2y

X2
x1 X2

x2 X2
x2y

Yx1 Yx2 Yx2y

∣∣∣∣∣∣
−

∣∣∣∣∣∣

X1
x1 X1

x2x2 X1
y

X2
x1 X2

x2x2 X2
y

Yx1 Yx2x2 Yy

∣∣∣∣∣∣



+
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+ yx1 yx2 ·




−2

∣∣∣∣∣∣

X1
x2y X1

x2 X1
y

X2
x2y X2

x2 X2
y

Yx2y Yx2 Yy

∣∣∣∣∣∣




+

+ yx2 yx2 ·





∣∣∣∣∣∣

X1
x1 X1

x2 X1
yy

X2
x1 X2

x2 X2
yy

Yx1 Yx2 Yyy

∣∣∣∣∣∣
− 2

∣∣∣∣∣∣

X1
x1 X1

x2y X1
y

X2
x1 X2

x2y X2
y

Yx1 Yx2y Yy

∣∣∣∣∣∣



+

+ yx1 yx2 yx2 ·



−

∣∣∣∣∣∣

X1
yy X1

x2 X1
y

X2
yy X2

x2 X2
y

Yyy Yx2 Yy

∣∣∣∣∣∣



+

+ yx2 yx2 yx2 ·



−

∣∣∣∣∣∣

X1
x1 X1

yy X1
y

X2
x1 X2

yy X2
y

Yx1 Yyy Yy

∣∣∣∣∣∣



 .

2.24. Appropriate formalism. To describe the combinatorics underlying
formulas (2.10), (2.22) and (2.23), as in [Me2004], let us introduce the fol-
lowing notation for the Jacobian determinant:

(2.25) ∆(x1|x2|y) :=

∣∣∣∣∣∣

X1
x1 X1

x2 X1
y

X2
x1 X2

x2 X2
y

Yx1 Yx2 Yy

∣∣∣∣∣∣
.

Here, in the notation∆(x1|x2|y), the three spaces between the two vertical
lines| refer to the three columns of the Jacobian determinant, and the terms
x1, x2, y in (x1|x2|y) designate the partial derivatives appearing in each
column. Accordingly, in the following two examples ofmodified Jacobian
determinants:

(2.26)






∆(x1x2|x2|y) :=

∣∣∣∣∣∣

X1
x1x2 X1

x2 X1
y

X2
x1x2 X2

x2 X2
y

Yx1x2 Yx2 Yy

∣∣∣∣∣∣
and

∆(x1|x2|x1y) :=

∣∣∣∣∣∣∣

X1
x1 X1

x2 X1
x1y

X2
x1 X2

x2 X2
x1y

Yx1 Yx2 Yx1y

∣∣∣∣∣∣∣
,

we simply mean which column of first order derivatives is replaced by a
column of second order derivatives in the original Jacobiandeterminant.

As there are6 possible second order derivatives(·)x1x1 , (·)x1x2, (·)x1xy ,
(·)x2x2, (·)x2y and (·)yy together with3 columns, we obtain3 × 6 = 18



368

possible modified Jacobian determinants:

(2.27)





∆(x1x1|x2|y) ∆(x1|x1x1|y) ∆(x1|x2|x1x1)

∆(x1x2|x2|y) ∆(x1|x1x2|y) ∆(x1|x2|x1x2)

∆(x1y|x2|y) ∆(x1|x1y|y) ∆(x1|x2|x1y)

∆(x2x2|x2|y) ∆(x1|x2x2|y) ∆(x1|x2|x2x2)

∆(x2y|x2|y) ∆(x1|x2y|y) ∆(x1|x2|x2y)

∆(yy|x2|y) ∆(x1|yy|y) ∆(x1|x2|yy).

Next, we observe that if we want to solve with respect toyx1x1 in (2.10),
with respect toyx1x2 in (2.22) and with respect toyx2x2 in (2.23), we have to
divide by the Jacobian determinant∆(x1|x2|y). Consequently, we introduce
18 newsquare functionsas follows:
(2.28)



�
1
x1x1 :=

∆(x1x1|x2|y)

∆(x1|x2|y)
�

1
x1x2 :=

∆(x1x2|x2|y)

∆(x1|x2|y)
�

1
x1y :=

∆(x1y|x2|y)

∆(x1|x2|y)

�1
x2x2 :=

∆(x2x2|x2|y)

∆(x1|x2|y)
�1

x2y :=
∆(x2y|x2|y)

∆(x1|x2|y)
�1

yy :=
∆(yy|x2|y)

∆(x1|x2|y)

�2
x1x1 :=

∆(x1|x1x1|y)

∆(x1|x2|y)
�2

x1x2 :=
∆(x1|x1x2|y)

∆(x1|x2|y)
�2

x1y :=
∆(x1|x1y|y)

∆(x1|x2|y)

�
2
x2x2 :=

∆(x1|x2x2|y)

∆(x1|x2|y)
�

2
x2y :=

∆(x1|x2y|y)

∆(x1|x2|y)
�

2
yy :=

∆(x1|yy|y)

∆(x1|x2|y)

�3
x1x1 :=

∆(x1|x2|x1x1)

∆(x1|x2|y)
�3

x1x2 :=
∆(x1|x2|x1x2)

∆(x1|x2|y)
�3

x1y :=
∆(x1|x2|x1y)

∆(x1|x2|y)

�3
x2x2 :=

∆(x1|x2|x2x2)

∆(x1|x2|y)
�3

x2y :=
∆(x1|x2|x2y)

∆(x1|x2|y)
�3

yy :=
∆(x1|x2|yy)

∆(x1|x2|y)
.

Thanks to these notations, we can rewrite the three equations (2.10),
(2.22) and (2.23) in a more compact style.

Lemma 2.29.A completely integrable system ofthreesecond order partial
differential equations

(2.30)





yx1x1(x) = F 1,1
(
x1, x2, y(x), yx1(x), yx2(x)

)
,

yx1x2(x) = F 1,2
(
x1, x2, y(x), yx1(x), yx2(x)

)
,

yx2x2(x) = F 2,2
(
x1, x2, y(x), yx1(x), yx2(x)

)
,

is equivalent to the simplest systemYX1X1 = 0, YX1X2 = 0, YX2,X2 = 0, if
and only ifthere exist localK-analytic functionsX1,X2, Y such that it may
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be written under the specific form:
(2.31)



yx1x1 = −�
3
x1x1 + yx1 ·

(
−2�

3
x1y + �

1
x1x1

)
+ yx2 ·

(
�

2
x1x1

)
+

+ yx1 yx1 ·
(
−�

3
yy + 2�

1
x1y

)
+ yx1 yx2 ·

(
2�

2
x1y

)
+

+ yx1 yx1 yx1 ·
(
�1

yy

)
+ yx1 yx1 yx2 ·

(
�2

yy

)
,

yx1x2 = −�
3
x1x2 + yx1 ·

(
−�

3
x2y + �

1
x1x2

)
+ yx2 ·

(
−�

3
x1y + �

2
x1x2

)
+

+ yx1 yx1 ·
(
�

1
x2y

)
+ yx1 yx2 ·

(
−�

3
yy + �

1
x1y + �

2
x2y

)
+

+ yx2 yx2 ·
(
�

2
x1y

)
+ yx1 yx1 yx2 ·

(
�

1
yy

)
+ yx1 yx2 yx2 ·

(
�

2
yy

)
,

yx2x2 = −�
3
x2x2 + yx1 ·

(
�

1
x2x2

)
+ yx2 ·

(
−2�

3
x2y + �

2
x2x2

)
+

+ yx1 yx2 ·
(
2�1

x2y

)
+ yx2 yx2 ·

(
−�3

yy + 2�2
x2y

)
+

+ yx1 yx2 yx2 ·
(
�1

yy

)
+ yx2 yx2 yx2 ·

(
�2

yy

)
.

2.32. General formulas.The formal dictionary between the original deter-
minantial formulas (2.10), (2.22), (2.23), between the coefficients (2.15) of
the second order prolongation of a vector field and between the new square
formulas (2.31) above is evident. Consequently,without any computation,
just by translating the family of formulas (2.14), we may deduce the exact
formulation of the desired generalization of Lemma 2.29 above.

Lemma 2.33.A completely integrable system of second order partial differ-
ential equations of the form
(2.34)
yxj1xj2 (x) = F j1,j2 (x, y(x), yx1(x), . . . , yxn(x)) , j1, j2 = 1, . . . n,

is equivalent to the simplest systemYXj1Xj2 = 0, j1, j2 = 1, . . . , n, if and
only if there exist localK-analytic functionsX l, Y such that it may be writ-
ten under the specific form:
(2.35)



yxj1xj2 = −�n+1
xj1xj2

+
n∑

k1=1

yxk1 ·
{(

�
k1

xj1xj2
− δk1

j1
�n+1

xj2y
− δk1

j2
�n+1

xj1y

)
+

+yxj1 ·
(

�
k1

xj2y
− 1

2
δk1
j2

�n+1
yy

)
+ yxj2 ·

(
�

k1

xj1y
− 1

2
δk1
j1

�n+1
yy

)
+

+yxj1 yxj2 ·
(
�k1

yy

)}
.
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Of course, to define the square functions in the context ofn > 2 indepen-
dent variables(x1, x2, . . . , xn), we introduce the Jacobian determinant

(2.36) ∆(x1|x2| · · · |xn|y) :=

∣∣∣∣∣∣∣∣

X1
x1 · · · X1

xn X1
y

... · · · ...
...

Xn
x1 · · · Xn

xn Xn
y

Yx1 · · · Yxn Yy

∣∣∣∣∣∣∣∣
,

together with its modifications

(2.37) ∆
(
x1| · · · |k1 xj1 xj2 | · · · |y

)
,

in which thek1-th column of partial first order derivatives|k1 xk1 | is replaced
by the column|k1 xj1xj2| of partial derivatives. Here, the indicesk1, j1,
j2 satisfy1 6 k1, j1, j2 6 n + 1, with the convention that we adopt the
notational equivalence

(2.38) xn+1 ≡ y .

This convention will be convenient to write some of our general formulas in
the sequel.

As we promised to only summarize the proof of Theorem 1.7 in this paper,
we will not develope the proof of Lemma 2.33: it is similar to the proof of
Lemma 3.32 in [Me2004].

§3. FIRST AND SECOND AUXILIARY SYSTEM

3.1. FunctionsGj1,j2,H
k1
j1,j2

, Lk1
j1

andMk1 . To discover the four families of
functions appearing in the statement of Theorem 1.7, by comparing (2.35)
and (1.10), it suffices (of course) to set:

(3.2)





Gj1,j2 := −�
n+1
xj1xj2

,

Hk1
j1,j2

:= �
k1

xj1xj2
− δk1

j1
�n+1

xj2y
− δk1

j2
�n+1

xj1y
,

Lk1
j1

:= 2 �
k1

xj1y
− δk1

j1
�n+1

yy ,

Mk1 := �k1
yy.

Consequently, we have shown the “only if” part of Theorem 1.7, which is
the easiest implication.

To establish the “if” part, by far the most difficult implication, the very
main lemma can be stated as follows.

Lemma 3.3. The partial differerential relations(I’) , (II’) , (III’) and (IV’)
which express in length the compatibility conditions(1.11) are necessary
and sufficient for the existence of functionsX l, Y of (xl1 , y) satisfying the
second order nonlinear system of partial differential equations(3.2)above.
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Indeed, the collection of equations (3.2) is a system of partial differential
equations with unknownsX l, Y , by virtue of the definition of the square
functions.

3.4. First auxiliary system. To proceed further, we observe that there are
(m + 1) more square functions than functionsGj1,j2, H

k1
j1,j2

, Lk1
j1

andMk1 .
Indeed, a simple counting yields:

(3.5)





#{�k1

xj1xj2
} =

n2(n + 1)

2
, #{�k1

xj1y
} = n2,

#{�k1
yy} = n, #{�n+1

xj1xj2
} =

n(n+ 1)

2
,

#{�n+1
xj1y
} = n, #{�n+1

yy } = 1,

whereas

(3.6)





#{Gj1,j2} =
n(n+ 1)

2
, #{Hk1

j1,j2
} =

n2(n+ 1)

2
,

#{Lk1
j1
} = n2, #{Mk1} = n.

Here, the indicesj1, j2, k1 satisfy 1 6 j1, j2, k1 6 n. Similarly as
in [Me2004], to transform the system (3.2) in a true completesystem, let
us introduce functionsΠk1

j1,j2
of (xl1 , y), where1 6 j1, j2, k1 6 n+1, which

satisfy the symmetryΠk1
j1,j2

= Πk1
j1,j1

, and let us introduce the followingfirst
auxiliary system:

(3.7)

{
�

k1

xj1xj2
= Πk1

j1,j2
, �

k1

xj1y
= Πk1

j1,n+1, �k1
yy = Πk1

n+1,n+1,

�n+1
xj1xj2

= Πn+1
j1,j2

, �n+1
xj1y

= Πn+1
j1,n+1, �n+1

yy = Πn+1
n+1,n+1.

It is complete. The necessary and sufficient conditions for the existence of
solutionsX l, Y follow by cross differentiations.

Lemma 3.8. For all j1, j2, j3, k1 = 1, 2, . . . , n+ 1, we have the cross differ-
entiation relations
(3.9)
(
�

k1

xj1xj2

)
xj3
−
(
�

k1

xj1xj3

)
xj2

= −
n+1∑

k2=1

�
k2

xj1xj2
�

k1

xj3xk2
+

n+1∑

k2=1

�
k2

xj1xj3
�

k1

xj2xk2
.

The proof of this lemma is exactly the same as the proof of Lemma 3.40
in [Me2004].

As a direct consequence, we deduce that a necessary and sufficient con-
dition for the existence of solutionsΠk1

j1,j2
to the first auxiliary system is that

they satisfy the following compatibility partial differential relations:

(3.10)
∂Πk1

j1,j2

∂xj3
−
∂Πk1

j1,j3

∂xj2
= −

n=1∑

k2=1

Πk2
j1,j2
· Πk1

j3,k2
+

n=1∑

k2=1

Πk2
j1,j3
· Πk1

j2,k2
,
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for all j1, j2, j3, k1 = 1, . . . , n+ 1.
We shall have to specify this system in length according to the splitting
{1, 2, . . . , n} and{n+ 1} of the indices of coordinates. We obtain six fam-
ilies of equations equivalent to (3.10) just above:
(3.11)




(
Πn+1

j1,j2

)
xj3
−
(
Πn+1

j1,j3

)
xj2

= −
n∑

k2=1

Πk2
j1,j2

Πn+1
j3,k2
− Πn+1

j1,j2
Πn+1

j3,n+1+

+

n∑

k2=1

Πk2
j1,j3

Πn+1
j2,k2

+ Πn+1
j1,j3

Πn+1
j2,n+1,

(
Πn+1

j1,j2

)
y
−
(
Πn+1

j1,n+1

)
xj2

= −
n∑

k2=1

Πk2
j1,j2

Πn+1
n+1,k2

−Πn+1
j1,j2

Πn+1
n+1,n+1+

+
n∑

k2=1

Πk2
j1,n+1 Πn+1

j2,k2
+ Πn+1

j1,n+1 Πn+1
j2,n+1,

(
Πn+1

j1,n+1

)
y
−
(
Πn+1

n+1,n+1

)
xj1

= −
n∑

k2=1

Πk2
j1,n+1 Πn+1

n+1,k2
−Πn+1

j1,n+1 Πn+1
n+1,n+1◦a

+

+

n∑

k2=1

Πk2
n+1,n+1 Πn+1

j1,k2
+ Πn+1

n+1,n+1 Πn+1
j1,n+1◦a

,

(
Πk1

j1,j2

)
xj3
−
(
Πk1

j1,j3

)
xj2

= −
n∑

k2=1

Πk2
j1,j2

Πk1

j3,k2
− Πn+1

j1,j2
Πk1

j3,n+1+

+

n∑

k2=1

Πk2
j1,j3

Πk1

j2,k2
+ Πn+1

j1,j3
Πk1

j2,n+1,

(
Πk1

j1,j2

)
y
−
(
Πk1

j1,n+1

)
xj2

= −
n∑

k2=1

Πk2
j1,j2

Πk1
n+1,k2

−Πn+1
j1,j2

Πk1
n+1,n+1+

+
n∑

k2=1

Πk2
j1,n+1 Πk1

j2,k2
+ Πn+1

j1,n+1 Πk1
j2,n+1,

(
Πk1

j1,n+1

)
y
−
(
Πk1

n+1,n+1

)
xj1

= −
n∑

k2=1

Πk2
j1,n+1 Πk1

n+1,k2
−Πn+1

j1,n+1 Πk1
n+1,n+1+

+

n∑

k2=1

Πk2
n+1,n+1 Πk1

j1,k2
+ Πn+1

n+1,n+1 Πk1
j1,n+1.

where the indicesj1, j2, j3, k1 vary in the set{1, 2, 1, . . . , n}.
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3.12. Principal unknowns. As there are(m+ 1) more square (or Pi) func-
tions than the functionsGj1,j2,H

k1
j1,j2

,Lk1
j1

andMk1 , we cannot invert directly
the linear system (3.2). To quasi-inverse it, we choose the(m + 1) specific
square functions

(3.13) Θ1 := �1
x1x1 , Θ2 := �2

x2x2 , · · · · · · ,Θn+1 := �n+1
xn+1xn+1,

calling themprincipal unknowns, and we get the quasi-inversion:
(3.14)



Πk1
j1,j2

= �
k1

xj1xj2
= Hk1

j1,j2
− 1

2
δk1
j1
Hj2

j2,j2
− 1

2
δk1
j2
Hj1

j1,j1
+

1

2
δk1
j1

Θj2 +
1

2
δk1
j2

Θj1,

Πk1
j1,n+1 = �

k1

xj1y
=

1

2
Lk1

j1
+

1

2
δk1
j1

Θn+1,

Πk1
n+1,n+1 = �k1

yy = Mk1 ,

Πn+1
j1,j2

= �n+1
xj1xj2

= −Gj1,j2,

Πn+1
j1,n+1 = �n+1

xj1y
= −1

2
Hj1

j1,j1
+

1

2
Θj1.

3.15. Second auxiliary system.Replacing the five families of functions
Πk1

j1,j2
, Πk1

j1,n+1, Πk1
n+1,n+1, Πn+1

j1,j2
, Πn+1

j1,n+1 by their values obtained in (3.14)
just above together with the principal unknowns

(3.16) Πj1
j1,j1

= Θj1, Πn+1
n+1,n+1 = Θn+1,

in the six equations(3.11)1, (3.11)2, (3.11)3, (3.11)4, (3.11)5 and(3.11)6,
after hard computations that we will not reproduce here, we obtain six fam-
ilies of equations. From now on, we abbreviate every sum

∑n
k=1 as

∑
k1

.
Firstly:

(3.17) 0 = Gj1,j2,xj3 −Gj1,j3,xj2 +
∑

k1

Gj3,k1 H
k1
j1,j2
−
∑

k1

Gj2,k1 H
k1
j1,j3

.

This is (I’) of Theorem 1.7. Just above and below, we plainly underline the
monomials involving a first order derivative. Secondly:
(3.18)



Θj1
xj2

= −2Gj1,j2,y +Hj1
j1,j1,xj2

+

+
∑

k1

Gj2,k1 L
k1
j1

+
1

2
Hj1

j1,j1
Hj2

j2,j2
−
∑

k1

Hk1
j1,j2

Hk1
k1,k1
−

−Gj1,j2 Θn+1 − 1

2
Hj1

j1,j1
Θj2 − 1

2
Hj2

j2,j2
Θj1 +

∑

k1

Hk1
j1,j2

Θk1+

+
1

2
Θj1 Θj2 .
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Thirdly:
(3.19)



−Θn+1
xj1

+
1

2
Θj1

y =
1

2
Hj1

j1,j1,y−

−
∑

k1

Gj1,k1 M
k1 +

1

4

∑

k1

Hk1
k1,k1

Lk1
j1

+

+
1

4
Hj1

j1,j1
Θn+1 − 1

4

∑

k1

Lk1
j1

Θk1 − 1

4
Θj1 Θn+1.

Fourtly:
(3.20)



1

2
δk1
j1

Θj2
xj3
− 1

2
δk1
j1

Θj3
xj2

+
1

2
δk1
j2

Θj1
xj3
− 1

2
δk1
j3

Θj1
xj2

=

= −Hk1

j1,j2,xj3
+Hk1

j1,j3,xj2
− 1

2
δk1
j1
Hj3

j3,j3,xj2
+

1

2
δk1
j1
Hj2

j2,j2,xj3
−

− 1

2
δk1
j3
Hj1

j1,j1,xj2
+

1

2
δk1
j2
Hj1

j1,j1,xj3
−

− 1

2
Gj1,j2 L

k1
j3

+
1

2
Gj1,j3 L

k1
j2
− 1

4
δk1
j3
Hj1

j1,j1
Hj2

j2,j2
+

1

4
δk1
j2
Hj1

j1,j1
Hj3

j3,j3
−

−
∑

k2

Hk2
j1,j2

Hk1
j3,k2

+
∑

k2

Hk2
j1,j3

Hk1
j2,k2
− 1

2
δk1
j2
Hk2

j1,j3
Hk2

k2,k2
+

1

2
δk1
j3
Hk2

j1,j2
Hk2

k2,k2
−

− 1

2
δk1
j2
Gj1,j3 Θn+1 +

1

2
δk1
j3
Gj1,j2 Θn+1−

− 1

4
δk1
j2
Hj1

j1,j1
Θj3 +

1

4
δk1
j3
Hj1

j1,j1
Θj2 − 1

4
δk1
j2
Hj3

j3,j3
Θj1 +

1

4
δk1
j3
Hj2

j2,j2
Θj1−

− 1

2
δk1
j3

∑

k1

Hk2
j1,j2

Θk2 +
1

2
δk1
j2

∑

k1

Hk2
j1,j3

Θk2−

− 1

4
δk1
j3

Θj1 Θj2 +
1

4
δk1
j2

Θj1 Θj3.

Fifthly:
(3.21)



1

2
δk1
j1

Θj2
y +

1

2
δk1
j2

Θj1
y −

1

2
δk1
j1

Θn+1
xj2

=

= Gj1,j2 M
k1 +

1

2

∑

k2

Hk1
j1,k2

Lk2
j1
− 1

2

∑

k2

Hk2
j1,j2

Lk1
k2
− 1

4
δk1
j2

∑

k2

Hk2
k2,k2

Lk2
j1
−

− 1

4
δk1
j2
Hj1

j1,j1
Θn+1 +

1

4
δk1
j2

∑

k2

Lk2
j1

Θk2 +
1

4
δk1
j2

Θj1 Θn+1.
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Sixthly:
(3.22)



δk1
j1

Θn+1
y = −Lk1

j1,y + 2Mk1

xj1
+

+ 2
∑

k2

Hk1

j1,k2
Mk2 − δk1

j1

∑

k2

Hk2

k2,k2
Mk2 − 1

2

∑

k2

Lk2
j1
Lk1

k2
+

+ δk1
j1

∑

k2

Mk2 Θk2 +
1

2
δk1
j1

Θn+1 Θn+1.

3.23. SolvingΘj1
xj2

, Θj1
y , Θn+1

xj1
and Θn+1

y . From the six families of equa-
tions (3.17), (3.18), (3.19), (3.20), (3.21) and (3.22), wecan solveΘj1

xj2
,

Θj1
y , Θn+1

xj1
andΘn+1

y . Not mentioning the (hard) intermediate computations,
we obtain firstly:
(3.24)



Θj1
xj2

= −2Gj1,j2,y +Hj1
j1,j1,xj2

+
∑

l

Gj2,l L
l
j1 +

1

2
Hj1

j1,j1
Hj2

j2,j2
−
∑

l

H l
j1,j2 H

l
l,l−

−Gj1,j2 Θn+1 − 1

2
Hj1,j1 Θj1 − 1

2
Hj2

j2,j2
Θj1 +

∑

l

H l
j1,j2

Θl +
1

2
Θj1 Θj2.

Secondly:
(3.25)



Θj1
y = −1

3
Hj1

j1,j1,y +
2

3
Lj1

j1,xj1
+

4

3
Gj1,j1 M

j1 +
2

3

∑

l

Gj1,lM
l − 1

2

∑

l

H l
l,l L

l
j1+

+
2

3

∑

l

Hj1
j1,l L

l
j1
− 2

3

∑

l

H l
j1,j1

Lj1
l −

1

2
Hj1

j1,j1
Θn+1 +

1

2

∑

l

Ll
j1

Θl+

+
1

2
Θj1 Θn+1.

Thirdly:
(3.26)




Θn+1
xj1

= −2

3
Hj1

j1,j1,y +
1

3
Lj1

j1,xj1
+

2

3
Gj1,j1 M

j1 +
4

3

∑

l

Gj1,lM
l − 1

2

∑

l

H l
l,l L

l
j1

+

+
1

3

∑

l

Hj1
j1,l L

l
j1 −

1

3

∑

l

H l
j1,j1 L

j1
l −

1

2
Hj1

j1,j1
Θn+1 +

1

2

∑

l

Ll
j1 Θl+

+
1

2
Θj1 Θn+1.
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Fourtly:
(3.27)




Θn+1
y = −Lj1

j1,y + 2M j1
xj1

+ 2
∑

l

Hj1
j1,l M

l −
∑

l

H l
l,lM

l − 1

2

∑

l

Ll
j1 L

j1
l +

+
∑

l

M l Θl +
1

2
Θn+1 Θn+1.

These four families of partial differential equations constitute thesecond
auxiliary system. By replacing these solutions in the three remaining fam-
ilies of equations (3.20), (3.21) and (3.22), we obtain supplementary equa-
tions (which we do not copy) that are direct consequences of (I’), (II’), (III’),
(IV’).

To complete the proof of the main Lemma 3.3 above, it suffices now to
establish the first implication of the following list, sincethe other three have
been already established.

• Some given functionsGj1,j2,H
k1
j1,j2

, Lk1
j1

andMk1 of (xl1 , y) satisfy the
four families of partial differential equations (I’), (II’), (III’) and (IV’)
of Theorem 1.7.

⇓
• There exist functionsΘj1, Θn+1 satisfying the second auxiliary sys-

tem (3.24), (3.25), (3.26) and (3.27).
⇓
• These solution functionsΘj1, Θn+1 satisfy the six families of partial

differential equations (3.17), (3.18), (3.19), (3.20), (3.21) and (3.22).
⇓
• There exist functionsΠk1

j1,j2
of (xl1 , y), 1 6 j1, j2, k1 6 m+ 1, satisfy-

ing the first auxiliary system (3.7) of partial differentialequations.
⇓
• There exist functionsX l2, Y of (xl1 , y) transforming the system
yxj1xj2 = F j1,j2(xl1 , y, yxl2), j1, j2 = 1, . . . , n, to the simplest system
YXj1Xj2 = 0, j1, j1 = 1, . . . , n.

3.28. Compatibility conditions for the second auxiliary system. We no-
tice that the second auxiliary system is also a complete system. Thus, to
establish the first above implication, it suffices to show that the four families
of compatibility conditions:

(3.29)





0 =
(
Θj1

xj2

)
xj3
−
(
Θj1

xj3

)
xj2
,

0 =
(
Θj1

xj2

)
y
−
(
Θj1

y

)
xj2
,

0 =
(
Θn+1

xj1

)
xj2
−
(
Θn+1

xj2

)
xj1
,

0 =
(
Θn+1

xj2

)
y
−
(
Θn+1

y

)
xj2
,
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are a consequence of (I’), (I”), (III’), (IV’).
For instance, in(3.29)1, replacingΘj1

xj2
by its expression (3.24), differen-

tiating it with respect toxj3 , replacingΘj1
xj3

by its expression (3.24), differ-
entiating it with respect toxj2 and substracting, we get:
(3.30)



0 = −2Gj1,j2,yxj3 + 2Gj1,j3,yxj2 +Hj1
j1,j1,xj2xj3

a
−Hj1

j1,j1,xj3xj2
a
+

+
1

2
Θj1

xj3
Θj2 +

1

2
Θj1 Θj2

xj3
− 1

2
Θj1

xj2
Θj3 − 1

2
Θj1 Θj3

xj2
−

− 1

2
Hj1

j1,j1,xj3
Θj2 − 1

2
Hj1

j1,j1
Θj2

xj3
+

1

2
Hj1

j1,j1,xj2
Θj3 +

1

2
Hj1

j1,j1
Θj3

xj2
−

− 1

2
Hj2

j2,j2,xj3
Θj1 − 1

2
Hj2

j2,j2
Θj1

xj3
+

1

2
Hj3

j3,j3,xj2
Θj1 +

1

2
Hj3

j3,j3
Θj1

xj2
−

−Gj1,j2,xj3 Θn+1 −Gj1,j2 Θn+1
xj3

+Gj1,j3,xj2 Θn+1 +Gj1,j3 Θn+1
xj2

+

+
∑

l

H l
j1,j2,xj3 Θl +

∑

l

H l
j1,j2

Θl
xj3 −

∑

l

H l
j1,j3,xj2 Θl −

∑

l

H l
j1,j3

Θl
xj2+

+
1

2
Hj1

j1,j1,xj3
Hj2

j2,j2
+

1

2
Hj1

j1,j1
Hj2

j2,j2,xj3
− 1

2
Hj1

j1,j1,xj2
Hj3

j3,j3
− 1

2
Hj1

j1,j1
Hj3

j3,j3,xj2
−

−
∑

l

H l
j1,j2,xj3 H

l
l,l −

∑

l

H l
j1,j2 H

l
l,l,xj3 +

∑

l

H l
j1,j3,xj2 H

l
l,l +

∑

l

H l
j1,j3 H

l
l,l,xj2+

+
∑

l

Gj2,l,xj3 L
l
j1

+
∑

l

Gj2,l L
l
j1,xj3 −

∑

l

Gj3,l,xj2 L
l
j1
−
∑

l

Gj3,l L
l
j1,xj2 .

Next, replacing the twelve first order partial derivatives underlined just
above:

(3.31)





Θj1
xj3
, Θj2

xj3
, Θj1

xj2
, Θj3

xj2
, Θj2

xj3
, Θj3

xj2
,

Θj1
xj3
, Θj1

xj2
, Θn+1

xj3
, Θn+1

xj2
, Θl

xj3 , Θl
xj2 .

by their values issued from (3.24), (3.26) and adapting the summation in-
dices, we get the explicit developed form of the first family of compatibility
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conditions(3.29)1:
(3.32)




0 =? = −2Gj1,j2,xj3y + 2Gj1,j3,xj2y−

−
∑

l

Gj3,l,xj2 L
l
j1 +

∑

l

Gj2,l,xj3 L
l
j1 −Gj1,j2,y H

j3
j3,j3

+Gj1,j3,y H
j2
j2,j2
−

− 2
∑

l

Gl,j3 H
l
j1,j2

+ 2
∑

l

Gl,j2 H
l
j1,j3
−
∑

l

H l
j1,j2,xj3 H

l
l,l +

∑

l

H l
j1,j3,xj2 H

l
l,l−

− 2

3
Hj2

j2,j2,y Gj1,j3 +
2

3
Hj3

j3,j3,y Gj1,j2 −
2

3
Lj3

j3,xj3
Gj1,j2 +

2

3
Lj2

j2,xj2
Gj1,j3−

−
∑

l

Ll
j1,xj2 Gj3,l +

∑

l

Ll
j1,xj3 Gj2,l−

− 2

3
Gj1,j2 Gj3,j3 M

j3 +
2

3
Gj1,j3 Gj2,j2 M

j2 − 4

3

∑

l

Gj1,j2 Gj3,lM
l+

+
4

3

∑

l

Gj1,j3 Gj2,lM
l − 1

2

∑

l

Gj3,l H
j1
j1,j1

Ll
j2 +

1

2

∑

l

Gj2,lH
j1
j1,j1

Ll
j3−

− 1

2

∑

l

Gj3,lH
j2
j2,j2

Ll
j1

+
1

2

∑

l

Gj2,lH
j3
j3,j3

Ll
j1
− 1

2

∑

l

Gj1,j3 H
l
l,l L

l
j2

+

+
1

2

∑

l

Gj1,j2 H
l
l,l L

l
j3
− 1

3

∑

l

Gj1,j2 H
j3
j3,l L

l
j3

+
1

3

∑

l

Gj1,j3 H
j2
j2,l L

l
j2
−

− 1

3
Gj1,j3 H

l
j2,j2

Lj2
l +

1

3
Gj1,j2 H

l
j3,j3

Lj3
l −

−
∑

l

∑

p

Gj2,pH
l
j1,j3

Lp
l +

∑

l

∑

p

Gj3,pH
l
j1,j2

Lp
l−

−
∑

l

∑

p

H l
j1,j2 H

p
l,j3
Hp

p,p +
∑

l

∑

p

H l
j1,j3 H

p
l,j2
Hp

p,p.

Lemma 3.33. ([Me2003, Me2004])This first family of compatibility con-
ditions for the second auxiliary system obtained by developing (3.29)1 in
length, together with the three remaining families obtained by developing
(3.29)2, (3.29)3, (3.29)4 in length, are consequences, by linear combina-
tions and by differentiations, of(I’) , (II’) , (III’) , (IV’) , of Theorem 1.7.

The summarized proof of Theorem 1.7 is complete.



379

IV: Bibliography

REFERENCES

[Ar1988] ARNOL’ D, V.I.: Dynamical systems. I. Ordinary differential equations and
smooth dynamical systems, Translated from the Russian. Edited by D. V.
Anosov and V. I. Arnol’d. Encyclopaedia of Mathematical Sciences, vol. 1.
Springer-Verlag, Berlin, 1988. x+233 pp.

[Ar1968] ARTIN, M.: On the solutions of analytic equations, Invent. Math.5 (1968),
277–291.

[BER1999] BAOUENDI, M.S.; EBENFELT, P.; ROTHSCHILD, L.P.: Real submanifolds in
complex space and their mappings. Princeton Mathematical Series, vol. 47,
Princeton University Press, Princeton, NJ, 1999, xii+404 pp.

[BJT1985] BAOUENDI, M.S.; JACOBOWITZ, H.; TREVES, F.: On the analyticity of CR
mappings, Ann. of Math.122(1985), no. 2, 365–400.

[Bel1996] BELLAÏCHE, A.: SubRiemannian Geometry, Progress in Mathematics,
vol. 144, Birkhäuser Verlag, Basel/Switzerland, 1996, 1–78.

[Be1979] BELOSHAPKA, V.K.: On the dimension of the group of automorphisms of an
analytic hypersurface, Izv. Akad. Nauk SSSR Ser. Mat.43 (1979), 243–266;
English transl. in Math. USSR-Izv.14 (1980), 223–245.

[Be1988] BELOSHAPKA, V.K.: Finite-dimensionality of the group of automorphisms of
a real-analytic surface, Izv. Akad. Nauk SSSR Ser. Mat.52 (1988), 437–442;
English transl. in Math. USSR-Izv.32 (1989), 443–448.

[Be1997] BELOSHAPKA, V.K.: CR-varieties of the type (1,2) as varieties of ‘super-high’
codimension, Russian J. Math. Phys.5 (1997), 399–404.

[Be2002] BELOSHAPKA, V.K.: Real submanifolds in complex space: polynomial mod-
els, automorphisms, and classification problems, Uspekhi Mat. Nauk57
(2002), no. 1, 3–44; English transl. in Russian Math. Surveys57 (2002), no. 1,
1–41.

[BES2005] BELOSHAPKA, V.K.; EZHOV, V.; SCHMALZ , G.: Canonical Car-
tan connection and holomorphic invariants of Engel CR manifolds,
arxiv.org/abs/math.CV/0508084.

[BK1989] BLUMAN , G.W.; KUMEI, S.: Symmetries and differential equations, Springer
Verlag, Berlin, 1989.

[Bo1991] BOGGESS, A.: CR manifolds and the tangential Cauchy-Riemann com-
plex. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1991,
xviii+364 pp.

[Bo1972] BOURBAKI, N.: Groupes at algèbres de Lie, chapitre 2, Hermann, Paris, 1972.
[BSW1978] BURNS, D.Jr.; SHNIDER, S.; WELLS, R.O.Jr.:Deformations of strictly pseu-

doconvex domainsInvent. Math.46 (1978), no. 3, 237–253.
[Ca1922] CARTAN, É.: Sur les équations de la gravitation d’Einstein, J. Math. pures et

appl.1 (1922), 141–203.
[Ca1924] CARTAN, É.: Sur les variétés à connexion projective, Bull. Soc. Math. France

52 (1924), 205–241.
[Ca1932a] CARTAN, É.: Sur la géométrie pseudo-conforme des hypersurfaces de

l’espace de deux variables complexes, I, Ann. Math. Pura Appl.11 (1932),
17–90.



380

[Ca1932b] CARTAN, É.: Sur la géométrie pseudo-conforme des hypersurfaces de
l’espace de deux variables complexes, II, Ann. Scuola Norm. Sup. Pisa1
(1932), 333–354.

[Ca1937] CARTAN, É.: Les problèmes d’équivalence(Séminaire de Math.,4e année,
1936–37), Œuvres complètes, II, 1311–1334, Gauthier-Villars, Paris, 1953.

[CM1974] CHERN, S.S.; MOSER, J.K.: Real hypersurfaces in complex manifolds, Acta
Math.133(1974), no. 2, 219–271.

[Ch1975] CHERN, S.-S.: On the projective structure of a real hypersurface inCn+1,
Math. Scand.36 (1975), 74–82.

[Ch1989] CHIRKA , E.M.: Complex analytic sets, Mathematics and its applications (So-
viet Series), vol. 46. Kluwer Academic Publishers Group, Dordrecht, 1989.
xx+372 pp.

[Ch1991] CHIRKA , E.M.: An introduction to the geometry of CR manifolds(Russian),
Uspekhi Mat. Nauk46 (1991), no. 1(277), 81–164, 240; translation in Russian
Math. Surveys46 (1991), no. 1, 95–197

[CS1996] CONSTANTINE, G.M.; SAVITS, T.H.: A multivariate Faà di Bruno formula
with applications, Trans. Amer. Math. Soc.348(1996), no. 2, 503–520.

[DF1988] DIEDERICH, K.; FORNÆSS, J.E.: Proper holomorphic mappings between
real-analytic pseudoconvex domains inCn, Math. Ann282(1988), no. 4, 681–
700.

[DP2003] DIEDERICH, K.; PINCHUK, S.:Regularity of continuous CR-maps in arbitrary
dimension, Michigan Math. J.51 (2003), 111–140.Erratum: ib., no. 3, 667–
668.

[DW1980] DIEDERICH, K.; WEBSTER, S.M.: A reflection principle for degenerate real
hypersurfaces, Duke Math. J.47 (1980), no. 4, 835–843.

[Eb1998] EBENFELT, P.: Normal forms and biholomorphic equivalences of real hyper-
surfaces inC3, Indiana Univ. Math. J.47 (1998), 311–366.

[Eb2006] EBENFELT, P.: Correction to "Uniformly Levi degenerate CR manifolds: the
5-dimensional case, Duke Math. J.131(2006), 589–591.

[EL1890] ENGEL, F.; LIE, S.: Theorie der Transformationsgruppen, I, II, II, Teubner,
Leipzig, 1889, 1891, 1893.

[EKV1985] EZHOV, V.V.; K RUZHILIN , N.G.; VITUSHKIN, A.G.: Continuation of holo-
morphic mappings along real-analytic hypersurfaces(Russian). Current prob-
lems in mathematics. Mathematical analysis, algebra, topology. Trudy Mat.
Inst. Steklov167(1985), 60–95, 276.

[Fa1980] FARAN, J.: Segre families and real hypersurfaces, Invent. Math.60 (1980),
no. 2, 135–172.

[F1969] FEDERER, H.: Geometric measure theory, Die Grundlehren der Mathe-
matischen Wissenschaften, Band 153, Springer Verlag, New York, 1969,
xiv+676 pp. Springer-Verlag, Berlin, 1969.

[Fe1995] FELS, M.: The equivalence problem for systems of second-order ordinary dif-
ferential equations, Proc. London Math. Soc.71 (1995), no. 2, 221–240.

[FK2005a] FELS, G.; Kaup, W.: CR-manifolds of dimension 5: A Lie algebra approach,
J. Reine Angew. Math., to appear.arxiv.org/abs/math.DG/050811.

[FK2005b] FELS, G.; Kaup, W.: Homogeneous Levi degenerate CR-manifolds in dimen-
sion 5, to appear.

[Fr1877] FROBENIUS, G.: Ueber das Pfaffsche Problem, J. Reine Angew. Math.82
(1877), 230–315.



381

[G1989] GARDNER, R.B.: The method of equivalence and its applications, CBMS-
NSF Regional Conference Series in Applied Mathematics, vol. 58 (SIAM,
Philadelphia, 1989), 127 pp.

[GM2003a] GAUSSIER, H.; MERKER, J.: Symmetries of partial differential equa-
tions, J. Korean Math. Soc.40 (2003), no. 3, 517–561; e-print:
http://fr.arxiv.org/abs/math.CV/0404127.

[GM2003b] GAUSSIER, H.; MERKER, J.:A new example of uniformly Levi nondegenerate
hypersurface inC3, Ark. Mat. 41 (2003), no. 1, 85–94.

[GM2004] GAUSSIER, H.; MERKER, J.: Nonalgebraizable real analytic tubes inCn,
Math. Z.247(2004), no. 2, 337–383.

[GM2006] GAUSSIER, H.; MERKER, J.: Erratum to "A new example of a uniformly Levi
degenerate hypersurface inC3", 2006, to appear.

[GV1987] GERSHKOVICH, V.Ya.; VERSHIK, A.M.: Nonholonomic dynamical systems.
Geometry of distributions and variational problems. Dynamical Systems VII,
Encyclopædia of mathematical sciences, vol. 16, V.I. Arnol’d and S.P. Novikov
(Eds.), 1–81, Springer-Verlag, Berlin, 1994.

[Gr2005] DE GRAAF, W.A.: Classification of solvable Lie algebras, Experiment. Math.
14 (2005), no. 1, 15–25.

[GTW1989] GRISSOM, C.; THOMPSON, G.; WILKENS, G.: Linearization of second order
ordinary differential equations via Cartan’s equivalencemethod, J. Diff. Eq.
77 (1989), no. 1, 1–15.

[Gr2000] GROSSMAN, D.A.: Torsion-free path geometries and integrable second order
ODE systems, Selecta Math. (N.S.)6 (2000), no. 4, 399–442.

[Ha1937] HACHTROUDI, M.: Les espaces d’éléments à connexion projective normale,
Actualités Scientifiques et Industrielles, vol. 565, Paris, Hermann, 1937.

[Ha1982] HARTMAN , P.:Ordinary Differential Equations. Birkhäuser, Boston 1982.
[Ha2003] HAUSER, H.: The Hironaka theorem on resolution of singularities(or: A proof

we always wanted to understand), Bull. Amer. Math. Soc. (N.S.)40 (2003),
no. 3, 323–403.

[Hi1976] HIRSCH, M.W.: Differential topology, Graduate Texts in Mathematics, 33,
Springer-Verlag, Berlin, 1976, x+222 pp.

[HK1989] HSU, L.; KAMRAN , N.: Classification of second order ordinary differential
equations admitting Lie groups of fibre-preserving point symmetries, Proc.
London Math. Soc.58 (1989), no. 3, 387–416.

[Ib1992] IBRAGIMOV, N.H.: Group analysis of ordinary differential equations and the
invariance principle in mathematical physics, Russian Math. Surveys47:4
(1992), 89–156.

[Ib1999] IBRAGIMOV, N.H.: Elementary Lie group analysis and ordinary differential
equations, Wiley Series in Mathematical Methods in Practice, 4. John Wiley
& Sons, Ltd., Chichester, 1999. xviii+347 pp.

[IL2003] IVEY, J.A.; LANDSBERG, J.M.: Cartan for beginners: differential geom-
etry via moving frames and exterior differential systems, Graduate Studies
in Mathematics, 61. American Mathematical Society, Providence, RI, 2003.
xiv+378 pp.

[Ja1990] JACOBOWITZ, An introduction to CR structures, Math. Surveys and Mono-
graphs, 32. Amer. Math. Soc., Providence, 1990. x+237 pp.

[Ji2002] JI, S.:Algebraicity of real analytic hypersurfaces with maximal rank, Amer. J.
Math.124(2002), no. 6, 1083–1102.



382

[JoPf2000] DE JONG, T.; PFISTER, G.: Local analytic geometry. Basic theory and appli-
cations, Advanced Lectures in Mathematics. Friedr. Vieweg & Sohn, Braun-
schweig, 2000. xii+382 pp.

[Kn2004] KNAPP, A.W.: Lie groups beyond an introduction, Progress in Mathematics,
140, Birkhäuser, Basel, third edition, 2004, xviii+812 pp.

[KN1963] KOBAYASHI, S.; NOMIZU, K.m: Foundations of differential geometry, I, In-
terscience publishers, John Wiley & Sons, New York, 1963. xi+329 pp.

[Kr1985] KRUZHILIN , N.G.: Local automorphisms and mappings of smooth strictly
pseudoconvex hypersurfaces(Russian). Izv. Akad. Nauk SSSR Ser. Mat.49
(1985), no. 3, 566–591, 672.

[Kr1987] KRUZHILIN , N.G.: Description of the local automorphism groups of real hy-
persurfaces, Proceedings of the International Congress of Mathematicians,
Vol. 1, 2 (Berkeley, Calif., 1986), 749–758, Amer. Math. Soc., Providence,
RI, 1987.

[KV1987] KRUZHILIN , N.G.; VITUSHKIN, A.G.: Description of the automorphism
groups of real hypersurfaces in complex space(Russian). Investigations in the
theory of the approximation of functions, 26–69, Akad. NaukSSSR Bashkir
Filial, Otdel. Fiz. Mat., Ufa, 1987.

[Lie1880] LIE, S.: Theorie der Transformationsgruppen, Math. Ann.16 (1880), 441–
528.

[Lie1883] LIE, S.:Klassifikation und Integration von gewöhnlichen Differentialgleichun-
gen zwischenx, y, die eine Gruppe von Transformationen gestaten I-IV. In:
Gesammelte Abhandlungen, Vol. 5, B.G. Teubner, Leipzig, 1924, pp. 240–
310; 362–427, 432–448.

[LS1893] LIE, S.; SCHEFFERS, G.: Vorlesungen̈ber continuierliche Gruppen mit Ge-
ometrischen und anderen Anwendungen. (German) Nachdruck der Auflage des
Jahres 1893. Chelsea Publishing Co., Bronx, New York, 1971.xii+810 pp.

[Lo1981] LOBODA, A.V.: Local automorphisms of real-analytic hypersurfaces(Rus-
sian), Izv. Akad. Nauk SSSR Ser. Mat.45 (1981), no. 3, 620–645.

[Lo2001] LOBODA, A.V.: Homogeneous strictly pseudoconvex hypersurfaces inC3 with
two-dimensional isotropy groups(Russian) Mat. Sb.192(2001), no. 12, 3–24;
translation in Sb. Math.192(2001), no. 11-12, 1741–1761.

[Lo2002] LOBODA, A.V.: Homogeneous nondegenerate surfaces inC3 with two-
dimensional isotropy groups(Russian) Mat. Sb.192 (2001), no. 12, 3–24;
translation in Sb. Math.192(2001), no. 11–12, 1741–1761.

[Lo2003] LOBODA, A.V.: On the determination of a homogeneous strictly pseudoconvex
hypersurface from the coefficients of its normal form(Russian) Mat. Zametki
73(2003), no. 3, 453–456; translation in Math. Notes73 (2003), no. 3-4, 419–
423.

[Ma2003] MARDARE, S.:On isometric immersions of a Riemannian space under a weak
regularity assumption, C. R. Acad. Sci. Paris, Sér. I337(2003), 785–790.

[Me2001] MERKER, J.: On the partial algebraicity of holomorphic mappings between
two real algebraic sets in the complex euclidean spaces of different dimen-
sions, Bull. Soc. Math. France129(2001), no. 4, 547–591.

[Me2003] MERKER, J.: hand manuscript I, 212 pp., May – July 2003;hand manuscript
II , 114 pp., August 2003.

[Me2004] MERKER, J.: Explicit differential characterization of the Newtonian free par-
ticle system inm > 2 dependent variables, Acta Mathematicæ Applicandæ,
to appear, 73 pp; e-print:arxiv.org/abs/math.DG/0411165.



383

[Me2005a] MERKER, J.: On the local geometry of generic submanifolds ofCn and the
analytic reflection principle(Part I), Journal of Mathematical Sciences (N.Y.)
125(2005), no. 6, 751–824.

[Me2005b] MERKER, J.: Étude de la régularité analytique de l’application de réflexion
CR formelle, Annales Fac. Sci. Toulouse,XIV (2005), no. 2, 215–330.

[MP2005] MERKER, J.; PORTEN, E.: Holomorphic extension of CR functions, envelopes
of holomorphy and removable singularities, 432 pp., to appear. Downloadable
at: www.cmi.univ-mrs/∼merker/index.html.

[N2003] NEUT, S.: Implantation et nouvelles applications de la méthode d’équivalence
d’Élie Cartan, Thèse, Université Lille 1, October 2003.

[OL1979] OLVER, P.J.:Symmetry groups and group invariant solutions of partial differ-
ential equations, J. Diff. Geom.14 (1979), 497–542.

[Ol1986] OLVER, P.J.: Applications of Lie groups to differential equations. Springer
Verlag, New York, 1986. xxvi+497 pp.

[Ol1995] OLVER, P.J.: Equivalence, Invariance and Symmetries. Cambridge, Cam-
bridge University Press, 1995, xvi+525 pp.

[OV1994] ONISHCHIK, A.L.; V INBERG, E.B.: Lie groups and Lie algebras, III. Ency-
clopædia of mathematical sciences, 41. Springer Verlag, Berlin, 248 pp.

[Pi1975] PINCHUK, S.: On the analytic continuation of holomorphic mappings(Rus-
sian), Mat. Sb. (N.S.)98(140)(1975) no.3(11), 375–392, 416–435, 495–496.

[Pi1978] PINCHUK, S.: Holomorphic mappings of real-analytic hypersurfaces(Rus-
sian), Mat. Sb. (N.S.)105(147)(1978), no. 4, 574–593, 640; English transla-
tion in Math. USSR Sbornik34 (1978), 503–519.

[Re1993] REUTENAUER, C.: Free Lie algebras, London Mathematical Society Mono-
graph, New Series, 7. Oxford Science Publications, The Clarendon Press, Ox-
ford University Press, New York, 1993. xviii+269 pp.

[Se1931] SEGRE, B.: Intorno al problema di Poincaré della rappresentazione pseudo-
conforme, Rend. Acc. Lincei, VI, Ser.13 (1931), 676–683.

[Se1932] SEGRE, B.: Questioni geometriche legate colla teoria delle funzioni di due
variabili complesse, Rendiconti del Seminario di Matematici di Roma, II, Ser.
7 (1932), no. 2, 59–107.

[Sh1997] SHARPE, R.W.: Differential geometry; Cartan’s generalization of Klein’s Er-
langen program, Graduate texts in mathematics, vol. 166, Springer Verlag,
Berlin, 1997, xix+421 pp.

[Sp1970] SPIVAK , M.: A comprehensive introduction to differential geometry, vols. 1
and 2. Published by M. Spivak, Brandeis Univ., Waltham, Mass. 1970.

[St1996] STANTON, N.: Infinitesimal CR automorphisms of real hypersurfaces, Amer.
J. Math.118(1996), no. 1, 209–233.

[Ste1983] STERNBERG, S.: Lectures in differential geometry, Second edition, Chelsea
publishing co., New York, 1983, xviii+442 pp.

[Stk1982] STORMARK, O.: On the theorem of Frobenius for complex vector fields, Ann.
Scuola Norm. Sup. Pisa Cl. Sci.(4) 9 (1982), no. 1, 57–90.

[Stk2000] STORMARK, O.: Lie’s structural approach to PDE systems, Encyclopædia of
mathematics and its applications, vol. 80, Cambridge University Press, Cam-
bridge, 2000, xv+572 pp.

[Su2001] SUKHOV, A.: Segre varieties and Lie symmetries, Math. Z.238(2001), no. 3,
483–492.

[Su2002] SUKHOV, A.: CR maps and point Lie transformations, Michigan Math. J.50
(2002), 369–379.



384

[Su2003] SUKHOV, A.: On transformations of analytic structures(Russian). Izv. Ross.
Akad. Nauk Ser. Mat.67 (2003), no. 2, 101–132; transl. in Izv. Math.67
(2003), no. 2, 303–332.

[Su1973] SUSSMANN, H.J.:Orbits of families of vector fields and integrability of distri-
butions, Trans. Amer. Math. Soc.180(1973), no. 1, 171–188.

[Tr1896] TRESSE, A.: Détermination des invariants ponctuels de l’équation différen-
tielle du second ordrey′′ = ω(x, y, y′), Hirzel, Leipzig, 1896.

[Ve1924] VESSIOT, E.: Sur une théorie nouvelle des problèmes généraux d’intégration,
Bull. Soc. Math. France52 (1924), 336–395.

[Vi1990] V ITUSHKIN, A.G.: Holomorphic mappings and the Geometry of Hypersur-
faces, Encyclopædia of Mathematical Sciences, Volume 7, SeveralComplex
Variables, I, Springer-Verlag, Berlin, 1990, pp. 159–214.

[We1977] WEBSTER, S.M.: On the mapping problem for algebraic real hypersurfaces,
Invent. Math.43 (1977), no.1, 53–68.


