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I: Introduction

1.1. CR extension theory. In the past decades, remarkable progress has
been accomplished towards the understanding of compulsory extendability
of holomorphic functions, of CR functions and of differential forms. These
phenomena, whose exploration is still active in current research, originate
from the seminal Hartogs-Bochner extension theorem.

In local CR extension theory, the most satisfactory achievement was the
discovery that, on a smooth embedded generic submanifold M ⊂ Cn, there
is a precise correspondence between CR orbits of M and families of small
Bishop discs attached to M . Such discs cover a substantial part of the poly-
nomial hull of M , and in most cases, this part may be shown to constitute
a global one-sided neighborhood V ±(M) of M , if M is a hypersurface, or
else a wedgelike domain W attached to M , if M has codimension > 2.
A local polynomial approximation theorem, or a CR version of the Kon-
tinuitätssatz (continuity principle) assures that CR functions automatically
extend holomorphically to such domains W , which are in addition contained
in the envelope of holomorphy of arbitrarily thin neighborhoods ofM inCn.

Trépreau in the hypersurface (1986) case and slightly after Tumanov in
arbitrary codimension (1988) established a nowadays celebrated extension
theorem: if M ⊂ Cn is a sufficiently smooth (C 2 or C 2,α suffices) generic
submanifold, then at every point p ∈ M whose local CR orbit O loc

CR(M, p)
has maximal dimension equal to dimM , there exists a local wedge Wp of
edgeM at p to which continuous CR functions extend holomorphically. Sev-
eral reconstructions and applications of this groundbreaking result, together
with surveys about the local Bishop equation have already appeared in the
literature.

Propagational aspects of CR extension theory are less known by contem-
porary experts of several complex variables, but they lie deeper in the the-
ory. Using FBI transform and concepts of microlocal analysis, Trépreau
showed in 1990 that holomorphic extension to a wedge propagates along
curves whose velocity vector is complex-tangential to M . His conjecture
that extension to a wedge should hold at every point of a generic subman-
ifold M ⊂ Cn consisting of a single global CR orbit has been answered
independently by Jöricke and by the first author in 1994, using tools intro-
duced previously by Tumanov. To the knowledge of the two authors, there
is no survey of these global aspects in the literature.

The first main objective of the present survey is to expose the techniques
underlying these results in a comprehensive and unified way, emphasizing
propagational aspects of embedded CR geometry and discussing optimal
smoothness assumptions. Thus, topics that are necessary to build the the-
ory from scratch will be selected and accompanied with thorough proofs,
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whereas other results that are nevertheless central in CR geometry will be
presented in concise survey style, without any proof.

The theory of CR extension by means of analytic discs combines vari-
ous concepts emanating mainly from three (wide) mathematical areas: Har-
monic analysis, Partial differential equations and Complex analysis in sev-
eral variables. As the project evolved, we felt the necessity of being concep-
tional, extensive and systematic in the restitution of (semi)known results, so
that various contributions to the subject would recover a certain coherence
and a certain unity. With the objective of adressing to a younger audience,
we decided to adopt a style accessible to doctoral candidates working on
a dissertation. Parts III, IV and V present elementarily general CR exten-
sion theory. Also, most sections of the text may be read independently by
experts, as quanta of mathematical information.

1.2. Concise presentation of the contents. The survey text is organized in
six main parts. Actually, the present brief introduction constitutes the first
and shortest one. Although the reader will find a “conceptional summary-
introduction” at the beginning of each part, a few descriptive words explain-
ing some of our options governing the reconstruction of CR extension theory
(Parts III, IV and V) are welcome.

The next Part II is independent of the others and can be skipped in a first
reading. It opens the text, because it is concerned with propagational aspects
of analytic CR structures, better understood than the smooth ones.
• In Part III, exclusively concerned with the smooth category, Sussmann’s
orbit theorem and its consequences are first explained in length. Involu-
tive structures and embedded CR manifolds, together with their elementary
properties, are introduced. Structural properties of finite type structures, of
CR orbits and of CR functions are presented without proofs. As a collection
of background material, this part should be consulted first.
• In Part IV, fundamental results about singular integral operators in the
complex plane are first surveyed. Explicit estimates of the norms of the
Cauchy, of the Schwarz and of the Hilbert transforms in the Hölder spaces
C κ,α are provided. They are useful to reconstruct the main Theorem 3.7(IV),
due to Tumanov, which asserts the existence of unique solutions to a
parametrized Bishop-type equation with an optimal loss of smoothness with
respect to parameters. Following Bishop’s constructive philosophy, the
smallness of the constants insuring existence is precised explicitly, thanks
to sharp norm inequalities in Hölder spaces. This part is meant to intro-
duce interested readers to further reading of Tumanov’s recent works about
extremal (pseudoholomorphic) discs in higher codimension.
• In Part V, CR extension theory is first discussed in the hypersurface case.
A simplified proof of wedge extendability that treats both locally minimal
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and globally minimal generic submanifolds on the same footing constitutes
the main Theorem 4.12(V): If M is a globally minimal C 2,α (0 < α <
1) generic submanifold of Cn of codimension > 1 and of CR dimension
> 1, there exists a wedgelike domain W attached to M such that every
continuous CR function f ∈ C 0

CR(M) possesses a holomorphic extension
F ∈ O(W )∩C 0(M ∪W ) with F |M = f . The figures are intended to share
the geometric insight of experts in higher codimensional geometry.

In fact, throughout the text, diagrams (33 in sum) facilitating readability
(especially of Part V) are included. Selected open questions and open prob-
lems (16 in sum) are formulated. They are systematically inserted in the
right place of the architecture. The sign “[∗]” added after one or several
bibliographical references in a statement (Problem, Definition, Theorem,
Proposition, Lemma, Corollary, Example, Open question and Open prob-
lem, e.g. Theorem 1.11(I)) indicates that, compared to the existing litera-
ture, a slight modification or a slight improvement has been brought by the
two authors. Statements containing no bibliographical reference are original
and appear here for the first time.

We apologize for having not treated some central topics of CR geom-
etry that also involve propagation of holomorphicity, exempli gratia the
geometric reflection principle, in the sense of Pinchuk, Webster, Diederich,
Fornæss, Shafikov and Verma. By lack of space, embeddability of abstract
CR structures, polynomial hulls, Bishop discs growing at elliptic complex
tangencies, filling by Levi-flat surfaces, Riemann-Hilbert boundary value
problems, complex Plateau problem in Kähler manifolds, partial indices of
analytic discs, pseudoholomorphic discs, etc. are not reviewed either. Cer-
tainly, better experts will fill this gap in the near future.

To conclude this introductory presentation, we believe that, although un-
easy to build, surveys and syntheses play a decisive rôle in the evolution
of mathematical subjects. For instance, in the last decades, the remarkable
development of ∂ techniques and of L2 estimates has been regularly accom-
panied by monographs and panoramas, some of which became landmarks
in the field. Certainly, the (local) method of analytic discs deserves to be
known by a wider audience; in fact, its main contributors have brought it to
the degree of achievement that opened the way to the present survey.

1.3. Further readings. Using the tools exposed and reconstructed in this
survey, the research article [26] studies removable singularities on CR man-
ifolds of CR dimension equal to 1 and solves a delicate remaining open
problem in the field (see the Introduction there for motivations). Recently
also, the authors built in [MP2006c] a new, rigorous proof of the classical
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Hartogs extension theorem which relies only on the basic local Levi argu-
ment along analytic discs, hence avoids both multidimensional integral rep-
resentation formulas and the Serre-Ehrenpreis argument about vanishing of
∂ cohomology with compact support.
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II: Analytic vector field systems
and formal CR mappings

Table of contents
1. Analytic vector field systems and Nagano’s theorem . . . . . . . . . . . . . . . . . . . . . . . . 8.
2. Analytic CR manifolds, Segre chains and minimality . . . . . . . . . . . . . . . . . . . . . . 19.
3. Formal CR mappings, jets of Segre varieties and CR reflection mapping . . . 28.

[3 diagrams]

According to the theorem of Frobenius, a system L of local vector fields hav-
ing real or complex analytic coefficients enjoys the integral manifolds property,
provided it is closed under Lie bracket. If the Lie brackets exceed L, considering
the smallest analytic system Llie containing L which is closed under Lie bracket,
Nagano showed that through every point, there passes a submanifold whose tangent
space is spanned byLlie. Without considering Lie brackets, these submanifolds may
also be constructed by means of compositions of local flows of elements of L. Such
a construction has applications in real analytic Cauchy-Riemann geometry, in the
reflection principle, in formal CR mappings, in analytic hypoellipticity theorems
and in the problem of local solvability and of local uniqueness for systems of first
order linear partial differential operators (Part III).

For a generic set of r > 2 vector fields having analytic coefficients, Llie has
maximal rank equal to the dimension of the ambient space.

The extrinsic complexification M of a real algebraic or analytic Cauchy-
Riemann submanifold M of Cn carries two pairs of intrinsic foliations, obtained
by complexifying the classical Segre varieties together with their conjugates. The
Nagano leaves of this pair of foliations coincide with the extrinsic complexifica-
tions of local CR orbits. If M is (Nash) algebraic, its CR orbits are algebraic too,
because they are projections of complexified algebraic Nagano leaves.

A complexified formal CR mapping between two complexified generic subman-
ifolds must respect the two pairs of intrinsic foliations that lie in the source and in
the target. This constraint imposes strong rigidity properties, as for instance: con-
vergence, analyticity or algebraicity of the formal CR mapping, according to the
smoothness of the target and of the source. There is a combinatorics of various
nondegeneracy conditions that entail versions of the so-called analytic reflection
principle. The concept of CR reflection mapping provides a unified synthesis of
recent results of the literature.

§1. ANALYTIC VECTOR FIELD SYSTEMS AND NAGANO’S THEOREM

1.1. Formal, analytic and (Nash) algebraic power series. Let n ∈ N with
n > 1 and let x = (x1, . . . , xn) ∈ Kn, where K = R or C. Let K[[x]] be the
ring of formal power series in (x1, . . . , xn). An element ϕ(x) ∈ K[[x]] writes
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ϕ(x) =
∑

α∈Nn ϕα xα, with xα := xα1
1 · · · xαn

n and with ϕα ∈ K, for every
multiindex α := (α1, . . . , αn) ∈ Nn. We put |α| := α1 + · · ·+ αn.

On the vector spaceKn, we choose once for all the maximum norm |x| :=
max16i6n |xi| and, for any “radius” ρ1 satisfying 0 < ρ1 6 ∞, we define the
open cube

¤n
ρ1

:= {x ∈ Kn : |x| < ρ1}
as a fundamental, concrete open set. For ρ1 = ∞, we identify of course ¤n

∞
with Kn.

If the coefficients ϕα satisfy a Cauchy estimate of the form |ϕα| 6 Cρ
−|α|
2 ,

C > 0, for every ρ2 satisfying 0 < ρ2 < ρ1, the formal power series is
K-analytic (C ω) in ¤n

ρ1
. It then defines a true point map ϕ : ¤n

ρ1
→ K.

Such a K-analytic function ϕ is called (Nash) K-algebraic if there exists a
nonzero polynomial P (X,Φ) ∈ K[X,Φ] in (n + 1) variables such that the
relation P (x, ϕ(x)) ≡ 0 holds in K[[x]], hence for all x in ¤n

ρ1
. The category

of K-algebraic functions and maps is stable under elementary algebraic op-
erations, under differentiation and under composition. Implicit solutions of
K-algebraic equations are K-algebraic ([BER1999]).

1.2. Analytic vector field systems and their integral manifolds. Let

L0 := {La}16a6r, r ∈ N, r > 1,

be a finite set of vector fields La =
∑n

i=1 ϕa,i(x)
∂
∂xi

, whose coefficients
ϕa,i are algebraic or analytic in ¤n

ρ1
. Let Aρ1 denote the ring of algebraic or

analytic functions in ¤n
ρ1

. The set of linear combinations of elements of L0

with coefficients in Aρ1 will be denoted by L (or L1) and will be called the
Aρ1-linear hull of L0.

If p is a point of ¤n
ρ1

, denote by La(p) the vector
∑n

i=1 ϕa,i(p)
∂
∂xi

∣∣
p
. It is

an element of Tp¤n
ρ1
' Kn. Define the linear subspace

L(p) := SpanK {La(p) : 1 6 a 6 r} = {L(p) : L ∈ L}.
No constancy of dimension, no linear independency assumption are made.

Problem 1.3. Find local submanifolds Λ passing through the origin satisfy-
ing TqΛ ⊃ L(q) for every q ∈ Λ.

By the theorem of Frobenius ([Stk2000]; original article: [Fr1877]), if the
La are linearly independent at every point of ¤n

ρ1
and if the Lie brackets

[La, La′ ] belong to L, for all a, a′ = 1, . . . , r, then ¤n
ρ1

is foliated by r-
dimensional submanifolds N satisfying TqN = L(q) for every q ∈ N .

Lemma 1.4. If there exists a local submanifold Λ passing through the origin
and satisfying TqΛ ⊃ L(q) for every q ∈ Λ, then for every two vector fields
L,L′ ∈ L, the restriction to Λ of the Lie bracket [L,L′] is tangent to Λ.
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Accordingly, set L1 := L and for k > 2, define Lk to be the Aρ1-
linear hull of Lk−1 +

[
L1,Lk−1

]
. Concretely, Lk is generated by Aρ1-linear

combinations of iterated Lie brackets [L1, [L2, . . . , [Lk−1, Lk] . . . ]], where
L1, L2, . . . , Lk−1, Lk ∈ L1. The Jacobi identity insures (by induction) that[
Lk1 ,Lk2

] ⊂ Lk1+k2 . Define then Llie := ∪k>1 Lk. Clearly, [L,L′] ∈ Llie,
for every two vector fields L,L′ ∈ Llie.

Theorem 1.5. (NAGANO [Na1966, Trv1992, BER1999, BCH2005]) There
exists a unique local K-analytic submanifold Λ of Kn passing through the
origin which satisfies L(q) ⊂ TqΛ = Llie(q), for every q ∈ Λ.

A discussion about what happens in the algebraic category is postponed
to §1.12. In Frobenius’ theorem, Llie = L and the dimension of Llie(p)
is constant. In the above theorem, the dimension of Llie(q) is constant for
q belonging to Λ, but in general, not constant for p ∈ ¤n

ρ1
, the function

p 7→ dim KL(p) being lower semi-continuous.
Nagano’s theorem is stated at the origin; it also holds at every point

p ∈ ¤n
ρ1

. The associated local submanifold Λp passing through p with the
property that TqΛ = Llie(q) for every q ∈ Λp is called a (local) Nagano leaf.

In the C∞ category, the consideration of Llie is insufficient. Part III han-
dles smooth vector field systems, providing a different answer to the search
of similar submanifolds Λp.

Example 1.6. In R2, take L0 = {L1, L2}, where L1 = ∂x1 and L2 =

e−1/x2
1 ∂x2 . Then Llie(0) is the line R∂x1|0, while Llie(p) = R∂x1|p + R∂x2|p

at every point p 6∈ R×{0}. Hence, there cannot exist a C∞ curve Λ passing
through 0 with T0Λ = R∂x1|0 and TqΛ = Llie(q) for every q ∈ Λ.

Proof of Theorem 1.5. (May be skipped in a first reading.) If n = 1, the
statement is clear, depending on whether or not all vector fields in Llie vanish
at the origin. Let n > 2. Since L(q) ⊂ Llie(q), the condition TqΛ = Llie(q)
implies the inclusion L(q) ⊂ TqΛ. Replacing L by Llie if necessary, we may
therefore assume that Llie = L and we then have to prove the existence of Λ
with TqΛ = Llie(q) = L(q), for every q ∈ Λ.

We reason by induction, supposing that, in dimension (n − 1), for every
Aρ1-linear system L′ = (L′)lie of vector fields locally defined in a neighbor-
hood of the origin in Kn−1, there exists a local K-analytic submanifold Λ′

passing through the origin and satisfying Tq′Λ′ = L′(q′), for every q′ ∈ Λ′.
If all vector fields in L = Llie vanish at 0, we are done, trivially. Thus,

assume there exists L1 ∈ L with L1(0) 6= 0. After local straightening, L1 =

∂x1 . Every L ∈ L writes uniquely L = a(x) ∂x1 + L̃, for some a(x) ∈ K{x},
with L̃ =

∑
26i6n ai(x) ∂xi

. Introduce the space L̃ := {L̃ : L ∈ L} of such
vector fields. As ∂x1 belongs to L and as L is Aρ1-linear, L̃ = L − a(x) ∂x1
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belongs to L. Since [L,L] ⊂ L, we have
[
L̃, L̃

] ⊂ L. On the other hand,
we observe that the Lie bracket between two elements of L̃ does not involve
∂x1:

(1.7)

[
L̃1, L̃2

]
=

[ ∑
26i26n

a1
i2
∂xi2

,
∑

26i16n
a2
i1
∂xi1

]

=
∑

26i16n

( ∑
26i26n

[
a1
i2

∂a2
i1

∂xi2
− a2

i2

∂a1
i1

∂xi2

])
∂xi1

.

We deduce that
[
L̃, L̃

] ⊂ L̃. In other words, L̃lie = L̃. Next, we define the
restriction

L′ :=
{
L′ = L̃

∣∣
{x1=0} : L̃ ∈ L̃}

,

and we claim that (L′)lie = L′ also holds true. Indeed, restricting (1.7) above
to {x1 = 0}, we observe that

[
L̃1

∣∣
{x1=0}, L̃2

∣∣
{x1=0}

]
=

[
L̃1, L̃2

]∣∣
{x1=0},

since neither L̃1 nor L̃2 involves ∂x1 . This shows that
[
L′,L′

] ⊂ L′, as
claimed.

Since (L′)lie = L′, the induction assumption applies: there exists a local
K-analytic submanifold Λ′ of Kn−1 passing through the origin such that
Tq′Λ

′ = L′(q′), for every point q′ ∈ Λ′. Let d denote its codimension.
If d = 0, i.e. if Λ′ coincides with an open neighborhood of the origin in
Kn−1, it suffices to chose for Λ an open neighborhood of the origin in Kn.
Assuming d > 1, we split the coordinates x = (x1, x

′) ∈ K × Kn−1 and we
let ρj(x′) = 0, j = 1, . . . , d, denote local K-analytic defining equations for
Λ′. We claim that it suffices to choose for Λ the local submanifold of Kn

with the same equations, hence having the same codimension.
Indeed, since these equations are independent of x1, it is first of all clear

that the vector field ∂x1 ∈ L is tangent to Λ. To conclude that every L =

a ∂x1 + L̃ ∈ L is tangent to Λ, we thus have to prove that every L̃ ∈ L̃ is
tangent to Λ.

Let L̃ =
∑

26i6n ai(x, x
′) ∂xi

∈ L̃. As a preliminary observation:

(ad ∂x1)L̃ :=
[
∂x1 , L̃

]
=

∑
26i6n

∂ai
∂x1

(x1, x
′)
∂

∂xi
,

and more generally, for ` ∈ N arbitrary:

(ad ∂x1)
`L̃ =

∑
26i6n

∂`ai
∂x`1

(x1, x
′)
∂

∂xi
.
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Since L is a Lie algebra, we have (ad ∂x1)
`L̃ ∈ L. Since (ad ∂x1)

`L̃ does not
involve ∂x1 , according to its expression above, it belongs in fact to L̃. Also,
after restriction (ad ∂x1)

`L̃
∣∣
x1=0

∈ L′. By assumption, L′ is tangent to Λ′.
We deduce that, for every ` ∈ N, the vector field

L′` := (ad ∂x1)
`L̃

∣∣
x1=0

=
∑

26i6n

∂`ai
∂x`1

(0, x′)
∂

∂xi

is tangent to Λ′. Equivalently, [L′` ρj](x
′) = 0 for every x′ ∈ Λ′. Letting

(x1, x
′) ∈ Λ, whence x′ ∈ Λ′, we compute:

[
L̃ ρj

]
(x1, x

′) =
∑

26i6n
ai(x1, x

′)
∂ρj
∂xi

(x′)

=
∑

26i6n

∞∑

`=0

x`1
`!

∂`ai
∂x`1

(0, x′)
∂ρj
∂xi

(x′) [Taylor development]

=
∞∑

`=0

x`1
`!

[
L′` ρj

]
(x′) = 0,

so L̃ is tangent to Λ. Finally, the property Tx1,x′Λ = L(x1, x
′) follows im-

mediately from Tx′Λ
′ = L′(x′) and the proof is complete (the Taylor de-

velopment argument above was crucially used, and this enlightens why the
theorem does not hold in the C∞ category).

1.8. Free Lie algebras and generic sets of K-analytic vector fields. For
a generic set of r > 2 vector fields L0 = {La}16a6r, or after slightly per-
turbing any given set, one expects that Llie(0) = T0Kn. Then the Nagano
leaf Λ passing through 0 is just an open neighborhood of 0 in Kn. Also, one
expects that the dimensions of the intermediate spaces Lk(0) be maximal.

To realize this intuition, one has to count the maximal number of iterated
Lie brackets that are linearly independent in Lk, for k = 1, 2, 3, . . . , modulo
antisymmetry and Jacobi identity.

Let r > 2 and let h1, h2, . . . , hr be r linearly independent elements of a
vector space overK. The free Lie algebra F(r) of rank r is the smallest (non-
commutative, non-associative) K-algebra ([Re1993]) having h1, h2, . . . , hr
as elements, with multiplication (h, h′) 7→ hh′ satisfying antisymmetry
0 = hh′ + h′ h and Jacobi identity 0 = h(h′ h′′) + h′′(hh′) + h′(h′′ h). It is
unique up to isomorphism. The case r = 1 yields only F(1) = K. The mul-
tiplication in F(r) plays the role of the Lie bracket in Llie. Importantly, no
linear relation exists between iterated multiplications, i.e. between iterated
Lie brackets, except those generated by antisymmetry and Jacobi identity.
Thus, F(r) is infinite-dimensional. Every finite-dimensional Lie K-algebra
having r generators embeds as a subalgebra of F(r), see [Re1993].
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Since the bracket multiplication is not associative, one must carefully
write some parentheses, for instance in (h1 h2)h3, or in h1(h2(h1 h2)),
or in (h1 h2)(h3(h5 h1)). Writing all such words only with the alphabet
{h1, h2, . . . , hr}, we define the length of a word h to be the number of ele-
ments hiα in it. For ` ∈ N with ` > 1, let W`

r be the set of words of length
equal to ` and let Wr =

⋃
`>1 W`

r be the set of all words.
Define F1(r) to be the vector space generated by h1, h2, . . . , hr and for

` > 2, define F`(r) to be the vector space generated by words of length
6 `. This corresponds to L`, except that in L`, there might exist special
linear relations that are absent in the abstract case. Thus, F(r) is a graded
Lie algebra. The Jacobi identity insures (by induction) that F`1(r)F`2(r) ⊂
F`1+`2(r), a property similar to

[
Lk1 ,Lk2

] ⊂ Lk1+k2 . It follows that F`(r) is
generated by words of the form

hi1(hi2(. . . (hi`′−1
hi`′ ) . . . )),

where `′ 6 ` and where 1 6 i1, i2, . . . , i`′−1, i`′ 6 r. For instance,
(h1 h2)(h3(h5 h1)) may be written as a linear combination of such simple
words whose length is 6 5. Let us denote by

SWr =
⋃

`>1

SW`
r

the set of these simple words, where SW`
r denotes the set of simple

words of length `. Although it generates F(r) as a vector space over
K, we point out that it is not a basis of F(r): for instance, we have
h1(h2(h1h2)) = h2(h1(h1h2)), because of an obvious Jacobi identity in
which (h1h2)(h1h2) = 0 disappears. In fact, one verifies that this is the
only Jacobi relation between simple words of length 4, that simple words of
length 5 have no Jacobi relation, hence a basis of F5(2) is

h1, h2, h1h2,

h1(h1h2), h2(h1h2),

h1(h1(h1h2)), h1(h2(h1h2)), h2(h2(h2h1)),

h1(h1(h1(h1h2))), h1(h1(h2(h1h2))), h1(h2(h2(h2h1))),

h2(h1(h1(h1h2))), h2(h2(h1(h2h1))), h2(h2(h2(h2h1))).

In general, what are the dimensions of the F`(r) ? How to find bases for
them, when considered as vector spaces ?

Definition 1.9. A Hall-Witt basis of F(r) is a linearly ordered (infinite) sub-
set HWr =

⋃
`>1 HW`

r of the set of simple words SWr such that:

• if two simple words h and h′ satisfy length(h) < length(h′), then
h < h′;
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• HW1
r = {h1, h2, . . . , hr};

• HW2
r = {hi1hi2 : 1 6 i1 < i2 6 r};

• HWr\(HW1
r ∪ HW2

r) = {h(h′h′′) : h,h′,h′′ ∈ HWr, h′ <
h′′ and h′ 6 h < h′h′′}.

A Hall-Witt basis essentially consists of the choice, for every ` > 1,
of some (among many possible) finite subset HW`

r of SW`
r that generates

the finite-dimensional quotient vector space F`(r)/F`−1(r). To fix ideas, an
arbitrary linear ordering is added among the elements of the chosen basis
HW`

r of the vector space F`(r)/F`−1(r). The last condition of the definition
takes account of the Jacobi identity.

Theorem 1.10. ([Bo1972, Re1993]) Hall-Witt bases exist and are bases of
the free Lie algebra F(r) of rank r, when considered as a vector space. The
dimensions n`(r) − n`−1(r) of F`(r)/F`−1(r), or equivalently the cardinals
of HW`

r, satisfy the induction relation

n`(r)− n`−1(r) =
1

`

∑

d divides `

µ(d) r`/d,

where µ is the Möbius function.

Remind that

µ(d) =





1, if d = 1;

0, if d contains square integer factors;

(−1)ν , if d = p1 · · · pν is the product of ν distinct prime numbers.

Now, we come back to the system L0 = {La}16a6r of local K-analytic
vector fields of §1.1, where La =

∑n
i=1 ϕa,i(x)

∂
∂xi

. If the vector space L(0)

has dimension < r, a slight perturbation of the coefficients ϕa,i(x) of the
La yields a system L′0 with L′(0) of dimension = r. By an elementary
computation with Lie brackets, one sees that a further slight perturbation
yields a system L′′0 with L′′(0) of dimension r + r(r−1)

2
= n2(r).

To pursue, any simple iterated Lie bracket [La1 , [La2 , . . . [La`−1
, La`

] . . . ]]

of length ` is a vector field
∑n

i=1 A
i
a1,a2,...,a`−1,a`

∂
∂xi

having coefficients
Aia1,a2,...,a`−1,a`

that are universal polynomials in the jets

J `−1
x ϕ(x) :=

(
∂αx ϕa,i(x)

)α∈Nn, |α|6`−1

16a6r, 16i6n ∈ KNrn,n,`−1

of order (` − 1) of the coefficients of L1, L2, . . . , Lr. Here, Nrn,n,`−1 =

rn (n+`−1)!
n! (`−1)!

denotes the number of such independent partial derivatives. A
careful inspection of the polynomials Aia1,a2,...,a`−1,a`

enables to get the fol-
lowing genericity statement, whose proof will appear elsewhere. It says in a
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precise way that Llie(0) = T0Kn with the maximal freedom, for generic sets
of vector fields.

Theorem 1.11. ([GV1987, Ge1988], [∗]) If `0 denotes the smallest length
` such that n`(r) > n, there exists a proper K-algebraic subset Σ of the jet
space J `0−1

0 ϕ = KNrn,n,`0−1 such that for every collection L0 = {La}16a6r
of r vector fields La =

∑n
i=1 ϕa,i(x)

∂
∂xi

such that J `0−1
0 ϕ(0) does not belong

to Σ, the following two properties hold:

• dimL`(0) = n`(r), for every ` 6 `0 − 1,
• dimL`0(0) = n, hence Llie(0) = T0Kn.

The number of divisors of ` being an O( log `
log 2

), one verifies that n`(r) −
n`−1(r) = 1

`
r` + O(r`/2 log `

log 2
). It follows that, for r fixed, the integer `0 of

the theorem is equivalent to logn
log r

as n→∞.

1.12. Local orbits of K-analytic and of (Nash) K-algebraic systems. We
now describe a second, more concrete, simple and useful approach to the
local Nagano Theorem 1.5. It is inspired by Sussmann’s Theorem 1.21(III)
and does not involve the consideration of any Lie bracket. Theorem 1.13
below will be applied in §2.11.

As above, consider a finite set

L0 := {La}16a6r, r ∈ N, r > 1,

of nonzero vector fields defined in the cube ¤n
ρ1

and having K-analytic co-
efficients. We shall neither consider its Aρ1-linear hull L, nor Llie. We will
reconstruct the Nagano leaf passing through the origin only by means of the
flows of L1, L2, . . . , Lr.

Referring the reader to §1.3(III) for background, we denote the flow map
of a vector field L ∈ L0 shortly by (t, x) 7→ Lt(x) = exp(tL)(x). It is
K-analytic. What happens in the algebraic category ?

So, assume that the coefficients of all vector fields L ∈ L0 are K-
algebraic. Unfortunately, algebraicity fails to be preserved under integra-
tion, so the flows are only K-analytic, in general. To get algebraicity of
Nagano leaves, there is nothing else than supposing that the flows are alge-
braic, which we will do (second phrase of (5) below).

Choose now ρ2 with 0 < ρ2 < ρ1. Let k ∈ N with k > 1, let L =
(L1, . . . , Lk) ∈ (L0)k, let t = (t1, . . . , tk) ∈ Kk with |t| < ρ2, i.e. t ∈ ¤k

ρ2
,

and let x ∈ ¤n
ρ2

. We shall adopt the contracted notation

Lt(x) := Lktk(· · · (L1
t1
(x)) · · · )

for the composition of flow maps, whenever it is defined. In fact, since
L0(0) = exp(0L)(0) = 0, it is clear that if we bound the length k 6 2n,
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then there exists ρ2 > 0 sufficiently small such that all maps (t, x) 7→ Lt(x)
are well-defined, with Lt(x) ∈ ¤n

ρ1
, at least for all t ∈ ¤k

ρ2
and all x ∈ ¤n

ρ2
.

The reason why we may restrict to consider only compositions of length
k 6 2n will appear a posteriori in the proof of the theorem below. We shall
be concerned with rank properties of (t, x) 7→ Lt(x).

Let n > 1, m > 1, ρ1 > 0, σ1 > 0 and let f : ¤n
ρ1
→ ¤m

σ1
, x 7→ f(x),

be a K-algebraic or K-analytic map between two open cubes. Denote its
Jacobian matrix by Jac (f) =

(∂fj

∂xi
(x)

)16j6m
16i6n . At a point x ∈ ¤n

ρ1
, the map

f has rank r if and only if Jac f has rank r at x. Equivalently, by linear
algebra, there is a r × r minor that does not vanish at x but all s× s minors
with r + 1 6 s 6 n do vanish at x.

For every s ∈ N with 1 6 s 6 min(n,m), compute all the possible
s× s minors ∆s×s

1 , . . . ,∆s×s
N(s) of Jac (f). They are universal (homogeneous

of degree s) polynomials in the partial derivatives of f , hence are all K-
algebraic or K-analytic functions. Let e with 0 6 e 6 min(n,m) be the
maximal integer s with the property that there exists a minor ∆s×s

µ (x), 1 6
µ 6 N(s), not vanishing identically. Then the set

Rf :=
{
x ∈ ¤n

ρ1
: ∆s×s

µ (x) = 0, µ = 1, . . . , N(s)
}

is a proper K-algebraic or analytic subset of ¤n
ρ1

. The principle of analytic
continuation insures that ¤n

ρ1

∖
Rf is open and dense.

The integer e is called the generic rank of f . For every open, connected
and nonempty subset Ω ⊂ ¤n

ρ1
the restriction f |Ω has the same generic rank

e.

Theorem 1.13. ([Me1999, Me2001a, Me2004a]) There exists an integer e
with 1 6 e 6 n and an e-tuple of vector fields L∗ = (L∗1, . . . , L∗e) ∈ (L0)e

such that the following six properties hold true.

(1) For every k = 1, . . . , e, the map (t1, . . . , tk) 7→
L∗ktk (· · · (L∗1t1 (0)) · · · ) is of generic rank equal to k.

(2) For every arbitrary element L′ ∈ L0, the map (t1, . . . , te, t
′) 7→

L′t′(L
∗e
te (· · · (L∗1t1 (0)) · · · )) is of generic rank e, hence e is the maxi-

mal possible generic rank.
(3) There exists an element t∗ ∈ ¤e

ρ2
arbitrarily close to the origin which

is of the special form (t∗1, . . . , t
∗
e−1, 0), namely with t∗e = 0, and there

exists an open connected neighborhood ω∗ of t∗ in ¤e
ρ2

such that the
map t 7→ L∗ete (· · · (L∗1t1

(0)) · · · ) is of constant rank e in ω∗.
(4) Setting L∗ := (L∗1, . . . , L∗e), K∗ := (L∗e−1, . . . , L∗1) and s∗ :=

(−t∗e−1, . . . ,−t∗1), we have K∗
s∗ ◦ L∗t∗(0) = 0 and the map ψ : ω∗ →

¤n
ρ1

defined by ψ : t 7→ K∗
s∗ ◦L∗t (0) is also of constant rank equal to

e in ω∗.
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(5) The image Λ := ψ(ω∗) is a piece of K-analytic submanifold passing
through the origin enjoying the most important property that every
vector field L′ ∈ L0 is tangent to Λ. If the flows of all elements of L0

are algebraic, Λ is K-algebraic.
(6) Every local K-algebraic or K-analytic submanifold Λ′ passing

trough the origin to which all vector fields L′ ∈ L0 are tangent must
contain Λ in a neighborhood of 0.

In conclusion, the dimension e of Λ is characterized by the generic rank
properties (1) and (2).

Previously, Λ was called Nagano leaf. Since the above statement is super-
seded by Sussmann’s Theorem 1.21(III), we prefer to call it the local L-orbit
of 0, introducing in advance the terminology of Part III and denoting it by
O loc
L0 (¤n

ρ1
, 0). The integer e of the theorem is 6 n, just because the target of

the maps (t1, . . . , tk) 7→ L∗ktk (· · · (L∗1t1 (0)) · · · ) is Kn. It follows that in (4)
and (5) we need 2e− 1 6 2n− 1 compositions of flows to cover Λ.

We quickly mention an application about separate algebraicity.
In [BM1949], it is shown that a local K-analytic function g : ¤n

ρ1
→ K is

K-algebraic if and only if its restriction to every affine coordinate segment
is K-algebraic. Call the system L0 minimal at the origin if O loc

L0 (¤n
ρ1
, 0)

contains a neighborhood of the origin. Equivalently, the integer e of
Theorem 1.13 equals n.

Theorem 1.14. ([Me2001a]) If L0 = {La}16a6r is minimal at 0, a local
K-analytic function g : ¤n

ρ1
→ K is K-algebraic if and only it its restriction

to every integral curve of every La ∈ L0 is K-algebraic.

Proof of Theorem 1.13. (May be skipped in a first reading.) If all vector
fields of L0 vanish at the origin, Λ = {0}. We now exclude this possibility.
Choose a vector field L∗1 ∈ L0 which does not vanish at 0. The map t1 7→
L∗1t1 (0) is of (generic) rank one at every t1 ∈ ¤1

ρ2
. If there exists L′ ∈ L0

such that the map (t1, t
′) 7→ L′t′(L

∗1
t1

(0)) is of generic rank two, we choose
one such L′ and we denote it by L∗2. Continuing in this way, we get vector
fields L∗1, . . . , L∗e satisfying properties (1) and (2), with e 6 n.

Since the generic rank of the map (t1, . . . , te) 7→ L∗ete (· · · (L∗1t1
(0)) · · · )

equals e, and since this map is K-analytic, there exists a t∗ ∈ ¤e
ρ2

arbitrarily
close to the origin at which its rank equals e. We claim that we can moreover
choose t∗ to be of the special form (t∗1, . . . , t

∗
e−1, 0), i.e. with t∗e = 0. It

suffices to apply the following lemma to ϕ(t) := L∗e−1
te−1

(· · · (L∗1t1
(0)) · · · )

and to L′ := L∗e.

Lemma 1.15. Let n ∈ N, n > 1, let e ∈ N, 1 6 e 6 n, let t ∈ ¤e−1
ρ2

and let

¤e−1
ρ2

3 t 7→ ϕ(t) = (ϕ1(t), . . . , ϕn(t)) ∈ ¤n
ρ1
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be a K-analytic map whose generic rank equals (e − 1). Let L′ be a K-
analytic vector field and assume that the map ψ : (t, t′) 7→ L′t′(ϕ(t)) has
generic rank e. Then there exists a point (t∗, 0) arbitrarily close to the origin
at which the rank of ψ is equal to e.

Proof. Choose t] ∈ ¤e−1
ρ2

arbitrarily close to zero at which ϕ has maximal
rank, equal to (e− 1). Since the rank is lower semi-continuous, there exists
a connected neighborhood ω] of t] in ¤e−1

ρ2
such that ϕ has rank (e − 1) at

every point of ω]. By the constant rank theorem, Π := ϕ(ω]) is then a local
K-analytic submanifold of ¤n

ρ1
passing through the point ϕ(t]). To complete

the proof, we claim that there exists t∗ ∈ ω] arbitrarily close to t] such that
the map (t, t′) 7→ L′t′(ϕ(t)) has rank e at (t∗, 0).

Let us reason by contradiction, supposing that at all points of the form
(t∗, 0), for t∗ ∈ ω], the map ψ : (t, t′) 7→ L′t′(ϕ(t)) has rank equal to (e−1).
Pick an arbitrary t∗ ∈ ω]. Reminding that when t′ = 0, we have L′t′ = L′0 =
Id, we observe that ψ(t, 0) ≡ ϕ(t). Consequently, the partial derivatives
of ψ with respect to the variables ti, i = 1, . . . , e − 1 at an arbitrary point
(t∗, 0), with t∗ ∈ ω], coincide with the (e− 1) linearly independent vectors
∂ϕ
∂ti

(t∗) ∈ Kn, i = 1, . . . , e − 1. In fact, the tangent space to Π at the point
ψ(t∗, 0) = ϕ(t∗) is generated by these (e− 1) vectors.

Reminding the fundamental property ∂
∂t′L

′
t′(x)

∣∣
t′=0

= L′(x), we deduce
[from our assumption that the map (t, t′) 7→ L′t′(ϕ(t)) has rank equal to
(e− 1)] that the vector

∂

∂t′
L′t′(ϕ(t))

∣∣∣∣
t′=0

= L′(ϕ(t))

must be linearly dependent with the (e− 1) vectors ∂ϕ
∂ti

(t), i = 1, . . . , e− 1,
for every t ∈ ω]. Equivalently, the vector field L′ is tangent to the sub-
manifold Π. It follows that the local flow of L′ necessarily stabilizes Π: if
x = ϕ(t) ∈ Π, t ∈ ω], then L′t′(x) ∈ Π, for all t′ ∈ ¤1

ρ(t), where ρ(t) > 0 is
sufficiently small. Set Ω] := {(t, t′) : t ∈ ω], t′ ∈ ¤ρ(t)1}. It is a nonempty
connected open subset of ¤e

ρ2
. We have thus deduced that ψ(Ω]) is contained

in the (e − 1)-dimensional submanifold Π. This constraint entails that ψ is
of rank 6 e − 1 at every point of Ω]. However, ψ|Ω] being K-analytic and
of generic rank equal to e, by assumption, it should be of rank e at every
point of an open dense subset of Ω]. This is the desired contradiction which
proves the lemma. ¤

Hence, there exists t∗ = (t∗1, . . . , t
∗
e−1, 0) ∈ ¤e

ρ2
arbitrarily close to the

origin at which the rank of t 7→ L∗ete (· · · (L∗1t1
(0)) · · · ) is maximal (hence

locally constant) equal to e, so we get the constant rank property (3), for a
sufficiently small neighborhood ω∗ of t∗.
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In (4), the property K∗
s∗ ◦ L∗t∗(0) = 0 is obvious, using x ≡ L0(x) ≡

L−t ◦ Lt(x):

L∗1−t∗1
◦ · · · ◦ L∗−t∗e−1

◦ L∗e0 ◦ L∗t∗e−1
◦ · · · ◦ L∗t∗1(x) ≡ x.

Since the map x 7→ K∗
s∗(x) is a local diffeomorphism, it is clear that the map

ψ : t 7→ K∗
s∗ ◦L∗t (0) is also of constant rank e in ω∗. Thus, we obtain (4), and

moreover, by the constant rank theorem, the image Λ := ψ(ω∗) constitutes a
local K-analytic submanifold of Kn passing through the origin. If the flows
of elements of L0 are all K-algebraic, clearly ψ and Λ are also K-algebraic.

It remains to check that every vector field L′ ∈ L0 is tangent to Λ. As a
preliminary, denote by L′t′(ϕ(t)), t ∈ ¤e

ρ2
, t′ ∈ ¤1

ρ2
, the map appearing in

(2), where L′ ∈ L0 is arbitrary. Reasoning as in the lemma above, we see
that L′ is necessarily tangent to some local submanifold Π obtained as the
local image of an open connected set where ϕ has maximal locally constant
rank. It follows that the flows and the multiple flows of elements of L0

stabilize this submanifold. We deduce a generalization of (2): for k 6 2n,
for L′ ∈ (L0)k, for t′ ∈ ¤k

ρ2
, the map (t, t′) 7−→ L′t′(L

∗e
te (· · · (L∗1t1

(0)) · · · ))
is of generic rank e.

In particular, for every L′ ∈ L0, the map (t′, s, t) 7−→ L′t′ ◦K∗
s ◦ L∗t (0) is

of generic rank e. In fact, the restriction ψ : t 7→ K∗
s∗ ◦ L∗t (0) of this map

to the open set {(0, s∗, t) : t ∈ ω∗} is already of rank e at every point and
its image is the local submanifold Λ, by the above construction. So the map
(t′, t) 7−→ L′t′ ◦K∗

s∗ ◦ L∗t (0) must be of rank e at every point. In particular,
the vector

∂

∂t′
L′t′ ◦K∗

s∗ ◦ L∗t (0)

∣∣∣∣
t′=0

= L′
(
K∗

s∗ ◦ L∗t (0)
)

must necessarily be tangent to Λ at the point K∗
s∗ ◦ L∗t (0) ∈ Λ. Thus, (5) is

proved.
Take Λ′ as in (6). The local flows of all vector L′ ∈ L0 stabilize Λ′.

Shrinking ρ2 if necessary, all the maps (t, x) 7−→ Lt(x) have range in Λ′. So
Λ ⊂ Λ′, proving (6). ¤

§2. ANALYTIC CR MANIFOLDS, SEGRE CHAINS AND MINIMALITY

2.1. Local Cauchy-Riemann submanifolds of Cn. Let (z1, . . . , zn) =
(x1 + iy1, . . . , xn + iyn) denote the canonical coordinates on Cn. As before,
we use the maximum norms |x| = max16k6n |xk|, |y| = max16k6n |yk| and
|z| = max16k6n |zk|, where |zk| = (x2

k + y2
k)

1/2. If ρ > 0, we denote by
∆n
ρ = {z ∈ Cn : |z| < ρ} the open polydisc of radius ρ centered at the

origin, not to be confused with ¤2n
ρ = {x+ iy ∈ Cn : |x|, |y| < ρ}.

Let J denote the complex structure of TCn, acting on real vectors as if it
were multiplication by

√−1. Precisely, if p is any point, TpCn is spanned by
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the 2n vectors ∂
∂xk

∣∣
p
, ∂
∂yk

∣∣
p
, k = 1, . . . , n, and J acts as follows: J ∂

∂xk

∣∣
p

=
∂
∂yk

∣∣
p
; J ∂

∂yk

∣∣
p

= − ∂
∂xk

∣∣
p
.

Choose the origin as a center point and consider a real d-codimensional
local submanifold M of Cn ' R2n passing through the origin, defined by d
Cartesian equations r1(x, y) = · · · = rd(x, y) = 0, where the differentials
dr1, . . . , drd are linearly independent at the origin. The functions rj are
assumed to be of class1 C R , where R = (κ, α), κ > 1, 0 6 α 6 1, R = ∞,
R = ω or R = A lg. Accordingly, M is said to be of class C A lg (real
algebraic), C ω (real analytic), C∞ or C κ,α.

For p ∈ M , the smallest J-invariant subspace of the tangent space TpM
is given by T cpM := TpM ∩ JTpM and is called the complex tangent space
to M at p.

Definition 2.2. The submanifold M is called:

• holomorphic if T cpM = TpM at every point p ∈M ;
• totally real if T cpM = {0} at every point p ∈M ;
• generic if TpM + JTpM = TpCn at every point p ∈M ;
• Cauchy-Riemann (CR for short) if the dimension of T cpM is equal to

a fixed constant at every point p ∈M .

For fundamentals about Cauchy-Riemann (CR for short) structures,
we refer the reader to [Ch1989, Ja1990, Ch1991, Bo1991, BER1999,
Me2004a]. Here, we only summarize some elementary useful properties.
The two J-invariant spaces TpM ∩ JTpM and TpM + JTpM are of even
real dimension. We denote by mp the integer 1

2
dim R(TpM ∩ JTpM) and

call it the CR dimension of M at p. If M is CR, mp ≡ m is constant. Holo-
morphic, totally real and generic submanifolds are CR, with m = n − 1

2
d,

m = 0 and m = n − d respectively. If M is totally real and generic,
dim RM = n and M is called maximally real. We denote by cp the integer
n − 1

2
dim R(TpM + JTpM) and call it the holomorphic codimension of M

at p. It is constant if and only if M is CR. Holomorphic, totally real, generic
and Cauchy-Riemann submanifolds are all CR and have constant holomor-
phic codimensions c = 1

2
d, c = d−n, c = 0 and c = d−n+m respectively.

Submanifolds of class C κ,α or C∞ will be studied in Part III.
Let M or be a real algebraic (C A lg) or analytic (C ω) submanifold of Cn

of (real) codimension d and let p0 ∈ M . There exist complex algebraic
or analytic coordinates centered at p0 and ρ1 > 0 such that M is locally
represented as follows.

Theorem 2.3. ([Ch1989, Bo1991, BER1999, Me2004a])

1Background about Hölder classes appears in Section 1(IV).
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• If M is holomorphic, letting m = n − 1
2
d > 0 and c := 1

2
d, then

m+ c = n and M =
{
(z, w1) ∈ ∆m

ρ1
×∆c

ρ1
: w1 = 0

}
.

• If M is totally real, letting d1 = 2n − d > 0 and
c = d − n > 0, then d1 + c = n and M ={
(w1, w2) ∈ ¤2d1

ρ1
×∆c

ρ1
: Imw1 = 0, w2 = 0

}
.

• If M is generic, letting m = d− n, then m+ d = n and

M =
{
(z, w) ∈ ∆m

ρ1
× (¤d

ρ1
+ iRd) : Imw = ϕ(z, z̄,Rew)

}
,

for some Rd-valued algebraic or analytic map ϕ satisfying ϕ(0) = 0
whose power series converges normally in ∆m

2ρ1
×∆m

2ρ1
×¤d

2ρ1
.

• If M is Cauchy-Riemann, letting m = CRdimM , c = d−n+m >
0, and d1 = 2n− 2m− d > 0, then m+ d1 + c = n and

M =
{
(z, w1, w2) ∈ ∆m

ρ1
× (

¤d1
ρ1

+ iRd1
)×∆c

ρ1
:

Imw1 = ϕ1(z, z̄,Rew1), w2 = 0
}
,

for some Rd1-valued algebraic or analytic map ϕ1 satisfy-
ing ϕ1(0) = 0 whose power series converges normally in
∆m

2ρ1
×∆m

2ρ1
×¤d1

2ρ1
.

A further linear change of coordinates may yield dϕ(0) = 0 and dϕ1(0) =
0.

A CR algebraic or analytic manifold being generic in some local complex
manifold of (smaller) dimension n− c, called its intrinsic complexification,
in most occasions, questions, results and articles, one deals with generic
manifolds. In this chapter, all generic submanifolds will be of positive codi-
mension d > 1 and of positive CR dimension m > 1.

2.4. Algebraic and analytic generic submanifolds and their extrinsic
complexification. Let M be generic, represented by Imw = ϕ(z, z̄,Rew).
The implicit function theorem applied to the vectorial equation w−w̄

2i
=

ϕ
(
z, z̄, w+w̄

2

)
, enables to solve the variables w̄ ∈ Cd, or the variables

w ∈ Cd. This yields the so-called complex defining equations for M , most
useful in applications, as stated just below. Recall that, given a power series
Φ(t) =

∑
γ∈Nn Φγ t

γ , t ∈ Cn, Φγ ∈ C, γ ∈ Nn, one defines the series
Φ(t) :=

∑
γ∈Nn Φγ t

γ by conjugating only its complex coefficients. Then
Φ(t) ≡ Φ(t̄), a frequently used property.

Theorem 2.5. ([BER1999, Me2004a]) A local generic real algebraic or an-
alytic d-codimensional generic submanifoldM∩∆n

ρ1
may be represented by

w̄ = Θ(z̄, z, w), or equivalently by w = Θ(z, z̄, w̄), for some complex alge-
braic or analytic Cd-valued map Θ whose power series converges normally
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in ∆m
2ρ1
×∆m

2ρ1
×∆d

2ρ1
, with ρ1 > 0. Here, Θ and Θ satisfy the two (equiv-

alent by conjugation) vectorial functional equations:
{
w̄ ≡ Θ(z̄, z,Θ(z, z̄, w̄)),

w ≡ Θ(z, z̄,Θ(z̄, z, w)).

Conversely, if such a Cd-valued map Θ satisfies the above, the set M :=
{(z, w) ∈ ∆n

ρ1
: w̄ = Θ(z̄, z, w)} is a real local generic submanifold of

codimension d.

The coordinates (z, w) ∈ Cm × Cd will also be denoted by t ∈ Cn. Let
τ = (ζ, ξ) ∈ Cm × Cd be new independent complex variables. Define the
extrinsic complexification M = (M)c of M to be the complex algebraic or
analytic d-codimensional submanifold of Cn × Cn defined by the vectorial
equation ξ − Θ(ζ, t) = 0 (the map Θ being analytic, we may indeed sub-
stitute ζ for z̄ in its power series). We also write τ = (t)c. Observe that M
identifies with the intersection M ∩ {τ = t̄}.

Lemma 2.6. ([Me2004a, Me2005]) There exists an invertible d × d matrix
a(t, τ) of algebraic or analytic power series converging normally in ∆n

2ρ1
×

∆n
2ρ1

such that w −Θ(z, τ) ≡ a(t, τ) [ξ −Θ(ζ, t)].

Thus, M is equivalently defined by w −Θ(z, τ) = 0.

2.7. Complexified Segre varieties and complexified CR vector fields. Let
τp, tp ∈ ∆n

ρ1
be fixed and define the complexified Segre varieties Sτp and

the complexified conjugate Segre varieties S tp by:
{

Sτp :=
{
(t, τ) ∈ ∆n

ρ1
×∆n

ρ1
: τ = τp, w = Θ(z, τp)

}
and

S tp :=
{
(t, τ) ∈ ∆n

ρ1
×∆n

ρ1
: t = tp, ξ = Θ(ζ, tp)

}
.

Geometrically, Sτp = M ∩ {τ = τp} and S tp = M ∩ {t = tp}. We draw
a diagram.

0

{t = tp}
S tp

{τ = τp}

tp t

L

τp

M
L

Sτp

Geometry of the extrinsic complexification M

generic submanifold carries a pair
The complexification of a real analytic

integral submanifolds of the complexified
of invariant foliations which are the

(1, 0) and (0, 1) vector fields and which
identify also with the complexified
Segre varieties
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We warn the reader that

dim CM − dim CSτp − dim CS tp = d > 1,

so that the ambient codimension d of the unions of Sτp and of S tp is in-
visible in this picture; one should imagine for instance that M is the three-
dimensional physical space equipped with a pair of foliations by horizontal
orthogonal real lines.

Next, define two collections of complex vector fields:




Lk :=
∂

∂zk
+

d∑
j=1

∂Θj

∂zk
(z, ζ, ξ)

∂

∂wj
, k = 1, . . . ,m, and

L k :=
∂

∂ζk
+

d∑
j=1

∂Θj

∂ζk
(ζ, z, w)

∂

∂ξj
, k = 1, . . . ,m.

One verifies that Lk

(
wj −Θj(z, ζ, ξ)

) ≡ 0, which shows that the Lk are
tangent to M . Similarly, L k (ξj −Θj(ζ, z, w)) ≡ 0, so the L k are also
tangent to M . In addition, [Lk, Lk′ ] = 0 and [L k, L k′ ] = 0 for k, k′ =
1, . . . ,m, so the theorem of Frobenius applies. In fact, the m-dimensional
integral submanifolds of the two collections {Lk}16k6m and {L k}16k6m
are the Sτp and the S tp . In summary, M carries a fundamental pair of
foliations.

Observe that the vector fields Lk are the complexifications of the vector
fields Lk := ∂

∂zk
+

∑d
j=1

∂Θj

∂zk
(z, z̄, w̄) ∂

∂wj
, k = 1, . . . ,m, that generate the

holomorphic tangent bundle T 1,0M . A similar observation applies to the
vector fields L k.

In general (unless M is Levi-flat), the total collection {Lk,L k}16k6m
does not enjoy the Frobenius property. In fact, the noncommutativity of this
system of 2m vector fields is at the very core of Cauchy-Riemann geometry.

To apply Theorem 1.13, introduce the “multiple” flows of the two
collections {Lk}16k6m and {L k}16k6m. If p ∈ M has coordinates
(zp, wp, ζp, ξp) ∈ ∆m

ρ1
×∆d

ρ1
×∆m

ρ1
×∆d

ρ1
satisfying wp = Θ(zp, ζp, ξp) and

ξp = Θ(ζp, zp, wp) and if z1 := (z1,1, . . . , z1,m) ∈ Cm is a small “multitime”
parameter, define the “multiple” flow of L by:

(2.8)

Lz1(zp, wp, ζp, ξp) := exp (z1L ) (p)

:= exp (z1,1L1(· · · (exp(z1,mLm(p))) · · · ))
:=

(
zp + z1,Θ(zp + z1, ζp, ξp), ζp, ξp

)
.

Of course, Lz1(p) ∈ M . Similarly, for p ∈ M and ζ1 ∈ Cm, defining:

(2.9) L ζ1
(zp, wp, ζp, ξp) := (zp, wp, ζp + ζ1,Θ(ζp + ζ1, zp, wp)),
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we have L ζ1
(p) ∈ M . Clearly, (p, z1) 7→ Lz1(p) and (p, ζ1) 7→ L ζ1

(p) are
complex algebraic or analytic local maps.

2.10. Segre chains. Let us start from p = 0 being the origin and move
vertically along the complexified conjugate Segre variety S 0 of a height
z1 ∈ Cm, namely let us consider the point L z1

(0), which we shall also
denote by Γ1(z1). We have Γ1(0) = 0. Let z2 ∈ Cm. Starting from the point
Γ1(z1), let us move horizontally along the complexified Segre variety of a
length z2 ∈ Cm, namely let us consider the point

Γ2(z1, z2) := Lz2(L z1
(0)).

Next, define Γ3(z1, z2, z3) := L z3
(Lz2(L z1

(0))), and then

Γ4(z1, z2, z3, z4) := Lz4(L z3
(Lz2(L z1

(0)))),

and so on. We draw a diagram:

0

τ

t

Γ3(z(3))

Γ2(z(2))Γ1(z1)

M

Γ4(z(4))

Cn × Cn

Segre chains in M

By induction, for every k ∈ N, k > 1, we obtain a local complex algebraic
or analytic map Γk(z1, . . . , zk), valued in M , defined for sufficiently small
z1, . . . , zk ∈ Cm which satisfies Γk(0, . . . , 0) = 0. The abbreviated notation
z(k) := (z1, . . . , zk) ∈ Cmk will be used. The map Γk is called the k-th
conjugate Segre chain ([Me2004a, Me2005]).

If we had conducted this procedure by starting with L instead of start-
ing with L , we would have obtained maps Γ1(z1) := Lz1(0), Γ2(z(2)) :=
L z2

(Lz1(0)), etc., and generally Γk(z(k)). The map Γk is called the k-th
Segre chain.

There is a symmetry relation between Γk and Γk. Indeed, let σ be the
antiholomorphic involution of Cn × Cn defined by σ(t, τ) := (τ̄ , t̄). Since
we have w = Θ(z, ζ, ξ) if and only if ξ = Θ(ζ, z, w), this involution is a
bijection of M . Applying σ to the definitions (2.8) and (2.9) of the flows of
L and of L , one may verify that σ(Lz1(p)) = L z̄1

(σ(p)). It follows the
general symmetry relation σ

(
Γk(z(k))

)
= Γk

(
z(k)

)
. Thus, Γk and Γk have

the same behavior.
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2.11. Minimality of M at the origin and complexified local CR orbits.
Since Γk(0) = Γk(0) = 0, for every integer k > 1, there exists δk > 0
sufficiently small such that Γk(z(k)) and Γk(z(k)) are well defined and be-
long to M , at least for all z(k) ∈ ∆mk

δk
. To fiw ideas, it will be conve-

nient to consider that ∆mk
δk

is the precise domain of definition of Γk and
of Γk. We aim to apply the procedure of Theorem 1.13 to the system
L0 :=

{
L1, . . . ,Lm, L 1, . . . ,L m

}
.

However, there is a slight (innocuous) difference: each multitime t =
(t1, . . . , t) ∈ Kk had scalar components ti ∈ K, whereas now each z(k) =
(z1, . . . , zk) ∈ Cmk has vectorial components zi ∈ Cm. It is easy to see that
both Γ1 and Γ1 are of constant rank m. Also, both Γ2 and Γ2 are of constant
rank 2m, since L1, . . . ,Lm, L 1, . . . ,L m are linearly independent at the
origin. However, when passing to (conjugate) Segre chains of length > 3, it
is necessary to speak of generic ranks and to introduce some combinatorial
integers ek > 1. Justifying examples may be found in [Me1999, Me2004a].

Theorem 2.12. ([BER1996, BER1999, Me1999, Me2001a, Me2004a])
There exists an integer ν0 with 1 6 ν0 6 d and, for k = 3, . . . , ν0 + 1,
integers ek with 1 6 ek 6 m such that the following nine properties hold
true.

(1) For every k = 3, . . . , ν0 + 1, the two maps Γk and Γk are of generic
rank equal to 2m+ e3 + · · ·+ ek. In the special case ν0 = 1, the ek
are inexistent2 and nothing is stated.

(2) For every k > ν0 + 1, both Γk and Γk are of fixed, stabilized generic
rank equal to 2m+ e, where

e := e3 + · · ·+ eν0 6 d.

(3) Setting µ0 := 2ν0 + 1, there exist two points z∗(µ0) ∈ ∆mµ0

δµ0
and

z∗(µ0) ∈ ∆mµ0

δµ0
satisfying Γµ0(z

∗
(µ0)) = 0 and Γµ0

(z∗(µ0)) = 0 which
are arbitrarily close to the origin in ∆mµ0

δµ0
such that Γµ0 and Γµ0

are
of constant rank 2m + e in neighborhoods ω∗ and ω∗ of z∗(µ0) and
of z∗(µ0). The images Γµ0(ω

∗) and Γµ0
(ω∗) then constitute two pieces

of local K-algebraic or analytic submanifold of dimension 2m + e
contained in M .

(4) Both Γµ0(ω
∗) and Γµ0

(ω∗) enjoy the most important property that
all vector fields L1, . . . ,Lm, L 1, . . . ,L m are tangent to Γµ0(ω

∗)
and to Γµ0

(ω∗).
(5) Γµ0(ω

∗) and Γµ0
(ω∗) coincide together in a neighborhood of 0 in

M .

2One may set e1 := m and e2 := m in any case.
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(6) Denoting by
OL ,L (M , 0)

this common local piece of complex analytic submanifold of M , it is
algebraic provided that the flows of

{
L1, . . . ,Lm, L 1, . . . ,L m

}
are themselves algebraic.

(7) Every local complex analytic or algebraic submanifold N ⊂ M
passing through the origin to which L1, . . . ,Lm, L 1, . . . ,L m are
all tangent must contain OL ,L (M , 0) in a neighborhood of the ori-
gin.

(8) The integers ν0, e3, . . . , eµ0 and e are biholomorphic invariants of
M .

(9) Γµ0(ω
∗) and Γµ0

(ω∗) also coincide (in a neighborhood of the origin)
with the Nagano leaf of the system

{
L1, . . . ,Lm, L 1, . . . ,L m

}
, as

it was constructed in Theorem 1.5.

As in [Me2004a, Me2005] (with different notations), the integer ν0 will
be called the Segre type of M .

The “orbit notation” OL ,L (M , 0) anticipates the presentation and the no-
tation of Section 1(III). We will abandon Lie brackets and Nagano leaves.

The complex vector fields Lk := ∂
∂zk

+
∑d

j=1
∂Θj

∂zk
(z, z̄, w̄) ∂

∂wj
, k =

1, . . . ,m, are tangent to M of equations wj = Θj(z, z̄, w̄), j = 1, . . . , d;
their conjugates Lk are also tangent to M ; it follows that the real and imag-
inary parts ReLk and ImLk are also tangent to M . We may then apply
Theorem 1.13 to the system {ReLk, ImLk}16k6m, getting a certain real an-
alytic local submanifold OL,L(M, 0) ofM passing through the origin. It will
be called the local CR orbit of the origin in M (terminology of Part III).

The relation between OL ,L (M , 0) and OL,L(M, 0) is as follows
([BER1996, Me1999, Me2001a, Me2004a]). Let πt(t, τ) := t and
πτ (t, τ) := τ denote the two canonical projections associated to the product
∆n
ρ1
×∆n

ρ1
. Let A :=

{
(t, τ) ∈ ∆n

ρ1
×∆n

ρ1
: τ = t̄

}
be the antiholomorphic

diagonal. Observe that πt(A ∩M ) = M .

• The extrinsic complexification
[
OL,L(M, 0)

]c
= OL ,L (M , 0).

• The projection πt
(
A ∩ OL ,L (M , 0)

)
= OL,L(M, 0).

Concerning smoothness, a striking subtelty happens: if M is real alge-
braic, although the local multiple flows of L and of L are complex alge-
braic (thanks to their definitions (2.8) and (2.9)), the flows of ReLk and of
ImLk are only real analytic in general.

Example 2.13. ([Me2004a]) For the real algebraic hypersurface of C2 de-
fined by Imw =

√
1 + zz̄ − 1, the vector field L := ∂

∂z
+ iz̄

√
1 + zz̄ ∂

∂w
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generates T 1,0M and the flow of 2 ReL involves the transcendent function
Arcsh.

Theorem 2.14. ([BER1996, Me2001a]) The local CR orbit OL,L(M, 0) is
real algebraic if M is.

For the proof, assuming M to be real algebraic, it is impossible, because
of the example, to apply the second phrase of Theorem 1.13 (5) to the system
{ReLk, ImLk}16k6m. Fortunately, this phrase applies to the complexified
system {Lk,L k}16k6m, whence OL ,L (M , 0) is algebraic, and then the
local CR orbit OL,L(M, 0) = πt (A ∩ OL ,L (M , 0)) is real algebraic.

Definition 2.15. The generic submanifold M or its extrinsic complexifica-
tion M is said to be minimal at the origin if OL,L(M, 0) contains a neigh-
borhood of 0 in M , or equivalently if OL ,L (M , 0) contains a neighborhood
of 0 in M .

The minimality at the origin of the algebraic or analytic complexified lo-
cal generic submanifold M = (M)c is a biholomorphically invariant prop-
erty; it neither depends on the choice of defining equations nor on the choice
of a conjugate pair of systems of complex vector fields {Lk}16k6m and
{L k}16k6m spanning the tangent space to the two foliations.

Minimality at 0 reads e = d in Theorem 2.12. For a hypersurface M ,
namely with d = 1, minimality at 0 is equivalent to ν0 = 2.

2.16. Projections of the submersions Γµ0 and Γµ0
. Let µ0 = 2ν0 + 1 as

in Theorem 2.12. If M is minimal at the origin, the two local holomorphic
maps

Γµ0 and Γµ0
: ∆mµ0

δµ0
−→ M

satisfy Γµ0(z
∗
(µ0)) = 0 and Γµ0

(z∗(µ0)
) = 0 and they are submersive at z∗(µ0)

and at z∗(µ0).
Consider the two projections πt(t, τ) := t and πτ (t, τ) := τ and

four compositions πt
(
Γµ0(z(µ0))

)
, πt

(
Γµ0

(z(µ0))
)

and πτ
(
Γµ0(z(µ0))

)
,

πτ
(
Γµ0

(z(µ0))
)
. Since µ0 = 2ν0 + 1 is odd, observe that the composition

Γ2ν0+1 = L (· · · ) ends with a L and that Γ2ν0+1 = L (· · · ) ends with a L .
According to the two definitions of the flow maps, the coordinates (ζp, ξp)
are untouched in (2.8) and the coordinates (zp, wp) are untouched in (2.9).
It follows that{

πt
(
Γ2ν0+1(z(2ν0+1))

) ≡ πt
(
Γ2ν0

(z(2ν0))
)

and

πτ
(
Γ2ν0+1(z(2ν0+1))

) ≡ πτ
(
Γ2ν0(z(2ν0))

)
.

Corollary 2.17. ([Me1999, BER1999, Me2004a]) If M is minimal at the
origin, there exists a integer ν0 6 d + 1 (the Segre type of M at the origin)
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and there exist points z∗(2ν0) ∈ C2mν0 and z∗(2ν0) ∈ C2mν0 arbitrarily close to
the origin, such that the two maps

{
∆m2ν0
δ2ν0

3 z(2ν0) 7−→ πt
(
Γ2ν0

(z(2ν0))
) ∈ Cn and

∆m2ν0
δ2ν0

3 z(2ν0) 7−→ πτ
(
Γ2ν0(z(2ν0))

) ∈ Cn

are of rank n and send z∗(2ν0) and z∗(2ν0) to the origin.

§3. FORMAL CR MAPPINGS, JETS OF SEGRE VARIETIES
AND CR REFLECTION MAPPING

3.1. Complexified CR mappings respect pairs of foliations. Let n′ ∈ N
with n′ > 1 and let M ′ ⊂ Cn′ be a second algebraic or analytic generic
submanifold of codimension d′ > 1 and of CR dimension m′ = n′−d′ > 1.
Let p′ ∈M ′. There exist local coordinates t′ = (z′, w′) ∈ Cm′×Cd′ centered
at p′ in which M ′ is represented by w̄′ = Θ′(z̄′, t′), or equivalently by w′ =

Θ
′
(z′, t′). If (t

′
)c = τ ′ = (ζ ′, ξ′) ∈ Cm′×Cd′ , the extrinsic complexification

is represented by ξ′ = Θ′(ζ ′, t′), or equivalently by w′ = Θ
′
(z′, τ ′). We shall

denote by 0′ the origin of Cn′ .
Let t ∈ Cn and let h(t) = (h1(t), . . . , hn′(t)) ∈ C[[t]]n

′
be a formal

power series mapping with no constant term, i.e. h(0) = 0′; it may also
be holomorphic namely h(t) ∈ C{t}n′ , or even (Nash) algebraic. We have
(h(t))c = h((t)c) = h(τ). Define hc(t, τ) := (h(t), h(τ)).

Set r(t, τ) := ξ − Θ(ζ, t), set r(τ, t) := w − Θ(z, τ), set r′(t′, τ ′) :=

ξ′ − Θ′(ζ ′, t′) and set r′(τ ′, t′) := w′ − Θ
′
(z′, τ ′). We say that the power

series mapping h is a formal CR mapping from (M, 0) to (M ′, 0′) if there
exists a d′ × d matrix of formal power series b(t, t̄) such that

r′
(
h(t), h(t̄)

) ≡ b(t, t̄) r(t, t̄)

in C[[t, t̄]]d
′
. By complexification, it follows that r′

(
h(t), h(τ)

) ≡
b(t, τ) r(t, τ) in C[[t, τ ]]d

′
, namely hc(t, τ) = (h(t), h(τ)) maps (M , 0)

formally to (M ′, 0′). By Lemma 2.6, there exist two complex analytic
invertible matrices a(t, τ) and a′ (t′, τ ′) satisfying :{

r(t, τ) ≡ a(t, τ) r(τ, t), r′ (t′, τ ′) ≡ a′ (t′, τ ′) r′ (τ ′, t′) ,

r(τ, t) ≡ a(τ, t) r(t, τ), r′(τ ′, t′) ≡ a′ (τ ′, t′) r′ (t′, τ ′) ,

in C[[t, τ ]]d and in C[[t′, τ ′]]d
′
. So, to define a complexified formal CR map-

ping hc : (M , 0) 7→F (M ′, 0′), we get four vectorial formal identities, each
one implying the remaining three:{

r′
(
h(t), h(τ)

) ≡ b(t, τ) r(t, τ), r′
(
h(t), h(τ)

) ≡ c(τ, t) r(τ, t),

r′
(
h(τ), h(t)

) ≡ b(τ, t) r(τ, t), r′
(
h(τ), h(t)

) ≡ c(t, τ) r(t, τ).
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Here, we have set c(t, τ) := b(τ, t) a(t, τ).
These identities are independent of the choice of local coordinates and

of local complex defining equations for (M, 0) and for (M ′, 0′). Since h
is not a true point-map, we write h : (M, 0) →F (M ′, 0′), the index F
being the initial of Formal. If h is convergent, it is a true point-map from a
neighborhood of 0 in M to a neighborhood of 0′ in M ′.

(h(t), h̄(τ))

0′

τ ′

t′

M ′

0

τ

t

M
hc = (h, h̄)

Γ1(z1) Γ2(z(2))

Γ3(z(3))

S

S ′

S ′S Cn′ × Cn′Cn × Cn

Complexified formal CR mappings respect pairs of foliations

If h is holomorphic in a polydisc ∆n
ρ1

, ρ1 > 0, its extrinsic complex-
ification hc sends both the n-dimensional coordinate spaces {t = cst.}
and {τ = cst.} to the n′-dimensional coordinate spaces {t′ = cst.} and
{τ ′ = cst.}.

Equivalently, hc maps complexified (conjugate) Segre varieties of the
source to complexified (conjugate) Segre varieties of the target. Some strong
rigidity properties are due to the fact that hc = (h, h̄) must respect the two
pairs of Segre foliations.

The most important rigidity feature, called the reflection principle3, says
that the smoothness of M , M ′ governs the smoothness of h:

• suppose that M and M ′ are real analytic and that h(t) ∈ C[[t]]n
′

is
only formal; statement: under suitable assumptions, h(t) ∈ C{t}n′
is in fact convergent.

• suppose that M and M ′ are real algebraic and that h(t) ∈ C[[t]]n
′

is
only formal; statement: under suitable assumptions, h(t) is complex
algebraic.

After a mathematical phenomenon has been observed in a special, well
understood situation, the research has to focus attention on the finest, the

3Other rigidity phenomena are: parametrization of CR automorphism groups by a jet of
finite order, finiteness of their dimension, genericity of nonalgebraizable CR submanifolds,
genericity of CR submanifolds having no infinitesimal CR automorphisms, etc.
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most adequate, the necessary and sufficient conditions insuring it to hold
true.

In this section, we aim to expose various possible assumptions for
the reflection principle to hold. Our goal is to provide a synthesis by
gathering various nondegeneracy assumptions which imply reflection.
For more about history, for other results, for complements and for dif-
ferent points of view we refer to [Pi1975, Le1977, We1977, We1978,
Pi1978, DF1978, DW1980, DF1988, BR1988, BR1990, DP1993, DP1995,
DP1998, BER1999, Sh2000, BER2000, Me2001a, Me2002, Hu2001,
Sh2003, DP2003, Ro2003, MMZ2003b, ER2004, Me2005].

The main theorems will be presented in §3.19 and in §3.22 below, after a
long preliminary. In these results, M will always be assumed to be minimal
at the origin. Corollary 2.17 says already how to use concretely this assump-
tion: to show the convergence or the algebraicity of a formal CR mapping
h : (M, 0) 7→F (M ′, 0′), it suffices to establish that for every k ∈ N, the
formal maps z(k) 7−→F h

(
πt

(
Γk(z(k))

))
are convergent or algebraic.

Before surveying recent results about the reflection principle (without any
indication of proof), we have to analyze thoroughly the geometry of the
target M ′ and to present the nondegeneracy conditions both on M ′ and on
h. Of course, everything will also be meaningful for sufficiently smooth
(C∞ or C κ) local CR mappings, by considering Taylor series.

These conditions are classical in local analytic geometry and they may
already be illustrated here with a plain formal map h(t) ∈ C[[t]]n

′
, not nec-

essarily being CR.

Definition 3.2. A formal power series mapping h : (Cn, 0) 7→F (Cn′ , 0′)
with components hi′(t) ∈ C[[t]], i′ = 1, . . . , n′, is called

(1) invertible if n′ = n and det ([∂hi1/∂ti2 ](0))16i1,i26n 6= 0;

(2) submersive if n > n′ and there exist integers 1 6 i(1) < · · · <
i(n′) 6 n such that det ([∂hi′1/∂ti(i′2)](0))16i′1,i′26n′ 6= 0;

(3) finite if the ideal generated by the components h1(t), . . . , hn′(t) is of
finite codimension in C[[t]]; this implies n′ > n;

(4) dominating if n > n′ and there exist integers 1 6 i(1) < · · · <
i(n′) 6 n such that det([∂hi′1/∂ti(i′2)](t))16i′1,i′26n′ 6≡ 0 in C[[t]];

(5) transversal if there does not exist a nonzero power series
G(t′1, . . . , t

′
n′) ∈ C[[t′1, . . . , t

′
n′ ]] such that G(h1(t), . . . , hn′(t)) ≡ 0

in C[[t]].

It is elementary to see that invertibility implies submersiveness which im-
plies domination. Furthermore, if a formal power series is either invertible,
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submersive or dominating, then it is transversal. Philosophically, the “dis-
tance” between finite and dominating or transversal is large, whereas the
“distance” between invertible and submersive or finite is “small”.

3.3. Jets of Segre varieties and Segre mapping. The target M ′ concen-
trates all geometric conditions that are central for the reflection principle.
With respect to M ′, the complexified conjugate Segre variety associated
to a fixed t′ is S ′

t′ := {(ζ ′, ξ′) ∈ Cn′ : ξ′ = Θ′(ζ ′, t′)}. Here, ζ ′ is a
parametrizing variable. For k′ ∈ N, define the morphism of k′-th jets of
complexified conjugate Segre varieties by:

ϕ′k′(ζ
′, t′) := Jk

′
τ ′S

′
t′ :=

(
ζ ′,

(
1

β′!
∂β

′
ζ′ Θ

′
j′(ζ

′, t′)
)

16j′6d′, β′∈Nm′ , |β′|6k′

)
.

It takes values in Cm′+Nd′,m′,k′ , with Nd′,m′,k′ := d′ (m
′+k′)!

m′! k′! . If k′1 6 k′2, we
have of course πk′2,k′1 ◦ ϕ′k′2 = ϕ′k′1 .

As observed in [DW1980], the properties of this morphism govern the
various reflection principles. We shall say ([Me2004a, Me2005]) that M ′

(or equivalently M ′) is:

(nd1) Levi non-degenerate at the origin if ϕ′1 is of rank m′+n′ at (ζ ′, t′) =
(0′, 0′);

(nd2) finitely nondegenerate at the origin if there exists an integer `′0 such
that ϕ′k′ is of rank n′ +m′ at (ζ ′, t′) = (0′, 0′), for k′ = `′0, hence for
all k′ > `′0;

(nd3) essentially finite at the origin if there exists an integer `′0 such that
ϕ′k′ is a finite holomorphic map at (ζ ′, t′) = (0′, 0′), for k′ = `′0,
hence for all k′ > `′0;

(nd4) Segre nondegenerate at the origin if there exists an integer `′0 such
that the restriction of ϕ′k′ to the complexified Segre variety S ′

0 (of
complex dimension m′) is of generic rank m′, for k′ = `′0, hence for
all k′ > `′0;

(nd5) holomorphically nondegenerate if there exists an integer `′0 such that
the map ϕ′k′ is of maximal possible generic rank, equal to m′ + n′,
for k′ = `′0, hence for all k′ > `′0.

Theorem 3.4. ([Me2004a]) These five conditions are biholomorphically in-
variant and: (nd1) ⇒ (nd2) ⇒ (nd3) ⇒ (nd4) ⇒ (nd5).

Being not punctual, the last condition (nd5) is the finest: as every con-
dition of maximal generic rank, it propagates from any small open subet
to big connected open sets, thanks to the principle of analytic continuation.
Notably, if a connected real analytic M ′ is holomorphically nondegenerate
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“at” a point, it is automatically holomorphically nondegenerate “at” every
point ([St1996, BER1999, Me2004a]).

To explain the (crucial) biholomorphic invariance of the jet map ϕ′k′ , con-
sider a local biholomorphism t′ 7→ h′(t′) = t′′, where t′, t′′ ∈ Cn′ , that fixes
the origin, h′i′(t

′) ∈ C{t′}, h′i′(0
′) = 0′, for i′ = 1, . . . , n′. Splitting the

coordinates t′′ = (z′′, w′′) ∈ Cm′ × Cd′ , the image M ′′ may be similarly
represented by w̄′′ = Θ′′(z̄′′, t′′) and there exists a d′ × d′ matrix b′(t′, τ ′) of
local holomorphic functions such that

r′′
(
h′(t′), h

′
(τ ′)

) ≡ b′(t′, τ ′) r′(t′, τ ′)

in C{t′, τ ′}d′ , where r′j′(t
′, τ ′) := ξ′j′ − Θ′

j′(ζ
′, t′) and r′′j′ (t

′′, τ ′′) := ξ′′j′ −
Θ′′
j′ (ζ

′′, t′′), for j′ = 1, . . . , d′. Setting h′(t′) := (f ′(t′), g′(t′)) ∈ C{t′}m′ ×
C{t′}d′ and replacing ξ′ by Θ′(ζ ′, t′) in the above equation, the right hand
side vanishes identically (since r′(t′, τ ′) = ξ′ − Θ′(ζ ′, t′) by definition) and
we obtain the following formal identity in C{ζ ′, t′}d′:

g′ (ζ ′,Θ′(ζ ′, t′)) ≡ Θ′′(f ′(ζ ′,Θ′(ζ ′, t′)), h′(t′)
)
.

Some algebraic manipulations conduct to the following.

Lemma 3.5. ([Me2004a, Me2005]) For every j′ = 1, . . . , d′ and every β′ ∈
Nm′ , there exists a universal rational map Q′j′,β′ whose expression depends
neither on M ′, nor on h′, nor on M ′′, such that the following identities in
C{ζ ′, t′} hold true :

1
β′!

∂|β′|Θ′′
j′

∂(ζ ′′)β′
(
f
′(ζ ′,Θ′(ζ ′, t′)), h′(t′)

)
≡

≡ Q′j′,β′
((

∂
β′1
ζ′ Θ

′
j′1

(ζ ′, t′)
)

16j′16d′, |β′1|6|β′|
,
(
∂
α′1
τ ′ h

′
i′1

(ζ ′,Θ′(ζ ′, t′))
)

16i′16n′,|α′1|6|β′|

)

=: R′j′,β′
(
ζ ′,

(
∂
β′1
ζ′ Θj′1(ζ

′, t′)
)

16j′16d′, |β′1|6|β′|

)
,

where the last line defines R′j′,β′ by forgetting the jets of h
′
. Here, the Q′j′,β′

are holomorphic in a neighborhood of the constant jet
(
(∂

β′1
ζ′ Θ

′
j′1

(0, 0))16j′16d′, |β′1|6|β′|, (∂
α′1
τ ′ h

′
i′1
(0, 0))16i′16n,|α′1|6|β′|

)
.

Some symmetric relations hold after replacing Θ′, Θ′′, ζ ′, t′, f
′
, h′ by Θ

′
,

Θ
′′
, z′, τ ′, f ′, h

′
.
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The existence of R′j′,β′ says that the following diagram is commutative :

(M ′, 0′)
(h′)c

//

Jk′• S ′
•

²²

(M ′, 0′)

Jk′• S ′′
•

²²

Cm+Nd′,m′,k′
R′

k′ ((h
′)c)

// Cm+Nd′,m′,k′

,

where the biholomorphic map R′k′((h
′)c), which depends on (h′)c, is de-

fined by its components R′j′,β′ for j′ = 1, . . . , d′ and |β′| 6 k′. Thanks to
the invertibility of h′, the map R′k′((h

′)c) is also checked to be invertible,
and then the invariance of the five nondegeneracy conditions (nd1), (nd2),
(nd3), (nd4) and (nd5) is easily established ([Me2004a]).

We now present the Segre mapping of M ′. By developing the series
Θ′
j′(ζ

′, t′) in powers of ζ ′, we may write the equations of M ′ under the
form ξ′j′ =

∑
γ′∈Nm′ (ζ ′)γ

′
Θ′
j′,γ′(t

′) for j′ = 1, . . . , d′. In terms of such a
development, the infinite Segre mapping of M ′ is defined to be the mapping

Q′
∞ : Cn′ 3 t′ 7−→ (Θ′

j′,γ′(t
′))16j′6d′, γ′∈Nm′ ∈ C∞.

Let k′ ∈ N. For finiteness reasons, it is convenient to truncate this infinite
collection and to define the k′-th Segre mapping of M ′ by

Q′
k′ : Cn′ 3 t′ 7−→ (Θ′

j′,γ′(t
′))16j′6d′, |γ′|6k′ ∈ CNd′,n′,k′ ,

where Nd′,n′,k′ = d′ (n′+k′)!
n′! k′! . If k′2 > k′1, we have πk′2,k′1

[
Q′
k′2

(t′)
]

= Q′
k′1

(t′).
One verifies ([Me2004a]) the following characterizations.

(nd1) M ′ is Levi non-degenerate at the origin if and only if Q′
1 is of rank

n′ at t′ = 0′.

(nd2) M ′ is finitely nondegenerate at the origin if and only if there exists
an integer `′0 such that Q′

k′ is of rank n′ at t′ = 0′, for all k′ > `′0.

(nd3) M ′ is essentially finite at the origin if there exists an integer `′0 such
that Q′

k′ is a finite holomorphic map at t′ = 0′, for all k′ > `′0.

(nd4) M ′ is Segre nondegenerate at the origin if there exists an integer `′0
such that the restriction of Q′

k′ to the complexified Segre variety S ′
0′

(of complex dimension m′) is of generic rank m′, for all k′ > `′0.

(nd5) M ′ is holomorphically nondegenerate if there exists an integer `′0
such that the map Q′

k′ is of maximal possible generic rank, equal to
n′, for all k′ > `′0.
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3.6. Essential holomorphic dimension and Levi multitype. Assume now
thatM ′ is not nececessarily local, but connected. Denote by `′M ′ the smallest
integer k′ such that the generic rank of the jet mappings (t′, τ ′) 7→ Jk

′
τ ′S

′
t′

does not increase after k′ and denote by m′ + n′M ′ 6 m′ + n′ the (maximal)

generic rank of (t′, τ ′) 7→ J
`′
M′
τ ′ S ′

t′ . Since w′ 7→ Θ′(ζ ′, z′, w′) is of rank d′

according to Theorem 2.5, the (generic) rank of the zero-th order jet map
satisfies

genrkC
(
(t′, τ ′) 7→ J0

τ ′S
′
t′ = (ζ ′,Θ′(ζ ′, z′, w′))

)
= m′ + d′ = n′.

Thus, d′ 6 n′M ′ 6 n′. It is natural to call n′M ′ the essential holomorphic
dimension of M ′ because of the following.

Proposition 3.7. ([Me2001a, Me2004a]) Locally in a neighborhood of a
Zariski-generic point p′ ∈ M ′, the generic submanifold M ′ is biholomor-
phically equivalent to the product M ′

p′ ×∆n′−n′
M′ , of a generic submanifold

M ′
p′ of codimension d′ in Cn′M′ by a complex polydisc ∆n′−n′

M′ .

Generally speaking, we may define λ′0,M ′ := genrkC
(
(t′, τ ′) 7→ J0

τ ′S
′
t′
)−

m′ = d′ and for every k′ = 1, . . . , `′M ′ ,

λ′k′,M ′ := genrkC

(
(t′, τ ′) 7→ Jk

′
τ ′S

′
t′

)
− genrkC

(
(t′, τ ′) 7→ Jk

′−1
τ ′ S ′

t′

)
.

One verifies ([Me2004a]) that λ′1,M ′ > 1, . . . , λ′`′
M′ ,M ′ > 1. With these

definitions, we have the relations

genrkC

(
(t′, τ ′) 7→ Jk

′
τ ′S

′
t′

)
= m′ + λ′0,M ′ + λ′1,M ′ + · · ·+ λ′k′,M ′ ,

for k′ = 0, 1, . . . , `′M ′ and

genrkC

(
(t′, τ ′) 7→ Jk

′
τ ′S

′
t′

)
= m′+d′+λ′1,M ′ + · · ·+λ′`′

M′ ,M ′ = m′+n′M ′ ,

for all k′ > `′M ′ . It follows that

`′M ′ 6 λ′1,M ′ + · · ·+ λ′`′
M′ ,M ′ = n′M ′ − d′ 6 m′.

Theorem 3.8. ([Me2004a]) Let M ′ be a connected real algebraic or ana-
lytic generic submanifold inCn′ of codimension d′ > 1 and of CR dimension
m′ = n′ − d′ > 1. Then there exist well defined integers n′M ′ > d′, `′M ′ > 0,
λ′0,M ′ > 1, λ′1,M ′ > 1, . . . , λ′`′

M′ ,M ′ > 1 and a proper real algebraic or ana-
lytic subvariety E ′ of M ′ such that for every point p′ ∈M ′\E ′ and for every
system of coordinates (z′, w′) vanishing at p′ in which M ′ is represented by
defining equations w̄j′ = Θ′

j′(z̄
′, t′), j′ = 1, . . . , d′, then the following four

properties hold:

• λ′0,M ′ = d′, d′ 6 n′M ′ 6 n′ and `′M ′ 6 n′M ′ − d′.
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• For every k′ = 0, 1, . . . , `′M ′ , the mapping of k′-th order jets of the
conjugate complexified Segre varieties (t′, τ ′) 7→ Jk

′
τ ′S

′
t′ is of rank

equal to m′ + λ′0,M ′ + · · ·+ λ′k′,M ′ at (t′p′ , t̄
′
p′) = (0′, 0′).

• n′M ′ = d′ + λ′1,M ′ + · · · + λ′`′
M′ ,M ′ and for every k′ > `′M ′ , the map-

ping of k′-th order jets of the conjugate complexified Segre varieties
(t′, τ ′) 7→ Jk

′
τ ′S

′
t′ is of rank equal to n′M ′ at (0′, 0′).

• There exists a local complex algebraic or analytic change of coor-
dinates t′′ = h′(t′) fixing p′ such that the image M ′′

p′ := h′(M ′)
is locally in a neighborhood of p′ the product M ′′

p′ × ∆n′−n′
M′ of a

real algebraic or analytic generic submanifold of codimension d′ in
Cn′M′ by a complex polydisc ∆n′−n′

M′ . Furthermore, at the central
point p′ ∈ M ′′

p′ ⊂ Cn
′
M′ , the generic submanifold M ′′

p′ is `′M ′-finitely
nondegenerate, hence in particular its essential holomorphic dimen-
sion n′M ′′

p′
coincides with n′M ′ .

In particular, M ′ is holomorphically nondegenerate if and only if n′M ′ =
n′ and in this case,M ′ is finitely nondegenerate at every point of the Zariski-
open subset M ′\E ′.

3.9. CR-horizontal nondegeneracy conditions. As in §3.1, let h = h(t) ∈
C[[t]]n

′
be a formal CR mapping (M, 0) →F (M ′, 0′). Decompose h(t) =

(f(t), g(t)) ∈ C[[t]]m
′ × C[[t]]d

′
, as in the splitting t′ = (z′, w′) ∈ Cm′ ×

Cd′ . Replacing w by Θ(z, τ) in the fundamental identity r′
(
h(τ), h(t)

) ≡
b(τ, t) r(τ, t), the right hand side vanishes identically (since r(τ, t) = w −
Θ(z, τ) by definition), and we get a formal identity in C[[z, τ ]]d

′
:

g
(
z,Θ(z, τ)

) ≡ Θ
′ (
f(z,Θ(z, τ)), h(τ)

)
.

Setting τ := 0, we get g
(
z,Θ(z, 0)

) ≡ Θ
′(
f(z,Θ(z, 0)), 0

)
. In other

words, h|S0 maps S0 formally to S ′
0′ . The restriction h|S0 coincides with

the formal map:

Cm 3 z 7−→F

(
f

(
z,Θ(z, 0)

)
, Θ

′ (
f

(
z,Θ(z, 0)

)
, 0

)) ∈ Cm′ × Cd′ .
The rank properties of this formal map are the same as those of its CR-
horizontal part:

Cm 3 z 7−→F f
(
z,Θ(z, 0)

) ∈ Cm′ .
The formal CR mapping h is said ([Me2004a]) to be:

(cr1) CR-invertible at the origin if m′ = m and if its CR-horizontal part is
a formal equivalence at z = 0;

(cr2) CR-submersive at the origin if m′ 6 m and if its CR-horizontal part
is a formal submersion at z = 0;
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(cr3) CR-finite at the origin if m′ = m and if its CR-horizontal
part is a finite formal map at z = 0, namely the quotient ring
C[[z]]/

(
fk′(z,Θ(z, 0))16k′6m′

)
is finite-dimensional (the require-

ment m′ = m is necessary for the reflection principle below);
(cr4) CR-dominating at the origin if m′ 6 m and if there exist inte-

gers 1 6 k(1) < · · · < k(m′) 6 m such that the determinant
det([∂φk′1/∂zk(k′2)](z))16k′1,k′26m′ 6≡ 0 does not vanish identically in
C[[z]], where φk′(z) := fk′

(
z,Θ(z, 0)

)
;

(cr5) CR-transversal at the origin if there does not exist a nonzero
formal power series F ′(f1, . . . , fm′) ∈ C[[f1, . . . , fm′ ]]
such that F ′(φ1(z), . . . , φm′(z)) ≡ 0 in C[[z]], where
φk′(z) := fk′

(
z,Θ(z, 0)

)
.

One verifies ([Me2004a]) biholomorphic invariance and the four implica-
tions:

(cr1) ⇒ (cr2) ⇒ (cr3) ⇒ (cr4) ⇒ (cr5),
provided that m′ = m in the second and in the third. By far, CR-
transversality is the most general nondegeneracy condition.

3.10. Nondegeneracy conditions for CR mappings. This subsection ex-
plains how to synthetize the combinatorics of various formal reflection prin-
ciples published in the last decade.

As in §3.1, let hc : (M , 0) →F (M ′, 0) be a complexified formal CR
mapping between two formal, analytic or algebraic complexified generic
submanifolds of equations 0 = r(t, τ) := ξ − Θ(ζ, t) and 0 = r′(t′, τ ′) :=
ξ′−Θ′(ζ ′, t′). By hypothesis, r′(h(t), h(τ)) ≡ b(t, τ) r(t, τ). Denoting h =
(f, g) ∈ Cm′ × Cd′ , replacing ξ by Θ(ζ, t) in r′(h(t), h(τ)) ≡ b(t, τ) r(t, τ)
and developing Θ′(f̄ , h) =

∑
γ′∈Nm′ f̄γ

′
Θ′
γ′(h), we start with the following

fundamental power series identity in C[[ζ, t]]d
′
:

ḡ(ζ,Θ(ζ, t)) ≡ Θ′(f̄(ζ,Θ(ζ, t)), h(t)
)

≡
∑

γ′∈Nm′
f̄(ζ,Θ(ζ, t))γ

′
Θ′
γ′(h(t)).

Consider the m complex vector fields L 1, . . . ,L m tangent to M that were
defined in §2.7. For every β = (β1, . . . , βm) ∈ Nm, define the multiple
derivation L β = L β1

1 · · ·L βm
m . Applying them to the above d′ scalar equa-

tions, observing that they do not differentiate the variables t = (z, w), we
get, without writing the arguments:

L β ḡj′ −
∑

γ′∈Nm′
L β(f̄γ

′
) Θ′

j′,γ′(h) ≡ 0,

for all β ∈ Nm, all j′ = 1, . . . , d′ and all (t, τ) ∈ M .
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Lemma 3.11. ([Me2004a, Me2005]) For every i′ = 1, . . . , n′ and every
β ∈ Nm, there exists a polynomial Pi′,β in the jet J |β|τ h̄(τ) with coefficients
being power series in (t, τ) which depend only on the defining functions ξj−
Θj(ζ, t) of M and which can be computed by means of some combinatorial
formula, such that

L βh̄i′(τ) ≡ Pi′,β
(
t, τ, J |β|τ h̄(τ)

)
.

Convention 3.12. Let k, l ∈ N. On the complexification M , equipped with
either the coordinates (z, τ) or (ζ, t), which correspond to either replacing
w by Θ(z, τ) or ξ by Θ(ζ, t), we shall identify (notationally) a power series
written under the complete form

R(t, τ, Jkh(t), J lh̄(τ)),

with a power series written under one of the following four forms:

• R
(
t, ζ,Θ(ζ, t), Jkh(t), J lh̄(ζ,Θ(ζ, t))

)
,

• R
(
t, ζ, Jkh(t), J lh̄(ζ,Θ(ζ, t))

)
,

• R
(
z,Θ(z, τ), τ, Jkh(z,Θ(z, τ)), J lh̄(τ)

)
,

• R
(
z, τ, Jkh(z,Θ(z, τ)), J lh̄(τ)

)
.

Thanks to the lemma and to the convention, we may therefore write:

(3.13) L β
[
ḡj′(τ)−Θ′

j′(f̄(τ), h(t))
]

=: R′j′,β
(
t, τ, J |β|τ h̄(τ) : h(t)

) ≡ 0,

for j′ = 1, . . . , d′. Remind that h(t) is not differentiated, since the deriva-
tions L β involve only ∂

∂τi
, i = 1, . . . , n. This is why we write h(t) after “:”.

Furthmerore, the identities “≡ 0” are understood “on M ”, namely as formal
power series identities in C[[ζ, t]] after replacing ξ by Θ(ζ, t) or equivalently,
as a formal power series identities in C[[z, τ ]] after replacing w by Θ(z, τ).

To understand the reflection principle, it is important to observe immedi-
ately that the smoothness of the power series R′j′,β is the minimum of the
two smoothnesses of M and of M ′. For instance, the power series R′j′,β are
all complex analytic if M is real analytic and if M ′ is real algebraic, even
if the power series CR mapping h(t) was assumed to be purely formal and
nonconvergent. By a careful inspection of the application of the chain rule
in the development of the above equations (3.13) (cf. Lemma 3.11), we even
see that each R′j′,β is relatively polynomial with respect to the derivatives of
positive order (∂ατ h̄(τ))16|α|6|β|.

3.14. Nondegeneracy conditions for formal CR mappings. In the equa-
tions (3.13), we replace h(t) by a new independent variable t′ ∈ Cn′ , we set
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(t, τ) = (0, 0), and we define the following collection of power series

Ψ′
j′,β(t

′) :=
[
L β ḡj′ −

∑

γ′∈Nm′
L β(f̄γ

′
) Θ′

j′,γ′(t
′)
]
t=τ=0

,

for j′ = 1, . . . , d′ and β ∈ Nm. Here, if β = 0, we mean that Ψ′
j′,0(t

′) =
−Θ′

j′(0, t
′). According to (3.13), an equivalent definition is:

Ψ′
j′,β(t

′) := R′j′,β
(
0, 0, J |β|τ h̄(0) : t′

)
.

Now, just before introducing five new nondegeneracy conditions, we make
a crucial heuristic remark. When n = n′, m = m′, M = M ′ and h = Id,
writing T ′ instead of t′ the special variable above in order to avoid confusion,
we get for j′ = 1, . . . , d′ and β′ ∈ Nm′:

Ψ′
j′,β′(T

′) =
[
L ′β′ξ′j′ −

∑

γ′∈Nm′
L ′β′(ζ ′)γ

′
Θ′
j′,γ′(T

′)
]
t′=τ ′=0′

=
[
L ′β′Θ′

j′(ζ
′, t′)− β′! Θ′

j′,β′(T
′)
]
t′=τ ′=0′

= β′!
(
Θ′
j′,β′(0

′)−Θ′
j′,β′(T

′)
)
.

Consequently, up to a translation by a constant, we recover with Ψ′
j′,β′(T

′)
the components of the infinite Segre mapping Q′

∞ of M ′. Hence the next
definition generalizes the concepts introduced before.

Definition 3.15. The formal CR mapping h : (M, 0) →F (M ′, 0′) is called

(h1) Levi-nondegenerate at the origin if the mapping

t′ 7→ (
R′j′,β(0, 0, J

|β|
τ h̄(0) : t′)

)
16j′6d′, |β|61

is of rank n′ at t′ = 0′;

(h2) finitely nondegenerate at the origin if there exists an integer `1 such
that the mapping

t′ 7→ (
R′j′,β(0, 0, J

|β|
τ h̄(0) : t′)

)
16j′6d′, |β|6k

is of rank n′ at t′ = 0′, for k = `1, hence for every k > `1;

(h3) essentially finite at the origin if there exists an integer `1 such that
the mapping

t′ 7→ (
R′j′,β(0, 0, J

|β|
τ h̄(0) : t′)

)
16j′6d′, |β|6k

is locally finite at t′ = 0′, for k = `1, hence for every k > `1;
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(h4) Segre nondegenerate at the origin if there exist an integer `1, integers
j′∗

1, . . . , j′∗
n′ with 1 6 j′∗

i′ 6 d′ for i′ = 1, . . . , n′ and multiindices
β1
∗ , . . . , β

n′
∗ with |βi′∗ | 6 `1 for i′ = 1, . . . , n′, such that the determi-

nant

det



∂R′

j′∗
i′1 ,β

i′1∗

∂t′i′2

(
z,Θ(z, 0), 0, 0, J |β

i′1∗ |h̄(0) : h(z,Θ(z, 0))

)


16i′1,i′26n′

does not vanish identically in C[[z]];
(h5) holomorphically nondegenerate at the origin if there exists an integer

`1, integers j′∗
1, . . . , j′∗

n′ with 1 6 j′∗
i′ 6 d′ for i′ = 1, . . . , n′ and

multiindices β1
∗ , . . . , β

n′
∗ with |βi′∗ | 6 `1 for i′ = 1, . . . , n′, such that

the determinant

det



∂R′

j′∗
i′1 ,β

i′1∗

∂t′i′2

(
0, 0, 0, 0, J |β

i′1∗ |h̄(0) : h(t)

)


16i′1,i′26n′

does not vanish identically in C[[t]].

The nondegeneracy of the formal mapping h requires the same nondegen-
eracy on the target (M ′, 0′).

Lemma 3.16. ([Me2004a]) Let h : (M, 0) →F (M ′, 0′) be a formal CR
mapping.

(1) If h is Levi-nondegenerate at 0, then M ′ is necessarily Levi-
nondegenerate at 0′.

(2) If h is finitely nondegenerate at 0, then M ′ is necessarily finitely
nondegenerate at 0′.

(3) If h is essentially finite at 0, then M ′ is necessarily essentially finite
at 0′.

(4) If h is Segre nondegenerate at 0, then M ′ is necessarily Segre non-
degenerate at 0′.

(5) If h is holomorphically nondegenerate at 0, then M ′ is necessarily
holomorphically nondegenerate at 0′.

We now show that CR-transversality of the mapping h insures that it en-
joys exactly the same nondegeneracy condition as the target (M ′, 0′).

Theorem 3.17. ([Me2004a]) Assume that the formal CR mapping h :
(M, 0) →F (M ′, 0′) is CR-transversal at 0. Then the following five im-
plications hold:
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(1) If M ′ is Levi nondegenerate at 0′, then h is finitely nondegenerate at
0.

(2) If M ′ is finitely nondegenerate at 0′, then h is finitely nondegenerate
at 0.

(3) If M ′ is essentially finite at 0′, then h is essentially finite at 0.
(4) If M ′ is Segre nondegenerate at 0′, then h is Segre nondegenerate at

0.
(5) If M ′ is holomorphically nondegenerate, and if moreover h is

transversal at 0, then h is holomorphically nondegenerate at 0.

The above five implications also hold under the assumption that h is ei-
ther CR-invertible, or CR-submersive, or CR-finite with m = m′ or CR-
dominating: this provides at least 20 more (less refined) versions of the
theorem, some of which appear in the literature.

Other relations hold true between the nondegeneracy conditions on h and
on the generic submanifolds (M, 0) and (M ′, 0′). We mention some, con-
cisely. As above, assume that h : (M, 0) 7→F (M ′, 0) is a formal CR
mapping. Since dh0(T

c
0M) ⊂ T c0M

′, a linear map dhtrv
0 : T0M/T c0M →

T0M
′/T c0M

′ is induced. Assume d′ = d and m′ = m. The next statement
may be interpreted as a kind of Hopf Lemma for CR mappings.

Theorem 3.18. ([BR1990, ER2004]) If M is minimal at 0 and if h is CR-
dominating at 0, then dhtrv

0 : T0M/T c0M → T0M
′/T c0M

′ is an isomorphim.

An open question is to determine whether the condition that the jacobian
determinant det

(
∂hi

∂tj
(t)

)
16i,j6n does not vanish identically in C[[t]] is suffi-

cient to insure that dhtrv
0 : T0M/T c0M → T0M

′/T c0M
′ is an isomorphism.

A deeper understanding of the constraints between various nondegeneracy
conditions on h, M and M ′ would be desirable.

3.19. Classical versions of the reflection principle. Let h : (M, 0) →F

(M ′, 0) be a formal power series CR mapping between two generic sub-
manifolds. Assume that M is minimal at 0.

Theorem 3.20. ([BER1999, Me2004a, Me2005]) If M and M ′ are real an-
alytic, if h is either Levi nondegenerate, or finitely nondegenerate, or essen-
tially finite, or Segre nondegenerate at the origin, then h(t) is convergent,
namely h(t) ∈ C{t}n′ . If moreover, M and M ′ are algebraic, then h is
algebraic.

If one puts separate nondegeneracy conditions on h and on M ′, as in
Theorem 3.17, one obtains a combinatorics of possible statements, some of
which appear in the literature.
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If h is finitely nondegenerate (level (2)), the (paradigmatic) proof yields
more information.

Theorem 3.21. ([BER1999, Me2005]) As above, let h : (M, 0) → (M ′, 0′)
be a formal power series CR mapping. Assume that M is minimal at 0 and
let ν0 be the integer of Corollary 2.17. Assume also that h is `1-finitely
nondegenerate at 0. Then there exists a Cn′-valued power series mapping
H(t, J2ν0`1) which is constructed algorithmically by means of the defining
equations of (M, 0) and of (M ′, 0′), such that the power series identity

h(t) ≡ H(t, J2ν0`1h(0))

holds in C[[t]]n
′
. If M and M ′ are real analytic (resp. algebraic), H is

holomorphic (resp. complex algebraic) in a neighborhood of 0×J2ν0`1h(0).

In [BER1999, GM2004], the above formula h(t) ≡ H(t, J2ν0`1h(0)) is
studied horoughly in the case where M ′ = M and h is a local holomorphic
automorphism of (M, 0) close to the identity.

At level (5), namely with a holomorphically nondegenerate target
(M ′, 0′), the reflection principle is much more delicate. It requires the
introduction of a new object, whose regularity properties hold in fact
without any nondegeneracy assumption on the target (M ′, 0′).

3.22. Convergence of the reflection mapping. The reflection mapping as-
sociated to h and to the system of coordinates (z′, w′) is :

R ′
h(τ

′, t) := ξ′ −Θ′(ζ ′, h(t)) ∈ C[[τ ′, t]]d
′
.

Since h is formal, it is only a formal power series mapping. As argued in the
introduction of [Me2005], it is the most fundamental object in the analytic
reflection principle. In the case of CR mappings between essentially finite
hypersurfaces, the analytic regularity of the reflection mapping is equivalent
to the extension of CR mappings as correspondences, as studied in [DP1995,
Sh2000, Sh2003, DP2003]. Without nondegeneracy assumption on (M ′, 0′),
the reflection mapping enjoys regularity properties from which all analytic
reflection principles may be deduced. Here is the very main theorem of this
Section 3.

Theorem 3.23. ([Me2001b, BMR2002, Me2005]) If M is minimal at the
origin and if h is either CR-invertible, or CR-submersive, or CR-finite, or
CR-dominating, or CR-transversal, then for every system of coordinates
(z′, w′) ∈ Cm′ × Cd′ in which the extrinsic complexification M ′ is rep-
resented by ξ′ = Θ′(ζ ′, t′), the associated CR-reflection mapping is conver-
gent, namely R ′

h(τ
′, t) ∈ C{τ ′, t}d′ .

If the convergence property holds in one such system of coordinates, it
holds in all systems of coordinates ([Me2005]; Proposition 3.26 below).
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Further, if we develope Θ′(ζ ′, t′) =
∑

γ′∈Nm′ (ζ ′)γ
′
Θ′
γ′(t

′), the convergence
of R ′

h(τ
′, t) has a concrete signification.

Corollary 3.24. All the components Θ′
γ′(h(t)) of the reflection mapping are

convergent, namely Θ′
γ′(h(t)) ∈ C{t}d

′
for every γ′ ∈ Nm′ .

Conversely ([Me2001b, Me2005]), if Θ′
γ′(h(t)) ∈ C{t}d

′ for every γ′ ∈
Nm′ , an elementary application of the Artin approximation Theorem 3.28
(below) yields Cauchy estimates: there exist ρ > 0, σ > 0 and C > 0 so
that |Θ′

γ′(h(t))| < C (ρ)−|γ
′|, for every t ∈ Cn with |t| < σ. It follows that

R ′
h(τ

′, t) ∈ C{τ ′, t}d′ .
Taking account of the nondegeneracy conditions (ndi) and (crj), several

corollaries may be deduced from the theorem. Most of them are already
expressed by Theorem 3.20, except notably the delicate case where (M ′, 0′)
is holomorphically nondegenerate.

Corollary 3.25. ([Me2001b, Me2005]) If M is minimal at the origin, if
(M ′, 0′) is holomorphically nondegenerate and if h is either CR-invertible
and invertible, or CR-submersive and submersive, or CR-finite and finite
with m′ = m, or CR-dominating and dominating, or CR-transversal and
transversal, then h(t) ∈ C{t}n′ is convergent.

It is known ([St1996]) that (M ′, 0′) is holomorphically degenerate if and
only if there exists a nonzero (1, 0) vector field X ′ =

∑n′
i′=1 a

′
i′(t

′) ∂
∂t′

i′
hav-

ing holomorphic coefficients which is tangent to (M ′, 0′). In the corol-
lary above, holomorphic nondegeneracy is optimal for the convergence of
a formal equivalence: if M ′ is holomorphically degenerate, if (s′, t′) 7−→
exp(s′X ′)(t′) denotes the local flow of X ′, where s′ ∈ C, t′ ∈ Cn′ , there
indeed exist ([BER1999, Me2005]) nonconvergent power series $′(t′) ∈
C[[t′]] such that t′ 7→F exp($′(t′)X ′)(t′) is a nonconvergent formal equiva-
lence of M ′.

The invariance of the reflection mapping is crucial.

Proposition 3.26. ([Me2002, Me2004a, Me2005]) The convergence of the
reflection mapping is a biholomorphically invariant property. More pre-
cisely, if t′′ = φ′(t′) is a local biholomorphism fixing 0′ and transforming
(M ′, 0′) into a generic submanifold (M ′′, 0′) of equations w̄′′j′ = Θ′′

j′(z̄
′′, t′′),

j′ = 1, . . . , d′, the composed reflection mapping of φ′ ◦ h : (M, 0) →F

(M ′′, 0′) defined by

R ′′
φ′◦h(τ

′′, t) := ξ′′ −Θ′′(ζ ′′, φ′(h(t)))

= ξ′′ −
∑

γ′∈Nm′
(ζ ′′)γ

′
Θ′′
γ′

(
φ′(h(t))

)
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has components Θ′′
γ′

(
φ′(h(t))

)
given by formulas

Θ′′
γ′

(
φ′(h(t))

) ≡ S ′γ′
((

Θ′
γ′1

(h(t))
)
γ′1∈Nm′

)
,

where the local holomorphic functions S ′γ′ depend only on the biholomor-
phism t′′ = φ′(t′) (they have an infinite number of variables, but the neces-
sary Cauchy estimates insuring convergence are automatically satisfied).

A few words about the proof of the main Theorem 3.23. Although
the classical reflection principle deals only with the “reflection identi-
ties” (3.13), to get the most adequate version of the reflection principle, it
is unavoidable to understand the symmetry between the variables t and the
variables τ = (t̄)c.

The assumption that hc maps formally (M , 0) to (M ′, 0′) is equivalent to
each one of the following two formal identities:





g(τ) =
∑

γ′∈Nm′
f(τ)γ

′
Θ′
γ′(h(t)),

g(t) =
∑

γ′∈Nm′
f(t)γ

′
Θ
′
γ′

(
h(τ)

)
,

on M , namely after replacing either w by Θ(z, τ) or ξ by Θ(ζ, t). The
symmetry may be pursued by considering the two families of derivations:

{
L β := (L1)

β1(L1)
β2 · · · (Lm)βm and

L β := (L 1)
β1(L 1)

β2 · · · (L m)βm ,

where β = (β1, β2, . . . , βm) ∈ Nm. Applying them to the two formal identi-
ties above, if we respect the completeness of the combinatorics, we will get
four families of reflection identities. The first pair is obtained by applying
L β to the two formal identities above:





L β g(τ) =
∑

γ′∈Nm′
L β

[
f(τ)γ

′]
Θ′
γ′(h(t)),

0 =
∑

γ′∈Nm′
f(t)γ

′
L β

[
Θ
′
γ′

(
h(τ)

) ]
.

The second pair is obtained by applying L β , permuting the two lines:




L βg(t) =
∑

γ′∈Nm′
L β

[
f(t)γ

′]
Θ
′
γ′

(
h(τ)

)
,

0 =
∑

γ′∈Nm′
f(τ)γ

′
L β

[
Θ′
γ′(h(t))

]
.
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We immediately see that these two pairs are conjugate line by line. In each
pair, we notice a crucial difference between the first and the second line:
whereas it is g and the power f

γ′
(or g and fγ′) that are differentiated in

each first line, in each second line, only the components Θ
′
γ′(h) (or Θ′

γ′(h))
of the reflection mapping, which are the right invariant functions, are dif-
ferentiated. In a certain sense, it is forbidden to differentiate g and f

γ′
(or

g and fγ′), because the components (f, g) of h need not enjoy a reflection
principle. In fact, in the proof of the main Theorem 3.23, one has to play
constantly with the four reflection identities above.

Since we cannot summarize here the long and refined proof, we only for-
mulate the main technical proposition. Denote by J `tψ the `-th jet of a power
series ψ(t) ∈ C[[t]]d

′
, for instance J `tΘ

′
γ′(h) for some γ′ ∈ Nm′ . Remind that

Γk and Γk are (conjugate) Segre chains. Let Nd′,n,` := d′ (n+`)!
n! `!

.

Proposition 3.27. ([Me2005]) For every k ∈ N and every ` ∈ N, the fol-
lowing two properties hold:

• if k is odd, for every γ′ ∈ Nm′:
[
J `tΘ

′
γ′(h)

] (
Γk

(
z(k)

)) ∈ C{z(k)}Nd′,n,` ;

• if k is even, for every γ′ ∈ Nm′:
[
J `τΘ

′
γ′(h)

] (
Γk

(
z(k)

)) ∈ C{z(k)}Nd′,n,` .

With ` = 0 and k = 2ν0, thanks to Corollary 2.17, we deduce from this
main proposition that Θ′

γ′(h(t)) ∈ C{t}γ
′ for every γ′ ∈ Nm′ . This yields

Theorem 3.23.
The main tool in the proof of this proposition is an approximation theorem

saying that a formal power series mapping that is a solution of some analytic
equations may be corrected so as to become convergent and still a solution.

Theorem 3.28. (ARTIN [Ar1968, JoPf2000]) Let K = R or C, let n ∈ N
with n > 1, let x = (x1, . . . , xn) ∈ Kn, let m ∈ N, with m > 1, let
y = (y1, . . . , ym) ∈ Kn, let d ∈ N with d > 1 and let R1(x, y), . . . , Rd(x, y)
be an arbitrary collection of formal power series in K{x, y} that vanish at
the origin, namely Rj(0, 0) = 0, j = 1, . . . , d. Assume that there exists a
formal mapping h(x) = (h1(x), . . . , hm(x)) ∈ K[[x]]m with h(0) = 0 such
that

Rj (x, h(x)) ≡ 0 in K[[x]], for j = 1, . . . , d.

Let m(x) := x1K[[x]] + · · ·+ xnK[[x]] be the maximal ideal of K[[x]]. For every
integer N > 1, there exists a convergent power series mapping hN(x) ∈
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K{x}m such that

Rj

(
x, hN(x)

) ≡ 0 in K[[x]], for j = 1, . . . , d,

that approximates h(x) to order N − 1:

hN(x) ≡ h(x) mod
(
m(x)N

)
.

As an application of the main Theorem 3.23, an approximation property
for formal CR mappings holds.

Theorem 3.29. ([Me2005]) Under the assumptions of Theorem 3.23, for
every integer N > 1, there exists a convergent power series mapping
HN(t) ∈ C{t}n′ with HN(t) ≡ h(t) mod (m(t))N (whence H(0) = 0),
that induces a local holomorphic map from (M, 0) to (M ′, 0′).

Corollary 3.30. ([Me2001b, Me2005]) Assume that n′ = n, that d′ = d,
thatM is minimal at the origin, and that h : (M, 0) →F (M ′, 0′) is a formal
(invertible) equivalence. ThenM andM ′ are biholomorphically equivalent.

It is known ([St1996, BER1999, GM2004]) that a minimal holomor-
phically nondegenerate real analytic generic submanifold of Cn has finite-
dimensional local holomorphic automorphism group. Unique determination
by a jet of finite order follows from a representation formula, as in Theo-
rem 3.21. More generally:

Corollary 3.31. ([Me2001b, BMR2002, Me2005]) Assume that m′ = m
and d′ = d, that (M, 0) is minimal at the origin and that (M ′, 0) is holo-
morphically nondegenerate. There exists an integer κ = κ(m, d) such that,
if two local biholomorphisms h1, h2 : (M, 0) → (M ′, 0) have the same κ-th
jet at the origin, then h1 = h2.

From an inspection of the proof, Theorem 3.29 holds without the assump-
tion that (M, 0) is minimal, but with the assumption that its CR orbits have
constant dimension in a neighborhood of 0. However, the case where CR
orbits have arbitrary dimension is delicate.

Open question 3.32. Does formal equivalence coincide with biholomorphic
equivalence in the category of real analytic generic local submanifolds of
Cn whose CR orbits have non-constant dimension ?

3.33. Algebraicity of the reflection mapping. We will assume that bothM
andM ′ are algebraic. Remind that Theorem 3.20 shows the algebraicity of h
under some hypotheses. A much finer result is as follows. It synthetizes all
existing results ([We1977, SS1996, CMS1999, BER1999, Za1999]) about
algebraicity of local holomorphic mappings.

Theorem 3.34. ([Me2001a]) If h is a local holomorphic map (M, 0) →
(M ′, 0′), if M and M ′ are algebraic, if M is minimal at the origin and if
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M ′ is the smallest (for inclusion) local real algebraic manifold containing
h(M), then the reflection mapping R ′

h(τ
′, t) is algebraic.

Trivial examples ([Me2001a]) show that the algebraicity of R ′
h need not

hold if M ′ is not the smallest one.
In fact, Theorem 3.34 also holds (with the same proof) if one assumes

only that the source M is minimal at a Zariski-generic point: it suffices to
shrink M and the domain of definition of h around such points, getting local
algebraicity of R ′

h there, and since algebraicity is a global property, R ′
h is

algebraic everywhere.
An equivalent formulation of Theorem 3.34 uses the concept of tran-

scendence degree, studied in [Pu1990, CMS1999, Me2001a]. With n′M ′

being the essential holomorphic dimension of (M ′, 0′) defined in §3.6, set
κ′M ′ := n′ − n′M ′ . Observe that (M ′, 0′) is holomorphically nondegenerate
precisely when κ′M ′ = 0. Denote by C[t] the ring of complex polynomials
of the variable t ∈ Cn and by C(t) its quotient field. Let t′ = h(t) be a local
holomorphic mapping as in Theorem 3.34. and let C(t)(h1(t), . . . , hn′(t))
be the field generated by the components of h.

Theorem 3.35. ([Me2001a]) With the same assumptions as in Theo-
rem 3.34, the transcendence degree of the field extension C(t) → C(t)(h(t))
is less than or equal to κ′M ′ .

Corollary 3.36. ([CMS1999, Za1999, Me2001a]) If M is minimal at a
Zariski-generic point and if the real algebraic target M ′ does not contain
any complex algebraic curve, then the local holomorphic mapping h is al-
gebraic.

However, in case h is only a formal CR mapping, it is impossible to shift
the central point to a nearby minimal point. Putting the simplest rank as-
sumption (invertibility) on h, we may thus formulate delicate problems for
the future.

Open question 3.37. Let h be a formal equivalence between two real analytic
generic submanifolds of Cn which are minimal at a Zariski-generic point.

• Is the reflection mapping convergent ?
• Is h uniquely determined by a jet of finite order when the target is

holomorphically nondegenerate ?
• Is h convergent under the assumption that the real analytic target M ′

does not contain any complex analytic curve ?

For M ′ algebraic containing no complex algebraic curve and M mini-
mal at 0, the third question has been settled in [MMZ2003b]. However,
the assumption of algebraicity of M ′ is strongly used there, because these
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authors deal with the transcendence degree of the field extension C(t) →
C(t)(h(t)), a concept which is meaningless ifM ′ is real analytic. For further
(secondary) results and open questions, we refer to [BMR2002, Ro2003].
This closes up our survey of the formal/algebraic/analytic reflection princi-
ple.

A generic submanifold M ⊂ Cn is called locally algebraizable at one
of its points p if there exist local holomorphic coordinates centered at p in
which it is Nash algebraic. Unlike partial results, the following question
remains up to now unsolved.

Open problem 3.38. ([Hu2001, HJY2001, Ji2002, GM2004, Fo2004]) For-
mulate a necessary and sufficient condition for the local algebraizability of
a real analytic hypersurface M ⊂ Cn in terms of a basis of the (differential)
algebra of its Cartan-Hachtroudi-Chern invariants.

To conclude, we would like to mention that the complete theory of CR
mappings may be transferred to systems of partial differential equations hav-
ing finite-dimensional Lie symmetry group. This aspect will be treated in
subsequent publications ([Me2006a, Me2006b]).
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III: Systems of vector fields and CR functions
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[7 diagrams]

Beyond the theorems of Frobenius and of Nagano, Sussmann’s theorem provides
a means, valid in the smooth category, to construct all the integral manifolds of an
arbitrary system of vector fields, as orbits of the pseudo-group actions of global
flows. The fundamental properties of such orbits: lower semi-continuity of dimen-
sion, local flow box structure, propagation of embeddedness, intersection with a
transversal curve in the one-codimensional case, are essentially analogous, but dif-
ferent from the ones known in foliation theory. Orbits possess wide applications
in Control Theory, in sub-Riemannian Geometry, in the Analysis of Linear Partial
Differential Equations and in Cauchy-Riemann geometry.

Let Ljf = gj , j = 1, . . . , λ, be a linear PDE system with unknown f , where g
is smooth and where {Lk}16k6r is an involutive (in the sense of Frobenius) system
of smooth vector fields on Rn having complex-valued coefficients. Since Lewy’s
celebrated discovery of an example of a single equation Lf = g in R3 without any
solution, a major problem in the Analysis of PDE’s is to find adequate criterions for
the existence of local solutions. Condition (P) of Nirenberg-Treves has appeared
to be necessary and sufficient to insure local integrability of a single equation of
principal type having simple characteristics. The problem of characterizing systems
of several linear first order PDE’s having maximal space of solutions is not yet
solved in full generality; several fine questions remain open.

Following Treves, to abstract the notion of systems involving several equa-
tions, an involutive structure on a smooth µ-dimensional real manifold M is a λ-
dimensional complex subbundle L of C ⊗ TM satisfying [L ,L ] ⊂ L . The
automatic integrability of smooth almost complex structures (those with L ⊕L =
C ⊗ TM ) and the classical (non)integrability theorems for smooth abstract CR
structures (those with L ∩L = {0}) are inserted in this general framework.

Beyond such problematics, it is of interest to study the analysis and the geometry
of subbundles L whose space of solutions is maximal, viz the preceding question is
assumed to be solved, optimally: in a neighborhood of every point ofM , there exist
(µ − λ) local complex valued functions z1, . . . , zµ−λ having linearly independent
differentials which are solutions of L zk = 0. Such involutive structures are called
locally integrable. Some representative examples are provided by the bundle of
anti-holomorphic vector fields tangent to various embedded generic submanifolds
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of Cn. According to a theorem due to Baouendi-Treves, every local solution of
L f = 0 may be approximated sharply by polynomials in a set of fundamental
solutions z1, . . . , zµ−λ, in the topology of functional spaces as C κ,α, Lp

loc, or D ′.
In a locally integrable structure, the Sussmann orbits of the vector fields

ReLk, ImLk are then of central importance in analytic and in geometrical ques-
tions. They show up propagational aspects, as for instance: the support of a func-
tion or distribution solution f of L f = 0 is a union of orbits. The approximation
theorem also yields an elegant proof of uniqueness in the Cauchy problem. Further
propagational aspects will be studied in the next chapters, using the method of ana-
lytic discs. Sections 3, 4 and 5 of this chapter and the remainder of the memoir are
focused on embedded generic submanifolds.

§1. SUSSMANN’S THEOREM AND STRUCTURAL PROPERTIES
OF ORBITS

1.1. Integral manifolds of a system of vector fields. Ordinary differential
equations in the modern sense emerged in the seventieth century, concomi-
tantly with the infinitesimal calculus. Nowadays, in contemporary mathe-
matics, the abstract study of vector fields is inserted in several broad areas
of research, among which we perceive the following.

• Control Theory: controllability of vector fields on C∞ and real an-
alytic manifolds; nonholonomic systems; sub-Riemannian geometry
([GV1987, Bel1996]).

• Dynamical systems: singularities of real or complex vector fields
and foliations; normal forms and classification; phase diagrams;
Lyapunov theory; Poincaré-Bendixson theory; theory of limit cycles
of polynomial and analytic vector fields; small divisors ([Ar1978,
Ar1988]).

• Lie-Cartan theory: infinitesimal symmetries of differential equa-
tions; classification of local Lie group actions; Lie algebras of vec-
tor fields; representations of Lie algebras; exterior differential sys-
tems; Cartan-Vessiot-Kähler theorem; Janet-Riquier theory; Car-
tan’s method of equivalence ([Ol1995, Stk2000]).

• Numerical analysis: systems of (non)linear ordinary differential
equations; methods of: Euler, Newton-Cotes, Newton-Raphson,
Runge-Kutta, Adams-Bashforth, Adams-Moulton ([De1996]).

• PDE theory: Local solvability of linear partial differential equa-
tions; uniqueness in the Cauchy problem; propagation of singu-
larities; FBI transform and control of wave front set ([ES1993,
Trv1992]).
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To motivate the present Part III, let us expose informally two dual questions
about systems of vector fields. Consider a set L of local vector fields de-
fined on a domain of Rn. Frobenius’ theorem provides local foliations by
submanifolds to which every element of L is tangent, provided L is closed
under Lie brackets. However, for a generic set L, the condition [L,L] ⊂ L
fails and in addition, the tangent spaces spanned by elements of L are of
varying dimension. To surmount these imperfections, two inverse options
present themselves:

Sub: find the subsystems L′ ⊂ L which satisfy Frobenius’ condition
[L′,L′] ⊂ L′ and which are maximal in an appropriate sense;

Sup: find the supsystems L′ ⊃ L which have integral manifolds and
which are minimal in an appropriate sense.

CHEVALLEY

LOBRY

SUSSMANN

NAGANO
CHOW

Linv⊂L

vector field
system

Initial

⊂
⊂

⊂

L1

L2

L3

sub-systems
integrable Unique

sup-system
integrable

KÆHLER

CARTAN

VESSIOT

Several

Searching for integrable sub- or sup- systems

The first problem Sub is answered by the Cartan-Vessiot-Kähler theorem,
thanks to an algorithm which provides all the minimal Frobenius-integrable
subsystems L′ of L (we recommend [Stk2000] for a presentation). Generi-
cally, there are infinitely many solutions and their cardinality is described by
means of a sequence of integers together with the so-called Cartan character
of L. In the course of the proof, the Cauchy-Kowalevskaya integrability the-
orem, valid only in the analytic category, is heavily used. It was not a serious
restriction at the time of É. Cartan, but, in the second half of the twentieth
century, the progress of the Analysis of PDE showed deep new phenomena
in the differentiable category. Hence, one may raise the:

Open problem 1.2. Find versions of the Cartan-Vessiot-Kähler theorem for
systems of vector fields having smooth non-analytic coefficients.

The Cauchy characteristic subsystem of L ([Stk2000]) is always invo-
lutive, hence the smooth Frobenius theorem applies to it4. However, for
intermediate systems, the question is wide open. Possibly, this question is
related to some theorems about local solvability of smooth partial differen-
tial equations (cf. Section 3) that were established to understand the Hans
Lewy counterexample (§3.1).

4We are grateful to Stormark for pointing out this observation
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The second problem Sup is already answered by Nagano’s theorem
(Part II), though only in the analytic category, with a unique integrable min-
imal supsystem Llie ⊃ L. In the general smooth category, the stronger
Chevalley-Lobry-Stefan-Sussmann theorem, dealing with flows of vector
fields instead of Lie brackets, shows again that there is a unique integrable
sup-system of L which has integral manifolds. As this theorem will be cen-
tral in this memoir, it will be exposed thoroughly in the present Section 1.

1.3. Flows of vector fields and their regularity. Let K = R or C. Let D
be a open connected subset of Kn. Let x = (x1, . . . , xn) ∈ D. Let L =∑n

i=1 ai(x)
∂
∂xi

be a vector field defined over D. Throughout this section,
we shall assume that its coefficients ai are eitherK-analytic (of class C ω), of
class C∞, or of class C κ,α, where κ > 1 and 0 6 α 6 1 (see Section 1(IV)
for background about Hölder classes).

By the classical Cauchy-Lipschitz theorem, through each point x0 ∈ D,
there passes a unique local integral curve of the vector field L, namely a
local solution x(t) = (x1(t), . . . , xn(t)) of the system of ordinary differential
equations:

dx1(t)/dt = a1(x(t)), . . . . . . , dxn(t)/dt = an(x(t)),

which satisfies the initial condition x(0) = x0. This solution is defined at
least for small t ∈ K and is classically denoted by t 7→ exp(tL)(x0), because
it has the local pseudogroup property

exp(t′L)
(
exp(tL)(x0)

)
= exp

(
(t + t′)L

)
(x0),

whenever the composition is defined. Denote by Ωx0 the largest connected
open set containing the origin in K in which exp(tL)(x0) is defined. One
shows that the union of various Ωx0 , for x0 running in D, is an open con-
nected set ΩL of K × Kn which contains {0} × D. Some regularity with
respect to both variables t and x0 is got automatically.

Theorem 1.4. ([La1983], [∗]) The global flow ΩL 3 (t, x0) 7→
exp(tL)(x0) ∈ D of a vector field L =

∑n
i=1 ai(x) ∂xi

defined in the
domain D has exactly the same smoothness as L, namely it is C ω, C∞ or
C κ,α.

As a classical corollary, a local straightening property holds : in a neigh-
borhood of a point at which L does not vanish, there exists a C ω, C∞ or
C κ,α change of coordinates x′ = x′(x) in which the transformed vector field
is the unit positive vector field directed by the x′1 lines, viz L′ = ∂/∂x′1.

Up to the end of this Section 1, we will work with K = R.
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1.5. Searching integral manifolds of a system of vector fields. Let M be
a smooth paracompact real manifold, which is C ω, C∞ or C κ+1,α, where
κ > 1, 0 6 α 6 1. Let L := {La}a∈A be a collection of vector fields defined
on open subsets Da of M and having C ω, C∞ or C κ,α coefficients, where
A is an arbitrary set. It is no restriction to assume that ∪a∈ADa = M , since
otherwise, it suffices to shrink M . Call L a system of vector fields on M .

Problem 1.6. Find submanifolds N of M such that each element of L is
tangent to N .

To analyze this (still imprecise) problem, let FM denote the collection of
all C ω, C∞ or C κ,α functions defined on open subsets of M , and call the
system L of vector fields FM -linear if every combined vector field fK + gL
belongs to L, whenever f, g ∈ FM and K,L ∈ L. Here, fK+ gL is defined
in the intersection of the domains of definition of f , g, K and L. To study
the problem, it is obviously no restriction to assume that L is FM -linear.

For p ∈M arbitrary, define

L(p) := {L(p) : L ∈ L}.
Since L is FM -linear, this is a linear subspace of TpM . So Problem 1.6 is
to find submanifolds N satisfying TpN ⊃ L(p), for every p ∈ N . Notice
that an appropriate answer should enable one to find all such submanifolds.
Also, suppose that N1 and N2 are two solutions with N2 ⊂ N1. Then the
problem with the pair (M,N) is exactly the same as the problem with the
pair (N1, N2). Hence a better formulation.

Problem 1.6’. Find all the submanifolds N ⊂M of smallest dimension that
satisfy TpN ⊃ L(p), for every p ∈ N .

The classical Frobenius theorem ([Fr1877, Sp1970, BER1999, Bo1991,
Ch1991, Stk2000, Trv1992]) provides an answer in the (for us simplest)
case where L is closed under Lie brackets and is of constant dimension: ev-
ery point p ∈ M admits an open neighborhood foliated by submanifolds N
satisfying TqN = L(q), for every q ∈ N . The global properties of these sub-
manifolds were not much studied until C. Ehresmann and G. Reeb endeav-
oured to understand them (birth of foliation theory). A line with irrational
slope in the 2-torus (R/Z)2 shows that it is necessary to admit submanifolds
N of M which are not closed. Let AM denote the manifold structure of M .

Definition 1.7. An immersed submanifold of (M,AM) is a subset of N
of M equipped with its own smooth manifold structure AN , such that the
inclusion map i : (N,AN) → (M,AM) is smooth, immersive and injective.

Thus, to keep maximally open Problem 1.6’, one should seek immersed
submanifolds and make no assumption about closedness under Lie brackets.
For later use, recall that an immersed submanifold N of M is embedded
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if its own manifold structure coincides with the manifold inherited from
the inclusion N ⊂ M . It is well known ([CLN1985]) that an immersed
submanifoldN is embedded if and only if for every point p ∈ N , there exists
a neighborhood Up of p inM such that the pair (Up, N∩Up) is diffeomorphic
to (RdimM ,RdimN).

1.8. Maximal strong integral manifolds property. In order to understand
Problem 1.6’, for heuristic reasons, it will be clever to discuss the differences
between the two possibilities L(p) = TpN and L(p)  TpN . Consider an
arbitrary FM -linear system of vector fields L̂ containing L, for instance L
itself. Let p ∈M and define the linear subspace L̂(p) := {L̂(p) : L̂ ∈ L̂}.

Definition 1.9. An immersed submanifold N of M is said to be:

• a strong L̂-integral manifold if TqN = L̂(q), at every point q ∈ N ;

• a weak L-integral manifold if TqN ⊃ L̂(q), at every point q ∈ N .

In advance, the answer (Theorem 1.21 below) to Problem 1.6’ states that
it is possible to construct a unique system of vector fields L̂ containing L,
whose strong integral manifolds coincide with the smallest weak L-integral
manifolds N . Further definitions are needed.

A system of vector fields L̂ is said to have the strong integral manifolds
property if for every point p ∈ M , there exists a strong L̂-integral subman-
ifold N passing through p. A maximal strong L̂-integral manifold N is an
immersed L̂-integral manifold with the property that every connected strong
L̂-integral manifold which intersects N is an open submanifold of N . Thus,
through a point p ∈ M , there passes at most one maximal strong L̂-integral
submanifold. Finally, the system L̂ has the maximal strong integral mani-
folds property if, through every point p ∈M , there passes a maximal strong
L̂-integral manifold. The FM -linear systems L̂ containing L are ordered by
inclusion. We then admit that Problem 1.6’ is essentially reduced to:

Problem 1.6”. How to construct the (a posteriori unique) smallest (for in-
clusion) FM -linear system of vector fields L̂ containing L which has the
maximal strong integral manifolds property ?

1.10. Taking account of the Lie brackets. Here is a basic geometric ob-
servation inspired by Frobenius’ and Nagano’s theorems.

Lemma 1.11. Assume the FM -linear system L̂ has the strong integral man-
ifolds property. Then for every two vector fields L̂, L̂′ ∈ L̂ and for every
p in the intersection of their domains, the Lie bracket

[
L̂, L̂′

]
(p) belongs to

L̂(p).
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Proof. Indeed, let N be a strong L̂-integral manifold, namely satisfying
TN = L̂

∣∣
N

. If L̂, L̂′ ∈ L̂, the two restrictions L̂
∣∣
N

and L̂′
∣∣
N

are tangent
to N . Hence the restriction to N of the Lie bracket

[
L̂, L̂′

]
is also tangent to

N . In conclusion, at every p ∈ N , we have
[
L̂, L̂′

]
(p) ∈ TpN = L̂(p). ¤

So it is a temptation to believe that the smallest system Llie of vector fields
containing L which is closed under Lie brackets does enjoy the maximal
integral manifolds property. However, just after the statement of Nagano’s
theorem (Part II), we have already learnt by means of Example 1.6(II) that
in the C∞ and C κ,α categories, the consideration of Llie is inappropriate.

1.12. Transport of a vector field by the flow of another vector field. To
understand why Llie is insufficient, it will be clever to recall one of the clas-
sical definitions of the Lie bracket between two vector fields. Let p ∈ M
and let K be a vector field defined in a neighborhood of p. Denote by K(q)
the value of K at a point q (this is a vector in TqM ), by g∗(K) the push-
forward of K by a local diffeomorphism g, and by q 7→ Ks(q) [instead of
q 7→ exp(sK)(q)] the local diffeomorphism at time s induced by the flow
of K. If L is a second vector field defined in a neighborhood of p, the Lie
bracket between K and L at p is defined by:

(1.13) [K,L](p) := lim
s→0

(
L(p)− (Ks)∗(L(K−s(p)))

s

)
.

Observe that for every fixed s 6= 0, the two vectors L(p) and
(Ks)∗(L(K−s(p))) belong TpM .

K

L

mor-
diffeo-

local

phism integral
curve
of L

µ: integral curve of K
µ: integral curve of K

Ks

Infinitesimal version:
the Lie bracket

L(K−s(p))

q = Ks(p)

p

γp,L:

Ks(γp,L)

L(p)

(Ks)∗(L(p))

L(p)

(Ks)∗(L(K−s(p)))

K−s(p)

p

γ−s,L

Ks(γ−s,L)

Definition of the system Linv and of the Lie bracket

We explain how to read the right hand side of the diagram. In it: the
integral curve of K passing through p is denoted by µ; the integral curve
of L passing through the point K−s(p) for s very small is denoted by
γ−s,L; its image by the local diffeomorphism Ks is denoted by Ks(γ−s,L);
the vector L(K−s(p)) is tangent to γ−s,L at the point K−s(p); the vector
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(Ks)∗(L(K−s(p))), transported by the differerential of Ks, is in general dis-
tinct from the vector L(p); in fact, the difference L(p)− (Ks)∗(L(K−s(p)))
divided by s, tends to [K,L](p) as s → 0.

Essentially, Llie collects all vector fields obtained by taking infini-
tesimal differences (1.13) between vectors L(p) and transported vectors
(Ks)∗(L(K−s(p))), and then iterating this processus to absorb all multiple
Lie brackets.

As suggested in the left hand side of the diagram, instead of taking the
infinitesimal differences, it is more general to collect all the vectors of the
form (Ks)∗(L(p)). This is the clue of Sussmann’s theorem. In fact, the
system L̂ which is sought for in Problem 1.6” should not only contain Llie,
but should also collect all the vector fields of the form (Ks)∗(L), where s is
not an infinitesimal.

Lemma 1.14. Let L̂ be a FM -linear system of vector fields containing L
which has the strong integral manifolds property. Let p ∈ M , let K,L ∈ L
be two arbitrary vector fields defined in a neighborhood of p and let q =
Ks(p) be a point in the integral curve of K issued from p, with s ∈ R small.
Then the linear subspace L̂(q) necessarily contains the transported vector
(Ks)∗(L(p)).

Proof. Let N be a strong L̂-integral manifold passing through p. As L̂(r) =

TrN at every point r ∈ N , and as L is contained in L̂, it follows that the
restricted vector field K|N is tangent to N . Consequently, the integral curve
of K issued from p is locally contained in N , hence the point q = Ks(p)
belongs to N .

Moreover, as L is contained in L̂, the vector L(p) is tangent to N at p.
The differential (Ks)∗ being a linear isomorphism between TpN and TqN , it
follows that the vector (Ks)∗(L(p)) belongs to the tangent space TqN , which
coincides with L̂(q) by assumption. ¤

1.15. The smallest L-invariant system of vector fields Linv. Based on this
crucial observation, we may introduce the smallest FM -linear system of vec-
tor fields Linv (“inv” abbreviates “invariant”) containing L which contains
all vectors of the form (Ks)∗(L), whenever K,L ∈ L and s ∈ R. It follows
that (Ks)∗

(
Linv(p)

)
= Linv (Ks(p)): the distribution of linear subspaces

p 7→ Linv(p) ⊂ TpM is invariant under the local flow maps.
In [Su1973], it is shown that Linv is concretely and finitely generated as

stated in Lemma 1.16 below. At first, some more notation is needed to
denote the composition of several local diffeomorphisms of the form Ks.
Let X denote the system of all tangent vector fields to M , defined on open
subsets of M . Let k ∈ N with k > 1 and let K = (K1, . . . , Kk) ∈ Xk
be a k-tuple of vector fields defined in their domains of definition. If s =
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(s1, . . . , sk) ∈ Rk is a k-tuple of “time” parameters, we will denote by Ks(p)
the point

K1
s1

(· · · (Kk
sk

(p)) · · · ) := exp
(
s1K

1
(· · · (exp(skK

k(p))) · · · )) ,
whenever the composition is defined. The k-tuple (s1, . . . , sk) will also
be called a multitime parameter. For s fixed, the map p 7→ Ks(p) is
a local diffeomorphism between two open subsets of M . Its local in-
verse is the map p 7→ K̃−es(p), where K̃ := (Kk, . . . , K1) ∈ Lk and
s̃ := (sk, . . . , s1). Moreover, if we define (s, s′) := (s1, . . . , sk, s

′
1, . . . , s

′
k′)

for general s = (s1, . . . , sk) ∈ Rk and s′ = (s′1, . . . , s
′
k′) ∈ Rk

′ , we have
K ′

s′ ◦Ks = (K ′, K)(s′,s).
After shrinking the domains of definition, the composition of local diffeo-

morphisms Ks is clearly associative, where it is defined. It follows that the
set of local diffeomorphisms Ks constitutes a pseudogroup of local diffeo-
morphisms. Here, the term “pseudo” stems from the fact that the domains
of definitions have to be adjusted; not all compositions are allowed.

Lemma 1.16. ([Su1973]) The system Linv is generated by the FM -linear
combinations of all vector fields of the form (Ks)∗(L), for all L ∈ L, all
k-tuples K = (K1, . . . , Kk) ∈ Lk of elements of L and all multitime pa-
rameters s = (s1, . . . , sk) ∈ Rk.

The definitions and the above reasonings show that the FM -linear system
Llie is a subsystem of the FM -linear system Linv (of course, every system is
contained in X):

L ⊂ Llie ⊂ Linv ⊂ X .

In general, at a fixed point p ∈ M , the inclusions L(p) ⊂ Llie(p) ⊂
Linv(p) ⊂ X(p) = TpM may be all strict.

Example 1.17. On R4, consider the system L generated by the three vector
fields

∂

∂x1

, x1
∂

∂x2

, e−1/x2
1
∂

∂x3

.

Then it may be checked that



L(0) = R ∂x1 ,

Llie(0) = R ∂x1 ⊕ R ∂x2 ,

Linv(0) = R ∂x1 ⊕ R ∂x2 ⊕ R ∂x3 ,

X(0) = R ∂x1 ⊕ R ∂x2 ⊕ R ∂x3 ⊕ R ∂x4 .

Theorem 1.18. ([Na1966, Su1973]) In the C ω, C∞ and C κ,α categories,
the system Linv is the smallest one containing L that has the maximal strong
integral manifolds property. In the C ω category, Linv = Llie.

Further structural properties remain to be explained.
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1.19. L-orbits. The maximal strong integral manifolds of Linv may be de-
fined directly by means of L, without refering to Linv, as follows. Two points
p, q ∈M are said to beL-equivalent if there exists a local diffeomorphism of
the form Ks, K = (K1, . . . , Kk), s = (s1, . . . , sk), k ∈ N, with Ks(p) = q.
This clearly defines an equivalence relation on M . The equivalence classes
are called the L-orbits of M and will be denoted either by OL(p) or shortly
by OL, when the reference to one point of the orbit is superfluous.

Concretely, two points p, q ∈M belong to the same L-orbit if and only if
there exist a continuous curve γ : [0, 1] → M with γ(0) = p and γ(1) = q
together with a partition of the interval [0, 1] by numbers 0 = s0 < s1 <
s2 < · · · < sk = 1 and vector fields K1, . . . , Kk ∈ L such that for each
i = 1, . . . , k, the restriction of γ to the subinterval [si−1, si] is an integral
curve of K i. Such a curve will be called a piecewise integral curve of L.

Let p ∈ M . Then its L-orbit OL(p) may be equipped with the finest
topology which makes all the maps s 7→ Ks(p) continuous, for all k > 1,
all K = (K1, . . . , Kk) ∈ Lk and all multitime parameters s = (s1, . . . , sk).
This topology is independent of the choice of a central point p inside a given
orbit ([Su1973]). Since the maps Rk 3 s 7→ Ks(p) ∈ M are already con-
tinuous, the topology of OL(p) is always finer than the topology induced by
the inclusion OL(p) ⊂M . It follows that the inclusion map from OL(p) into
M is continuous. In particular, OL(p) is Hausdorff.

1.20. Precise statement of the orbit theorem. We now state in length the
fundamental theorem of Sussmann, based on preliminary versions due to
Hermann ([He1963]), to Nagano ([Na1966]) and to Lobry ([Lo1970]). It de-
scribes L-orbits as immersed submanifolds (1), (2) enjoying the everywhere
accessibility conditions (3), (4), together with a local flow-box property (5),
useful in applications.

Theorem 1.21. (SUSSMANN [Su1973, Trv1992, BM1997, BER1999,
BCH2005], [∗]) The following five properties hold true.

(1) Every L-orbit OL, equipped with the finest topology which makes
all the maps s 7→ Ks(p) continuous, admits a unique differentiable
structure with the property that OL is an immersed submanifold of
M , of class C ω, C∞ or C κ,α.

(2) With this topology, each L-orbit OL is simultaneously a (connected)
maximal weak integral manifold of L and a (connected) maximal
strong integral manifold of the L-invariant FM -linear system Linv;
thus, for every point p ∈ M , it holds TpOL(p) = Linv(p), whence in
particular dimLinv(q) = dim OL(p) is constant for all q belonging
to a given L-orbit OL(p).
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(3) For every p ∈ M , k > 1, K ∈ Lk, s ∈ Rk such that Ks(p) is
defined, the differential map (Ks)∗ makes a linear isomorphism from
TpOL(p) = Linv(p) onto TKs(p)OL(p) = Linv(Ks(p)).

(4) For every p, q ∈ M belonging to the same L-orbit, there exists
an integer k > 1, there exists a k-tuple of vector fields K =
(K1, . . . , Kk) ∈ Lk and there exists a multitime s∗ = (s∗1, . . . , s

∗
k) ∈

Rk such that p = Ks∗(q) and such that the differential at s∗ of the
map

(1.22) Rk 3 s 7→ Ks(q) ∈ OL(p)

is of rank equal to dim OL(p).
(5) For every p ∈ M , there exists an open connected neighborhood Vp

of p in M and there exists a C ω, C∞ or C κ,α diffeomorphism

(1.23) ¤e ×¤n−e 3 (s, r) 7−→ ϕ(s, r) ∈ Vp,
where e = dim OL(p), where ¤ = {x ∈ R : |x| < 1}, such that:
• ϕ(0, 0) = p;
• the plaque ϕ (¤e × {0}) is an open piece of the L-orbit of p;
• each plaque ϕ (¤e × {r}) is contained in a single L-orbit; and:

• the set of r ∈ ¤n−e such that ϕ
(
¤e × {r}) is contained in the

same L-orbit OL(p) is either finite or countable.

In general, for r 6= 0, the e-dimensional plaques ϕ(¤e × {r}) have
positive codimension in the nearby orbits. We draw a diagram, in which
e = dim OL(p) = 1, with the nearby L-orbits O2, O ′

2, O3 and O ′
3 having

dimensions 2, 2, 3 and 3.

p

Vp

M O′2

O3

O2

O′3

q = eK− es∗ (p)

OL(p)

Local orbit flow box theorem

Property (4) is crucial: the maps (1.22) of rank dim OL(p) are used to
define the differentiable structure on OL(p); they are also used to obtain the
local orbit flow box property (5), as follows.
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Let p ∈M and choose q ∈ OL(p) with q 6= p, to fit with the diagrams (q =
p would also do). Assuming that (4) holds, set e := dim OL(p), introduce
an open subset Te in some e-dimensional affine subspace passing through
s∗ in Rk so that the restriction of the map (1.23) to Te still has rank e at
s = s∗. Introduce also an (n− e)-dimensional local submanifold Λp passing
through p with TpΛp ⊕ TpOL(p) = TpM and set Λq := K̃−es(Λp). Notice
that TqΛq ⊕ TqOL(p) = TqM , since the multiple flow map Ks(·) stabilizes
OL(p). Then, as one of the possible maps ϕ whose existence is claimed in
(5), we may choose a suitable restriction of:

Te × Λq 3 (s, r) 7−→ Ks(r) ∈M.

ϕ

¤e

¤n−e

Λp

Λp OL(p)

Λq

Λq

p

q = Ks(p)

Local foliation by the multitime flow map

1.24. Characterization of embedded L-orbits. A smooth manifold N to-
gether with an immersion i : N → M is called weakly embedded if for
every manifold P , every smooth map ψ : P → M with ψ(P ) ⊂ N , then
ψ : P → N is in fact smooth ([Sp1970]; the diagram is also borrowed).

An immersion of the real line in R2 that is not weakly embedded

Proposition 1.25. ([Bel1996, BM1997, BCH2005]) Each L-orbit is count-
able at infinity (second countable) and weakly embedded in M .

As the multiple flows are diffeomorphisms, embeddability propagates.

Proposition 1.26. ([Bel1996, BM1997, BCH2005]) Let OL be an L-orbit
in M and let e := dim OL. The following three conditions are equivalent:

• OL is an embedded submanifold of M ;
• for every point p ∈ OL, there exists a straightening map ϕ as

in (1.23) with OL ∩ ϕ (¤e ×¤n−e) = ϕ (¤e × {0});
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• there exists at least one point at which the preceding property holds.
Conversely, OL is not embedded in M if and only if for every p ∈ OL

and for every local straightening map ϕ centered at p as in (1.23), the set of
r ∈ ¤n−e such that ϕ

(
¤n−e × {r}) is contained in OL = OL(p) is infinite

(nonetheless countable).

1.27. Local L-orbits and their smoothness. For U running in the collec-
tion of all nonempty open connected subsets ofM containing p, consider the
localized L|U -orbit of p in U , denoted by OL(U, p). If p ∈ U2 ⊂ U1, then
OL(U2, p) ⊂ OL(U1, p) ∩ U2, so the dimension of OL(U, p) decreases as U
shrinks. Consequently, the localized L-orbit OL(U, p) stabilizes and defines
a unique piece of local5 L-integral submanifold through p0, called the local
L orbit of p0 and denoted by O loc

L (p). In the CR context, this concept will be
of interest in Parts V and VI. Sometimes, L-orbits (in M ) are called global,
to distinguish them and to emphasize their nonlocal, nonpointwise nature.

From the flow regularity Theorem 1.4 and from Theorem 1.21, it follows:

Lemma 1.28. Global and local L-orbits are as smooth as L, i.e. C ω, C∞

or C κ,α. Furthermore,

TpO
loc
L (p) ⊂ TpOL(M, p) = Linv(p),

for every p ∈ M . This inclusion may be strict in the smooth categories C∞

and C κ,α, whereas, in the C ω category, local and global CR orbits have the
same dimension.

In the C κ,α category, the maximal integral curve of an arbitrary ele-
ment of L is C κ+1,α, trivially because the right hand sides of the equations
dxk(t)/dt = ak(x(t)), k = 1, . . . , n, are C κ,α. May it be induced that gen-
eral L-orbits are C κ+1,α? Trivially yes if dimL = 1 at every point.

Another instance is as follows. Let r ∈ N with 1 6 r 6 n − 1 and let
L0 = {La}16a6r be a system of C κ,α vector fields defined in a neighbor-
hood of the origin in Rn that are linearly independent there. Consider the
system L generated by linear combinations of elements of L0. Achieving
Gaussian elimination and a linear change of coordinates, we may assume
that r generators of L, still denoted by L1, . . . , Lr, take the form Li = ∂

∂xi
+∑n−r

j=1 aij(x, y)
∂
∂yj

, i = 1, . . . , r, with (x, y) = (x1, . . . , xr, y1, . . . , yn−r) and
with aij(x, y) of class C κ,α in a neighborhood of the origin.

We claim that if OL(0) has (minimal possible) dimension r, then it is
C κ+1,α. This happens in particular if L is Frobenius-integrable.

5In certain references, local L-orbits are considered as germs. Knowing by experience
that the language of germs becomes misleading when several quantifiers are involved in
complex statements, we will always prefer to speak of local submanifolds of a certain small
size.
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Indeed, the local graphed equations of OL(0) must then be of the form
yj = hj(x), j = 1, . . . , n − r, with the hj of class at least C κ,α, thanks to
the lemma above. Observe that the Li are tangent to this submanifold if and
only if the hj satisfy the complete system of partial differential equations
∂hj

∂xi
(x) = aij(x, h(x)), for i = 1, . . . , r, j = 1, . . . , n − r, implying directly

that the hj are C κ+1,α. In general, this argument shows that if dim OL(p)
coincides with dimL(p), the orbit is C κ+1,α at p.

Example 1.29. However, this improvement of smoothness is untrue when
dimL(p) + 1 6 dim OL(p) 6 n− 1.

Indeed, pick the function χκ,α = χκ,α(z) of z ∈ R equal to zero for z 6 0
and, for z > 0, defined by:

χκ,α(z) =

{
zκ+α, if 0 < α 6 1,

zκ/log z, if α = 0.

This function is C κ,α on R, but for (λ, β) > (κ, α), it is not C λ,β in
any neighborhood of the origin. Then in R4 equipped with coordinates
(x, y, z, t), consider the hypersurface Σ of equation:

0 = t− χκ+1,α(y)χκ,α(z),

Then Σ is C κ,α, not better. The two vector fields L1 := ∂
∂x

and L2 :=
∂
∂y

+ [xχκ,α(−y)] ∂
∂z

+
[
χ′κ+1,α(y)χκ,α(z)

]
∂
∂t

have C κ,α coefficients and are
tangent to Σ. We claim that Σ is the local {L1, L2}-orbit of the origin.

Otherwise, there would exist a local two-dimensional submanifold{
z = g(x, y), t = h(x, y)

}
with L1 and L2 tangent to it. Then

[L1, L2] = χκ,α(−y) ∂
∂z

should also be tangent. However, at points
(0, y, g(0, y), h(0, y)), with y negative and arbitrarily small, L1, L2

and L3 are equal to the three linearly independent vectors ∂
∂x

, ∂
∂y

and
χκ,α(−y) ∂

∂z
. ¤

§2. FINITE TYPE SYSTEM AND THEIR GENERICITY (OPENESS AND
DENSITY)

2.1. Systems of vector fields satisfying Llie = L. Let M be a C κ (1 6 κ 6
∞) connected manifold of dimension n > 1. By X, denote the system of all
vector fields defined on open subsets of M (it is a sheaf). Let

L0 = {La}16a6r, r > 1,

be a finite collection of C κ−1 vector fields defined on M , namely La ∈
X(M). Unlike in the C ω category, in the C κ category, X(M) is always
nonempty and quite large, thanks to partitions of unity. For this reason,
we shall not work in the real analytic category, except in some specific local
situations. The set of linear combinations of elements of L0 with coefficients
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in C κ−1(M,R) will be denoted by L (or L1) and called the C κ−1(M)-linear
hull of L0.

Definition 2.2. A C κ−1(M)-linear system L ⊂ X is said to be of finite type
at a point p ∈M if Llie(p) = TpM .

If Llie is of finite type at every point, then Llie = Linv = X and there is
just one maximal L-integral manifold in the sense of Sussmann: M itself.

In 1939, Chow had already shown that the equality Llie = X implies the
everywhere accessibility condition: every two points of M may be joined
by integral curves of L. In 1967, Hörmander established that every second
order partial differential operator P := L2

1 + · · ·+L2
r+R1 +R0 on a domain

Ω ⊂ Rn whose top order part is a sum of squares of C∞ vector fieldsLa, 1 6
a 6 r, such that Llie = X is C∞-hypoelliptic, namely Pf ∈ C∞ implies
f ∈ C∞. Vector field systems satisfying Llie = X have been further studied
by workers in hypoelliptic partial differential equations and in nilpotent Lie
algebras: Métivier, Stein, Mitchell, Stefan, Lobry and others.

In the next Parts V and VI, we will focus on propagational aspects that are
enjoyed by the (more general) smooth systems L that satisfy Linv = X, but
possibly Llie(p) 6= X(p) at every p ∈ M . Nevertheless, for completeness,
we shall survey in the present section some classical geometric properties of
finite type systems.

2.3. Lie bracket flags, weights, privilegied coordinates and distance es-
timate. Define L1 := L and by induction, for s ∈ N with 2 6 s 6 κ,
define Ls to be the C κ−s-linear hull of Ls−1 + [L1,Ls−1]. Concretely, Ls is
generated over C κ−s by iterated Lie brackets of length 6 s of the form:

Lα = [Lα1 , [Lα2 , . . . , [Lα`−1
, Lα`

] . . . ]], 1 6 ` 6 s.

Jacobi’s identity insures that [Ls1 ,Ls2 ] ⊂ Ls1+s2 .
Denote Ls(p) := VectR {L(p) : L ∈ Ls}. Clearly, L is of finite type at

p ∈ M if and only it there exists an integer d(p) 6 κ with Ld(p)(p) = TpM .
The smallest d(p) is sometimes called the degree of non-holonomy of L at
p. Other authors call it the type of L at p, which we will do. The function
p 7→ d(p) ∈ [1, κ] ∪ {∞} is upper-semi-continuous: d(q) 6 d(p) for q near
p.

Combinatorially, at a finite type point, it is of interest to introduce the Lie
bracket flag:

{0} ⊂ L1(p) ⊂ L2(p) ⊂ · · · ⊂ Ls(p) ⊂ · · · ⊂ Ld(p)(p) = TpM.

Then a finite type point p is called regular if the integers ns(q) := dimLs(q)
remain constant in some neighborhood of p. It is elementary to verify
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([Bel1996]) that, at such a regular point, the dimensions are strictly increas-
ing:

0 < n1(p) < n2(p) < · · · < nd(p)(p) = n.

Fix p, not necessarily regular. A local coordinate system (x1, x2, . . . , xn)
centered at p is linearly adapted at p if:





L1(p) = Vectp

(
∂

∂x1

, . . . ,
∂

∂xn1(p)

)
,

L2(p) = Vectp

(
∂

∂x1

, . . . ,
∂

∂xn1(p)

, . . . ,
∂

∂xn2(p)

)
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ld(p)(p) = Vectp

(
∂

∂x1

, . . . ,
∂

∂xn1(p)

, . . . ,
∂

∂xn2(p)

, . . .
∂

∂xnd(p)(p)

)
.

Let us assign weights wi to such linearly adapted coordinates xi as fol-
lows: the first group (x1, . . . , xn1(p)) being linked to L1(p), their weights
will all be equal to one: w1 = · · · = wn1(p) = 1. The second group
(xn1(p)+1, . . . , xn2(p)), linked to the quotient L2(p)/L1(p), will be assigned
uniform weight two: wn1(p)+1 = · · · = wn2(p) = 2, and so on, until
wnd(p)−1(p)+1 = · · · = wnd(p)(p) = d(p).

Provided L is of finite type at every point, we claim that the original finite
collection L0 produces what is called a sub-Riemannian metric; then by
means of weights, the topology associated to this metric may be compared
to the manifold topology of M in a highly precise way.

Indeed, let us define the (infinitesimal) sub-Riemannian length of a vector
vp ∈ L1(p) by:

||vp||L0 := inf
{
(u2

1 + · · ·+ u2
m)1/2 : vp = u1 L1(p) + · · ·+ ur Lr(p)

}
.

For vp 6∈ L1(p), we set ||vp||L0 = ∞. The length of a piecewise C 1 curve
γ(t), t ∈ [0, 1], will be the integral:

lengthL0(γ) :=

∫ 1

0

||dγ(t)/dt||L0 dt.

Finally, the distance associated to the finite collection L0 is:

dL0(p, q) := inf
γ: p→q

lengthL0(γ).

Assume for instance d(p) = 2, so that n2(p) = n. If the coordinates are lin-
early adapted, the tangent space TpM then splits in the “horizontal” space,
the (x1, . . . , xn1(p))-plane, together with a (not unique) “vertical” space gen-
erated e.g. by the remaining coordinates. It is then classical that the distance
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from p to a point of coordinates (x1, . . . , xn) close to p enjoys the estimate:

dL0

(
p, (x1, . . . , xn)

) ³ |x1|+ · · ·+ |xn1(p)|+ |xn1(p)+1|1/2 + · · ·+ |xn|1/2.
Here, the abbreviation Φ ³ Ψ means that there exists C > 1 with
C−1 Ψ < Φ < C Ψ. Notice that the successive exponents coincide with
the weights w1, . . . , wn1(p), wn1(p)+1, . . . , wn. In particular, to reach a point
of coordinates (0, . . . , 0, ε, . . . , ε), it is necessary to flow along L0 during a
time ∼ cst. ε1/2. Observe that |x1|+ · · ·+ |xn| is equivalent to the distance
from p to x induced by any Riemannian metric. Thus, the modified distance
dL0 is just obtained by replacing each |xi| by |xi|1/wi , up to a multiplicative
constant.

To generalize such a quantitative comparison between the dL0-distance
and the underlying topology of M , linearly adapted coordinates appear to
be insufficient. For β = (β1, . . . , βr) ∈ Nr, denote by Lβ the |β|-th order
derivation Lβ1

1 L
β2

2 · · ·Lβr
r . Beyond linearly adapted coordinates, one must

introduce privileged coordinates, whose existence is assured by the follow-
ing.

Theorem 2.4. ([Bel1996]) There exist local coordinates (x1, . . . , xn) cen-
tered at p that are privileged in the sense that each xi is of order exactly
equal to wi with respect to L0-derivations, namely, for i = 1, . . . , n:

Lγ xi|p = 0, for all γ with |γ| 6 wi − 1,

Lβ
∗
i xi|p 6= 0, for some β∗i with |β∗i | = wi.

Only if d(p) = 2, linearly adapted coordinates are automatically privi-
leged ([Bel1996]). As soon as d(p) > 3, privileged systems are unavoidable.

Theorem 2.5. ([Bel1996]) For x in a neighborhood of p, the estimate:

dL0(p, (x1, . . . , xn)) ³ |x1|1/w1 + · · ·+ |xn|1/wn

holds if and only if the coordinates are privileged.

For ε > 0 small, define the anisotropic ball BL0(p, ε) := {x : dL0(p, x) <
ε}.

Corollary 2.6. ([Bel1996]) There exist C > 1 such that

1

C

n∏
i=1

[−εwi , εwi ] ⊂ BL0(p, ε) ⊂ C

n∏
i=1

[−εwi , εwi ].

2.7. Local basis. At a non-regular point, the integers nk(p), k = 1, . . . , d(p)
are not necessarily strictly increasing. Thus, it is necessary to express the
combinatorics of the Lie bracket flag with more precision, in terms of what
is sometimes called Hörmander numbers mi, `i. From now on, we shall
assume that the r vector fields La, 1 6 a 6 r, are linearly independent at p
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and have C∞ or C ω coefficients. In both cases, the formal Taylor series of
every coefficient exists.

In the flag

{0} ⊂ L1(p) ⊂ L2(p) ⊂ · · · ⊂ Ls(p) ⊂ · · · ⊂ Ld(p)(p) = TpM.

let m1 denote the smallest k > 2 such that the dimension of Lk(p) is
larger than the dimension of L1(p) (at a regular point, m1 = 2) and set
`1 := dimLm1(p)−r > 1. Similarly, let m2 denote the smallest k > 1+m1

such that the dimension of Lk(p) is larger than the dimension of Lm1(p)
(at a regular point, m2 = 3) and set `2 := dimLm2(p) − dimLm1(p).
By induction, let mj+1 denote the smallest k > 1 + mj such that the di-
mension of Lk(p) is larger than the dimension of Lmj(p) and set `j+1 :=
dimLmj+1(p)− dimLmj(p).

Since p is a point of finite type, the process terminates until mh = d(p)
reaches the degree of non-holonomy at p, for a certain integer h > 1. We
thus have extracted the interesting information, namely the strict flag of lin-
ear spaces:

L1(p) ⊂ Lm1(p) ⊂ Lm2(p) ⊂ · · · ⊂ Lmh(p) = TpM,

with Lie bracket orders 1 < m1 < m2 < · · · < mh, whose successive
dimensions may be listed parallelly:

r < r + `1 < r + `1 + `2 < · · · < r +
∑

16j6h
`j.

Next, let x = (x1, . . . , xn) be linearly adapted coordinates, vanish-
ing at p. We shall denote them by (y, s1, s2, . . . , sh), where y ∈ Rr,
s1 ∈ R`1 , s2 ∈ R`2 , . . . , sh ∈ R`h . As in the preceding paragraph,
we assign weight 1 to the y-coordinates, weight m1 to the s1-coordinates,
weight m2 to the s2-coordinates, . . . , weight mh to the sh-coordinates.
The weight of a monomial xα = yβ sγ11 sγ22 · · · sγh

h is obviously defined as
|β| +m1 |γ1| +m2 |γ2| + · · · +mh |γh|. We say that a formal power series
a(x) = a(y, s1, . . . , sh) is an O(κ) if all its monomials have weight > κ.
Also, a(x) is called weighted homogeneous of degree κ if

a (ty, tm1s1, t
m2s2, . . . , t

mhsh) = tκa(y, s1, s2, . . . , sh),

for all t ∈ R. As in the case of R[[z1, . . . , zn]] with all weights equal to 1,
every formal series a(y, s1, s2, . . . , sh) may be decomposed as a countable
sum of weighted homogeneous polynomials of increasing degree.

Dually, we also assign weights to all the basic vector fields: ∂
∂ya

will have
weight −1, whereas for j = 1, . . . ,mh, the ∂

∂sjl
, l = 1, . . . , `j , will have

weight −mj . The weight of a monomial vector field xα ∂
∂xi

is defined to be
the sum the weights of xα with the weight of ∂

∂xi
. Every vector field having
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formal power series coefficients may be decomposed as a countable sum of
weighted homogeneous vector fields having polynomial coefficients.

Theorem 2.8. ([Bel1996, BER1999]) Assume the local vector fields La,
a = 1, . . . , r, have C∞ or C ω coefficients and are linearly independend
at p. If the C∞ or C ω coordinates x = (y, s1, s2, . . . , sh) centered at p are
priveleged, then each La may be developed as:

La = L̂a + O(0),

where each vector field:

L̂a :=
∂

∂ya
+

∑
16j61

∑

16l6`j
pa,j,l(y, s1, . . . , sj−1)

∂

∂sj,l
,

is homogeneous of degree −1 and has as its coefficients some polynomials
pa,j,l = pa,j,l(y, s1, . . . , sj−1) that are independent of sj and are homoge-
neous of degree mj − 1.

A crucial algebraic information is missing in this statement: what are the
nondegeneracy conditions on the pa,j,l that insure that the system is indeed
of finite type at p with the combinatorial invariants mj and `j ? The real
problem is to classify vector field systems that are of finite type, up to local
changes of coordinates. At least, the following may be verified.

Theorem 2.9. ([Bel1996, BER1999]) The vector fields L̂a, a = 1, . . . , r,
form a finite type system L̂0 at p having the same combinatorial invariants
mj and `j and satisfying the same distance estimate as dL0 in Theorem 2.5.
Moreover, the linear hull of L̂0 generates a Lie algebra L̂lie with the nilpo-
tency property that all Lie brackets of length > mh + 1 all vanish.

2.10. Finite-typisation of smooth systems of vector fields. As previously,
let L0 = {La}16a6r be a finite collection of C κ−1 vector fields globally
defined on a connected manifold M of class C κ (1 6 κ 6 ∞) and of
dimension n > 1. Let L be its C κ−1(M)-linear hull. If r = 1, then Llie = L,
hence L cannot be of finite type, unless n = 1. So we assume n > 2 and
r > 2. We want to perturb L slightly to L̃ so as to get finite-typeness at
every point: L̃lie(p) = TpM at every p ∈ M . Since the composition of Lie
brackets of length ` requires coefficients of vector fields to be at least C `, if
κ <∞, then necessarily L̃lie = L̃κ stops at length κ.

At a central point, say the origin in Kn, and for K-analytic vector field
systems, the already presented Theorem 1.11(II) yields small perturbations
that are of finite type at 0. Of course, the same local result holds true for
collections of vector fields that are C∞, or even C κ−1 with κ large enough.
Now, we want a global theorem.
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What does it mean for L̃ to be close to L ? A vector field L ∈ X(M)
may be interpreted as a section of the tangent bundle, in particular a C κ−1

map M → TM . The most useful topology on the set C λ(M,N) of all
C λ maps from a manifold M to another manifold N (e.g. N = TM with
λ = κ − 1) is the strong Whitney topology; it controls better than the so-
called weak topology the behaviour of maps at infinity in the noncompact
case. Essentially, f, g ∈ C λ(M,N) are (strongly) close to each other if all
their partial derivatives of order 6 λ, computed in a countable collection of
charts ϕν : Uν → Rn and ψν : Vν → Rm covering M and N , ν ∈ N, are
εν-close, the smallness of εν > 0 depending on the pair of charts (ϕν , ψν).
Precise definitions may be found in the monograph [17]. We then topologize
this way the finite product X(M)r.

Already two vector fields may well be of finite type on a manifold of
arbitrary dimension, e.g. ∂

∂x1
and

∑n
i=2 x

i−1
1

∂
∂xi

on Rn.

Theorem 2.11. ([Lo1970]) If the connected manifoldM of dimension n > 2
is C n+n2

, then the set of pairs of vector fields L0 := (K,L) ∈ X(M)2 on M
whose C n2+n−1-linear hull L satisfies Ln2+n = L, is open and dense in the
strong Whitney topology.

According to [Su1976], the smoothness M ∈ C n+n2 in [Lo1970] was
improved to M ∈ C 2n in Lobry’s thesis (unpublished). We will summarize
the demonstration in the case M ∈ C 2n. However, since neither C 2n nor
C n+n2 are optimal, we will improve this result afterwards (Theorem 2.16
below).

Proof. Openness is no mystery. For denseness, we need some preliminary.
If M and N are two C λ manifolds, we denote by Jλ(M,N) the bundle
of λ-th jets of C λ maps from M to N . We recall that, to a C λ map f :
M → N is associated the λ-th jet map jλf : M → Jλ(M,N), a continuous
map that may be considered as a kind of intrinsic collection of all partial
derivatives of f up to order λ. Let π : Jλ(M,N) → M be the canonical
projection, sending a jet to its base point. For p ∈ M , the fiber π−1(p) may
be identified with RNm,n,λ , where Nm,n,λ := m (n+λ)!

n! λ!
counts the number of

partial derivatives of order 6 λ of maps Rn → Rm.
We will state a lemma which constitutes a special case of the jet transver-

sality theorem. This particular statement (Lemma 2.12 below) generalizes
the intuitively obvious statement that any C 0 curve graphed over R × {0}2

in R3 may always be slightly perturbed to avoid a given fixed C 1 curve Σ.
Call a subset Σ ⊂ Jλ(M,N) algebraic in the jet variables if in every pair

of local charts, it possesses defining equations that are polynomials in the
jet variables fj,α, 1 6 j 6 m, α ∈ Nn, |α| 6 λ, whose coefficients are
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independent of the coordinates x ∈ M . Of course, after a local diffeomor-
phism x 7→ x̄(x) of M , a general polynomial in the jet variables which is
independent of x almost never remains independent of x̄ in the new coor-
dinates. Nevertheless, in the sequel, we shall only encounter special sets
Σ ⊂ Jλ(M,N) which, in any coordinate system, may be defined as zero
sets of such special polynomials.

For instance, taking (xk, yj, yj,k) as coordinates on J1(M,N), where 1 6
k 6 n = dimM and 1 6 j 6 m = dimN , a change of coordinates x 7→
x̄(x) induces (xk, yj, yj,k) 7−→ (x̄k, ȳj, ȳj,k), where ȳj = yj is unchanged
but the new jet variables yj,k =

∑n
l=1 ȳj,l

∂x̄l

∂xk
involve the variables x (or x̄).

Nevertheless, the equations {yj,k = 0, 1 6 j 6 m, 1 6 k 6 n} saying that
the first (pure) jet vanishes are equivalent to {ȳj,k = 0, 1 6 j 6 m, 1 6
k 6 n}, since the invertible Jacobian matrix

(
∂x̄l

∂xk

)
may be erased: vanishing

properties in a jet bundle are intrinsic !
A theorem due to Whitney states that real algebraic sets are stratified,

i.e. are finite unions of geometrically smooth real algebraic manifolds. The
codimension of Σ is thus well-defined.

Lemma 2.12. ([17]) Assume Σ ⊂ Jλ(M,N) is algebraic in the jet variables
and of codimension > 1 + dimM . Then the set of maps f ∈ C λ(M,N)
whose λ-th prolongation jλf : M → Jλ(M,N) does not meet Σ at any
point is open and dense in the strong Whitney topology.

Although jλf is only continuous, the fact that the bad set Σ is algebraic
enables to apply the appropriate version of Sard’s theorem that is used in the
jet transversality theorem.

We shall apply the lemma by defining a certain bad set Σ which, if
avoided, means that a pair of vector fields on M is of finite type at every
point.

Assume M ∈ C 2n and let (K,L) ∈ X(M)2. Both vector fields have
C 2n−1 coefficients. With λ := 2n − 1, denote by J2n−1(X(M)2) the fiber
bundle of the (2n − 1)-th jets of these pairs. In some coordinates provided
by a local chart U 3 q 7→ (x1(q), . . . , xn(q)) ∈ Rn, with U ⊂ M open,
we may write K =

∑
16i6n Ki(x)

∂
∂xi and L =

∑
16i6n Li(x)

∂
∂xi . In such

a chart, the (2n − 1)-th jet map j2n−1(K,L) : U −→ J2n−1(X2(M)|U) is
concretely given by:

U 3 x 7−→ (
∂αx Ki(x), ∂

α
x Li(x)

)
α∈Nn, |α|62n−1, 16i6n.

We denote byKi,α and Li,α the corresponding jet variables. A C 2n local dif-
feomorphism x 7→ x̄ = x̄(x) induces a triangular transformation involving
the chain rule between these jets variables, with coefficients depending on
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the 2n-th jet of x̄(x), some of which are only C 0, which might be unpleas-
ant. Fortunately, our bad set Σ will be shown to be algebraic with respect to
the jet variables Ki,α and Li,α in any system of coordinates.

Let (K,L) ∈ X(M)2. To write shortly iterated Lie brackets, we de-
note ad(K)L := [K,L], so that ad(K)2L = [K, [K,L]], ad(K)3L =
[K, [K, [K,L]]] and so on. Also, we set ad0(K)L := L. Define a subset
Σ ⊂ J2n−1(X2(M)) as a union Σ = Σ′ ∪ Σ′′ ∪ Σ′′′, where:

• firstly Σ′ is defined by the 2n equations Ki,0 = Li,0 = 0;
• secondly, Σ′′ is defined by requiring that all the n× n minors of the

following n× (2n) matrix
(
ad0(K)L ad1(K)L · · · · · · ad2n−1(K)L

)
,

vanish;
• thirdly, Σ′′′ is defined similarly, after exchanging K with L.

Lemma 2.13. In the vector space of real n × (2n) matrices, isomorphic to
R2n2

, the subset of matrices of rank 6 (n − 1) is a real algebraic subset of
codimension equal to (n+ 1).

Without obtaining a complete explicit expression, it is easily verified that
adj(K)(L), 0 6 j 6 2n − 1, is a universal polynomial in the jet variables
Ki,α and Li,α. Under a local change of coordinates x 7→ x̄(x), if the two vec-
tor fields K and L transform to K and to L (push-forward), all the multiple
Lie brackets adj(K)L then transform to adj(K)L, thanks to the invariance
of Lie brackets. Geometrically, the vanishing of each of the n × n minors
defining Σ′′ and Σ′′′ means the linear dependence of a system of n vectors,
thus it is an intrinsic condition. Consequently, although the jet variablesKi,α

and Li,α are transformed in an unpleasant way through diffeomorphisms, the
sets Σ′, Σ′′ and Σ′′′ may be defined by universal polynomials in the jet vari-
ables Ki,α and Li,α, that are the same in any system of local coordinates.

The lemma above and an inspection of a part of the complete expression
of the adj(K)(L), 0 6 j 6 2n − 1 provides the following information.
Details will be skipped.

Lemma 2.14. The two subsets Σ′′ and Σ′′′ of J2n−1(X(M)2) are both alge-
braic in the jet variables and of codimension (n+ 1) outside Σ′.

To conclude the proof of the theorem, we have to show that arbitrarily
close to (K,L), there are pairs of finite type. Since Σ′ has codimension 2n >
dimM , a first application of the avoidance Lemma 2.12 yields a perturbed
pair, still denoted by (K,L), with the property that at every point p ∈ M ,
either K(p) 6= 0 or L(p) 6= 0. Since Σ′′ and Σ′′′ both have codimension
n + 1 > dimM , a second application of the avoidance Lemma 2.12 yields
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a perturbed pair such that the two collections of 2n vector fields adj(K)L,
0 6 j 6 2n−1, and adj(L)K, 0 6 j 6 2n−1, generate TM at every point
p ∈M . The proof is complete. ¤

To improve this theorem, let r > 2 and consider the set X(M)r of
collections of r vector fields globally defined on M that are C κ−1 for
some κ > 2 to be chosen later. If L0 = {L1, L2, . . . , Lr}, is such a
collection, its elements may be expressed in a local chart (x1, . . . , xn) as
La =

∑n
i=1 ϕa,i(x)

∂
∂xi

, for a = 1, . . . , r. Since the coefficients are C κ−1, it
is possible to speak of Lλ only for λ 6 κ. We want to determine the small-
est regularity κ such that the set of r-tuples L0 ∈ X(M)r that are of finite
type at every point of M is open and dense in X(M)r for the strong Whitney
topology.

As in §1.8(II), let nκ(r) denote the dimension of the subspace Fκ(r) of the
free Lie algebra F(r) that is generated as a real vector space by simple words
(abstract Lie brackets) of length 6 κ. Then nκ(r) is the maximal possible
dimension of Lκ(p) at a point p ∈ M . We know that Lκ is generated by
simple iterated Lie brackets of the form

[
La1 ,

[
La2 , . . . ,

[
Laκ−1 , Laλ

]
. . .

]]
,

for all λ 6 κ and for certain (not all) ai with 1 6 a1, a2, . . . , aλ−1, aλ 6 r
that depend on the choice of a Hall-Witt basis (Definition 1.9(II)) of Fκ(r).

We choose κ minimal so that nκ(r) > 2 dimM = 2n. This fixes
the smoothness of M . For b = r + 1, . . . , nκ(r), we order linearly as
Lb =

∑n
i=1 ψb,i(x)

∂
∂xi

the chosen collection of iterated Lie brackets that
generate Lκ. If λ = λ(b) denotes the length of Lb, namely Lb ∈ Lλ(b) of
the form Lb =

[
La1 , . . . ,

[
Laλ(b)−1

, Laλ(b)

]
. . .

]
, there are universal differen-

tial polynomials Aia1,...,aλ(b)
in the (λ(b) − 1)-th jet of the coefficients ϕa,i

such that ψb,i(x) = Aia1,...,aλ(b)

(
J
λ(b)−1
x ϕ(x)

)
. Also, in a fixed local system

of coordinates, we form the n× (2n) matrix
(
ϕ1,i . . . ϕr,i ψr+1,i . . . ψ2n,i

)
16i6n.

Similarly as in the proof of the previous theorem, we define a “bad” subset
Σ of Jκ−1(X(M)r) by requiring that the dimension of Lκ(p) is 6 (n − 1)
at every point p ∈ M . This geometric condition is intrinsic and neither
depends on the choice of local coordinates nor on the choice of a Hall-Witt
basis. Concretely, in a local system of coordinates, Σ is described as the
zero-set of all n×n minors of the above matrix. Thanks to Lemma 2.13 and
to an inspection of a portion of the explicit expressions of the jet polynomials
Aia1,...,aλ(b)

(
J
λ(b)−1
x ϕ(x)

)
, we may establish the following assertion.



71

Lemma 2.15. The so defined subset Σ =
{

dimLκ(p) 6 n−1, ∀ p ∈M}
of

Jκ−1(X(M)r) is algebraic in the jet variables and of codimension (n+ 1).

Then an application of the avoidance Lemma 2.12 yields that, after an
arbitrarily small perturbation of L0, still denoted by L0, we have Lκ(p) =
TpM for every p ∈ M . Equivalently, the type d(p) of p is finite at every
point and satisfies d(p) 6 κ.

Theorem 2.16. Let r > 2 be an integer and assume that the connected n-
dimensional abstract manifold M is C κ, where κ is minimal with the prop-
erty that the dimension nκ(r) of the vector subspace Fκ(r), of the free Lie
algebra F(r) having r generators, that is generated by all brackets of length
6 κ, satisfies

nκ(r) > 2dimM = 2n.

Then the set of collections of r vector fields L0 ∈ X(M)r that are of type 6 κ
at every point is open and dense in X(M)r for the strong Whitney topology.

A more general problem about finite-typisation of vector field structures
is concerned with general substructures of a given finite type structure.

Open question 2.17. Given a finite type collection K0 = {Kb}16b6s, s > 3,
of C κ−1 vector fields onM of class C κ with the property thatKκ(p) = TpM
at every point and given a C κ−1 subsystem L0 = {La}16a6r, 2 6 r 6 s−1,
of the form La =

∑
16b6s ψa,bKb, is it always possible to perturb slightly

the functions ψa,b : M → R so as to render L0 of finite type at every point ?
If so, what is the smallest regularity κ, in terms of r, s and the highest type
of K0 at points of M ?

Finally, we mention a result similar to Theorem 2.16 that is valid in the C 2

category and does not use any Lie bracket. It is based on Sussmann’s orbit
Theorem 1.21. The reference [Su1976] deals with several other genericity
properties, motivated by Control Theory.

Theorem 2.18. ([Su1976]) Assume r > 2 and κ > 2. The set of collections
L0 = {La}16a6r of r vector fields on a connected C κ manifold M so that
M consists of a single L-orbit, is open and dense in X(M)r equipped with
the strong Whitney C κ−1 topology.

2.19. Transition. The next Section 3 exposes the point of view of Analysis,
where vector field systems are considered as partial differential operators,
until we come back to the applications of the notion of orbits to CR geometry
in Section 4.
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§3. LOCALLY INTEGRABLE CR STRUCTURES

3.1. Local insolvability of partial differential equations. Until the 1950’s,
among analysts, it was believed and expected that all linear partial differen-
tial equations having smooth coefficients had local solutions ([Trv2000]). In
fact, elliptic, parabolic, hyperbolic and constant coefficient equations were
known to be locally solvable. Although his thesis subject was to confirm
this expectation in full generality, in 1957, Hans Lewy ([Lew1957]) exhib-
ited a striking and now classical counterexample of a C∞ function g in a
neighborhood of the origin of R3, such that Lf = g has no local solution
at all. Here, L = ∂

∂z̄
+ z ∂

∂v
is the generator of the Cauchy-Riemann anti-

holomorphic bundle tangential to the Heisenberg sphere of equation v = zz̄
in C2, equipped with coordinates (z, w) = (x+ iy, u+ iv).

From the side of Analysis, almost absent in the two grounding
works [Po1907] and [Ca1932] of Henri Poincaré and of Élie Cartan, Lewy’s
discovery constituted the birth of smooth linear PDE theory and of smoooth
Cauchy-Riemann geometry. Later, in 1971, the simpler two-variables Mizo-
hata equation ∂f

∂x
− ixk ∂f

∂y
= g was shown by Grushin to be non-solvable, if

k is odd, for certain g. One may verify that the set of smooth functions g for
which Lewy’s or Grushin’s equation is insolvable, even in the distributional
sense, is generic in the sense of Baire. For k = 1, the Mizohata vector field
∂
∂x
− i x ∂

∂y
intermixes the holomorphic and antiholomorphic structures,

depending on the sign of x.
In 1973 answering a question of Lewy, Nirenberg ([Ni1973]) exhibited a

perturbation ∂
∂x
− i x(1 + ϕ(x, y)) ∂

∂y
of the Mizohata vector field, where ϕ

is C∞ and null for x 6 0, such that the only local solutions of Lf = 0 are
the constants. A year later, in [Ni1974], he exhibited a perturbation of the
Lewy vector field having the same property. A refined version is as follows.

Let Ω be a domain inR3, exhausted by a countable family of compact sets
Kj , j = 1, 2, . . . with Kj ⊂ IntKj+1. If f ∈ C∞(Ω,C), define the Fréchet
semi-norms ρj(f) := maxx∈Kj , |α|6j |∂αx f(x)| and topologize C∞(Ω,C) by
means of the metric d(f, g) :=

∑∞
j=1

ρj(f−g)
1+ρj(f−g) . Consider the set

L̂ :=
{
L =

3∑
j=1

aj(x)
∂

∂xj
: aj ∈ C∞(Ω,C)

}
,

equipped with this topology for each coefficient aj .

Theorem 3.2. ([JT1982, Ja1990]) The set of L ∈ L̂ for which the solutions
u ∈ C 1(Ω,C) of Lu = 0 are the constants only, is dense in L̂.
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These phenomena and others were not suspected at the time of Lie, of
Poincaré, of É. Cartan, of Vessiot and of Janet, when PDE theory was fo-
cused on the algebraic complexity of systems of differential equations hav-
ing analytic coefficients. In 1959, Hörmander explained the behavior of
the Lewy counter-example, as follows. The references [Trv1970, Trv1986,
ES1993, Trv2000] provide further survey informations about operators of
principal type, operators with multiple characteristics, pseudodifferential
operators, hypoelliptic operators, microlocal analysis, etc.

Let P = P (x, ∂x) =
∑

α∈Nn, |α|6m aα(x) ∂
α
x be a linear partial differential

operator of degree m having C∞ complex-valued coefficients aα : Ω → C
defined in a domain Ω ⊂ Rn. Its symbol P (x, ξ) :=

∑
|α|6m aα(x) (i ξ)α is

a function from the cotangent T ∗Ω ≡ Ω×Rn toC. Its principal symbol is the
homogeneous degree m part Pm(x, ξ) :=

∑
|α|=m aα(x) (i ξ)α. The cone of

points (x, ξ) ∈ Ω × (Rn\{0}) such that Pm(x, ξ) = 0 is the characteristic
set of P , the locus of the obstructions to existence as well as to regularity of
solutions f of P (x, ∂x)f = g.

The real characteristics of P are called simple if, at every characteristic
point (x0, ξ0) with ξ0 6= 0, the differential dξPm =

∑n
k=1

∂Pm

∂ξk
dξk with re-

spect to ξ is nonzero. It follows from homogeneity and from Euler’s identity
that the zeros of P are simple, so the characteristic set is a regular hypersur-
face of Ω × (Rn\{0}). One can show that this assumption entails that the
behaviour of P is the same as that of Pm: in a certain rigorous sense, lower
order terms may be neglected. In his thesis (1955), Hörmander called such
operators of principal type, a label that has stuck ([Trv1970]).

Call P solvable at a point x0 ∈ Ω if there exists a neighborhood U of x0

such that for every g ∈ C∞(U), there exists a distribution f supported in U
that satisfies Pf = g in U . In 1955, Hörmander had shown that a principal
type partial differential operator P is locally solvable if all the coefficients
aα(x), |α| = m, of its principal part Pm are real-valued. On the contrary, if
they are complex-valued, in 1959, he showed:

Theorem 3.3. ([Hö1963]) If the quantity

n∑

k=1

∂Pm(x, ξ)

∂ξk

∂Pm(x, ξ)

∂xk

is nonzero at a characteristic point (x0, ξ0) ∈ T ∗Ω, for some ξ0 6= 0, then P
is insolvable at x0.

With Pm(x, ∂x) :=
∑

|α|=m aα(x) ∂
α
x , denote by C2m−1(x, ξ) the prin-

cipal symbol of the commutator
[
Pm(x, ∂x), Pm(x, ∂x)

]
, obviously zero if

Pm has real coefficients. The above necessary condition for local solvability
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may be rephrased as: if P is locally solvable at x0, then for all ξ ∈ Rn\{0}:

Pm(x, ξ) = 0 =⇒ C2m−1(x, ξ) = 0.

This condition explained the non-solvability of the Lewy operator appropri-
ately.

3.4. Condition (P) of Nirenberg-Treves and local solvability. The geo-
metric content of the above necessary condition was explored and gener-
alized by Nirenberg-Treves ([NT1963, NT1970, Trv1970]). Recall that the
Hamiltonian vector field associated to a function f = f(x, ξ) ∈ C 1(Ω×Rn)
is Hf :=

∑n
k=1

(
∂f
∂ξk

∂
∂xk

− ∂f
∂xk

∂
∂ξk

)
. A bicharacteristic of the real part

A(x, ξ) of Pm(x, ξ) is an integral curve of HA, namely:

dx

dt
= gradξ A(x, ξ),

dξ

dt
= −gradxA(x, ξ).

It follows at once that the functionA(x, ξ) must be constant along its bichar-
acteristics. When the constant is zero, a bicharacteristic is called a null
bicharacteristic. In particular, null bicharacteristics are contained in the
characteristic set, which explains the terminology.

Then Hörmander’s necessary condition may be interpreted as follows.
Let B(x, ξ) be the imaginary part of Pm(x, ξ). An immediate computation
shows that the principal symbol of [A(x, ∂x), B(x, ∂x)] is given by:

C1(x, ξ) =
n∑

k=1

{
∂A

∂ξk
(x, ξ)

∂B

∂xk
(x, ξ)− ∂B

∂ξk
(x, ξ)

∂A

∂xk
(x, ξ)

}
.

Equivalently,
C1(x, ξ) = (dB/dt) (x, ξ).

Theorem 3.3 says that the nonvanishing of C1 at a characteristic point entails
insolvability. In fact, Nirenberg-Treves observed that if the order of vanish-
ing of B along the null characteristic of A is odd then insolvability holds.
Beyond finite order of vanishing, what appeared to matter is only the change
of sign. Since the equation Pf = g has the same solvability properties as
z Pf = g, for all z ∈ C\{0}, this led to the following:

Definition 3.5. ([NT1963, NT1970]) A differential operator P of principal
type is said to satisfy condition (P) if, for every z ∈ C\{0}, the function
Im (z Pm) does not change sign along the null bicharacteristic of Re (z Pm).

The next theorem has been shown for P having C ω coefficients and in
certain cases for P having C∞ coefficients by Nirenberg-Treves, and finally,
in the general C∞ category by Beals-Fefferman (sufficiency) and by Moyer
(necessity).
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Theorem 3.6. ([NT1963, Trv1970, NT1970, BeFe1973, Trv1986]) Condi-
tion (P) is necessary and sufficient for the local solvability in L2 of a princi-
pal type linear partial differential equation Pf = g.

Except for complex and strongly pseudoconvex structures, little is known
about solvability of C∞ systems of PDE’s, especially overdetermined ones
([Trv2000]). In the sequel, only vector field systems (order m = 1), studied
for themselves, will be considered.

3.7. Involutive and CR structures. Following [Trv1981, Trv1992,
BCH2005], let M be a C ω, C∞ or C κ,α (κ > 2, 0 < α < 1) para-
compact Hausdorff second countable abstract real manifold of dimension
µ > 1 and let L be a C ω, C∞ or C κ−1,α complex vector subbundle of
CTM := C ⊗ TM of rank λ, with 1 6 λ 6 µ. Denote by Lp its fiber at a
point p ∈ M . Denote by T the orthogonal of L for the duality between
differential forms and vector fields. It is a vector subbundle of CT ∗M ,
whose fiber at a point p ∈ M is L ⊥

p =
{
$ ∈ CT ∗pM : $ = 0 on Lp

}
.

The characteristic set C := T ∩ T ∗M (real T ∗M ) is in general not a vector
bundle: the dimension of C 0

p may vary with p, as shown for instance by the
bundle generated over R2 by the Mizohata operator ∂x − ix ∂y.

From now on, we shall assume that the bundle L is formally integrable,
i.e. that [L ,L ] ⊂ L . Then L defines:

• an elliptic structure if Cp = 0 for all p ∈M ;

• a complex structure of Lp ⊕Lp = CTpM for all p ∈M ;

• a Cauchy-Riemann (CR for short) structure if Lp ∩ Lp = {0} for
all p ∈M ;

• an essentially real structure if Lp = Lp, for all p ∈M .

In general, L will be called an involutive structure if [L ,L ] = L .
Let us summarize basic linear algebra properties ([Trv1981, Trv1992,
BCH2005]). Every essentially real structure is locally generated by real
vector fields. Every complex structure is elliptic. If L is a CR structure
(often called abstract), the characteristic set C is in fact a vector subbundle
of T ∗M of rank µ− 2λ; this integer is the codimension of the CR structure.
A CR structure is of hypersurface type if its codimension equals 1.

3.8. Local integrability and generic submanifolds of Cn. The bundle L
is locally integrable if every p ∈ M has a neighborhood Up in which there
exist τ := µ − λ functions z1, . . . , zτ : Up → C of class C ω, C∞ or C κ,α

whose differentials dz1, . . . , dzτ are linearly independent and span T |Up (or
equivalently, are annihilated by sections of L ). In other words, the homo-
geneous PDE system L f = 0 has the best possible space of solutions.
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Here is a canonical example of locally integrable structure. Consider a
generic submanifold M of Cn of class C ω, C∞ or C κ,α, κ > 1, 0 6 α 6 1,
as defined in §2.1(II) and in §4.1 below. Let d > 0 be its codimension and
let m = n − d > 0 be its CR dimension. Let T cM = TM ∩ JTM (a
real vector bundle) and let CTM = C ⊗ TM . Define the two complex
subbundles T 1,0M and T 0,1M = T 1,0M of CTM whose fibers at a point
p ∈M are:
{
T 1,0
p M = {Xp + iJXp : Xp ∈ T cpM} = {Zp ∈ CTpM : JZp = −iZp},
T 0,1
p M = {Xp − iJXp : Xp ∈ T cpM} = {Zp ∈ CTpM : JZp = iZp}.

Geometrically, T 1,0M and T 0,1M are just the traces on M of the holomor-
phic and anti-holomorphic bundles T 1,0Cn and T 0,1Cn, whose fibers at a
point p are

∑n
k=1 ak

∂
∂zk

∣∣
p

and
∑n

k=1 bk
∂
∂z̄k

∣∣
p
. They satisfy the Frobenius

involutivity conditions [T 1,0M,T 1,0M ] ⊂ T 1,0M and [T 0,1M,T 0,1M ] ⊂
T 0,1M . More detailed background information may be found in [Ch1991,
Bo1991, Trv1992, BER1999].

On such an embedded generic submanifold M , choose as structure bun-
dle L just T 0,1M ⊂ CTM . Then clearly, the n holomorphic coordinate
functions z1, . . . , zn are annihilated by the anti-holomorphic local sections∑n

k=1 bk
∂
∂z̄k

of T 0,1M and they have linearly independent differential, at
every point of M . A generic submanifold embedded in Cn carries a locally
integrable involutive structure. Conversely:

Lemma 3.9. Every locally integrable CR structure is locally realizable as
the anti-holomorphic structure induced on a generic submanifold embedded
Cn.

Proof. Indeed, if a real µ-dimensional C ω, C∞ or C κ,α manifold M bears
a locally integrable CR structure, the map Z = (z1, . . . , zτ ) produces an
embedding of the open set Up as a local generic submanifold M := Z(Up)
of Cτ , with Z∗(L ) = T 0,1M . ¤

A locally integrable CR structure is sometimes called locally realizable or
locally embeddable.

3.10. Levi form. Let L be an involutive structure, not necessarily locally
integrable and let cp ∈ Cp ⊂ T ∗pM be a nonzero characteristic covector at p.

Definition 3.11. The Levi form at p in the characteristic codirection cp ∈
Cp\{0} ⊂ T ∗pM\{0} is the Hermitian form acting on two vectors Xp, Yp ∈
L (p) as:

Lp,cp

(
Xp, Y p

)
:=

1

2i
cp

([
X, Y

])
,
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where X , Y are any two sections of L defined in a neighborhood of p and
satisfying X(p) = Xp, Y (p) = Yp. The resulting number is independent of
the choice of such extensions X , Y .

For the study of realizability of CR structures of codimension one, non-
degeneracy of the Levi form, especially positivity or negativity, is of crucial
importance. An abstract CR structure of hypersurface type whose Levi form
has a definite signe is said to be strongly pseudoconvex, since, after a possi-
ble rescaling of sign of a nonzero characteristic covector, all the eigenvalues
of its Levi form are positive.

3.12. Nonembeddable CR structures. After Lewy’s discovery, the first ex-
ample of a smooth strictly pseudoconvex CR structure in real dimension
3 which is not locally embeddable was produced by Nirenberg in 1973
([Ni1973]), cf. Theorem 3.3 above. For CR structures of hypersurface type,
Nirenberg’s work has been generalized in higher dimension under the as-
sumption that the Levi form is neither positive nor negative, in any charac-
teristic codirection. Let n > 2 and let ε1 = 1, εk = −2, k = 2, . . . , n.

Theorem 3.13. ([JT1982, BCH2005]) There exists a C∞ complex-valued
function g = g(x, y, s) defined in a neighborhood of the origin in Cn × R
and vanishing to infinite order along {x1 = y1 = 0} such that the vector
fields:

L̂j :=
∂

∂z̄j
− i εj zj (1 + g(x, y, s))

∂

∂s
,

are pairwise commuting and such that every C 1 solution h of L̂jh = 0, j =
1, 2, . . . , n defined in a neighborhood of the origin must satisfy ∂h

∂s
(0) = 0.

This entails that the involutive structure spanned by the L̂j is not locally
integrable at 0. One may establish that the set of such g is generic. Crucially,
the Levi-form is of signature (n− 1).

Open problem 3.14. Find versions of generic non-embeddability for CR
structures of codimension 1 having degenerate Levi-form. Find higher codi-
mensional versions of generic non-embeddability.

3.15. Integrability of complex structures and embeddability of strongly
pseudoconvex CR structures. Let us now expose positive results. Every
formally integrable essentially real structure L = Re L is locally inte-
grable, thanks to Frobenius’ theorem; however the condition [L ,L ] ⊂ L
entails the involutivity of Re L only in this special case. Also, every an-
alytic formally integrable CR structure is locally integrable: it suffices to
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complexify the coefficients of a generating set of vector fields and to ap-
ply the holomorphic version of Frobenius’ theorem. For complex struc-
ture, the proof is due to Libermann (1950) and to Eckman-Frölicher (1951),
see [AH1972a, Trv1981, Trv1992].

Theorem 3.16. Smooth complex structures are locally integrable.

This deeper fact has a long history, which we shall review concisely. On
real analytic surfaces, isothermal coordinates where discovered by Gauss
in 1825–26, before he published his Disquisitiones generales circa superfi-
cies curvas. In the 1910’s, by a nontrivial advance, Korn and Lichtenstein
transferred this theorem to Hölder continuous metrics.

Theorem 3.17. Let ds2 = E du2 +2F dudv+Gdv2 be a C 0,α (0 < α < 1)
Gaussian metric defined in some neighborhood of 0 in R2. Then there exists
a C 1,α change of coordinates (u, v) 7→ (ũ, ṽ) fixing 0 and a C 0,α function
λ̃ = λ̃(ũ, ṽ) such that:

λ̃
(
dũ2 + dṽ2

)
= E du2 + 2F dudv +Gdv2.

A modern proof of this theorem based on the complex notation and on the
∂ formalism was provided by Bers ([Be1957]) and by Chern ([Ch1955]).
In the monograph [Ve1962], deeper weakenings of smoothness assumptions
are provided.

As a consequence of this theorem, complex structures of class C 0,α on
surfaces may be shown to be locally integrable. Let us explain in length this
corollary.

At first, remind that an almost complex structure on 2n-dimensional mani-
fold M is a smoothly varying field J = (Jp)p∈M of endomorphisms of TpM
satisfying Jp ◦ Jp = −Id. Thanks to J , as in the standard complex case,
one may define T 0,1

p M := {Xp + iJpXp : Xp ∈ TpM} and then the bun-
dle L := T 0,1M is a complex structure in the PDE sense of §3.7 above.
Conversely, given a complex structure L ⊂ CTM , then locally in some
neighborhood Up of an arbitrary point p ∈ M , there exist local coordinates
(x1, . . . , xn, y1, . . . , yn) vanishing at p so that n complex vector fields of the
form:

Zj :=
n∑

k=1

ak,j ∂xk
+ i

n∑

k=1

bk,j ∂yk
,

with ak,j(0) = δk,j = bk,j(0), span L |Up . The associated almost complex
structure is obtained by declaring that, at a point of coordinates (x, y), one
has:

J

(
n∑

k=1

ak,j ∂xk

)
=

n∑

k=1

bk,j ∂yk
and J

(
n∑

k=1

bk,j ∂yk

)
= −

n∑

k=1

ak,j ∂xk
.
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Lemma 3.18. The bundle L ⊂ CTM satisfies [L ,L ] ⊂ L if and only if,
for every two vector fields X and Y on M , the Nijenhuis expression:

N(X, Y ) := [J X, J Y ]− J [X, J Y ]− J [J X, Y ]− [X, Y ]

vanishes identically.

The proof is abstract nonsense. Also, one verifies that N(f X, g Y ) =
f g N(X, Y ) for every two smooth local function f and g: the expression
N is of tensorial character. In symplectic and in almost complex geometry
([MS1995]), the following is settled.

Definition 3.19. The almost complex structure is called integrable if, in
some neighborhood Up of every point p ∈ M there exist n complex-valued
functions z1, . . . , zn : Up → C of class at least C 1 and having linearly inde-
pendent differentials such that dzk ◦ J = i ◦ dzk, for k = 1, . . . , n.

One verifies that it is equivalent to require L zk = 0, k = 1, . . . , n: inte-
grability of an almost complex structure coincides with local integrability of
L = T 0,1M .

Now, we may come back to the integrability Theorem 3.16. To an arbi-
trary Gaussian metric g = ds2 as in Theorem 3.17, with E > 0, G > 0 and
EG − F 2 > 0, are associated both a volume form and an almost complex
structure:

dvolg :=
√
EG− F 2 du ∧ dv and Jg :=

1√
EG− F 2

( −F −G
E F

)
.

Conversely, given a volume form and an almost complex structure J on a
surface, an associated Riemannian metric is provided by:

g(·, ·) := dvol(·, J ·).
According to Korn’s and Lichtenstein’s theorem, there exist coordinates
in which the metric is conformally flat, equal to λ (du2 + dv2). In these
coordinates, the associated complex structure is obviously the standard
one: J∂u = ∂v and J∂v = −∂u. In fact, any local change of coordi-
nates (u, v) 7→ (ũ, ṽ) which respects orthogonality of the curvilinear co-
ordinates, i.e. transforms the Gaussian isothermal metric to a similar one
λ̃ (dũ2 + dṽ2), commutes with J , so that the map u+ i v 7→ ũ+ i ṽ is holo-
morphic. In conclusion:

Theorem 3.20. C 0,α (0 < α < 1) complex structures are locally integrable.

The generalization to several variables of the theorem of Korn and Licht-
enstein is due to Newlander-Nirenberg, who solved a question raised by
Chern. The proof was modified and the smoothness assumption was
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perfected by several mathematicians: Nijenhuis-Woolf ([NW1963]), Mal-
grange, Kohn, Hörmander, Nirenberg, Treves ([Trv1992]) and finally Web-
ster ([We1989c]) who used the Leray-Koppelman ∂ homotopy formula to-
gether with the Nash-Moser rapidly convergent iteration scheme for solving
nonlinear functional equations.

Theorem 3.21. (C 2n,α, 0 < α < 1: [NN1957]; C 1,α, 0 < α < 1:
[NW1963, We1989c]; C∞: [Trv1992]) Suppose that on the real manifold
M of dimension 2n > 4, the formally integrable complex structure L is
C∞ or C κ−1,α, κ > 2, 0 < α < 1. Then there exist local complex-valued
coordinates (z1, . . . , zn) annihilated by L which are C∞ or C κ,α.

Finally, an elementary linear algebra argument ([Trv1981, Trv1992,
BCH2005]) enables to deduce local integrability of C∞ or C κ−1,α ellip-
tic structures from the above theorem. In fact, elliptic structures are shown
to be locally isomorphic to Cτ × Rλ−τ , equipped with ∂

∂z̄i
, ∂
∂tj

.

Problem 3.22. Is a formally integrable involutive structure having positive-
dimensional characteristic set locally integrable ?

Again the history is rich. Integrability results are known only for strongly
pseudoconvex CR structures of hypersurface type. Solving a question raised
by Kohn in 1965, Kuranishi ([Ku1982]) showed in 1982 that C∞ strongly
pseudoconvex abstract CR structures of dimension > 9 are locally realiz-
able. His delicate proof involved a study of the Neumann operator in L2

spaces, for solving the tangential Cauchy-Riemann equations, together with
the Nash-Moser argument. In 1987, Akahori ([Ak1987]) modified the tech-
nique of Kuranishi and included the case of dimension 7.

In 1989, to solve an associated linearized problem, instead of the Neu-
mann operator, Webster used the totally explicit integral operators of
Henkin.

Theorem 3.23. ([We1989a, We1989b]) Let M be a strongly pseudoconvex
(2n−1)-dimensional CR manifold of class C µ. Then M admit, locally near
each point, a holomorphic embedding of class C κ, provided

n > 4, κ > 21, µ > 6κ+ 5n− 3.

The main new ingredient in his proof was Henkin’ local homotopy oper-
ator ∂M on a hypersurface M ⊂ Cn:

f = ∂M P (f) +Q(∂M f), f a (0, 1)− form,

known to hold for n > 4. For this reason, Webster suspected the exis-
tence of refinements based on an insider knowledge of ∂ techniques. In
1994, using a modified homotopy formula yielding better C κ-estimates, Ma-
Michel [MM1994] improved smoothness:

κ > 18, µ > κ+ 13.
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Up to now, the five dimensional remains open. In fact, the solvability of
∂M f = g for a (0, 1)-form on a hypersurface of C3 requires a special trick
which does not lead to a homotopy formula. Nagel-Rosay [NR1989] showed
the nonexistence of a homotopy formula in the 5-dimensional case, empha-
sizing an obstacle.

Open problem 3.24. Find generalizations of the Kuranishi-Akahori-
Webster-Ma-Michel theorem to higher codimension, using the integral
formulas for solving the ∂M due to Ayrapetian-Henkin. Replace the
assumption of strong pseudoconvexity by finer nondegeneracy conditions,
e.g. weak pseudoconvexity and finite type in the sense of Kohn.

3.25. Local generators of locally integrable structures. Abandoning
these deep problems of local solvability and of local realizability, let us sur-
vey basic properties of locally integrable structures. Thus, let L be a C∞

or C κ−1,α locally integrable structure of rank λ on a C κ,α or C∞ manifold
M of dimension µ. Denote by τ = µ − λ the dimension of T = L ⊥. Let
p ∈ M and let δp denote the dimension of Cp = T ∩ T ∗pM . Notice that
(τ − δp) + (τ − δp) + δp + (λ− τ + δp) = τ + λ = µ just below.

Theorem 3.26. ([Trv1981, Trv1992, BCH2005]) There exist real coordi-
nates: (

x1, . . . , xτ−δp , y1, . . . , yτ−δp , u1, . . . , uδp , s1, . . . , sλ−τ+δp
)
,

defined in a neighborhood Up of p and vanishing at p, and there exist C∞

or C κ,α functions ϕj = ϕj(x, y, u, s) with ϕj(0) = 0, dϕj(0) = 0, j =
1, . . . , δp, such that the differentials of the τ functions:

{
zk := xk + i yk, k = 1, . . . , τ − δp,

wj := uj + i ϕj(x, y, u, s), j = 1, . . . , δp

span T |Up .

Since dϕj(0) = 0, there exist unique coefficients bl,j = bl,j(x, y, u, s)
such that the vector fields:

Kj :=

δp∑

l=1

bl,j
∂

∂ul
, k = 1, . . . , δp,

satisfy Kj1(wj2) = δj1,j2 , for j1, j2 = 1, . . . , δp. Define then the λ vector
fields: 




Lk :=
∂

∂z̄k
− i

δp∑

l=1

∂ϕl
∂z̄k

Kl, k = 1, . . . , τ − δp,

L′j :=
∂

∂sj
− i

δp∑

l=1

∂ϕl
∂sj

Kl, j = 1, . . . , λ− τ + δp.
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Clearly, 0 = Lk1(zk2) = Lk(wj) = L′j(zk) = L′j1(wj2), hence the structure
bundle L |Up is spanned by the Lk, L′j . One may verify the commutation
relations ([Trv1981, Trv1992, BCH2005]):

0 =
[
Lk1 , Lk2

]
=

[
Lk, L

′
j

]
=

[
L′j1 , L

′
j2

]
,

0 =
[
Lk, Kj

]
=

[
L′j1 , Kj2

]
= [Kj1 , Kj2 ] .

Remind that if an involutive structure L is CR, then δp is independent of p
and equal to the codimension µ−2λ =: δ. It follows that τ−δ = τ−µ+2λ =
λ, or λ−τ+δ = 0: this means that the variables (s1, . . . , sλ−τ+δp) disappear.

Corollary 3.27. In the case of a CR structure of codimension δ, the local
integrals are:

{
zk := xk + i yk, k = 1, . . . , λ,

wj := uj + i ϕj(x, y, u), j = 1, . . . , δ,

and a local basis for the structure bundle L |Up is:

Lk :=
∂

∂z̄k
− i

δ∑

l=1

∂ϕl
∂z̄k

Kl, k = 1, . . . , λ.

We recover a generic submanifold embedded in Cτ which is graphed by
the equations vj = ϕj(x, y, u), as in Theorem 2.3(II), or as in Theorem 4.2
below.

3.28. Local embedding into a CR structure. But in general, the coordi-
nates (s1, . . . , sλ−τ+δp) are present. A trick ([Ma1992]) is to introduce extra
coordinates (t1, . . . , tλ−τ+δp) and to define a new structure on the product
Up × Rλ−τ+δp generated by the following local integrals:





z̃k := zk, k = 1, . . . , τ − δp,

z̃k := sk−τ+δp + i tk−τ+δp , k = τ − δp + 1, . . . , λ,

w̃j := wj, j = 1, . . . , δp.

The associated structure bundle L̃ is spanned by:



L̃k := Lk, k = 1, . . . , τ − δp,

L̃
′
j :=

1

2
L′j +

i

2

∂

∂tj
, j = 1, . . . , λ− τ + δp.

It is a CR structure of codimension δp on Up × Rλ−τ+δp . All analytico-
geometric objects defined in Up can be lifted to Up×Rλ−τ+δp , just by declar-
ing them to be independent of the extra variables (t1, . . . , tλ−τ+δp).

Such an embedding enables one to transfer elementarily several theorems
valid in embedded Cauchy-Riemann Geometry, to the more general setting
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of locally integrable structures. For instance, this is true of most of the
theorems about holomorphic or CR extension of CR functions presented
Part V. In addition, most of the results stated in §3, §4 and §5 below hold in
locally integrable structures.

3.29. Transition. However, for reasons of space and because the possi-
ble generalizations which we could state by applying this embedding trick
would require dry technical details, we will content ourselves to just mention
these virtual generalizations, as was done in [MP1999]. For further study of
locally integrable structures, we refer mainly to [Trv1992, BCH2005] and
to the references therein.

In summary, in this Section 3, we wanted to show how our approach
is inserted into a broad architecture of questions about solvability of par-
tial differential equations, about the problem of realizability of abstract CR
structures, as well as into hypo-analytic structures. Thus, even if some of
the subsequent surveyed results (exempli gratia: the celebrated Baouendi-
Treves approximation Theorem 5.2) were originally stated in the context of
locally integrable structures, even though we could as well state them in this
context or at least in the context of locally embeddable CR structures (as was
done in [MP1999]), we shall content ourselves to state them in the context
of embedded Cauchy-Riemann geometry, just because the very core of the
present memoir is concerned by Several Complex Variables topics: analytic
discs, envelopes of holomorphy, removable singularities, etc.

§4. SMOOTH GENERIC SUBMANIFOLDS AND THEIR CR ORBITS

4.1. Definitions of CR submanifolds and local graphing equations. We
begin by some coordinate-invariant geometric definitions. Some implicit
lemmas are involved (the reader is referred to [Ch1989, Ch1991, Bo1991,
BER1999]). Let J denote the complex structure of TCn (see §2.1(II)). A
real connected submanifold M ⊂ Cn of class at least C 1 is called:

• Totally real if TpM ∩ JTpM = {0} for every p ∈ M . Then M
has codimension d > n and is called maximally real if d = n. The
complex vector subspaceHp := TpM+JTpM of TpCn has complex
dimension 2n − d. If projHp

(·) denotes any C-linear projection of
TpCn onto Hp and if Up is a small neighborhood of p in Cn, then
projHp

(M ∩Up) is maximally real in Hp.
• Generic if TpM + JTpM = TpCn for every p ∈ M . Then M has

codimension d 6 n and is maximally real only if d = n. Then
TpM ∩ JTpM is the maximal C-linear subspace of TpM and has
complex dimension equal to the integer m := n − d, called the CR
dimension of M . It is obviously constant, as p runs in M .
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• Cauchy-Riemann (CR for short) if the maximal C-linear subspace
TpM ∩ JTpM of TpM has constant dimension m (necessarily 6 n)
for p running in M . If M has codimension d, the integer c := d −
n + m is called the holomorphic codimension of M . Then for p
running in M , the complex vector subspaces Hp := TpM + JTpM
of TpCn have constant complex codimension c, which justifies the
terminology. If projHp

(·) denotes any C-linear projection of TpCn
onto Hp, and if Up is a small open neighborhood of p in Cn, then

M̃p := projHp
(M ∩Up)

is a generic submanifold of Cn−c.

In §2.1(II), we have graphed totally real, generic and, generally, Cauchy-
Riemann local submanifolds M ⊂ Cn, but only in the algebraic and in
the analytic category. In the smooth category, the intrinsic complexification
{w2 = 0} disappears, but Hp = TpM + JTpM still exists, so that further
graphing functions are needed.

Theorem 4.2. ([Ch1989, Ch1991, Bo1991, BER1999, Me2004a]) LetM ⊂
Cn be a real submanifold of codimension d and let p ∈ M . There exist
complex algebraic or analytic coordinates centered at p and ρ1 > 0 such
that M , supposed to be C R , where R = ∞ or where R = (κ, α), κ > 1,
0 6 α 6 1, is locally represented as follows:

• If M is totally real, letting d1 = 2n−d > 0 and c = d−n > 0, then
d1 + c = n and

M =
{
(w1, w2) ∈

(
¤d1
ρ1
× iRd1

)× Cc :

Imw1 = ϕ1(Rew1), w2 = ψ2(Rew1)
}
,

for some Rd1-valued C R map ϕ1 and some Cc-valued C R map ψ2

satisfying ϕ1(0) = 0 and ψ2(0) = 0.

• If M is generic, letting m = d− n, then m+ d = n and

M =
{
(z, w) ∈ ∆m

ρ1
× (

¤d
ρ1
× iRd

)
: Imw = ϕ(Re z, Im z,Rew)

}
,

for some Rd-valued C R map ϕ satisfying ϕ(0) = 0.

• If M is Cauchy-Riemann, letting m = CRdimM , c = d−n+m >
0, and d1 = 2n− 2m− d > 0, then m+ d1 + c = n and

M =
{
(z, w1, w2) ∈ ∆m

ρ1
× (

¤d1
ρ1
× iRd1

)× Cc :

Imw1 = ϕ1(Re z, Im z,Rew1), w2 = ψ2(Re z, Im z,Rew1)
}
,
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for some Rd1-valued C R map ϕ1 with ϕ1(0) = 0 and some
Cc-valued C R map ψ2 with ψ2(0) = 0 which is CR (defini-
tion in §4.25 below) on the local generic submanifold M1 :={
(z, w1) ∈ ∆m

ρ1
× (

¤d1
ρ1
× iRd1

)
: Imw1 = ϕ1(Re z, Im z,Rew1)

}
.

An adapted linear change of coordinates insures that the differentials at
the origin of the graphing maps all vanish.

A CR manifoldM being always locally graphed above a generic subman-
ifold of Cn−c, the remainder of this memoir will mostly be devoted to the
study of C∞ or C κ,α generic submanifolds of Cn. The above local repre-
sentation of a generic M will be constantly used.

4.3. CR vector fields. LetM be generic, of class at least C 1, represented by
v = ϕ(x, y, u) as above, in coordinates (z, w) = (x+iy, u+iv). Sometimes,
we shall also write v = ϕ(z, u), being it clear that ϕ is not holomorphic with
respect to z. Here, we provide a description in coordinates of three useful
families of vector fields.

There exist m anti-holomorphic vector fields defined in
∆m
ρ1
× (

¤d
ρ1
× iRd

)
of the form:

L
′
k =

∂

∂z̄k
+

d∑
j=1

a′j,k(x, y, u)
∂

∂w̄j
,

whose restrictions to M span T 0,1M . To compute the coefficients a′j,k, the
conditions 0 ≡ L

′
k (ϕj(x, y, u)− vj) yield:

2ϕj,z̄k
=

d∑

l=1

(i δj,l − ϕj,ul
) a′l,k.

In matrix notation, the solution is: a′ = 2 (i Id×d − ϕu)
−1 · ϕz̄, with

a′ = (a′j,k)
16k6m
16j6d and ϕz̄ = (ϕj,z̄k

)16k6m
16j6d both of size d × m. Since

[T 0,1M,T 0,1M ] ⊂ T 0,1M , the L
′
k commute. They are extrinsic.

Also, there exist m intrinsic sections of CTM of the form:

Lk :=
∂

∂z̄k
+

d∑
j=1

aj,k(x, y, u)
∂

∂uj
,

written in the coordinates (x, y, u) of M , which span the structure bundle
T 0,1M ⊂ CTM . Since (x, y, u) are coordinates on M , restricting the L

′
k|M

to M amounts to just drop the terms i
2

∂
∂vj

in each ∂
∂w̄j

appearing in L
′
k.

Hence:

Lemma 4.4. One has aj,k = 1
2
a′j,k.
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Another argument is to first introduce the d vector fields:

Kj =
d∑

l=1

bl,j(x, y, u)
∂

∂ul
,

that are uniquely determined by the conditions

δj1,j2 = Kj1 (wj2|M) = Kj1 (uj2 + iϕj2(x, y, u)) .

Equivalently, the coefficients bl,j satisfy:

δj1,j2 =
d∑

l=1

(δj2,l + i ϕj2,ul
) bl,j1 ,

whence, in matrix notation: b = (Id×d + i ϕu)
−1. Here, b = (bl,j)

16j6d
16l6d and

ϕu = (ϕj,ul
)16l6d
16j6d both are d× d matrices.

Similarly as in Corollary 3.27, the Lk defined above span the structure
bundle L = T 0,1M having the local integrals z1, . . . , zm, w1|M , . . . , wd|M ,
if and only if they satisfy 0 = Lk (wj|M) = Lk [uj + i ϕj(x, y, u)]. Seeking
the Lk under the form Lk = ∂

∂z̄k
+

∑d
l=1 cl,k(x, y, u)Kl, it follows from

δj1,j2 = Kj1 (uj2 + i ϕj2(x, y, u)) that cj,k = −i ϕj,z̄k
. Reexpressing explic-

itly the Kl in terms of the ∂
∂uj

as achieved above, we finally get in matrix

notation a = (i Id×d − ϕu)
−1 ·ϕz̄. This yields a second, more intrinsic com-

putation of the coefficients aj,k and a second proof of aj,k = 1
2
a′j,k.

If χ is a C∞ or C κ,α function on M , its differential may be computed as

dχ =
m∑

k=1

Lk(χ) dzk +
m∑

k=1

Lk(χ) dz̄k +
d∑
j=1

Kj(χ) dwj
∣∣
M
.

Lemma 4.5. ([Trv1981, BR1987, Trv1992, BCH2005]) The following rela-
tions hold:

{
Lk1(zk2) = δk1,k2 , Lk(wj) = 0, Kj(zk) = 0, Kj1(wj2|M) = δj1,j2 ,

[Lk1 , Lk2 ] = [Lk, Kj] = [Kj1 , Kj2 ] = 0.

4.6. Vector-valued Levi form. Let p ∈ M and denote by πp the projection
CTpM −→ CTpM/

(
T 1,0
p M ⊕ T 0,1

p M
)
.

Definition 4.7. The Levi map at p is the Hermitian Cd-valued form acting
on two vectors Xp, Yp ∈ T 1,0

p M as:



Lp : T 1,0
p M × T 1,0

p M −→ CTpM/
(
T 1,0
p M ⊕ T 0,1

p M
)

Lp(Xp, Yp) :=
1

2i
πp

([
X, Y

]
(p)

)
,
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where X, Y are any two sections of T 1,0M defined in a neighborhood of p
satisfying X(p) = Xp, Y (p) = Yp. The resulting number is independent of
the choice of such extensions X, Y .

As p varies, this yields a smooth bundle map. The Levi map Lp is non-
degenerate at p if its kernel is null: Lp(Xp, Yp) = 0 for every Yp implies
Xp = 0. On the opposite, M is Levi-flat if the kernel of Lp equals T 1,0

p M
at every p. If M is a hypersurface (d = 1), one calls Lp the Levi form at p.
Then M is strongly pseudoconvex at p if the Levi form Lp is definite, pos-
itive or negative. These definitions agree with the ones formulated in §3.10
for abstract CR structures.

Theorem 4.8. ([Fr1977, Ch1991]) In a neighborhood Up of a point p ∈ M
in which the kernel of the Levi map is of constant rank and defines a C ω,
C∞ or C κ−1,α (κ > 2, 0 6 α 6 1) distribution of m1-dimensional complex
planes Pq ⊂ TqM , ∀ q ∈ Up, the distribution is Frobenius-integrable, hence
M is C ω, C∞ or C κ−1,α foliated by complex manifolds of dimension m1.

In particular, a Levi-flat generic submanifold of CR dimension m is foli-
ated by m-dimensional complex manifolds. These observations go back to
Sommer (1959). In [Ch1991], one founds a systematic study of foliations
by complex and by CR manifolds.

4.9. CR orbits. Let M ⊂ Cn be generic and consider the system L of
sections of T cM . To apply the orbit Theorem 1.21, we need M to be at
least C 2, in order that the flows are at least C 1. By definition, a weak T cM -
integral submanifold S ⊂ M satisfies TpS ⊃ T cpM , at every point p ∈ S.
Equivalently, S has the same CR dimension as M at every point.

In the theory of holomorphic extension exposed in Part V, local and global
CR orbits will appear to be adequate objects of study. They constitute one
of the main topics of this memoir.

Proposition 4.10. ([Trp1990, Tu1990, Tu1994a, Me1994, Jö1996, MP1999,
MP2002]) Let M ⊂ Cn be generic of class C ω, C∞ or C κ,α with κ > 2 and
0 6 α 6 1.

(a) The (global) T cM -orbits are called CR orbits. They are denoted by
OCR or by OCR(M, p), if the reference to one of point p ∈ OCR is
needed.

(b) The local CR orbit of a point p ∈ M is denoted by O loc
CR(M, p). It

is a local submanifold embedded in M , closed in a sufficiently small
neighborhood of p in M .

(c) Local and global CR orbits are C ω, C∞ or C κ,β , for every β with
0 < β < α.



88

(d) M is partitioned in global CR orbits. Each global CR orbit is injec-
tively immersed and weakly embedded in M , is a CR submanifold of
Cn contained in M and has the same CR dimension as M .

(e) Every (immersed) CR submanifold S ⊂ M having the same CR
dimension as M contains the local CR orbit of each of its points

(f) CR orbits of the smallest possible real dimension 2m = 2 CRdimM
satisfy TpOCR = T cpOCR at every point, hence are complex m-
dimensional submanifolds.

According to Example 1.29, CR orbits should be C κ−1,α, not smoother.
But in generic submanifolds, they also can be described as boundaries
of small attached analytic discs ([Tu1990, Tu1994a, Me1994]) and the
C κ,α−0 =

⋂
β<α C κ,β smoothness of the solution in Theorem 3.7(IV) ex-

plains (c).
Let us summarize some structural properties of CR orbits, useful in appli-

cations. A specialization of Theorem 1.21(4) yields the following.

Proposition 4.11. For every p ∈ M , there exist k ∈ N, sections L1, . . . , Lk

of T cM and parameters s∗1, . . . , s
∗
k ∈ R such that Lks∗k(· · · (L

1
s∗1

(p)) · · · ) = p

and the map (s1, . . . , sk) 7−→ Lksk
(· · · (L1

s1
(p)) · · · ) is of rank

dim OCR(M, p) at (s∗1, . . . , s
∗
k).

The dimension of any OCR is equal to 2m + e, for some e ∈ N with
0 6 e 6 d. Denote:

• O2m+e ⊂M the union of CR orbits of dimension = 2m+ e;
• O>

2m+e ⊂M the union of CR orbits of dimension > 2m+ e;
• O6

2m+e ⊂M the union of CR orbits of dimension 6 2m+ e.

The function p 7→ dim OCR(M, p) is lower semicontinuous. It follows
that O>

2m+e is open in M and that O6
2m+e is closed in M .

Let p ∈ M , let Op be a small piece of OCR(M, p) passing through p,
of dimension 2m + ep, for some integer ep with 0 6 ep 6 d, and let Hp

be a local C∞ or C κ,α submanifold of M passing through p and satisfying
TpHp ⊕ TpOp = TpM . Call Hp a local orbit-transversal. Implicitly, Hp = ∅
if ep = d. Then, in a sufficiently small neighborhood of p:

• lower semi-continuity: Hp ∩ O>
2m+ep+1 = ∅;

• equivalently: Hp ∩ O>
2m+ep

= Hp ∩ O2m+ep ;

• Hp ∩ O6
2m+ep

is closed.

Proposition 4.12. If M is C ω, then at every point p ∈ M , for every orbit-
transversal Hp passing through p, the closed set Hp ∩O6

2m+ep
is a local real

analytic subset of Hp containing p.
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A CR-invariant subset of M is a union of CR orbits. A closed (for the
topology of M ) CR-invariant subset is minimal if it does not contain any
proper subset which is also a closed CR-invariant subset.

Problem 4.13. Describe the possible structure of the decomposition of M in
CR orbits.

There are differences between embedded and locally embeddable generic
submanifolds, which we shall not discuss, assuming that M is embedded in
Cn or in Pn(C). Also, the C ω category enjoys special features.

Indeed, if M is a connected real analytic hypersurface, Proposition 4.12
entails that each minimal closed invariant subset ofM is either an embedded
complex hypersurface or an open orbit; also if M contains at least one CR
orbit of maximal dimension (2n − 1) (hence an open subset of M ), all its
CR orbits of codimension one are complex (n − 1)-dimensional embedded
submanifold of M (a real analytic subset of codimension one in R consists
of isolated points). In the smooth category things are different.

So, let M be a connected C∞ or C κ,α (κ > 2, 0 6 α 6 1) hypersurface
of Cn. Its CR-orbits are either (2n − 1)-dimensional, i.e. open in M , or
(2n−2)-dimensional and T cM -integral, hence complex (n−1)-dimensional
hypersurfaces immersed in M .

Proposition 4.14. ([Jö1999a]) In the smooth category, the structure of every
minimal closed CR-invariant subset C of M has one of the following types:

(i) C = M consists of a single embedded open CR orbit;
(ii) C =

⋃
a∈A OCR,a = M is a union of complex hypersurfaces, each

being dense in C, with CardA = CardR;
(iii) C =

⋃
a∈A OCR,a has empty interior in M and is a union union

of complex hypersurfaces, each being dense in C, with CardA =
CardR;

(iv) C consists of a single complex hypersurface embedded in M .

Furthermore, the closure, with respect to the topology of M , of every CR
orbit of dimension (2n− 2) is a minimal closed CR-invariant subset of M .

These four options are known in foliation theory ([HH1983, CLN1985]).
One has to remind that each CR orbit contained in C is dense in C. In the
first two cases, the trace of C on any orbit-transversal is a full open segment;
in the third, it is a Cantor set; in the last, it is an isolated point. In the
third case, impossible if M is real analytic, C will be called an exceptional
minimal CR-invariant subset, similarly as in foliation theory. We shall see
below that compactness of M ⊂ Cn imposes a strong restriction on the
possible C’s.
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We mention that an analog of Proposition 4.14 holds for connected
generic submanifolds of codimension d > 2, provided one puts the restric-
tive assumption that all its CR orbits are of codimension 6 1, the only dif-
ference being that CR orbits of codimension 1 are not complex manifolds in
this case.

The presence of CR orbits of codimension > 2 in M may produce mini-
mal closed CR-invariant subsets with complicated transversal structure, even
in the real analytic category ([BM1997]). Also, in a bounded strongly pseu-
doconvex boundary (see §1.15(V) for background), there may exist a CR
orbit of codimension one whose closure constitutes an exceptional minimal
CR-invariant subset.

Theorem 4.15. ([Jö1999a]) There exists a bounded strongly pseudoconvex
domain Ω ⊂ C3 with C∞ boundary and a compact C∞ submanifold M ⊂
∂Ω of dimension 4 which is generic in C3 such that:

• M is C∞ foliated by CR orbits of dimension 3;
• M contains a compact exceptional minimal CR-invariant set, but no

compact CR orbit.

Summarized proof. The main idea is to start with an example due to Sack-
steder, known in foliation theory, of a compact real analytic 3-dimensional
manifold N equipped with a C ω foliation F of codimension one which
carries a compact exceptional minimal set, but no compact leaf. According
to [HH1983], there exists such a pair (N ,F ), together with a C∞ diffeo-
morphism ϕ1 : N → B × S1, where B is some compact orientable C∞

surface of genus 2 embedded in R3, and where S1 is the unit circle. Let
B 3 b 7→ n(b) ∈ TbR3 denote the C∞ unit outward normal vector field to
such a B ⊂ R3, and consider R3 to be embedded in C3. For ε > 0 small,
the map

ϕ2 : B × S1 3 (b, ζ) 7−→ b+ n(b) · εζ ∈ C3

may be seen to be a totally real C∞ embedding. By results of Bruhat-
Whitney and Grauert, one may approximate the C∞ totally real embedding
ϕ2 ◦ ϕ1 by a C ω embedding ϕ : N → C3 which is arbitrarily close to
ϕ2 ◦ ϕ1 in C 1 norm, hence totally real. Denote N := ϕ(N ). The trans-
ported foliation F := ϕ∗(F ) being real analytic, one may then proceed
to an intrinsic complexification of all its totally real 2-dimensional leaves,
getting some 5-dimensional real analytic hypersurface N ic containing N ,
equipped with a foliation F ic of N ic by 2-dimensional complex manifolds,
with F ic ∩ N = F . This foliation F ic is closed in some tubular neighbor-
hood Ω of N in C3, say Ω := {z ∈ C3 : dist(z,N) < δ}, with δ > 0 small.
Since N is totally real, the boundary ∂Ω is strongly pseudoconvex (Grauert)
and is C∞. Clearly, the intersection M := N ic ∩ ∂Ω is a 4-dimensional C∞
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submanifold. The intersections of the 2-dimensional complex leaves of F ic

with ∂Ω show that M is foliated by strongly pseudoconvex 3-dimensional
boundaries, which obviously consist of a single CR orbit. Thus a CR orbit
of M is just the intersection of a global leaf of F ic with ∂Ω. In conclusion,
letting ExcF be the minimal exceptional set of Sacksteder’s example, M
contains the exceptional minimal CR-invariant set [ϕ∗(ExcF )]ic ∩ ∂Ω and
no compact CR orbit. ¤

4.16. Global minimality and laminations by complex manifolds. The CR
orbits being essentially independent bricks, it is natural to define the class of
CR manifolds which consist of only one brick.

Definition 4.17. A C ω, C∞ or C κ,α CR manifold M is called globally min-
imal if if consists of a single CR orbit.

Each CR orbit of a CR manifold is a globally minimal immersed CR
submanifold of Cn. To simplify the overall presentation and not to expose
superficial corollaries, almost all the theorems of Parts V and VI in this
memoir will be formulated with a global minimality M .

Lemma 4.18. ([Gr1968, Jö1995, BCH2005]) A compact connected C 2 hy-
persurface in Cn is necessarily globally minimal.

Proof. Otherwise, the closure of a CR-orbit of codimension one inM would
produce a compact CR-invariant subset C which is a union of immersed
complex hypersurfaces, each dense in C. Looking at a point of C where
the pluriharmonic function ri := Re zi (or si := Im zi) is maximal, the
maximum principle entails that ri (or si) is constant on C, for i = 1, . . . , n,
hence C = {pt.}, contradiction. ¤

More generally, the same simple argument yields:

Corollary 4.19. Any Stein manifold cannot contain a compact set which is
laminated by complex manifolds

In the projective space Pn(C), one expects compact orientable connected
C 2 hypersurfaces M to be still globally minimal, but arguments are far to
be simple. In fact, there are infinitely many compact projective algebraic
complex hypersurfaces Σ in Pn(C). However, they cannot be contained
in such an M ⊂ Pn(C) since, otherwise, their complex normal bundle
TPn(C)|Σ/TΣ, known to be never trivial, but equal to the complexification
of the trvial bundle TM |Σ/TΣ, would be trivialized.

Thus, according to Proposition 4.14 above, the very question is about
nonexistence of closed CR-invariant sets C ⊂ M laminated by complex
hypersurfaces which either coincide withM or are transversally Cantor sets.
If M ⊂ Pn(C) is real analytic, it might only be Levi-flat.
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Nonexistence of orientable Levi-flat hypersurfaces in Pn(C) was ex-
pected, because they would divide the projective space in two smoothly
bounded pseudoconvex domains. In the real analytic case, non-existence
was verified by Lins-Neto for n > 3 and by Ohsawa for n = 2; in the
smooth (harder) case, see [Si2000].

Open question 4.20. Is any compact orientable connected C 2 hypersurface
of Pn(C) globally minimal ?

So, the expected answer is yes. In fact, the question is a particular
case of a deep conjecture stemming from Hilbert’s sixteen problem about
phase diagrams of vector fields having polynomial coefficients on the two-
dimensional projective space. This conjecture is inspired by the Poincaré-
Bendixson theory valid over the real numbers, according to which the clo-
sure of each leaf of such a foliation over P2(R) contains either a compact
leaf or a singularity. In its most general form, it says that Pn(C) cannot
contain a compact set laminated by (n− 1)-dimensional complex manifold,
unless it is a trivial lamination, viz just a compact complex projective alge-
braic hypersurface; however, nontrivial laminations by (n− 2)-dimensional
complex manifolds may be shown to exist.

A related general open question is to find topologico-geometrical criteria
on open subsets of Pn(C) insuring the existence of nonconstant holomorphic
functions there.

4.21. Finite-typisation of generic submanifolds. Let M be a connected
C κ (2 6 κ 6 ∞) generic submanifold of Cn of codimension d > 1 and of
CR dimension m = n − d > 1. The distribution of subspaces p 7→ T cpM
of TM is of constant rank 2m. We apply to the complex tangential bundle
T cM the concept of finite-type.

Definition 4.22. A point p ∈ M is said to be of finite type if the system L
of local sections of T cM defined in a neighborhood of p satisfies Lκ(p) =
TpM . The smallest integer d(p) 6 κ with Ld(p)(p) = TpM is called the type
of M at p.

We want now to figure out how, in general, a generic submanifold of
Cn must be globally minimal and in fact, of finite type at every point. We
equip with the strong Whitney topology the set κG n

d,m of C κ (2 6 κ 6 ∞)
connected generic submanifolds M ⊂ Cn of codimension d > 1 and of CR
dimension m = n− d > 1. No restriction is made on the global topology.

As a model case, let κ > 2 and consider M to be rigid algebraic repre-
sented by

wj = w̄j + i Pj(z, z̄) = w̄j + i
∑

|α|+|β|6κ
pj,α,β z

αz̄β,
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where α, β ∈ Nm, where the polynomials Pj are real, pj,α,β = pj,β,α and
have no pluriharmonic term, namely 0 ≡ Pj(z, 0) ≡ Pj(0, z̄), for j =
1, . . . , d. A basis of (1, 0) and of (0, 1) vector fields is given by

Lk :=
∂

∂zk
+ i

d∑
j=1

Pj,zk

∂

∂wj
and Lk :=

∂

∂z̄k
− i

d∑
j=1

P j,z̄k

∂

∂w̄j
,

for k = 1, . . . , n. The Lie algebra Lκ generated by all Lie brackets of length
6 κ of the system L := {Lk, Lk}16κ6m contains the subalgebra LκCR,rigid
generated by the only brackets of the form

[
Lλ1 , . . . ,

[
Lλa ,

[
Lµ1 , . . . ,

[
Lµb

,
[
Lk1 , Lk2

]]
. . .

]]
. . .

]

where 2+a+ b 6 κ and where 1 6 λ1, . . . , λa, µ1, . . . , µb, k1, k2 6 m. One
computes

[
Lk1 , Lk2

]
= −i

(
d∑
j=1

Pj,zk1
z̄k2

∂

∂wj
+

d∑
j=1

P j,zk1
z̄k2

∂

∂w̄j

)
,

hence the above iterated Lie brackets are equal to

−i
(

d∑
j=1

Pj,zλ1
...zλa z̄µ1 ...z̄µb

zk1
z̄k2

∂

∂wj
+

d∑
j=1

P j,zλ1
...zλa z̄µ1 ...z̄µb

zk1
z̄k2

∂

∂w̄j

)
.

This shows that all these brackets are linearly independent as functions of
the jets of the Pj . In fact, the number of such brackets is exactly equal to
the dimension of the space of polynomials P (z, z̄) of degree 6 κ having no
pluriharmonic term, namely equal to

(2m+ κ)!

2m! κ!
− 2

(m+ κ)!

m! κ!
+ 1.

For a general C κ submanifold M (not necessarily rigid), one verifies that
the same collection of brackets is independent in terms of the jets of the
defining equation of M . Generalizing slightly Lemma 2.13, we see that in
the vector space of d × (d + e) (real or complex) matrices, the subset of
matrices of rank 6 d − 1 is a real algebraic set of codimension equal to
(e + 1). If we choose κ large enough so that the dimension of LκCR,rigid
is > d + dimM = 2(m + d) = 2n (applying the previous assertion with
e := dimM ), if we form the d × (d + e′), e′ > e, matrix consisting of the
coordinates of the ∂

∂w
-part of brackets of length 6 κ as above, then the set

where this matrix is of rank 6 d − 1 is of codimension > dimM + 1 in
the space of κ-th jets of the defining equations of M . Consequently, the jet
transversality theorem applies.
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Theorem 4.23. Let n > 1, m > 1 and d > 1 be integers satisfying m+ d =
n and let κ be the minimal integer having the property that

(2m+ κ)!

2m! κ!
− 2

(m+ κ)!

m! κ!
+ 1 > 2(m+ d) = 2n.

Then the set of C κ connected generic submanifoldsM ⊂ Cn of codimension
d and of CR dimension m that are of finite type 6 κ at every point is open
and dense in the set κG n

d,m of all generic submanifolds.

In particular, a connected C 4 (resp. C 3, resp. C 2) hypersurface in C2

(resp. in C3, resp. in Cn for n > 4) is of finite type 4 (resp. 3, resp.
2, or equivalently, is not Levi-flat) at every point after an arbitrarily small
perturbation.

Similarly, if instead of the subalgebra LCR,rigid , one would have
considered the (smaller) subalgebra consisting of only the brack-
ets

[
Lλ1 , . . . ,

[
Lλa ,

[
Lk1 , Lk2

]]
. . .

]
, where 2 + a 6 κ and where

1 6 λ1, . . . , λa, k1, k2 6 κ, one would have obtained finite type 6 κ, for
κ minimal satisfying 2m (m+κ−1)!

m! (κ−1)!
> m2 + 2(2m + d). We also mention

that the same technique enables one to prove that, after an arbitrarily
small perturbation, M is finitely nondegenerate at every point and of finite
nondegeneracy type 6 `, with ` minimal satisfying 2d (`+m)!

`! m!
> 4n − 1. In

particular, ` = 3 when m = d = 1 while ` = 2 suffices when m = 1 for all
d > 2. Details are left to the reader.

To conclude, we state the analog of Open question 2.17 for induced CR
structures.

Open question 4.24. ([JS2004], [∗]) Given a fixed generic submanifold M
of class C κ that is of finite type at every point, is it always possible to perturb
slightly a C κ submanifold M1 of M that is generic in Cn, of codimension
d1 > 1 and of CR dimension m1 = n− d1 > 1, as a C κ submanifold M̃1 of
M that is of finite type at every point ? If so, what is the smallest regularity
κ in terms of d, m, d1, m1 and of the highest type at points of M ?

4.25. Spaces of CR functions and of CR distributions. A C 1 function
f : M → C is called Cauchy-Riemann (CR briefly) if it is annihilated by
every section of T 0,1M . Equivalently:

• df is C-linear on T cM ;
• df ∧ dt1 ∧ · · · ∧ dtn

∣∣
M

= 0;

• ∫
M
f ∂ω = 0, for every C 1 form ω of type (n,m− 1) in Cn having

compact support.

(Remind the local expression of (r, s) forms:
∑

I,J aI,J dt
I ∧ dt̄J , where

I = (i1, . . . , ir) and J = (j1, . . . , js).) A (only) continuous function
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f : M → C is CR if the last condition
∫
M
f∂ω = 0 holds. Further,

Lebesgue-integrable CR functions, CR measures, CR distributions and CR
currents may be defined as follows ([Trv1981, Trv1992, HM1998, Trp1996,
Jö1999b]).

Thanks to graphing functions, one may equip locally M with some (in
fact many) volume form, or equivalently, some deformation of the canonical
dimM -dimensional Legesgue measure defined on tangent spaces. Let p be
a real number with 1 6 p 6 ∞. Since two such measures are multiple of
each other, it makes sense to speak of Lp

loc functionsM → C. In this setting,
a Lp

loc(M) function f is CR if
∫
M
f ∂ω = 0, for every C 1 form ω of type

(n,m− 1) in Cn having compact support.
A distribution T on M is CR if for every section L of T 0,1M defined in

an open subset U ⊂M and every χ ∈ C∞
c (U,C), one has

〈
T, L(χ)

〉
= 0.

A CR distribution of order zero on M is called a CR measure. Equiva-
lently, a CR measure is a continuous linear map ω′ 7→ µ(ω′) from compactly
supported forms on M of maximal degree 2m + d to C, that is CR in the
weak sense, namely µ(∂ω) = 0, for every C 1 form ω of type (n,m − 1)
having compact support. Once a volume form dvolM is fixed on M , the
quantity µ dvolM is a CR (Borel) measure on M .

4.26. Traces of CR functions on CR orbits. A C 1 function f : M → C
is CR on M if and only if its restriction to every CR orbit of M is CR
(obvious). If f is C 0 or Lp

loc, a similar but nontrivial statement holds. By
“almost every CR orbit”, we shall mean “except a union of CR orbits whose
dimM -dimensional measure vanishes”.

Theorem 4.27. (d = 1: [Jö1999b]; d > 1: [Po1997, MP1999]) Assume that
M is at least C 3 and let f be a function in Lp

loc(M) with 1 6 p 6 ∞. Then
the restriction f |OCR

is in Lp
loc on OCR, for almost every OCR. Furthermore,

f is CR if and only if, for almost every CR orbit OCR of M , its restriction
f |OCR

is CR.

The theorem also holds for f continuous, with f |OCR
being CR for every

CR orbit. Here, C 3-smoothness is needed. Property (5) of Sussman’s orbit
Theorem 1.21 together with a topological reasoning yields a covering by
orbit-chart which is used in the proof.

Proposition 4.28. ([Jö1999a, Po1997, MP1999]) AssumeM is C∞ or C κ,α,
with κ > 2, 0 6 α 6 1 and let ¤ := {x ∈ R : |x| < 1}. There exists a
countable covering

⋃
k∈N Uk = M such that for each k, there exist ek ∈ N

with 0 6 ek 6 d and a C κ−1,α diffeomorphism:

ϕk : (sk, tk) 3 ¤2m+ek ×¤d−ek 7−→ ϕk(sk, tk) ∈ Uk,
such that:



96

• ϕk (¤2m+ek × {t∗k}) is contained in a single CR orbit, for every fixed
t∗k ∈ ¤d−ek ;

• for each p ∈ M , there exists k = kp ∈ N with p ∈ Ukp ,
viz there exist skp,p and tkp,p with ϕkp(skp,p, tkp,p) = p, such that
ϕkp

(
¤2m+ekp × {tkp,p}

)
is an open piece of the CR orbit of p, i.e.

dim OCR(M, p) = 2m+ ekp .

In the proof of the theorem, C 2-smoothness of the maps ϕk (hence C 3-
smoothness of M ) is required to insure that the pull-back ϕ∗k(T

cM |Uk
) is

C 1. However, we would like to mention that if M is C 2,α with 0 < α < 1
results of [Tu1990, Tu1994a, Tu1996] and Theorem 3.7(IV) insuring the
C 2,β-smoothness of local and global CR orbits, for every β < α, this would
yield orbit-charts ϕk of class C 2,β , and then the above theorem holds true
with M of class C 2,α.

4.29. Boundary values of holomorphic functions for functional spaces
C κ,α, D ′, Lp

loc. LetM be a generic submanifold ofCn of codimention d > 1
and of nonnegative CR dimension m > 0 (we admit m = 0). Assume M
is at least C 1. In appropriate coordinates t = (z, w) = (x + iy, u + iv) ∈
Cn × Cm centered at one of its points p:

M =
{
(z, w) ∈ ∆m

ρ1
× (

¤d
ρ1
× iRd

)
: v = ϕ(x, y, u)

}
,

for some ρ1 > 0, with ϕ(0) = 0 and dϕ(0) = 0. Let ρ be a real number with
0 6 ρ 6 ρ1. The height function:

σ(ρ) := max
|x|,|y|,|u|6ρ

|ϕ(x, y, u)|

is continuous and tends to 0, as ρ tends to 0. For every ρ 6 ρ1 and every
σ > σ(ρ), the boundary of M ∩ [

∆m
ρ ×

(
¤d
ρ × i¤d

σ

)]
is contained in the

boundary ∂
(
∆d
ρ ×¤d

ρ

)
of the horizontal space, times the vertical space i¤d

σ.
Let C be an open convex cone in Rd having vertex 0. We shall assume

it to be salient, namely contained in one side of some hyperplane passing
through the origin. Equivalently, its intersection C ∩ Sd−1 with the unit
sphere of Rd is open, contained in some open hemisphere and convex in the
sense of spherical geometry.

A local wedge of edge M at p directed by C is an open set of the form:

(4.30)
W = W (ρ, σ, C) :=

{
(x+ iy, u+ iv) ∈ ∆m

ρ ×¤d
ρ × i¤d

σ :

v − ϕ(x, y, u) ∈ C}
,

for some ρ, σ > 0 satisfying ρ 6 ρ1 and σ > σ(ρ). This type of open
set is independent of the choice of local coordinates and of local defining
functions; in codimension d > 2, it generalizes the notion of local side of a
hypersurface. Notice that W is connected.
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If there exists a function F that is holomorphic in W and that extends
continuously up to the edge

Mρ := M ∩ [
∆m
ρ ×

(
¤d
ρ × iRd

)]

of the wedge W , then the limiting values of F define a continuous CR func-
tion on Mρ.

A more general phenomenon holds. A function F , holomorphic in the
wedge W , has slow growth up to M , if there exist k ∈ N and C > 0 such
that

|F (t)| 6 C |v − ϕ(x, y, u)|−k , t = (x+ iy, u+ iv) ∈ W .

Equivalently, |F (t)| 6 C [dist(t,M)]−k, with the same k but a possibly
different C. As in the cited references, we shall assume M to be C∞.

Theorem 4.31. ([BCT1983, Hö1985, BR1987, BER1999]) If
F ∈ O (W (ρ, σ, C)) has slow growth up to M , it possesses a boundary
value bMF which is a CR distribution on the edgeM ∩[

∆m
ρ ×

(
¤d
ρ × i¤d

σ

)]
precisely defined by:

〈bMF, χ〉 := lim
C3θ→0

∫

∆m
ρ ×¤d

ρ

F (x+ iy, u+ iϕ(x, y, u) + iθ) ·

· χ(x, y, u) dx dy du,

where χ = χ(x, y, u) is a C∞ function having compact support in ∆m
ρ ×¤d

ρ.

(i) The limit is independent of the way how θ ∈ C approaches 0 ∈ Rd.
(ii) If bMF is C λ,β , λ > 0, 0 6 β 6 1, then F extends as a C λ,β func-

tion on W ′ ∪ (
M ∩ [

∆m
ρ ×

(
¤d
ρ × i¤d

σ′
)])

, for every wedge W ′ =

W ′(ρ, σ′, C ′) with σ(ρ) < σ′ 6 σ and with C ′∩Sd−1 ⊂⊂ C∩Sd−1.

(iii) Finally, F vanishes identically in the wege W if and only if bMF
vanishes on some nonempty open subset of the edge Mρ.

The integration is performed on the translation M θ
ρ := Mρ + (0, i θ),

drawn as follows.
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0

Mθ
ρ

W (ρ, σ, C)

∆m
ρ ×¤d

ρ

i¤d
σ

Cm+d

C C

Mρ = M ∩ ˆ∆m
ρ × (¤d

ρ × i¤d
σ)
˜

Boundary values of functions holomorphic in a wedge

The proof is standard for M ≡ Rn ([Hö1985]), the main argument going
back to Hadamard’s finite parts. With technical adaptations in the case of
a general generic M , several integrations by part are performed on a thin
(dimM + 1)-dimensional cycle delimited by M0

ρ and M θ
ρ , taking advantage

of Cauchy’s classical formula, until the rate of explosion of F up to the edge
is dominated. The uniqueness property (iii) requires analytic disc methods
(Part V).

Boundary values in the Lp sense requires special attention. At first, re-
mind that a function F holomorphic in the unit disc ∆ belongs to the Hardy
class Hp(∆) if the supremum:

||F ||Hp(∆) := sup
0<r<1

(∫ π

−π

∣∣F (reit)
∣∣p

)1/p

<∞

is finite. According to Fatou and Privalov, such a function F has radial
boundary values f(eit) := limr→

<
1 F (reit), for almost every t ∈ [−π, π], so

that the boundary value f belongs to Lp([−π, π]). Furthermore, if 1 6 p <
∞:

lim
r→

<
1

∫ π

−π

∣∣F (reit)− f(eit)
∣∣p = 0.

Consider a bounded domain D ⊂ Cn having boundary of class at least C 2,
defined by D = {z ∈ Cn : ρ(z) < 0}, with ρ ∈ C 2 satisfying dρ 6=
0 on ∂D. For ε > 0 small, let Dε := {z ∈ D : ρ(z) < −ε}. The
induced Euclidean measure on ∂Dε (resp. ∂D) is denoted by dσε (resp. dσ).
Then the Hardy space Hp(D) consists of holomorphic functions F ∈ O(D)
having the property that the supremum:

||F ||Hp(D) := sup
ε>0

(∫

∂Dε

|F (z)|p dσε(z)
)1/p

<∞
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is finite. The resulting space does not depend on the choice of a defining
function ρ ([St1972]). Let nz be the outward-pointing normal to the bound-
ary at z ∈ ∂D.

Theorem 4.32. ([St1972]) If F ∈ Hp(D), for almost all z ∈ ∂D, the nor-
mal boundary value f(z) := limε→

>
0 F (z − εnz) exists and defines a func-

tion f which belongs to Lp(∂D). Furthermore, if 1 6 p <∞:

lim
ε→

>
0

∫

∂D

|F (z − εnz)− f(z)|p dσ(z) = 0.

In arbitrary codimension, the notion of Lp boundary values may be de-
fined in the local sense as follows. Let M be generic, let p ∈ M and let
W = W (ρ, σ, C) be a local wedge of edge M at p, as defined by (4.30). A
holomorphic function F ∈ O(W ) belongs to the Hardy space Hp

loc(W ) if
for every cone C ′ ⊂ Rd with C ′ ∩ Sd−1 ⊂⊂ C ∩ Sd−1 and every ρ′ < ρ, the
supremum:

sup
θ′∈C′

∫

∆m
ρ′×¤d

ρ′

|F (x+ iy, u+ iϕ(x, y, u) + iθ′)|p dx ∧ dy ∧ du < ∞

is finite. Up to shrinking cubes, polydiscs and cones, the resulting space
neither depends on local coordinates nor on the choice of local defining
equations.

Theorem 4.33. (d = 1: [St1972, Jö1999b]; d > 2: [Po1997]) If F ∈
Hp
loc(W ), for almost (x, y, u + i ϕ(x, y, u)) ∈ Mρ and for every cone C ′

with C ′ ∩ Sd−1 ⊂⊂ C ∩ Sd−1, the boundary value:

f(x, y, u) := lim
C′3θ′→0

F (x+ iy, u+ i ϕ(x, y, y) + i θ′)

exists and defines a function f which belongs to Lp
loc,CR(Mρ). Furthermore,

if 1 6 p <∞, for every ρ′ < ρ:

lim
C′3θ′→0

∫

∆m
ρ′×¤d

ρ′

∣∣F (
x+ iy,u+ i ϕ(x, y, y) + i θ′

)−

− f(x, y, u)
∣∣p dx ∧ dy ∧ du = 0.

4.34. Holomorphic extendability of CR functions in C κ,α, D ′, Lp
loc. In

Part V, we will study sufficient conditions for the existence of wedges to
which CR functions and distributions extend holomorphically.

Definition 4.35. A CR function of class C κ,α or Lp
loc (1 6 p <∞) or a CR

distribution f defined on M is holomorphically extendable if there exists a
local wedge W = W (ρ, σ, C) at p and a holomorphic function F ∈ O(W )
whose boundary value bMF equals f on Mρ in the C κ,α, Lp or D ′ sense.
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4.36. Local CR distributions supported by a local CR orbit. Assume
now that M , of class C∞ and represented as in §4.3, is not locally mini-
mal at p. Equivalently, O loc

CR(M, p) is of dimension 2m + e 6 2m + d − 1.
In a small neighborhood, S := O loc

CR(M, p) is a closed connected CR sub-
manifold of M passing through p and having the same CR dimension as M .
There exist local holomorphic coordinates (z, w) = (z, w1, w2) ∈ Cm ×
Ce×Cd−e vanishing at p in which M is represented by v = ϕ(x, y, u) and S
is represented by the supplementary (scalar) equation(s) u2 = λ2(x, y, u1),
with ϕ and λ2 of class C∞ satisfying ϕ(0) = 0, dϕ(0) = 0, λ2(0) = 0 and
dλ2(0) = 0. According to Theorem 4.2, the assumption that S is CR and
has the same CR dimension as M may be expressed as follows.

Proposition 4.37. Decomposing ϕ = (ϕ1, ϕ2) and defining:

v1 = ϕ1 (x, y, u1, λ2(x, y, u1)) =: µ1(x, y, u1),

v2 = ϕ2 (x, y, u1, λ2(x, y, u1)) =: µ2(x, y, u1).

the map:
ψ2(x, y, u1) := λ2(x, y, u1) + iµ2(x, y, u1)

is CR on the generic submanifold v1 = µ1(x, y, u1) of Cm × Ce.
In a small neighborhood U of p, the restrictions

dz1

∣∣
S
, . . . , dzm

∣∣
S
, dw1

∣∣
S
, . . . , dwe

∣∣
S

span an (m+e)-dimensional subbundle ofCT ∗S. Denoting dz := dz1∧· · ·∧
dzm, dz̄ := dz̄1∧ · · · ∧ dz̄m and dw′ := dw1∧ · · · ∧ dwe, for χ ∈ C∞

c (U,C),
consider the (localized) distribution defined by:

〈[S], χ〉 :=

∫

U∩S
χ · dz ∧ dw′ ∧ dz̄.

Proposition 4.38. ([Trv1992, HT1993]) Then [S] is a nonzero local CR mea-
sure supported by S ∩ U .

Proof. It is clear that [S] is supported by S ∩ U and is of order zero.
Let the (0, 1) vector fields Lk and the complex-transversal ones Kj be
as in §4.3. Reminding dχ =

∑m
k=1 Lk(χ) dzk +

∑m
k=1 Lk(χ) dz̄k +∑d

j=1 Kj(χ) dwj
∣∣
M

, we observe:

Lk(χ) dz ∧ dw′ ∧ dz̄ = ±d
(
χ · dz ∧ dw′ ∧ dz̄1 ∧ · · · ∧ d̂z̄k ∧ · · · ∧ dz̄m

)
.

Replacing this volume form in the integrand:
〈
Lk[S], χ

〉
:=− 〈

[S], Lk(χ)
〉

= −
∫

S∩U
Lk(χ) dz ∧ dw′ ∧ dz̄

=±
∫

S∩U
d

(
χ · dz ∧ dw′ ∧ dz̄1 ∧ · · · ∧ d̂z̄k ∧ · · · ∧ dz̄m

)
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and applying Stokes’ theorem, we deduce
〈
Lk[S], χ

〉
= 0, i.e. [S] is CR. ¤

The last assertion of Theorem 4.31 and the vanishing of [S] on the dense
open set U\(S ∩ U) entails the following.

Corollary 4.39. ([Trv1992, HT1993]) The nonzero local CR measure [S]
does not extend holomorphically to any local wedge of edge M at p.

By means of this wedge nonextendable CR measure, one may construct
non-extendable CR functions of arbitrary smoothness. Indeed, let M be a
local generic submanifold with central point p, as represented in §4.3 and let
Kj be the complex-transversal vector fields satisfying Kj1(wj2) = δj1,j2 and
[Kj1 , Kj2 ] = 0.

Proposition 4.40. ([BT1981, Trv1981, BR1990, Trv1992, HT1996,
BER1999]) For every CR distribution T on M and every κ ∈ N, there exist
an integer µ ∈ N and a local CR function f of class C κ defined in some
neighborhood of p such that:

T =
(
K2

1 + · · ·+K2
d

)µ
f.

Then with T := [S] and for κ ∈ N, an associated CR function f of class
C κ is also shown to be not holomorphically extendable to any local wedge
of edge M at p. A Baire category argument ([BR1990]) enables to treat the
C∞ case.

Theorem 4.41. ([BR1990, BER1999]) IfM is not locally minimal at p, then
for every κ = 0, 1, 2, . . . ,∞, there exists a CR function h of class C κ defined
in a neighborhood of p which does not extend holomorphically to any local
wedge of edge M at p.

Open problem 4.42. Find criteria for the existence of CR distributions or
functions supported by a global CR orbit.

In [BM1997], this question is dealt with in the case of CR orbits of hy-
persurfaces which are immersed or embedded complex manifolds.

To conclude this section, we give the general form of a CR distribution
supported by a local CR orbit S = O loc

CR(M, p). After restriction to S, the
collection KS := (Ke+1, . . . , Kd) of vector fields spans the normal bundle
to S in M , in a neighborhood of p. Let T be a local CR distribution defined
on M that is supported by S.

Theorem 4.43. ([Trv1992, BCH2005]) There exist an integer κ ∈ N, and
for all β ∈ Nd−e with |β| 6 κ, local CR distributions TS

β defined on S such
that:

〈T, χ〉 =
∑

β∈Nd−e, |β|6κ

〈
TS
β , (KS)

β(χ)
∣∣
S

〉
.
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§5. APPROXIMATION AND UNIQUENESS PRINCIPLES

5.1. Approximation of CR functions and of CR distributions. Let M be
a generic submanifold of Cn. The following approximation theorem has ap-
peared to be a fundamental tool in extending CR functions holomorphically
(Part V) and in removing their singularities (Part VI). It is also used naturally
in the proof of Theorem 4.43 just above as well as in the Cauchy uniqueness
principle Corollary 5.4 below. The statement is valid in the general context
of locally integrable structures L , but, as explained in the end of Section 3,
we decided to focus our attention on embedded Cauchy-Riemann geometry.

Theorem 5.2. ([BT1981, HM1998, Jö1999b, BCH2005]) For every p ∈M ,
there exists a neighborhood Up of p in M such that for every function f
or distribution T as defined below, there exists a sequence of holomorphic
polynomials (Pk(z))k∈N with:

• if M is C κ+2,α, with κ > 0, 0 6 α 6 1, if f is a CR function of class
C κ,α on M , then limk→∞ ||Pk − f ||C κ,α(Up) → 0; in particular, con-
tinuous CR functions on a C 2 generic submanifold are approximable
sharply by holomorphic polynomials;

• if M is at least C 2, if f is a Lp
loc CR function (1 6 p < ∞), then

limk→∞ ||Pk − f ||Lp
loc(Up) → 0;

• if M is C κ+2, if T is a CR distribution of order 6 κ on M , then
limk→∞ 〈Pk, χ〉 = 〈T, χ〉 for every χ ∈ C∞

c (Up).

In [HM1998, BCH2005], convergence in Besov-Sobolev spaces Lp
s,loc and

in Hardy spaces hp, frequently used as substitutes for the Lp spaces when
0 < p < 1, is also considered, in the context of locally integrable structure.

Proof. Let us describe some ideas of the proof, assuming for simplicity that
M is C 2 and f is C 1. In coordinates (t1, . . . , tn) vanishing at p, choose a
local maximally real C 2 submanifold Λ0 contained in M , passing through
p and satisfying TpΛ0 = {Re t = 0}. Let Vp be a small neighborhood of
p, whose projection to TpM is a (2m + d)-dimensional open ball. We may
assume that Λ0 is contained in Vp with boundary B0 := Λ0 ∩ ∂Vp being
diffeomorphic to the (n − 1)-dimensional sphere. Consider a parameter
u ∈ Rd satisfying |u| < δ, with δ > 0 small. We may include Λ0 in a
family (Λu)|u|<δ of maximally real C 2 submanifolds of Up with Λu

∣∣
u=0

=
Λ0, whose boundary is fixed: ∂Λu ≡ ∂Λ0 = B0, such that the Λu foliates a
small neighborhood Up of p in M . For t ∈ Up, there exists a u = u(t) such
that t belongs to Λu(t). We then introduce the entire functions:

Fk(t) :=

(
k

π

)n/2 ∫

Λu(t)

e−k(t−τ)
2

f(τ) dτ1 ∧ · · · ∧ dτn,
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where (t − τ)2 :=
∑n

j=1 (tj − τj)
2 and where k ∈ N. Shrinking Vp and

Up if necessary, we may assume that |Im (t − τ)| 6 1
2
|Re (t − τ)| for all

t, τ ∈ Λu ∩ Up and all |u| < δ. Here, the C 2-smoothness assumption is
used. With this inequality, the above multivariate Gaussian kernel is easily
seen to be an approximation of the Dirac distribution at τ = t on Λu(t).
Consequently Fk(t) tends to f(t) as k → ∞. Moreover, the convergence is
uniform and holds in C 0(Up).

We claim that the assumption that f is CR insures that Fk(t) has the same
value if the integration is performed on Λ0:

(5.3) Fk(t) =

(
k

π

)n/2 ∫

Λ0

e−k(t−τ)
2

f(τ) dτ1 ∧ · · · ∧ dτn.

Indeed, Λu(t) and Λ0 bound a (n+1)-dimensional submanifold Πt contained
in Vp with ∂Πt = Λu(t) − Λ0. Since e−k(t−τ)2 is holomorphic with respect
to τ and since df(τ) ∧ dτ1 ∧ · · · ∧ dτn

∣∣
M

= 0, because f is C 1 and CR, the
(n, 0) form ω := e−k(t−τ)

2
f(τ) dτ = 0 is closed: dω = 0. By an application

of Stokes’ theorem, it follows that 0 =
∫

Πt
dω =

∫
Λu(t)

ω − ∫
Λ0
ω, which

proves the claim.
Finally, to approximate f by polynomials on Up in the C 0 topology, in

the above integral (5.3) that is performed on the fixed maximally real sub-
manifold Λ0, it suffices to develop the exponential in Taylor series and to
integrate term by term. In other functional spaces, the arguments have to be
adapted. ¤

As a consequence, uniqueness in the Cauchy problem holds. It may be
shown ([Trv1981, Trv1992]) that the trace of a CR distribution on a maxi-
mally real submanifold always exists, in the distributional sense.

Corollary 5.4. ([Trv1981, Trv1992]) If a CR function or distribution van-
ishes on a maximally real submanifold Λ of M , there exists an open neigh-
borhood UΛ of Λ in M in which it vanishes identically.

Since every submanifold H of M which is generic in Cn contains small
maximally real sumanifolds passing through every of its points, the corollary
also holds with Λ replaced by such a H .

Proof. It suffices to localize the above construction in a neighborhood of an
arbitrary point p ∈ Λ and to take for Λ0 a neighborhood of p in Λ. The
integral (5.3) then vanishes identically. ¤

Corollary 5.5. ([Trv1981, Trv1992]) The support of a CR function or dis-
tribution on M is a closed CR-invariant subset of M .
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Proof. By contraposition, if a CR function or distribution vanishes in a
neighborhood Up of a point p in M , it vanishes identically in the CR-
invariant hull of Up, viz the union of CR orbits of all points q ∈ Up. The CR
orbits being covered by concatenations of CR vector fields, neglecting some
technicalities, the main step is to establish:

Lemma 5.6. Let p ∈M , letL be a section of T cM and let q∗ = exp(s∗L)(p)
for some s∗ ∈ R. If a CR function or distribution vanishes in a neighborhood
of p, it vanishes also in a neighborhood of q.

Indeed, we may construct a one-parameter family (Hs)06s6s∗ of C 2 hyper-
surfaces ofM with q∗ ∈ Hs∗ and withH0 contained in a small neighborhood
of p at which the CR function of distribution vanishes already. As illustrated
by the following diagram, we can insure that at every point qs = exp(sL)(p),
the vector L(qs) is nontangent to Hs.

p

L
integral curves of L

q∗ = exp(s∗)(p)

qs = exp(s)(p)

PROPAGATION OF VANISHING ALONG THE INTEGRAL CURVE OF A CR VECTOR FIELD

H0

Hs

Hs∗

It follows that the hypersurfaces Hs are generic in Cn, for every s. Then
the phrase after Corollary 5.4 applies to eachHs fromH0 up toHs∗ , showing
the propagation of vanishing. ¤

5.7. Unique continuation principles. At least three unique continuation
properties are known to be enjoyed by holomorphic functions h of several
complex variables defined in a domain D ⊂ Cn. Indeed, we have h ≡ 0 in
either of the following three cases:

(ucp1) the restriction of h to some nonempty open subset of D vanishes
identically;

(ucp2) the restriction of h to some generic local submanifold Λ of D van-
ishes identically;

(ucp3) there exists a point p ∈ D at which the infinite jet of h vanishes.

In Complex Analysis and Geometry, the (ucpi) have deep influence on
the whole structure of the theory. Finer principles involving tools from Har-
monic Analysis appear in [MP2006b].
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Problem 5.8. Find generalizations of the (ucpi) to the category of embedded
generic submanifolds M .

Since a domainD ofCn trivially consists of a single CR orbit, it is natural
to assume that the given generic manifold M is globally minimal (although
some meaningful questions arise without this assumption, we prefer not to
enter such technicalities). In this setting, Corollaries 5.4 and 5.5 provide a
complete generalization of (ucp1) and of (ucp2).

A version of (ucp3) with the point p in the boundary ∂D does not hold,
even in complex dimension one. Indeed, the function exp

(
ei5π/4/

√
w

)
is

holomorphic in H+ := {w ∈ C : Rew > 0}, of class C∞ on H+
and flat at

w = 0. The restriction of this function to the Heisenberg sphere Rew = zz̄
of C2 provides a CR example.

To generalize rightly (ucp3), let M be a C 1 generic submanifold of codi-
mension d > 1 and of CR dimension m > 1 in Cn, with n = m + d. Let Σ
be a C 1 submanifold of M satisfying:

T cqM ⊕ TqΣ = TqM, q ∈ Σ.

Here, Σ plays the rôle of the point p in (ucp3). Denote by OΣ
CR the union

of CR orbits of points of Σ, i.e. the CR-invariant hull of Σ. It is an open
subset of M . We say that a CR function f : M → C of class C 1 vanishes to
infinite order along Σ if for every p ∈ Σ, there exists an open neighborhood
Up of p in M such that for every ν ∈ N, there exists a constant C > 0 with

|h(t)| 6 C [dist(t,Σ)]ν , t ∈ Up.
Theorem 5.9. ([Ro1986b, BT1988], [∗]) Assume that Σ is the intersection
with M of some d-dimensional holomorphic submanifold of Cn. If a CR
function of class C 1 vanishes to infinite order along Σ, then it vanishes
identically on the globally minimal generic submanifold M .

Assuming that Σ is only a conic d-codimensional holomorphic submani-
fold entering a wedge to which all CR functions of M extend holomorphi-
cally (Theorem 3.8(V)), the proof of this theorem may be easily generalized.

Open question 5.10. ([Ro1986b, BT1988]) Is the above unique continuation
true for Σ merely C 1 ?

To attack this question, one should start with M being unit sphere S3 ⊂
C2 and Σ ⊂ S3 being any T cS3-transversal real segment which is nowhere
locally the boundary of a complex curve lying inside the ball.
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IV: Hilbert transform and Bishop’s equation in
Hölder spaces
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[1 diagram]

In complex and harmonic analysis, the spaces C κ,α of fractionally differentiable
maps, called Hölder spaces, are very flexible to generate inequalities and they yield
rather satisfactory norm estimates for almost all the classical singular integral op-
erators, especially when 0 < α < 1. For instance, the Cauchy integral of a C κ,α

function f : Γ → C defined on a C κ+1,α Jordan curve Γ of the complex plane
produces a sectionally holomorphic function, whose boundary values from one or
the either side are C κ,α on the curve. The Sokhotskiı̆-Plemelj formulas show that
the arithmetic mean of the two (in general different) boundary values at a point of
the curve is given by the principal value of the Cauchy integral at that point.

Harmonic and Fourier analysis on the unit disc ∆ is of particular interest for
geometric applications in Cauchy-Riemann geometry. According to a theorem
due to Privalov, the Hilbert transform T is a bounded linear endomorphism of
C κ,α(∂∆,R) with norm |||T|||κ,α equivalent to C

α(1−α) , for some absolute constant
C > 0. This operator produces the harmonic conjugate Tu of any real-valued func-
tion u : ∂∆ → R on the unit circle, so that u+iTu always extends holomorphically
to ∆. Bishop (1965), Hill-Taiani (1978), Boggess-Pitts (1985) and Tumanov (1990)
formulated and solved a functional equation involving T in order to find small ana-
lytic discs with boundaries contained in a generic submanifold M of codimension
d in Cn.

In a general setting, this Bishop-type equation is of the form:

U(ei θ) = U0 − T [Φ(U(·), ·, s)] (ei θ),
where U0 ∈ Rd is a constant vector, where Φ = Φ(u, ei θ, s) is an Rd-valued C κ,α

map, with κ > 1 and 0 < α < 1, where u ∈ Rd, where ei θ ∈ ∂∆ and where s ∈ Rb
is an additional parameter which is useful in geometric applications. Under some
explicit assumptions of smallness of U0 and of the first order jet of Φ, the general
solution U = U(ei θ, s, U0) is of class C κ,α with respect to ei θ and in addition,
for every β with 0 < β < α, it is of class C κ,β with respect to all the variables
(ei θ, s, U0). These smoothness properties are optimal.
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1. HÖLDER SPACES: BASIC PROPERTIES

1.1. Background on Hölder spaces. Let n ∈ N with n > 1 and let
x = (x1, . . . , xn) ∈ Rn. On the vector space Rn, we choose once for all
the maximum norm |x| := max16i6n |xi| and, for any “radius” ρ satisfying
0 < ρ 6 ∞, we define the open cube ¤n

ρ := {x ∈ Rn : |x| < ρ} as a
fundamental, concrete open set. For ρ = ∞, we identify ¤n

∞ with Rn.
Let κ ∈ N and let α ∈ R with 0 6 α 6 1. If K = R or C, a scalar

function f : ¤n
ρ → K belongs to the Hölder class C κ,α(¤n

ρ ,K) if, for every
multiindex δ = (δ1, . . . , δn) ∈ Nn of length |δ| 6 κ, the partial derivative
fxδ(x) := ∂|δ|f

∂xδ1 ···∂xδn
is continuous in ¤n

ρ and if, moreover, the quantity:

||f ||κ,α :=
∑

06|δ|6κ
sup
x∈¤n

ρ

|fxδ(x)|+
∑

|δ|=κ
sup

x′′ 6=x′∈¤n
ρ

|fxδ(x′′)− fxδ(x′)|
|x′′ − x′|α

is finite (if α = 0, it is understood that the second sum is absent). In case
f = (f1, . . . , fm) is a Km-valued mapping, with m > 1, we simply de-
fine ||f ||κ,α := max16j6m ||fj||κ,α. This is coherent with the choice of the
maximum norm |y| := max16i6n |yi| on Km. For short, such a map will
be said to be C κ,α-smooth or of class C κ,α and we write f ∈ C κ,α. One
may verify ||f1f2||κ,α 6 ||f1||κ,α · ||f2||κ,α and of course ||λ1f1 + λ2f2||κ,α 6
|λ1| ||f1||κ,α + |λ2| ||f2||κ,α. If κ = 0 and α = 1, the map f is called Lips-
chitzian. The condition

∣∣f(ei θ
′′
)− f(ei θ

′
)
∣∣ 6 C · |θ′′ − θ′| on the unit circle

was first introduced by Lipschitz in 1864 as sufficient for the pointwise con-
vergence of Fourier series.

Thanks to a uniform convergence argument, the space C κ,α(¤n
ρ ,K) is

shown to be complete, hence it constitutes a Banach algebra. The space
of functions defined on the closure ¤n

ρ also constitutes a Banach algebra.
If α is positive, thanks to a prolongation argument, one may verify that
C κ,α(¤n

ρ ,K) identifies with the restriction C κ,α
(
¤n
ρ ,K

)∣∣
¤n

ρ
.

Hölder spaces may also be defined on arbitrary convex open subsets.
More generally, on an arbitrary subset Ω ⊂ Rn, it is reasonable to define
the Hölder norms ||·||κ,α, 0 < α 6 1, only if distΩ(x′′, x′) 6 C · |x′′ − x′| for
every two points x′′, x′ ∈ Ω. This is the case for instance if Ω is a domain in
Rn having piecewise C 1,0 boundary.

Introducing the total order (κ1, α1) 6 (κ, α) defined by: κ1 < κ, or:
κ1 = κ and α1 6 α, we verify that C κ,α is contained in C κ1,α1 and that:

• ||f ||κ,0 6 ||f ||κ,α for all α with 0 < α 6 1 and for all κ ∈ N;
• ||f ||κ,α1

6 3 ||f ||κ,α2
for all α1, α2 with 0 < α1 < α2 6 1 and for all

κ ∈ N;
• ||f ||κ,1 6 ||f ||κ+1,0, for all κ ∈ N.
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The first inequality above is trivial while the third follows from (1.3) be-
low. We explain the factor 3 in the second inequality. Since |x′′ − x′|−α1 6
|x′′ − x′|−α2 only if |x′′ − x′| 6 1, we may estimate:

sup
0<|x′′−x′|61

|f(x′′)− f(x′)|
|x′′ − x′|α1

6 sup
0<|x′′−x′|61

|f(x′′)− f(x′)|
|x′′ − x′|α2

6 ||f ||0,α2
.

On the other hand, if |x′′ − x′| > 1, we simply apply the (not fine) inequali-
ties:

|f(x′′)− f(x′)|
|x′′ − x′|α1

6 |f(x′′)− f(x′)| 6 2 ||f ||0,0 6 2 ||f ||0,α2
.

Consequently:

||f ||0,α1
= ||f ||0,0 + sup

x′′ 6=x′

|f(x′′)− f(x′)|
|x′′ − x′|α1

6 3 ||f ||0,α2
,

with a factor 3. For general κ > 1, the desired inequality follows:

||f ||κ,α1
= ||f ||κ−1,0 +

∑

|δ|=κ
||fxδ ||0,α1

6 ||f ||κ−1,0 + 3
∑

|δ|=κ
||fxδ ||0,α2

6 3 ||f ||κ,α2
.

In the sequel, sometimes, we might abbreviate C κ,0 by C κ, a standard
notation. However, we shall never abbreviate C 0,α by C α, in order to avoid
the unpleasant ambiguity C 1,0 ≡ C 1 ≡ C 0,1. Without providing proofs, let
us state some fundamental structural properties of Hölder spaces. Some of
them are in [Kr1983].

• The inclusions C λ,β ⊂ C κ,α for (λ, β) > (κ, α) are all strict. For
instance, on R, the function χκ,α = χκ,α(x) equal to zero for x 6 0 and, for
x > 0:

χκ,α(x) =

{
xκ+α, if 0 < α 6 1,

xκ/log x, if α = 0,

is C κ,α in any neighborhood of the origin, not better.

• If 0 < α1 < α, any uniformly bounded set of functions in C κ,α contains
a sequence of functions that converges in C κ,α1-norm to a function in C κ,α1 .
This is a Hölder-space version of the Arzelà-Ascoli lemma.

• For 0 < α 6 1, define the Hölder semi-norm (notice the wide hat):

||f ||c0,α := sup
x′′ 6=x′∈¤n

ρ

|f(x′′)− f(x′)|
|x′′ − x′|α .
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The constants satisfy ||c||c0,α = 0 and, of course, we have ||f ||0,α ≡ ||f ||0,0 +

||f ||c0,α. As a function of α, the semi-norm is logarithmically convex:

||f || ̂0,tα1+(1−t)α2
=

(
||f ||d0,α1

)t
·
(
||f ||d0,α2

)1−t
.

Here, 0 < α1 < α2 6 1 and 0 6 t 6 1.
• Importantly, if f is Km-valued, if 1 6 l 6 m, from the Taylor integral

formula:

(1.2) fl (x
′′)− fl (x

′) =

∫ 1

0

n∑
i=1

∂fl
∂xi

(x′ + s(x′′ − x′)) [x′′i − x′i] ds,

follows the mean value inequality:

(1.3)
|f (x′′)− f (x′)| = max

16l6m
|fl (x′′)− fl (x

′)|
6 ||f ||c1,0 · |x′′ − x′| ,

where x′′, x′ ∈ ¤n
ρ are arbitrary, and where

||f ||c1,0 := max
16l6m

n∑

k=1

sup
|x|<ρ

|fl,xk
(x)| .

This useful inequality also holds (by definition) if f is merely Lipschitzian,
with ||f ||c1,0 replaced by ||f ||c0,1.

• If a function f is C κ,0, then for every multiindex δ ∈ Nn of length
|δ| 6 κ, the partial derivative fxδ is C κ−|δ|,0 and ||fxδ ||κ−|δ|,0 6 ||f ||κ,0.

§2. CAUCHY INTEGRAL, SOKHOTSKIĬ-PLEMELJ FORMULAS AND
HILBERT TRANSFORM

2.1. Boundary behaviour of the Cauchy integral. Let Ω be a domain in
C, let z ∈ Ω and let Γ be a C 1-smooth simple closed curve surrounding z
and oriented counterclockwise. Assume that its interior domain (to which z
belongs) is entirely contained in Ω. In case Γ is a circle, Cauchy ([Ca1831])
established in 1831 the celebrated representation formula:

f(z) =
1

2πi

∫

Γ

f(ζ) dζ

ζ − z
,

valid for all functions f ∈ O(Ω) holomorphic in Ω. Remarkably, Γ may be
modified and deformed without altering the value f(z) of the integral.

The best proof of this formula is to derive it from the more general
Cauchy-Green-Pompeiu formula, itself being an elementary consequence
of the Green-Stokes formula, which is valid for functions f of class only
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C 1 defined on the closure of a domain Ω ⊂ C having C 1-smooth oriented
boundary ∂Ω ([Hö1973]):

f(z) =
1

2πi

∫

∂Ω

f(ζ) dζ

ζ − z
+

1

2πi

∫ ∫

Ω

∂f/∂ζ̄

ζ − z
dζ ∧ dζ̄.

Indeed, for holomorphic f , one clearly sees that the “remainder” double
integral disappears.

The holomorphicity of the kernel 1
ζ−z enables then to build concisely

the fundamental properties of holomorphic functions from Cauchy’s for-
mula: local convergence of Taylor series, residue theorem, Cauchy uniform
convergence theorem, maximum principle, etc. ([Hö1973]). Studying the
Cauchy integral for itself appeared therefore to be of interest and became a
thoroughly investigated subject in the years 1910–1960, under the influence
of Privalov.

If z ∈ Ω belongs to the exterior of Γ, i.e. to the unbounded component of
C\Γ, by a fundamental theorem also due to Cauchy, the integral vanishes:
0 = 1

2πi

∫
Γ
f(ζ) dζ
ζ−z . Thus, fixing the countour Γ, as z moves toward Γ, the

Cauchy integral is constant, either equal to f(z) or to 0. What happens when
z hits the curve Γ ?

Denote by ζ0 a point of Γ and by ∆(ζ0, ε) the open disc of radius ε > 0
centered at ζ0. If Γε denotes the complement Γ\∆(ζ0, ε), introducing an arc
of small circle contained in ∂∆(ζ0, ε) to join the two extreme points of Γε,
it may be verified that

(2.2)
1

2
f(ζ0) = lim

ε→0

1

2πi

∫

Γε

f(ζ) dζ

ζ − ζ0
.

Geometrically speaking, essentially one half of the circle ∂∆(ζ0, ε) of radius
ε centered at ζ0 is contained in the domain Ω. Consequently, the “correct
value” of the Cauchy integral at a point ζ0 of the curve Γ is equal to the
arithmetic mean:

1

2

(
lim

z→ζ0, z inside
+ lim

z→ζ0, z outside

)
=

1

2
(f(ζ0) + 0) .

Let us recall briefly why the excision of an ε-neighborhood of ζ0 in the
domain of integration is necessary to provide this “correct” average value.
Parametrizing Γ by a real number, the problem of giving a sense to the sin-
gular integral

∫
Γ
f(ζ) dζ
ζ−ζ0 amounts to the following classical definition of the

notion of principal value ([Mu1953, Ga1966, EK2000]).

2.3. Principal value integrals. Let a, b ∈ R with a < b and let f be a C 1-
smooth real-valued function defined on the open segment (a, b). Pick x ∈ R
with a < x < b and consider the integral

∫ b

a
dy

y−x
whose integrand is singular.
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The two integrals avoiding the singularity from the left and from the right,
namely:

∫ x−ε1

a

dy

y − x
= log(ε1)− log(x− a) and

∫ b

x+ε2

dy

y − x
= log(b− x)− log(ε2)

tend to −∞, as ε1 → 0+, and to +∞ as ε2 → 0+. Clearly, if ε2 = ε1

(or more generally, if ε1 and ε2 both depend continuously on an auxiliary
parameter ε > 0 with 1 = limε→0+

ε2(ε)
ε1(ε)

), the positive and the negative parts
compensate, so that the principal value:

p.v.

∫ b

a

dy

y − x
:= lim

ε→0+

(∫ x−ε

a

+

∫ b

x+ε

)
= log

b− x

x− a

exists. Briefly, there is a key cancellation of infinite parts, thanks to the fact
that the singular kernel 1

y
is odd. This is why in (2.2) above, the integration

was performed over the excised curve Γε.
Generally, if g : [a, b] → R is a real-valued function the principal value

integral, defined by:

p.v.

∫ b

a

g(y) dy

y − x
:= lim

ε→0+

(∫ x−ε

a

+

∫ b

x+ε

)

=

∫ b

a

g(y)− g(x)

y − x
dy + g(x) p.v.

∫ b

a

dy

y − x
dy

=

∫ b

a

g(y)− g(x)

y − x
dy + g(x) log

b− x

x− a

exists whenever the quotient g(y)−g(x)
y−x

is integrable. This is the case for in-

stance if g is of class C 1,0 or of class C 0,α, with α > 0, since
∫ 1

0
yα−1 dy <

∞. More is true.

Theorem 2.4. ([Mu1953, Ve1962, Dy1991, SME1988, EK2000], [∗]) Let
g : [a, b] → R be C κ,α-smooth, with κ > 0 and 0 < α < 1. Then for every
x ∈ (a, b), the principal value integral

G(x) := p.v.

∫ b

a

g(y) dy

y − x

exists. In every closed segment [a′, b′] contained in (a, b), the function
G(x) becomes C κ,α-smooth and enjoys the norm inequality ||G||C κ,α[a′,b′] 6

C
α(1−α)

||g||C κ,α[a,b], for some constant C = C(κ, a, b, a′, b′). If g together
with its derivatives up to order κ vanish at the two extreme points a and b,
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the function G(x) is C κ,α-smooth over [a, b] and enjoys the norm inequality
||G||C κ,α[a,b] 6 C

α(1−α)
||g||C κ,α[a,b], for some constant C = C(κ, a, b).

Notice the presence of the (nonremovable) factor 1
α(1−α)

.

2.5. General Cauchy integral. Beginning with works of Sokhot-
skiı̆ [So1873], of Harnack [Ha1885] and of Morera [Mo1889], the Cauchy
integral transform:

F (z) :=
1

2πi

∫

Γ

f(ζ) dζ

ζ − z
has been studied for itself, in the more general case where Γ is an arbi-
trary closed or non-closed curve in C and f is an arbitrary smooth complex-
valued function defined on Γ, not necessarily holomorphic in a neighbor-
hood of Γ (precise rigorous assumptions will follow; historical account may
be found in [Ga1966]). In Sokhotskiı̆’s and in Harnack’s works, the study
of the boundary behaviour of the Cauchy integral was motivated by physical
problems; its boundary properties find applications to mechanics, to hydro-
dynamics and to elasticity theory. Let us restitute briefly the connection to
the notion of logarithmic potential ([Mu1953]).

Assuming Γ and f : Γ → R to be real-valued and of class at least C 1,0,
parametrize Γ by arc-length ζ = ζ(s), denote r(s) := ζ(s) − z the radial
vector from z to ζ(s), denote r = r(s) = |r(s)| its euclidean norm, denote
t(s) := dr

ds
the unit tangent vector field to Γ and denote n(s) := dr

ds
/
∣∣dr
ds

∣∣ the
unit normal vector field to Γ. Puting z = x+iy and decomposing the Cauchy
transform F (z) = U(x, y) + iV (x, y) in real and imaginary parts, the two
functions U and V are harmonic in C\Γ, since F is clearly holomorphic
there. After elementary computations, one shows that U may be expressed
under the form:

U(x, y) =
1

2π

∫

Γ

f
cos(r,n)

r
ds,

which, physically, represents the potential of a double layer with moment-
density f

2π
. Also, V may be expressed under the form:

V (x, y) =
1

2π

∫

Γ

df

ds
log r ds,

which, in the case where Γ consists of a finite number of closed Jor-
dan curves, represents the potential of a single layer with moment-density
− 1

2π
df
ds

.

2.6. The Sokhotskiı̆-Plemelj formulas. Coming back to the mathematical
study of the Cauchy integral, we shall assume that the curve Γ over which the
integration is performed is a connected curve of finite length parametrized
by arc length

[a, b] 3 s 7−→ ζ(s) ∈ Γ,
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where a < b, where ζ(s) is of class C κ+1,α over the closed segment [a, b],
and where κ > 0, 0 < α < 1. Topologically, we shall assume that Γ =
ζ[a, b] is either:

• a Closed Jordan arc, namely ζ : [a, b] → C is an embedding;
• or a Jordan contour, namely ζ : (a, b) → C is an embedding, ζ(a) =
ζ(b), ζ extends as a C κ+1,α-smooth map on the quotient [a, b]/(a ∼
b) and Γ = ζ[a, b] is diffeomorphic to a circle.

Various more general assumptions can be made: Γ consists of a finite
number of connected pieces, Γ is piecewise smooth (corners appear), Γ pos-
sesses certain cusps, Γ is only Lipschitz, the length of Γ is not finite, f is Lp-
integrable, f is Lp

α, i.e. f ∈ Lp(Γ) and
∫
Γ
|f(s+ h)− f(s)|p 6 Cte |h|α, f

belongs to certain Sobolev spaces, f(ζ) dζ is replaced by a measure dµ(ζ),
etc., but we shall not review the theory (see [Mu1953, Ve1962, Ga1966] and
especially [Dy1991]).

The natural orientation of the segment [a, b] induced by the order relation
on R enables to orient the two semi-local sides of Γ in C: the region on
the left to Γ will be called the positive side (“+”), while the region to the
right will be called negative (“−”). In the case where Γ is Jordan contour,
we assume that Γ is oriented counterclockwise, so that the positive region
coincides with the bounded component of C\Γ.

Theorem 2.7. ([Mu1953, Ve1962, Ga1966, Dy1991, SME1988, EK2000],
[∗]) Let Γ be a C κ+1,α-smooth closed Jordan arc or Jordan contour in C
and let f : Γ → C be a C κ,α-smooth complex-valued function.

(a) If Γ′ is any closed portion of Γ having no ends in common with
those of Γ, then for every ζ1 ∈ Γ′, the Cauchy transform F (z) :=
1

2πi

∫
Γ
f(ζ) dζ
ζ−z possesses (a priori distinct) limits F+(ζ1) and F−(ζ1),

when z tends to ζ1 from the positive or from the negative side.

(b) These two limits F+ and F− are of class C κ,α on Γ′ with a norm esti-
mate ||F±||C κ,α(Γ′) 6 C(κ,Γ′,Γ)

α(1−α)
||f ||C κ,α(Γ), for some positive constant

where C(κ,Γ′,Γ).

(c) Furthermore, if ω′+ and ω′− denote an upper and a lower open one-
sided neighborhood Γ′ inC, the two functions F± : ω′± → C defined
by: {

F±(z) := F (z) if z ∈ ω′±,
F±(z) := F±(ζ1) if z = ζ1 ∈ Γ′,

are of class C κ,α in ω′± ∪ Γ′, with a similar norm estimate
||F±||C κ,α(ω′±∪Γ′) 6 C1(κ,Γ′,Γ)

α(1−α)
||f ||C κ,α(Γ).
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(d) Finally, at every point ζ0 of the curve Γ not coinciding with its ends,
F+ and F− satisfy the two Sokhotskiı̆-Plemelj formulas:





F+(ζ0)− F−(ζ0) = f(ζ0),

1

2

[
F+(ζ0) + F−(ζ0)

]
= p.v.

1

2πi

∫

Γ

f(ζ)

ζ − ζ0
dζ.

F−

F+

ª
⊕

F+

F−

⊕

ª

C C

Γ

Γ

ζ(a)

ζ(b)

ζ0

+

+

Γ′
ζ1

ω′+

ω′−

F+ − F− = f

p.v. 1
2πi

R
Γ

f(ζ) dζ
ζ−ζ0

TWO DIAGRAMS FOR THE SOKHOTSKǏI-PLEMELJ FORMULAS

Sometimes, F is called sectionnally holomorphic, as it is discontinuous
across Γ. Its jump across Γ is provided by the first formula above, while
the arithmetic mean F++F−

2
is given by the value of the Cauchy (singular)

integral at ζ0 ∈ Γ. Morera’s classical theorem ([Mo1889]) states that if F+

and F− match up on the interior of Γ, then the Cauchy integral is holomor-
phic in C minus the endpoints of Γ. As is known ([Sh1990]), this theorem
is also true for an arbitrary holomorphic function F ∈ O(C\Γ) which is not
necessarily defined by a Cauchy integral.

2.8. Less regular boundaries. The boundary behaviour of the Cauchy
transform at the two extreme points γ(a) and γ(b) of a Jordan arc is studied
in [Mu1953]. We refer to [Dy1991] for a survey presentation of the finest
condition on Γ (namely, it to be a Carleson curve) which insures that the
Cauchy integral exists and that the Sokhotskiı̆-Plemelj formulas hold true,
almost everywhere. Let us just mention what happens with the Cauchy inte-
gral F (z) in the limit case α = 0.

If Γ is (only) C 1,0, if f is (only) C 0,0, then for ζ1 in the interior of Γ,
the limit F−(ζ1) exists if and only if the limit F+(ζ1) exists ([Mu1953]).
However, generically, none limit exists.

A more useful statement, valid in the case α = 0, is as follows. Assume
Γ to be C κ+1,0 with κ > 0 and let Γ′ be a closed portion of the interior of
Γ. Parametrize Γ′ by a C κ+1,0 map ζ ′ : [a′, b′] → Γ′. Extend ζ ′ = ζ ′(s) as
a a C κ+1,0 embedding ζ ′(s, ε) defined on [a′, b′] × (−ε0, ε0), where ε0 > 0,
with ζ ′(s, 0) ≡ ζ ′(s) and with ζ ′(s, ε) in the positive side of Γ′ for ε > 0.
The family of curves Γ′ε := ζ ′([a′, b′]×{ε}) foliates a strip thickening of Γ′.
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Theorem 2.9. ([Mu1953]) For every choice of a C κ+1,0 extension ζ ′(s, ε),
and every f ∈ C κ,0(Γ,C), the difference from either side of the Cauchy
transform F |Γ′ε − F |Γ′−ε′

tends to f |Γ′ in C κ,0 norm as ε→ 0:

lim
ε→0

sup
s∈[a′,b′]

||F (ζ ′(s, ε))− F (ζ ′(s,−ε))− f(ζ ′(s))||κ,0 = 0.

To conclude, we state a criterion, due to Hardy-Littlewood, which insures
C κ,α-smoothness of holomorphic functions up to the boundary.

Theorem 2.10. ([Mu1953, Ga1966], [∗]) Let Γ be a C κ+1,α-smooth Jor-
dan contour, divinding the complex plane in two components Ω+ (bounded)
and Ω− (unbounded). If f ∈ O(Ω±) satisfies the estimate |∂κz f(z)| 6
C (1− |z|)1−α, for some κ ∈ N, some α with 0 < α < 1, and some positive
constant C > 0, then f is of class C κ,α in the closure Ω± = Ω± ∪ Γ.

2.11. Functions and maps defined on the unit circle. In the sequel, Ω will
be the unit disc ∆ := {ζ ∈ C : |ζ| < 1} having as boundary the unit circle
∂∆ := {ζ ∈ C : |ζ| = 1}. Consider a function f : ∂∆ → K, where K = R
orC. Parametrizing ∂∆ by ζ = eiθ with θ ∈ R, such an f will be considered
as the function

R 3 θ 7−→ f(ei θ) ∈ K.
For j ∈ N, we shall write fθj := djf

dθj .
Let α satisfy 0 < α 6 1 and assume that f ∈ C 0,α. We define its C 0,α

semi-norm (notice the wide hat) precisely by:

||f ||c0,α := sup
θ′′ 6=θ′

|f(ei θ
′′
)− f(ei θ

′
)|

|θ′′ − θ′|α .

Thanks to 2π-periodicity, supθ′′ 6=θ′ may be replaced by sup0<|θ′′−θ′|6π. Ac-
cording to the definition of §1.1, the function f is C κ,α if the quantity

||f ||κ,α :=
∑

06j6κ
||fθj ||0,0 + ||fθκ||c0,α <∞

is finite. Besides Hölder spaces, we shall also consider the Lebesgue spaces
Lp(∂∆), with p ∈ R satisfying 1 6 p 6 ∞. As ∂∆ is compact, the Hölder
inequality entails the (strict) inclusions L∞(∂∆) ⊂ Lp′(∂∆) ⊂ Lp(∂∆) ⊂
L1(∂∆), for 1 < p < p′ <∞.

2.12. Fourier series of Hölder continuous functions. If f is at least of
class L1 on ∂∆, let

f̂k :=
1

2πi

∫

∂∆

ζ−k f(ζ)
dζ

ζ



116

denote the k-th Fourier coefficient of f , where k ∈ Z. Given n ∈ N, con-
sider the n-th partial sum of the Fourier series of f :

Fnf(ei θ) :=
∑

−n6k6n
f̂k e

i k θ.

We remind that Dini’s (elementary) criterion:
∫ π

0

∣∣f(ei(θ+t)) + f(ei(θ−t))− 2 f(ei θ)
∣∣

t
dt <∞

insures the pointwise convergence limn→∞ Fnf(ei θ) = f(ei θ). If f is C 0,α

on ∂∆, with 0 < α 6 1, the above integral obviously converges at every
eiθ ∈ ∂∆, so that we may identify f with its (complete) Fourier series:

f(ei θ) = Ff(ei θ) :=
∑

k∈Z
f̂k e

i k θ.

In fact ([Zy1959]), if f ∈ C κ,α with κ ∈ N and 0 6 α 6 1, then∣∣f̂k
∣∣ 6 π1+α

|k|κ+α ||f ||dκ,α for all k ∈ Z\{0}. Also, if f ∈ C 0,α, then
∑

k∈Z
∣∣f̂k

∣∣c
converges for c > 2

2α+1
. In 1913, Bersteı̆n proved absolute convergence of∑

k∈Z
∣∣f̂k

∣∣ for α > 1/2.

2.13. Three Cauchy transforms in the unit disc. In the case Ω = ∆, our
goal is to formulate Theorem 2.7 with more precision about the constant
C(κ, ∂Ω). For η ∈ ∂∆ in the unit circle and f ∈ C κ,α(∂∆,C) with κ > 0,
0 < α < 1, as in §2.6, we define:

C+f(η) := lim
r→1−

1

2πi

∫

∂∆

f(ζ)

ζ − rη
dζ,

C0f(η) := p.v.
1

2πi

∫

∂∆

f(ζ)

ζ − η
dζ,

C−f(η) := lim
r→1+

1

2πi

∫

∂∆

f(ζ)

ζ − rη
dζ.

The Sokhotskiı̆-Plemelj formulas hold: f(η) = C+f(η) − C−f(η) and
C0f(η) = 1

2
[C+f(η) + C−f(η)]. A theorem due to Aleksandrov6 enables

to obtain a precise estimate of the C κ,α norms of these Cauchy operators.
To describe it, define:

M α
0 :=

{
f ∈ C 0,α(∂∆,C) : f̂0 = 0

}
.

Then ||·||c0,α is a norm on M α
0 , since only the constants c satisfy ||c||c0,α = 0.

For p, q ∈ Rwith 0 < p, q < 1, recall the definitionB(p, q) :=
∫ 1

0
xp−1 (1−

x)q−1 dx of the Euler beta function.

6We are grateful to Burglind Jöricke who provided the reference [Al1975].
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Theorem 2.14. ([Al1975]) The operator C0f(η) := p.v. 1
2πi

∫
∂∆

f(ζ)
ζ−η dζ is

a bounded linear endomorphism of M α
0 having norm:

∣∣∣∣∣∣C0
∣∣∣∣∣∣c0,α =

1

2π
B

(
α

2
,

1− α

2

)
.

One may easily verify the two equivalences B
(
α
2
, 1−α

2

) ∼ 2
α

as α → 0

and B
(
α
2
, 1−α

2

) ∼ 2
1−α as α→ 1 as well as the two inequalities:

1

α(1− α)
6 B

(
α

2
,

1− α

2

)
6 4

α(1− α)
.

Thus, the nonremovable factor 1
α(1−α)

shows what is the precise rate of ex-
plosion of the norm

∣∣∣∣∣∣C0
∣∣∣∣∣∣c0,α as α→ 0 or as α→ 1.

Further, if f ∈ C 0,α does not necessarily belong to M α
0 , it is elementary

to check that
∣∣∣∣C0f

∣∣∣∣
0,0

6 C
α
||f ||0,α, for some absolute constant C > 0. It

follows that the (complete) operator norm
∣∣∣∣∣∣C0

∣∣∣∣∣∣
0,α

behaves like C
α(1−α)

.
In conclusion, thanks to the Sokhotskiı̆-Plemelj formulas C+f = 1

2
(C0f+

f) and C−f = 1
2
(C0f − f), we deduce that there exists an absolute constant

C1 > 1 such that:
1/C1

α(1− α)
6

∣∣∣∣∣∣Cb
∣∣∣∣∣∣

0,α
6 C1

α(1− α)
,

where 0 < α < 1 and where b = −, 0,+.
Next, what happens with f ∈ C κ,α, for κ ∈ N arbitrary ? For b = −, 0,+,

the Cb are bounded linear endomorphisms of C κ,α and similarly:

Theorem 2.15. There exists an absolute constant C1 > 1 such that if κ ∈ N
and 0 < α < 1, for b = −, 0,+:

1/C1

α(1− α)
6

∣∣∣∣∣∣Cb
∣∣∣∣∣∣
κ,α

6 C1

α(1− α)
.

In other words, the constant C1 is independent of κ. To deduce this theo-
rem from the estimates with κ = 0 (with different absolute constant C1) we
proceed as follows, without exposing all the rigorous details.

Inserting the Fourier series F(f, ei θ) in the integrals defining C−, C0, C+

and integrating termwise (an operation which may be justified), we get:




C−f(ei θ) = −
∑

k<0

f̂k e
i k θ,

C0f(ei θ) = −1

2

∑

k<0

f̂k e
i k θ +

1

2
f̂0 +

1

2

∑

k>0

f̂k e
i k θ,

C+f(ei θ) = f̂0 +
∑

k>0

f̂k e
i k θ.
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If κ > 1, by differentiating termwise with respect to θ these three Fourier
representations of the Cb, we see that these operators commute with differ-
entiation.

Lemma 2.16. For every j ∈ N with 0 6 j 6 κ and for b = −, 0,+, we
have:

Cb (fθj) =
(
Cbf

)
θj .

Dealing directly with the principal value definition of C0f , another proof
of this lemma for C0 would consist in integrating by parts, deducing after-
wards that C− and C+ enjoy the same property, thanks to the Sokhotskiı̆-
Plemelj formulas.

To establish Theorem 2.15, we introduce another auxiliary C κ,α norm:

||f ||∼κ,α :=
∑

06j6κ
||fθj ||0,α = ||f ||κ,α +

∑
06j6κ−1

||fθj ||c0,α ,

which is equivalent to ||·||κ,α, thanks to the elementary inequalities ([∗]):

||f ||κ,α 6 ||f ||∼κ,α 6 (1 + π) ||f ||κ,α .
Notice that ||·||∼0,α = ||·||0,α. The next lemma applies to L = C−,C0,C+ and
to L = T, the Hilbert conjugation operator defined below.

Lemma 2.17. ([∗]) Let L be a bounded linear endomorphism of all the
spaces C κ,α(∂∆,C) with κ ∈ N, 0 < α < 1, which commutes with dif-
ferentiations, namely L (fθj) = (Lf)θj , for j ∈ N. Assume that there exist a
contant C1(α) > 1 depending on α such that C1(α)−1 6 |||L|||0,α 6 C1(α).
Then for every κ ∈ N:{

C1(α)−1 6 |||L|||∼κ,α 6 C1(α),

(1 + π)−1C1(α)−1 6 |||L|||κ,α 6 (1 + π)C1(α).

Proof. Indeed, if f ∈ C κ,α, we develope a chain of (in)equalities:

||Lf ||κ,α 6 ||Lf ||∼κ,α =
∑

06j6κ
||(Lf)θj ||0,α =

∑
06j6κ

||L(fθj)||0,α

6 C1(α)
∑

06j6κ
||fθj ||0,α = C1(α) ||f ||∼κ,α

6 (1 + π)C1(α) ||f ||κ,α .
This yields the two majorations. Minorations are obtained similarly. ¤

To conclude this paragraph, we state a Tœplitz type theorem about C+,
which will be crucial in solving Bishop’s equation with optimal loss of
smoothness, as we will see in Section 3. A similar one holds about C−,
assuming φ ∈ H∞(C\∆) instead, where C is the Riemann sphere.
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Theorem 2.18. ([Tu1994b], [∗]) There exists an absolute constant C1 > 1
such that for all f ∈ C κ,α, κ ∈ N, 0 < α < 1, and all φ ∈ H∞(∆) :=
O(∆) ∩ L∞(∆):

∣∣∣∣C+(fφ)
∣∣∣∣
κ,α

6 C1

α(1− α)
||f ||κ,α ||φ||L∞ .

Closely related to the Cauchy transform are the Schwarz and the Hilbert
transforms.

2.19. Schwarz transform on the unit disc. Let u ∈ L1(∂∆,R) be real-
valued. The Schwarz transform of u is the function of z ∈ ∆ defined by:

Su(z) :=
1

2πi

∫

∂∆

u(ζ)

(
ζ + z

ζ − z

)
dζ

ζ
.

Thanks to the holomorphicity of the kernel, Su(z) is a holomorphic function
of z ∈ ∆. Decomposing it in real and imaginary parts:

Su(z) = Pu(z, z̄) + iTu(z, z̄),

we get the Poisson transform of u:

Pu(z, z̄) :=
1

2πi

∫

∂∆

u(ζ) Re

(
ζ + z

ζ − z

)
dζ

ζ
,

together with the Hilbert transform of u:

Tu(z, z̄) :=
1

2πi

∫

∂∆

u(ζ) Im

(
ζ + z

ζ − z

)
dζ

ζ
.

Thanks to the harmonicity of the two kernels, Pu and Tu are harmonic in
∆. The power series of Cu, of Pu and of Tu are given by:





Su(z) = û0 + 2
∑

k>0

ûk z
k,

Pu(z, z̄) =
∑

k<0

ûk z̄
k + û0 +

∑

k>0

ûk z
k,

Tu(z, z̄) =
1

i

(
−

∑

k<0

ûk z̄
k +

∑

k>0

ûk z
k

)
,

where ûk is the k-th Fourier coefficient of u. These three series converge
normally on compact subsets of ∆.
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2.20. Poisson transform on the unit disc. Let us first summarize the basic
properties of the Poisson transform ([Ka1968, DR2002]). Setting z = r ei θ

with 0 6 r < 1 and ζ = eit, computing Re
(
ζ+z
ζ−z

)
and switching the convo-

lution integral, we obtain:

Pu(r ei θ) =
1

2π

∫ π

−π
Pr(t)u(e

i(θ−t)) dt = Pr ∗ u (ei θ),

where

Pr(t) :=
1− r2

1− 2r cos t+ r2

is the Poisson summability kernel. It has three nice properties:

• Pr > 0 on ∂∆ for 0 6 r < 1,

• 1
2π

∫ π

−π Pr(t) dt = 1 for 0 6 r < 1, and:

• limr→1− Pr(t) = 0 for every t ∈ [−π, π]\{0}.

Consequently, Pr is an approximation of the Dirac measure δ1 at 1 ∈ ∂∆.
For this reason, the Poisson convolution integral possesses excellent bound-
ary value properties.

Lemma 2.21. ([Ka1968, DR2002]) Convergence in norm holds:

(i) If u ∈ Lp with 1 6 p < ∞ or p = ∞ and u is continuous, then
limr→1− ||Pr ∗ u− u||Lp = 0.

(ii) If u ∈ C κ,α with κ ∈ N and 0 6 α 6 1, including α = 0 and α = 1,
then limr→1− ||Pr ∗ u− u||κ,α = 0.

In C κ,α, the pointwise convergence limr→1− Pr∗u(ei θ) → u(ei θ) follows
obviously. However, in Lp, from convergence in norm one may only deduce
pointwise convergence almost everywhere for some sequence rk → 1 which
depends on the function. In Lp, almost everywhere pointwise convergence
was proved by Fatou in 1906.

Theorem 2.22. ([Fa1906, Ka1968, DR2002]) If u ∈ Lp with 1 6 p 6 ∞,
then for almost every ei θ ∈ ∂∆, we have:

lim
r→1−

Pr ∗ u (ei θ) = u(ei θ).

In summary, the Poisson transform Pu yields a harmonic extension to
∆ of any function u ∈ Lp(∂∆,R) or u ∈ C κ,α(∂∆,R), with expected
boundary value b∂∆(Pu) = u on ∂∆.
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2.23. Hilbert transform on the unit disc. Next, we survey the fundamental
properties of the Hilbert transform. Again, u is real-valued on ∂∆. Setting
z = r ei θ with 0 6 r < 1 and ζ = eit, computing Im

(
ζ+z
ζ−z

)
and switching

the convolution integral, we obtain:

Tu(r ei θ) =
1

2π

∫ π

−π
Tr(t)u(e

i(θ−t)) dt,

where

Tr(t) :=
2 r sin t

1− 2r cos t+ r2

is the Hilbert kernel. It is not a summability kernel, being positive and
negative with L1 norm tending to ∞ as r → 1−; for this reason, the Hilbert
transform does not enjoy the same nice boundary value properties as the
Poisson transform: Hölder classes are needed.

Setting r = 1, the Poisson kernel P1(t) vanishes identically and the
Hilbert kernel tends to 2 sin t

2−2 cos t
= cos t/2

sin t/2
. Near t = 0, the function

cot(t/2) behaves like the function 2/t, having infinite L1 norm. For
u ∈ C 0,α(∂∆,R), it may be verified that, as z → ei θ ∈ ∂∆, the Hilbert
transform Tu(z) tends to

Tu(ei θ) := p.v.
1

2π

∫ π

−π

u(ei(θ−t))
tan(t/2)

dt

= p.v.
1

2πi

∫ π

−π
u(ζ) Im

(ζ + ei θ

ζ − ei θ

) dζ
ζ
.

Since Re
(
ζ+ei θ

ζ−ei θ

) ≡ 0 for ζ = ei t ∈ ∂∆, we get Im
(
ζ+ei θ

ζ−ei θ

)
= 1

i
ζ+ei θ

ζ−ei θ so
that we may rewrite

iTu(ei θ) = p.v.
1

2πi

∫ π

−π
u(ζ)

ζ + ei θ

ζ − ei θ
dζ

ζ
.

Setting P0u := 1
2πi

∫
∂∆

u(ζ)dζ
ζ

= û0, the algebraic relation 2
ζ−ei θ − 1

ζ
=

ζ+ei θ

ζ−ei θ
1
ζ

gives a fundamental relation between C0 and T:

2 C0 − P0 = iT.

From Theorem 2.15, we deduce (P0 is innocuous):

Theorem 2.24. ([Pri1916, HiTa1978, Bo1991, BER1999], [∗]) There exist
an absolute constant C1 > 1 such that if κ ∈ N and 0 < α < 1:

1/C1

α(1− α)
6 |||T|||κ,α 6 C1

α(1− α)
.
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It follows that at the level of Fourier series, T transforms u(ei θ) =
Fu(ei θ) =

∑
k∈Z ûk e

i k θ to

Tu(ei θ) :=
1

i

(
−

∑

k<0

ûk e
i k θ +

∑

k>0

ûk e
i k θ

)
.

Notice that (T̂u)0 = 0. In fact, this formula coincides with the series
1
i

(−∑
k<0 ûkz̄

k +
∑

k>0 ûkz
k
)
, written for z → ei θ, the limit existing pro-

vided 0 < α < 1.
By termwise differentiation of the above formula, T(uθj) = (Tu)θj for

0 6 j 6 κ, if u ∈ C κ,α (some integrations by parts in the singular integral
defining Tu would yield a second proof of this property).

The Poisson transform Pu of u ∈ C 0,α having boundary value b∂∆(Pu) =
u and the Schwarz transform being holomorphic in ∆, we see that the func-
tion u + iTu on ∂∆ extends holomorphically to ∆ as Su(z). So Tu on ∆
is one of the Harmonic conjugates of u. In general, these conjugates are
defined up to a constant. The property (T̂u)0 = 0 means that Tu(0) = 0.

Lemma 2.25. The Hilbert transform Tu on ∂∆ is the boundary value on ∂∆
of the unique harmonic conjugate in ∆ of the harmonic Poisson extension
Pu, that vanishes at 0 ∈ ∆.

For u ∈ C κ,α(∂∆,R), u+ iTu extends holomorphically to ∆.

Furthermore, T(Tu) = −u+ û0.

2.26. Hilbert transform in Lp spaces. It is elementary to show that the
study of the principal value integral p.v. 1

2π

∫ π

−π
u(ei (θ−t))
tan(t/2)

dt is equivalent to
the study of the same singular convolution operator, in which cot(t/2) is
replaced by 2/t. Similarly, one may define the Hilbert transform on the real
line:

Hf(x) := p.v.

∫

R

f(y)

y − x
dy.

If f is C 1,0 on R and has compact support or satisfies
∫
R |f | <∞, replacing

f(y) in the numerator by [f(y)− f(x)] + f(x) and reasoning as in §2.3, one
straightforwardly shows the existence of the above principal value.

Privalov showed that Hf(x) exists for almost every x ∈ R if f ∈ L1(R).
A theorem due to M. Riesz states that the two Hilbert transforms H on the
real line and T on the unit circle are bounded endomorphisms of Lp, for
1 < p <∞, namely if f ∈ Lp(R) and u ∈ Lp(∂∆), then:

||Hf ||Lp(R) 6 Cp ||f ||Lp(R) and ||Tu||Lp(∂∆) 6 Cp ||u||Lp(∂∆) ,
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whith the same constant Cp ([Zy1959], Chapters VII and XVI). In [Pi1972],
Zygmund’s doctoral student Pichorides obtained the best value of the con-
stant Cp: for 1 < p 6 2, Cp = tan π

2p
, while, by a duality argument,

Cp = cot π
2p

for 2 6 p < ∞. The two elementary bounds tan π
2p

6 p
p−1

for
1 < p 6 2 and cot π

2p
6 p for 2 6 p <∞, yield:

(2.27)

||Hf ||Lp(R) 6 p2

p− 1
||f ||Lp(R) and ||Tf ||Lp(∂∆) 6 p2

p− 1
||f ||Lp(∂∆) ,

for 1 < p < ∞. In L1, the Hilbert transform is unbounded but, according
to a theorem due to Kolmogorov ([Dy1991, DR2002]), it sastisfies a weak
inequality:

m {Hf(x) > a} 6 C

a
||f ||L1 ,

for every a ∈ R with a > 0, where m is the Lebesgue measure and where
C > 0 is some absolute constant.

2.28. Pointwise convergence of Fourier series. The boundedness of the
Hilbert transform in Lp has a long history, closely related to the problem of
pointwise convergence of Fourier series. In 1913, before M. Riesz proved
the estimates (2.27), using complex function theory and the Riesz-Fischer
theorem, Luzin showed that H is bounded in L2 and formulated the cel-
ebrated conjecture that Fourier series of L2 functions converge pointwise
almost everywhere. This “hypothetical theorem” was established by Car-
leson ([Ca1966]) in 1966 and slightly later by Hunt ([Hu1966]) in Lp for
1 < p < ∞. A complete self-contained restitution of these results is avail-
able in [DR2002]. Let us survey the main theorem.

The n-th partial sum of the Fourier series of a function f on ∂∆ is given
by:

Fnf(ei θ) =
1

2π

∫ π

−π
Dn(t) f(ei(θ−t)) dt,

where

Dn(t) :=
sin(n+ 1/2)t

sin t/2

is the Dirichlet kernel, having unbounded L1 norm ||Dn||L1 ∼ 4
π2 log n. It

is elementary to show that the behaviour of this convolution integral, as
n→∞, is equivalent to the behaviour of the integral:

∫ π

−π

sinnt

t
f(ei(θ−t)) dt.
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Without loss of generality, f is assumed to be real-valued, so that the above
integral is the imaginary part of the Carleson integral:

Cn(f, e
i θ) := p.v.

∫ π

−π

ei n t

t
f(ei(θ−t)) dt.

In, chapters 4, 5, 6, 7, 8, 9 and 10 of [DR2002], the main proposition is to
prove that the Carleson maximal sublinear operator:

C∗f(ei θ) := sup
n∈N

∣∣Cn(f, ei θ)
∣∣

is bounded from Lp to Lp. The proof involves dyadic partitions, changes of
frequency, microscopic Fourier analysis of f , choices of allowed pairs and
seven exceptional sets. By an elementary argument, one deduces that the
maximal Fourier series sublinear operator:

F∗f(ei θ) := sup
n∈N

∣∣Fnf(ei θ)
∣∣

is bounded from Lp to Lp.

Theorem 2.29. ([Ca1966, Hu1966, DR2002]) If f ∈ Lp with 1 < p < ∞,
there exists an absolute constant C > 1 such that:

||F∗f ||Lp 6 C
p4

(p− 1)3
||f ||Lp .

Then by a standard argument, limn→∞ Fnf(ei θ) = f(ei θ) almost every-
where.

2.30. Transition. Since the grounding article [HiTa1978], the nice be-
haviour of the Hilbert transform in the Hölder classes (Theorem 2.24) is the
main reason why Bishop analytic discs have been constructed in the category
of C κ,α generic submanifolds ofCn ([BPo1982, BPi1985, Tu1990, Trp1990,
Bo1991, BRT1994, Tu1994a, Me1994, Trp1996, Jö1996, BER1999]). Per-
haps it is also interesting to construct Bishop analytic discs in the Sobolev
classes.

§3. SOLVING A LOCAL PARAMETRIZED BISHOP EQUATION WITH
OPTIMAL LOSS OF SMOOTHNESS

3.1. Analytic discs attached to a generic submanifold of Cn. As in Theo-
rem 4.2(III), let M be a C κ,α local graphed generic submanifold of equation
v = ϕ(x, y, u), where ϕ is defined for |x + i y| < ρ1, |u| < ρ1, for some
ρ1 > 0 and where ϕ(0) = 0, dϕ(0) = 0 and |ϕ| < ρ1.

Definition 3.2. An analytic disc is a map

∆ 3 ζ 7−→ A(ζ) = (Z(ζ),W (ζ)) ∈ Cm × Cd
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which is holomorphic in the unit disc ∆ and at least C 0,0 in ∆. It is attached
to M if it sends ∂∆ into M .

Thus, suppose that (Z(ζ),W (ζ)) is attached to M and sufficiently small,
namely |[X + i Y ](ei θ)| < ρ1, |U(ei θ)| < ρ1 and |V (ei θ)| < ρ1 on ∂∆,
where Z(ζ) = X(ζ) + iY (ζ) and W (ζ) = U(ζ) + iV (ζ). Then clearly, the
disc sends ∂∆ to M if and only if

V (ei θ) = ϕ
(
X(ei θ), Y (ei θ), U(ei θ)

)
,

for every ei θ ∈ ∂∆. Thanks to the Hilbert transform, we claim that we may
express analytically the fact that the disc is attached to M .

At first, in order to guarantee the applicability of the harmonic conju-
gation operator T, all our analytic discs will C κ,α on ∆, with κ ∈ N and
0 < α < 1. We let T act componentwise on maps U = (U1, . . . , Ud) ∈
C κ,α(∂∆,Rd), namely TU :=

(
TU1, . . . ,TUd

)
. We set ||TU ||κ,α :=

max16j6d ||TU j||κ,α. With a slight change of notation, instead of PU(0),
we denote by P0 U := 1

2π

∫ π

−π U(ei θ) dθ the value at the origin of the Pois-
son extension PU . Equivalently, P0 U = Û0 is the mean value of U on ∂∆.
Here is a summary of the most useful properties of T.

Lemma 3.3. The Rd-valued Hilbert transform T is a bounded linear en-
domorphism of C κ,α(∂∆,Rd) with 1/C1

α(1−α)
6 |||T|||κ,α 6 C1

α(1−α)
satisfying

T(cst) = 0 and
T(TU) = −U + P0 U.

In the sequel, we shall rather use the mild modification T1 of T defined
by:

T1U(ei θ) := TU(ei θ)− TU(1).

In fact, T1 is uniquely determined by the normalizing condition T1U(1) = 0.
Then T1 is also bounded: 1/C1

α(1−α)
6 |||T1|||κ,α 6 C1

α(1−α)
, also annihilates

constants: T1(cst) = 0 and

T1(T1U) = −U + U(1).

Furthermore, most importantly:

Lemma 3.4. If U ∈ C κ,α(∂∆,Rd), then U(ei θ) + iT1U(ei θ) extends as a
holomorphic map ∆ → Cd which is C κ,α in the closed disc ∆.

To check that the extension is C κ,α in ∆, one may introduce the Poisson
integral formula and apply Lemma 2.21 (ii).

If A = (Z,W ) is an analytic disc attached to M , we set U0 := U(1) and
V0 := V (1). Since W is holomorphic, necessarily V (ei θ) = T1U(ei θ)+V0.
Applying T1 to both sides, we get T1V (ei θ) = −U(ei θ) + U0 (the left
and the right hand sides vanish at ei θ = 1). Applying T1 to V (ei θ) =
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ϕ
(
X(ei θ), Y (ei θ), U(ei θ)

)
above and reorganizing, we obtain that U satis-

fies a functional equation7 involving the Hilbert transform:

(3.5) U(ei θ) = −T1 [ϕ(X(·), Y (·), U(·))] (ei θ) + U0.

Here, the map U : ∂∆ → Rd is the unknown, whereas the holomorphic map
Z = X + i Y : ∂∆ → Cm and the constant vector U0 are given data.

Conversely, given X + i Y and U0, assume that U ∈ C κ,α satisfies the
above functional equation. Set V (ei θ) := T1U(ei θ) + V0, where V0 :=
ϕ(X(1), Y (1), U(1)). Then U(eiθ) + i V (ei θ) extends as a C κ,α map ∆ 3
ζ 7→ W (ζ) ∈ Cd which is holomorphic in ∆. If |[X + i Y ](ei θ)| < ρ1,
|U(ei θ)| < ρ1 and |V (ei θ)| < ρ1, the disc A := (Z,W ) is attached to M .

Bishop (1965) in the C κ,0 classes and then Hill-Taiani (1978), Boggess-
Pitts (1985) in the Hölder classes C κ,α established existence and uniqueness
of the solution U to the fundamental functional equation (3.5).

Theorem 3.6. ([Bi1965, HiTa1978, BPi1985]) If M is at least C 1,α, shrink-
ing ρ1 if necessary, there exists ρ2 with 0 < ρ2 < ρ1 such that whenever
the data Z ∈ C 0,α(∆,Cm) ∩ O(∆,Cm) and U0 ∈ Rd satisfy |Z(ei θ)| < ρ2

on ∂∆ and |U0| < ρ2, there exists a unique solution U ∈ C 0,β(∂∆,Rd),
0 < β < α2, to the Bishop-type functional equation (3.5) above such that
|U(eiθ)| < ρ1 on ∂∆ and such that in addition |V (eiθ)| < ρ1 on ∂∆, where

V (ei θ) := T1U(ei θ) + ϕ(X(1), Y (1), U(1)).

Consequently, the disc (Z,U + i V ) is attached to M .

Notice the (substantial) loss of smoothness, occuring also in [BRT1994,
BER1999], which is due to an application of a general implicit function
theorem in Banach spaces. The main theorem of this chapter ([Tu1990,
Tu1996]) refines the preceding result with a negligible loss of smoothness,
provided the graphing map ϕ belongs to the Hölder space C κ,α. In the geo-
metric applications (Parts V and VI), it is advantageous to be able to solve a
Bishop equation like (3.5) which involves supplementary parameters. Thus,
instead of ϕ, we shall consider an Rd-valued C κ,α map Φ = Φ(u, ei θ, s),
where s is a parameter. For fixed s, we shall denote by Φ|s the map

7The origin of this equation may be found in the seminal article [Bi1965] of Bishop.
Since then, it has been further exploited in [Pi1974a, Pi1974b, HiTa1978, BeFo1978,
We1982, BG1983, BPo1982, KW1982, R1983, HiTa1984, KW1984, BPi1985, FR1985,
Trp1986, Fo1986, Tu1988, Ai1989, Tu1990, Trp1990, Bo1991, DH1992, Tu1994a,
Tu1994b, BRT1994, CR1994, Gl1994, Me1994, HuKr1995, Jö1995, Trp1996, Tu1996,
Jö1996, Jö1997, Me1997, Po1997, MP1998, Tu1998, Hu1998, CR1998, Jö1999a, Jö1999b,
MP1999, BER1999, Po2000, MP2000, Tu2001, Da2001, DS2001, Me2002, MP2002, 16,
Po2003, JS2004, Me2004c].
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¤d
ρ1
× ∂∆ 3 (u, ei θ) 7−→ Φ

(
u, ei θ, s

) ∈ Rd. In accordance with Section 1,
we set:

||Φu||0,0 := max
16j6d

( ∑

16l6d

∣∣∣∣Φj
ul

∣∣∣∣
0,0

)
,

and similarly ||Φθ||0,0 = max16j6d
∣∣∣∣Φj

θ

∣∣∣∣
0,0

.

Theorem 3.7. ([Tu1990, Tu1996], [∗]) Let Φ = Φ
(
u, ei θ, s

)
be an Rd-

valued map of class C κ,α, κ > 1, 0 < α < 1 , defined for u ∈ Rd, |u| < ρ1,
θ ∈ R and s ∈ Rb, |s| < σ1, where 0 < ρ1 < 1 and 0 < σ1 < 1. Assume that
on its domain of definition ¤d

ρ1
× ∂∆ × ¤b

σ1
, the map Φ and its derivatives

with respect to u and to θ satisfy the inequalities (nothing is required about
Φs):

||Φ||0,0 6 c1, ||Φu||0,0 6 c2, ||Φθ||0,0 6 c3,

for some small positive constants c1, c2 and c3 such that

(3.8) c1 6 C αρ1, c2 6 C2α2

[
1 + sup

|s|<σ1

||Φ|s||1,α
]−2

, c3 6 ρ2
1 c2,

where 0 < C < 1 is an absolute constant. Then for every fixed U0 satisfying
|U0| < ρ1/16 and every fixed s ∈ ¤b

σ1
, the parameterized local Bishop-type

functional equation:

U(ei θ) = −T1 [Φ (U(·), ·, s)] (ei θ) + U0

has a unique solution:

∂∆ 3 ei θ 7−→ U(ei θ, s, U0) ∈ Rd,
with ||U ||0,0 6 ρ1/4 which is of class C κ,α on ∂∆. Furthermore, this solution
is of class C κ,α−0 =

⋂
β<α C κ,β with respect to all the variables, including

parameters, namely the complete map

∂∆×¤b
σ1
×¤d

ρ1/16 3
(
ei θ, s, U0

) 7−→ U(ei θ, s, U0) ∈ Rd

is C κ,α−0.

Since the assumptions involve only the C 1,α norm of Φ, we notice that
the theorem is also true with Φ ∈ C κ,α−0, provided κ > 2, except that
the solution will only be C κ,α−0 with respect to ei θ: it suffices to apply
the theorem by considering that Φ ∈ C κ,β , with β < α arbitrary, getting
a solution that is C κ,β−0 with respect to all variables and concluding from⋂
β<α C κ,β−0 = C κ,α−0.
The main purpose of this section is to provide a thorough proof of the

theorem. In the sequel, C, C1, C2, C3 and C4 will denote positive absolute
constants. We may assure that they all will be > 10−5 and 6 105.
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The smallness of ||Φ||0,0, of ||Φu||0,0 and of ||Φθ||0,0 guarantee the smallness
of ||Φ|s||1,α/2 by virtue of an elementary observation.

Lemma 3.9. ([∗]) Let x ∈ ¤n
ρ , n ∈ N, n > 1, where 0 < ρi 6 ∞, and let

f = f(x) be C 0,α function with values in Rd, d > 1. If ||f ||0,0 6 c, for some
quantity c > 0, then:

||f ||
0̂,α/2

6 c1/2
[
2 + ||f ||c0,α

]
.

We apply this inequality to Φu|s and to Φθ|s, pointing out that for any β with
0 < β 6 α, by definition:

||Φu|s||c0,β = max
16j6d

(
d∑

l=1

∣∣Φj
ul(u

′′, ei θ′′ , s)− Φj
ul(u

′, ei θ′ , s)
∣∣

|(u′′, θ′′)− (u′, θ′)|β
)
,

||Φθ|s||c0,β = max
16j6d

∣∣Φj
θ(u

′′, ei θ′′ , s)− Φj
θ(u

′, ei θ′ , s)
∣∣

|(u′′, θ′′)− (u′, θ′)|β
.

Lemma 3.10. ([∗]) Independently of s, we have:

||Φu|s||0̂,α/2 6 c
1/2
2

[
2 + ||Φ|s||1,α

]
,

||Φθ|s||0̂,α/2 6 c
1/2
3

[
2 + ||Φ|s||1,α

]
,

||Φ|s||1,α/2 6 c1 + c2 + c3 +
(
c
1/2
2 + c

1/2
3

) [
2 + ||Φ|s||1,α

]
.

The presence of the squares in the inequalities of Theorem 3.7 anticipates
the roots c

1/2
2 and c

1/2
3 above. These two lemmas and the next involve dry

computations with Hölder norms. The detailed proofs are postponed to Sec-
tion 4.

Lemma 3.11. ([∗]) If U ∈ C 1,β(∂∆,Rd) with 0 < β 6 α satisfies
|U(ei θ)| < ρ1 on ∂∆, then for every fixed s ∈ ¤b

σ1
, we have:

||Φ(U(·), ·, s)||C 1,β(∂∆) 6 ||Φ||0,0 + ||Φθ||0,0 + ||Φθ|s||c0,β
[
1 +

(
||U ||c1,0

)β]
+

+ ||Φu||0,0 ||U ||1,β + ||Φu|s||c0,β
[
||U ||c1,0 +

(
||U ||c1,0

)1+β
]
.

Remind ||U ||c1,0 = supθ
∣∣Uθ(ei θ)

∣∣. We then introduce the map:

U 7−→ F(U) := U0 − T1 [Φ(U(·), ·, s)] (ei θ).
To construct the solution U , we endeavour a Picard iteration process, setting
Uk|k=0 := U0 with |U0| < ρ1/16 and Uk+1 := F(Uk), for k ∈ N, whenever
F(Uk) may be defined, i.e. whenever ||Uk||0,0 < ρ1. We shall first work in
C 1,α/2 ⊂ C κ,α.
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Lemma 3.12. If we choose the absolute constant C < 1 appearing in the
theorem sufficiently small, then independently of s, the sequence Uk satisfies
the uniform boundedness estimate:

||Uk||1,α/2 6 ρ1/4 < ρ1,

hence it is defined for every k ∈ N and each Uk belongs to C 1,α/2(∂∆).

Proof. By Theorem 2.24, there exists an absolute constant C1 > 1 (not
exactly the same), such that

|||T1|||1,α/2 6 C1/α.

Majorating by means of the C 0,α/2-norm:

||F(Uk)||1,α/2 6 |U0|+ |||T1|||1,α/2 ||Φ(Uk(·), ·, s)||C 1,α/2(∂∆) .

Assume by induction that Uk is C 1,α/2 and satisfies ||Uk||1,α/2 6 ρ1/4 (this
holds for k = 0). Clearly Uk+1 = F(Uk) is C 1,α/2. Thanks to Lemma 3.11,
and to the trivial majoration (||Uk||c1,0)α/2 6 (ρ1/4)α/2 < 1:

||Φ(Uk(·), ·, s)||C 1,α/2(∂∆) 6 ||Φ||0,0 + ||Φθ||0,0 + 2 ||Φθ|s||0̂,α/2 +

+ ||Φu||0,0 ||Uk||1,α/2 + 2 ||Φu|s||0̂,α/2 ||Uk||1,α/2 .
Using then the assumptions (3.8) of the theorem together with Lemma 3.10:

||Uk+1||1,α/2 6 ρ1/16 + C1 α
−1

[
c1 + c3 + 4 c

1/2
3

(
1 + ||Φ|s||1,α

)
+

+ ||Uk||1,α/2
(
c2 + 4 c

1/2
2

(
1 + ||Φ|s||1,α

))]
.

Using the two trivial majorations c3 6 Cαρ1 and c2 6 Cα together with the
main assumptions (3.8) to majorate c

1/2
2 and c

1/2
3 , we get:

||Uk+1||1,α/2 6 ρ1/16 + C1 ρ1 6C + ||Uk||1,α/2 C1 5C.

Choosing C 6 1
16C1 6

(whence C 6 1
2C1 5

), we finally get:

||Uk+1||1,α/2 6 ρ1/8 + (1/2) ||Uk||1,α/2 .
By immediate induction, the assumption |U0| < ρ1/16 and these (strict)
inequalities entail that ||Uk||1,α/2 6 ρ1/4 for every k ∈ N, as claimed. ¤
Lemma 3.13. ([Tu1990], [∗]) For every β with 0 < β 6 α and every fixed
s ∈ ¤b

ρ1
, if two maps U j ∈ C 1,0(∂∆,Rd) with ||U j||0,0 < ρ1/3 for j = 1, 2

are given, the following inequality holds:∣∣∣∣Φ(U2(·), ·, s)− Φ(U1(·), ·, s)
∣∣∣∣

C 0,β(∂∆)
6 C

∣∣∣∣U2 − U1
∣∣∣∣

C 0,β(∂∆)
,

where

C =
∣∣∣∣Φ|s

∣∣∣∣
1,β

2

[
1 +

(∣∣∣∣U1
∣∣∣∣c1,0

)β
+

(∣∣∣∣U2
∣∣∣∣c1,0

)β]
.
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Again, the (latexnically lengthy) proof is postponed to Section 4.

Lemma 3.14. If we choose the absolute constant C of the theorem suffi-
ciently small, then independently of s, the map:

U 7−→ F(U) := U0 − T1 [Φ(U(·), ·, s)] (ei θ),
restricted to the set of those U ∈ C 1,α/2(∂∆,Rd) that satisfy ||U ||1,α/2 6
ρ1/4, is a contraction:

∣∣∣∣F(U2)− F(U1)
∣∣∣∣

0,α/2
6 1

2

∣∣∣∣U2 − U1
∣∣∣∣

0,α/2
.

Proof. Let U j ∈ C 1,α/2 with ||U j||1,α/2 6 ρ1/4 for j = 1, 2. In particular,
||U j||0,0 < ρ1/3, so Lemma 3.13 applies. In the majorations below, to pass to
the fourth line, we use the assumption ρ1 < 1, which enables us to majorate
simply by 3 the three terms in the brackets of the third line:
∣∣∣∣F(U2)− F(U1)

∣∣∣∣
0,α/2

=
∣∣∣∣T1

[
Φ

(
U2(·), ·, s)− Φ

(
U1(·), ·, s)]

∣∣∣∣
0,α/2

6 |||T1|||0,α/2
∣∣∣∣Φ (

U2(·), ·, s)− Φ
(
U1(·), ·, s)

∣∣∣∣
0,α/2

6 C1

α

∣∣∣∣Φ|s
∣∣∣∣

1,α/2
2

[
1 +

(∣∣∣∣U1
∣∣∣∣

1,α/2

)α/2
+

(∣∣∣∣U2
∣∣∣∣

1,α/2

)α/2] ∣∣∣∣U2 − U1
∣∣∣∣

0,α/2

6 C2

α

∣∣∣∣Φ|s
∣∣∣∣

1,α/2

∣∣∣∣U2 − U1
∣∣∣∣

0,α/2
,

where C2 > 1 is absolute. Then we apply Lemma 3.10 to majorate
||Φ|s||1,α/2, we use the three trivial majorations c1, c2, c3 6 Cα and we ma-

jorate c
1/2
2 , c

1/2
3 by means of (3.8), dropping ρ1 < 1 in c

1/2
3 , which yields:

||Φ|s||1,α/2 6 c1 + c2 + c3 +
(
c
1/2
2 + c

1/2
3

) [
2 +

∣∣∣∣Φ|s
∣∣∣∣

1,α

]

6 3Cα + 2Cα + 4Cα = 9Cα.

Then we conclude that
∣∣∣∣F(U2)− F(U1)

∣∣∣∣
0,α/2

6 C C3

∣∣∣∣U2 − U1
∣∣∣∣

0,α/2
.

Choosing the absolute constant C of the theorem 6 1
2C3

yields the desired
contracting factor 1

2
. ¤

The fixed point theorem then entails that our sequence Uk converges in
C 0,α/2-norm towards some map U ∈ C 0,α/2(∂∆,Rd). More is true:

Lemma 3.15. For every fixed parameters (s, U0), this solution U =
U

(
ei θ, s, U0

)
= limk→∞ Uk belongs in fact to C 1,α/2(∂∆,Rd) and satis-

fies ||U ||1,α/2 6 ρ1/4.



131

Proof. Indeed, since ||Uk||1,α/2 6 ρ1/4 is bounded, it is possible thanks to the
Arzelà-Ascoli lemma to extract some subsequence converging in C 1,0(∂∆)
to a map, still denoted by U = U

(
ei θ, s, U0

)
, which is C 1,0 on ∂∆. Still de-

noting by Uk such a subsequence, we observe that the uniform convergence
||Uk − U ||1,0 → 0 plus the boundedness ||Uk||1̂,α/2 6 ρ1/4 entail immediately
that the following majoration holds:

∣∣Uθ(ei θ′′)− Uθ(ei θ
′
)
∣∣

|θ′′ − θ′|α/2
= lim

k→∞

∣∣Uk,θ(ei θ′′)− Uk,θ(ei θ
′
)
∣∣

|θ′′ − θ′|α/2
6 ρ1

4
,

for arbitrary 0 < |θ′′ − θ′| 6 π. Consequently, U belongs to C 1,α/2. Passing
to the limit in ||Uk||1,α/2 6 ρ1/4, we also deduce ||U ||1,α/2 6 ρ1/4. ¤

The next crucial step is to study the regularity of the solution U =
U

(
ei θ, s, U0

)
with respect to (s, U0).

Lemma 3.16. The solution U = U(ei θ, s, U0) satisfies a Lipschitz condition
with respect to the parameters s and U0.

Proof. Consider two parameters s1, s2 ∈ ¤b
σ1

and define U j :=
U(ei θ, sj, U0) for j = 1, 2. Then substract the two corresponding
Bishop equations, insert two innocuous opposite terms and majorate:
∣∣∣∣U2 − U1

∣∣∣∣
0,α/2

6 |||T1|||0,α/2
[∣∣∣∣Φ (

U2(·), ·, s2
)− Φ

(
U2(·), ·, s1

)∣∣∣∣
0,α/2

+

+
∣∣∣∣Φ (

U2(·), ·, s1
)− Φ

(
U1(·), ·, s1

)∣∣∣∣
0,α/2

]
.

To majorate the difference in the second line, we again apply Lemma 3.13.
To majorate the difference in the first line, we apply:

Lemma 3.17. ([∗]) Let β with 0 < β 6 α, let U ∈ C 1,0(∂∆,Rd) with
||U ||0,0 < ρ1 and let two parameters s1, s2 ∈ ¤b

σ1
. Then

∣∣∣∣Φ (
U(·), ·, s2)− Φ

(
U(·), ·, s1)∣∣∣∣

0,β
6

∣∣s2 − s1
∣∣
(
||Φ||1,0 + ||Φ||1,β

[
1 +

(
||U ||c1,0

)β])
.

With β := α
2

, we thus obtain:
∣∣∣∣U2 − U1

∣∣∣∣
0,α/2

6 C1

α

[∣∣s2 − s1
∣∣
(
||Φ||1,0 + ||Φ||1,α/2

[
1 +

(∣∣∣∣U2
∣∣∣∣
1,0

)α
2

])
+

+ sup
|s|<σ1

∣∣∣∣Φ|s
∣∣∣∣
1,α/2

2
[
1 +

(∣∣∣∣U1
∣∣∣∣c1,0

)α
2 +

(∣∣∣∣U2
∣∣∣∣c1,0

)α
2

]]
∣∣∣∣U2 − U1

∣∣∣∣
0,α/2

.

Then we apply the majoration of Lemma 3.10 to
∣∣∣∣Φ|s

∣∣∣∣
1,α/2

and we use ρ1 <

1 to majorate by 1 the terms ||U j||c1,0 6 ρ1/4:
∣∣∣∣U2 − U1

∣∣∣∣
0,α/2

6 C1α
−1

∣∣s2 − s1
∣∣ 3 ||Φ||1,α/2 + C C2

∣∣∣∣U2 − U1
∣∣∣∣

0,α/2
.
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Setting K := C1α
−1 3 ||Φ||1,α/2, requiring C 6 1

2C2
and reorganizing we

obtain that U(ei θ, s, U0) is Lipschitzian with respect to s:
∣∣∣∣U2 − U1

∣∣∣∣
0,0

6
∣∣∣∣U2 − U1

∣∣∣∣
0,α/2

6 2 K
∣∣s2 − s1

∣∣ .
The proof that U(ei θ, s, U0) is Lipschitzian with respect to U0 is similar and
even simpler. ¤

In summary, the solution U = U(ei θ, s, U0) is C 1,α/2 with respect to ei θ

and Lipschitzian with respect to all the variables
(
ei θ, s, U0

)
.

Consequently, according to a theorem due to Rademacher ([Ra1919,
Fe1969]), the partial derivatives Usk

, k = 1, . . . , b and UUm
0

, m = 1, . . . , d
exist in L∞. We then have to differentiate the Bishop-type equation of The-
orem 3.7 with respect to θ, to sk and to Um

0 . However, the linear operator T1

is not bounded in L∞; in fact, according to (2.27), |||T|||Lp ∼ p as p → ∞.
So we need more information.

Lemma 3.18. There exists a null-measure subset N ⊂ ¤b
σ1
× ¤d

ρ1/16 and
there exists a quantity K > 0 such that at every (s, U0) 6∈ N, for every
k = 1, . . . , b and for every m = 1, . . . , d:

(i) the partial derivatives Usk
(ei θ, s, U0) and UUm

0
(ei θ, s, U0) exist for

every ei θ ∈ ∂∆;
(ii) the maps ei θ 7→ Usk

(ei θ, s, U0) and ei θ 7→ UUm
0

(ei θ, s, U0) are
C 0,α/2 on ∂∆ and satisfy the uniform inequality

||Usk
(·, s, U0)||C 0,α/2(∂∆) 6 K and

∣∣∣∣UUm
0

(·, s, U0)
∣∣∣∣

C 0,α/2(∂∆)
6 K.

Proof. Since U is almost everywhere differentiable with respect to all its
arguments, there exist a subset F ⊂ ¤b

σ1
×¤d

ρ1/16×∂∆ having full measure,
namely its complement has null measure, such that for every (ei θ, s, U0) ∈
F, all partial derivatives Uθ, Usk

, UUm
0

exist at (ei θ, s, U0). Since F has full
measure, there exists a null measure subset N ⊂ ¤b

σ1
×¤d

ρ1/16 such that for
every (s, U0) 6∈ N, the slice

Fs,U0 :=
(
∂∆× {s} × {U0}

) ∩ F

is a subset of ∂∆ having full measure, so that Uθ, Usk
, UUm

0
exist at

(ei θ, s, U0) with ei θ ∈ Fs,U0 .
Fix (s, U0) 6∈ N. We will treat only the partial derivatives with respect

to the sk, arguments being similar for the UUm
0

. In the end of the proof of
Lemma 3.17, we have shown:

∣∣∣∣U2 − U1
∣∣∣∣

0,α/2
6 K

∣∣s2 − s1
∣∣ ,



133

for some (not the same) quantity K > 0. Fix k ∈ {1, 2, . . . , b}, take s2 and
s1 with s2

k 6= s1
k but s2

l = s1
l for l 6= k. The inequality above says that for

every ei θ, ei θ′ , ei θ′′ ∈ ∂∆ with 0 < |θ′′ − θ′| 6 π, we have

∣∣∣∣
U(ei θ, s2, U0)− U(ei θ, s1, U0)

s2
k − s1

k

∣∣∣∣ +

+

∣∣∣∣
U(ei θ

′′
, s2, U0)− U(ei θ

′′
, s1, U0)

s2
k − s1

k

−

−U(ei θ
′
, s2, U0)− U(ei θ

′
, s1, U0)

s2
k − s1

k

∣∣∣∣
/
|θ′′ − θ′|α/2 6 K.

Assume ei θ, ei θ′ , ei θ′′ ∈ Fs1,U0
, let s2

k → s1
k (the limits of the quotients

above exist) and rename s1 by s:

∣∣Usk
(ei θ, s, U0)

∣∣ +

∣∣Usk
(ei θ

′′
, s, U0)− Usk

(ei θ
′
, s, U0)

∣∣
|θ′′ − θ′|α/2 6 K.

This inequality says that Usk
(·, s, U0) is C 0,α/2 almost everywhere on ∂∆.

The next extension lemma concludes the proof. ¤

Lemma 3.19. Let n > 1, let x ∈ Rn, let m > 1, let y ∈ Rm, let ρ > 0,
let σ > 0, and let f = f(x, y) be a function defined (only) in a full-measure
subset F ⊂ ¤n

ρ × ¤m
σ , so that there exists a null-measure subset N ⊂ ¤m

σ

with the property that for every y 6∈ N, the slice Fy :=
(
¤n
ρ × {y}

)× F has
full measure in ¤n

ρ . Assume that for every y 6∈ N, every x, x′, x′′ ∈ Fy, we
have

|f(x, y)|+
∣∣f(x′′, y)− f(x′, y)

∣∣
|x′′ − x′|β 6 K,

for some β with 0 < β ≤ 1 and some quantity K > 0. Then for every y 6∈ N,
the function x 7→ f(x, y) admits a unique continuous prolongation to ¤n

ρ ,
still denoted by f(·, y), that is C 0,β in ¤n

ρ with

||f(·, y)||C 0,β(¤n
ρ ) 6 K.

Thus, for every (s, U0) 6∈ N, the partial derivatives Usk
, UUm

0
belong to

C 0,α/2(∂∆,Rd). Since the operator T1 is linear and bounded in C 0,α/2, we
may differentiate the d scalar Bishop-type equations of Theorem 3.7 with
respect to θ, to sk, k = 1, . . . , b and to Um

0 , m = 1, . . . , d, which yields, for



134

j = 1, . . . , d:
(3.20)



U j
θ (e

i θ) = −T1

[ ∑

16l6d
Φj
ul

(U(·), ·, s)U l
θ(·) + Φj

θ (U(·), ·, s)
]

(ei θ),

U j
sk

(ei θ) = −T1

[ ∑

16l6d
Φj
ul

(U(·), ·, s)U l
sk

(·) + Φj
sk

(U(·), ·, s)
]

(ei θ),

U j
Um

0
(ei θ) = δjm − T1

[ ∑

16l6d
Φj
ul

(U(·), ·, s)U l
Um

0
(·)

]
(ei θ),

for every ei θ ∈ ∂∆, provided (s, U0) 6∈ N. In the first line, we noticed that
(T1V )θ = T(Vθ). We observe that as U is Lipschitzian, as Φ ∈ C κ,α and
as κ > 1, the composite functions Φj

ul
,Φj

θ,Φ
j
si

(
U(ei θ, s, U0), e

i θ, s
)

are of
class C 0,α with respect to all variables.

We notice that in each of the three linear systems of Bishop-type equa-
tions (3.20) above, t := (s, U0) is a parameter and there appears the same
matrix coefficients:

pjl (e
i θ, t) := Φj

ul

(
U(ei θ, s, U0), e

i θ, s
)
,

for j, l = 1, . . . , d. For any β with 0 < β 6 α, in order to be coherent with
the definition of ||Φu|s||c0,β given after Lemma 3.9, we set:

||p|t||c0,β := max
16j6d

( ∑

16l6d

∣∣∣∣pjl |t
∣∣∣∣c0,β

)
.

We also set:

||p||0,0 := max
16j6d

( ∑

16l6d

∣∣∣∣pjl
∣∣∣∣

0,0

)
= ||Φu||0,0 .

With these definitions, it is easy to check the inequality:

||p|t||0,β 6 ||Φu|s||0,β
[
1 +

(
||U ||1,0

)β]
.

As ||U ||1,0 6 ρ1/4 < 1, with β := α, we deduce:

||p|t||0,α 6 2 ||Φu|s||0,α 6 2 ||Φ|s||1,α .
Taking sups and then supU0

, adding 1, squaring and inverting:
[
1 + sup

s
||Φ|s||1,α

]−2

6 4

[
1 + sup

s,U0

||p|t||0,α
]−2

.
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Consequently, the main assumption of the next Proposition 3.21, according
to which:

||p||0,0 6 C2α2

[
1 + sup

t
||p|t||0,α

]−2

,

for some positive absolute constant C < 1, is superseded by one of the main
assumptions, made in the theorem, according to which:

||Φu||0,0 6 C2α2

[
1 + sup

s
||Φ|s||0,α

]−2

,

for some (a priori distinct) positive absolute constant C < 1.
The following proposition applies to the three systems (3.20) and suffices

to conclude the proof of Theorem 3.7 in the case κ = 1. The case κ > 2
shall be discussed afterwards.

Proposition 3.21. ([Tu1996], [∗]) Let c ∈ N with c > 1, let τ1 =
(τ1,1, . . . , τ1,c) ∈ Rc with 0 < τ1,i 6 ∞, i = 1, . . . , c, and denote by ¤c

τ1
the

polycube {t ∈ Rc : |ti| < τ1,i}. Consider vector-valued and matrix-valued
Hölder data:

q =
(
qj(ei θ, t)

)16j6d ∈ C 0,α
(
∂∆×¤c

τ1
,Rd

)
,

p =
(
pjl (e

i θ, t)
)16j6d
16l6d ∈ C 0,α

(
∂∆×¤c

τ1
,Rd×d

)
,

with 0 < α < 1. Suppose that a bounded measurable map:

u =
(
uj(ei θ, t)

)16j6d ∈ L∞(∂∆×¤c
τ1
,Rd),

is C 0,α/2 on ∂∆ for every fixed t not belonging to some null-measure sub-
set N of ¤c

τ1
and suppose that it satisfies the system of linear Bishop-type

equations in C 0,α/2(∂∆,Rd):

(3.22) uj = T∗

( ∑

16l6d
pjl u

l

)
+ qj,

for j = 1, . . . , d, where T∗ = T or T∗ = T1. Assume that the norm of the
matrix p satisfies:

||p||0,0 = max
16j6d

( ∑

16l6d

∣∣∣∣pjl
∣∣∣∣

0,0

)
6 c4,

for some small positive constant c4 < 1/16 such that

(3.23) c4 6 C2 α2

[
1 + sup

|t|<τ1
||p|t||0,α

]−2

,

where C < 1 is a positive absolute constant. Then, after a correction of u
on N:
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(i) on its full domain of definition ∂∆×¤c
τ1

, the corrected map u(ei θ, t)
is C 0,α−0 =

⋂
0<β<α C 0,β and furthermore:

(ii) for every fixed t, the map ei θ 7→ u(ei θ, t) is C 0,α on ∂∆.

In general, the Hilbert transform T does not preserve C 0,α smoothness
with respect to parameters, so that the above solution u = u(ei θ, t) is not
better than C 0,α−0.

Example 3.24. ([Tu1996]) If s ∈ Rwith |s| < 1 is a parameter, the function:

u(ei θ, s) := |s|α if − π 6 θ 6 −|s|1/2,
:= θ2α if − |s|1/2 6 θ 6 0,

:= θα if 0 6 θ 6 |s|,
:= |s|α if |s| 6 θ 6 π,

is 2π-periodic with respect to θ and C 0,α with respect to (ei θ, s). As the
function cot(t/2) − 2/t is C 0,0 on [−π, π], the regularity properties of the
singular integral Tu(ei θ) = p.v. 1

π

∫ π

−π
u(ei(θ−t))
tan(t/2)

dt are the same as those of:

T̃u(ei θ) := p.v.
1

π

∫ π

−π

u(ei(θ−t))
t

dt.

However T̃u(1) involves the term |s|α log |s| which is C 0,α−0 but not C 0,α:

T̃u(1) =
1

π

(∫ −|s|

−|s|1/2

|s|α
t
dt+

∫ 0

−|s|

(−t)α
t

dt+

∫ |s|1/2

0

t2α

t
dt

)

=
1

2π

(
|s|α log |s| − |s|α

α

)
.

Proof of the proposition. We shall drop the indices, writing u, p and q, with-
out arguments. Assume that t 6∈ N. For future majorations, it is necessary
to have P0u = 0. If this is not the case, we set u′ := u − P0u in order that
P0 u

′ = 0. Since u satisfies either u = T(pu)+q or u = T(pu)−T[pu](1)+q,
it follows that u′ satisfies similar equations: either u′ = T(pu′) + q′, with
q′ := q−P0u or u′ = T(pu′)+q′, with q′ := q−P0u−T(pu)(1). Notice that
p is unchanged. It then suffices to establish the improvements of smoothness
(i) and (ii) for u′. Equivalently, we may assume that û0 = P0 u = 0 in the
proposition.

For t 6∈ N, the function φ is C 0,α/2 on ∂∆. Applying T either to the
equation u = T(pu) + q or to the equation u = T(pu) − T[pu](1) + q, we
get the same equation for both:

Tu = −pu+ P0(pu) + Tq.
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As û0 = 0, we may write u(ei θ) =
∑

k<0 ûk e
i k θ+

∑
k>0 ûk e

i k θ =: φ+φ,
where φ extends holomorphically to ∆. In fact, φ is determined up to a
imaginary constant iA and we choose A := −P0(pu)/2, so that:

(3.25) φ =
u+ iTu− iP0(pu)

2
.

Equivalently: {
u = φ+ φ,

Tu = P0(pu)− i(φ− φ).

Substituting, we rewrite (3.25) as:

−i(φ− φ) = −p(φ+ φ) + Tq,

or under the more convenient form:

φ = φ+ P φ+Q,

where the d × d-matrix P := −2 i p (I + i p)−1 and the d-vector Q :=
i (I + i p)−1 Tq both belong to C 0,α.

First of all, we establish (ii) before any correction of u.

Lemma 3.26. For t 6∈ N, the map ei θ 7→ u(ei θ, t) is C 0,α on ∂∆.

Proof. By assumption, the map ei θ 7→ φ(ei θ, t) is C 0,α/2 on ∂∆. Since
C+ is bounded in C 0,α/2, we may apply C+ to the vectorial equation φ =
φ+ P φ+Qφ, noticing that C+(φ) = φ and that C+(φ) = P0(φ), since, by
construction, φ extends holomorphically to ∆. We thus get:

(3.27) φ = P0 φ+ C+
[
P φ+Q

]
.

Remind that P0 ψ = 1
2π

∫ π

−π ψ(ei θ) dθ, so that ||P0 ψ||0,0 6 ||ψ||0,0. Notice8

that ||φ(·, t)||0,0 <∞ for t 6∈ N. Taking the C 0,α norm to (3.27) and applying
crucially Theorem 2.18 in its Rd-valued version, as in [Tu1996], we get:

||φ||0,α 6
∣∣∣∣P0 φ

∣∣∣∣
0,0

+
∣∣∣∣C+

[
P φ+Q

]∣∣∣∣
0,α

6 ||φ||0,0 +
C1

α(1− α)

(
||P ||0,α ||φ||0,0 + ||Q||0,α

)

<∞,

whence φ = φ(·, t) is C 0,α on ∂∆, as claimed. ¤

8In Lemma 3.15 above, for t 6∈ N, the map ei θ 7→ u(ei θ, t) was shown to be C 0,α/2 on
∂∆ in order to insure that Tu(·, t) and φ(·, t) are both bounded on ∂∆, so that Theorem 2.24
may be applied in the next phrase. In [Tu1996], u(·, t) is only shown to be in L∞(∂∆), but
then Tu(·, t) and φ are not necessarily bounded.
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Next, we shall establish (i) before any correction of u. To this aim, let
t1, t2 6∈ N and simply denote by u1, u2, by φ1, φ2, by P 1, P 2 and by Q1, Q2

the functions on ∂∆ with these two values of t. In the theorem, to establish
that u is C 0,α−0, it is natural to show that u is C 0,β for every β < α arbitrarily
close to α.

Lemma 3.28. For every β with α
2
< β < α, every two t1, t2 6∈ N, we have

||u2 − u1||0,0 6 4 Kα,β |t2 − t1|β , for some positive quantity Kα,β <∞.

We shall obtain Kα,β involving a nonremovable factor 1/(α − β). This
will confirm the optimality of C 0,α−0-smoothness of u with respect to the
parameter t.

Proof. Since P0 u = P0(Tu) = 0, applying P0 to the conjugate of (3.25),
we get P0 φ = i

2
P0(pu), so that we may rewrite (3.27) under the form:

φ =
i

2
P0(pu) + C+

[
P φ+Q

]
.

We may then organize the difference φ2 − φ1 as follows:

φ2 − φ1 =
i

2
P0

(
p2(u2 − u1)

)
+
i

2
P0

(
(p2 − p1)u1

)
+

+ C+
(
(P 2 − P 1)φ

2
+Q2 −Q1

)
+ C+

(
P 1(φ

2 − φ
1
)
)

=: E1 + E2 + E3 + E4.

To majorate these four Ei’s, we shall need various preliminaries.
Firstly, to majorate E1, we first observe the elementary inequality:

(3.29)
∣∣∣∣u2 − u1

∣∣∣∣
0,0

6 2
∣∣∣∣φ2 − φ1

∣∣∣∣
0,0
.

Also, we notice that:
∣∣∣∣p2

∣∣∣∣
0,0

=
∣∣∣∣p(·, t2)

∣∣∣∣
C 0,0(∂∆)

6 ||p||0,0 6 c4.

The majoration of E1 is then easy:

||E1||0,0 6 1

2

∣∣∣∣p2
∣∣∣∣

0,0

∣∣∣∣u2 − u1
∣∣∣∣

0,0
6 4 c4

∣∣∣∣φ2 − φ1
∣∣∣∣

0,0
.

Secondly, to majorateE2, let again β with α
2
< β < α. Using the inequal-

ity ||p||0,β 6 3 ||p||0,α proved in the beginning of Section 1, we may majorate
E2:

||E2||0,0 6 1

2

∣∣∣∣u1
∣∣∣∣

0,0

∣∣∣∣p2 − p1
∣∣∣∣

0,0
6 3

2

∣∣∣∣u1
∣∣∣∣

0,0
||p||0,α

∣∣t2 − t1
∣∣β .

Thirdly, to majorate E3, we need:
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Lemma 3.30. Let f = f(x, y) be a C 0,α function, defined in the product
open cube ¤n

ρ × ¤m
ρ , where 0 < α < 1 and ρ > 0. Let β with 0 < β < α.

For x′, x′′ ∈ ¤n
ρ arbitrary, the C 0,α−β-norm of the function ¤m

ρ 3 y 7−→
f(x′′, y)− f(x′, y) ∈ R satisfies:

||f(x′′, ·)− f(x′, ·)||0,α−β 6 4 ||f ||0,α |x′′ − x′|β .
Again, assume α

2
< β < α. Thanks to Theorem 2.18 and to the lemma

above, we may majorate E3:

||E3||0,0 6 ||E3||0,α−β 6 C1

α− β

(∣∣∣∣P 2 − P 1
∣∣∣∣

0,α−β
∣∣∣∣φ2

∣∣∣∣
0,0

+
∣∣∣∣Q2 −Q1

∣∣∣∣
0,α−β

)

6 C2

α− β

(
||P ||0,α

∣∣∣∣φ2
∣∣∣∣

0,0
+ ||Q||0,α

) ∣∣t2 − t1
∣∣β .

Fourthly, to majorate E4, we need a statement whose proof is similar to
that of Lemma 3.10.

Lemma 3.31. As ||p||0,0 6 c4, then independently of t 6∈ N, we have:

||p|t||0,α/2 6 c4 + c
1/2
4

[
2 + sup

t
||p|t||0,α

]
.

Reminding the main assumption c4 6 C2α2
[
1 + supt ||p|t||0,α

]−2

, whence
c4 6 Cα, we deduce:

||p|t||0,α/2 6 3Cα.

Choosing then C < 1/6, we may insure that ||p|t ||0,α/2 6 1/2 for every fixed
t. It follows in particular that we may develope P = −2 i p

∑
k∈N (−ip)k

and deduce the norm inequality:

∣∣∣∣P|t
∣∣∣∣

0,α/2
6 2 ||p|t||0,α/2

1− ||p|t ||0,α/2
6 4 ||p|t ||0,α/2,

valid for every fixed t. Then again thanks to Theorem 2.18 and thanks to the
previous inequalities:

||E4||0,0 6 ||E4||0,α/2 6 C1α
−1

∣∣∣∣P 1
∣∣∣∣

0,α/2

∣∣∣∣φ2 − φ1
∣∣∣∣

0,0

6 C2α
−1 ||p|t1||0,α/2

∣∣∣∣φ2 − φ1
∣∣∣∣

0,0

6 C3C
∣∣∣∣φ2 − φ1

∣∣∣∣
0,0

6 4−1
∣∣∣∣φ2 − φ1

∣∣∣∣
0,0
,

provided C < 1
4C3

. We then insert these four majorations in the inequality
∣∣∣∣φ2 − φ1

∣∣∣∣
0,0

6 ||E1||0,0 + ||E2||0,0 + ||E3||0,0 + ||E4||0,0 ,
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and we get after reorganization:
∣∣∣∣φ2 − φ1

∣∣∣∣
0,0

(
1− 4 c4 − 4−1

)
6 Kα,β

∣∣t2 − t1
∣∣β ,

for some quantity Kα,β <∞ whose precise expression is:

Kα,β :=
C2

α− β

(
||P ||0,α

∣∣∣∣φ2
∣∣∣∣

0,0
+ ||Q||0,α

)
+

3

2

∣∣∣∣u1
∣∣∣∣

0,0
||p||0,α .

It suffices then to remind that c4 < 1/16 in the assumptions of the theorem
to insure the uniform Hölder condition:∣∣∣∣φ2 − φ1

∣∣∣∣
0,0

6 2 Kα,β

∣∣t2 − t1
∣∣β ,

valid for t1, t2 6∈ N. From (3.29), we conclude that ||u2 − u1||0,0 6
4 Kα,β |t2 − t1|β . The proof of Lemma 3.28 is complete. ¤

Then the correction of u is provided by the following statement.

Lemma 3.32. ([∗]) Let f = f(x, y) : ¤n
ρ × (¤m

ρ \N) → R be a measurable
L∞ map defined only for y not belonging to some null-measure subset N ⊂
¤m
ρ and let β with 0 < β < α. If the map x 7→ f(x, y) is C 0,β for every

y 6∈ N and if there exists K <∞ such that:

sup
x

∣∣f(x, y2)− f(x, y1)
∣∣ 6 K

∣∣y2 − y1
∣∣β ,

for every two y1, y2 6∈ N, then f may be extended as a C 0,β map in the full
domain ¤n

ρ ×¤m
ρ .

In sum, still denoting by u the C 0,α−0 extension of u through N, property
(i) of the proposition is proved. To obtain that u is C 0,α with respect to ei θ,
we re-apply the reasoning of Lemma 3.26 to this extension.

The proof of Proposition 3.21 is complete. ¤
In conclusion, the functions U j

θ , U j
sk

and U j
Um

0
are C 0,α−0 with respect to

(ei θ, s, U0) and C α,0 with respect to ei θ. Thus, the theorem is achieved if
κ = 1.

If κ = 2, the composite functions Φj
ul
,Φj

θ,Φ
j
si

(
U(ei θ, s, U0), e

i θ, s
)

are
then of class C 1,α−0 with respect to (ei θ, s, U0) and of class C 1,α with respect
to ei θ. We then apply the next lemma to the three families of Bishop-type
vector equations (3.20).

Lemma 3.33. Let t ∈ ¤c
τ1

be a parameter with c ∈ N, 0 < τ1,i 6 ∞,
i = 1, . . . , c, and consider vector-valued and matrix-valued Hölder data
q =

(
qj(ei θ, t)

)16j6d and p =
(
pjl (e

i θ, t)
)16j6d
16l6d that are C 1,α−0 with re-

spect to (ei θ, t) and C 1,α with respect to ei θ. Suppose that a given map
u =

(
uj(ei θ, t)

)16j6d which is C 0,α−0 with respect to (ei θ, t) and C 0,α with
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respect to ei θ satisfies the linear Bishop-type equation u = T∗(pu) + q,
where T∗ = T or T∗ = T1. Assume that the norm of the matrix p satis-
fies the same inequality as in the proposition: ||p||0,0 6 c4, for some small

positive constant c4 6 C2 α2
[
1 + supt ||p|t||0,α

]−2

, where 0 < C < 1 is

some absolute constant. Then u is C 1,α with respect to ei θ and satisfies the
Lipschitz condition∣∣∣∣u(·, t2)− u(·, t1)

∣∣∣∣
0,α/2

6 K
∣∣t2 − t1

∣∣ ,
for some quantity K < ∞. Furthermore, there exists a null-measure subset
N ⊂ ¤c

τ1
×¤d

ρ1/16 such that at every t 6∈ N, for every l = 1, . . . , c:

(i) the partial derivative utl(e
i θ, t) exists for every ei θ ∈ ∂∆;

(ii) the map ei θ 7→ utl(e
i θ, t) is C 0,α/2 on ∂∆.

Proof. The fact that u is C 1,α with respect to ei θ is proved as in Lemma 3.26.
For the Lipschitz condition, the reasoning is simpler than Lemma 3.17, due
to the linearity of u = T∗(pu) + q. Indeed, for two parameters t1, t2 ∈ ¤c

τ1
,

if we take the C 0,α/2-norm of the difference:

u2 − u1 = T∗
(
p2(u2 − u1)

)
+ T∗

(
(p2 − p1)u1

)
+ q2 − q1,

we get:∣∣∣∣u2 − u1
∣∣∣∣

0,α/2
6 C1α

−1
∣∣∣∣p2

∣∣∣∣
0,α/2

∣∣∣∣u2 − u1
∣∣∣∣

0,α/2
+ K

∣∣t2 − t1
∣∣ ,

and after substraction, taking account of Lemma 3.31:∣∣∣∣u2 − u1
∣∣∣∣

0,α/2
6 2 K

∣∣t2 − t1
∣∣ .

Then the sequel of the reasoning is already known. ¤
So for l = 1, . . . , c, the partial derivatives utl exist almost everywhere and

they satisfy:
utl = T∗(p utl) + ql,

with the same matrix p, where ql := T∗(ptlu) + qtl is C 0,α−0 with respect to
(ei θ, t) and C 0,α with respect to ei θ.

Lemma 3.34. Proposition 3.21 holds true if more generally, q is only as-
sumed to be C 0,α−0 with respect to (ei θ, t) and C 0,α with respect to ei θ, with
the same conclusion.

(It suffices only to inspect the majoration of E3.) Consequently, with
u = Uθ, Usk

, UUm
0

in the three equations (3.20), we have verified that the
partial derivatives uθ, usk

and uUm
0

exist everywhere, are C 0,α−0 with respect
to (ei θ, s, U0) and are C 0,α with respect to ei θ. In summary, the theorem is
achieved if κ = 2.
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Needless to say, we have clarified how to cover the case of general κ >
2 by pure logical induction. In conclusion, the proof of Theorem 3.7 is
complete.

Open problem 3.35. Solve parametrized Bishop-type equations in Sobolev
spaces.

§4. APPENDIX: PROOFS OF SOME LEMMAS

4.1. Proofs of Lemmas 3.9 and 3.10. Let x ∈ Rn, n > 1, with |x| < ρ,
where 0 < ρ 6 ∞. Assuming ||f ||0,0 6 c, we estimate:

||f ||
0̂,α/2

6 sup
x′′ 6=x′

|f(x′′)− f(x′)|
|x′′ − x′|α/2

= max (A, B) 6 A + B,

where A := sup0<|x′′−x′|<c1/α and B := sup|x′′−x′|>c1/α satisfy:

A = sup
0<|x′′−x′|<c1/α

( |f(x′′)− f(x′)|
|x′′ − x′|α |x′′ − x′|α/2

)
6 ||f ||c0,α c1/2,

B = sup
|x′′−x′|>c1/α

|f(x′′)− f(x′)|
|x′′ − x′|α/2

6
2 ||f ||0,0

c1/2
6 2 c1/2.

Lemma 3.9 is proved. ¤

Applying this to x = (u, θ), we deduce:

||Φu|s||0̂,α/2 6 c
1/2
2

[
2 + ||Φu|s||c0,α

]
6 c

1/2
2

[
2 + ||Φ|s||1,α

]
,

||Φθ|s||0̂,α/2 6 c
1/2
3

[
2 + ||Φθ|s||c0,α

]
6 c

1/2
3

[
2 + ||Φ|s||1,α

]
.

Consequently:

||Φ|s||1,α/2 = ||Φ|s||0,0 + ||Φu|s||0,0 + ||Φθ|s||0,0 + ||Φu|s||0̂,α/2 + ||Φθ|s||0̂,α/2
6 c1 + c2 + c3 +

(
c
1/2
2 + c

1/2
3

) [
2 + ||Φ||1,α

]
.

Lemma 3.10 is proved. ¤
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4.2. Proof of Lemma 3.11. We shall abbreviate sup0<|θ′′−θ′|6π by supθ′′ 6=θ′ .
By definition:∣∣∣∣Φ(

U(·), ·, s)∣∣∣∣
C 1,β(∂∆)

=

= sup
θ

∣∣∣Φ
(
U(ei θ), ei θ, s

)∣∣∣+

+ sup
θ

∣∣∣
∑

16l6d
Φul

(
U(ei θ), ei θ, s

)
U lθ(e

i θ) + Φθ

(
U(ei θ), ei θ, s

)∣∣∣+

+ sup
θ′′ 6=θ′

∣∣∣
∑

16l6d
Φul

(
U(ei θ

′′
), ei θ

′′
, s

)
U lθ(e

i θ′′) + Φθ

(
U(ei θ

′′
), ei θ

′′
, s

)−

−
∑

16l6d
Φul

(
U(ei θ

′
), ei θ

′
, s

)
U lθ(e

i θ′)− Φθ

(
U(ei θ

′
), ei θ

′
, s

)∣∣∣
∣∣θ′′ − θ′

∣∣−β

Majorating and inserting some appropriate new terms whose sum is zero:
6 ||Φ||0,0 + ||Φu||0,0 ||U ||c1,0 + ||Φθ||0,0 +

+ sup
θ′′ 6=θ′

∣∣∣
∑

16l6d
Φul

(
U(ei θ

′′
), ei θ

′′
, s

)[
U lθ(e

i θ′′)− U lθ(e
i θ′)

]∣∣∣
∣∣θ′′ − θ′

∣∣−β +

+ sup
θ′′ 6=θ′

∣∣∣
∑

16l6d

[
Φul

(
U(ei θ

′′
), ei θ

′′
, s

)− Φul

(
U(ei θ

′′
), ei θ

′
, s

)]
U lθ(e

i θ′)
∣∣∣
∣∣θ′′ − θ′

∣∣−β +

+ sup
θ′′ 6=θ′

∣∣∣
∑

16l6d

[
Φul

(
U(ei θ

′′
), ei θ

′
, s

)− Φul

(
U(ei θ

′
), ei θ

′
, s

)]
U lθ(e

i θ′)
∣∣∣
∣∣θ′′ − θ′

∣∣−β +

+ sup
θ′′ 6=θ′

∣∣∣Φθ

(
U(ei θ

′′
), ei θ

′′
, s

)− Φθ

(
U(ei θ

′′
), ei θ

′
, s

)∣∣∣
∣∣θ′′ − θ′

∣∣−β +

+ sup
θ′′ 6=θ′

∣∣∣Φθ

(
U(ei θ

′′
), ei θ

′
, s

)− Φθ

(
U(ei θ

′
), ei θ

′
, s

)∣∣∣
∣∣θ′′ − θ′

∣∣−β .

Majorating:
6 ||Φ||0,0 + ||Φu||0,0 ||U ||c1,0 + ||Φθ||0,0 +

+ ||Φu||0,0 ||U ||c1,β + ||Φu|s||c0,β ||U ||c1,0 + ||Φu|s||c0,β
( ||U ||c1,0

)β ||U ||c1,0 +

+ ||Φθ|s||c0,β + ||Φθ|s||c0,β
( ||U ||c1,0

)β
,

which yields the lemma, noticing that ||Φu||0,0
( ||U ||c1,0 + ||U ||c1,β

)
6

||Φu||0,0 ||U ||1,β . ¤
4.3. Proof of Lemma 3.13. We need two preparatory lemmas.

Lemma 4.4. Let n > 1, let x ∈ Rn, let m > 1, let y ∈ Rm, let ρ > 0
and let f = f(x, y) be a ∈ C 1,α map, with 0 < α 6 1, defined in the strip
{(x, y) ∈ Rm × Rn : |x + y| < ρ} and valued in Rd, d > 1. If four vertices
(x′, y′), (x′′, y′), (x′, y′′) and (x′′, y′′) of a rectangle belong to the strip, then:

|f(x′′, y′′)− f(x′, y′′)− f(x′′, y′) + f(x′, y′)| 6 ||f ||c1,α |x′′ − x′| |y′′ − y′|α .
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A similar inequality holds by reversing the rôles of the variables x and y.

Proof. We apply twice the Taylor integral formula (1.2) with respect to the
variable x and we majorate:

|(f(x′′, y′′)− f(x′, y′′))− (f(x′′, y′)− f(x′, y′))| 6

6
∫ 1

0

∑
16i6n

∣∣∣∣
∂f

∂xi
(x′ + s(x′′ − x′), y′′)− ∂f

∂xi
(x′ + s(x′′ − x′), y′)

∣∣∣∣ |x′′i − x′i| ds

6 ||f ||c1,α |y′′ − y′|α |x′′ − x′| . ¤

Lemma 4.5. Let n > 1, let x ∈ Rn, let ρ > 0 and let H = H(t) be a C 1,α

map, with 0 < α 6 1, defined in the open cube ¤n
ρ = {|t| < ρ} and valued

in Rd. Let x, y, z with |x|, |y|, |z| 6 ρ/3, so that the four points x, y, z and
x + y − z constitute the vertices of a parallelogram which is contained in
¤n
ρ . Then:

|H(x + y − z)−H(x)−H(y) +H(z)| 6 4 ||H||c1,α |y − z| |x− z|α .
A similar inequality holds after exchanging x and y.

Proof. To estimate the second difference of H , we introduce a new map

f(x, y) := H(x + y),

of (x, y) ∈ Rn × Rn, whose domain is the strip {|x + y| < ρ}. Let x, y, z
with |x|, |y|, |z| 6 ρ/3. Fixing x′ ∈ Rn arbitrary, there exist unique y′, x′′ and
y′′ solving the linear system:

{
x′ + y′ = z, x′′ + y′′ = x + y − z,

x′ + y′′ = x, x′′ + y′ = y.

In fact, y′ = z− x′, x′′ = y− z + x′ and y′′ = x− x′′. Taking the norms | · | of
the four equations above, we see that the rectangle (x′, y′), (x′′, y′), (x′, y′′),
(x′′, y′′) is contained in the strip {|x + y| < ρ}. Applying then Lemma 4.4
(with m = n), we get:

|H(x + y − z)−H(x)−H(y) +H(z)| =
= |f(x′′, y′′)− f(x′, y′′)− f(x′′, y′) + f(x′, y′)|
6 ||f ||c1,α |x′′ − x′| |y′′ − y′|α
= ||f ||c1,α |y − z| |x− z|α .

We claim that ||f ||c1,α 6 4 ||H||c1,α, which will conclude. Carefulness and
rigor are required. In fact, to estimate:

||f ||c1,α =
n∑

i=1

sup
(x′′,y′′) 6=(x′,y′)

|fxi(x
′′, y′′)− fxi(x

′, y′)|+ |fyi(x
′′, y′′)− fyi(x

′, y′)|
|(x′′, y′′)− (x′, y′)|α ,



145

we shall first transform the denominator. By definition:

|(x′′, y′′)− (x′, y′)| = max (|x′′ − x′| , |y′′ − y′|) .
If we set a := |x′′ − x′| and b := |y′′ − y′| and if we invert the inequality
(a+ b)α 6 2 max (aα, bα), noticing 2α 6 2, we obtain:

1
|(x′′, y′′)− (x′, y′)|α =

1
max (aα, bα)

6 2
(a+ b)α

=
2

(|x′′ − x′|+ |y′′ − y′|)α

6 2
|x′′ + y′′ − x′ − y′|α .

Replacing the denominator above, we then transform and majorate the nu-
merator:

||f ||c1,α 6 2
n∑

i=1

sup
(x′′,y′′)6=(x′,y′)

( |Hti(x
′′ + y′′)−Hti(x

′ + y′)|+ |Hti(x
′′ + y′′)−Hti(x

′ + y′)|
|x′′ + y′′ − x′ − y′|α

)

6 4
n∑

i=1

sup
t′′ 6=t′

( |Hti(t
′′)−Hti(t

′)|
|t′′ − t′|α

)

= 4 ||H||c1,α .

This completes the proof of Lemma 4.5. ¤

We can now state a slightly simplified version of Lemma 3.13.

Lemma 4.6. ([Tu1990], [∗]) Let u ∈ Rd, d > 1, let ρ1 > 0 and let Ψ =
Ψ(u) be a C 1,α map, with 0 < α 6 1, u ∈ Rd, defined in the cube {|u| < ρ1}
and valued inRd. LetU1, U2 ∈ C 1,0(∂∆,Rd) with

∣∣U j(ei θ)
∣∣ < ρ1/3 on ∂∆,

for j = 1, 2. For every β with 0 < β 6 α the following inequality holds:
∣∣∣∣Ψ(U2(·))−Ψ(U1(·))

∣∣∣∣
C 0,β(∂∆)

6 D
∣∣∣∣U2 − U1

∣∣∣∣
0,β
,

with

D = ||Ψ||1,β
[
1 + 2

(∣∣∣∣U1
∣∣∣∣c1,0

)β
+ 2

(∣∣∣∣U2
∣∣∣∣c1,0

)β]
.

Proof. Firstly and obviously:
∣∣∣∣Ψ(U2)−Ψ(U1)

∣∣∣∣
0,0

6 ||Ψ||c1,0
∣∣∣∣U2 − U1

∣∣∣∣
0,0
.

Secondly, we have ||Ψ(U2)−Ψ(U1)||c0,β = sup0<|θ′′−θ′|6π
(
Q/ |θ′′ − θ′|β )

,
where:

Q :=
∣∣Ψ(

U2(ei θ
′′
)
)−Ψ

(
U1(ei θ

′′
)
)−Ψ

(
U2(ei θ

′
)
)

+ Ψ
(
U1(ei θ

′
)
)∣∣.
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To majorate Q, we start by inserting the term Ψ
[
U1(ei θ

′′
) + U2(ei θ

′
) −

U1(ei θ
′
)
]
, well-defined, thanks to the assumption ||U j||0,0 < ρ1/3:

Q 6
∣∣Ψ(

U2(ei θ
′′
)
)−Ψ

[
U1(ei θ

′′
) + U2(ei θ

′
)− U1(ei θ

′
)
]∣∣+

+
∣∣Ψ[

U1(ei θ
′′
) + U2(ei θ

′
)− U1(ei θ

′
)
]−Ψ

(
U1(ei θ

′′
)
)−

−Ψ
(
U2(ei θ

′
)
)

+ Ψ
(
U1(ei θ

′
)
)∣∣.

To estimate the second absolute value, we apply Lemma 4.5 with x =
U1(ei θ

′′
), with y = U2(ei θ

′
) and with z = U1(ei θ

′
):

Q 6 ||Ψ||c1,0
∣∣[U2 − U1](ei θ

′′
)− [U2 − U1](ei θ

′
)
∣∣+

+ 4 ||Ψ||c1,β
∣∣U2(ei θ

′
)− U1(ei θ

′
)
∣∣∣∣U1(ei θ

′′
)− U1(ei θ

′
)
∣∣β.

We then achieve the remaining majorations:

Q 6 ||Ψ||c1,0
∣∣∣∣U2 − U1

∣∣∣∣c0,β |θ′′ − θ′|β +

+ 4 ||Ψ||c1,β
∣∣∣∣U2 − U1

∣∣∣∣
0,0

(∣∣∣∣U1
∣∣∣∣c1,0

)β
|θ′′ − θ′|β .

Reminding that ||U2 − U1||0,0+||U2 − U1||c0,β = ||U2 − U1||0,β and summing,
we obtain:

∣∣∣∣Ψ(U2)−Ψ(U1)
∣∣∣∣

0,β
6 ||Ψ||1,β

[
1 + 4

(∣∣∣∣U1
∣∣∣∣c1,0

)β] ∣∣∣∣U2 − U1
∣∣∣∣

0,β
.

A similar inequality holds with
( ||U2||c1,0

)β instead of
( ||U1||c1,0

)β . Taking
the arithmetic mean, we find the symmetric quantity D of the lemma. The
proof is complete. ¤

Proof of Lemma 3.13. By definition:

R :=
∣∣∣∣Φ (

U2(·), ·, s)− Φ
(
U1(·), ·, s)∣∣∣∣

C 0,β(∂∆)

=sup
θ

∣∣∣Φ
(
U2(ei θ), ei θ, s

)− Φ
(
U1(ei θ), ei θ, s

)∣∣∣+

+ sup
θ′′ 6=θ′

∣∣∣Φ
(
U2(ei θ

′′
), ei θ

′′
, s

)− Φ
(
U1(ei θ

′′
), ei θ

′′
, s

)−

− Φ
(
U2(ei θ

′
), ei θ

′
, s

)
+ Φ

(
U1(ei θ

′
), ei θ

′
, s

)∣∣∣
∣∣θ′′ − θ′

∣∣−β .
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In the numerator, we insert−Φ
(
U2(ei θ

′′
), ei θ

′
, s

)
+Φ

(
U1(ei θ

′′
), ei θ

′
, s

)
plus

its opposite:
R 6 ||Φ||c1,0

∣∣∣∣U2 − U1
∣∣∣∣
0,0

+

+ sup
θ′′ 6=θ′

∣∣∣Φ
(
U2(ei θ

′′
), ei θ

′′
, s

)− Φ
(
U1(ei θ

′′
), ei θ

′′
, s

)−

− Φ
(
U2(ei θ

′′
), ei θ

′
, s

)
+ Φ

(
U1(ei θ

′′
), ei θ

′
, s

)∣∣∣
∣∣θ′′ − θ′

∣∣−β +

+ sup
θ′′ 6=θ′

∣∣∣Φ
(
U2(ei θ

′′
), ei θ

′
, s

)− Φ
(
U1(ei θ

′′
), ei θ

′
, s

)−

− Φ
(
U2(ei θ

′
), ei θ

′
, s

)
+ Φ

(
U1(ei θ

′
), ei θ

′
, s

)∣∣∣
∣∣θ′′ − θ′

∣∣−β .

To majorate the first supθ′′ 6=θ′ , we apply Lemma 4.4 with x′ = U1(ei θ
′′
),

y′ = ei θ
′ , x′′ = U2(ei θ

′′
) and y′′ = ei θ

′ , where s is considered as a
dumb parameter. To majorate the second supθ′′ 6=θ′ , we apply Lemma 4.6
to Ψ(u) := Φ

(
u, ei θ, s

)
, where (ei θ, s) are considered as dumb parameters.

We get:
R 6 ||Φ||c1,0

∣∣∣∣U2 − U1
∣∣∣∣
0,0

+

+ ||Φ||c1,β sup
θ

∣∣∣U2(ei θ)− U1(ei θ)
∣∣∣+

+ ||Φ||1,β
[
1 + 2

(∣∣∣∣U1
∣∣∣∣c1,0

)β
+ 2

(∣∣∣∣U2
∣∣∣∣c1,0

)β] ∣∣∣∣U2 − U1
∣∣∣∣
0,β
.

To conclude, we use ||Φ||c1,0 + ||Φ||c1,β 6 ||Φ||1,β and we get the term C of
Lemma 3.13. ¤

With these techniques, the proofs of Lemmas 3.17, 3.19, 3.30, 3.31
and 3.32 are easily guessed and even simpler.
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[19 diagrams]

The method of analytic discs is rooted in the very birth of the theory of functions
of several complex variables. The discovery by Hurwitz and Hartogs of the com-
pulsory extension of holomorphic functions relied upon an application of Cauchy’s
integral formula along a family of analytic discs surrounding an illusory singularity.
Since H. Cartan, Thullen, Behnke and Sommer, various versions of this argument
were coined “Kontinuitättsatz” or “Continuity principle”.

The removal of compact singularities culminated in the so-called Hartogs-
Bochner theorem, usually proved by means of integral formulas or thanks to the
resolution of a ∂ problem with compact support. Contradicting all expectations, a
subtle example due to Fornaess (1998), shows that on a non-pseudoconvex domain,
the disc method may fail to fill in the domain, if the discs are required to stay inside
the domain.

Nevertheless, it is of the highest prize to build constructive methods in order
to describe significant parts of the envelope of holomorphy of a domain, of a CR
manifold, as well as the polynomial hull of certain compact sets. In such problems,
analytic discs with boundary in the domain, the CR manifold or the compact set
remain the most adequate tools.

The precise existence Theorem 3.7(IV) for the solutions of Bishop’s equation
that was established in the previous Part IV may now be applied systematically to a
variety of geometric situations. In this respect, we just followed Bishop’s genuine
philosophy that required to ensure an explicit control of the size of solutions in
terms of the size of data, instead of appealing to some general, imprecise version of
the implicit function theorem.

Thanks to the jump theorem, holomorphic extension of CR functions defined on
a hypersurface M is equivalent to the extension of the functions that are holomor-
phic in one of the two sides to the other side. Trépreau’s original theorem (1986)
states that such an extension holds at a point p if and only if there does not exist
a local complex hypersurface Σ of Cn with p ∈ Σ ⊂ M . A deeper phenomenon
of propagation (Trépreau, 1990) holds: if CR functions extend holomorphically to
one side at a point p, a similar extension holds at every point of the CR orbit of p
in M . By means of deformations of attached Bishop discs, there is an elementary
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(and folklore) proof that contains both the local and the global extension theorems
on hypersurfaces, yielding a satisfactory understanding of the phenomenon.

On a generic submanifold M of Cn of higher codimension, the celebrated Tu-
manov extension theorem (1988) states that CR functions defined on M extend
holomorphically to a local wedge of edge M at a point p if the local CR orbit of
p contains a neighborhood of p in M . A globalization of this statement, obtained
independently by Jöricke and the first author in 1994, states that the same extension
phenomenon holds ifM consists of a single CR orbit, i.e. is globally minimal. Both
proofs heavily relied on the local Tumanov theorem and on a precise control of the
propagation of directions of extension.

A clever proof that treats both locally minimal and globally minimal generic
submanifolds on the same footing constitutes the main Theorem 4.12 of the present
Part V: if M is a globally minimal C 2,α (0 < α < 1) generic submanifold of Cn
of codimension > 1 and of CR dimension > 1, there exists a wedgelike domain
W attached to M such that every continuous CR function f ∈ C 0

CR(M) possesses
a holomorphic extension F ∈ O(W ) ∩ C 0(M ∪ W ) with F |M = f . This basic
statement as well as the techniques underlying its proof will be the very starting
point of the study of removable singularities in Parts VI and in [26].

§1. HARTOGS THEOREM, JUMP FORMULA
AND DOMAINS HAVING THE EXTENSION PROPERTY

1.1. Hartogs extension theorem: brief history. 9 In 1897, Hurwitz showed
that a function holomorphic in C2\{0} extends holomorphically through the
origin. In his thesis (1906), Hartogs generalized this discovery, emphasizing
the compulsory holomorphic extendability of functions that are defined on
the nowadays celebrated Hartogs skeleton (diagram below). The main argu-
ment is to apply Cauchy’s integral formula along families of analytic discs
having their boundary inside the domain and whose interior goes outside the
domain. In fact, the thinness of an embedded circle in Cn (n > 2) offers
much freedom to include illusory singularities inside a disc.

In 1924, Osgood stated the ultimate generalization of the discovery of
Hurwitz and Hartogs: if Ω ⊂ Cn (n > 2) is a domain and if K ⊂ Ω is
any compact such that Ω\K connected, then O(Ω\K) = O(Ω)|Ω\K . This
statement is nowadays called the Hartogs-Bochner theorem. Although the
proof of Osgood was correct for geometrically simple complements Ω\K,
as for instance spherical shells, it was incomplete for general Ω\K. In fact,
unpleasant topological and monodromy obstructions occur for general Ω\K
when pushing analytic discs. In 1998, Fornaess exhibited certain domains
in which discs are forced to first leave some intermediate domain Ω\K1,
K1 ⊂ K, before Ω may be filled in.

9Further historical information may be found in [29, Str1988, Fi1991, 30, 16].



150

In the late 1930’s, a rigorous proof of Osgood’s general statement was
obtained by Fueter, by means of a generalization of the classical Cauchy-
Green-Pompeiu integral formula to several variables, in the context of com-
plex and quaternionic functions (Moisil 1931, Fueter 1935). In 1943, Mar-
tinelli simplified the formal treatment of Fueter. Then Bochner observed
that the same result holds more generally if one assumes given on ∂Ω just a
CR function.

|z2|

0 1− ε 1

HεHε

Hε

x1

y1

|z2|

0

|z1|

Az2 (∂∆)

Az2 (∆)

ε

Filling in the Hartogs skeleton by means of analytic discs

1.2. Hartogs domain. Consider the ε-Hartogs skeleton (pot-looking) do-
main:

Hε := {(z1, z2) ∈ C2 : |z1| < 1, |z2| < ε}
⋃
{1− ε < |z1| < 1, |z2| < 1}.

We draw two diagrams: in (|z1|, |z2|) and in (x1, y1, |z2|) coordinates.

Lemma 1.3. Every holomorphic function f ∈ O(Hε) extends holomorphi-
cally to the bidisc ∆×∆, the convex hull of Hε.

Proof. Letting δ with 0 < δ < ε, for every z2 ∈ Cwith |z2| < 1, the analytic
disc

∆ 3 ζ 7−→ Az2(ζ) := ([1− δ]ζ, z2) ∈ C2

has its boundary Az2(∂∆) contained in Hε, the domain where the function
f is defined. Thus, we may compute the Cauchy integral

F (z1, z2) :=
1

2πi

∫

∂∆

f(Az2(ζ))

ζ − z1

dζ.

Differentiating under the sum, this extension F is seen to be holomorphic.
In addition, for |z2| < ε, it coincides with f . Obviously, the discs Az2(∆)
fill in the hole of the domain Hε. ¤
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1.4. Bounded domains in Cn and Hartogs-Bochner extension phenome-
non. Let Ω be a connected open subset of Cn, a domain. We assume it to be
bounded, i.e. Ω is compact and that its boundary ∂Ω := Ω\Ω is a hypersur-
face ofCn of class at least C 1. By means of a partition of unity, one can con-
struct a real-valued function r defined on Cn such that Ω = {z : r(z) < 0}
and ∂Ω = {z : r(z) = 0}, with dr(z) 6= 0 for every z ∈ ∂Ω. Then ∂Ω is
orientable.

Extensions of the above disc argument led to the most general10 form of
the Hartogs theorem: if Ω is a bounded domain in Cn (n > 2) having con-
nected boundary ∂Ω, then every function holomorphic in a neighborhood
of ∂Ω uniquely extends as a function holomorphic in Ω. There are three
classical methods of proof:

• using the Bochner-Martinelli kernel;
• using solutions of ∂u = v having compact support;
• pushing analytic discs, in successive Hartogs skeletons.

The first two are rigorously established and we shall review the first in a
while. For almost one hundred years, it has been a folklore belief that the
third method could be accomplished somehow. Let us be precise.

1.5. Fornaess’ counterexample and a disc theorem. Thus, let Ω be a
bounded domain of C2 having connected C 1 boundary. For δ > 0 small,
consider the one-sided neighborhood of ∂Ω defined by:

Ω̃δ := {z ∈ Ω : dist (z, ∂Ω) < δ}.
The complement Ω\Ω̃δ is a compact hole. Remind that the bidisc ∆2 is
the convex hull of the Hartogs skeleton Hε. Following [F1998], we say
that Ω can be filled in by analytic discs if for every δ > 0, there exist a
finite sequence of subdomains of Ω having C 1 boundary, Ω̃δ = Ω1 ⊂ Ω2 ⊂
· · · ⊂ Ωk = Ω and for each j = 1, . . . , k − 1, an εj > 0 and a univalent
holomorphic map Φj defined in a neighborhood of ∆

2
such that:

(1) Ωj+1 ⊂ Ωj ∪ Φj(∆
2) ⊂ Ω;

(2) Φj(Hε) ⊂ Ωj;
(3) Ωj ∩ Φj(∆

2) is connected;
(4) Ωj+1 ∩ Φj(∆

2) is connected.

For such domains, by pushing analytic discs in the embedded Hartogs
figure, taking account of connectedness, we have O(Ωj+1)

∣∣
Ωj

= O(Ωj).
Then by induction, uniquely determined holomorphic extension holds from

10Often, some authors consider instead a compact K ⊂ Ω with Ω\K connected and
state that O(Ω\K) = O(Ω)

∣∣
Ω\K ; a technical check shows that the two statements are

equivalent.
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Ω1 up to Ω. Importantly, the intermediate domains are required to be all
contained in Ω.

In 1998, Fornaess [F1998] constructed a topologically strange domain
Ω ⊂ C2 that cannot be filled in this way. This example shows that the
requirement that Ωj ⊂ Ωj+1 ⊂ Ω is too stringent.

Nevertheless, taking care of monodromy and working in the envelope of
holomorphy of Ω, one may push analytic discs by allowing them to wander
in the outside, in order to get the general Hartogs theorem stated above.
As a preliminary, one perturbs and smoothes out the boundary. Denote by
||z|| := (|z1|2 + · · ·+ |zn|2

)1/2 the Euclidean norm of z = (z1, . . . , zn) ∈ Cn
and by Bn(p, δ) :=

{||z − p|| < δ
}

the open ball of radius δ > 0 centered at
a point p.

Theorem 1.6. ([MP2006c]) Let M b Cn (n > 2) be a connected C∞

hypersurface bounding a domain ΩM b Cn. Suppose to fix ideas that 2 6
dist

(
0,ΩM

)
6 5 and assume that the restriction rM := r|M of the distance

function r(z) = ||z|| to M is a Morse function having only a finite number κ
of critical points p̂λ ∈M , 1 6 λ 6 κ, located on different sphere levels:

2 6 r̂1 := r(p̂1) < · · · < r̂κ := r(p̂κ) 6 5 + diam
(
ΩM

)
.

Then there exists δ1 > 0 such that for every δ with 0 < δ < δ1, the (tubular)
neighborhood

Vδ(M) := ∪p∈M Bn(p, δ)
enjoys the global Hartogs extension property into ΩM :

O
(
Vδ(M)

)
= O

(
ΩM ∪ Vδ(M)

)∣∣
Vδ(M)

,

by ′′pushing′′ analytic discs inside a finite number of Hartogs figures, without
using neither the Bochner-Martinelli kernel, nor solutions of some auxiliary
∂ problem.

1.7. Hartogs-Bochner theorem via the Bochner-Martinelli kernel. By
O(C), where C ⊂ Cn is closed, we mean O(V (C)) for some open neigh-
borhood V (C) of C. Here is the general statement.

Theorem 1.8. ([HeLe1984, 15, 29]) Let Ω be a bounded domain in Cn hav-
ing connected boundary. Then for every neighborhood U of ∂Ω in Cn and
every holomorphic function f ∈ O(U), there exists a function F ∈ O(Ω)
with F |∂Ω = f |∂Ω.

In the thin neighborhood U of the not necessarily smooth boundary ∂Ω,
by means of a partion of unity, one may construct a connected boundary
∂Ω1 ⊂ U close to ∂Ω which is C 1, or C∞, or even C ω, using Whitney ap-
proximation ([17]; in addition, one may assure that r(z)

∣∣
∂Ω1

is as in Theo-
rem 1.6, whence both statements are equivalent). Then the restriction F |∂Ω1

is CR on ∂Ω1 and the previous theorem is a consequence of the next.
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Theorem 1.9. ([29, 15]) Let Ω be a bounded domain in Cn (n > 2) having
connected C κ,α boundary, with 1 6 κ 6 ∞, 0 6 α 6 1. Then for every
CR function f : ∂Ω → C of class C κ,α, there exists a function F ∈ O(Ω) ∩
C κ,α(Ω) with F |∂Ω = f .

Some words about the proof. With ζ, z ∈ Cn, consider the Bochner-
Martinelli kernel:

BM(ζ, z) :=
(n− 1)!

(2πi)n
|ζ − z|−2n

n∑
j=1

(
ζ̄j − z̄j

)
dζj ∧

k 6=j
dζ̄k ∧ dζk.

This is a (n, n− 1)-form which is C ω off the diagonal {ζ = z}. For n = 2,
it coincides with the Cauchy kernel 1

2πi
1
ζ−z . If f and ∂Ω are C 1, the integral

formula:

F (z) :=

∫

∂Ω

f(ζ) BM(ζ, z)

provides the holomorphic extension F .

1.10. Hypersurfaces of Cn and jump theorem for CR functions. Let M
be a real hypersurface of Cn without boundary. In the sequel, we shall
mainly deal with three geometric situations.

• Local: M is defined in a small open polydisc centered at one point
p ∈M .

• Global: M is a connected orientable embedded submanifold of Cn.
• Boundary: Cn\M consists of two open sets Ω+, bounded and Ω−,

unbounded.

Then there exists some appropriate neighborhood M ofM inCn in which
M is relatively closed, in the sense that M ∩M = M .

More generally, let M be an arbitrary complex manifold of dimension
n > 1 and let M ⊂ M be a hypersurface of class at least C 1 which is rel-
atively closed in M and oriented. The complement M \M then consists of
two connected components Ω+ and Ω−, where Ω+ is located on the positive
side to M . Also, let f : M → C be a CR function of class at least C 0.
By definition, f is CR if the current of integration on M of bidegree (0, 1)
defined by11:

fM(ω) :=

∫

M

f ω, ω ∈ Dn,n−1,

satisfies
∫
M
f ∂$ = 0 for every $ ∈ Dn,n−2. Equivalently, ∂fM = 0 in the

sense of currents, where fM is interpreted as a (0, 1)-form having measure
coefficients.

11Here, Dp,q is the space of C∞ forms of bidegree (p, q) having compact support; fun-
damental notions about currents may be found in [Ch1989].
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To formulate the jump theorem in arbitrary complex manifolds, we shall
mainly assume that the Dolbeault ∂-complex on M is exact in bidegree
(0, 1), namely H0,1

∂
(M ) = 0. This assumption holds for instance when

M = ∆n, Cn or Pn(C). It means that the equation ∂u = v, where v is a
∂-closed (0, 1)-form on M having C∞, L2 or distributional coefficients has
a C∞, L2 or distributional solution u on M .

Consequently, there exists a distribution F on M with ∂F = fM . As
supp fM ⊂M , such a function F is holomorphic in M \M . The difference
F2 − F1 of two solutions to ∂F = fM is holomorphic in M . In the case
where M = Cn, a solution to ∂F = fM may be represented ([Ch1975, 29])
by means of the Bochner-Martinelli kernel as F (z) :=

∫
M
f(ζ) BM(ζ, z).

In complex dimension n = 1, such a solution coincides with the classical
Cauchy transform.

In 1975, after previous work of Andreotti-Hill ([AH1972b]), Chirka ob-
tained a several complex variables version of the Sokhotskǐı-Plemelj Theo-
rem 2.7(IV).

Theorem 1.11. ([Ch1975]) Assume that H0,1

∂
(M ) = 0 and that the hyper-

surface M ⊂ M is orientable and relatively closed, i.e. M ∩ M = M .
Assume dim M = n > 1 and let (κ, α) with 0 6 κ 6 ∞, 0 < α < 1. If M
is C κ+1,α and if the current fM associated to a C κ,α function f : M → C
is CR, then every distributional solution F ∈ O(M \M) to ∂F = fM ex-
tends to be C κ,α in the two closures Ω± = Ω± ∪M , yielding two functions
F± ∈ O(Ω±) ∩ C κ,α(Ω± ∪M) whose jump across M equals f :

F+(z)− F−(z) = f(z), ∀ z ∈M.

A similar jump formula holds for f ∈ Lp
loc,CR(M), with M at least C 1 (or a

Lipschitz graph) and for f ∈ D ′
CR(M), with M ∈ C∞.

When M = C, the conditions that f is CR and that H0,1

∂
(M ) = 0 are

automatically satisfied and we recover the Sokhotskǐı-Plemelj jump formula.
However, we mention that in several complex variables (n > 2), there is no
analog of the second formula 1

2
[F+(ζ0) + F−(ζ0)] = p.v. 1

2πi

∫
Γ

f(ζ)
ζ−ζ0 dζ .

The reason is the inexistence of a universal integral formula solving ∂F =
fM . Nevertheless, there should exist generalized principal value integrals
which depend on the kernel.

If M is only C 1 and f is only C 0, it is in general untrue that F− and
F+ extend continuously to M . Fortunately, there is a useful substitute re-
sult, analog to Theorem 2.9(IV). Consider a open subset M ′ ⊂ M having
compact closure M ′ not meeting ∂M = M\M . We may embedd M ′ in
a one-parameter family (M ′

ε)|ε|<ε0 , ε0 > 0, of hypersurfaces that foliates a
strip thickening of M ′.
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Theorem 1.12. ([Ch1975]) If f is CR and C κ on a C κ+1 hypersurface M ,
then

lim
ε→0

∣∣∣∣F |M ′
ε
− F |M ′

−ε
− f

∣∣∣∣
κ

= 0.

1.13. CR extension in the projective space. Unlike in Cn, there is no priv-
ileged “interior” side of an orientable connected hypersurface in the projec-
tive space Pn(C), n > 2. Nevertheless, a version of the Hartogs-Bochner
theorem holds. The proof is an illustration of the use of the jump theorem.

Theorem 1.14. (n > 3: [HL1975]; n = 2: [Sa1999, DM2002]) Let M be
a compact orientable connected C 2 real hypersurface of Pn(C) that divides
the projective space into two domains Ω− and Ω+. Then:

(i) there exists a side, Ω− or Ω+, to which every function holomorphic
in some neighborhood of M extends holomorphically12;

(ii) every function that is holomorphic in the union of the other side of
M together with a neighborhood of M must be constant.

Let us summarize the proof. Let f be holomorphic in some neighborhood
V (M) of M in Pn(C). As the Dolbeault cohomology group H0,1(Pn(C))
vanishes for n > 2 ([HeLe1984, 15]), thanks to Theorem 1.11 above, the
CR function f |M on M can be decomposed as the jump f = F+ − F− be-
tween two functions F± holomorphic in Ω± which are (at least) continuous
up to M . It suffices then to show that either F+ or F− is constant, since
clearly, if F+ (resp. F−) is constant equal to c+ (resp. c−), then f extends
holomorphically to Ω− (resp. to Ω+) as c+ − F− (resp. as F+ − c−).

By contradiction, assume that both F+ and F− are nonconstant. We
choose two domains U+ and U− with V (M) ∪ Ω± ⊃ U± ⊃ M ∪ Ω±. By
a preliminary (technical) deformation argument, we may assume that F± is
holomorphic in U±. According to a theorem due to Takeuchi [Ta1964],
holomorphic functions in an arbitrary domain of Pn(C) (n > 2), either
are constant or separate points. Since F− is nonconstant, O(U−) separates
points. Conjugating with elements of the group PGL(n,C) of projective
automorphisms of Pn(C), shrinking V (M) and U− slightly if necessary,
we may verify ([DM2002]) that O(U−) separates points and provides local
system of holomorphic coordinates at every point. By standard techniques
of Stein theory ([Hö1973]), it follows that U− is embeddable in some CN ,
with N large. The image of M under such an embedding Φ is a compact CR
submanifold of CN that is filled by the relatively compact complex mani-
fold Σ− = Φ(U−) with boundary Φ(M). Two applications of the maximum
principle to the nonconstant holomorphic function F+ ◦Φ−1 say that it must

12Using propagation techniques of Section 3, the theorem holds assuming that M is
globally minimal and considering continuous CR functions on M .
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decrease inside Σ−, since Σ− is interior to Φ(M) in CN , and that it must
increase, since the one-sided neighborhood U− ∩ V (M)is exterior to U+.
This is the desired contradiction.

1.15. Levi extension theorem. A C 2 hypersurfaceM ⊂ Cn may always be
represented as M = {z ∈ U : r(z) = 0}, where U is some open neighbor-
hood of M in Cn, and where r : U → R is a C 2 implicit defining function
that satisfies dr(q) 6= 0 at every point q of M . Two defining functions r1, r2

are nonzero multiple of each other in some neighborhood V ⊂ U of M :
there exists λ : V → R nowhere vanishing with r2 = λ r1.

At a point p ∈M , the Levi form of r:

Lp r(Lp, Lp) :=
∑

16j,k6n

∂2r

∂zj∂z̄k
(p)LjpL

k

p, Lp ∈ T 1,0
p M,

is a Hermitian form that may be diagonalized. Its signature at p:

(ap, bp) := (# positive eigenvalues, # negative eigenvalues)

is the same for r1 and r2 if they are positive multiples of each other. It is also
invariant through local biholomorphic changes of coordinates z 7→ z̃(z) that
do not reverse the orientation of M . Reversing the orientation or taking a
negative factor λ corresponds to the transposition (ap, bp) 7→ (bp, ap).

The Levi form may be read off a graphed equation v = ϕ(x, y, u) for M .

Lemma 1.16. There exist local holomorphic coordinates (z, u + iv) ∈
Cn−1 × C centered at p in which M is represented as a graph of the form:

v = ϕ(z, u) =
∑

16k6ap+bp

εk zkz̄k + o(|z|2) + O(|z| |u|) + O(|u|2),

where εk = +1 for 1 6 k 6 ap, εk = −1 for ap + 1 6 k 6 ap + bp. If
ap = n− 1, the open set {v > ϕ} is strongly convex (in the real sense) in a
neighborhood of p.

Assuming that M is orientable, it is surrounded by two open sides. By
an open side of M , we mean a connected component of V \M for a (thin)
neighborhood V ofM which is divided byM in two components. As germs
of open sets along M , there exist two open sides (if M were not orientable,
there would exist only one).

Assuming that M is represented either by an implicit equation r = 0 or
as a graph −v + ϕ(x, y, u) = 0, we adopt the convention of denoting:

Ω+ := {r < 0} or Ω+ := {v > ϕ(x, y, u)},
Ω− := {r > 0} or Ω− := {v < ϕ(x, y, u)}.

Once a local side Ω of M has been fixed, M is oriented and the indeter-
mination r ↔ −r disappears. By convention, we will always represent
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Ω = {r < 0}. Then the number of positive and of negative eigenvalues of
the Levi-form of r at a point p ∈ ∂Ω is an invariant. By common abuse of
language, we speak of the Levi form of ∂Ω.

At one of its points p, a boundary ∂Ω is called strongly pseudoconvex
(resp. strongly pseudoconcave) if its Levi form has all its eigenvalues > 0
(resp. < 0) at p. It is called weakly pseudoconvex (resp. weakly pseudocon-
cave) at p if all eigenvalues are > 0 (resp. 6 0). Often, the term “weakly” is
dropped in common use.

Definition 1.17. If Ω is an open side ofM , we say that Ω is holomorphically
extendable at p if for every open13 polydisc Up centered at p, there exists an
open polydisc Vp centered at p such that for every f ∈ O(Ω ∩ Up), there
exists F ∈ O(Vp) with F |Ω∩Vp = f |Ω∩Vp .

In 1910, Levi localized the Hartogs extension phenomenon.

Theorem 1.18. ([Bo1991, Trp1996, Tu1998, BER1999]) If the Levi form of
M ⊂ ∂Ω has one negative eigenvalue at a point p, then Ω is holomorphically
extendable at p.

Proof. As Ω is given by {v > −z1z̄1 + · · · }, for ε > 0 small, the disc
Aε(ζ) := (ε ζ, 0, . . . , 0) has its boundary Aε(∂∆) contained in Ω near p.

Lemma 1.19. Assume M is C 1, let p ∈ M and Ω be an open side of M
at p. Suppose that for every open polydisc Up centered at p, there exists an
analytic disc A : ∆ → Up continuous in ∆ with A(0) = p and A(∂∆) ⊂ Ω.
Then Ω is holomorphically extendable at p.

To draw A(∆), decreasing by 1 its dimension, we represent it as a curve.
The cusp illustrates the fact that A(∆) is not assumed to be embedded.

M

A(∂∆)

A(∆)

M
`p

VpUp Up

Cn

M
p

M

Cn

Pushing (translating) an analytic disc
Ω Ω

13Although the shape of polydiscs is not invariant by local biholomorphisms, their topol-
ogy is. To avoid dealing implicitly with possibly wild open sets, we prefer to speak of
neighborhoods Up, Vp, Wp of p that are polydiscs.
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To prove the lemma, we may assume that p = 0. Since A(∂∆) is con-
tained in Ω, for z ∈ Cn very small, say |z| < δ, the translates z +A(∂∆) of
the disc boundary are also contained in Ω.

Consequently, the Cauchy integral:

F (z) :=
1

2πi

∫

∂∆

f(z + A(ζ))
dζ

ζ

is meaningful and it defines a holomorphic function of z in the polydisc
Vp := {|z| < δ}.

Does it coincide with f in Vp ∩Ω ? The assumption that M is C 1 yields a
local real segment `p transversal to M at p. If Up is sufficiently small and if
z ∈ `p ∩Ω goes sufficiently deep in Ω, the disc z +A(∆) is contained in Ω,
so that the Cauchy integral F (z) coincides with f(z) for those z. ¤

1.20. Contact of weakly pseudoconvex domains with complex hyper-
surfaces. The domain Ω is said to admit a support complex hypersurface
at p ∈ ∂Ω if there exists a local (possibly singular) complex hypersur-
face Σ passing through p that does not intersect Ω. In this situation, if
Σ = {h(z) = 0} with h holomorphic, the function 1/h does not extend
holomorphically at p, being unbounded. With α > 0 not integer, one may
define branches hα which are uniform in Ω and continuous up to ∂Ω, but
whose extension through p would be ramified around Σ. Consequently, the
existence of a support complex hypersurface prevents O(Ω) to be holomor-
phically extendable at p. Is it the right obstruction ? For instance, at a
strongly pseudoconvex boundary point, the complex tangent plane is sup-
port.

Nevertheless, in 1973, Kohn-Nirenberg constructed a special pseudocon-
vex domain Ω+

KN in C2 showing that:

• not every weakly pseudoconvex smoothly bounded domain is locally
biholomorphically equivalent to a domain which is weakly convex in
the real sense;

• the holomorphic non-extendability of O(Ω) at p is totally indepen-
dent from the existence of a local supporting complex hypersurface
at p.

The boundary of this domain

MKN :=
{
(z, w) ∈ C2 : Imw = |zw|2 + z4z̄4 + 15 (z7z̄ + z̄7z)/14

}

may be checked to be strongly pseudoconvex at every point except the ori-
gin, where it is weakly pseudoconvex. Hence O(Ω+

KN) is not holomorphi-
cally extendable at the origin. However, MKN has the striking property that
every local (possibly singular) complex hypersurface Σ passing through the
origin meets both sides of MKN in every neighborhood of the origin. By
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means of a Puiseux parametrization ([22]), such a complex curve Σ is al-
ways the image of a certain holomorphic disc λ : ∆ → C2 with λ(0) = 0.

Theorem 1.21. ([KN1973]) Whatever the holomorphic disc λ, for every
ε > 0, there are ζ− and ζ+ in ∆ with |ζ±| < ε such that λ(ζ±) ∈ Ω±

KN.

Clearly, Ω+
KN is not locally convexifiable at the origin (otherwise, the bi-

holomorphic image of the complex tangent line would be support).
Often for technical reasons, certain results in several complex variables

require boundaries to be convex in the real sense. Although this condition
is not biholomorphically invariant, it is certainly meaningful to character-
ize the class of convexifiable domains, at least locally: does there exist an
analytico-geometric criterion enabling to recognize local convexifiability by
reading a defining equation ?

1.22. Holomorphic extendability across finite type hypersurfaces. Let
M be a C ω hypersurface and let p ∈ M . Then M is of type m at p, in
the sense of Definition 4.22(III), if and only if there exists a local graphed
equation centered at p of the form:

v = ϕm(z, z̄) + O(|z|m+1) + O(|z| |u|) + O(|u|2),
where ϕm ∈ C[z, z̄] is a nonzero homogeneous real-valued polynomial of
degree m having no pluriharmonic term, namely 0 ≡ ϕm(0, z̄) ≡ ϕm(z, 0).
The restriction ϕm(`(ζ), `(ζ)) of ϕm to a complex line C 3 ζ 7→ `(ζ) ∈
Cn−1, `(0) = 0, is a polynomial in C[ζ, ζ̄]. For almost every choice of `, this
polynomial is nonzero, homogeneous of the same degree m and contains no
harmonic term. After a rotation, such a line is the complex z1-axis. Denoting
z′ = (z2, . . . , zn−1), we obtain:

(1.23) v = ϕm(z1, z̄1) + O(|z1|m+1) +O(|z′|) + O(|z| |u|) + O(|u|2).
Theorem 1.24. ([BeFo1978, R1983, BT1984]) If m is even, at least one
side Ω+ or Ω− is holomorphically extendable at p. If m is odd, both sides
have this property.

Proof. Let ε > 0 arbitrarily small, let a ∈ C with |a| < 1, let ζ be in the
closed unit disc ∆, and introduce a Cn-valued analytic disc:

Aε(ζ) := (ε(a+ ζ), 0, . . . , 0, εmW (ζ))

having zero z′-component and z1-component being a disc of radius ε cen-
tered at −a. We assume its w-component W (ζ) be defined by requiring that
the C2-valued disc

Bε(ζ) := (ε(a+ ζ), εmW (ζ))
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has its boundary Bε(∂∆) attached to v = ϕm(z1, z̄1). By homogeneity, εm

drops and it is equivalent to require that B1 is attached to v = ϕm(z1, z̄1).
Equivalently, the imaginary part V (ζ) of W = U + i V should satisfy:

V (ei θ) = ϕm(a+ ei θ, ā+ e−i θ),

for all ei θ ∈ ∂∆. To obtain a harmonic extension to ∆ of the function V
thus defined on ∂∆, no Bishop equation is needed. It suffices to take the
harmonic prolongation by means of Poisson’s formula, as in §2.20(IV):

V (η) = PV (η) =
1

2πi

∫

∂∆

ϕm(a+ ζ, ā+ ζ̄)
1− |η|2
|ζ − η|2

dζ

ζ
.

Since ϕm has no harmonic term, it may be factored as ϕm = z1z̄1 ψ1(z1, z̄1),
with ψ1 ∈ C[z1, z̄1] homogeneous of degree (m − 2) and nonzero. In the
integral above, we put η := −a and we replace ϕm = z1z̄1ψ1 to get the value
of V at −a:

V (−a) =
1

2πi

∫

∂∆

ϕm(a+ ζ, ā+ ζ̄)
1− |a|2
|ζ + a|2

dζ

ζ

=
1− |a|2

2π

∫ π

−π
ψ1(a+ ei θ, ā+ e−i θ) dθ.

As a function of a ∈ ∆, the last integral is identically zero if and only if the
polynomial ψ1 is zero. Thus, there exists a such that V (−a) 6= 0. (However,
we have no information about the possible signs of V (−a) in terms of ϕm.)
Then we define U(ζ) to be the harmonic prolongation of−TV that vanishes
at −a and Bε(ζ) := (ε(a+ ζ), εmW (ζ)).

The positivity (resp. negativity) of the sign of V (−a) means that
Bε(−a) = (0, i V (−a)) is in Ω+ (resp. Ω−). Then after translating slightly
Bε in the right direction along the v-axis, Lemma 1.19 applies to deduce
that Ω−

1 ⊂ C2 (resp. Ω+
1 ⊂ C2) is holomorphically extendable at the origin.

Since ϕm(−z1,−z̄1) = (−1)m ϕm(z1, z̄1), in the case where m is odd, the
disc −Bε will also be attached to M1 and will provide extendability of the
other side.

Thanks to basic majorations of the “O” remainders in the equation (1.23)
of M , if ε > 0 is sufficiently small, then Ω− ⊂ Cn (resp. Ω+ ⊂ Cn) has the
same extendability property. ¤

If M is a real analytic hypersurface, it is easily seen, by inspecting the
Taylor series of its graphing function, that M is not of finite type at a point
p if and only if it may be represented by v = u ϕ̃(z, u), with ϕ̃ ∈ C ω. Then
the local complex hypersurface {v = u = 0} is contained in M .

Corollary 1.25. ([BeFo1978, R1983, BT1984]) If M is C ω and if p ∈ M ,
the following properties are equivalent:
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• M has finite type at p;
• M does not contain any local complex analytic hypersurface passing

through p;
• Ω+ or Ω− is holomorphically extendable at p.

1.26. Which side is holomorphically extendable ? We claim that it suf-
fices to study osculating domains in C2 of the form:

Ω+
ϕm

:= {−v + ϕm(z, z̄) < 0}, z ∈ C, w = u+ iv ∈ C,
where ϕm 6= 0 is real, homogeneous of degree m > 2 and has no harmonic
term. Indeed, extendability properties of such domains transfer to pertur-
bations (1.23). Also, extendability properties of Ω−

ϕm
are just the same, via

ϕm ↔ −ϕm. For this reason, if m is odd, both Ω+
ϕm

and Ω−
ϕm

are holomor-
phically extendable at p.

The local complex line {(z, 0)} intersects the closure Ω+
ϕm

in regions that
are closed angular sectors (cones), due to homogeneity. We call these re-
gions interior. The complementC2\Ω+

ϕm
intersects {(z, 0)} in open, exterior

sectors.

Theorem 1.27. ([R1983, BT1984, FR1985]) If there exists an interior sector
of angular width > π

m
, then Ω+

ϕm
is holomorphically extendable at p.

The proof consists in choosing an appropriate truncated angular sector
as the z-component of a disc attached to ∂Ω+

ϕm
, instead of the round disc

ζ 7→ ε(a+ ζ).

Example 1.28. Every homogeneous quartic v = ϕ4(z, z̄) in C2 is biholo-
morphically equivalent to a model

0 = ra := −v + z2z̄2 + a zz̄(z2 + z̄2),

for some a ∈ R. Such a hypersurface bounds two open sides Ω+
a = {ra <

0} and Ω−
a = {ra > 0} which enjoy the following properties ([R1983,

BT1984]):

• Ω−
a is holomorphically extendable at p, for every a;

• |a| < 2/3 if and only if Ω+
a is everywhere strongly pseudoconvex;

• |a| 6 1
/√

2 if and only if Ω+
a is not holomorphically extendable at

p;

• |a| > 1
/√

2 if and only if Ω+
a is holomorphically extendable at p;

• the above extendability property holds true for any perturbation of
∂Ω by higher order terms.
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Finer results, strictly more general than the above theorem that apply to
sixtics, were obtained in [FR1985]. If we remove all exterior sectors of an-
gular width > π

m
, the rest of the complex line {(z, 0)} is formed by disjoint

closed sectors, which are called supersectors of order m of Ω+
ϕm

at p. A
supersector is proper if it contains points of Ω+

ϕm
.

Theorem 1.29. ([FR1985])

(i) If Ω+
ϕm

has a proper supersector of angular width > π
m

, then Ω+
ϕm

is
holomorphically extendable at p.

(ii) If all supersectors of Ω+
ϕm

have angular width < π
m

, then there exists
f ∈ O(Ω+

ϕm
) ∩ C 0(Ω+

ϕm
) that does not extend holomorphically at p.

Even in the case m = 6, some cases in this theorem are left open. Exam-
ples may be found in [FR1985].

Open problem 1.30. In the case where m is even, find a necessary and suf-
ficient condition for Ω+

ϕm
= {v > ϕm(z, z̄)} to be holomorphically extend-

able at p, or show that the problem is undecidable.

One could generalize this (already wide open) question to a not necessar-
ily finite type boundary, C ω, C∞, C 2 or even C 0 graph.

§2. TRÉPREAU’S THEOREM, DEFORMATIONS OF BISHOP DISCS
AND PROPAGATION ON HYPERSURFACES

2.1. Holomorphic extension of CR functions via jump. LetM be a hyper-
surface in Cn of class at least C 1,α with 0 < α < 1 and let f be a continuous
CR function on M . At each point p of M , we may restrict f to a small open
ball (or polydisc) Ωp centered at p. Applying the jump Theorem 1.11, we
may represent f = F+ − F−, with F± ∈ O(Ω±

p ) ∩ C 0(Ω±
p ). If Ω+

p (resp.
Ω−
p ) is holomorphically extendable at p, then F+ (resp. F−) extends to a

neighborhood ωp of p in Cn as G ∈ O(ωp) (resp. H ∈ O(ωp)). Then f
extends holomorphically to the small one-sided neighborhood ω−p (resp. to
ω+
p ) as G− F− (resp. as F+ −H).

Lemma 2.2. On hypersurfaces, at a given point, local holomorphic extend-
ability of CR functions to one side is equivalent to holomorphic extendability
to the same side of the holomorphic functions defined in the opposite side.

Consequently, the theorems of §1.22 yield gratuitously extension results
about CR functions. For instance:
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Corollary 2.3. ([BeFo1978, R1983, BT1984]) On a real analytic hypersur-
face M , at a given point p, continuous CR functions extend holomorphically
to one side if and only ifM does not contain any local complex hypersurface
passing through p.

The assumption of real analyticity, or the assumption of finite typeness
in case M is C∞, both consume much smoothness. The removal of these
assumptions was accomplished by Trépreau in 1986.

Theorem 2.4. ([Trp1986]) Let M be a C 2 hypersurface of Cn, n > 2 and
let p ∈M . The following two conditions are equivalent:

• M does not contain any local complex hypersurface passing through
p.

• for every open subset Up ⊂ M containing p, there exists a one-
sided neighborhood ω±p of M at p with ω±p ∩M b Up such that for
every f ∈ C 0

CR(Up), there exists F ∈ O(ω±p ) ∩ C 0(ω± ∪ Up) with
F |Up = f .

We have seen that characterizing the side of extension is an open question,
even for rigid polynomial hypersurfaces v = ϕm(z, z̄) and even for m =
6. Although the above theorem constitutes a neat answer for holomorphic
extension to some imprecise side, it does not provide any control of the side
of extension.

Let M be a C 2 orientable connected hypersurface and let Ω+
M be an open

side of M . One could hope to characterize holomorphic extension to the
other side at every point of M , since weak pseudoconvexity characterizes
holomorphic non-extendability at every point of M , by Oka’s theorem.

Example 2.5. ([Trp1992]) In C3, let Ω+
M be

{
v > ϕm(z1, z̄1)− |z2|2 |z1|2N

}
where ϕm 6≡ 0, of degree m with 3 6 m < N is as in Open prob-
lem 1.30. One verifies that holomorphic extension at every point of M en-
tails a characterization of holomorphic extension at the origin for the domain{
v > ϕm(z, z̄)− ε |z|2N}

.

In the sequel, we shall abandon definitely the difficult, still open question
of how to control sides of holomorphic extension.

Although Theorem 2.4 is well known in Several Complex Variables, there
is a more general formulation with a simpler proof than the original one. The
remainder of this section will expose such a proof.

By a global one-sided neighborhood of a connected (not necessarily ori-
entable) hypersurface M ⊂ Cn, we mean a domain ΩM with ΩM ⊃M such
that for every point q ∈M , at least one open side ω±q of M at q is contained
in ΩM . In fact, to insure connectedness, ΩM is the interior of the closure of
the union ∪q∈M ω±q of all (possibly shrunk) one-sided neighborhoods.
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Global one-sided neighborhood of M

Then ΩM contains a neighborhood in Cn of every point r ∈M which be-
longs to at least two one-sided neighborhoods that are opposite. The classi-
cal Morera theorem insures holomorphicity in a neighborhood of such points
r.

Remind that M is called globally minimal if it consists of a single CR
orbit. The assumption that M does not contain any complex hypersurface
at any point means that for every p ∈ M , every open Up 3 p, the CR orbit
OCR(Up, p) contains a neighborhood of p in M . This implies that M is
globally minimal and hence, Theorem 2.4 is less general than the following.

Theorem 2.6. ([Trp1990, Tu1994a]) LetM be14 a connected C 2,α (0 < α <
1) hypersurface of Cn (n > 2). If M is globally minimal, then there exists
a global one-sided neighborhood ΩM of M such that for every continuous
CR function f ∈ C 0

CR(M), there exists F ∈ O(ΩM) ∩ C 0(ΩM ∪M) with
F |M = f .

It will appear that ΩM is contructed by gluing discs to M and to subse-
quent open sets Ω′ ⊂ ΩM which are all contained in the polynomial hull of
M :

M̂ :=
{
z ∈ Cn : |P (z)| 6 sup

w∈M
|P (w)|, ∀ P ∈ C[z]

}
.

Let us summarize the proof. Although the assumption of global minimal-
ity is so weak that M may incorporate large open Levi-flat regions, there
exists at least one point p ∈M in a neighborhood of which

TqM = T cqM + [T cqM,T cqM ], q ∈ Up.
Otherwise, the distribution p 7→ T cpM would be Frobenius-integrable and
all CR orbits would be complex hypersurfaces ! At such a point p, the clas-
sical Lewy extension theorem (§2.10 below) insures that C 0

CR(M) extends
holomorphically to (at least) one side at p.

Theorem 2.7. ([Trp1990, Tu1994a]) Let M be a connected C 2,α hypersur-
face, not necessarily globally minimal. If C 0

CR(M) extends holomorphically

14This theorem also holds true with M ∈ C 2 and even with M ∈ C 1,α (0 < α < 1),
provided one redefines the notion of CR orbit in terms of boundaries of small attached
analytic discs.
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to a one-sided neighborhood at some point p ∈M , then holomorphic exten-
sion to one side ω±q holds at every point q ∈ OCR(M, p).

When OCR(M, p) = M as in Theorem 2.6, the global one-sided neigh-
borhood ΩM will be the interior of the closure of the union ∪q∈M ω±q of all
(possibly shrunk) one-sided neighborhoods.

The next paragraphs are devoted to expose a detailed proof of both the
Lewy theorem and of the above propagation theorem.

2.8. Approximation theorem and maximum principle. According to the
approximation Theorem 5.2(III), for every p ∈ M , there exist a neighbor-
hood Up of p in M and a sequence (Pν(z))ν∈N of holomorphic polynomials
with limν→∞ ||Pν − f ||C 0(Up) = 0.

Lemma 2.9. For every analytic discA ∈ O(∆)∩C 0(∆) withA(∂∆) ⊂ Up,
the sequence Pν also converges uniformly on the closed disc A(∆), even if
A(∆) goes outside Up.

Proof. By assumption, limν,µ→∞ ||Pν − Pµ||C 0(Up) = 0. Let η ∈ ∆ arbitrary.
Thanks to the maximum principle and to A(∂∆) ⊂ Up:

||Pν(A(η))− Pµ(A(η))|| 6 max
ζ∈∂∆

||Pν(A(ζ))− Pµ(A(ζ))||
6 sup

z∈Up

||Pν(z)− Pµ(z)|| −→ 0.

The same argument shows that Pν converges uniformly in the polynomial
hull of Up (we shall not need this). ¤

Next, suppose that we have some family of analytic discs As, with s a
small parameter, such that ∪sAs(∆) contains an open set in Cn, for instance
a one-sided neighborhood at p ∈M . Then (Pν)ν∈N converges uniformly on
∪sAs(∆) and a theorem due to Cauchy assures that the limit is holomorphic
in the interior of ∪sAs(∆). It then follows that f extends holomorphically
to the interior of ∪sAs(∆).

Remarkably, this short argument based on an application of the approxi-
mation Theorem 5.2(III) shows that15:

In order to establish local holomorphic extension of CR
functions, it suffices to glue appropriate families of an-
alytic discs to CR manifolds.

In the sequel, the geometry of glued discs will be studied for itself; thus,
it will be understood that statements about holomorphic or CR extension
follow immediately; elementary details about continuity of the obtained ex-
tensions will be skipped.

15This is the so-called Method of analytic discs ; ∂ techniques are also powerful.
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2.10. Lewy extension. Since M is globally minimal, there exists a point p
at which TpM = T cpM + [T cpM,T cpM ]. Granted Lemma 2.2, holomorphic
extension to one side at such a point p has already been proved in Theo-
rem 1.18. Nevertheless, we want to present a geometrically different proof
that will produce preliminaries and motivations for the sequel.

Since T cM = ReT 1,0M = ReT 0,1M , we have equivalently
[T 1,0M,T 0,1M ] (p) 6⊂ C ⊗ T cpM , namely the intrinsic Levi form of
M at p is nonzero. In other words, there exists a local section L of T 1,0M
with L(p) 6= 0 and

[
L,L

]
(p) 6∈ C ⊗ T cpM . After a complex linear trans-

formation of T cpM , we may assume that L(p) = ∂
∂z1

. After removing the
second order pluriharmonic terms, there exist local coordinates (z1, z

′, w)
vanishing at p such that M is represented by

v = −zz̄1 + O(|z1|2+α) + O(|z′|) + O(|z||u|) + O(|u|2).
The minus sign is set for clarity in the diagram of §2.12 below. We denote
by ϕ(z1, z

′, u) the right hand side. Let ε1 > 0 be small. For ε satisfying
0 < ε 6 ε1, we introduce the analytic disc

Aε(ζ) := (ε(1− ζ), 0′, Uε(ζ) + i Vε(ζ))

with zero z′-component, with z1-component equal to a (reverse) round disc
of radius ε centered at 1 ∈ C and with u-component Uε satisfying the
Bishop-type equation:

Uε(e
i θ) = −T1 [ϕ(ε(1− ·), 0′, Uε(·))] (ei θ).

Acoording to Theorem 3.7(IV), a unique solution Uε(e
i θ) exists and is

C 2,α−0 with respect to (ei θ, ε). Since T1(ψ)(1) = 0 by definition, we have
Uε(1) = 0 and then Vε := T1(Uε) also satisfies Vε(1) = 0. Consequently,
Aε(1) = 0. By applying T1 to both sides of the above equation, we see that
the disc is attached to M :

Vε(e
i θ) = ϕ

(
ε(1− ei θ), 0′, Uε(ei θ)

)
.

We shall prove that for ε1 sufficiently small, every disc Aε(∆) with 0 < ε 6
ε1 is not tangent to M at p. We draw two diagrams: a 2-dimensional and a
3-dimensional view. In both, the v-axis is vertical, oriented down.

∂Aε
∂θ

(1)
p = A(1)p = A(1)

Aε(∆)

− ∂Aε
∂r

(1)

M

M M

M

Aε(∂∆) − ∂Aε
∂r

(1)

Aε(∆)

Nontangency of a small disc to the paraboloid v = −z1z̄1
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Just now, we need a geometrical remark. Let A ∈ O(∆) ∩ C 1(∆) be an
arbitrary but small analytic disc attached to M with A(1) = 0. We use polar
coordinates to denote ζ = r eiθ.

M

C

∆

−i

− ∂
∂r

A
0

∂∆

1−1

i

A(1) A(−1)

∂A
∂θ

(eiθ)|θ=0

A(0)

∂
∂θ

− ∂A
∂r

(1)
exit vector

Direction of exit of an attached analytic disc

The holomorphicity of A yields the following identities between vectors in
TpCn:

i
∂A

∂θ
(eiθ)

∣∣∣∣
θ=0

= − ∂A

∂r
(r)

∣∣∣∣
r=1

= − ∂A

∂ζ
(ζ)

∣∣∣∣
ζ=1

.

The multiplication by i (or equivalently the complex structure J) provides an
isomorphism TpCn/TpM → TpM/T cpM ; in coordinates, TpCn/TpM ' Rv,
TpM/T cpM ' Ru and J sends Ru to Rv. It follows that ∂A

∂r
(1) is not tangent

to M at p if and only if ∂A
∂θ

(1) is not complex tangent to M at p.
Coming back to Aε, we call the vector

−∂Aε
∂r

(1) modTpM = −∂Wε

∂r
(1) modTpM

the exit vector of Aε. By differentiating Vε = ϕ at θ = 0, taking account of
dϕ(0) = 0, we get ∂Vε

∂θ
(1) = 0. So only the real part ∂Uε

∂θ
(1) of ∂Wε

∂θ
(1) may

be nonzero.

Lemma 2.11. Shrinking ε1 if necessary, the exit vector of every disc Aε with
0 < ε 6 ε1 is nonzero:

−∂Wε

∂r
(1) = i

∂Wε

∂θ
(1) = i

∂Uε
∂θ

(1) 6= 0.

Proof. The principal term of ϕ is −z1z̄1. We compute first:

T1

[−Z1(ζ)Z1(ζ)
]

= T1

[
ε2(e−i θ − 2 + ei θ)

]

=
1

i
ε2(−e−i θ + ei θ).

Proceeding as carefully as in Section 3(IV), we may verify that

Uε(e
i θ) = −T1

[−Z1(ζ)Z1(ζ) + Remainder
]
(ei θ)

= −2 ε2 sin θ + Ũε(e
i θ),
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with a C 2,α−0 remainder satisfying
∣∣∣∣Ũε

∣∣∣∣
1,0

6 K ε2+α, for some quantity
K > 0. So ∂Uε

∂θ
(1) = −2 ε2 + O(ε2+α) 6= 0. ¤

2.12. Translations of a nontangent analytic disc. We now fix ε with 0 <
ε 6 ε1 and we denote simply by A the disc Aε. So the vector

∂A

∂θ
(1) =

(−i ε, 0′,−2 ε2 + O(ε2+α)
)

is not tangent to T cpM = {v = u = 0} at the origin. Furthermore, it
is not tangent to the (2n − 2)-dimensional sub-plane {y1 = v = 0} of
TpM = {v = 0}.

We now introduce parameters of translation x0
1 ∈ R, z′0 ∈ Cn−2 and

u0 ∈ R with |x0
1|, |z′0|, |u0| < δ1, where 0 < δ1 << ε. The points in M of

coordinates (
x0

1, z
′
0, u0 + i ϕ(x0

1, z
′
0, u0)

)

cover a small (2n − 2)-dimensional submanifold Kp with TpKp = {y1 =
v = 0} transverse to the disc boundary Aε(∂∆) at p that we draw below.

View inside M z′ u

−ε
∼ −2 ε2

The interior A(∆)
lies outside M

y1Kp

x1

A(∂∆) ⊂M

p

Nontangency at 0 of the disc boundary Aε(∂∆)to {u = 0}

To conclude the proof of one-sided holomorphic extension at the Levi
nondegenerate point p, it suffices to deform the disc Ax0

1,z
′
0,u0

so that its dis-
tinguished point Ax0

1,z
′
0,u0

(1) covers the submanifold Kp, namely

(2.13) Ax0
1,z

′
0,u0

(1) =
(
x0

1, z
′
0, u0 + i ϕ(x0

1, z
′
0, u0)

)
.

This may be achieved easily by defining
(
Z1,x0

1
(ζ), Z ′z′0(ζ)

)
:=

(
ε1(1− ζ) + x0

1, z
′
0

)

and by solving the Bishop-type equation:

(2.14) Ux0
1,z

′
0,u0

(ei θ) = u0 − T1

[
ϕ

(
Z1;x0

1
(·), Z ′z′0(·), Ux0

1,z
′
0,u0

(·)
)]

(ei θ)

for the u-component of the sought disc Ax0
1,z

′
0,u0

. Thanks to Theo-
rem 3.7(IV), the solution exists and is C 2,α−0 with respect to all the
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variables. We finally define the v-component of Ax0
1,z

′
0,u0

:

(2.15) Vx0
1,z

′
0,u0

(ei θ) := T1

[
Ux0

1,z
′
0,u0

(·)
]
(ei θ) + ϕ(x0

1, z
′
0, u0).

Applying T1 to (2.14), we see that this disc is attached to M ; also, putting
ei θ := 1 in (2.14) and in (2.15), we see that (2.13) holds. Geometrically, the
(2n − 2) added parameters (x0

1, z
′
0, u0) correspond to translations in M of

the original disc Aε1 .

������
������
������
������
������

������
������
������
������
������

MM A(1)

Cn

A(∆)

Translates of the disc
exit vector
− ∂A

∂r
(1) not tangent to M

ω±
A(1)

A(∂∆)

Translations of an attached analytic disc

Define the open circular region ∆1 := {ζ ∈ ∆ : |ζ − 1| < δ1} around 1
in the unit disc. Then we claim that shrinking δ1 > 0 if necessary, the set

{
Ax0

1,z
′
0,u0

(ζ) : ζ ∈ ∆1, |x0
1| < δ1, |z′0| < δ1, |u0| < δ1

}

contains a one-sided neighborhood of M at p = A0,0,0(1). Indeed, by com-
putation, one may check that the 2n vectors of TpCn

∂A0,0,0

∂x1

(1),
∂A0,0,0

∂θ
(1),

∂A0,0,0

∂x′k
(1),

∂A0,0,0

∂y′k
(1),

∂A0,0,0

∂u
(1), −∂A0,0,0

∂r
(1),

are linearly independent; geometrically and by construction, the first (2n−1)
of these vectors span TpM and the last one is linearly independent, since by
construction the exit vector of Aε1 is nontangent to M at p. ¤

Incidentally, we have proved an elementary but crucial statement: by
“translating” (through a suitable Bishop-type equation) any small attached
disc whose exit vector is nonzero, we may always cover a one-sided neigh-
borhood.

Lemma 2.16. If a small disc A attached to a hypersurface M satisfies
∂A
∂θ

(1) 6∈ T cA(1)M , or equivalently −∂A
∂r

(1) 6∈ TA(1)M , then continuous CR
functions on M extend holomorphically at A(1) to the side in which points
the nonzero exit vector i ∂A

∂θ
(1) = −∂A

∂r
(1).

Of course, the choice of the point 1 ∈ ∂∆ is no restriction at all, since after
a Möbius reparametrization, any given point ζ0 ∈ ∂∆ becomes 1 ∈ ∂∆.
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2.17. Propagation of holomorphic extension. The Levi form assumption
TpM = T cpM + [T cpM,T cpM ] was strongly used to insure the existence of
a disc having a nonzero exit vector at p. But if a disc A is attached to a
highly degenerate part of M , for instance to a region where the Levi form is
nearly flat, the disc A might well satisfy ∂A

∂θ
(ζ0) ∈ T cA(ζ0)M (or equivalently,

−∂A
∂r

(ζ0) ∈ TA(ζ0)M ), for every ζ0 ∈ ∂∆. Then we are stuck.
To go through, two strategies are known in the literature.

• Devise refined pointwise “finite type” assumptions insuring the ex-
istence of small discs having nonzero exit vector at a given central
point.

• Devise deformation arguments that propagate holomorphic exten-
sion from Levi nondegenerate regions up to highly degenerate re-
gions.

Unfortunately, the first, more developed strategy is unable to provide any
proof of Theorem 2.6. Indeed, a smooth globally minimal hypersurface
may well contain large Levi-flat regions, as for instance {(z, w) ∈ C2 :
v = $(x)} with a C∞ function $ satisfying $(x) ≡ 0 for x 6 0 and
$(x) > 0 for x > 0 (to check global minimality, proceed as in Exam-
ple 3.10); Theorem 4.8(III) shows that a Levi-flat portion MLF of a hyper-
surfaceM is locally foliated by complex (n−1)-dimensional submanifolds;
the uniqueness in Bishop’s equation16 then entails that every small analytic
disc A ∈ O(∆) ∩ C 1(∆) with A(∂∆) ⊂ MLF must satisfy A(∂∆) ⊂ Σ,
where Σ ⊂MLF is the unique local complex connected (n−1)-dimensional
submanifold of the foliation that contains A(1); then the uniqueness princi-
ple for holomorphic maps between complex manifolds yields A(∆) ⊂ Σ;
finally, −∂A

∂r
(ζ0) ∈ TA(ζ0)Σ = T cA(ζ0)M has exit vector tangential to M at

every ζ0 ∈ ∂∆.
For this reason, we will focus our attention only on the second, most

powerful strategy, starting with a review.
After works of Sjöstrand ([HS1982, Sj1982a, Sj1982b]) on propaga-

tion of singularities for certain classes of partial differential operators,
of Baouendi-Chang-Treves [BCT1983], and of Hanges-Treves [HT1983],
Trépreau [Trp1990] showed that the hypoanalytic wave-front set of a CR
function or distribution propagates along complex-tangential curves. The
microlocal technique involves deforming T ∗M inside conic sets and control-
ling a certain oscillatory integral called Fourier-Bros-Iagolnitzer (FBI) trans-
form. In 1994, Baouendi-Rothschild-Trépreau [BRT1994] showed how to

16A more general property holds true (see [Trp1990, Tu1994a, MP2006b]): every small
attached disc is necessarily attached to a single (local or global) CR orbit; here, Σ is a local
orbit, whence A(∂∆) ⊂ Σ.
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deform analytic discs attached to a hypersurface in order to get some prop-
agation results (however, Theorem 2.7 which appears in [Trp1990] is not
formulated in [BRT1994]). Then Tumanov [Tu1994a] showed how to de-
formation discs attached to generic submanifolds of arbitrary codimension
and provided extension results that cannot be obtained by means of the usual
microlocal analysis.

Until the end of Section 4, our goal will be to describe and to exploit this
technique of propagation. The geometric idea is as follows.

As in Theorem 2.7, assume that holomorphic extension is already known
to hold in a one-sided neighborhood ω±q at some point q ∈ M . Referring
to the diagram after the main Proposition 2.21 below, we may pick a disc
A with A(−1) = q. Then a small part of its boundary, namely for eiθ

near −1, lies in ω±q . If the vector ∂A
∂θ

(1) is not complex tangential at the
opposite point p = A(1), it suffices to apply Lemma 2.16 just above to get
holomorphic extension at p, almost gratuitously. On the contrary, if ∂A

∂θ
(1)

is complex tangential at p, we may well hope that by slightly deforming M
as a hypersurface Md which goes inside ω±q a bit, there exists a deformed
disc Ad attached to Md with again Ad(1) = p that will be not tangential:
−∂Ad

∂r
(1) 6∈ TAd(1)M . Then a translation of the disc Ad as in Lemma 2.16

will provide holomorphic extension at p.

2.18. Approximation theorem and chains of analytic discs. To prove
Theorem 2.7, we first formulate a version of the approximation theorem
which is apppropriate for our purposes.

Lemma 2.19. ([Tu1994a]) For every p ∈ M , there exists a neighborhood
Up of p in M such that for every q ∈ Up, for every one-sided neighborhood
Ω±
q of Up at q, there exists a smaller one-sided neighborhood ω±q ⊂ Ω±

q of
Up at q such that the following approximation property holds:

• for every F ∈ C 0(M ∪ Ω±
q ) which is CR on M and holomorphic in

Ω±
q , there exists a sequence of holomorphic polynomials (Pν(z))ν∈N

such that 0 = limν→∞ ||Pν − f ||C 0(Up∪ω±q ).

The proof is an adaptation of Theorem 5.2(III). It suffices to allow the
maximally real submanifolds Λu ⊂ M be slightly deformed in Ω±

q . With a
control of the smallness of their C 1 norm, one may insure that they cover
not only Up but also ω±q . Further details will not be provided.

To establish local holomorphic extension of CR func-
tions, it is allowed to glue discs not only to M but also
to previously constructed one-sided neighborhoods.

Pursuing, we formulate a lemma and a main proposition.



172

Lemma 2.20. ([Tu1994a]) Let p ∈ M and let Up be a neighborhood of p
in M , arbitrarily small. For every q ∈ OCR(M, p) and every small ε > 0,
there exist ` ∈ N with ` = O(1/ε) and a chain of C 2,α−0 analytic discs
A1, A2, . . . , A`−1, A` attached to M with the properties:

• A1(−1) ∈ Up, i.e. this point is arbitrarily close to p;

• A1(1) = A2(−1), A2(1) = A3(−1), . . . , A`−1(1) = A`(−1);

• A`(1) = q;

• ||Ak||C 1,0(∆) 6 ε, for k = 1, 2, . . . , `;

• each Ak is an embedding ∆ → Cn.

q

Bq,vq,t(∂∆)

vq

q = exp(L)(p)
= A`(1)

A1
A2

Up

p

A1(−1) A`−1
A`

String of analytic discs approximating a CR curve

Such a chain of analytic discs will be constructed by approximating a
complex-tangential curve that goes from q to p, using families of discs
Bq,vq ,t(ζ) to be introduced in a while. The above lemma is essentially obvi-
ous, whereas the next proposition constitutes the very core of the argument.

Proposition 2.21. ([BRT1994, Tu1994a]) (Propagation along a disc) Let
A be a small C 2,α−0 analytic disc attached to M which is an embedding
∆ → Cn. If C 0

CR(M) extends holomorphically to a one-sided neighborhood
ω±A(−1) at the point A(−1), then it also extends holomorphically to a one-
sided neighborhood at A(1). With more precisions:

• if the exit vector −∂A
∂r

(1) is not tangent to M at A(1), extension
holds to the side in which points −∂A

∂r
(1): this is already known, by

Lemma 2.16;

• if the exit vector −∂A
∂r

(1) is tangent to M at A(1), there exists an
arbitrarily small deformation Ad of A with Ad(1) = A(1) having
boundary Ad(∂∆) contained in M ∪ ω±A(−1) such that the new exit

vector−∂Ad

∂r
(1) is not tangent to M at Ad(1); then by translating Ad

as in Lemma 2.16, holomorphic extension holds at A(1).
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− ∂Ad

∂r
(1) not tangent to M

A(1)

M

A(−1) A(∆)

Ad(∆)

− ∂A
∂r

(1) tangent
to M

Translation after perturbation

Ad(−1)

ω±
A(−1)

Perturbation of the exit vector

Indeed, thanks to the flexibility of the solutions to the parametrized
Bishop equation provided by Theorem 3.7(IV), we can easily, as in
Lemma 2.16, add translation parameters (x0

1, z
′
0, u0) to a slightly deformed

disc Ad attached to M ∪ ω±A(−1) and then Ad
x0
1,z

′
0,u0

(∆1) covers a small
one-sided neighborhood of M at A(1) = Ad(1), thanks to the crucial
condition −∂Ad

∂r
(1) 6= 0. We shall not copy the details.

We claim that the proposition ends the proof of Theorem 2.7. By as-
sumption, C 0

CR(M) extends holomorphically to a one-sided neighborhood
ω±p at p. The closure ω±p contains an open neighborhood Up of p. Let
q ∈ OCR(M, p) and construct a chain of analytic discs from q up to a point
p′ ∈ Up. The endpoint p′ = A1(−1) of the chain of analytic discs being
arbitrarily close to p, hence in Up, holomorphic extension holds at A1(−1).
We then apply the proposition successively to the discs A1, A2, . . . , A` and
deduce holomorphic extension at q.

We now explain Lemma 2.20. To approximate a complex-tangential
curve, it suffices to construct families of analytic discs that are essentially
directed along given vectors vq ∈ T cqM .

Lemma 2.22. For every point q ∈ M and every nonzero complex tan-
gent vector vq ∈ T cqM\{0}, there exists a family of C 2,α−0 analytic discs
Bq,vq ,t(ζ) parametrized by t ∈ R with |t| < t1, for some t1 > 0, that satis-
fies:

• Bq,vq ,t(∂∆) ⊂M ;
• q = Bq,vq ,t(1);

• vq =
∂Bq,vq,0

∂t
(−1);

•
∣∣∣∣Bq,vq ,t

∣∣∣∣
C 1,0(∆)

6 K t, for some K > 0.

Proof. In coordinates centered at q, representM by v = ϕ(z, u) withϕ(0) =
0 and dϕ(0) = 0. The vector vq ∈ T cpM = {w = 0} has coordinates (żq, 0)

for some nonzero żq ∈ Cn−1. Introduce the family of analytic discs

Bq,vq ,t(ζ) := (t żq(1− ζ)/2, Wt(ζ)) ,
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where the real part Ut ofWt is the unique C 2,α−0 solution of the Bishop-type
equation:

Ut(e
i θ) = −T1

[
ϕ (t żq(1− ·)/2, Ut(·))

]
(ei θ).

Proceeding as carefully as in Section 3(IV), we may verify that the assump-
tion dϕ(0) = 0 implies that ||Wt||1,0 = O(|t|2). Then it is obvious that

vq = (żq, 0) =
∂Bq,vq,0

∂t
(−1). ¤

We now complete the proof of Lemma 2.20. Any point q ∈ OCR(M, p)
is the endpoint of a finite concatenation of integral curves of sections L
of T cM . It suffices to construct the chain of discs for a single such curve
exp(tL)(p). After multiplying L by a suitable function, we may assume that
q is the time-one endpoint q = exp(L)(p).

Moving backwards, we start from q` := q, we define A`(ζ) :=
Bq`,−L(q`),1/`(ζ) and we set q`−1 := Bq`,−L(q`),1/`(−1). Clearly, q`−1 =
q` − 1

`
L(q`) + O( 1

`2
). Starting again from q`−1, we again move backwards

and so on, i.e. we define by descending induction:

• Ak(ζ) := Bqk,−L(qk),1/`(ζ);
• qk−1 := Bqk,−L(qk),1/`(−1),

until k = 1. Since qk−1 = qk − 1
`
L(qk) + O( 1

`2
) for k = 1, . . . , `, the

sequence of points qk is a discrete approximation of the integral curve of L,
hence the endpoint q0 = A1(−1) is arbitrarily close to p, provided ` is large
enough. Finally, by construction ||Ak||1,0 = O(1

`
). ¤

The proof of the main Proposition 2.21 does not use special features of
hypersurfaces. For this reason, we will directly deal with generic submani-
folds of arbitrary codimension, passing to a new section.

§3. TUMANOV’S THEOREM, DEFORMATIONS OF BISHOP DISCS
AND PROPAGATION ON GENERIC MANIFOLDS

3.1. Wedges and CR-wedges. Assume now that M is a connected generic
submanifold inCn of codimension d > 1 and of CR dimensionm = d−n >
1. The case d = 1 corresponds to a hypersurface. The notion of local
wedge at a point p generalizes to codimension d > 2 the notion of one-sided
neighborhood at a point of a hypersurface.

More briefly that was has been done in Section 4(III), a wedge may be
defined as follows. Choose a d-dimensional real subspace Hp of TpCn satis-
fying TpCn = TpHp ⊕ TpM and a small convex open salient truncated cone
Cp ⊂ Hp with vertex p. Then a local wedge of edge M at p is:

W (Up, Cp) := {q + c : q ∈ Up, c ∈ Cp}.
This is not yet the most effective definition. Up to shrinking open sets and

parameter spaces, all definitions of local wedges will coincide. Concretely,
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the wedges we shall construct will always been obtained as unions of small
pieces of families of analytic discs partly attached to M . So we formulate
all the technical conditions that will insure that such pieces of discs cover a
wedge.

Definition 3.2. A local wedge of edge M at p is a set of the form:

Wp :=
{
At,s

(
rei θ

)
: |t| < t1, |s| < s1, |θ| < θ1, r1 < r < 1

}
,

where, t ∈ Rd−1 is a rotation parameter, t1 > 0 is small, s ∈ R2m+d−1 is a
translation parameter, s1 > 0 is small, θ1 > 0 is small, r1 < 1 is close to 1
and At,s(ζ), with ζ ∈ ∆, is a parametrized family of C 2,α−0 analytic discs
satisfying:

• At,0(1) = p for every t;

• the boundaries At,s(∂∆) are partly (sometimes completely) attached
to M , namely At,s(ei θ) ∈M , at least for |θ| 6 3π

2
;

• for every fixed t, the mapping (s, ei θ) 7→ At,s(e
i θ) is a diffeomor-

phism from {|s| < s1} × {|θ| < θ1} onto a neighborhood of p in
M ;

• the exit vector −∂A0,0

∂r
(1) is not tangent to M at p, namely it has

nonzero projection proj TpCn/TpM(−∂At,0/∂r(1)) onto the normal
space TpCn/TpM to M at p;

• choose any linear subspace Hp of TpCn satisfying TpHp ⊕ TpM =
TpCn, so thatHp ' TpCn/TpM , denote by projHp

: TpCn → Hp the
projection onto Hp parallel to TpM , define the associated exit vector

ex(At,0) := projHp
(−∂At,0

∂r
(1)) ∈ Hp

and the associated normalized exit vector n-ex(At,0) :=
ex(At,0)/|ex(At,0)|; then the rank at t = 0 of the mapping

Rd−1 3 t 7−→ n-ex(At,0) ∈ Sd−1 ⊂ Rd

should be maximal equal to d− 1.



176

A local (curved) wedge of edge M at p
b∆

A

M
M

i

1

∆ b∆

b∆

0

∆

−i

−1

At,s(re
i θ)

p

Wpr1

θ1

−θ1

r1

The last, most significant condition means that n-ex(At,0) describes an
open neighborhood of n-ex(A0,0) in the unit sphere Sd−1 ⊂ Rd. This is of
course independent of the choice of Hp. Then, fixing s = 0 and θ = 0,
as the rotation parameter t ∈ Rd−1 varies with |t| < t1, and as the radius
r with r1 < r < 1 varies, the curves At,0(r) generate an open truncated
(curved) cone in some d-dimensional local submanifold transverse to M
at p. Finally, as the translation parameter s varies, the points At,s(rei θ)
describe a (curved) local wedge of edge M at p.

Lemma 3.3. Shrinking t1 > 0, s1 > 0, θ1 > 0 and 1− r1 > 0 if necessary,
the points of Wp are covered injectively: At,s(rei θ) = At′,s′(r

′ei θ
′
) if and

only if t = t′, s = s′, r = r′ and θ = θ′.

This property follows directly from all the rank conditions. It will be
useful to insure uniqueness of holomorphic extension (monodromy).

Definition 3.4. ([Tu1990, Trp1990]) A local CR-wedge of edge M at p of
dimension 2m+d+ e, with 1 6 e 6 d, is a set W CR,e

p defined similarly as a
local wedge, but assuming that the rotation parameter t belongs to Re−1 and
that the rank of the normalized exit vector mapping

Re−1 3 t 7−→ n-ex(At,0) ∈ Sd−1 ⊂ Rd
is equal to e− 1.

Then, fixing s = 0 and θ = 0, as the rotation parameter t ∈ Re−1 with
|t| < t1 varies, and as the radius r with r1 < r < 1 varies, the curves
At,0(r) describe an open truncated (curved) cone in some e-dimensional lo-
cal submanifold transverse to M at p. These intermediate wedges of smaller
dimension will play a crucial technical rôle in the sequel.

The case e = 1 deserves special attention. A CR-wedge is then just a
manifold with boundary M1

p with dim M1
p = 1 + dim M that is attached to

M at p, namely there exists an open neighborhood Up of p in M with Up ⊂
∂M1

p . If in additionM has codimension d = 1, we recover the notion of one-
sided neighborhood. It is clear that after a possible shrinking, every C 2,α−0
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manifold with boundary M1
p attached to M at p may be prolonged as a local

C 2,α−0 generic submanifold M 1
p ≡ W CR,1

p containing a neighborhood of p
in M (as shown in the right diagram).
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Cn

p

M
M

M

Cn

p

W CR,e
p

Prolongation of a CR-wedge as a generic submanifold

M e
p

M e
p

W CR,e
p

By elementary differential geometry, for e > 2, it may be verified that a
local CR-wedge W CR,e

p of edge M at p defined by means of a C 2,α−0 family
of discs, namely

W CR,e
p :=

{
At,s

(
rei θ

)
: |t| < t1, |s| < s1, |θ| < θ1, r1 < r < 1

}
,

may also be prolonged as a local generic submanifold M e
p of dimension

2m + d + e containing a neighborhood of p in M . The left diagram is an
illustration; in it, e = d = 2, so that M of codimension 2 is (unfortunately
for intuition) collapsed to p.

However, the smoothness of M e
p can decrease to C 1,α−0, because as in

a standard local blowing down (z1, z2) 7→ (z1, z1z2), the rank of the map
(r, θ, s, t) 7−→ At,s

(
rei θ

)
degenerates when r = 1, since the discs (partial)

boundaries
{
At,s

(
ei θ

)
: |θ| 6 3π

2

}
are constrained to stay in M . For techni-

cal reasons, we will need in the sequel the existence of a prolongation M e
p

that is C 2,α−0 also when e > 2. The following modification of the defini-
tion of W CR,e

p insures the existence of a C 2,α−0 prolongation M e
p . It will be

applied implicitly in the sequel without further mention.
So, assume e > 2, let At,s be a family of discs as in Definition 3.4 with

ex(A0,0) 6= 0 in TpCn/TpM and t 7→ n-ex(At,0) of rank e − 1 at t = 0.
Fix t := 0 and define firstly

W CR,1
p :=

{
A0,s(re

i θ) : |s| < s1, |θ| < θ1, r1 < r < 1
}
.

This is a manifold with boundary attached to M at p. So there is a small
C 2,α−0 prolongation M 1

p ⊃ W CR,1
p .

Choose t 6= 0 small with At,0 having exit vector nontangent to M 1
p at p.

Introduce a one-parameter family Mσ, σ ∈ R, |σ| < σ1, σ1 > 0, of generic
submanifolds obtained by deforming slightly M inside M 1

p near p, with
Mσ ⊂M ∪W CR,1

p for σ > 0. The Mσ are “translates” of M in M 1
p near p.

To understand the process, we draw two diagrams in different dimensions.
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p,M

W CR,2
p W CR,1

p

M 1
p

M 2
p

M

M 1
p

W CR,1
p M

Mσ

Mσ

Construction of a C 2,α−0 prolongation M e
p of W CR,e

p

At,s,σ(∆)

Thanks to the flexibility of Bishop’s equation (Theorem 3.7(IV)), the At,s
may be deformed as a C 2,α−0 family At,s,σ and we define secondly

W CR,2
p :=

{
At,s,σ(r e

i θ) : |s| < s1, 0 < σ < σ1, |θ| < θ1, r1 < r < 1
}
.

Then this set constitutes a local CR-wedge of dimension 2m+d+2 with edge
M at p. Letting σ run in (−σ1, σ1) above, we get instead a certain manifold
with boundary attached to M 1

p that may be extended as a C 2,α−0 generic
submanifold M 2

p of dimension 2m + d + 2. Then W CR,2
p is essentially one

quarter of M 2
p . We neither draw W CR,2

p nor W 2
p in the right diagram above,

but the reader sees them. By induction, using that t 7→ n-ex(At,0) has rank
e− 1 at t = 0, we get the following.

Lemma 3.5. After a possible shrinking, a suitably constructed local C 2,α−0

CR-wedge W CR,e
p of edge M at p may be prolonged as a local C 2,α−0

generic submanifold M e
p of dimension 2m + d + e containing a neighbor-

hood of p in M .

In the sequel, similar technical constructions will be applied to insure the
existence of C 2,α−0 prolongations M e

p ⊃ W CR,e
p without further mention.

3.6. Holomorphic extension of CR functions in higher codimension. In
1988, Tumanov [Tu1988] established a theorem that is nowadays celebrated
in Several Complex Variables. Recall that by definition, M is locally mini-
mal at p if the local CR orbit O loc

CR(M, p) contains a neighborhood of p inM .
Equivalently, M does not contain any local submanifold N passing through
p with CRdimN = CRdimM and dimN < dimM .

Theorem 3.7. ([Tu1988, BRT1994, Trp1996, Tu1998, BER1999]) LetM be
a local C 2,α generic submanifold of Cn and let p ∈M . If M is locally min-
imal at p, then there exists a local wedge Wp of edge M at p such that every
f ∈ C 0

CR(M) possesses a holomorphic extension F ∈ O(Wp)∩C 0(M∪Wp)
with F |M = f .
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Conversely, recall that according to Theorem 4.41(III), if M is not lo-
cally minimal at p, there exists a local continuous CR function that is not
holomorphically extendable to any local wedge at p.

Since the literature already contains abundant restitutions17, we will focus
instead on propagation phenomena that are less known.

In 1994, as an answer to a conjecture formulated by Trépreau
in [Trp1990], it was shown simultaneously by Jöricke and by the
first author that Tumanov’s theorem generalizes to globally minimal
M . The preceding statement is a direct corollary of the next. Its
proof given in [Me1994, Jö1996] used techniques and ideas of Tu-
manov [Tu1988, Tu1994a] and of Trépreau [Trp1990].

Theorem 3.8. ([Me1994, Jö1996]) Let M be a connected C 2,α generic sub-
manifold of Cn. If M is globally minimal then at every point p ∈ M ,
there exists a local wedge Wp of edge M at p such that every continu-
ous CR function f ∈ C 0

CR(M) possesses a holomorphic extension F ∈
O(Wp) ∩ C 0(M ∪Wp) with F |M = f .

With this statement, the extension theorem for CR function has reached a
final, most general form. Philosophically, the main reason why it is true lies
in the propagation of holomorphic extendability along complex-tangential
curves. This was developed by Trépreau in 1990, using microlocal analysis.

Theorem 3.9. ([Trp1990]) Let M be a connected C∞ generic submanifold
of Cn. If C 0

CR(M) extends holomorphically to a local wedge at some point
p ∈ M , then at every point q ∈ OCR(M, p), there exists a local wedge
Wq of edge M at q such that every f ∈ C 0

CR(M) possesses a holomorphic
extension F ∈ O(Wq) ∩ C 0(M ∪Wq) with F |M = f .

Before surveying the original proof ([Me1994, Jö1996]) of this theorem
in Section 5, we shall expose in length a substantially simpler proof of The-
orem 3.8 that was devised by the second author in [Po2004]. This neat proof
treats locally and globally minimal generic submanifolds on the same foot-
ing. It relies partly upon a natural deformation proposition due to Tumanov
in [Tu1994a], but without any notion of defect of an analytic disc, without
any needs to control the variation of the direction of CR-extendability, and
without any partial connection, as in [Trp1990, Tu1994a, Me1994]. The

17We recommend mostly the two elegant presentations [Trp1996] and [Tu1998]; other
references are: [BRT1994, BER1999]. Excepting a conceptual abstraction involving the
implicit function theorem in Banach spaces and the conormal bundle to M , the major argu-
ments: differentiation of Bishop’s equation and a crucial correspondence between an exit
vector mapping and an evaluation mapping defined on the space of discs attached to M , the
geometric structure of the proof is exactly the same in the original article [Tu1988] as in the
restitutions.
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next paragraphs and Section 4 are devoted to the proof of this most general
Theorem 3.8.

Example 3.10. A globally minimal manifold may well be not locally mini-
mal at any point.

Indeed, let χ : R → R+ be C∞ with χ = 0 on (−∞, 1], with χ > 0
on (1,+∞) and with second derivative χxx > 0 on (1,+∞). Consider the
generic manifold M of C3 defined by the two equations

v1 = χ(x), v2 = χ(−x),
in coordinates (x+ i y, u1 + i v1, u2 + i v2). Then T 1,0M is generated by

L =
∂

∂z
+ i χx(x)

∂

∂w1

− i χx(−x) ∂

∂w2

.

In terms of the four coordinates (x, y, u1, u2) on M , the two vector fields
generating T cM are

L1 := 2 ReL =
∂

∂x
,

L2 := 2 ImL =
∂

∂y
+ χx(x)

∂

∂u1

− χx(−x) ∂

∂u2

(we have dropped χx(x) ∂
∂v1
−χx(−x) ∂

∂v2
in 2 ReL). Denote by L0 the sys-

tem of these two vector fields {L1, L2} on R4 ' M and by L the C∞(R4)-
hull of L0. Observe that the Lie bracket

[
L1, L2

]
= χxx(x)

∂

∂u1

+ χxx(−x) ∂

∂u2

is zero at points p = (xp, yp, u
p
1, u

p
2) with −1 < xp < 1, has non-zero

∂
∂u2

-component at points p with xp < −1 and has non-zero ∂
∂u1

-component
at points p with xp > 1. It follows that the local L-orbit of a point
p with xp < −1 is {u1 = up1}, of a point p with −1 < xp < 1 is
{u1 = up1, u2 = up2} and of a point xp with xp > 1 is {u2 = up2}.
Also, observe that since the vector field L1 = ∂

∂x
belongs to L, the lo-

cal L-orbit of any point p = (xp, yp, u
p
1, u

p
2) contains points of coordinates

(xp + t, yp, u
p
1, u

p
2), with t small. We deduce that the local L-orbit of points

p with xp = −1 or xp = 1 are three-dimensional, hence in conclusion:

O loc
L (R4, p) =





Up ∩ {u1 = up1} if xp 6 −1,

Up ∩ {u1 = up1, u2 = up2} if − 1 < xp < 1,

Up ∩ {u2 = up2} if xp > 1,

where Up is a neighborhood of p in M . So L is nowhere locally minimal.

Lemma 3.11. The system L is globally minimal.
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Proof. We check that any two points p, q ∈ R4 are in the same L-orbit.
Using the flow of L1 = ∂

∂x
and then the flow of L2 on {x = 0}, the original

two points p and q may be joined to points, still denoted by p = (0, 0, up1, u
p
2)

and q = (0, 0, uq1, u
q
2), having zero x-component and zero y-component.

We claim that the global L-orbit OL(R4, p) of every point
p = (0, 0, up1, u

p
2) contains a neighborhood of p in R4. Since the two-

dimensional plane {x = y = 0} is connected, this will assure that any two
points p = (0, 0, up1, u

p
2) and q = (0, 0, uq1, u

q
2) are in the same L-orbit.

Indeed, by means of ∂
∂x

, every point p = (0, 0, up1, u
p
2) is joined to the two

points p− := (−1, 0, up1, u
p
2) and p+ := (1, 0, up1, u

p
2). Let Up− and Up+ be

small neighborhoods of p− and of p+. Denote by H− := {u1 = up1} ∩ Up−
and by H+ := {u2 = up2} ∩ Up+ small pieces of the three-dimensional local
L-orbits of p− and of p+.

u2

H−

H+

Up+
Up− Up

x

u1

pp− p+

M ∼= R4

Verification that Linv(0) = T0R4

exp(−L1)exp(L1)

The flow of L1 = ∂
∂x

being a translation, we deduce:

exp(L1)(H−) = {u1 = up1} ∩ Up,
exp(−L1)(H+) = {u2 = up2} ∩ Up,

where Up is a small neighborhood of p in M ' R4. Observe that the two
3-dimensional planes are transversal in TpR4. Lemma 1.28(III) yields:

Linv(p−) ⊃ Tp−O loc
L (p−) = {u1 = up1},

Linv(p+) ⊃ Tp+O loc
L (p+) = {u2 = up2}.

By the very definition of Linv, we necessarily have:

Linv(p) ⊃ exp(L1)∗
(
Linv(p−)

)
+ exp(−L1)∗

(
Linv(p+)

)

= {u1 = up1}+ {u2 = u2}
= TpR4,

so Linv(p) = TpR4. Consequently, OL(R4, p) contains a neighborhood of
(0, 0, up1, u

p
2) in R4. ¤
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3.12. Setup for propagation. Let M be connected, generic and C 2,α, let
q ∈ M and let W CR,e

q be a CR-wedge of dimension 2m + d + e at q, with
1 6 e 6 d. For short, we will say that C 0

CR(M) extends to be CR on W CR,e
q

if for every f ∈ C 0
CR, there exists F ∈ C 0

CR(M ∪W CR,e
q ) with F |M = f .

Theorem 3.13. Let e ∈ N with 1 6 e 6 d. Assume that C 0
CR(M) extends to

be CR on a CR-wedge W CR,e
p of dimension 2m+d+e at some point p ∈M .

Then for every q ∈ OCR(M, p), there exists a CR-wedge W CR,e
q at q of the

same dimension 2m+ d+ e to which C 0
CR(M) extends to be CR.

In the case e = d, we recover18 Trépreau’s Theorem 3.9, since continuous
CR functions on an open set of Cn (here a usual wedge) are just holomor-
phic. IfM is globally minimal, then extension holds at every q ∈M . Notice
that this statement covers the propagation Theorem 2.7, stated previously in
the hypersurface case d = e = 1.

Let us start the proof. Through a chain of small analytic discs, ev-
ery q ∈ OCR(M, p) is joined to a point p′ arbitrarily close to p: indeed,
Lemma 2.20 and its proof remain the same in arbitrary codimension d > 1.
At p′, CR extension holds, because the edge of W CR,e

p contains a small open
neighborhood Up of p in M . To deduce CR extension at q, it suffices there-
fore to propagate CR extension along a single disc, as stated in the next main
proposition.

Hp

At′ (∆)

W CR,e
A(−1)

Cp

M
M A(−1) A(∆) p

Normal deformations of an analytic disc

Proposition 3.14. (Propagation along a disc) ([Tu1994a, MP1999], [∗])
Let A be a small C 2,α−0 analytic disc attached to M which is an embedding
∆ → Cn. Let e ∈ N with 1 6 e 6 d. Assume that there exists a C 2,α−0

CR-wedge W CR,e
A(−1) at A(−1) of dimension 2m + d + e to which C 0

CR(M)

18Classical microlocal analysis was devised to measure the analytic wave front set of a
distribution in terms of the exponential decay ot the Fourier transform restricted to open,
conic submanifolds of the cotangent bundle. We suspect that there might exist higher gen-
eralizations of microlocal analysis in which one takes account of the good decay of the
Fourier transform on submanifolds of positive codimension in the cotangent bundle.
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extends to be CR. Then there exists a C 2,α−0 CR-wedge W CR,e
A(1) at A(1) of

the same dimension 2m+ d+ e to which C 0
CR(M) extends to be CR.

With more precisions, the CR-wedge W CR,e
A(1) is constructed by translating

a certain family of analytic discsAt′ having the following properties. Setting
p := A(1), there exists a C 2,α−0 family At′ of analytic discs, t′ ∈ Re, |t′| <
t′1, t′1 > 0, with At′|t′=0 = A, with At′(1) = p, satisfying At′(ei θ) ∈ M

for |θ| 6 3π
2

and having their boundaries At′(∂∆) ⊂ M ∪ W CR,e
A(−1) for t′

belonging to some open truncated cone C′ ⊂ Re, such that the exit vector
mapping:

Re 3 t′ 7−→ ex(At′) = projHp

(
−∂At′
∂r

(1)

)
∈ Rd

is of maximal rank equal to e at t′ = 0, where Hp ' Rd is any linear
subspace of TpCn such that Hp ⊕ TpM = TpCn, and where projHp

is the
linear projection parallel to TpM .

Geometrically, as t′ varies, the exit vectors ex(At′) describe an open cone
Cp ⊂ Hp, drawn in the diagram.

We claim that this statement covers the second, delicate case of Proposi-
tion 2.21. Indeed assuming that e = d = 1 and that the exit vector−∂A

∂r
(1) is

tangent to M at A(1), the above proposition includes A in a one-parameter
family At′ whose direction of exit in the normal bundle has nonzero deriv-
ative with respect to t′. Hence for every nonzero t′, the direction of exit of
At′ is not tangent to M at p. Thus, a non-tangential deformed disc Ad as in
Proposition 2.21 may be chosen to be any At′ , with t′ 6= 0.

Proof of Proposition 3.14. We first explain how to get CR extension at p
from the family At′ , taking for granted its existence.
(I) Suppose firstly that the exit vector of A = A0 is non-tangential to M at
p. We have to restrict the parameter space t′ ∈ Re to some parameter space
t ∈ Re−1 so as to reach Definition 3.4.

Let us take for granted the fact that the exit vector mapping has rank e at
t′ = 0. Then the normalized exit vector mapping

Re 3 t′ 7−→ n-ex(At′) = ex(At′)/|ex(At′)| ∈ Sd−1

has rank > e − 1 at t′ = 0. So there exists a small piece of an (e − 1)-
dimensional linear subspace Λ0 of Rd, parameterized as t′ = φ(t) for some
linear map φ, with t ∈ Re−1 small, namely |t| < t1, for some t1 > 0, such
that t 7→ n-ex(Aφ(t)) has rank (e− 1) at t = 0.

Setting At := Aφ(t), we thus reach Definition 3.4, without the translation
parameter s.

But proceeding exactly as in the hypersurface case, it is easy to include
some translation parameter getting a family (At′)s = At′,s. The proof is
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postponed to the end §3.24. Then the desired family At,s of the proposition
is just Aφ(t),s, shrinking t1 > 0 and s1 > 0 if necessary.

Lemma 3.15. There exists a deformation At′,s of At′ , with s ∈ R2m+d−1,
|s| < s1, such that:

• the boundaries At′,s(∂∆) are contained in M ∪ W CR,e
A(−1) and

At′(e
i θ) ∈M for |θ| 6 3π

2
;

• for every fixed t′, the mapping (s, ei θ) 7−→ At′,s(e
i θ) is a diffeomor-

phism from {|s| < s1} × {|θ| < θ1} onto a neighborhood of p in
M .

Therefore, the final family At,s yields a CR-wedge W CR,e
p at p = A(1),

as in Definition 3.4. The mild generalization of the approximation Theo-
rem 5.2(III) stated as Lemma 2.19 above in the case d = 1 holds in the
general case d > 1 without modification. Consequently, C 0

CR(M) extends
to be CR on W CR,e

p .
(II) Suppose secondly that the exit vector of A = A0 is tangential to M at
p. Thanks to the fact that the exit vector mapping has rank e at t′ = 0, for
every nonzero t′0, the disc At′0 is nontangential to M at p. In this case, we fix
a small t′0 6= 0 and we proceed with At′+t′0 just as above.

In summary, it remains only to construct the family At′ having the crucial
property that the exit vector mapping has rank e at t′ = 0. ¤

3.16. Normal deformations of analytic discs. Thus, we now expose how
to construct At′ . We shall introduce a parameterized family Mt′ of C 2,α−0

generic submanifolds by pushingM nearA(−1) inside W CR,e
A(−1) in e indepen-

dent normal directions, e being the number of degrees of freedom offered by
W CR,e
A(−1). Outside a neighborhood of A(−1), each Mt′ shall coincides with

M and also Mt′|t′=0 = M .
We may assume that the point p := A(1) is the origin in coordinates

(z, u+ i v) ∈ Cm ×Cd in which M is represented by v = ϕ(z, u), where ϕ
satisfies ϕ(0) = 0 and dϕ(0) = 0. Let t′ ∈ Re be small, namely |t′| < t′1,
with t′1 > 0.

In terms of graphing equations, the deformation Mt′ may be represented
by

v = Φ(z, u, t′),

with Φ ∈ C 2,α−0 defined for |t′| < t′1 satisfying Φ(z, u, 0) ≡ ϕ(z, u). The
point A(−1) has small coordinates (z−1, u−1 + i ϕ(z−1, u−1)). We require
that the e vectors

Φt′k(z−1, u−1, 0), k = 1, . . . , e,
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are linearly independent. There exists a truncated open cone C′ ⊂ Re with
the property that

Mt′ ⊂M ∪W CR,e
A(−1),

whenever t′ ∈ C′. In fact, we implicitly assume in Proposition 3.14 that the
CR-wedge based at A(−1) may be extended as a C 2,α−0 generic submani-
fold M e

A(−1) of dimension 2m + d + e passing through A(−1) so that Mt′

is contained in M ∪ M e
A(−1), for every |t′| < t′1. The original CR-wedge

W CR,e
A(−1) may then be viewed as a curved real wedge of edge M which is

contained inside M CR,e
A(−1).

The starting C 2,α disc A(ζ) = (Z(ζ),W (ζ)) with W (ζ) = (U(ζ) +
i V (ζ)) is attached to M with A(1) = 0. Equivalently:

{
V (ei θ) = ϕ

(
Z(ei θ), U(ei θ)

)
,

U(ei θ) = −T1

[
ϕ
(
Z(·), U(·))](ei θ),

for every ei θ ∈ ∂∆. Thanks to the existence Theorem 3.7(IV), there exists
a C 2,α−0 deformation At′ of A, where each At′(ζ) := (Z(ζ),W (ζ, t′)) with
At′(1) = p has the same z-component19 asA and is attached toMt′ , namely:

(3.17)

{
V (ei θ, t′) = Φ

(
Z(ei θ), U(ei θ, t′), t′

)
,

U(ei θ, t′) = −T1 [Φ(Z(·), U(·, t′), t′)] (ei θ),

for every ei θ ∈ ∂∆. Observe that W (ei θ, 0) ≡ W (ei θ). We then differenti-
ate the first line above with respect to t′k at t′ = 0, for k = 1, . . . , e, which
yields in matrix notation:
(3.18)
Vt′k(e

i θ, 0) = Φu

(
Z(ei θ), U(ei θ), 0

)
Ut′k(e

i θ, 0) + Φt′k

(
Z(ei θ), U(ei θ), 0

)
.

Also, the C 1,α−0 discs At′k(ζ, 0) satisfy the linear Bishop-type equation

Ut′k(e
i θ, 0) = −T1

[
Φu (Z(·), U(·), 0)Ut′k(·, 0) + Φt′k(Z(·), U(·), 0)

]
(ei θ).

As a supplementary space to TpM in TpCn, we choose Hp := {0} × iRd =
{w = 0, u = 0}. Then projHp

(−∂At′(1)/∂r) = −∂V (1, t′)/∂r, which
yields after differentiating with respect to t′k at t′ = 0:

(3.19)
∂

∂t′k

∣∣∣∣
t′=0

projHp

(
−∂At′
∂r

(1)

)
= −∂Vt

′
k

∂r
(1, 0),

19Since first order partial derivatives Wt′k(ζ, t′), k = 1, . . . , e, will appear in a while, we
do not write the parameter t′ as a lower index in U(ζ, t′) + i V (ζ, t′).
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for k = 1, . . . , e. We will establish that if the local deformations Mt′ of M
inside the CR-wedge W CR,e

A(−1) are concentrated in a sufficiently thin neigh-
borhood of A(−1), then the above e vectors −∂Vt′k/∂r(1, 0), k = 1, . . . , e,
are linearly independent. This will complete the proof of the proposition.

There is a singular integral operator J which yields the interior normal
derivative at 1 ∈ ∂∆ of any C 1,α−0 mapping v = ∆ → Rd which is har-
monic in ∆ and vanishes at 1 ∈ ∂∆:

(3.20) J (v) := p.v.
1

π

∫ π

−π

v(ei θ)

|ei θ − 1|2 dθ = −∂v
∂r

(1).

The proof is postponed to Lemma 3.25 below. If h : ∆ → Cd is C 1,α−0 and
holomorphic in ∆, we have in addition

J (h) = −∂h
∂r

(1) = i
∂h

∂θ
(1).

With the singular integral J , we may thus reformulate (3.19):

projHp

(
− ∂2A0

∂t′k∂r
(1)

)
= J (Vt′k).

Lemma 3.21. Let u, v ∈ C 1,α−0(∆,Rd) be harmonic in ∆ and vanish at
1 ∈ ∂∆. Then:

0 = J (u v − T1uT1v) .

In addition, u (and also v) satisfies the two equations:

J (u) = −∂(T1u)

∂θ
(1) and J (T1u) =

∂u

∂θ
(1).

Proof. The holomorphic product w := (u + iT1u)(v + iT1 v) vanishes to
second order at 1 ∈ ∂∆, so J (w) = 0, hence

0 = Re J (w) = J (u v − T1uT1v).

The pair of equations satisfied by u is obtained by identifying the real and
imaginary parts of J (h) = i ∂h

∂θ
(1), where h := u+ iT1u. ¤

Following [Tu1994a], we now introduce a d × d matrix G of C 1,α func-
tions on ∂∆ defined by the functional equation

G(ei θ) = I + T1 [G(·) Φu (Z(·), U(·), 0)] (ei θ).

Here Φu = (Φj
ul

)16j6d
16l6d is a d × d matrix. Since Φu(z, u, 0) ≡ ϕu(z, u)

is small, the solution G exists and is unique, by an application of Propo-
sition 3.21(IV). Notice that G(1) = I . Applying T1 to both sides, we get
T1G = −GΦu + cst., without writing the arguments. In fact, the constant
vanishes, since Φu(0, 0, 0) = ϕu(0, 0) = 0. So we get:

T1G = −GΦu.
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We also notice that Vt′k = T1 Ut′k and Ut′k = −T1 Vt′k .
Next, we rewrite (3.18) without arguments: Φt′k = Vt′k − Φu Ut′k , k =

1, . . . , e, we apply the matrix G to both sides, we replace GΦu by −T1G as
well as Ut′k by −T1Vt′k and we let appear a term u v − T1uT1v:

GΦt′k = GVt′k −GΦu Ut′k
= GVt′k − (T1G)(T1Vt′k)

= Vt′k + (G− I)Vt′k − T1(G− I) T1Vt′k .

Finally20, applying the singular operator J and remembering Lemma 3.21,
we obtain:

(3.22) J (GΦt′k) = J (Vt′k).

We claim that if the support of the deformation Mt′ is sufficiently concen-
trated near A(−1), the e vectors J (Vt′k) = J (GΦt′k) ∈ Rd are linearly
independent.

Indeed, since the deformations Mt′ are localized near A(−1), we have
Φt′k(Z(ei θ), U(ei θ), 0) ≡ 0, except for |θ + π| < θ2, with θ2 > 0 small. We
deduce:

(3.23)
J (GΦt′k) =

1

π

∫

|θ+π|<θ2

G(ei θ) Φt′k

(
Z(ei θ), U(ei θ), 0

)

|ei θ − 1|2 dθ

≈ 1

π

G(−1)

4

∫

|θ+π|<θ2
Φt′k

(
Z(ei θ), U(ei θ), 0

)
dθ.

Since, by assumption, the e vectors Φt′k(z−1, u−1, 0) are linearly indepen-
dent, the linear independence of the above (concentrated) vector-valued in-
tegrals follows.

The proofs of Proposition 3.14 and of Theorem 3.13 are complete. ¤

3.24. Proofs of two lemmas. Firstly, we check formula (3.20).

Lemma 3.25. Let u ∈ C 1,β(∆) (0 < β < 1) be harmonic in ∆, real-valued
and satisfying u(1) = 0. Then the interior normal derivative of u at 1 ∈ ∂∆
is given by:

−∂u
∂r

(1) = p.v.
1

π

∫ π

−π

u(ei θ)

|ei θ − 1|2 dθ = p.v.
i

π

∫

∂∆

u(ζ)

(ζ − 1)2
dζ.

Proof. The function h := u + iTu is holomorphic in ∆ and C 1,β in ∆.
Since Tu is also harmonic in ∆, since ∂h

∂r
(1) = ∂u

∂r
(1) + i ∂Tu

∂r
(1), and since

20We can also check that J (Ut′k) = −J (T1Vt′k) = ∂Vt′k(1, 0)/∂θ = 0. Indeed,
it suffices to differentiate (3.18) with respect to θ at θ = 0, noticing that Φu(0, 0, 0) =
ϕu(0, 0) = 0, that Ut′k(1, 0) = 0 and that Φt′k(z, u, 0) = 0 for (z, u) near (0, 0).
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the kernel |ei θ − 1|−2 is real, we may prove the lemma with u replaced by
h ∈ O(∆) ∩ C 1,β(∆).

Let ζ = rei θ and denote h1 := ∂h
∂ζ

(1) = ∂h
∂r

(1), so that h(ζ) =

(ζ − 1)h1 + O(|ζ − 1|1+β). We remind that, for any ζ0 ∈ ∂∆, by an elemen-
tary modification of Cauchy’s formula, we have p.v. 1

2πi

∫
∂∆

dζ
ζ−ζ0 = 1

2
. We

deduce that the linear term (ζ − 1)h1 provides the main contribution:

p.v.
i

π

∫

∂∆

(ζ − 1)h1

(ζ − 1)2
dζ = −2h1 p.v.

1

2πi

∫

∂∆

dζ

ζ − 1
= −h1.

Thus, we have to prove that the remainder r(ζ) := h(ζ) − (ζ − 1)h1,
which belongs to O(∆) ∩ C 1,β(∆), gives no contribution, namely satisfies∫
∂∆

r(ζ)
(ζ−1)2

dζ = 0.

Set s(ζ) := r(ζ)
(ζ−1)2

. Then s ∈ O(∆) is continuous on ∆\{1} and satisfies
|s(ζ)| 6 K |ζ − 1|β−1 for some K > 0. We claim that by an application of
Cauchy’s theorem, the integral

∫
∂∆

s(ζ) dζ , which exists without principal
value, vanishes.

Indeed, let ε with 0 < ε << 1 and consider the open disc ∆(1, ε) of
radius ε centered at 1. The drawing of this disc delineates three arcs of ∆:

(i) the open arc ∂∆\∆(1, ε), of length ≈ 2π − 2 ε;
(ii) the closed arc ∂∆ ∩∆(1, ε), of length ≈ 2 ε;

(iii) the closed arc ∂∆(1, ε) ∩∆, of length is ≈ πε.
0 1

ε

We then decompose the integral of s on ∂∆ as integrals on the first two
arcs: ∫

∂∆

s(ζ) dζ =

∫

∂∆\∆(1,ε)

s(ζ) dζ +

∫

∂∆∩∆(1,ε)

s(ζ) dζ.

The estimate |s(ζ)| 6 K |ζ − 1|β−1 insures the smallness of the second
integral: ∣∣∣∣

∫

∂∆∩∆(1,ε)

s(ζ) dζ

∣∣∣∣ 6 C1 ε
β.

To transform the first integral, we observe that Cauchy’s theorem entails that
integration of s(ζ) dζ on the closed contour

[
∂∆\∆(1, ε)

]∪[
∂∆(1, ε) ∩∆

]
vanishes:

0 =

∫

∂∆\∆(1,ε)

s(ζ) dζ +

∫

∂∆(1,ε)∩∆

s(ζ) dζ.

Hence the first integral
∫
∂∆\∆(1,ε)

may be replaced by the integral
− ∫

∂∆(1,ε)∩∆
on the third arc. The estimate |s(ζ)| 6 K |ζ − 1|β−1 again

insures that this second integral is bounded by C2 ε
β . In conclusion

| ∫
∂∆

s(ζ) dζ| 6 (C1 + C2) ε
β . ¤
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Proof of Lemma 3.15. Secondly, we provide the details for the translation
of the family At′ . Let v = ϕ(z, u) represent M in a neighborhood of p.
By assumption, At′(ζ) = (Z(ζ),W (ζ, t′)) is attached to Mt′ , with At′(1) =
p. Equivalently, the two equations (3.17) hold. Since A = At′|t′=0 is an
embedding, the vector vp := ∂A

∂θ
(1) ∈ TpM is nonzero. As in §2.12, we

choose a small (2m+ d− 1)-dimensional submanifold Kp passing through
p with Rvp ⊕ TpKp = TpM and we parametrize it by s 7→ (z(s), u(s) +
i ϕ(z(s), u(s))), where s ∈ R2m+d−1 is small, |s| < s1, s1 > 0. Then the
translation

At′,s(ζ) = (Z(ζ) + z(s),W (ζ, t′, s))

is constructed by perturbing the two equations (3.17), requiring only that

At′,s(1) = (z(s), u(s) + i ϕ(z(s), u(s))).

This is easily done:
{
V (ei θ, t′, s) = Φ

(
Z(ei θ) + z(s), U(ei θ, t′, s), t′

)
,

U(ei θ, t′, s) = u(s)− T1 [Φ (Z(·) + z(s), U(·, t′, s), t′)] (ei θ).
The non-tangency of vp with Kp at p then insures that for every small fixed
t′, the mapping (θ, s) 7→ At′,s(e

i θ) is a diffeomorphism onto a neighborhood
of p in M . ¤

§4. HOLOMORPHIC EXTENSION
ON GLOBALLY MINIMAL GENERIC SUBMANIFOLDS

4.1. Structure of the proof of Theorem 3.8. Let M be a C 2,α globally
minimal generic submanifold of Cn. For clarity, we begin by a summary of
the main steps of the proof of Theorem 3.8.

(a) Since M is globally minimal, the distribution q 7→ T cqM must be
somewhere not involutive, namely there must exist a point p ∈ M
and a section L of T 1,0M defined in an open neighborhood Up of p
in M with L(p) 6= 0 such that

[
L,L

]
(p) 6∈ T 1,0

p M ⊕ T 0,1
p M .

(b) Thanks to an easy generalization of the Lewy extension theo-
rem (§2.10), there exists a manifold M1

p attached to M at p with
dimM1

p = 1 + dimM to which C 0
CR(M) extends to be CR.

(c) Thanks to the main propagation Proposition 3.14, CR extension to a
similar manifold M1

q attached to M holds at every point q ∈ M =
OCR(M, p).

(d) Since there are as many manifolds with boundary as points in M ,
it may well happen that at some point p ∈ M which belongs to the
edge of two different manifolds M1

p′ and M1
p′′ , the tangent spaces
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TpM
1
p′ and TpM1

p′′ are distinct. Refering to the diagram of §4.5 be-
low, we may then immediately profit of such a situation, if it occurs.

(e) Indeed, in this case, an appropriate version of the edge-of-the-wedge
theorem guarantees that C 0

CR(M) extends to be CR on a C 2,α−0 CR-
wedge W CR,e

p at p whose dimension e is > 1 + 1 = 2.
(f) To reason abstractly, let emax be the maximal integer e with 1 6

e 6 d such that there exists a point p ∈ M and a C 2,α−0 CR-wedge
W CR,e
p at p of dimension 2m+d+e to which C 0

CR(M) extends to be
CR. Thanks to the main propagation Proposition 3.14, CR extension
to a C 2,α−0 CR-wedge W CR,emax

q holds at every point q ∈ M =
OCR(M, p).

(g) If emax = d, we are done, Theorem 3.8 is proved. Assuming emax 6
d − 1, we must construct a contradiction in order to complete the
proof.

(h) Since emax is maximal, again because of the edge-of-the-wedge the-
orem, the transversal situation (d) cannot occur; in other words, ev-
ery point p ∈ M that belongs to the edges of two different CR-
wedges W CR,emax

p′ and W CR,emax

p′′ has the property that TpW
CR,emax

p′ =

TpW
CR,emax

p′′ .
(i) It follows that, as p runs in M , the (2m+d+e)-dimensional tangent

planes TpW CR,emax
p ∩ TpM glue together and they define a C 1,α−0

sub-distributionKM of the tangent bundle TM , of dimension 2m+
emax, which contains T cM .

(j) Since M is globally minimal, such a distribution p 7→ KM(p) must
be somewhere not involutive, namely there must exist a point p ∈M
such that [KM,KM ] (p) 6⊂ KM(p).

(k) The C 2,α−0 CR-wedge W CR,emax
p may be included in some C 2,α−0

local generic submanifold M emax
p passing through p and containing

M in a neighborhood of p.
(l) Multiplication by i gives T cpM

emax
p = KM(p) + iKM(p)

and the nondegeneracy [KM,KM ] (p) 6⊂ KM(p) implies that
the Levi-form of M emax

p is not identically zero at p, namely[
T cpM

emax
p , T cpM

emax
p

]
(p) 6⊂ T cpM

emax
p .

(m) Then a version of the Lewy-extension theorem on conic generic
manifolds having a generic edge guarantees that C 0

CR(M) extends to
be CR on a CR-wedge W̃ CR,1+emax

p of dimension 2m+ d+ 1 + emax

at p. This new CR-wedge is constructed by means of discs attached
to M ∪ W CR,emax

p , exploiting the nondegeneracy of the Levi form
of M emax

p . This contradicts the assumption that emax 6 d − 1 was
maximal, hence completes the proof of Theorem 3.8.
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The remainder of Section 4 is devoted to provide all the details of the
proof.

4.2. Lewy extension in arbitrary codimension. As observed in (a) above,
there exists a point p ∈ M and a local section L of T 1,0M with L(p) 6= 0
such that

[
L,L

]
(p) 6⊂ C⊗ T cpM .

Lemma 4.3. ([We1982, BPo1982]) There exists a manifold with boundary
M1

p attached to a neighborhood of p in M with dim M1
p = 1 + dim M to

which C 0
CR(M) extends to be CR.

We shall content ourselves with only one direction of extension, since
this will be sufficient for the sequel. Nevertheless, we mention that finer
results expressed in terms of the Levi-cone of M at p may be found
in [BPo1982, Bo1991]. Anyway, all the extension results that are based
on pointwise nondegeneracy conditions as the openness of Levi-cone or the
finite typeness of M at a point are by far less general than Theorem 3.8, in
which propagational aspects are involved.

Proof. The arguments are an almost straightforward generalization of the
proof of the Lewy extension theorem (hypersurface case), already exposed
in §2.10 above. Here is a summary.

By linear algebra reasonings, we may find local coordinates (z, w) ∈
Cm × Cd vanishing at p with L(p) = ∂

∂z1

∣∣
p
, with M given by v = ϕ(z, u),

where ϕ(0) = 0, dϕ(0) = 0, and with first equation given by

v1 = ϕ1 = z1z̄1 + O(|z1|2+α) + O(|z̃|) + O(|z| |u|) + O(|u|2),
where we have split further the coordinates as (z1, z̃, w1, w̃), with z̃ ∈ Cm−1

and w̃ ∈ Cd−1. For ε > 0 small, we introduce the disc defined by

Aε(ζ) :=
(
ε(1− ζ), 0̃,W 1

ε (ζ), W̃ε(ζ)
)
,

where Wε(ζ) = Uε(ζ) + i Vε(ζ) is uniquely defined by requiring that Aε is
attached to M and satisfies Aε(1) = p. As in §2.10, one verifies that

−∂V
1
ε

∂r
(1) = 2 ε2 + O(ε2+α).

Hence the exit vector of Aε at 1 ∈ ∂∆ is nontangential to M at p, provided
ε > 0 is small enough and fixed. By translating Aε, we construct the desired
manifold with boundary M1

p . ¤
4.4. Maximal dimension for CR extension. As in §4.1(f), let emax be the
maximal integer e 6 d such that there exists a point p ∈ M and a C 2,α−0

CR-wedge W CR,e
p at p of dimension 2m+d+e to which C 0

CR(M) extends to
be CR. By the above Lewy extension, we have emax > 1. Thanks to the main
propagation Proposition 3.14, it immediately follows that CR extension to a



192

C 2,α−0 CR-wedge W CR,emax
q holds at every point q ∈ M = OCR(M, p). If

emax = d, Theorem 3.8 is proved, gratuitously.
Assuming that 1 6 emax 6 d − 1, in order to establish Theorem 3.8, we

must construct a contradiction. In the sequel, we shall simply denote emax

by e.
To proceed further, we must reformulate with high precision how were

constructed all the CR-wedges obtained by the propagation Proposi-
tion 3.14.

For every point p ∈ M , there exists a local CR-wedge W CR,e
p attached

to a neighborhood of p in M which is described by means of a family of
analytic discs Ap,t,s(ζ), where t and s are parameters. Here, the subscript p
is not a parameter, it indicates only that p is the base point of Ap,t,s, namely
Ap,t,0(1) = p. The family Ap,t,s enjoys properties that are listed below.
In this list, the conditions are more uniform than those formulated in Def-
inition 3.4, but one immediately verifies that both formulations are equiv-
alent, up to a shrinking of t1(p) > 0, of s1(p) > 0, of θ1(p) > 0 and of
1− r1(p) > 0.

• The rotation parameter t ∈ Re−1 runs in {|t| < t1(p)}, for some
small t1(p) > 0.

• The translation parameter s ∈ R2m+d−1 runs in {|s| < s1(p)}, for
some small s1(p) > 0.

• The point q(p) := Ap,0,0(−1) ∈M is close to p.

• At q(p), there is a CR-wedge W CR,e
q(p) .

• The family Ap,t,s satisfies Ap,t,s(∂∆) ⊂M ∪W CR,e
q(p) .

• A small angle θ1(p) > 0 and a radius r1(p) > 0 close to 1 are chosen.

• A family Hp′ of linear subspaces of Tp′Cn satisfying Tp′Hp′ ⊕
Tp′M = Tp′Cn for all p′ ∈M in a neighborhood of p is chosen.

• For every t with |t| < t1(p), every s with |s| < s1(p) and every θ
with |θ| < θ1(p), the exit vector of Ap,t,s(ei θ) at ei θ is not tangent to
M :

ex(Ap,t,s)(e
i θ) := projH

Ap,t,s(ei θ)

(
i
∂Ap,t,s
∂θ

(ei θ)

)
6= 0.

• For every fixed swith |s| < s1(p) and every fixed θ with |θ| < θ1(p),
the normalized exit vector mapping

Re−1 3 t 7−→ n-ex(Ap,t,s)(e
i θ) ∈ Sd−1

is of rank (e− 1) at every t ∈ {|t| < t1(p)}.
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• For some t2(p), s2(p), θ2(p) and r2(p) satisfying 0 < t2(p) < t1(p),
0 < s2(p) < s1(p), 0 < θ2(p) < θ1(p) and 0 < 1 − r2(p) <
1− r1(p) < 1, the CR-wedge is precisely defined as:

W CR,e
p :=

{
Ap,t,s(re

i θ) : |t| < t2(p), |s| < s2(p), |θ| < θ2(p), r2(p) < r < 1
}
.

• Finally, the CR-wedge W CR,e
p is contained in a C 2,α−0 local generic

submanifold M e
p of the same dimension 2m+ d+ e that contains a

neighborhood of p in M . At a point p′ = Ap,t′,s′(e
i θ′) ∈ M of the

edge of W CR,e
p , the tangent space of M e

p is:

Tp′M
e
p = TpM ⊕ R

(
i
∂Ap,t′,s′

∂θ
(ei θ

′
)

) ⊕

16k6e−1

R
(
i
∂2Ap,t′,s′

∂θ∂tk
(ei θ

′
)

)
.

4.5. An edge-of-the-wedge theorem. There are as many generic subman-
ifolds M CR,e

p′ of codimension d − e as points p′ ∈ M . At a point p =

Ap′,t′,s′(e
i θ′) that belongs to the edge of such an M CR,e

p′ , we may define a
linear subspace of TpM by

KMp′(p) := T cpM
e
p′ ∩ TpM.

Since M e
p′ is generic and contains M in a neighborhood of p, this space

KMp′(p) contains T cpM and is (2m + e)-dimensional. Also, multiplication
by i induces an isomorphism KMp′(p)/T

c
pM ' TpM e

p′/TpM .
In general, two different KMp′(p) and KMp′′(p) need not coincide, or

equivalently, two different tangent spaces TpM e
p′ and TpM e

p′′ are unequal.

Ap′,t′,s′ (∆)

p
Cn

Ap′′,t′′,s′′(∆)

p′′

p′

q(p′)

q(p′′)M M

W CR,e
p′′

W CR,e
p′

Two non-tangent CR-wedges at p

More precisely, there is a dichotomy.

(I) Either for every two points p′, p′′ ∈ M such that there exists a point
p belonging to the intersection of the edges of the two CR-wedges
W CR,e
p′ and W CR,e

p′′ , namely of the form:

p = Ap′,t′,s′(e
i θ′) = Ap′′,t′′,s′′(e

i θ′′),
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for some values
|t′| < t2(p

′), |s′| < s2(p
′), |θ′| < θ2(p

′),

|t′′| < t2(p
′′), |s′′| < s2(p

′′), |θ′′| < θ2(p
′′),

the two spaces TpM e
p′ and TpM e

p′′ coincide. Equivalently,
KMp′(p) = KMp′′(p).

(II) Or there exist two points p′, p′′ ∈M and a point p = Ap′,t′,s′(e
i θ′) =

Ap′′,t′′,s′′(e
i θ′′) in the intersection of the edges of the two CR-wedges

W CR,e
p′ and W CR,e

p′′ such that

TpM
e
p′ 6= TpM

e
p′′ .

Lemma 4.6. The case TpM e
p′ 6= TpM e

p′′ implies that C 0
CR(M) extends to be

CR on a CR-wedge W̃ CR,1+e
p at p whose dimension equals 2m+ d+ 1 + e,

contradicting the maximality of e = emax.

Of course, this lemma follows by a known CR version of the edge-of-the-
wedge theorem ([Ai1989]), but for completeness, we summarize a shorter
proof that exploits the existence of the discs Ap′,t,s, as in [Po2004].

Proof. By construction, the family Ap′,t,s(ζ) covers the CR-wedge W CR,e
p′ .

The point p belongs to the edge of W CR,e
p′ .

Since TpM e
p′ 6= TpM e

p′′ , there exists a manifold M1
p ⊂ W CR,e

p′′ attached to
M at p with dim M1

p = 1 + dim M such that

1 + e = dim
([
TpM

1
p + TpW

CR,e
p′

]/
TpM

)
.

W CR,e

p′

Ap′,t,s,σ(∆)M1
p ⊂ W CR,e

p′′

p

M M

Ap′,t,s,σ(1)

W CR,e

q(p′)

fW CR,1+e
p

Translating Ap′,t,s along M1
p

We may deform the family Ap′,t,s by translating it along M1
p , as in the

diagram. So we introduce a supplementary parameter σ > 0 and we require
that the point Ap′,t,s,σ(1) should cover a one-sided neighborhood of p in M1

p

as σ runs in (0, σ1), for some small σ1 > 0, and as the previous translation
parameter s ∈ R2m+d−1 runs in {|s| < s2(p

′)}. Thanks to Theorem 3.7(IV),
the corresponding Bishop-type equation has C 2,α−0 solutions.
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If we choose t3 > 0 with |t′|+ t3 < t2(p
′), s3 > 0 with |s′|+ s3 < s2(p

′),
θ3 > 0 with |θ′| + θ3 < θ2(p

′), σ3 > 0 with σ3 < σ1 and r3 < 1 with
r2(p

′) < r3 < 1, the set:

W̃CR,1+e
p :=

{
Ap′,t,s,σ(re

i θ) : |t− t′| < t3, |s− s′| < s3,

|θ − θ′| < θ3, r3 < r < 1, 0 < σ < σ3

}

will constitute a CR-wedge of dimension 2m + d + 1 + e at p. By a tech-
nical adaptation of the approximation Theorem 5.2(III) (cf. Lemma 2.19),
C 0
CR(M) extends to be CR on W̃CR,1+e

p . ¤

4.7. Definition of the (non-integrable) subbundle KM ⊂ TM . Conse-
quently, case (II) cannot occur, because of the definition of e = emax. Thus,
case (I) holds. In other words, as p′ runs in M , the C 1,α−0 distributions
p 7→ KMp′(p) defined for p in the edge of W CR,e

p′ (a neighborhood of p′ in
M ) glue together in a well-defined C 1,α−0 vector subbundle of TM . Ob-
serve that T cM is a subbundle of KM of codimension e. For every point
p ∈M , we have:

T cpM ⊂ KM(p) = T cpM
e
p ∩ TpM.

As in §4.1(j), since M is globally minimal and since KM is of codi-
mension d − e > 1 in TM , there must exist a point p ∈ M such that
[KM,KM ] (p) 6⊂ KM(p).

Lemma 4.8. At such a point p, the Levi form of M e
p does not vanish identi-

cally: [
T cM e

p , T
cM e

p

]
(p) 6⊂ T cpM

e
p .

Proof. We reason by contradiction, assuming that
[
T cM e

p , T
cM e

p

]
(p) ⊂

T cpM
e
p . Let K1 and K2 be two arbitrary C 1,α−0 sections of KM defined in

a small neighborhood Up of p inM . SinceKM |Up is a subbundle of TM |Up ,
we have [

K1, K2
]
(p) ∈ TpM.

We may extend K1 and K2 to a neighborhood Up of p in M e
p that contains

Up as sections K 1 and K 2 of T cM e
p |Up . Since K1 and K2 are tangent to

M ∩ Up, one verifies that, independently of the extension:
[
K1, K2

]
(p) =

[
K 1,K 2

]
(p) ∈ T cpM e

p ,

where the second Lie bracket belongs to T cpM
e
p , because we assumed that

the Levi form of M e
p vanishes at p. We deduce

[
K1, K2

]
(p) ∈ T cpM e

p ∩ TpM = KM(p).

This contradicts [KM,KM ] (p) 6⊂ KM(p). ¤
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4.9. Lewy extension on CR-wedges. To contradict the maximality of e =
emax at a point p at which [KM,KM ] (p) 6⊂ KM(p), we formulate a Lewy
extension theorem on the conic manifold with edge W CR,e

p .

Proposition 4.10. Let p ∈ M and assume that
[
T cpM

e
p , T

c
pM

e
p

]
(p) 6⊂

T cpM
e
p . Then there exists a (2m + d + 1 + e)-dimensional local CR-wedge

W̃CR,1+e
p of edge M at p to which C 0

CR(M ∪W CR,e
p ) extends to be CR.

Thus, this proposition concludes the proof of Theorem 3.8.

Proof. There exists a local section L of T 1,0M e
p with L(p) 6= 0 such that[

L,L
]
(p) 6∈ T 1,0

p M e
p ⊕ T 0,1

p M e
p . It is appropriate to distinguish two cases.

Firstly, assume that L(p) ∈ T 1,0M . Then as in §4.2, we may construct
a small analytic disc Aε attached to M in a neighborhood of p having exit
vector −∂Aε

∂r
(1) approximately directed by

[
L,L

]
(p) 6∈ C⊗ TpM e

p . So this
disc has exit vector nontangential to M e

p at p. By translating it along M
and along the e supplementary directions offered by W CR,e

p , we deduce CR
extension to a (2m+ d+ 1 + e)-dimensional CR wedge W̃CR,1+e

p .

M

p

W CR,e
p

M

fW CR,1+e
p

Translating a disc non-tangent to M e
p along W CR,e

p

Secondly, assume that L(p) 6∈ T 1,0
p M for every local section L of T 1,0M

such that
[
L,L

]
(p) 6∈ T 1,0

p M e
p ⊕ T 0,1

p M e
p .

We explain the case d = 2, e = 1 first, since this case is easier to under-
stand. Under this assumption, M 1

p is a hypersurface of Cn divided in two
parts by M , one part being W CR,1

p . We draw a diagram.

z, u′, u′′

v′

MM

Cn

Aε

p

v′′

W CR,1
p

M 1
p

DISC ATTACHED TO A HALF HYPERSURFACE AND HAVING NONTANGENT EXIT VECTOR
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There exist coordinates (z, w′, w′′) ∈ Cn−2 × C × C centered at p in
which M 1

p is given by v′′ = ψ(z, w′, u′′), with ψ(0) = 0 and dψ(0) = 0
and in which M is given by a supplementary equation v′ = ϕ′(z, u′, u′′)
with ϕ′(0) = 0 and dϕ′(0) = 0. Changing the orientation of the v′-axis
if necessary, it follows W CR,1

p is given by the equation v′′ = ψ(z, w′, u′′)
and the inequation v′ > ϕ′(z, u′, u′′), with ϕ′(0) = 0 and dϕ′(0) = 0. In
the diagram, T cpM

1
p is the direct sum of the z-coordinate space with the

u′ + i v′-coordinate axis.
The Levi form of M 1

p is represented by a scalar Hermitian form
H(z, w′, z̄, w̄′). By assumption, its restriction to T cpM vanishes (otherwise,
the first case holds), so H(z, 0, z̄, 0) ≡ 0. The assumption that the Levi
form of M 1

p does not vanish identically insures that H is nonzero. To
proceed further, we need H(0, w′, 0, w̄′) 6≡ 0. If H(0, w′, 0, w̄′) ≡ 0,
since H is nonzero, by a linear coordinate change of the form w̃′ = w′,
z̃k = zk + ak w

′, k = 1, . . . , n − 2, w̃′′ = w′′, we may insure that
H(0, w′, 0, w′) 6≡ 0. Observe that such a change of coordinates stabilizes
both TpM and TpM 1

p . After a real dilation, we can assume that the equation
of M 1

p is of the form:

v′′ = w′w̄′ + O(|w′|2+α−0) + O(|z||(z, w′)|) + O(|u′′||(z, w′)|) + O(|u′′|2).

To the hypersurface M 1
p , we attach a disc Aε(ζ) with zero z-component,

with w′-component equal to i ε (1 − ζ) and with w′′-component (U ′′ε (ζ) +
i V ′′

ε (ζ)) of class C 2,α−0 satisfying the corresponding Bishop-type equation.
Exactly as in the Lewy extension theorem (§2.10), for ε > 0 small enough
and fixed, the exit vector of Aε at p is nontangent to M 1

p (this is uneasy
to draw in the diagram above, but imagine that the disc drawn in §2.10 is
attached to a half-paraboloid). Furthermore, using the inequality v′(ei θ) =

ε(1 − cos θ) > ε θ
2

π
for |θ| 6 π together with the property dϕ′(0) = 0,

it is elementary to verify that Aε(∂∆\{1}) is contained in the open half-
hypersurface {v′ > ϕ′}, as shown in the diagram.

Since the exit vector of Aε is nontangent to M 1
p , in order to get holo-

morphic extension to a wedge at p, it suffices to translate the disc Aε in the
half-hypersurface W CR,1

p .
However, if we translate Aε as usual by requiring that the base point

Aε,s(1) = ps, with s ∈ R2n−2 small, covers a neighborhood of p in M ,
it may well happen that, due to the curvature of M in a neighborhood of
p, the boundary of the translated disc enters slightly the other side of M 1

p ,
which is forbidden.

To remedy this imperfection, two equally good options present them-
selves. The first option would be to rotate slightly the translated disc Aε,s in
order that it becomes tangent to M at the point ps = Aε,s(1). Then adding
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a small parameter σ > 0, we would translate it slightly in the positive direc-
tion of W CR,1

p , essentially along the positive v′-direction.
The second option is to introduce a family of complex affine biholomor-

phisms Ψs that transfer ps ∈M to the origin and transfer the tangent spaces
at ps of M 1

p and of M to {v′′ = 0} and to {v′′ = v′ = 0}. So Ψs(M 1
p )

is given by v′′ = ψ′′(z, w′, u′′ : s) with ψ of class C 2,α−0 with respect to
all variables and with the map (z, w′, u′′) 7→ ψ′′(z, w′, u′′ : s) vanishing to
second order at the origin for every s ∈ R2n−2 small. Also, Ψs

(
W CR,1
p

)
is given by a supplementary inequation v′ > ϕ′(z, u′, u′′ : s), with ϕ′ of
class C 2,α (the smoothness of M ) with respect to all variables and with
(z, u′, u′′) 7→ ϕ(z, u′, u′′ : s) vanishing to second order at the origin.

To the hypersurface Ψs(M 1
p ), we attach the family of discs

Ãε,s,σ(ζ) =
(
0, i σ + i ε (1− ζ), Ũ ′′ε,s,σ(ζ) + i Ṽ ′′

ε,s,σ(ζ)
)

having zero z-component and w′-component equal to i σ+ i ε (1−ζ), where
σ ∈ R with |σ| < σ1, σ1 > 0, is a small parameter of translation along the
v′-axis. Of course:{

Ũ ′′ε,s,σ(e
i θ) = −T1

[
ψ

(
0, i σ + i ε(1− ·), Ũ ′′ε,s,σ(·) : s

)]
(ei θ),

Ṽ ′′
ε,s,σ(e

i θ) = T1

[
Ũ ′′ε,s,σ

]
(ei θ).

By means of elementary computations involving Taylor’s formula, we verify
two facts.

• If ε > 0 is sufficiently small and fixed, Ãε,s,0(∂∆\{1}) is contained
in the open half-hypersurface {v′ > ϕ′(z, u′, u′′ : s)}, for all s ∈
R2n−2 with |s| < s1, s1 > 0 small.

• Furthermore, for all σ with 0 < σ 6 σ1, and all s with |s| < s1, the
disc boundary Ãε,s,σ(∂∆) is contained in the open half-hypersurface
{v′ > ϕ′(z, u′, u′′ : s)}.

Coming back to the old system of coordinates, it follows that the family of
discsAε,s,σ := Ψ−1

s ◦Ãε,s,σ has base pointAε,s,σ(1) covering a neighborhood
of p in the half-hypersurface W CR,1

p , as s and σ vary. Since the exit vector
of Aε is not tangent to M 1

p at p, this family of discs covers a 2n-dimensional
wedge W̃CR,2n

p of edge M at p. This completes the proof of the second case
of the proposition when e = 1 and d = 2.

Based on these explanations, we may now summarize the general case.
There exist coordinates (z, w′, w′′) ∈ Cm×Ce×Cd−e vanishing at p in which
the C 2,α−0 generic submanifold M e

p is represented by v′′ = ψ(z, w′, u′′),
with ψ(0) = 0 and dψ(0) = 0. After killing the second order pluriharmonic
quadratic terms in every right hand side ψj′′(z, w′, 0), j′′ = 1, . . . , d− e, we
may assume that the quadratic terms are Hermitian forms Hj′′(z, w

′, z̄, w̄′).
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After a linear change of coordinates in the w′-space, TpM = {v′ = v′′ =
0}, the C 2,α generic edge M is defined by v = ϕ(z, u) with ϕ(0) = 0,
dϕ(0) = 0 and the conic open submanifold W CR,e

p of M e
p is defined by

v′′ = ψ(z, w′, u′′) together with the inequations

v′j′ > ϕ′j′(z, u
′, u′′), j ′ = 1, . . . , e,

where ϕ = (ϕ′, ϕ′′). In fact, we may assume that the cone defining the CR-
wedge on the tangent space is slightly larger than the salient cone v′j′ > 0,
j′ = 1, . . . , e.

The nonvanishing of the Levi form of M e
p at p entails that at least one Her-

mitian form Hj′′(z, w
′, z̄, w̄′) is nonzero. After renumbering, H1 is nonzero.

Also, since T cpM is the z-coordinate space, we have H1(z, 0, z̄, 0) ≡ 0 (oth-
erwise, the first case holds). After a complex linear coordinate change of
the form w̃′ = w′, z̃k = zk +

∑e
j′=1 a

j′
k w

′
j′ , w̃

′′ = w′′, we may insure that
H1(0, w

′, 0, w′) 6≡ 0. Then the set of vectors (0, w′) on whichH1 vanishes is
a proper real quadratic cone of Ce. Consequently, for almost every real vec-
tor (0, i v′), the quadratic form H1 is nonzero on the complex line C(0, i v′).
Since the cone defining W CR,e

p is open and may be slightly shrunk, we can
assume that H1 does not vanish on C(0, i v′1), with v′1 = (1, . . . , 1) ∈ Re.
It follows that the disc Aε attached to M e

p having zero z-component and
w′-component equal to (i ε (1− ζ), . . . , i ε (1− ζ)) is nontangent to M e

p at
p.

Furthermore, letting a point ps ∈ M of coordinates s := (z, u) vary in
a small neighborhood of p in M , we may construct a family of biholomor-
phisms Ψs sending ps to the origin and normalizing the equations of M , of
M e

p and of W CR,e
p under the form v = ϕ(z, u : s), v′′ = ψ(z, w′, u′′ : s)

and v′j′ > ϕ′j′(z, u
′, u′′ : s), with ϕ being C 2,α and with ψ being C 2,α−0 with

respect to all variables and both vanishing to second order at the origin.
Let σ ∈ Re, |σ| < σ1, be a small parameter of translation along the v′-

coordinate space. To the generic submanifold Ψs(M e
p ), we attach the family

of discs
Ãε,s,σ(ζ) =

(
0,W ′

ε,σ(ζ), U
′′
ε,s,σ(ζ) + i V ′′

ε,s,σ(ζ)
)
,

where

W ′
ε,σ(ζ) =

(
i σ1 + i ε (1− ζ), . . . , i σe + i ε (1− ζ)

)
,

and where{
Ũ ′′ε,s,σ(e

i θ) = −T1

[
ψ

(
0, i σ + i ε(1− ·), Ũ ′′ε,s,σ(·) : s

)]
(ei θ),

Ṽ ′′
ε,s,σ(e

i θ) = T1

[
Ũ ′′ε,s,σ

]
(ei θ).

By means of elementary computations involving Taylor’s formula, we may
verify that for all σ ∈ Re with 0 < σj′ 6 σ1, j′ = 1, . . . , e, and
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all s ∈ R2m+d, |s| < s1, the disc boundary Ãε,s,σ(∂∆) is contained in
{v′j′ > ϕ′j′(z, u

′, u′′ : s), j′ = 1, . . . , e}.
Coming back to the old system of coordinates, it follows that the family of

discsAε,s,σ := Ψ−1
s ◦Ãε,s,σ has base pointAε,s,σ(1) covering a neighborhood

of p in the CR-wedge W CR,e
p , as s and σ vary. Since its exit vector is not

tangent to M 1
p at p, this family of discs covers a (2m+d+1+e)-dimensional

CR-wedge W̃CR,1+e
p of edge M at p.

The proofs of the proposition and of Theorem 3.8 are complete. ¤

4.11. Wedgelike domains. On a globally minimal M , at every point p ∈
M , we have constructed a local wedge Wp by gluing deformations of discs.
It may well happen that at a point p that belongs to the edges of two different
wedges Wq′ and Wq′′ , the wedges have empty intersection in Cn (imagine
two thin opposite cones having vertex at 0 ∈ R2). Fortunately, by means
of the translation trick presented in §4.5 (cf. the diagram), we can fill in
the space in between. Achieving this systematically, by a sort of gluing-
shrinking processus, we obtain some connected open set W attached to M
containing possibly smaller wedges W ′

p ⊂ Wp at every point.
To set-up a useful definition, by a wedgelike domain W attached toM we

mean a connected open set that contains a local wedge of edge M at every
point. Geometrically speaking, the requirement of connectedness prevents
jumps of the directions of local wedges in the normal bundle TCn|M/TM .

We may finally conclude this section by the formulation of a statement
that is the very starting point of the study of removable singularities for CR
functions ([MP1998, MP1999, MP2000, MP2002, 26]).

Theorem 4.12. ([Me1997, MP1999]) If M is a globally minimal C 2,α

generic submanifold of Cn, there exists a wedgelike domain W attached
to M such that every continuous CR function f ∈ C 0

CR(M) possesses a
holomorphic extension F ∈ O(W ) ∩ C 0(M ∪W ) with F |M = f .

Its Lp version deserves special attention. Let W be a wedgelike domain
attached to M . A holomorphic function F ∈ O(W ) is said to belong to the
Hardy spaceHp

loc(W ) if, for every p ∈M , for every local coordinate system
centered at p in which M is given by v = ϕ(x, y, u), for every local wedge
of edge M at p contained in W of the form

W = W (ρ, σ, C) :=
{
(x+ iy, u+ iv) ∈ ∆m

ρ ×¤d
ρ × i¤d

σ :

v − ϕ(x, y, u) ∈ C}
,
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as defined in §4.29(III), for every coneC ′ ⊂ Rd withC ′∩Sd−1 ⊂⊂ C∩Sd−1

and for every ρ′ < ρ, the supremum:

sup
θ′∈C′

∫

∆m
ρ′×¤d

ρ′

|F (x+ iy, u+ iϕ(x, y, u) + iθ′)|p dx ∧ dy ∧ du < ∞

is finite. An adaptation of the proof of the preceding theorem yields its Lp

version.

Theorem 4.13. ([Po1997, Po2000]) IfM is a globally minimal C 2,α generic
submanifold of Cn, there exists a wedgelike domain W attached to M such
that every function f ∈ Lp

loc,CR, 1 6 p 6 ∞, possesses a Hardy space
holomorphic extension F ∈ Hp

loc(W ).

To conclude, we would like to mention that arguments similar to those
of Theorem 4.12 yield a mild generalization, worth to be mentioned: the
CR extension theory is valid for C 2,α CR manifolds that are only locally
embeddable.

However, for concreteness reasons, we preferred to set up the theory in a
globally embedded context. In the remainder of the memoir, not to enter su-
perficial corollaries, we will formulate all our results under the paradigmatic
assumption of global minimality. Thus, Theorems 4.12 and 4.13 will be our
basic main starting point.

The two monographs [Trv1992, BCH2005] deal not only with embedded
structures but also with locally integrable structures. Nevertheless, most
topics exposed here are not yet embraced in a comprehensive theory (cf.
§3.29(III)). So it is an open direction of research to transfer the theory of
holomorphic extension of CR functions (including removable singularities)
to locally integrable structures.
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[7 diagrams]

Removable singularities for general linear partial differential operators P =∑
β∈Nm aβ(x) ∂

β
x on domains Ω ⊂ Rn having order m > 1 and C∞ coeffi-

cients have been studied by Harvey and Polking (1970) in a general setting. As-
sumptions of metrical thinness of singularities, in the sense of Minkowski content
or of Hausdorff measure, insure automatic removability. For instance, relatively
closed sets C ⊂ Ω whose (n − m)-dimensional Hausdorff measure is null are
(P,L∞loc)-removable. For structural reasons, these general results (valid whatever
the structure of the operator) necessitate a control of growth when dealing with
L1
loc-removability. In addition, when P is an embedded complex-tangential op-

erator, this approach does not convey to the adequate results, because removable
singularities for holomorphic or CR functions must take advantage of automatic
extension to larger sets.

Since almost two decades, thanks to the impulse of Stout, removable singularities
have attracted much attention in several complex variables. A natural question is
whether the Hartogs-Bochner extension Theorem 1.9(V) holds when considering
CR functions that are defined only in the complement ∂Ω\K of some compact set
K ⊂ ∂Ω of a connected smooth boundary ∂Ω ⊂ Cn. In complex dimension n = 2,
Stout showed that the answer is positive if and only if K is convex with respect to
the space of functions that are holomorphic in a neighborhood of Ω. In complex
dimension n > 3, a complete cohomological characterization of different nature
was obtained by Lupacciolu (1994).

In another direction, by means of the above-cited global continuity principle,
Jöricke (1995) generalized Stout’s theorem to weakly pseudoconvex domains. Re-
cently, Jöricke and the second author were able to remove the pseudoconvexity as-
sumption by applying purely geometrical constructions without integral formulas,
controlling uniqueness of the extension (monodromy) by fine arguments.

Within the general framework of CR extension theory (exposed in Part V), the
study of removable singularities has been endeavoured by Jöricke in the hypersur-
face case since 1988, and after by the two authors in arbitrary codimension since
1995. The notions of CR-, W - and Lp-removability, although different, may be
shown to be essentially equivalent, thanks to technical deformation arguments. All
the surveyed results hold in Lp

loc with 1 6 p 6 ∞, including p = 1 and without
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any growth assumption near the singularity. On a generic globally minimal C 2,α

generic submanifold M of Cn, closed sets C ⊂M having vanishing (dimM − 2)-
dimensional Hausdorff measure are CR-, W - and Lp-removable. As an application,
CR meromorphic functions defined on an everywhere locally minimalM do extend
meromorphically to a wedgelike domain attached to M .

In conjunction with the Harvey-Lawson complex Plateau theorem, singulari-
ties C that are a priori contained in a 2-codimensional C 2,α submanifold N of
a strongly pseudoconvex C 2,α boundary ∂Ω ⊂ Cn (n > 3) are shown by Jöricke
to be not removable if and only if N is a maximally complex cycle. The condition
that N be somewhere generic was shown by the two authors to be sufficient for its
removability in arbitrary codimension.

Concerning more massive singularities, a compact subset K of a one-
codimensional submanifold M1 ⊂ ∂Ω ⊂ Cn is CR-, W - and Lp-removable
provided the CR dimension of ∂Ω is > 2 (viz. n > 3) and provided K does
not contain any CR orbit of M1 (Jöricke, 1999). The second author generalized
this theorem to higher codimension, assuming that M is globally minimal of
CR dimension m > 2. The main geometric argument (called sweeping out by
wedges) being available only in CR dimension m > 2, the more delicate case of
CR dimension m = 1 is studied extensively in the research article [26], placed in
direct continuation to this survey.

§1. REMOVABLE SINGULARITIES FOR
LINEAR PARTIAL DIFFERENTIAL OPERATORS

1.1. Hausdorff measure. Let M be a C 1 abstract manifold of dimension
n > 1 equipped with some Riemannian metric. For ` ∈ R with 0 6 ` 6 n,
we remind ([Ch1989]) the definition of the notion of `-dimensional Haus-
dorff measure H` on M , that generalizes the notion of integer dimension of
submanifolds.

If C ⊂M is an arbitrary subset and if δ > 0 is small, we define

H`
δ(C) = inf

{ ∞∑
j=1

r`j : C is covered by geodesic balls Bj of radius rj 6 δ

}
.

Clearly, H`
δ(C) 6 H`

δ′(C), for δ′ 6 δ, so the limit H`(C) = lim
δ→0+

H`
δ(C) ex-

ists in [0,∞]. This limit is called the `-dimensional Hausdorff measure ofC.
The value of H`(C) depends on the choice of a metric, but the two properties
H`(C) = 0 and H`(C) = ∞ are independent. The most significant property
is that there exists a critical exponent `C > 0, called the Hausdorff dimen-
sion of C, such that H`(C) = ∞ for all ` < `C and such that H`(C) = 0 for
all ` > `C . Then the value H`C (C) may be arbitrary in [0,∞].

Proposition 1.2. ([Fe1969, Ch1989]) The following properties hold true:

(1) H0(C) = Card(C);
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(2) Hn(C) coincides with the outer Lebesgue measure of C ⊂M ;
(3) a C 1 submanifold N ⊂M has Hausdorff dimension `N = dimN ;
(4) if Hn−1(C) = 0, then M\C is locally connected;
(5) if f : M → N is a C 1 map and if C ⊂ M satisfies H`(C) = 0

for some ` > dimN , then for almost every q ∈ N , it holds that
H`−dimN(C ∩ f−1(q)) = 0.

(6) H`(C) = 0 if and only if H`(K) = 0 for each compact set K ⊂ C.

1.3. Metrically thin singularities of linear partial differential operators.
Let Ω be a domain in Rn, where n > 1. We shall denote the Lebesgue
measure by Hn. Consider a class of F (Ω) of distributions defined on Ω, for
instance Lp

loc(Ω), C κ,α(Ω) (κ ∈ N, 0 6 α 6 1) or C∞(Ω). Consider a linear
partial differential operator

P = P (x, ∂x) =
∑

β∈Nn, |β|6m
aβ(x) ∂

β
x

of order m > 1, defined in Ω and having C∞ coefficients aβ(x).

Definition 1.4. A relatively closed subset C of Ω is called (P,F )-
removable if every f ∈ F (Ω) satisfying Pf = 0 in Ω\C does satisfy
Pf = 0 in all of Ω, in the sense of distributions.

For instance, according to the classical Riemann removability theorem,
discrete subsets {pk}k∈N of a domain Ω in C are (∂, L∞)-removable. In fact,
since every distribution solution of ∂ is holomorphic (hypoellipticity), func-
tions extend to be true holomorphic functions in a neighborhood of each pk.
The Riemann removability theorem also holds under the weaker assumption
that f ∈ O(Ω\{pk}k∈N) satisfies f(z− pk) = o(|z− pk|−1) as z approaches
pk.

In several complex variables, the classical Riemann removability theorem
may be stated as follows.

Theorem 1.5. ([Ch1989]) Let Σ be a complex analytic subset of Ω. Holo-
morphic functions in Ω\Σ extend uniquely through Σ either if dim CΣ 6
n− 2 or if dim CΣ = n− 1 and they belong to L∞loc(Ω).

The second case also holds true for functions that belong to L2
loc(Ω). The

proofs are elementary and short: in one or several complex variables, every-
thing comes down to observing that 1

z
is a true O( 1

|z|) near z = 0 and does
not belong to L2

loc.
These preliminary statements are superseded by more general removabil-

ity theorems, exposed in [HP1970], that we shall now restitute. Some of the
(elementary) proofs will be surveyed to give the flavour of the arguments.
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In 1956, S. Bochner ([Bo1956, HP1970]) established remarkable remov-
ability theorems, valid for general linear differential operators P , in which
the metrical conditions on the size of the singularity C depend only on the
order m of P . Some preliminary material is needed.

Lemma 1.6. Let K ⊂ Rn be a compact set. For every ε > 0, there exists
a function ϕε ∈ C∞

c (Rn) with ϕε ≡ 1 in a neighborhood of K and with
suppϕε ⊂ Kε such that |∂βxϕε(x)| 6 Cβ ε

−|β| for all x ∈ Rn and all β ∈
Nn.

Proof. Denote by 1B(·) the characteristic function of a set
B ⊂ Rn. It suffices to define the (rescaled) convolution integral
ϕε(x) := ε−n

∫
Rn 1Kε/2

(y)ψ((x − y)/ε) dy, where ψ ∈ C∞
c (Rn) has

support contained in {|x| 6 1/3} and satisfies
∫
ψ(y) dy = 1. ¤

It may happen that C is not (P,F )-removable, whereas C is removable
for some individual function f ∈ F (Ω) satisfying certain supplementary
conditions. In this case, we shall say that C is an illusory singularity of f .

Theorem 1.7. ([Bo1956, HP1970]) Let f ∈ L1
loc(Ω). If, for each compact

set K ⊂ C, we have

lim inf
ε→0+

[
ε−m ||f 1Kε||L1

]
= 0,

then C is an illusory singularity of f .

Whenever the integral is meaningful, for instance if f ∈ L1
loc(Ω) and

ϕ ∈ C∞
c (Ω), we define (f, ϕ) :=

∫
Ω
f ϕ, where the integral is computed

with respect to the Lebesgue measure. The formal adjoint of P , denoted by
tP , satisfies the relations (Pϕ, ψ) =

(
ϕ, tPψ

)
for all ϕ, ψ ∈ C∞

c (Ω), and
these relations define it uniquely as

tP (ϕ) :=
∑

|β|6m
(−1)|β| ∂βx (aβ ϕ).

Proof of Theorem 1.7. Let K := (suppϕ) ∩ C and let ϕε be the fam-
ily of functions constructed in Lemma 1.6. Since suppPf ⊂ C, we
have (Pf, ϕ) = (Pf, ϕε ϕ) = (f, tP (ϕε ϕ)). Lemma 1.6 entails that
||tP (ϕε ϕ)||L∞ 6 C ε−m, for some quantity C > 0 that is independent of
ε. We deduce that |(Pf, ϕ)| 6 C ε−m ||f 1Kε||L1 for all ε > 0. Thanks to
the main assumption, this implies that (Pf, ϕ) = 0. ¤

If p ∈ R with 1 6 p 6 ∞ is the exponent of an Lp-space, we de-
note by p′ := p

p−1
∈ [1,∞] the conjugate exponent, also defined by

the relation 1 = 1
p

+ 1
p′ . By Hölder’s inequality, we have ||f 1Kε||L1 6(

Hn(Kε)
)1/p′ ||f 1Kε||Lp .
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Corollary 1.8. Let f ∈ Lp
loc(Ω), where 1 6 p 6 ∞. If, for each compact

set K ⊂ C,

lim inf
ε→0+

[(
ε−mp′Hn(Kε)

)1/p′ ||f 1Kε||Lp

]
= 0,

then C is an illusory singularity of f .

The next theorem translates Corollary 1.9 in terms of Hausdorff measures,
a finer concept than the Minkowski content.

Theorem 1.9. ([HP1970]) (i) Let 1 < p <∞ and assume that n−mp′ > 0.
If Hn−mp′(K) < ∞ for every compact set K ⊂ C, then C is (P,Lp

loc)-
removable.

(ii) Let p = ∞ and assume that n −m > 0. If Hn−m(C) = 0, then C is
(P,L∞loc)-removable.

(iii) Let p = ∞ and assume that n − m > 0. If, Hn−m(K) < ∞ for
each compact set K ⊂ C, then Pf is a measure supported on C, for every
f ∈ L∞loc satisfying Pf = 0 on Ω\C.

An application of (ii) to P = ∂ in one or several complex variables yields
the Riemann removability Theorem 2.31 below.

Proof. We survey only the proof of (i). Let ϕ ∈ C∞
c (Ω) and set K :=

C ∩ suppϕ.

Lemma 1.10. ([HP1970]) Let K ⊂ Rn be a compact set. Let p′ with 1 6
p′ < ∞ and assume n − mp′ > 0. For every ε > 0, there exists ϕε ∈
C∞
c (Rn) with ϕε ≡ 1 in a neighborhood of K and with suppϕε ⊂ Kε such

that for all β ∈ Nn with |β| 6 m, we have
∣∣∣∣∂βx ϕε

∣∣∣∣
Lp′ 6 C εm−|β|

(
Hn−mp′(K) + ε

)1/p′
,

where C > 0 is independent of ε.

With such cut-off functions ϕε, since suppPf ⊂ C, we have (Pf, ϕ) =
(Pf, ϕε ϕ) = (f, tP (ϕε ϕ)). By Hölder’s inequality and the preceding
lemma:

|(Pf, ϕ)| 6 ||f 1Kε||Lp

∣∣∣∣tP (ϕε ϕ)
∣∣∣∣
Lp′ 6 C ||f 1Kε||Lp

(
Hn−mp′(K) + ε

)1/p′
.

The theorem follows from

lim
ε→0+

||f 1Kε||Lp = 0,

since Hn(Kε) → 0 (remind Hn−mp′(K) <∞). ¤
It seems impossible to get L1 removability without an assumption of

growth. At the opposite, in a CR context, the techniques introduced
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in [Jö1999b, MP1999] that are developed in Section 5 and in [26] will ex-
hibit L1-removability of certain closed subsets of generic submanifolds with
only metrico-geometric assumptions.

§2. REMOVABLE SINGULARITIES FOR HOLOMORPHIC FUNCTIONS OF
ONE OR SEVERAL COMPLEX VARIABLES

2.1. Painlevé problem, zero length and analytic capacity. The classical
Painlevé problem ([Pa1888, Ah1947]) is to find metric or geometric char-
acterizations of compact sets K ⊂ C that are (∂, L∞)-removable, i.e. such
that every f ∈ O(C\K) ∩ L∞(C\K) extends holomorphically through K.

Theorem 1.9(ii) says that H1(K) = 0 suffices. It is also known
([Ma1984, Pa2005]) that if H1+ε(K) > 0 for some ε > 0, then K has pos-
itive analytic capacity (definition below) and is never (∂, L∞)-removable.
Furthermore, Garnett ([Gar1970]) constructed a self-similar Cantor com-
pact set K ⊂ C with 0 < H1(K) < +∞ which is (∂, L∞)-removable.
Consequently, Hausdorff measure is not fine enough.

Under a geometric tameness assumption a converse to the sufficiency of
H1(K) = 0 holds and is usually called the solution to Denjoy’s conjecture.

Theorem 2.2. ([Cal1977, CMM1982]) A compact setK ⊂ C that is a priori
contained in a Lipschitz curve is (∂, L∞)-removable if and only if it has zero
1-dimensional Hausdorff measure.

Classically, this statement is an application of the celebrated result of
Calderón, Coifman, McIntosh and Meyer about the L2-boundedness of the
Cauchy integral on Lipschitz curves. Let us survey one of the simplified
proofs ([MV1995]) which involves Menger curvature, a concept useful in a
recent answer to Painlevé’s problem obtained in [To2003].

Let Γ :=
{
(x, y) ∈ R2 : y = ϕ(x)

}
be a (global) Lipschitz graph; here

ϕ ∈ C 0,1 is locally absolutely continuous and ϕ′ exists almost everywhere
(a.e.) with ||ϕ′||L∞ < +∞.

Theorem 2.3. ([Cal1977, CMM1982, MV1995]) If f ∈ L2(Γ), the Cauchy
principal value integral

C0f(z) := lim
ε→0

1

2πi

∫

|ζ−z|>ε

f(ζ)

ζ − z
dζ

exists for almost every z ∈ Γ and defines a function C0f(z) on Γ, the Cauchy
transform of f , which belongs to L2(Γ) and satisfies in addition

||C0f ||L2(Γ) 6 C1 ||f ||L2(Γ),

for some positive constant C1 = C1

(||ϕ′||L∞
)
.
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Parametrizing Γ by ζ(t) = t + i ϕ(t), dropping the innocuous factor 1 +
i ϕ′(t) and setting z := x + i ϕ(x), one has to estimate the L2-norm of the
truncated integral

C′ε(f)(x) :=

∫

|t−x|>ε

f(t)

ζ(t)− ζ(x)
dt,

with a constant independent of ε. Even more, interpolation arguments re-
duce the task to a single estimate of the form∫

R

∣∣C′ε(χI)
∣∣2 6 C1 |I|,

where C1 = C1

(||ϕ′||L∞
)

and where χI is the characteristic function of an
interval I ⊂ R of length |I|. Following [MV1995], a symmetrization of the
(implicitely triple) integral

∫
I

C′ε(χI) C′ε(χI) provides

6

∫

I

∣∣C′ε(χI)
∣∣2 =

∫ ∫ ∫

Sε

( ∑

σ∈S3

1

ζ(xσ(2))− ζ(xσ(1))

1

ζ(xσ(3))− ζ(xσ(1))

)
·

· dx1dx2dx3 + O(|I|),
where Sε :=

{
(x, y, t) ∈ I3 : |y − x| > ε, |t − x| > ε, |t − y| > ε

}
and

where S3 is the permutation group of {1, 2, 3}.
Then a “magic” ([Po2005]) formula enters the scene:

(
4S(z1, z2, z3)

|z1 − z2| |z1 − z3| |z2 − z3|
)2

=
∑

σ∈S3

1

ζ(xσ(2))− ζ(xσ(1))

1

ζ(xσ(3))− ζ(xσ(1))
,

where S(z1, z2, z3) denotes the enclosed area; the left hand side measures
the “flatness” of the triangle. This crucial formula enables one to link recti-
fiability properties to the Cauchy kernel.

Definition 2.4. The Menger curvature of the triple {z1, z2, z3} is the square
root of the above

c(z1, z2, z3) :=
4S(z1, z2, z3)

|z1 − z2| |z1 − z3| |z2 − z3| ;

one sets c := 0 if the points are aligned. One also verifies that c(z1, z2, z3) =
1/R(z1, z2, z3), where R is the radius of the circumbscribed circle.

Thanks to the nice formula and to the basic inequality

c
(
ζ(x), ζ(y), ζ(t)

)
6 2

∣∣∣∣∣
ϕ(y)−ϕ(x)

y−x − ϕ(t)−ϕ(x)
t−x

|t− y|

∣∣∣∣∣
the previous symmetric Cauchy triple integral is transformed to an integral
involving geometric Lipschitz properties of Γ. After some computations
([MV1995]), one gets

∫
I

∣∣C′ε(χI)
∣∣2 6 C1

(||ϕ′||L∞
) · |I|.
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Menger curvature also appears in a recent result, considered to be an an-
swer to Painlevé’s problem.

Theorem 2.5. ([To2003, Pa2005]) A compact set K ⊂ C is not removable
for O(C\K)∩L∞(C\K) if and only if there exists a nonzero positive Radon
measure µ with suppµ ⊂ K such that

• there exists C1 > 0 with µ
(
∆(z, ρ)

)
6 C1 ρ for every z ∈ C and

ρ > 0;

• ∫ ∫ ∫ [
c(x, y, z)

]2
dµ(x)dµ(y)dµ(z) < +∞.

The first condition concerns the size of K; the second one is of
quantitative-geometric nature.

We conclude by mentioning a classical functional characterization due to
Ahlfors, usually considered to be only a reformulation of Painlevé’s prob-
lem, but which has already found generalizations in locally integrable struc-
tures (§2.16 below). The analytic capacity of a compact set K ⊂ C is21

an-cap(K) := sup
{|f ′(∞)| : f ∈ H∞(C\K), ||f ||L∞ 6 1

}
,

where H∞(C\K) denotes the space of bounded holomorphic functions de-
fined in C\K (or defined in the complement of K in the Riemann sphere
C ∪ {∞}, because {∞} is removable).

Theorem 2.6. ([Ah1947, Ma1984, HT1997]) A compact set K ⊂ C is re-
movable for O(C\K) ∩ L∞(C\K) if and only if an-cap(K) = 0.

2.7. Radó-type theorems. A classical theorem due to Radó ([Ra1924,
Stu1968, RS1989, Ch1994]) asserts that a continuous function f defined
in a domain Ω ⊂ C that is holomorphic outside its zero-set f−1(0) is in
fact holomorphic everywhere. By a separate holomorphicity argument, this
statement extends directly to several complex variables. In [Stu1993], it is
shown that f−1(0) may be replaced by f−1(E), where E ⊂ C is compact
and has null analytic capacity. In [RS1989], it is shown that a continu-
ous function defined in a strongly pseudoconvex C 2 hypersurface M ⊂ Cn
(n > 2) that is CR outside its zero-set is CR everywhere; a thin subset of
weakly pseudoconvex points is allowed, but the case of general hypersur-
faces is not covered. In [Al1993], it is shown that closed sets f−1(E) are
removable in the same situation, wehere E ⊂ C is a closed polar set, viz.

21If ||f ||L∞ 6 1, setting g(z) :=
[
f(∞)− f(z)

]/[
1− f(∞) f(z)

]
, we have g(∞) = 0,

||g||L∞ 6 1 and |g′(∞)| = |f ′(∞)|/(
1 − |f(∞)|2) > |f ′(∞)|, so that in the definition

of analytic capacity, we may restrict to take the supremum over functions g ∈ H∞(C\K)
with ||g||L∞ 6 1 and g(∞) = 0.
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E ⊂ {u = −∞} for some subharmonic function u 6≡ −∞. Chirka strength-
ens these results in the following theorem, where no assumption is made on
the geometry of the hypersurface.

Remind ([Ch1989, 7]) that E ⊂ Cm is called complete pluripolar if E =
{ϕ = −∞} for some plurisubharmonic function ϕ 6≡ −∞ on Cm.

Theorem 2.8. ([Ch1994]) Let M ⊂ Cn (n > 2) be hypersurface that is a
local Lipschitz (C 0,1) graph at every point, letC be a closed subset ofM and
let f : M\C → Cm\E be a continuous mapping satisfying ||f ||C 0(M\C) <
∞ such that the set of limit values of f from M\C up to C is contained in a
closed complete pluripolar set E ⊂ Cm (m > 1). Then the trivial extension
f̃ of f to C defined by f̃ := 0 on C is a CR mapping of class L∞ on the
whole of M .

In higher codimension, nothing is known.

Open question 2.9. Let M ⊂ Cn (n > 3) be a generic submanifold of
codimension d > 2 and of CR dimension m > 1 that is at least C 1. Let
f ∈ C 0(M) that is CR outside its zero-set f−1(0). Is f CR everywhere ?

Remind that condition (P) (Definition 3.5(III)) for a linear partial differ-
ential operator P of principal type assures local solvability of the equations
Pf = g. Remind also that nowhere vanishing vector fields are of principal
type.

Theorem 2.10. ([HT1993]) Let Ω ⊂ Rn (n > 2) be a domain and let L be a
nowhere vanishing vector field on Ω having C∞ complex-valued coefficients
and satisfying condition (P) of Nirenberg-Treves. If f ∈ C 0(Ω) satisfies
Lf = 0 in Ω\f−1(0) in the sense of distributions, then f is a weak solution
of Lf = 0 all over Ω.

2.11. Capacity and partial differential operators having constant coef-
ficients. The preceding results admit partial generalizations to vector field
systems. Let Ω ⊂ Rn be an open set and let P = P (∂x) =

∑
β∈Nn aβ ∂

β
x be

a linear partial differential operator having constant coefficients aβ ∈ C. By
a theorem due to Malgrange, Ehrenpreis and Palamodov ([Hö1963]), such a
P always admits a fundamental solution, namely there exists a distribution
E ∈ D ′(Rn) such that P (∂x)E = δ0 is the Dirac measure at the origin.

Let F ⊂ D ′(Ω) be a Banach space, e.g. F = Lp(Ω) with 1 6 p 6 ∞,
or F = L∞(Ω) ∩ C 0(Ω), or F = C 0,α(Ω) with 0 < α 6 1.

Definition 2.12. For each relatively closed set C ⊂ Ω, the F -capacity of C
with respect to P is

F -capP (C, ∂Ω) := sup
{∣∣(Pf,1Ω)

∣∣ : f ∈ F , ||f ||F 6 1, supp (Pf) b C
}
.
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If a closed set C ⊂ Ω is (P,F )-removable, by definition Pf = 0 ev-
erywhere, hence F -CapP (C,Ω) = 0. The following theorem establishes
the converse for a wide class of differential operators having constant coeffi-
cients. For β ∈ Nn, denote byQ(β)(x) := ∂βx Q(x) the β-th partial derivative
of a polynomial Q(x) ∈ R[x].

Theorem 2.13. ([HP1972]) Assume that P possesses a fundamental solu-
tion E ∈ D ′(Rn) such that P (β)(∂x)E is a regular Borel measure on Rn
for every β ∈ Nn. Let Ω b Rn be a bounded domain and let C ⊂ Ω be a
relatively closed subset. Then

• C is (P,Lp
loc)-removable, 1 < p 6 ∞, if and only if Lp-

capP (C,Ω) = 0;
• C is (P,L∞C 0)-removable if and only if L∞C 0-capP (C,Ω) = 0;
• C is (P,C 0,α)-removable, 0 < α 6 1, if and only if C 0,α-

capP (C,Ω) = 0.

This hypothesis about P is satisfied by elliptic, semi-elliptic, and para-
bolic operators and also by the wave operator in R2 ([HP1972]). The theo-
rem (whose proof is rather short) also holds true if P = P (x, ∂x) has real
analytic coefficients and admits a fundamental solution E such that P (β)E
is a regular Borel measure for every β ∈ Nn. But it is void in L1.

Theorem 2.14. ([HP1972]) There is a unique function, called a capacitary
extremal, f cap ∈ Lp(Ω) with ||f cap||Lp 6 1 and Pf cap = 0 in Ω\K such that(
Pf cap,1Ω

)
= Lp-capP (K,Ω).

We observe that the definition of Lp-capP (K,Ω) is inspired from
Ahlfors’ notion of analytic capacity and we mention that the capacitary
extremal f cap is linked to the Riemann uniformization theorem.

Example 2.15. In fact, with Ω = C and P = ∂/∂z̄ =: ∂, the L∞-capacity
of a compact set K ⊂ C with respect to ∂ may be shown to be equal, up to
the constant π, to the analytic capacity of K, namely

L∞-cap∂(K,C) = π an-cap(K).

Indeed, letting f ∈ L∞(C), assuming that ∂f is supported by K, choosing
a big open disc D b C containing K, integrating by parts (Riemann-Green)
and performing the change of variables w := 1/z, we may compute
(
∂f,1C

)
=

(
∂f,1D

)
=

1

2i

∫ ∫

D

∂f

∂z̄
dz̄∧dz =

1

2i

∫

∂D

f(z) dz = π f ′(∞).

Remind (footnote) that in the definition of an-cap(K) given in §2.1, one
may assume that f(∞) = 0. If in addition the complement of K in the
Riemann sphere C ∪ {∞} is simply connected, the unique solution f cap of
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(
∂f cap,1C

)
= L∞-cap∂(K,C) asserted by Theorem 2.14, viz. the unique

solution of the extremal problem

sup
{
|f ′(∞)| : f ∈ L∞(C), ∂f/∂z̄ = 0 inC\K, f(∞) = 0 and ||f ||L∞ 6 1

}

is the (unique) Riemann uniformization map f cap :
(
C ∪ {∞})\K → ∆

satisfying f cap(∞) = 0 and ∂zf cap(∞) > 0.

2.16. Removable singularities of locally solvable vector fields. Let

S (Rn) :=
{
f ∈ C∞(Rn) : lim

|x|→∞

∣∣xα∂βxf(x)
∣∣ = 0, ∀α, β ∈ Nn

}

be the space of C∞ functions defined in Rn and having tempered growth.
As is known ([Hö1963]), the Fourier transform

Ff(ξ) :=

∫

Rn

e−2π i〈x,ξ〉 f(x) dx, f ∈ S (Rn),

〈x, ξ〉 :=
∑n

k=1 xk ξk, is an automorphism of S (Rn) having as inverse

F−1f(ξ) :=

∫

Rn

e2π i〈x,ξ〉 f(x) dx = Ff(−ξ).

Equipping S (Rn) with the countable family of semi-norms pα,β(f) :=
supx∈Rn

∣∣xα∂βxf(x)
∣∣, the space S ′(Rn) of tempered distributions consists

of linear functionals T on S (Rn) that are continuous, viz. there exists
C > 0 and α, β ∈ Nn such that

∣∣〈T, f〉∣∣ 6 C pα,β(f) for every f ∈ S (Rn).
For p ∈ R with 1 6 p 6 ∞ and for σ ∈ R, we remind the definition of

the Sobolev space

Lp
σ(Rn) :=

{
T ∈ S ′(Rn) : ||T||Lp

σ
:=

∣∣∣∣Λ−σ T
∣∣∣∣
Lp <∞

}
,

where Λ−σ T(x) := F−1
[
(1 + |ξ|2)−σ/2 F T(ξ)

]
(x). For σ = κ ∈ N and p in

the range 1 < p <∞, the space Lp
κ(Rn) is exactly the subspace of functions

u ∈ Lp(Rn) whose partial derivatives of order 6 κ (in the distributional
sense) belong to Lp(Rn). This space is equivalently normed by ||u||Lp

κ
:=∑

|β|6κ
∣∣∣∣∂βxu

∣∣∣∣
Lp .

Let Ω ⊂ Rn be a domain and let P = P (x, ∂x) =
∑

|β|6m aβ(x) ∂
β
x be a

linear partial differential operator of order m > 1 defined in Ω and having
C∞ coefficients aβ(x).

Definition 2.17. We say that P is locally solvable in Lp with one loss of
derivative if every point p ∈ Ω has an open neighborhood Up ⊂ Ω such
that for every compactly supported T ∈ Lp

σ(Up), the equation P S = T has a
solution S ∈ Lp

σ+m−1(Up).



213

Theorem 2.18. ([BeFe1973, HP1996]) Let L be a nowhere vanishing vector
field having C∞ coefficients in a domain Ω ⊂ Rn (n > 2) and assume that
L satisfies condition (P) of Nirenberg-Treves. Then for every p ∈ R with
1 < p < ∞, the operator L is locally solvable in Lp with loss of one
derivative.

Example 2.19. As discovered in [HT1996], local solvability fails to hold in
L∞ for the (locally solvable) vector field ∂

∂x
− i

x2 e
−1/|x| ∂

∂y
satisfying (P) on

R2.

Removable singularities for vector fields in Lp have been studied
in [HT1996, HT1997]. Because of the example, results in Lp with
1 < p <∞ differ from results in L∞.

Definition 2.20. A relatively closed set C ⊂ Ω of an open set Ω ⊂ Rn
is everywhere (P,Lp)-removable if for every open subset U ⊂ Ω and for
every f ∈ Lp(U) satisfying Pf = 0 in U\C, then f also satisfies Pf = 0
in all of U .

Theorem 2.21. ([HT1996, HT1997]) Let L be a nowhere vanishing vector
field having C∞ coefficients in an open subset Ω ⊂ Rn (n > 2) and assume
that L satisfies condition (P). Let p ∈ R with 1 < p <∞. Then a relatively
closed set C ⊂ Ω is everywhere (L,Lp)-removable if and only if there is an
open covering of C by open sets Ωj , j ∈ J , such that

Lp-capL
(
C ∩ Ωj,Ωj

)
= 0,

for every j ∈ J .

In L∞, when trying to perform the proof of this theorem, local solvability
of positive multiples of L is technically needed. Observing that Pf = 0 is
equivalent to eψPf = 0, the following notion appeared to be appropriate to
deal with (L,L∞)-removability.

Definition 2.22. ([HT1996, HT1997]) The full L∞-capacity of a relatively
closed set C ⊂ Ω with respect to L is

full-L∞-capL(C,Ω) := sup
eL

{
L∞-capeL(C,Ω)

}
,

where the supremum is taken over all vector fields L̃ = eψ L with ψ ∈
C∞(Ω) satisfying supΩ

∣∣∂αxψ(x)
∣∣ 6 1 for |α| 6 1.

By a fine analysis of the degeneracies of L and of the structure of the
Sussmann orbits of

{
ReL, ImL

}
, Hounie-Tavares were able to substan-

tially generalize Ahlfors’ characterization.
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Theorem 2.23. ([HT1996, HT1997]) A relatively closed set C ⊂ Ω is ev-
erywhere (L,L∞)-removable if and only if there is an open covering of C
by open sets Ωj , j ∈ J , such that

full-L∞-capL(C ∩ Ωj,Ωj) = 0,

for every j ∈ J .

On orbits of dimension one, L behaves as a multiple of a real vector field
(one-dimensional behavior); on orbits of dimension two, L has the behavior
of ∂ on a Riemann surface Σ ⊂ O , but on the complement O\Σ which is a
union of curves with different endpoints along which ReL and ImL are both
tangent (degeneracy), L behaves again as a multiple of a real vector field
(one-dimensional behavior). As shown in [HT1996] (main Theorem 7.3
there) a relatively closed set C ⊂ Ω is everywhere removable if and only if
C does not disconnect almost every curve on which L has one-dimensional
behavior and furthermore, the intersection of C with almost every (reduced)
orbit of dimension two has zero analytic capacity for its natural holomorphic
structure.

Open problem 2.24. Study removability of a C∞ locally integrable involu-
tive structure of rank λ > 2 in terms of analytic capacity.

2.25. Cartan-Thullen argument and a local continuity principle. The
Behnke-Sommer Kontinuitätssatz, alias Continuity Principle, states infor-
mally as follows ([Sh1990]). Let (Σν)ν∈N be a sequence of complex mani-
folds with boundary ∂Σν contained in a domain Ω of Cn. If Σν converges to
a set Σ∞ ⊂ Ω and if ∂Σ∞ is contained in Ω, then every holomorphic func-
tion f ∈ O(Ω) extends holomorphically to a neighborhood of the set Σ∞ in
Cn. The geometries of the Σν and of Σ∞ have to satisfy certain assumptions
in order that the statement be correct; in addition, monodromy questions
have to be considered carefully. For applications to removable singularities
in [26], the rigorous Theorem 2.27 below is formulated, with the Σν being
embedded analytic discs.

We denote by z = (z1, . . . , zn) the complex coordinates on Cn and by
|z| = max16i6n |zi| the polydisc norm. If E ⊂ Cn is an arbitrary subset, for
ρ > 0, we denote by

Vρ(E) :=
⋃
p∈E

{z ∈ Cn : |z − p| < ρ}

the union of all open polydiscs of radius ρ centered at points of E.

Lemma 2.26. ([Me1997]) Let Ω be a nonempty domain of Cn and let A :
∆ → Ω, A ∈ O(∆)∩C 1(∆), be an analytic disc contained in Ω having the
property that there exist two constants c and C with 0 < c < C such that

c |ζ2 − ζ1| < |A(ζ2)− A(ζ1)| < C|ζ2 − ζ1|,
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for all distinct points ζ1, ζ2 ∈ ∆. Set

ρ := inf
{|z − A(ζ)| : z ∈ ∂Ω, ζ ∈ ∂∆

}
,

namely ρ is the polydisc distance between A(∂∆) and ∂Ω, and set σ :=
ρ c/2C. Then for every holomorphic function f ∈ O(Ω), there exists a
holomorphic function F ∈ O

(
Vσ(A(∆))

)
such that F = f on Vσ

(
A(∂∆)

)
.
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Cn

Vσ
`
A(∆)

´

Continuity principle

Ω

A(∆)
As(∂∆)

Vσ
`
As(∆)

´

The inequalities involving c and C are satisfied for instance when A is C 1

embedding of ∆ into Ω. Whereas A(∆) is contained in Ω, the neighborhood
Vσ(A(∆)) is allowed to go beyond. We do not claim that the two functions
f ∈ O(Ω) and F ∈ O

(
Vσ(A(∆))

)
stick together as a holomorphic function

globally defined in Ω∪Vσ(A(∆)). In fact, Ω∩Vσ(A(∆)) may have several
connected components.
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The intersection Ω ∩ Vσ(A(∆)) may be not connected

Ω Ω Ω

Ω

Vσ(A(∆))

Ω Ω

Vσ(A(∆))

Ω

ΩΩ

In the geometric situations we encounter in [Me1997, MP1999, MP2002,
26], after shrinking Ω somehow slightly to some subdomain Ω′, we shall be
able to insure that the intersection Ω′ ∩ Vσ(A(∆)) is connected and that the
union Ω′ ∪ Vσ(A(∆)) is still significantly “bigger” than Ω.

Proof of Lemma 2.26. Let f ∈ O(Ω). For ζ ∈ ∆ arbitrary, we consider the
locally converging Taylor series

∑
α∈Nn fα (z−A(ζ))α of f at A(ζ). For ρ′

with 0 < ρ′ < ρ arbitrarily close to ρ, since Vρ′(A(∂∆)) b Ω, the quantity

Mρ′(f) := sup
{|f(z)| : z ∈ Vρ′(A(∂∆))

}
<∞,
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is finite (it may explode as ρ′ → ρ). Thus, Cauchy’s inequality on a polydisc
of radius ρ′ centered at an arbitrary point A(ei θ) of ∂∆ yields

1

α!

∣∣∣∣
∂|α|f
∂zα

(
A(ei θ)

)∣∣∣∣ 6 Mρ′(f)

ρ′α
,

uniformly for all ei θ ∈ ∂∆. Then the maximum principle applied to the
function ζ 7→ ∂|α|f

∂zα (A(ζ)) holomorphic in ∆ provides the crucial inequalities
(Cartan-Thullen argument):

|fα| = 1

α!

∣∣∣∣
∂|α|f
∂zα

(
A(ζ)

)∣∣∣∣ 6 1

α!
sup

ei θ∈∂∆

∣∣∣∣
∂|α|f
∂zα

(
A(ei θ)

)∣∣∣∣

6 Mρ′(f)

ρ′α
.

Consequently, the Taylor series of f converges normally in the poly-
disc ∆n

ρ(A(ζ)) of center A(ζ) and of radius ρ, this being true for every
A(ζ) ∈ A(∆). These series define a collection of holomorphic functions
FA(ζ),ρ ∈ O(∆n

ρ(A(ζ))) parametrized by ζ ∈ ∆. We claim that the restric-
tions of all these functions to the smaller polydiscs ∆n

σ(A(ζ)) stick together
in a well defined holomorphic function F ∈ O

(
Vσ(A(∆))

)
.

Indeed, assume that two distinct points ζ1, ζ2 ∈ ∆ are such that the inter-
section of the two small polydiscs ∆n

σ(A(ζ1)) ∩∆n
σ(A(ζ2)) is nonempty, so

|A(ζ2)− A(ζ1)| < 2σ. It follows that for every ζ belonging to the segment
[ζ1, ζ2], we have:

|ζ − ζ1| 6 |ζ2 − ζ1| < |A(ζ2)− A(ζ1)|/c < 2σ/c

whence

|A(ζ)− A(ζ1)| < C|ζ − ζ1| < 2Cσ/c = ρ.

This means that the curved segment A([ζ1, ζ2]) is contained in the con-
nected intersection of the two large polydiscs ∆n

ρ(A(ζ1)) ∩ ∆n
ρ(A(ζ2)). In

a small neighborhood of A(ζ1) and of A(ζ2), the two holomorphic func-
tions FA(ζ1),ρ and FA(ζ2),ρ coincide with f by construction. Thanks to the
principle of analytic continuation, it follows that they even coincide with
f in a thin connected neighborhood of the segment A([ζ1, ζ2]). Again
thanks to the principle of analytic continuation, FA(ζ1),ρ and FA(ζ2),ρ co-
incide in the connected intersection ∆n

ρ(A(ζ1)) ∩ ∆n
ρ(A(ζ2)). It follows

that they stick together to provide a well defined function FA(ζ1),A(ζ2),ρ

that is holomorphic in ∆n
ρ(A(ζ1)) ∪ ∆n

ρ(A(ζ2)). In conclusion, the re-
striction FA(ζ1),A(ζ2),ρ

∣∣
∆σ(A(ζ1))∪∆σ(A(ζ2))

is holomorphic in the union of the
two small polydiscs ∆σ(A(ζ1)) ∪ ∆σ(A(ζ2)), whenever the intersection
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∆σ(A(ζ1)) ∩ ∆σ(A(ζ2)) is nonempty. This proves that all the restric-
tions FA(ζ),ρ

∣∣
∆n

σ(A(ζ))
stick together in a well defined holomorphic function

F ∈ O
(
Vσ(A(∆))

)
. ¤

In the next theorem (a local continuity principle often used in [Me1997,
MP1999, MP2002, 26]), A1(∆) ⊂ Ω, but contrary to Lemma 2.26, As(∆)
may well be not contained in Ω for s < 1; nevertheless, the boundaries
As(∂∆) must always stay in Ω.

Theorem 2.27. ([Me1997]) Let Ω be a nonempty domain in Cn and let As :
∆ → Cn, As ∈ O(∆) ∩ C 1(∆), be a one-parameter family of analytic
discs, where s ∈ [0, 1]. Assume that there exist two constants cs and Cs with
0 < cs < Cs such that

cs |ζ2 − ζ1| < |A(ζ2)− A(ζ1)| < Cs |ζ2 − ζ1|,
for all distinct points ζ1, ζ2 ∈ ∆. Assume that A1(∆) ⊂ Ω, set

ρs := inf
{|z − As(ζ)| : z ∈ ∂Ω, ζ ∈ ∂∆

}
,

namely ρs is the polydisc distance between As(∂∆) and ∂Ω, and set σs :=
ρscs/2Cs. Then for every holomorphic functions f ∈ O(Ω), and for all
s ∈ [0, 1], there exist holomorphic functions Fs ∈ O

(
Vσs(As(∆))

)
such that

Fs = f in Vσs(As(∂∆)).

Proof. Let I ⊂ [0, 1] be the connected set of real s0 such that the statement
is true for all s with s0 6 s 6 1. By Lemma 2.26, we already know that
1 ∈ I . We want to prove that I = [0, 1]. It suffices to prove that I is both
open and closed.

The fact that I is closed follows by “abstract nonsense”. We claim
that I is also open. Indeed, let s0 ∈ I and let s1 < s0 be such that
As1(∆) is contained in Vσs0

(As0(∆)). Since Fs0 = f in Vσs0
(As0(∂∆))

and since the polydisc distance between As1(∂∆) and ∂Ω is equal to ρs1 ,
it follows as in the first part of the proof of Lemma 2.26, that the Taylor
series of Fs0 at arbitrary points of the form As1(ζ), ζ ∈ ∆, converges in
the polydisc ∆n

ρs1
(As1(ζ)). This gives holomorphic functions FA(ζ),ρs1

∈
O

(
∆n
ρs1

(As1(ζ))
)
, for every ζ ∈ ∆. Reasoning as in the second part of the

proof of Lemma 2.26, we obtain a function Fs1 ∈ O
(
Vσs1

(As1(∆))
)

with
Fs1 = f in Vσs1

(As1(∂∆)). This shows that I is open, as claimed and
completes the proof. ¤
2.28. Singularities as complex hypersurfaces. Let Ω ⊂ Cn (n > 2)
be a domain. A typical elementary singularity in Ω is just the zero set
Zf := {f = 0} of a holomorphic function f ∈ O(Ω) since for instance,
the functions 1/fk, k > 1, and e1/f are holomorphic in Ω\Zf and singu-
lar along Zf . Because C is algebraically closed, the closure in Ω of such
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Zf ’s necessarily intersects ∂Ω. Early in the twentieth century, the italian
mathematicians Levi, Severi and B. Segre ([Se1932]) interpreted Hartogs’
extension theorem as saying that compact sets K ⊂ Ω are removable, con-
firming the observation Zf ∩ ∂Ω 6= ∅.

Definition 2.29. (i) A relatively closed subset C of a domain Ω ⊂ Cn is
called removable if the restriction map O(Ω) → O(Ω\C) is surjective.

(ii) Such a setC is called locally removable if for every p ∈ C, there exists
an open neighborhood Up of p in Ω such that the restriction map O

(
(Up ∪

Ω)\C) → O(Ω\C) is surjective.

Under the assumption that C is contained in a real submanifold of Ω, the
general philosophy of removable singularities is that a set too small to be a
Zf (viz. a complex (n− 1)-dimensional variety) is removable. The follow-
ing theorem collects five statements saying that C is removable provided it
cannot contain any complex hypersurface of Ω. Importantly, our subman-
ifolds N of Ω will always be assumed to be embedded, namely for every
p ∈ N , there exist an open neighborhood Up of p in Ω and a diffeomorphism
ψp : Up → R2n such that ψp(N ∩ Up) = RdimN × {0}.

Theorem 2.30. Let Ω be a domain of Cn (n > 2) and let C ⊂ Ω be a
relatively closed subset. The restriction map O(Ω) → O(Ω\C) is surjective,
namely C is removable, under each one of the following five circumstances.

(rm1) C is contained in a connected submanifold N ⊂ Ω of codimension
> 3.

(rm2) H2n−2(C) = 0.
(rm3) C is a relatively closed proper subset of a connected C 2 submanifold

N ⊂ Ω of codimension 2.
(rm4) C = N is a connected C 2 submanifold N ⊂ Ω that is not a complex

hypersurface of Ω.
(rm5) C is a closed subset of a connected C 2 real hypersurface M1 ⊂ Ω

that does not contain any CR orbit of M1.

In (rm1) and in (rm2), C is in fact locally removable. In (rm5), two kinds
of CR orbits coexist: those of real dimension (2n − 2), that are necessarily
complex hypersurfaces, and those of real dimension (2n− 1), that are open
subsets of M . It is necessary to exclude them also. Indeed, if for instance
Ω is divided in two connected components Ω± by a globally minimal M1,
taking C = M1, any locally constant function on Ω\M1 equal to two dis-
tinct constants c± in Ω± does not extend holomorphically through M1. The
proof of the theorem is elementary22 and we will present it in §2.34 below,

22Some refinements of the statements may be formulated, for instance assuming in (rm3)
and (rm4) that N is C 1 and has some metrically thin singularities ([6]).
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as a relevant preliminary to Theorems 4.9, 4.10, 4.31 and 4.32, and to the
main Theorem 1.7 of [26]).

We mention that under the assumption of local boundedness, more mas-
sive singularities may be removed. An application of Theorem 1.9(ii) to
several complex variables deserves to be emphasized.

Theorem 2.31. ([HP1970]) If Ω ⊂ Cn is a domain and if C ⊂ Ω is a
relatively closed subset satisfying H2n−1(C) = 0, then C is removable for
functions holomorphic in Ω\C that are locally bounded in Ω.

Following [Stu1989] and [Lu1990], we now provide variations on (rm2).
Any global complex variety of codimension one in Cn is certainly of infinite
(2n− 2)-dimensional area.

Theorem 2.32. ([Stu1989]) Every closed set C ⊂ Cn satisfying
H2n−2(C) <∞ is removable for O(Cn).

The result also holds true in the unit ball Bn ofCn, provided one computes
the (2n − 2)-dimensional Hausdorff measure with respect to the distance
function derived from the Bergman metric ([Stu1989]). Also, if Σ is an
arbitrary complex k-dimensional closed submanifold of Cn, every closed
subset C ⊂ Σ with H2k−2(C) <∞ is removable for O(Σ\C) ([Stu1989]).

A finer variation on the theme requires that H2n−2(C ∩ RBn) does not
grow too rapidly as a function of the radius R → ∞. For instance
([Stu1989]), a closed subset C ⊂ C2 that satisfies H2(C ∩ RBn) < cR2

for all large R is removable, provided c < π2

4
√

2
. It is expected that c < π is

optimal, since the line L := {(z1, 0)} satisfies H2(L ∩RB2) = π R2.
Yet another variation, raised in [Stu1989], is as follows. Consider a closed

setC in the complex projective space Pn(C) (n > 2) such that the Hausdorff
(2n − 2)-dimensional measure (with respect to the Fubini-Study metric) of
C is strictly less than that of any complex algebraic hypersurface of Pn(C).
Is it true that C is a removable singularity for meromorphic functions, in the
sense that every meromorphic function on Pn(C)\C extends meromorphi-
cally through C ? This question was answered by Lupacciolu.

Let dFS(z, w) denote the geodesic distance between two points z, w ∈
Pn(C) relative to the Fubini-Study metric and let H`

FS denote the `-
dimensional Hausdorff measure in Pn(C) computed with dFS. Given a
nonempty closed subset C ⊂ Pn(C), define:

ρ(C) :=
maxz∈Pn(C) dFS(z, C)

maxz,w∈Pn(C) dFS(z, w)
=

maxz∈Pn(C) dFS(z, C)

diamFS(Pn(C))
6 1.

If the Fubini-Study metric is normalized so that volPn(C) = 1, the (2n−2)-
dimensional volume of an irreducible complex algebraic hypersurface Σ ⊂
Pn(C) is equal to deg V and H2n−2

FS (C) = (4/π)n−1 (n − 1)! deg V . It fol-
lows that the minimum value of H2n−2(Σ) is equal to (4/π)n−1 (n− 1)! and
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is attained for V equal to any hyperplane of Pn(C). Let M denote the sheaf
of meromorphic functions on Pn(C).

Theorem 2.33. ([Lu1990]) Let C ⊂ Pn(C) be a closed subset such that

H2n−2
FS (C) <

[
ρ(C)

]4n−4
(4/π)n−1 (n− 1)!

Then the restriction map M (Pn(C)) −→ M (Pn(C)\C) is onto.

2.34. Proof of Theorem 2.30. We claim that we may focus our attention
only on (rm2) and on (rm5). Indeed, since a submanifold N ⊂ Ω of codi-
mension > 3 satisfies H2n−2(N) = 0, (rm1) is a corollary of (rm2).

In both (rm3) and (rm4), we may include N in some C 2 hypersurface
M1 of Cn, looking like a thin strip elongated along N . We claim that C
then does not contain any CR orbit of any such M1, so that (rm5) applies.
Indeed, CR orbits of M1 being of dimension (2n − 2) or (2n − 1) and C
being already contained in the (2n− 2)-dimensional N ⊂M1, it could only
happen that C = N = Σ identifies as a whole to a connected (CR orbit)
complex hypersurface Σ ⊂M1. But this is excluded by the assumption that
C 6= N in (rm3) and by the existence of generic points in (rm4).

Firstly, we prove (rm2). We show that C is locally removable. Let p ∈ C
and let Bp ⊂ Ω be a small open ball centered at p. By a relevant application
of Proposition 1.2(5), one may verify that for almost every complex line `
passing through p, the intersection ` ∩ Bp ∩ C is reduced to {p}. Choose
such a line `1. Centering coordinates at p and rotating them if necessary, we
may assume that `1 = {(z1, 0, . . . , 0)}, whence for ε > 0 small and fixed,
the disc Aε(ζ) := (ε ζ, 0, . . . , 0) satisfies Aε(∂∆) ∩ C = ∅.

Fix such a small ε0 > 0 and set ρ0 := dist
(
Aε0(∂∆), C

)
> 0. For τ =

(τ2, . . . , τn) ∈ Cn−1 satisfying |τ | < 1
2
ρ0, set Aε0,τ (ζ) := (ε0ζ, τ2, . . . , τn).

Letting s ∈ [0, 1], we interpolate between Aε0,0 and Aε0,τ by defining

Aε0,τ,s(ζ) :=
(
ε0ζ, s τ2, . . . , s τn

)
.

Since |τ | < 1
2
ρ0, these discs all satisfy dist

(
Aε0,τ,s(∂∆), C

)
> 1

2
ρ0. Since

the embedded disc Aε0,τ,1(∆) is 2-dimensional and since H2n−2(C) = 0,
Proposition 1.2(5) assures that for almost every τ with |τ | < 1

2
ρ0, its in-

tersection with C is empty. Thus, we may apply the continuity principle
Theorem 2.27, setting cs = 1

2
ε0, Cs = 2 ε0 and ρs := 1

2
ρ0 uniformly

for every s ∈ [0, 1], whence σs = 1
8
ρ0 independently of the smallness of

τ : for every f ∈ O(Ω\C), there exists F0 ∈ O
(
V ρ0

8
(Aε0,τ,0(∆))

)
with

F0 = f in V ρ0
8
(Aε0,τ,0(∂∆)). But since H2n−2(C) = 0, for every connected
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open set V ⊂ Ω, the intersection V ∩ (Ω\C) is also connected (Proposi-
tion 1.2(4)), so F0 and f stick together as a well defined function holomor-
phic in Ω ∪ V ρ0

8
(Aε0,τ,0(∆)). If τ was chosen sufficiently small, it is clear

that p = 0 ∈ Cn is absorbed in V ρ0
8
(Aε0,τ,0(∆)), hence removable.

Secondly, we prove (rm5). Let C ⊂ M1 containing no CR orbit and
define

C ′ :=
{
C ′ ⊂ C closed, ∀ f ∈ O(Ω\C),∃ f ′ ∈ O(Ω\C ′) with f ′

∣∣
Ω\C = f

}
.

Lemma 2.35. If C ′1, C
′
2 ∈ C ′, then C ′1 ∩ C ′2 ∈ C ′.

Proof. Let f ′j ∈ O(Ω\C ′j), j = 1, 2, with f ′j
∣∣
Ω\C = f . We claim that f ′1 and

f ′2 match up on C\(C ′1 ∪C ′2), hence define together a holomorphic function
f ′12 ∈ O

(
Ω\(C ′1 ∩ C ′2)

)
with f ′12

∣∣
Ω\C = f . Indeed, choose an arbitrary

point p ∈ C\(C ′1∪C ′2). There exists a small open ball Bp centered at p with
Bp∩(C ′1∪C ′2) = ∅. Since f ′1 = f ′2 = f at least in the dense subsetBp\M1 of
M1∩Bp, by continuity of f ′1 and of f ′2 inBp, necessarily f ′1(p) = f ′2(p). ¤

Next, we define
C̃ :=

⋂

C′∈C ′
C ′.

Intuitively, C̃ is the “nonremovable core” of C. By the lemma, for every
f ∈ O(Ω\C), there exists f̃ ∈ O(Ω\C̃) with f̃

∣∣
Ω\C = f . To prove (rm5),

we must establish that C̃ = ∅. Reasoning by contradiction, we assume
that C̃ 6= ∅ and we apply to C := C̃ the lemma below, which is in fact a
corollary of Trépreau’s Theorem 2.4(V). Of course, C̃ cannot contain any
CR orbit of M1. Remind (§1.27(III), §4.9(III)) that for us, local CR orbits
are not germs, but local CR submanifolds of a certain small size.

Lemma 2.36. Let M1 ⊂ Cn (n > 2) be a C 2 hypersurface and let C ⊂M1

be a closed subset containing no CR orbit of M1. Then there exists at least
one point p ∈ C such that for every neighborhood V 1

p of p in M1, we have:

V 1
p ∩ O loc

CR(M1, p) 6⊂ C,

and in addition, all such points p are locally removable.

Then f̃ extends holomorphically to a neighborhood of all such points p ∈
C̃, contradicting the definition of C̃, hence completing the proof of (rm5).

Proof. If O loc
CR(M1, q) ⊂ C for every q ∈ C, then small complex-tangential

curves issued from q necessarily remain in O loc
CR(M1, q), hence in C, and

pursuing from point to point, global complex-tangential curves issued from
q remain in C, whence OCR(M1, q) ⊂ C, contrary to the assumption.
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So, let p ∈ C with O loc
CR(M1, p) 6⊂ C. To pursue, we need that M1

is minimal at p. Since M1 is a hypersurface, it might only happen that
O loc
CR(M1, p) is a local complex hypersurface, a bad situation that has to be

changed in advance.
Fortunately, without altering the conclusion of the lemma (and of (rm5)),

we have the freedom of perturbing the auxiliary hypersurfaceM1, leaving C
fixed of course. Thus, assuming that OCR(M1, p) is a complex hypersurface,
we claim that there exists a small (in C 2 norm) deformation M1

d of M1

supported in a neighborhood of p with M1
d ⊃ C such that M1

d is minimal at
p.

Indeed, let (qk)k∈N be a sequence of points tending to p in O loc
CR(M1, p)

with qk 6∈ C. To destroy the local complex hypersurface O loc
CR(M1, p), it

suffices to achieve, by means of cut-off functions, small bump-deformations
of M centered at all the qk; it is easy to write the technical details in terms
of a local graphed representation v = ϕ1(z, u) for M1. Outside a small
neighborhood of the union of the qk, M1

d coincides with M1. Then the
resultingM1

d is necessarily minimal at p, since if it where not, the uniqueness
principle23 for complex manifolds would force O loc

CR(M1, p) = O loc
CR(M1

d , p),
but M1

d does not contains the qk.
So we can assume that M1 is minimal at every point p ∈ C at which

O loc
CR(M1, p) 6⊂ C. LetBp ⊂ Cn be a small open ball centered at pwithBp∩

M1 ⊂ O loc
CR(M1, p). We will show that O(Ω\C) extends holomorphically

to Bp. By assumption, Bp ∩M1 6⊂ C, hence Bp\C is connected, a fact that
will insure monodromy.

Fixing vp ∈ TpCn\{0} with vp 6∈ TpM
1, we consider the global transla-

tions

M1
s := M1 + s vp, s ∈ R,

of M1. Let f ∈ O(Ω\C) be arbitrary. For small s 6= 0, M1
s ∩ Bp does not

intersect M1, hence the restriction f |M1
s∩Bp

is a C 2 CR function on M1
s ∩Bp

(but f |M1
0∩Bp

has possible singularities at points of C ∩Bp).
With Up := M1 ∩ Bp, Theorem 2.4(V) says that C 0

CR(Up) extends holo-
morphically to some one-sided neighborhood ω±p of M1 at p. Reorient-
ing if necessary, we may assume that the extension side is ω−p and that
p + s vp ∈ B+

p for s > 0 small. The statement and the proof of Theo-
rem 2.4(V) are of course invariant by translation. Hence C 0

CR(Up + s vp)
extends holomorphically to ω−p + s vp, for every s > 0. It is geometrically
clear that for s > 0 small enough, ω−p + s vp contains p. Thus f

∣∣
M1

s∩Bp

extends holomorphically to a neighborhood of p for such s. Monodromy of

23Minimalization at a point takes strong advantage of the rigidity of complex hypersur-
faces in this argument.
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the extension follows from the fact that B′
p\C is connected for every open

ball B′
p centered at p. This completes the proof of the lemma. ¤

2.37. Removability and extension of complex hypersurfaces. Let
Ω ⊂ Cn be a domain. Theorem 2.30 (rm4) shows that a connected
2-codimensional submanifold N ⊂ Ω is removable provided it is not a
complex hypersurface, or equivalently, is generic somewhere. Conversely,
assume that Ω is pseudoconvex and let H ⊂ Ω be a (not necessarily
connected) closed complex hypersurface. Then Ω\H is (obviously) locally
pseudoconvex at every point, hence the characterization of domains of
holomorphy yields a function f ∈ O(Ω\H) whose domain of existence
is exactly Ω\H . Thus, H is nonremovable. But in a nonpseudoconvex
domain, closed complex hypersurfaces may be removable.

Example 2.38. For ε > 0 small, consider the following nonpseudoconvex
subdomain of B2, defined as the union of a spherical shell together with a
thin rod of radius ε directed by the y2-axis:

Ωε :=
{
1/2 < |z1|2 + |z2|2 < 1

} ⋃ (
B2 ∩

{
x2

1 + y2
1 + x2

2 < ε2
})
.

Then the intersection of the z1-axis with the spherical shell, namely

H :=
{
(z1, 0) : 1/2 < |z1| < 1

}
,

is a relatively closed complex hypersurface of Ωε homeomorphic to an open
annulus. We claim that H is removable.

Indeed, applying the continuity principle along discs parallel to the z1-
axis, O(Ωε) extends holomorphically to B2\{z2 = 0}. Since the open small
disc {(z1, 0) : |z1| < ε}, considered as a subset of the closed complex
hypersurface H̃ of B2 defined by

H̃ := {(z1, 0) : |z1| < 1}
is contained in the thin rod, hence in Ωε, Theorem 2.30 (rm3) finishes to
show that

E(Ωε\H) = E(Ωε) = B2.

In such an example, we point out that the closed complex hypersurface H ⊂
Ωε extends as the closed complex hypersurface H̃ ⊂ E(Ωε\H) but that the
intersection

H̃ ∩ Ωε =
{
(z1, 0) : |z1| < ε

} ⋃ {
(z1, 0) : 1/2 < |z1| < 1

}

is strictly bigger than H .

Problem 2.39. Understand which relatively closed complex hypersurfaces
of a general domain Ω ⊂ Cn are removable.
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We thus consider a (possibly singular and reducible) closed complex hy-
persurface H of Ω. Basic properties of complex analytic sets ([Ch1991])
insure that H =

⋃
j∈J Hj decomposes into at most countably many closed

complex hypersurfaces Hj ⊂ Ω that are irreducible.

Definition 2.40. We say that Hj allows an H-compatible extension to E(Ω)

if there exists an irreducible closed complex hypersurface H̃j of E(Ω) ex-
tendingHj in the sense thatHj ⊂ H̃j∩Ω whose intersection with Ω remains
contained in H:

H̃j ∩ Ω ⊂
⋃

j′∈J
Hj′ .

The principle of analytic continuation for irreducible complex analytic
sets ([Ch1991]) assures thatHj has at most oneH-compatible extension. On
the other hand, H̃j may be an H-compatible extension of several Hj′ . In the
above example, the removable annulus H had no H-compatible extension
to E(Ω).

Theorem 2.41. ([Dl1977, 22]) Let Ω ⊂ Cn (n > 2) be a domain and let
H =

⋃
j∈J Hj be a closed complex hypersurface of Ω, decomposed into

irreducible components Hj . Set

Jcomp :=
{
j ∈ J : Hj allows an H-compatible extension H̃j to E(Ω)

}
.

Then
E(Ω\H) = E(Ω)

∖ ⋃
j∈Jcomp

H̃j.

In particular, H is removable (resp. nonremovable) if and only if Jcomp = ∅
(resp. Jcomp 6= ∅).

This statement was obtained after a chain of generalizations originating
from the classical results of Hartogs [Ha1909] and of Oka [Ok1934]. In
[GR1956] it was proved for the case thatH is of the form Ω∩H̃ , H̃ ⊂ E(Ω),
and in [Nis1962] under the additional assumption that E(Ω\H) is a subset
of E(Ω) (a priori, it is only a set over E(Ω)). Actually Theorem 2.41 was
stated in [Dl1977] even for Riemann domains Ω. But it was remarked in [22]
(p. 306) that the proof in [Dl1977] is complete only if the functions of O(Ω)
separate the points of Ω, i.e. if Ω can be regarded as a subdomain of E(Ω).
Actually the proof in [Dl1977] starts from the special case where Ω is a
Hartogs figure, which can be treated by a subtle geometric examination.
Then a localization argument shows that extension of hypersurfaces which
are singularity loci of holomorphic functions cannot stop when passing from
Ω to E(Ω). But in the nonseparated case, the global effect of identifying
points of Ω interferes nastily, and it is unclear how to justify the localization
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argument. The final step for general Riemann domains was achieved by the
second author by completely different methods.

Theorem 2.42. ([Po2002]) Let π : X → Cn be an arbitrary Riemann
domain, and let H ⊂ X be a closed complex hypersurface. Denote by
α : X → E(X) the canonical immersion of X into E(X). Then there is a
closed complex hypersurface H̃ of E(X) with α−1(H̃) ⊂ H such that

E(X\H) = E(X)
∖
H̃.

Let us briefly sketch the main idea of the proof ([Po2002]). The essence
of the argument is to reduce extension of hypersurfaces to that of meromor-
phic functions. For every pseudoconvex Riemann domain π : X → Cn,
there exists f ∈ O(X) ∩ L2(X) having X as domain of existence whose
growth is controlled by some power of the polydisc distance to the abstract
boundary ∂̆X . At boundary points where ∂̆X can be locally identified with
a complex hypersurface, f has just a pole of positive order. One can deduce
that those hypersurfaces H of X along which some holomorphic function
on X\H becomes singular can be represented as the polar locus of some
meromorphic function g defined in X . But g extends meromorphically to
E(X), and the polar locus of the extension yields the desired extension of
H .

§3. HULLS AND REMOVABLE SINGULARITIES AT THE BOUNDARY

3.1. Motivations for removable singularities at the boundary. As already
observed in Section 1, beyond the harmonious realm of pseudoconvexity, the
general problem of understanding compulsory holomorphic (or CR) exten-
sion is intrinsically rich and open. Some elementary Baire category argu-
ments show that most domains are not pseudoconvex, most CR manifolds
have nontrivial disc-envelope, and most compact sets have nonempty es-
sential polynomial hull. Hence, the Grail for the theory of holomorphic
extension would comprise:

• a geometric and constructive view of the envelope of holomorphy of
most domains, following the Behnke-Sommer Kontinuitätssatz and
Bishop’s philosophy;

• a clear correspondence between function-theoretic techniques, for
instance those involving ∂ arguments, and geometric techniques, for
instance those involving families of complex analytic varieties.

Several applications of the study of envelopes of holomorphy appear, for
instance in the study of boundary regularity of solutions of the ∂-complex,
in the complex Plateau problem, in the study of CR mappings, in the compu-
tation of polynomial hulls and in removable singularities, the topics of this
Part VI and of [26].



226

In the 1980’s, rapid progress in the understanding of the boundary be-
havior of holomorphic functions led many authors to study the structure of
singularities up to the boundary. In §2.28, we discussed removability of
relatively closed subsets C of domains Ω ⊂ Cn, i.e. the problem whether
O(Ω) → O(Ω\C) is surjective. Typically C was supposed to be lower-
dimensional and its geometry near ∂Ω was irrelevant. Now we assume Ω
to be bounded in Cn (n > 2) and we consider compact subsets K of Ω,
possibly meeting ∂Ω.

Problem 3.2. Find criteria of geometric, or of function-theoretic nature, as-
suring that the restriction map O(Ω) → O(Ω\K) is surjective.

If K ⊂ Ω ∩ ∂Ω = ∅ and Ω\K is connected, surjectivity follows from the
Hartogs-Bochner extension Theorem 1.9(V). Since this theorem even gives
extension of CR functions on ∂Ω, it seems reasonable to ask for holomorphic
extension of CR functions on ∂Ω\K, and then it is natural to assume that K
is contained in ∂Ω. Hence the formulation of a second trend of questions24.

Problem 3.3. Let K is a compact subset of ∂Ω such that ∂Ω\K is a hy-
persurface of class at least C 1. Understand under which circumstances CR
functions of class C 0 or Lp

loc on ∂Ω\K extend holomorphically to Ω.

A variant of these two problems consists in assuming that functions are
holomorphic in some thin (one-sided) neighborhood of ∂Ω\K. In all the
theorems that will be surveyed below, it appears that the thinness of the
(one-sided) neighborhood of ∂Ω\K has no influence on extension, as in the
original Hartogs theorem. In this respect, it is of interest to immediately in-
dicate the connection of these two problems with the problem of determining
certain envelopes of holomorphy.

In the second problem, the hypersurface ∂Ω\K is often globally minimal,
a fact that has to be verified or might be one of the assumptions of a theorem.
For instance, several contributions deal with the paradigmatic case where ∂Ω
is at least C 2 and strongly pseudoconvex (hence obviously globally mini-
mal). Then thanks to the elementary Levi-Lewy extension theorem (Theo-
rem 1.18(V), lemma 2.2(V) and §2.10(V)), there exists a one-sided neigh-
borhood V (∂Ω\K) of ∂Ω\K contained in Ω to which both C 0

CR(∂Ω\K)
and Lp

loc,CR(∂Ω\K) extend holomorphically. The size of V (∂Ω\K) de-
pends only on the local geometry of ∂Ω, because V (∂Ω\K) is obtained
by gluing small discs (Part V). In fact, an inspection of the proof of the
Levi-Lewy extension theorem together with an application of the continuity
principle shows also that the envelope of holomorphy of any thin one-sided

24CR distributions may also be considered, but in the sequel, we shall restrict consider-
ations to continuous and integrable CR functions.
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neighborhood V ′(∂Ω\K) (not necessarily contained in Ω !) contains a one-
sided neighborhood V (∂Ω\K) of ∂Ω\K contained in the pseudoconvex
domain Ω that has a fixed, incompressible size25.

As they are formulated, the above two problems turn out to be slightly
too restrictive. In fact, the final goal is to understand the envelope
E
(
V (∂Ω\K)

)
, or at least to describe some significant part of E

(
V (∂Ω\K)

)
lying above Ω. Of course, the question to which extent is the geometry of
E
(
V (∂Ω\K)

)
accessible (constructively speaking) depends sensitively on

the shape of Ω. Surely, the strictly pseudoconvex case is the easiest and
the best understood up to now. In what follows we will encounter situa-
tions where E

(
V (∂Ω\K)

)
contains Ω\K̂, for some subset K̂ ⊂ Ω defined

in function-theoretic terms and depending on K ⊂ ∂Ω. We will also en-
counter situations where E

(
V (Ω\K)

)
is necessarily multisheeted over Cn.

In this concern, we will see a very striking difference between the complex
dimensions n = 2 and n > 3.

In the last two decades, a considerable interest has been devoted to a sub-
problem of these two problems, especially with the objective of characteriz-
ing the singularities at the boundary that are removable.

Definition 3.4. In the second Problem 3.3, the compact subset K ⊂ ∂Ω
is called CR-removable if for every CR function f ∈ C 0

CR(∂Ω\K) (resp.
f ∈ Lp

loc,CR(∂Ω\K)), there exists F ∈ O(Ω) ∩ C 0(Ω\K) (resp. F ∈
O(Ω) ∩ Hp

loc(Ω\K)) with F |∂Ω\K = f (resp. locally at every point p ∈
∂Ω\K, the Lp

loc,CR boundary value of F equals f ).

Before exposing and surveying some major results we would like to men-
tion that a complement of information and different approaches may be
found in the two surveys [Stu1993, 6], in the two monographs [Ky1995,
Lt1997] and in the articles [Stu1981, LT1984, Lu1986, Lu1987, Jö1988,
Lt1988, Stu1989, Ky1990, Ky1991, Stu1991, FS1991, Jö1992, KN1993,
Du1993, LS1993, Lu1994, AC1994, Jö1995, KR1995, Jö1999a, Jö1999b,
JS2000, 21, JS2004].

3.5. Characterization of removable sets contained in strongly pseudo-
convex boundaries. Taking inspiration from the pivotal Oka theorem, one
of the goals of the study of removable singularities ([Stu1993]) is to charac-
terize removability in function-theoretically significant terms, especially in
terms of convexity with respect to certain spaces of functions. In the very
beginnings of Several Complex Variables, polynomial convexity appeared

25To be rigorous: for every holomorphic function f ∈ O
(
V ′(∂Ω\K)

)
, there exists

a holomorphic function F ∈ O
(
V (∂Ω\K)

)
that coincides with f in a possibly smaller

one-sided neighborhood V ′′(∂Ω\K) ⊂ V ′(∂Ω\K). Details of the proof (involving a
deformation argument) will not be provided here (see [Me1997, Jö1999a]).
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in connexion with holomorphic approximation. According to the Oka-Weil
theorem ([AW1998]), functions that are holomorphic in some neighborhood
of a polynomially convex compact set K ⊂ Cn may be approximated uni-
formly by polynomials. Later on, holomorphic convexity appeared to be
central in Stein theory ([Hö1973]), one of the seminal frequently used idea
being to encircle convex compact sets by convenient analytic polyhedra.

The notion of convexity adapted to our pruposes is the following. By
O(Ω), we denote the ring of functions that are holomorphic in some neigh-
borhood of the closure Ω of a domain Ω ⊂ Cn. As in the concept of germs,
the neighborhood may depend on the function.

Definition 3.6. Let Ω b Cn be a bounded domain and let K ⊂ Ω be a
compact set. The O(Ω)-convex hull of K is

K̂O(Ω) :=
{
z ∈ Ω : |g(z)| 6 max

w∈K
|g(w)| for all g ∈ O(Ω)

}
.

If K = K̂O(Ω), then K is called O(Ω)-convex.

If Ω is strongly pseudoconvex, a generalization of the Oka-Weil theorem
shows that every function which is holomorphic in a neighborhood of some
O(Ω)-convex compact set K ⊂ Ω may be approximated uniformly on K
by functions of O(Ω) (nevertheless, for nonpseudoconvex domains, this ap-
proximation property fails26).

We may now begin with the formulation of a seminal theorem due to Stout
that inspired several authors. We state the CR version, due to Lupacciolu27.

Theorem 3.7. ([Stu1981, Lu1986, Stu1993]) In complex dimension n = 2,
a compact subset K of a C 2 strongly pseudoconvex boundary ∂Ω b C2 is
CR-removable if and only if it is O(Ω)-convex.

The “only if” part is the easiest, relies on a lemma due to Słodkowski
([RS1989, Stu1993]) and will be presented after Lemma 3.11. Let us
sketch the beautiful key idea of the “if” part ([Stu1981, Lu1986, Stu1993,
Po1997]).

26Indeed, consider for instance the Hartogs figure Ω :=
{|z1| < 1, |z2| < 2

} ∪ {
1 6

|z1| < 2, 1 < |z2| < 2
}

in C2. Then the annulus K = {z1 = 1, 1 6 |z2| 6 2)} ⊂ ∂Ω
is O(Ω)-convex. We claim that the function g := 1/z2, holomorphic in a neighborhood of
K, cannot be approximated on K by functions f ∈ O(Ω). Indeed, by Hartogs extension
O(Ω) = O

({|z1| 6 2, |z2| 6 2}), which implies that every f ∈ O(Ω) has to satisfy the
maximum principle on the disc {z1 = 1, |z2| 6 2)} ⊃ K. Rounding off the corners, we
get an example with ∂Ω ∈ C∞.

27Said differently, the envelope of holomorphy of an arbitrarily thin (interior) one-sided
neighborhood of ∂Ω\K is one-sheeted and identifies with Ω.



229

From §1.7(V), remind the expression of the Bochner-Martinelli kernel:

BM(ζ, z) =
1

(2πi)2|ζ − z|4
[
(ζ2 − z2) dζ̄1 − (ζ1 − z1) dζ̄2

]
∧ dζ1 ∧ dζ2.

Let M ⊂ C2 be a thin strongly pseudoconvex neighborhood of Ω. By means
of a fixed function g ∈ O(M ), it is possible to construct some explicit
primitive of BM as follows. This idea goes back to Martinelli and has been
exploited by Stout, Lupacciolu, Leiterer, Laurent-Thiébaut, Kytmanov and
others. By a classical result ([HeLe1984]), g admits a Hefer decomposition

g(ζ)− g(z) = g1(ζ, z)[ζ1 − z1] + g2(ζ, z)[ζ2 − z2],

with g1, g2 ∈ O(M ×M ). Then a direct calculation shows that for z ∈ M
fixed, the (0, 2)-form

Θg,z(ζ) =
g2(ζ, z)(ζ1 − z1)− g1(ζ, z)(ζ2 − z2)

(2πi)2 |ζ − z|2 [
g(ζ)− g(z)

] dζ1 ∧ dζ2

satisfies
∂ζΘg,z(ζ) = dζΘg,z(ζ) = BM(ζ, z),

on {ζ ∈ M : g(ζ) 6= g(z)}, i.e. provides a primitive of BM outside some
thin set. In Cn for n > 3, there is also a similar explicit primitive.

Let K ⊂ ∂Ω be as in Theorem 3.7 and fix z ∈ Ω
∖
K. By O(Ω)-convexity

of K, there exists g ∈ O(Ω) with g(z) = 1 and maxw∈K |g(w)| < 1. After a
slight elementary modification of g ([Jö1995, Po1997]), one can insure that
the set

{
w ∈ M : |g(w)| = 1

}
is a geometrically smooth C ω Levi-flat

hypersurface of M transverse to ∂Ω. Then the region Ωg := Ω ∩ {|g| > 1
}

has piecewise smooth connected boundary

∂Ωg =
(
∂Ω ∩ {|g| > 1})

⋃ (
Ω ∩ {|g| = 1})

and its closure Ωg in C2 does not intersect K.
Let f be an arbitrary continuous CR function on ∂Ω\K. Supposing for a

while that f already enjoys a holomorphic extension F ∈ O(Ω)∩C 0
(
Ω\K)

,
the Bochner-Martinelli representation formula then provides for every z ∈
Ωg the value

F (z) =

∫

∂Ωg

f(ζ) BM(ζ, z).

Decomposing ∂Ωg as above and using the primitive Θg,z, we may write

F (z) =

∫

∂Ω∩{|g|>1}
f(ζ) BM(ζ, z) +

∫

Ω∩{|g|=1}
f(ζ) dζΘg,z(ζ).
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Supposing f ∈ C 1 and applying Stokes’ theorem28 to the (Levi-flat) hyper-
surface Ω ∩ {|g| = 1} with boundary equal to ∂Ω ∩ {|g| = 1}, we get

F (z) =

∫

∂Ω∩{|g|>1}
f(ζ) BM(ζ, z) +

∫

∂Ω∩{|g|=1}
f(ζ) Θg,z(ζ).

But the holomorphic extension F of an arbitrary f ∈ C 0
CR

(
∂Ω\K)

is still
unknown and in fact has to be constructed ! Since the two integrations in the
above formula are performed on parts of ∂Ω\K where f is defined, we are
led to set:

Fg(z) =

∫

∂Ω∩{|g|>1}
f(ζ) BM(ζ, z) +

∫

∂Ω∩{|g|=1}
f(ζ) Θg,z(ζ),

as a candidate extension of f at every z ∈ Ωg. SinceK is O(Ω)-convex, Ω is
the union of the regions Ωg for g running in O(Ω), but these extensions Fg(z)
do depend on g, because Θg,z does. The remainder of the proof ([Stu1993,
Po1997]) then consists in:

(a) verifying that Fg is holomorphic (the kernels are not holomorphic
with respect to z);

(a) showing that two differente candidates Fg1 and Fg2 coincide in fact
on Ωg1 ∩ Ωg2;

(b) verifying that at least one candidate Fg has boundary value equal to
f on some controlled piece of ∂Ω\K.

The reader is referred to [Stu1981, Lu1986, Stu1993] for complete argu-
ments.

In the above construction, the strict pseudoconvexity of Ω insured the ex-
istence of a Stein (i.e. pseudoconvex) neighborhood basis

(
Mj

)
j∈J of Ω

which guaranteed in turn the existence of a Hefer decomposition. It was
pointed out by Ortega that Hefer decomposition (called Gleason decompo-
sition in [Or1987]) holds on C∞ pseudoconvex boundaries ∂Ω b Cn, but
may fail in the nonpseudoconvex realm. So, let Ω b Cn be a bounded do-
main having C∞ boundary. Denote by A∞(Ω) := O(Ω) ∩ C∞(Ω) the ring
of holomorphic functions in Ω that are C∞ up to the boundary.

Theorem 3.8. ([Or1987]) If ∂Ω b Cn (n > 1) is C∞ and pseudoconvex,
then every g ∈ A∞(Ω) has a decomposition

g(z)− g(w) =
n∑

k=1

gk(z, w)[zk − wk],

with the gk ∈ A∞(Ω× Ω).

28In the general case f ∈ C 0, one shrinks slightly Ωg inside Ω, rounds off its corners
and passes to the limit.
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This decomposition formula also holds under the assumption that Ω is a
domain of holomorphy (having possibly nonsmooth boundary), but provided
that Ω has a basis of neighborhoods consisting of Stein domains. However,
not every C∞ weakly pseudoconvex boundary admits a Stein neighborhood
basis, as is shown by the so-called worm domains ([DF1977, FS1987]).

Example 3.9. Furthermore, the above decomposition theorem fails to hold
on general domains. Following [Or1987], consider the union Ω1 ∪Ω2 in C2

of the two sets

Ω1 := {−4 < x1 < 0, |z2| < ex1} and

Ω2 := {0 6 x1 < 4, e−1/x1 < |z2| < 1}.
The continuity principle along families of analytic discs parallel to the z2-
axis shows that the envelope of holomorphy of Ω1 ∪ Ω2 contains Ω1 ∪ Ω3,
where Ω3 := {0 6 x1 < 4, |z2| < 1}.

The holomorphic mappingR(z1, z2) := (ei z1 , z2) is one-to-one from Ω1∪
Ω2 onto its image R(Ω1 ∪ Ω2). However, the extension of R to Ω1 ∪ Ω3 is
not injective, becauseR takes the same value at the two points (±π, e−2π) ∈
Ω1 ∪ Ω3. If Theorem 3.8 were true on the domain R(Ω1 ∪ Ω2), pulling the
decomposition formula back to Ω1 ∪ Ω2, it would follow that every g ∈
O(Ω1 ∪ Ω2) has a decomposition

g(z)− g(w) = g̃1(e
i z, w)

[
ei z1 − ei z2

]
+ g̃2(e

i z, w)[z2 − w2]

= g1(z, w)
[
ei z1 − ei z2

]
+ g2(z, w)[z2 − w2].

Then the same decomposition would hold for every g ∈ O(Ω1 ∪ Ω3), by
automatic holomorphic extension of g, g1, g2. Choosing z = (−π, e−2π),
w = (π, e−2π) and g such that g(z) 6= g(w) (g := z1 will do !), we reach a
contradiction.

Corollary 3.10. ([Or1987, LP2003]) Every function holomorphic in a do-
main Ω ⊂ Cn enjoys the Hefer division property precisely when the envelope
of holomorphy of Ω is schlicht.

The above results mean that a direct application of the integral formula ap-
proach sketched above becomes impossible for domains having nonschlicht
envelope. Nevertheless, in [Lt1988], using more general divison meth-
ods ([HeLe1984]), a Bochner-Martinelli kernel on an arbitrary Stein mani-
fold was constructed that enabled to obtain Theorem 3.28 below, valid for
nonpseudoconvex domains.

We conclude our presentation of Theorem 3.7 by exposing the “only if”
of Theorem 3.7.
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Lemma 3.11. ([RS1989, Stu1993]) Let ∂Ω b C2 be a C 2 strongly pseu-
doconvex boundary and let K ⊂ ∂Ω be a compact set. Then Ω

∖
K̂O(Ω) is

pseudoconvex.

Taking for granted the lemma, by contraposition, suppose that K ⊂ ∂Ω

is not O(Ω)-convex, viz. K $ K̂O(Ω) and show that K is not removable.
It follows from strict pseudoconvexity of ∂Ω that Ω ∩ K̂O(Ω) is nonempty
([Stu1993]). Leaving K fixed, by deforming ∂Ω away from Ω, we may
enlarge slightly Ω as a domain Ω′ ⊃ Ω with ∂Ω′ ⊃ K and Ω′ ⊃ ∂Ω\K,
having C 2 boundary ∂Ω′ close to ∂Ω, as illustrated. Since by the lemma,
Ω

∖
K̂O(Ω) is pseudoconvex, it follows easily ([Stu1993]) that Ω′∖K̂O(Ω) is

also pseudoconvex. Consequently ([Hö1973]), there exists a holomorphic
function F ′ ∈ O

(
Ω′∖K̂O(Ω)

)
that does not extend holomorphically at any

point of the boundary of Ω′∖K̂O(Ω). The restriction of F ′ to ∂Ω\K is a CR
function on ∂Ω\K for which K is not removable, since Ω ∩ K̂O(Ω) 6= ∅.

3.12. Removability, polynomial hulls and Cantor sets. A generalization
of Theorem 3.7, essentially with the same proof (excepting notational com-
plications) holds in arbitrary complex dimension n > 2.

Theorem 3.13. ([Lu1986, Stu1993]) Let Ω b Cn, n > 2, be a bounded
pseudoconvex domain such that Ω has a Stein neighborhood basis. If K ⊂
∂Ω is compact and O(Ω)-convex, and if ∂Ω = K ∪ M , where M is a
connected C 1 hypersurface of Cn\K, then K is CR-removable.

Example 3.14. ([6, Jö1999a]) Let M be a connected compact orientable
(2n − 3)-dimensional maximally complex (Definition 4.7 below) CR man-
ifold of class C 1 contained in the unit sphere ∂Bn (n > 2) with empty
boundary in the sense of currents. Such an M is called a maximally com-
plex cycle. By a theorem due to Harvey-Lawson (reviewed as Theorem 4.16
below), if M satisfies the moments’ condition, then M is the boundary of a
unique complex (n − 1)-dimensional complex subvariety Σ ⊂ Bn. Since
the cohomology group H2(Bn,Z) vanishes, by a standard Cousin prob-
lem, Σ may be defined as the zero-set of some global holomorphic function
f ∈ O(Bn) ∩ C 0(Bn). The maximum principle yields that the compact set
K := Σ ∪M = Σ is O(Bn)-convex. Consequently, the envelope of holo-
morphy of an arbitrarily thin one-sided neighborhood of ∂Bn\M is equal to
the pseudoconvex domain Bn\

(
M ∪ Σ

)
.

If in addition Ω is Runge ([Hö1973]) or if Ω is polynomially convex, then
every f ∈ O(Ω) may be approximated uniformly by polynomials on some
sufficiently small neighborhood of Ω (whose size depends on f ). It then
follows that polynomial convexity and O(Ω)-convexity are equivalent. As a
paradigmatic example, this holds when Ω = Bn is the unit ball.
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Corollary 3.15. ([Stu1993]) Let Ω and K ⊂ Ω be as in Theorem 3.13 and
assume that Ω is Runge in Cn, for instance Ω = Bn. If K is polynomially
convex, then K is CR-removable. If n = 2, the CR-removability of K is
equivalent to its polynomial convexity.

Although the last necessary and sufficient condition seems to be satisfac-
tory, we must point out that concrete geometric characterizations of polyno-
mial convexity usually are hard to provide. In §5.14 below, we shall describe
a class of removable compact sets whose polynomial convexity may be es-
tablished directly.

A compact subset K of Rn (n > 1) is a Cantor set if it is perfect, viz.
coincides with its first derived set K ′. It is called tame if there is a home-
omorphism of Rn onto itself that carries K onto the standard middle-third
Cantor set contained in the coordinate line Rx1 .

Tame Cantor sets K in a C 2 strongly pseudoconvex boundary ∂Ω b C2

were shown to be CR-removable in [FS1991], provided there exists a Stein
neighborhood D of K in C2 such that K is O(D)-convex. By further anal-
ysis, this last assumption was shown later to be redundant and in general,
tame Cantor sets are CR-removable. It was then suggested in [Stu1993] that
all Cantor subsets of ∂Bn (n > 2) are removable, or equivalently polyno-
mially convex. Nevertheless, Rudin and then Vitushkin, Henkin and others
had constructed Cantor setsK ⊂ C2 having large polynomial hull K̂, e.g. so
that K̂ contains a complex curve, or even contains interior points. Recently,
in a beautiful paper, Jöricke showed how to put such sets in the 3-sphere
∂B2, thus solving the question in the negative.

Theorem 3.16. ([Jo2005]) For every positive number r < 1, there exists
a Cantor set K ⊂ ∂B2 whose polynomial hull K̂ contains the closed ball
rB2.

3.17. Lp-removability and further results. In the definition of CR-
removability, nothing is assumed about the behavior from Ω

∖
K up to K:

the rate of growth may be arbitrarily high. If, differently, functions are
assumed to be tame on ∂Ω (including K), better removability assertions
hold.

Definition 3.18. A compact subset K of a C 1 boundary ∂Ω b Cn (n > 2)
is called Lp-removable (1 6 p 6 ∞) if every function f ∈ Lp(∂Ω) which is
CR on ∂Ω\K is in fact CR on the whole boundary ∂Ω.

Then by the Hartogs-Bochner theorem, f admits a holomorphic extension
to Ω that may be checked to belong to Hp(Ω).
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Theorem 3.19. ([AC1994]) Let Ω b Cn (n > 2) be a bounded domain
having C 2 boundary ∂Ω and let M be a C 2 totally real embedded subman-
ifold of ∂Ω. If K ⊂ M is a polynomially convex compact subset, then K is
Lp-removable.

In complex dimension n > 3, the two extension Theorems 3.13 and 3.19
are not optimal. In general, additional extension phenomena occur, which
are principally overlooked by assumptions on the hull of the singularity.
A more geometric point of view (§3.23 below) shows that these theorems
may be established by means of holomorphic extension along one-parameter
families of complex analytic hypersurfaces, whereas the (finer) Kontinu-
itätssatz holds along families of analytic discs, whose thinness offers more
freedom to fill in maximal domains of extension.

Example 3.20. Let Ω := B3 be the unit ball in C3, and let

K =
{
(z1, z2, 0) ∈ ∂B3 : |z1| > 1/2

}

be a 3-dimensional ring in the intersection of ∂B3 with the (z1, z2)-plane.
The maximum principle along discs parallel to the z2-axis yields:

K̂O(B3) =
{
(z1, z2, 0) ∈ B3 : |z1| > 1/2

} 6= K,

so K is not O(B3)-convex. Nevertheless, this K is removable. Indeed,
applying the continuity principle, we may first fill in B3

∖
K̂ by means of

discs parallel to the z2-axis and then fill in the complete ball B3, by means
of discs parallel to the z3-axis.

In higher dimensions n > 3, the relevant characterizations of CR-
removable compact sets contained in strongly pseudoconvex frontiers are of
cohomological nature (§3.33 below). In another vein, the assumption that Ω
possesses a Stein neighborhood basis in Theorem 3.13 above inspired some
authors to generalize Stout’s theorem as follows.

Definition 3.21. Let Ω be a relatively compact domain of a Stein manifold
M and let K ⊂ Ω be a compact set. The O(M )-convex hull of K is

K̂O(M ) :=
{
z ∈ M : |g(z)| 6 max

w∈K
|g(w)| for all g ∈ O(M )

}
.

If K = K̂O(M ), then K is called O(M )-convex.

In Cn, the O(M )-convex hull coincides with the polynomial hull. Notice
that the next theorem is valid without pseudoconvexity assumption on Ω.

Theorem 3.22. ([Stu1981, Lt1988, Ky1991, Stu1993, Jö1995]) Let M be
a Stein manifold of dimension n > 2, let Ω b M be a relatively compact
domain such that M \Ω is connected and let K ⊂ Ω be a compact set with
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K = K̂O(M ) ∩ ∂Ω. Then every CR function f defined on ∂Ω\K extends
holomorphically to Ω\K̂O(M ), i.e.:

• if ∂Ω\K is a C κ,α hypersurface, with κ > 1 and 0 6 α 6 1, and
if f ∈ C κ,α

CR (∂Ω\K), then the holomorphic extension F ∈ O(Ω\K)

belongs to the class C κ,α
(
Ω\K̂O(M )

)
;

• if ∂Ω\K is a C 1 hypersurface and if f ∈ Lp
loc(∂Ω\K) with 1 6

p 6 ∞, then at every point p ∈ ∂Ω\K, the holomorphic extension
F ∈ O

(
Ω\K̂O(M )

)
belongs to the Hardy space Hp

loc(Up ∩ Ω), for
some small neighborhood Up of p in M .

3.23. A(Ω)-hull and removal of singularities on pseudoconvex bound-
aries. Following [Jö1995, Po1997, 21], we now expose a geometric as-
pect of some of the preceding removability theorems. Let Ω b Cn with
n > 2 be a bounded domain having frontier of class at least C 1. By
A(Ω) = O(Ω) ∩ C 0(Ω), we denote the ring of holomorphic functions in
Ω that are continuous up to the boundary. Let K ⊂ Ω be a compact set.

Definition 3.24. The A(Ω)-hull of K is

K̂A(Ω) :=
{
z ∈ Ω : |g(z)| 6 max

w∈Ω
|g(w)| for all g ∈ A (Ω)

}
.

If K = K̂A(Ω), then K is called A(Ω)-convex. If K = ∂Ω ∩ K̂A(Ω), then K
is called CR-convex.

The next theorem is stronger than Theorem 3.13 in two aspects:

• the inclusion K̂A(Ω) ⊂ K̂O(Ω) holds in general and may be strict;

• it is not assumed that the pseudoconvex domain Ω has a Stein neigh-
borhood basis.

Theorem 3.25. ([Jö1995]) Let Ω be a bounded weakly pseudoconvex do-
main in C2 having frontier of class C 2 and let K be a compact subset of ∂Ω

with K 6= ∂Ω such that K is CR-convex, namely K = ∂Ω ∩ K̂A(Ω). Then
the following are true.

1) Let V (∂Ω\K) be an interior one-sided neighborhood of ∂Ω\K with
the property that each connected component of V (∂Ω\K) contains
in its boundary exactly one component of ∂Ω\K and no other point
of ∂Ω\K. Then for every holomorphic function f ∈ O

(
V (∂Ω\K)

)
,

there exists a holomorphic function F ∈ O(Ω\K̂A(Ω)) with F = f
in V (∂Ω\K).
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2) ([AS1990]) There is a one-to-one correspondence between con-
nected components of ∂Ω\K and connected components of
Ω\K̂A(Ω), namely the boundary of each component of Ω\K̂A(Ω)

contains exactly one connected component of ∂Ω\K and does not
intersect any other component.

3) If the boundary ∂Ω is of class C∞, then Ω\K̂A(Ω) is pseudoconvex,
hence it is the envelope of holomorphy of V (∂Ω\K).

If K is not CR-convex, the one-to-one correspondence between the con-
nected components of ∂Ω\K and those of ∂Ω\K̂A(Ω) may fail.

Example 3.26. Indeed, let Ω := B2 ∩
{
x1 <

1
2

}
be a truncation of the unit

ball and let K := ∂B2 ∩
{
x1 = 1

2

}
be the intersection of the three-sphere

∂B2 with the real hyperplane
{
x1 = 1

2

}
(see only the left hand side of the

diagram).

Relevance of the assumption of CR-convexity

bKA(Ω)

{x1 = 1
2
}

C2

K
∂B2

Ω

∂B2

Ω′

C2

K′ = bK′
A(Ω)

The Levi-flat 3-ball B2 ∩
{
x1 = 1

2

}
being foliated by complex discs, the

maximum principle entails that K̂A(Ω) = B2∩
{
x1 = 1

2

}
= K̂A(Ω)∩∂Ω 6= K,

hence K is not CR-convex. Also, ∂Ω\K has two connected components
∂B2∩

{
x1 <

1
2

}
and B2∩

{
x1 = 1

2

}
, whereas ∂Ω\K̂A(Ω) = ∂B2∩

{
x1 <

1
2

}
is connected. Any function on ∂Ω\K equal to two distinct constants on
the two connected components of ∂Ω\K is CR and not holomorphically
extendable to Ω = Ω\K̂A(Ω). Finally, by smoothing out ∂Ω near the two-
sphere ∂B2 ∩

{
x1 = 1

2

}
, we obtain an example with C∞ boundary.

3.27. Hulls and holomorphic extension from nonpseudoconvex bound-
aries. Since the work [Lu1986] of Lupacciolu, the extension of The-
orem 3.7 to nonpseudoconvex boundaries was a daring open problem
([Stu1993]).

Theorem 3.28. ([Po1997, 21, LP2003]) Let Ω be a not necessarily pseudo-
convex bounded domain in Cn (n > 2) having connected C 2 frontier and let
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K ⊂ ∂Ω be a compact set with ∂Ω\K connected such thatK = ∂Ω∩K̂A(Ω).
Then for every continuous CR function f ∈ C 0

CR(∂Ω\K), there exists a
holomorphic function F ∈ O

(
Ω\K̂A(Ω)

) ∩ C 0
(
[Ω\K̂A(Ω)] ∪ [∂Ω\K]

)
such

that F |∂Ω\K = f .

A purely geometrical proof applying a global continuity principle to-
gether with a fine control of monodromy may be found in [Po1997, 21];
cf. also [27]. By a topological device, a second proof ([LP2003]) derives
the theorem from the following statement, established by means of ∂ tech-
niques.

Theorem 3.29. ([Lt1988]) Let M be a Stein manifold of complex dimen-
sion n > 2, let K ⊂ M be a compact set that is O(M )-convex and
let Ω ⊂ M be a relatively compact not necessarily pseudoconvex domain
such that ∂Ω\K is a connected C 1 hypersurface of M \K. Then for every
continuous CR function f on ∂Ω\K, there exists a holomorphic function
F ∈ O(Ω\K) ∩ C 0(Ω\K) with F |∂Ω\K = f .

Contrary to the case where ∂Ω is pseudoconvex (as in Theorem 3.25),
even if K is CR-convex, the one-to-one correspondence between the con-
nected components of ∂Ω\K and those of Ω\K̂A(Ω) may fail to hold. For
this reason, ∂Ω\K is assumed to be connected in Theorem 3.29.

Example 3.30. ([LP2003]) We modify Example 3.26 so as to get a nonpseu-
doconvex boundary as follows (see the right hand side of the diagram
above). Let Ω′ be the unit ball B2 from which we substract the closed ball
B(q, 1) of radius 1 centered at the point q of coordinates (1, 0). A compu-
tation with defining (in)equations shows that Ω′ is contained in

{
x1 <

1
2

}
.

Notice that Ω′ is not pseudoconvex and in fact, its envelope of holomorphy is
single-sheeted and equal to the domain Ω = B2∩

{
x1 <

1
2

}
drawn in the left

hand side. Let K ′ := B2∩
{
x1 = 1

2

} ⊂ ∂Ω′ (this set is the same 2-sphere as
the setK of the preceding example). ThenK ′ is CR-convex, since the candi-
date for itsA(Ω′)-hull is the three-sphere B2∩

{
x1 = 1

2

}
that lies outside Ω′.

However, ∂Ω′\K ′ has two connected components, namely ∂B2 ∩
{
x1 <

1
2

}

and ∂B(q, 1) ∩ {
x1 <

1
2

}
, whereas Ω′\K̂ ′

A(Ω) = Ω′\K ′ = Ω′ is connected.
Hence any CR function equal to two distinct constants on these two com-
ponents fails to extend holomorphically to Ω′. Finally, by smoothing out
∂Ω near the two-sphere ∂B2 ∩

{
x1 = 1

2

}
, we obtain an example with C∞

boundary.

If we drop CR-convexity ofK, viz. ifK 6= K̂A(Ω)∩∂Ω, then monodromy
problems come on scene: the natural embedding of Ω\K̂A(Ω) into the enve-
lope of holomorphy of a one-sided neighborhood of ∂Ω\K may fail to be
one-to-one.
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Example 3.31. ([LP2003]) Consider the real four-dimensional open cube
C := (−1, 1)× i (−1, 1)× (−1, 1)× i(−1, 1) in C2 ' R4.

z2

0

y1

x1

1
2

1

− 1
2

−1

Ω

K

C2

T2

T3

T1

T2 T1

T3

Multisheetedness if K is not CR-convex

C

Choose ε > 0 small and remove from this cube C firstly the narrow tun-
nel T1 := {|z2| 6 ε, |x1 − 1/2| 6 ε} having an entrance and an exit and
secondly the (incomplete) narrow tunnel T2 := {|z2| 6 ε, |x1 + 1/2| 6
ε, −1 < y1 6 1/2} having only an entrance, and call Ω the obtained do-
main. Let K := ∂C ∩ {y1 = 0}. The complete tunnel insures that ∂Ω\K
is connected. Moreover, the maximum principle along families of analytic
discs parallel to the complex z2-axis enables to verify that

K̂A(Ω) =
(
Ω∩{y1 = 0})

⋃
K

⋃ (
∂T1 ∩{y1 = 0})

⋃ (
∂T2 ∩{y1 = 0}).

It follows that ∂Ω\K̂A(Ω) has three connected components, firstly the part
T1 of ∂Ω that lies in the half-space {y1 < 0}; secondly the dead-lock part
T2 of the second tunnel that lies in {y1 > 0}; and thirdly, the remainder T3

of the boundary, that lies in {y1 > 0}.
The branch of log z1 satisfying log 1 = 0 is uniquely defined in

C2\{(x1, z2) : x1 6 0}, hence log z1 is holomorphic in a neighborhood
of ∂Ω\T 2, where T 2 := ∂T2 ∩ {y1 > 0}. In addition, log z1 extends from
points near T2 in {y1 < 0} to a neighborhood of T 2. In sum, it defines a
single-valued function that is holomorphic in a neighborhood of ∂Ω.

Observe that
( − 1

2
+ i

2
, 0

) ∈ T2 ⊂ ∂Ω. The value of log z1 thus defined
at this point is log

(
1√
2
e−i5π/4

)
= log 1√

2
− i 5π

4
. On the other hand, log z1

restricted to a neighborhood of ∂C ∩ {y1 > 0} ⊂ ∂Ω extends holomorphi-
cally to C ∩ {y1 > 0} (by means of unit discs parallel to the z2-axis) as
log z1 itself! But the value of this extension at

( − 1
2

+ i
2
, 0

)
is different:

log
(

1√
2
ei3π/4

)
= log 1√

2
+ i 3π

4
.
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To conclude this paragraph, before surveying the cohomological charac-
terizations of removable singularities in dimension n > 3, we reformulate
the obtained characterization in complex dimension n = 2. It is known
that a compact set K ⊂ Cn is polynomially convex if and only if the ∂-
cohomology group H0,1

∂
(K) is trivial and holomorphic functions in a neigh-

borhood of K can be approximated by polynomials uniformly on K. Thus,
we can state a complete formulation of Theorem 3.7, with the supplemen-
tary assumption that O(Ω) may be approximated uniformly by polynomials.
This insures that polynomial convexity coincides with O(Ω)-convexity. As
a major example, the theorem holds for Ω equal to the unit ball B2 (Corol-
lary 3.15).

Theorem 3.32. ([Stu1989, Stu1993, Lu1994, 6]) The following four con-
ditions for a compact subset K of a C 2 strongly pseudoconvex compact
boundary ∂Ω b C2 with Ω Runge or Ω polynomially convex are equivalent:

• K is O(Ω)-convex.
• K is polynomially convex.

• H0,1

∂
(K) = 0 and holomorphic functions in a neighborhood of K

can be approximated by polynomials uniformly on K
• K is removable.

Thus, in this situation, removability amounts to polynomial convexity.
Nevertheless, the problem of characterizing geometrically the polynomial
convexity of compact sets hides several fine questions. We shall come back
to this topic in Section 5.

3.33. Luppaciolu’s characterizations. An outstanding theorem due to Lu-
pacciolu provides complete cohomological characterizations of removable
sets that are contained in strongly pseudoconvex boundaries, for general
n > 2.

Let M be a Stein manifold of dimension n > 2 and let Ω b M be a
relatively compact strongly pseudoconvex domain having C 2 boundary.

Let Hp,q

∂
:= Z p,q

∂
/∂E p,q−1 denote the usual (p, q)-th Dolbeault cohomol-

ogy group29. We endow the space Z n,n−2

∂
(K) of ∂-closed (n, n− 2)-forms

defined in a neighborhood of a compact set K ⊂ M with the standard lo-
cally convex inductive limit topology derived from the inductive system of
the Fréchet-Schwartz spaces Z n,n−2

∂
(U), as U ranges through a fundamen-

tal system of open neighborhoods of K in M .

29Appropriate background, further survey of Lupacciolu’s results and additional material
may be found in [6].
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Theorem 3.34. ([Lu1994, 6]) Assume that Ω is O(M )-convex. A proper
closed subset K of ∂Ω is removable if and only if Hn,n−1

∂
(K) = 0 and the

restriction map Z n,n−2

∂
(M ) → Z n,n−2

∂
(K) has dense image.

For n = 2, the two conditions of the theorem reduce to the O(M )-
convexity of K ([Lu1994, 6]). For n > 3, the following improvement is
valid. By σE, we denote the separated space associated to a given topologi-
cal vector space E, namely the quotient E/0 of E by the closure of 0.

Theorem 3.35. ([Lu1994, 6]) Assume that n > 3. Without the assumption
that Ω is O(M )-convex, the compact set K ⊂ ∂Ω is removable if and only
if Hn,n−1

∂
(K) = 0 and σHn,n−2

∂
(K) = 0.

Lupacciolu also obtains an extrinsic characterization as follows. Let Φ
be the paracompactifying family of all closed subsets of M \K that have
compact closure in M . Let Hp,q

Φ the Dolbeault cohomology groups with
support in Φ.

Theorem 3.36. ([Lu1994, 6]) For n > 3, a compact subset K of the bound-
ary ∂Ω of a C 2-bounded strongly pseudoconvex domain Ω b M is remov-
able if and only if H0,1

Φ (M \K) = 0.

Notice that, for n > 3, this theorem has the striking consequence that the
condition that K be removable in a strongly pseudoconvex boundary does
not depend on the domain in question, but rather on the situation of K itself
in the ambient manifold. Also, Lupacciolu provides analogous characteri-
zations for weak removability ([Lu1994, 6]).

§4. SMOOTH AND METRICALLY THIN REMOVABLE SINGULARITIES
FOR CR FUNCTIONS

4.1. Three notions of removability. We formulate the concerned notions
of removability directly in arbitrary codimension. Let M ⊂ Cn be a C 2,α

generic submanifold of positive codimension d > 1 and of positive CR
dimension m > 1. Such M will always be supposed connected. In the
sequel, not to mention superficial corollaries, we will systematically assume
that M is globally minimal.

Definition 4.2. ([Me1997, MP1998, Jö1999a, Jö1999b, MP1999, MP2002])
A closed subset C of M is said to be:

• CR-removable if there exists a wedgelike domain W attached to M
to which every continuous CR function f ∈ C 0

CR(M\C) extends
holomorphically;
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• W -removable if for every wedgelike domain W1 attached to M\C,
there is a wedgelike domain W2 attached to M and a wedgelike do-
main W3 ⊂ W1 ∩ W2 attached to M\C such that for every holo-
morphic function f ∈ O(W1), there exists a holomorphic function
F ∈ O(W2) which coincides with f in W3;

• Lp-removable, where 1 6 p 6 ∞, if every locally integrable func-
tion f ∈ Lp

loc(M) which is CR in the distributional sense on M\C
is in fact CR on all of M .

A few comments are welcome. CR-removability requires at least M\C
to be globally minimal, in order that the main Theorem 4.12(V) applies,
yielding a wedgelike domain W1 attached to M\C. Then W -removability
of C implies its CR-removability. In both CR- and W -removabililty, after
the removal of C, nothing is demanded about the growth of the holomorphic
extension to a global wedgelike domain W2 attached to M . Such extensions
might well have essential singularities at some points ofC, although they are
holomorphic in W2. On the contrary, for Lp-removability ofC, CR functions
on M\C should really extend to be CR through C.

Notwithstanding this difference, the sequel will reveal that Lp-
removability is also a consequence of W -removability, thanks to some
Hardy-space control of the holomorphic extension F ∈ O(W2). In fact,
functions are assumed to be Lp

loc (a variant is to assume continuity on M
instead of integrability) even near points of C. This strong assumption
enables to get a control of the growth of the wedge extension. Before
providing more explanations, we assert in advance that W -removability is
the most general notion of removability, focusing the question on envelopes
of holomorphy.

In codimension d = 1, wedgelike domains identify to one-sided neighbor-
hoods. Then W -removability of C means that the envelope of holomorphy
of every (arbitrarily thin) one-sided neighborhood of M\C contains a com-
plete one-sided neighborhood of the hypersurface M in Cn. If M = ∂Ω is
the boundary of a bounded domain Ω ⊂ Cn (having connected boundary),
then W -removability of a compact set K ⊂ ∂Ω entails its removability in
the sense of Problem 3.2, thanks to Hartogs Theorem 1.8(V).

As in [Jö1999b, MP1999], we would like to emphasize that all the gen-
eral theorems presented in Sections 3 and 4 are void for L1

loc functions, or
require a strong assumption of growth. On the contrary, the results that will
be presented below hold in all spaces Lp

loc with 1 6 p 6 ∞, without any
assumption of growth. The concept of W -removability, interpreted as a re-
sult about envelopes of holomorphy, yields a (crucial) external drawing near
the illusory singularity, an opportunity that is intrinsically attached to locally
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embeddable Cauchy-Riemann structures, but is of course absent for general
linear partial differential operators.

4.3. Removable singularities on hypersurfaces. In [LS1993], it is shown
that if Ω ⊂ Cn is a pseudoconvex bounded domain having C 2 boundary,
then every compact subset K ⊂ ∂Ω with H2n−3(K) = 0 is removable in the
sense of Definition 3.4. In fact, Lemma 4.18(III) shows that ∂Ω is globally
minimal and the next lemma shows that in codimension d = 1, metrically
thin singularities do not perturb global minimality.

Lemma 4.4. ([MP2002]) IfM ⊂ Cn is a globally minimal C 2 hypersurface,
then for every closed set C ⊂M with H2n−3(C) = 0, the complement M\C
is also globally minimal.

Example 4.5. However, this is untrue if H2n−3(C) > 0. Let n > 2
and ϕ(z, u) be C 2 defined for |z|, |u| < 1 and satisfying ϕ(z, 0) ≡ 0
for Re z1 6 0. Let M ⊂ Cn be the graph v = ϕ(z, u) and define
C := {(i y1, z2, . . . , zn−1, 0)}. Clearly dimC = 2n− 3, H2n−3(C) > 0 and
{(z, 0) : Re z1 < 0} is a single CR orbit O− of M\C. Also, the function ϕ
may be chosen so that M is of finite type at every point of M\O−, whence
M\C consists of exactly two CR orbits, namely O− and M\(O− ∪ C). It
follows that M is globally minimal.

Theorem 4.6. ([LS1993, 6, MP1998, MP2002]) If M ⊂ Cn is a globally
minimal C 2,α (0 < α < 1) hypersurface, then every closed set C ⊂M with
H2n−3(C) = HdimM−2(C) = 0 is locally CR-, W - and Lp-removable.

Sometimes, we shall say that C is of codimension 2+0 in M . This is a
version of (rm1) and of (rm2) of Theorem 2.30 for CR functions on general
hypersurfaces. Except for Lp-removability, refinements about smoothness
assumptions may be found in [6].

The smallest (Hausdorff) dimension of C ⊂ M ⊂ Cn for which its re-
movability may fail is equal to 2n − 3. Indeed, if C = M ∩ Σ is equal to
the intersection of M with some local complex hypersurface Σ = {f = 0},
the functions 1/fk, k > 1 and e1/f restrict to be CR on M\C, but not holo-
morphically extendable to a one-sided neighborhood at points of C, since
Σ visits both sides of M . In such a situation, the real hypersurface M ∩ Σ
of the complex hypersurface Σ has dimension (2n − 3) and CR dimension
(n− 2).

Definition 4.7. A CR submanifold N ⊂ Cn is called maximally complex if
it is of odd dimension satisfying dimN = 1 + 2 CRdimN .

Every real hypersurface of a complex manifold is maximally complex.
The next step in to study singularities C contained in (2n− 3)-dimensional
submanifolds N ⊂M .
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Example 4.8. We show the necessity of assuming that M\C is also globally
minimal ([MP1999]). Take the complex hypersurface O− of the preceding
example having boundary ∂O− = C = N . Applying Proposition 4.38(III)
to S := O−, we may construct a measure on M\C supported by O− that is
CR on M\C but does not extend holomorphically to a wedge at any point
of O− = O− ∪ C, for the same reason as in Corollary 4.39(III).

Because of this example, we shall systematically assume thatM\C is also
globally minimal, if this is not a consequence of other hypotheses. Here is
a CR version of (rm3) and of (rm4) of Theorem 2.30. It says that true sin-
gularities should be maximally complex. Before stating it, we point out that
all submanifolds of given manifolds will constantly be assumed to be em-
bedded submanifolds. Also, all subsets C of a submanifold N of manifold
M that are called closed are assumed to be closed both in M and in N .

Theorem 4.9. ([Jö1992, Me1997, Jö1999a, Jö1999b]) Let M ⊂ Cn be a
C 2,α (0 < α < 1) globally minimal hypersurface and let N ⊂ M be a
connected C 2,α embedded submanifold of dimension (2n− 3), viz. of codi-
mension 2 in M . A closed set C ⊂ N such that M\C is also globally
minimal is CR-, W - and Lp-removable under each one of the following two
circumstances:

(i) n > 2 and C 6= N ;
(ii) n > 3 and C = N is not maximally complex, viz. there exists at

least one point p ∈ N at which N is generic.

One may verify ([Jö1999a, MP1999]) that generic points of N are locally
removable and then after erasing them by deforming slightly M inside the
extensional wedge existing above, (ii) is seen to be a consequence of (i).
For various smoothness refinements, the reader is referred to [Jö1992, 6,
MP1998, Jö1999a, Jö1999b, MP1999]. One may also combine Theorem 4.6
and 4.9, assuming that the submanifold N is smooth, except perhaps at all
points of some metrically thin closed subset. The proof will not be restituted.

The study of more massive singularities contained in (2n−2)-dimensional
submanifolds has been initiated by Jöricke ([Jö1988]), having in mind some
generalization of Denjoy’s approach to Painlevé’s problem.

Theorem 4.10. ([Jö1999a, Jö1999b]) Let M ⊂ Cn be a C 2,α (0 < α <
1) globally minimal hypersurface and let M1 ⊂ M be a connected C 2,α

embedded submanifold30 of dimension (2n − 2), viz. of codimension 1 in

30We believe that C 2,α-smoothness of M1 is required in the proof built there, since the
map w 7→ ĥ(w) appearing in equation (3.12) of [Jö1999a]

(
that corresponds essentially

to the singular integral J (v) defined in (3.20)(V)
)

already requires M1 to be C 1,α with
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M , that is generic in Cn. If n > 3, a closed set C ⊂ M1 is CR-, W - and
Lp-removable provided it does not contain any CR orbit of M1.

It may be established
(
see e.g. Lemma 3.3 in [26]

)
that M1\C ′ is also

globally minimal for every closed C ′ ⊂M1 containing no CR orbit of M1.
We would like to mention that the removability of two-codimensional sin-

gularities (Theorem 4.9) is not a consequence of the removability of the big-
ger one-codimensional singularities (Theorem 4.10). Indeed, it may happen
that TpN contains T cpM at several points p ∈ N in Theorem 4.9, prevent-
ing the existence of a generic M1 ⊂ M containing N . In addition, even if
TpN 6⊃ T cpM for every p ∈ N , Theorem 4.9 is not anymore a corollary of
Theorem 4.10. Indeed, withm = 2 and d = 1, choosing a local hypersurface
M ⊂ C3 containing a complex curve Σ, choosing N ⊂ M of dimension 3
containing Σ and being maximally real outside Σ, and choosing an arbitrary
generic M1 ⊂M containing N (some explicit local defining equations may
easily be written), then Σ is a CR orbit of M1, so N ⊃ Σ is not considered
to be removable by Theorem 4.10, whereas Theorem 4.9(ii) asserts that N
is removable.

Although singularities are more massive in Theorem 4.10, the assumption
n > 3 in it entails that the CR dimension (n− 1) of M is > 2, whence M1

has positive CR dimension > 1. This insures the existence of small analytic
discs with boundary inM1. Section 5 below and [26] as a whole are devoted
to the more delicate case where M1 has null CR dimension.

Example 4.11. ([Jö1999a]) InC3, letM = ∂B3 and letM1 :=
{
(z1, z2, z3) :

0 < x1 < 1/2, y1 = 0
}

. Clearly, M1 is foliated by the 3-spheres

S3
x∗1

:=
{
z1 = x∗1, |z2|2 + |z3|2 = 1− |x∗1|2

}
,

x∗1 ∈ (0, 1/2), that are globally minimal compact 3-dimensional strongly
pseudoconvex maximally complex CR submanifolds of CR dimension 1
bounding the 2-dimensional complex balls

B2,x∗1 :=
{
z1 = x∗1, |z2|2 + |z3|2 < 1− |x∗1|2

}
.

Theorem 4.10 asserts that a compact set K ⊂ M1 is removable if and only
if it does not contain a whole sphere Sx∗1 , for some x∗1 ∈ (0, 1/2). If K con-
tains such a sphere S3

x∗1
, the complex 2-ball B2,x∗1 coincides with the A(Ω)-

hull of Sx∗1 and is nonremovable. More generally, an application of both
Theorems 4.10 and 3.25 yields the following.

Corollary 4.12. LetK be a compact subset ofM1. For every (interior) one-
sided neighborhood V −(

∂B3\K
)

that is contained in B3 and every function

0 < α < 1 to exist; then to compute the differential of w 7→ ĥ(w), one must require M1 to
be at least C 2,α.
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f holomorphic in V −(
∂B3\K

)
, there exists a function F holomorphic in

B3

∖ ⋃
x∗1: S3

x∗1
⊂K B2,x∗1 with F = f in V −(

∂B3\K
)
.

By means of the complex Plateau problem, the next paragraph discusses
the necessity for N not to be maximally complex in Theorem 4.9 and for
M1 not to contain any CR orbit in Theorem 4.10, in a more general context
than M = ∂Bn.

4.13. Complex Plateau problem and nonremovable singularities con-
tained in strongly pseudoconvex boundaries. Let M be a complex mani-
fold of dimension n > 2. If Σ ⊂ M is a closed pure k-dimensional complex
subvariety, we denote by [Σ] the current of integration on Σ, whose existence
was established by Lelong in 1957 ([Ch1989, 7]).

Definition 4.14. ([HL1975, Ha1977]) A current T on M is called a holo-
morphic k-chain if it is of the form

T =
∑

finite

nj[Σj],

where the Σj denote the irreducible components of a pure k-dimensional
complex subvariety Σ of M and where the multiplicity nj of each Σj is an
integer.

The complex Plateau problem consists in filling boundaries N by com-
plex subvarieties Σ, or more generally by holomorphic chains T. Maximal
complexity of the boundary N is naturally required and since N might en-
counter singular points of Σ, it should be allowed in advance to be “scarred”
somehow. Also, the boundary N inherits an orientation from Σ and as the
boundary of Σ, it should have empty boundary.

Definition 4.15. A scarred C κ (1 6 κ 6 ∞) maximally complex cycle of
dimension (2m + 1), m > 0, is a compact subset N ⊂ M together with a
thin compact scar set scN ⊂ N such that

• H2m+1(scN) = 0;
• N\ scN is an oriented (2m + 1)-dimensional embedded maxi-

mally complex C κ submanifold of M \ scN having finite (2m+ 1)-
dimensional Hausdorff measure;

• the current of integration over N\scN , denoted by [N ], has no
boundary: d[N ] = 0.

This definition was essentially devised by Harvey-Lawson and appears to
be adequately large, but sufficiently stringent to maintain the possibility of
filling a maximally complex cycle by a complex analytic set.
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Theorem 4.16. ([HL1975, Ha1977]) Suppose N is a scarred C κ (1 6 κ 6
∞) maximally complex cycle of dimension (2m + 1), m > 0, in a Stein
manifold M .

• If m = 0, assume that N satisfies the moment condition, viz.∫
N
ω = 0 for every holomorphic 1-form ω =

∑n
k=1 ωk(z) dzk hav-

ing entire coefficients ωk ∈ O(Cn).
• If m > 1, assume nothing, since the corresponding appropriate mo-

ment condition follows automatically from the assumption of maxi-
mal complexity ([HL1975]).

Then there exists a unique holomorphic (m+1)-chain T in M \N having
compact support and finite mass in M such that

dT = [N ]

in the sense of currents in M . Furthermore, there is a compact subset K
of N with H2m+1(K) = 0 such that every point of N\(K ∪ scN

)
possesses

a neighborhood in which (supp T) ∪ N is a regular C κ complex manifold
with boundary.

A paradigmatic example, much considered since Milnor studied it, con-
sists in intersecting a complex algebraic subvariety of Cn passing through
the origin with a spere centered at 0; topologists usually require that 0 is an
isolated singularity and that the sphere is small or that the defining polyno-
mial is homogeneous.

We apply this filling theorem in a specific situation. Let ∂Ω b Cn (n > 3)
be a strongly pseudoconvex C 2 boundary and letM1 ⊂ ∂Ω be an embedded
C 2 one-codimensional submanifold that is generic in Cn. We assume that
M1 has no boundary and is closed, viz. is a compact submanifold. Since
M1 has CR dimension (n− 2), its CR orbits have dimension equal to either
(2n − 4), or to (2n − 3) or to (2n − 2). Because of Corollary 4.19(III), no
CR orbit ofM1 can be an immersed complex 2-codimensional submanifold,
of real dimension (2n− 4), since its closure in M1 would be a compact set
laminated by complex manifolds. Nevertheless, there may exist (2n − 3)-
dimensional CR orbits.

Proposition 4.17. ([Jö1999a]) Every CR orbit O1
CR of a connected C 2 hy-

persurface M1 ⊂ ∂Ω of a C 2 strongly pseudoconvex boundary ∂Ω b Cn is
of the following types:

(i) O1
CR is an open subset of M ;

(ii) O1
CR is a closed maximally complex C 1 cycle embedded in M1;

(iii) O1
CR is a maximally complex C 1 submanifold injectively immersed

in M1 whose closure C consists of an uncountable union of similar
CR orbits.
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In the last situation, C will be called a maximally complex exceptional
minimal compact CR-invariant set. The intersection of C with a local curve
transversal to a piece CR orbit in M1 may consist of either an open segment
or of a Cantor (perfect) subset.

Here is the desired converse to both Theorems 4.9 and 4.10 in a situation
where the Plateau complex filling works.

Corollary 4.18. ([Jö1999a]) Suppose that ∂Ω ∈ C 2,α contains a compact
embedded (2n−3)-dimensional maximally complex submanifoldN (without
boundary). Then N is not removable.

Proof. Indeed, the scar set of N is empty and the filling of N by a holomor-
phic chain consists of an irreducible complex subvariety Σ that is necessarily
contained in Ω, since ∂Ω is strongly pseudoconvex. Then the domain Ω\Σ
is seen to be pseudoconvex and N̂A(Ω) = N ∪ Σ. Theorem 3.25 entails that
CR functions on ∂Ω\N extend holomorphicaly to Ω\Σ. ¤

A very natural problem, raised in [Jö1999a] and inspired by a perturbation
of Example 4.11, is to determine for which compact CR-invariant subsets K
of a strongly pseudoconvex boundary ∂Ω ⊂ Cn the envelope of holomorphy
of ∂Ω\K is multi-sheeted.

Theorem 4.19. ([JS2004]) Let M1 ⊂ ∂Bn be an orientable (2n − 2)-
dimensional generic C 2,α submanifold of ∂Bn (n > 3) and let K ⊂ M1

be a compact CR-invariant subset of M1 such that

• the boundary of K in M1 is the disjoint union of finitely many con-
nected compact maximally complex CR manifolds N1, . . . , N` of di-
mension (2n− 3) that are C 2,α−0 CR orbits of M1;

• the interior of K with respect to M1 is globally minimal.

Then the envelope of holomorphy E
(
V (∂Bn\K)

)
is multi-sheeted in ev-

ery neighborhood Up ⊂ Bn of every point p ∈ IntK.

We conclude these considerations by formulating a deeply open problem
raised by Jöricke. The complex Plateau problem for laminated boundaries
is a virgin mathematical landscape.

Open question 4.20. ([Jö1999a]) Let ∂Ω b Cn, n > 3, be a strongly pseudo-
convex boundary of class at least C 2. Suppose that ∂Ω contains a maximally
complex exceptional minimal compact CR-invariant set C. Does C bound a
relatively compact subset Σ ⊂ Ω laminated by complex manifolds ?

As observed in [DH1997, MP1998, Sa1999, DS2001], removable singu-
larities have an unexpected interesting application to wedge extension of
CR-meromorphic functions.
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4.21. CR-meromorphic functions and metrically thin singularities. For
n > 2, a local meromorphic map f from a domain Ω ⊂ Cn to the Riemann
sphere P1(C) has an exceptional locus If ⊂ Ω, at every point p of which
the value f(p) is undefined. For instance the origin (0, 0) ∈ C2 with f =
z1
z2

(notice that every complex number in C ∪ {∞} is a limit of z1
z2

). This
exceptional set If is a complex analytic subset of Ω having codimension
> 2 ([7]). It is called the indeterminacy set of f .

A meromorphic function may be more conveniently defined as a n-
dimensional irreducibe complex analytic subset Γf of Ω × P1(C) having
surjective projection onto Ω, viz. πΩ(Γf ) = Ω. Here, Ω might be any com-
plex manifold. Indeterminacy points correspond precisely to points p ∈ Ω
satisfying π−1

Ω (p) ∩ Γf = {p} × P1(C). So, the generalization of meromor-
phy to the CR category incorporates indeterminacy points.

Definition 4.22. ([HL1975, DH1997, MP1998, Sa1999]) Let M ⊂ Cn be a
scarred C 1 generic submanifold of codimension d > 1 and of CR dimension
m = n − d > 1. Then a CR meromorphic function on M with values in
P1(C) consists of a triple (f,Df ,Γf ) such that:

1) Df ⊂ M is a dense open subset of M and f : Df → P1(C) is a C 1

map;
2) the closure Γf in Cn × P1(C) of the graph {(p, f(p)) : p ∈ Df}

defines an oriented scarred C 1 CR submanifold of Cn × P1(C) of
the same CR dimension as M having empty boundary in the sense
of currents.

The indeterminacy locus of f is denoted by

If :=
{
p ∈M : {p} × P1(C) ⊂ Γf

}
.

In the CR category, If is not as thin as in the holomorphic category (where
it has real codimension > 4), but it is nevertheless thin enough for future
purposes, as we shall see. A standard argument from geometric measure
theory yields almost everywhere smoothness of almost every level set.

Lemma 4.23. ([Fe1969, HL1975, Ha1977]) Let M ⊂ Cn be a scarred C 1

generic submanifold. Let (f,Df ,Γf ) be a CR meromorphic function on M .
Then for almost every w ∈ P1(C), the level set

Nf (w) :=
{
p ∈M : (p, w) ∈ Γf

}

is a scarred 2-codimensional C 1 submanifold of M .

Let p ∈ If . Since (p, w) ∈ Γf for every w ∈ P1(C), it follows that
If ⊂ Nf (w) for everyw. Fixing such aw ∈ P1(C), we simply denoteNf :=
Nf (w). In particular, the scar set scNf

of Nf is always of codimension 2+0

in M , namely HdimM−2(scNf
) = 0.
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So If ⊂ Nf and by definition If × P1(C) ⊂ Γf . We claim that, in
addition, If has empty interior in Nf\scNf

. Otherwise, there exist a point
p ∈ Nf\scNf

and a neighborhood Up of p in M with Up ∩ scNf
= ∅ such

that If contains Up ∩Nf , whence

(Up ∩Nf )× P1(C) ⊂ Γf .

Since (Up∩Nf )×P1(C) has dimension equal to dimM = dim Γf , it follows
that

Γf ∩
(
Up × P1(C)

) ≡ (Up ∩Nf )× P1(C).

But Up ∩Nf having codimension two in Up, this contradicts the assumption
that Γf is a (nonempty!) graph above the dense open subset Up ∩Df of Up.

Lemma 4.24. ([MP1998, Sa1999]) The indeterminacy set If of f is a closed
set of empty interior contained in some 2-codimensional scarred C 1 sub-
manifold Nf of M . Moreover, the scar set scNf

of Nf is always of codimen-
sion 2+0 in M , viz. H2m+d−2(scNf

) = 0.

The statement below and its proof are clear if Df = M ; in it, the condition
d[Γf ] = 0 helps in an essential way to keep it true when the closure of Γf
possesses a nonempty scar set.

Proposition 4.25. ([MP1998, Sa1999]) There exists a unique CR measure
Tf on M\If with Tf |Df

coinciding with the C 1 CR function f : Df →
P1(C).

It is defined locally as follows. Let p ∈ M\If and let Up be an open
neighborhood of p in M . Since p 6∈ If , there exists wp ∈ P1(C) with
(p, wp) 6∈ Γf . Composing with an automorphism of P1(C) and shrinking Up,
we may assume that wp = ∞ and that

(
Up×{∞}

)∩Γf = ∅. Letting dVolUp

be some (2m + d)-dimensional volume form on Up, letting πΓf
: Γf → M

denote the natural projection, the CR measure Tf

∣∣
Up

is defined by

〈Tf , ϕ〉 :=

∫

Γf

w · π∗Γf
(ϕ dVolUp),

for every ϕ ∈ C 1
c (Up).

Thus, on M\If , the CR-meromorphic function (f,Df ,Γf ) behaves like
an order zero CR distribution. With C 0

CR, Lp
CR,loc, it therefore enjoys the

extendability properties of Part V on M\If , provided that M is C 2,α. The
next theorem should be applied to C := If . Its final proof ([MP2002]) under
the most general assumptions combines both the CR extension theory and
the application of the Riemann-Hilbert problem to global discs attached to
maximally real submanifolds ([Gl1994, Gl1996]). We cannot restitute the
proof here.
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Theorem 4.26. ([MP1998, DS2001, MP2002]) Suppose M ⊂ Cn is C 2,α

(0 < α < 1) of codimension d > 1 and of CR dimension m > 1. Then every
closed subset C of M such that M and M\C are globally minimal and such
that H2m+d−2(C) = 0 is CR-, W - and Lp-removable.

However, if f is a CR-meromorphic function defined on such a M , with
C 1 replaced by C 2,α in Definition 4.22, the complement M\If need not be
globally minimal if M is, and it is easy to construct manifolds M and closed
sets C ⊂ M with H2m−1(C) < ∞ which perturb global minimality, cf.
Example 4.8. It is therefore natural to make the additional assumption that
M is locally minimal at every point. This assumption is the weakest one that
insures that M\C is globally minimal, for arbitrary closed sets C ⊂M .

Corollary 4.27. Assume that M ∈ C 2,α is locally minimal at every point
and let f be a CR-meromorphic function. Then If is CR-, W - and Lp-
removable.

Proof. Lemma 4.24 holds with C 1 replaced by C 2,α. It says that If is a
closed subset with empty interior of some scarred C 2,α submanifold Nf of
M . The removability of the portion of If that is contained in the regular part
of Nf follows from Theorem 4.9(i). The removability of the remaining scar
set scNf

follows from Theorem 4.26 above. ¤
Thus the CR measure Tf on M\If (Proposition 4.25) extends holo-

morphically to some wedgelike domain W1 attached to M\If . The W -
removability of If entails that the envelope of holomorphy of W1 contains
a wedgelike domain W2 attached to M . Performing supplementary glu-
ing of discs, the CR extension theory (Part V) insures that such a W2 de-
pends only on M , not on f . As envelopes of meromorphy and envelopes
of holomorphy of domains in Cn coincide by a theorem going back to Levi
([KS1967, Iv1992]), we may conclude.

Theorem 4.28. ([MP2002]) Suppose M ⊂ Cn is C 2,α and locally minimal
at every point. Then there exists a wedgelike domain W attached to M to
which every CR-meromorphic function on M extends meromorphically.

4.29. Peak and smooth removable singularities in arbitrary codimen-
sion. A closed set C ⊂ M is called a C 0,β peak set, 0 < β < 1, if there
exists a nonconstant function $ ∈ C 0,β

CR(M) such that C = {$ = 1} and
maxp∈M |$(p)| 6 1.

Theorem 4.30. ([KR1995, MP1999]) Let M be C 2,α (0 < α < 1) globally
minimal. Then every C 0,β peak set C satisfies HdimM(C) = 0 and is Lp-
removable.

To conclude, we mention two precise generalizations of Theorems 4.9
and 4.10 to higher codimension. If Σ = {z : g(z) = 0} is a local complex
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hypersurface passing through a point p of a generic submanifold M ⊂ Cn
that is transverse to M at p, viz. TpΣ + TpM = TpCn, the intersection
Σ ∩M is a two-codimensional submanifold of M that is nowhere generic
in a neighborhood of p and certainly not (locally) removable, since the CR
function 1

g(z)

∣∣
M\(Σ∩M)

is not extendable to any local wedge at p.

Theorem 4.31. ([Me1997, MP1999]) Let M ⊂ Cn be a C 2,α (0 < α < 1)
globally minimal generic submanifold of positive codimension d > 1 and of
positive CR dimension m = n − d > 1. Let N ⊂ M be a connected two-
codimensional C 2,α submanifold and assume that M\N is also globally
minimal. A closed set C ⊂ N is CR-, W - and Lp-removable under each one
of the following two circumstances:

(i) m > 1 and C 6= N ;

(ii) m > 2 and there exists at least one point p ∈ N at which N is
generic.

In (ii), the assumption that m > 2 is essential. Generally, if m = 1,
whence d = n − 1 and dimM = n + 1, a local transverse intersection
C = Σ∩M has dimension n−1, hence cannot be generic, and is not (locally)
removable by construction. In the next statement, the similar assumption
thatm > 2 is strongly used in the proof: the one-codimensional submanifold
M1 ⊂M has then CR dimension m−1 > 1, hence there exist small Bishop
discs attached to M1.

Theorem 4.32. ([Po1997, Me1997, Po2000]) Let M ⊂ Cn be a C 2,α (0 <
α < 1) globally minimal generic submanifold of positive codimension d >
1. Assume that the CR dimensionm = n−d ofM satisfiesm > 2. LetM1 ⊂
M be a connected C 2,α one-codimensional submanifold that is generic in
Cn. A closed set C ⊂ M1 is CR-, W - and Lp-removable provided it does
not contain any CR orbit of M1.

Three geometrically different proofs of this theorem will be restituted in
Section 10 of [26]. The next Section 5 and [26] are devoted to the study
of the more delicate case where m = 1 and where C is contained in some
one-codimensional submanifold M1 ⊂M .

§5. REMOVABLE SINGULARITIES IN CR DIMENSION 1

5.1. Removability of totally real discs in strongly pseudoconvex
boundaries. In 1988, applying a global version of the Kontinuitätssatz,
Jöricke [Jö1988] established a remarkable theorem, opening the way to a
purely geometric study of removable singularities.
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Theorem 5.2. ([Jö1988]) Let ∂Ω b C2 be a strongly pseudoconvex C 2

boundary and let D ⊂ ∂Ω be a C 2 one-codimensional submanifold that
is diffeomorphic to the unit open 2-disc of R2 and maximally real at every
point. Then every compact subset K of D is CR-, L∞ and W -removable.

By maximal reality ofD, the line distributionD 3 p 7→ `p := TpD∩T cpM
is nowhere vanishing and may be integrated. This yields the characteristic
foliation F c

D onD. The compact setK is contained in a slightly smaller disc
D′ b D having C 2 boundary ∂D′. Poincaré-Bendixson’s theorem on such a
disc D′ together with the inexistence of singularities of F c

D entail that every
characteristic curve that enters intoD′ must exit fromD′. Orienting then the
real 2-disc D and its characteristic foliation, we have the following topolog-
ical observation (at the very core of the theorem) saying that there always
exists a characteristic leaf that is not crossed by the removable compact set.

������
������
������
������
������

������
������
������
������
������

D

D

Nontransversality of K to F c
D

γ

K

F c
D{K} : For every compact subset K ′ ⊂ K, there exists a Jordan curve

γ : [−1, 1] → D, whose range is contained in a single leaf of
the characteristic foliation F c

D, with γ(−1) 6∈ K ′, γ(0) ∈ K ′

and γ(1) 6∈ K ′, such that K ′ lies completely in one closed side
of γ[−1, 1] with respect to the topology of D in a neighborhood of
γ[−1, 1].

In the more general context of [26], we will argue that F c
D{K} is the

very reason why K is removable. We will then remove locally a well cho-
sen special point p′sp ∈ K ′∩γ[−1, 1]. In fact, we shall establish removability
of compact subsets K of general surfaces S that are not necessarily diffeo-
morphic to the unit 2-disc, provided that an analogous topological condition
holds. Also, getting rid of strong pseudoconvexity, we shall work with a
globally minimal C 2,α hypersurface of C2. Finally, we shall relax slightly
the assumption of total reality, admitting some complex tangencies.
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Example 5.3. Let Ω = B2 and let P (z) ∈ C[z] be a homogeneous poly-
nomial of degree > 2 having 0 has its only singularity. The intersection
K := ∂B2 ∩ {P = 0} is a finite union of closed real algebraic curves ' S1

that are everywhere transverse to T c∂B2. We may enlarge each curve of K
as a thin C ω annulus. There is much freedom, but every such annulus is nec-
essarily totally real. Denote by S the union of all annuli, a surface in ∂B2.
Clearly, no component of K is removable. But the theorem does not apply:
on each annulus, the characteristic foliation F c

S is radial and K crosses each
characteristic leaf.

Example 5.4. The theorem may fail with the disc D replaced by a surface S
having nontrivial fundamental group, even with S compact without bound-
ary. For instance, in ∂B2 = {|z1|2 + |z2|2 = 1}, the two-dimensional torus
T2 :=

{(
1√
2
ei θ1 , 1√

2
ei θ2

)
: θ1, θ2 ∈ R

}
is compact and K := T2 is not

removable, since ∂B2\T2 has exactly two connected components.

Example 5.5. ([Jö1988]) In the same torus T2, consider instead the proper
compact subset K :=

{(
1√
2
ei θ1 , 1√

2
ei θ2

)
: |θ1| 6 3π

2
, θ2 ∈ R

}
, diffeomor-

phic to a closed annulus. It is a set fibered by circles (contained in Cz2) over
the curve γ̂ :=

{
1√
2
ei θ1 : |θ1| 6 3π

2

}
that is contained in Cz1 . One may ver-

ify that the condition F c
T2
{K} insuring removability does not hold. In fact,

applying Theorem 2.2 (in the much simpler version due to Denjoy where
the curve is real analytic), the curve γ̂ is not (∂, L∞)-removable in Cz1 . So
we may pick a holomorphic function f̂(z1) ∈ O

(
C\γ̂) that is bounded in

C ∪ {∞} but does not extend holomorphically through γ̂. The restriction
f̂
∣∣
∂B2\K belongs to L∞(∂B2), is CR on ∂B2\K but does not extend holo-

morphically to B2.

Before pursuing, we compare Theorem 5.2 and Theorem 4.10.
In codimension > 2 (e.g. for curves in R3), no satisfactory generalization

of the Poincaré-Bendixson theory is known and perhaps is out of reach. This
gap is caused by the complexity of the topology of phase diagrams, by the
freedom that curves have to wind wildly around limit cycles, and by the
intricate structure of singular points.

Nevertheless, in higher complex dimension n > 3, CR orbits are thicker
than curves and often of codimension 6 1. For triples (M,M1, C) as in
Theorem 4.10 with M = ∂Ω being strongly pseudoconvex, one could ex-
pect that a statement analogous to Theorem 5.2 holds true, in which the as-
sumption that M1 has simple topology would imply automatic removability
of every compact subset K ⊂M1.

To be precise, let ∂Ω b Cn (n > 3) be a C 2,α strongly pseudoconvex
boundary and let M1 ⊂ ∂Ω be a C 2,α one-codimensional submanifold that
is generic in Cn. Strong pseudoconvexity of ∂Ω entails that CR orbits ofM1
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are necessarily of codimension 6 1 in M1. Remind that Theorem 4.10 says
that a compact subsetK ofM1 is removable provided it does not contain any
CR orbit of M1. Conversely, in the case where M1 has no exceptional CR
orbit, if K contains a (then necessarily compact and maximally complex)
CR orbit N of M1, then K is not removable, since N is fillable by some
(n− 1)-dimensional complex subvariety Σ ⊂ Ω with ∂Σ = N . Thus, while
comparing the two Theorems 4.10 and 5.2, the true question is whether the
assumption that M1 ⊂ ∂Ω = M be diffeomorphic to the real (2n − 2)-
dimensional real ball B2n−2 ⊂ R2n−2 prevents the existence of compact
(2n − 3)-dimensional CR orbits of M1. This would yield a neat statement,
valid in arbitrary complex dimension.

For instance, let N := ∂Bn ∩H be the intersection of the sphere ∂Bn '
S2n−1 with a complex linear hyperplane H ⊂ Cn. With such a simple N
homeomorphic to a (2n− 3)-dimensional sphere, one may verify that every
C∞ submanifold M1 ⊂ ∂Ω containing N which is diffeomorphic to B2n−2

must contain at least one nongeneric point. Nevertheless, admitting that
N has slightly more complicated topology, the expected generalization of
Theorem 5.2 appears to fail, according to a discovery of Jöricke-Shcherbina.
This confirms the strong differences between CR dimension m = 1 and CR
dimension m > 2.

Theorem 5.6. ([JS2000]) For ε ∈ R with 0 < ε < 1 close to 1, consider the
intersection

Nε :=
{
z1z2z3 = ε

} ∩
√

3 ∂B3

of the complex cubic {z1z2z3 = ε} with the sphere
√

3 ∂B3 = {|z1|2 +
|z2|2 + |z3|2 = 3}. Then Nε is a maximally complex cycle diffeomorphic to
S1 × S1 × S1 bounding the (nonempty) complex surface Σε := {z1z2z3 =
ε} ∩ B3. Furthermore, there exists a suitably constructed C∞ generic one-
codimensional submanifold M1 ⊂ ∂B3 diffeomorphic to the real (2n − 2)-
dimensional unit ball B2n−2 containing Nε. Finally, since Nε bounds Σε,
every compact subset K ⊂M1 containing Nε is nonremovable.

5.7. Elliptic isolated complex tangencies and Bishop discs. Coming back
to complex dimension n = 2, we survey known properties of isolated CR
singularities of surfaces. So, let S be a two-dimensional surface S in C2

of class at least C 2. At a point p ∈ S, the complex tangent plane TpS is
either totally (and in fact maximally) real, viz. TpS ∩ JTpS = {0} or it is a
complex line, viz. TpS = JTpS = T cpS. An appropriate application of the
jet transversality theorem shows that after an arbitrarily small perturbation,
the number of complex tangencies of S is locally finite.

If S has an isolated complex tangency at one of its points p, Bishop
([Bi1965]) showed that there exist local coordinates (z, w) centered at p
in which S may be represented by w = zz̄ + λ(z2 + z̄2) + o(|z|2), where
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the real parameter λ ∈ [0,∞] is a biholomorphic invariant of S. The point
p is said to be elliptic if λ ∈ [0, 1

2
), parabolic if λ = 1

2
and hyperbolic

if λ ∈ (1
2
,∞]. The case λ = ∞ should be understood as the surface

w = z2 + z̄2 + o(|z|2). The shape of the projection of such a surface
onto the real hyperplane {Imw = 0} ' R3 is essentially ellipsoid-like
for 0 < λ < 1/2 and essentially saddle-like for λ > 1/2.

In the seminal article [Bi1965], Bishop introduced this terminology and
showed that at an elliptic point, S has a nontrivial polynomial hull Ŝ, foliated
by a continuous one-parameter family of analytic discs attached to M . The
geometric structure of this family has been explored further by Kenig and
Webster.

Theorem 5.8. ([KW1982, BG1983, KW1984, Hu1998]) Let S ⊂ C2 be a
C κ (κ > 7) surface having an elliptic complex tangency at one of its points
p. Then there exists a C (κ−7)/3 one-parameter family of disjoint regularly
embdedded analytic discs attached to S and converging to p. If S is C 5,
then Ŝ is C 0,1. Furthermore, every small analytic disc attached to M near
p is a reparametrization of one of the discs of the family.

For κ = ∞, the union of these discs form a C∞ hypersurface Ŝ with
boundary ∂Ŝ = S in a neighborhood of p. Furthermore, Ŝ is the local hull
of holomorphy of S at p.

In the case where S is real analytic, local normal forms may be found that
provide a classification up to biholomorphic changes of coordinates.

Theorem 5.9. Let S : w = zz̄+λ(z2 + z̄2)+O(|z|3) be a local real analytic
surface in C2 passing through the origin and having an elliptic complex
tangency there.

• ([MW1983]) For every λ satisfying 0 < λ < 1/2, either S is locally
biholomorphic to the quadric w = zz̄ + λ(z2 + z̄2) or there exists
an integer s ∈ N, s > 1, such that S is locally biholomorphic to
w = zz̄ + [λ+ δus](z2 + z̄2), where u = Rew and δ = ±1.

• ([Mo1985]) For λ = 0, either S is locally biholomorphic to w =
zz̄ + zs + z̄s + O(|z|s+1) for some integer s > 3 or S is locally
biholomorphic to w = zz̄.

• ([HuKr1995]) For λ = 0 and s < ∞, the surface S is locally bi-
holomorphic to the surface w = zz̄ + zs + z̄s +

∑
j+k>s ajk z

j z̄k,
with ajk = akj .

In all cases, after the straightening, S is contained in the real hyperplane
{Imw = 0}.

In the third case λ = 0, s <∞, it is still unknown how many biholomor-
phic invariants S can have.
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5.10. Hyperbolic isolated complex tangencies. The existence of small
Bishop discs attached to S and growing at an elliptic complex tangency
impedes local polynomial convexity. At the opposite, if S is hyperbolic,
Bishop’s construction fails, discs are inexistent, and in fact S is locally poly-
nomially convex.

Theorem 5.11. ([FS1991]) Let S ⊂ C2 be a C 2 surface represented by
w = zz̄+λ(z2 + z̄2)+r(z, z̄), with a C 2 remainder r = o(|z|2). If λ > 1/2,
viz. if S is hyperbolic at the origin, then for every ρ1 > 0 sufficiently small,
S ∩ (

ρ1B2

)
is polynomially convex.

The Oka-Weil approximation theorem then assures that continuous func-
tions in S ∩ (

ρ1B2

)
are uniformly approximable by polynomials.

A local Bishop surface S is called quadratic if it is locally biholomorphic
to the quadric w = zz̄ + λ(z2 + z̄2). An isolated complex point p of S is
called holomorphically flat if there exist local coordinates centered at p in
which S is locally contained in {Imw = 0}. Unlike elliptic points of C ω

surfaces that are always flat, hyperbolic complex points of C ω surfaces may
fail to be flat.

Example 5.12. ([MW1983]) The algebraic hyperbolic surface (λ > 1/2)

w = zz̄ + λ(z2 + z̄2) + λz3z̄

cannot be biholomorphically transformed into a real hyperplane.

Theorem 5.11 establishes local polynomial pseudoconvexity of surfaces
at hyperbolic complex tangencies. By patching together local plurisubhar-
monic defining functions, one may easily construct a Stein neighborhood
basis of every surface having only finitely many hyperbolic complex tan-
gencies. Unfortunately, in this way one does not control well the topology
of such neighborhoods. A finer result answering a question of Forstnerič is
as follows.

Theorem 5.13. ([Sl2004]) Let S be a compact real C∞ surface embedded
in a complex surface X having only finitely many complex points that are
all hyperbolic and holomorphically flat. Then S possesses a basis of open
neighborhoods

(
Vε

)
0<ε<ε1

, ε1 > 0, such that:

• S =
⋂
ε>0 Vε;

• Vε =
⋃
ε′<ε Vε′;

• V ε =
⋂
ε′>ε Vε′;

• each Vε has a C∞ strongly pseudoconvex boundary ∂Vε;
• for every ε with 0 < ε < ε1, the surface S is a strong deformation

retract of Vε.
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It is expected that the same statement remains true without the flatness
assumption.

5.14. Real surfaces in strongly pseudoconvex boundaries. Coming back
to removable singularities, let ∂Ω b C2 be a C 2 strongly pseudoconvex
boundary and let S ⊂ ∂Ω be a compact surface, with or without boundary.
It will be no restriction to assume that S is connected. Suppose that S has
a finite (possibly null) number of complex tangencies. These points then
constitute the only singular points of the characteristic foliation of S. At
an elliptic (resp. hyperbolic) complex tangency, the phase diagram simply
looks like a focus (resp. saddle).

Theorem 5.15. ([FS1991]) Let M be a two-dimensional Stein manifold,
let ∂Ω b M be a strongly pseudoconvex C 2 boundary and let D be a C 2

one-codimensional submanifold that is diffeomorphic to the unit open 2-
disc of R2 and is maximally complex, except at a finite number of hyperbolic
complex tangencies. Then every compact subset K of D is CR- and W -
removable.

Indirectly, the characterizing Theorem 3.7 of Stout yields the following.

Corollary 5.16. Every compact subset K ⊂ D ⊂ ∂Ω is O(Ω)-convex. In
particular, such a K is polynomially convex if M = C2 and if Ω is Runge
or polynomially convex, e.g. if Ω = B2.

The (short) proof mainly relies upon the (very recent in 1991 and since
then famous) works [BK1991] and [Kr1991] by Bedford-Klingenberg and
by Kruzhilin about the hulls of two-dimensional spheres contained in such
strictly pseudoconvex boundaries Ω ⊂ M , which may be filled by Levi-flat
three-dimensional spheres after an arbitrarily small perturbation.

Theorem 5.17. ([BK1991, Kr1991]) Let Ω b C2 be a C 6 strongly pseudo-
convex domain and let S ⊂ ∂Ω be a two-dimensional sphere of class C 6

embdedded into ∂Ω that is totally real outside a finite subset consisting of k
hyperbolic and k + 2 elliptic points. Then there exist:

1) a smooth domain B ⊂ R3(x1, x2, x3) with boundary ∂B diffeo-
morphic to S such that x3 : B → R is a Morse function on ∂B
having k + 2 extreme points and k saddle points, whose level sets
{x3 = cst.} ∩ B are unions of finite numbers of topological discs;
and:

1) a continuous injective map Φ : B → Ω sending ∂B to S, the extreme
and saddle points of x3 on ∂B to the elliptic and hyperbolic points of
S and the connected components of {x3 = cst.}∩B to geometrically
smooth holomorphic discs.
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The set Φ(B) is the envelope of holomorphy of S as well as its O(Ω)-hull,
i.e. its polynomial hull in case Ω is polynomially convex.

In [Du1993], motivated by the problem of understanding polynomial con-
vexity in geometric terms, the question of O(Ω)-convexity (instead of re-
movability) of compact subsets of arbitrary surfaces S ⊂ ∂Ω (not neces-
sarily diffeomorphic to a 2-disc) is dealt with directly. If K is a compact
subset of a totally real surface S ⊂ ∂Ω, denote by K̂ess := K̂O(Ω)\K the
essential O(Ω)-hull of K. An application of Hopf’s lemma shows that if
K = A(∂∆) is the boundary of a C 1 analytic disc A ∈ O(∆) ∩ C 1(∆)

attached to the surface S, necessarily K = K̂ess is an immersed C 1 curve
that is everywhere transversal to the characteristic foliation of S. If S has
a hyperbolic complex tangency at one of its points p and if A(1) = p, then
A(∂∆) must cross at least one separatrix in every neighborhood of p. When
K̂ess contains no analytic disc, similar transversality properties hold.

Theorem 5.18. ([Du1993]) Let K b S ⊂ ∂Ω b C2 be as above, with ∂Ω ∈
C 2 strongly pseudoconvex and S ∈ C 2 having finitely many hyperbolic
complex tangencies. In the totally real part of S, the essential O(Ω)-hull
K̂ess of K crosses every characteristic curve that it meets. If K̂ess meets a
hyperbolic complex tangency, then it meets at least two hyperbolic sectors
in every neighborhood of p.

As a consequence ([Du1993]), every compact subset K of a two-
dimensional disc D ⊂ ∂Ω that has only finitely many hyperbolic complex
tangencies is O(Ω)-convex.

5.19. Totally real discs in nonpseudoconvex boundaries. All the above re-
sults heavily relied on strong pseudoconvexity, in contrast to the removabil-
ity theorems presented in Section 6, where the adequate statements, based
on general CR extension theory, are formulated in terms of CR orbits rather
than in terms of Levi curvature. The first theorem for the non-pseudoconvex
situation was established by the second author.

Theorem 5.20. ([Po2003]) Let M be a C∞ globally minimal hypersurface
of C2 and let D ⊂ M be a C∞ one-codimensional submanifold that is
diffeomorphic to the unit open 2-disc of R2 and maximally real at every
point. Then every compact subset K of D is CR-, Lp- and W -removable.

We would like to point out that, seeking theorems without any assump-
tion of pseudoconvexity leads to substantial open problems, because one
loses almost all of the strong interweavings between function-theoretic tools
and geometric arguments which are valid in the pseudoconvex realm, for in-
stance: Hopf Lemma, plurisubharmonic exhaustions, envelopes of function
spaces, local maximum modulus principle, Stein neighborhood basis, etc.
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We sketch the proof of the theorem. We first claim that M\K is (also)
globally minimal. Indeed, if there were a lower-dimensional orbit O of
M\K, we would obtain a lower-dimensional orbit of M by adding all char-
acteristic arcs intersecting O ([Po2003], Lemma 1; [26], Lemma 3.5). Then
by Theorem 4.12(V), continuous CR functions on M\K extend holomor-
phically to a one-sided neighborhood V b(M\K).

For later application of the continuity principle, similarly as in [MP2002,
Po2003, 26], we deform M\K in V b(M\K), so that the functions are holo-
morphic in some ambient neighborhood U of M\K in C2.

The first key idea is to construct an embedded 2-sphere containing a
neighborhood of K in D and to apply the filling Theorem 5.17. This will
give us a Levi flat 3-ball foliated by analytic discs, which by translations,
will enable us to fill in a one-sided neighborhood of K.

In the case where M = ∂Ω is a strictly pseudoconvex boundary, the con-
struction of the 2-sphere is quite direct: we pick an open 2-disc D′ hav-
ing C∞ boundary ∂D′ ' S1 with K ⊂ D′ b D; translating it slightly
and smoothly within ∂Ω, we obtain an almost parallel copy D′′ ⊂ ∂Ω;
then we construct the 2-sphere S ′ by gluing (inside ∂Ω) a thin closed strip
' [−ε, ε] × S1 to ∂D′ ' S1 and to ∂D′′ ' S1; finally, we perturb the
strip part of S ′ in a generic way to assure that S ′ has only (a finite num-
ber of) isolated complex tangencies of elliptic or of hyperbolic type31. Then
Theorem 5.17 yields a Levi-flat 3-ball B′ ⊂ Ω with ∂B′ = S ′.

If M is not strongly pseudoconvex, the filling of S ′ by a Levi-flat ball B′

may fail, because of a known counter-example [FM1995]. As a trick, we
modify the construction. Using the fact that the squared distance function
dist (·, D′)2 is strictly plurisubharmonic in a neighborhood of D

′
(by total

reality), for ε > 0 small, the sublevel sets

Ω′
ε :=

{
q ∈ C2 : dist

(
q,D′) < ε

}

are strongly pseudoconvex neighborhoods of D′ intersecting M transver-
sally along the 2-spheres ∂Ω′

ε ∩M .

D′

M

∂Ω′ε

Construction of S′

D′

M

S′

∂Ω′

31Observe that since D is totally real, the last step can be done without changing S′

along D′.
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Furthermore, a given fixed Ω′
ε can be slightly isotoped (translated) to a

domain Ω′ still strongly pseudoconvex and having boundary transverse to
M so that D′ is precisely contained in the isotoped 2-sphere ∂Ω′∩M . After
a very slight generic perturbation, we may insure that S ′ has only elliptic or
hyperbolic complex tangencies (a part of ∂Ω′ has also to be perturbed). In
sum:

Lemma 5.21. ([Po2003]) There exists a bounded domain Ω′ ⊂ C2 such
that:

• ∂Ω′ is C∞, strongly pseudoconvex and diffeomorphic to a 3-sphere;
• ∂Ω′ intersects M transversally in a two-sphere S ′ := ∂Ω′ ∩M ;
• S ′ has k hyperbolic and k + 2 elliptic points;
• ∂Ω′ contains the open 2-disc D′ ⊃ K.

Then Theorem 5.17 applies in the strongly pseudoconvex boundary ∂Ω′,
yielding a Levi-flat 3-sphere B′ ⊂ Ω′ with ∂B′ = S ′. However, the
nonpseudoconvexity of M obstructs further insights in the position of B′

with respect to M . In fact, B′ may change sides or even be partly contained
in M .

In the (simpler) case where M = ∂Ω is a strongly pseudoconvex bound-
ary, we introduce a foliation of a neighborhood of S ′ in M by C∞ 2-spheres
S ′t with S ′0 = S ′. By filling them, we get a family of Levi-flat 3-ballsB′

t with
∂B′

t = S ′t. Denote B′
t = ∪s ∆′

t,s the foliation of B′
t by holomorphic discs.

For t 6= 0, each ∆′
t,s has boundary ∂∆′

t,s ⊂ S ′t ⊂ M\K. Thus, by means of
the continuity principle, we may extend holomorphic functions in the neigh-
borhood U of M\K to a neighborhood of B′

t in Cn, for all small t 6= 0.
A final simple check shows that Theorem 2.30 (rm5) applies to remove B′

0,
and we get holomorphic extension to the union ∪tB′

t, a set containing the
strongly pseudoconvex open local side of Ω at every point of K.

Without pseudoconvexity assumption on M , we can still consider a folia-
tion S ′t, but now the global geometry of B′

t is no longer clear. If for instance
M is Levi-flat near K and the S ′t are contained in the Levi-flat part, then
the B′

t just form an increasing family whose union is just a subdomain of
M . Therefore it seems necessary to deform S ′ once again in order to gain
transversality of B′ and M . Since the global behavior of B′ is hard to con-
trol, a further localization is advisable.

As in [Me1997], we consider the set Knr of points q ∈ K such that
O

(
V (M\K)

)
does not extend holomorphically to a one-sided neighbor-

hood of q. So O
(
V (M\K)

)
extends holomorphically to a one-sided

neighorhood V b
(
K\Knr

)
. By deforming M at points of K\Knr, we come

down to the same situation withK replaced withKnr, except that no point of
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Knr should be removable. Assuming Knr 6= ∅, to conclude by contradiction,
it then suffices to remove only one point of Knr.

To begin with, assume that Knr is contained in finitely many of the disc
boundaries ∂∆′

0,s which foliate S ′ = S ′0. Then we claim that no ∂∆′
0,s

can be contained in Knr. Otherwise, ∂∆′
0,s ⊂ Knr ⊂ D′ ⊂ D and the

2-disc enclosed by ∂∆0,s in S ′0 inside the totally real 2-disc D′ contain no
complex tangencies, but the filling provided by Theorem 7.17 excludes such
a topological possibility. So Knr is properly contained in a finite union of
arcs, and hence removable by Theorem 4.9.

Therefore we may assume that Knr has nonvoid intersection with infin-
itely many of ∂∆′

0,s. Since there is only finitely many complex tangencies,
there exists a ∂∆′

0,s0
with ∂∆′

0,s0
∩ Knr 6= ∅ not encountering them. The

same argument as above shows that ∂∆′
0,s0

6⊂ Knr. Let p0 ∈ ∂∆′
0,s0

∩Knr.
If ∆′

0,s0
and M meet transversally at p′0, holomorphic extension to a one-

sided neighborhood at p′0 proceeds as in the strongly pseudoconvex case, by
applying the continuity principle with discs ∆′

t,s ⊂ B′
t for t 6= O.

Assume now that ∆′
0,s0

is tangential toM in p′0 or equivalently, that ∂∆′
0,s0

is tangential to the characteristic leaf in p′0. The idea is to change the angle
of the discs close to ∆′

0,s0
, and to apply the above argument to the deformed

disc passing through p′0. Since ∂∆′
0,s0

6⊂ Knr, we may deform slightly S ′

near some point q′0 ∈ ∂∆′
0,s0
\Knr in the direction normal to B′. More pre-

cisely, one deforms S ′ slightly, so that Theorem 5.17 still applies, and then
picks up the disc of the deformed Levi-flat 3-ball that passes through p′0. In
view of known results about normal deformations of small discs (Propo-
sition 2.21(V); [Trp1990, BRT1994, Tu1994a]), the turning of the angle
for large discs ([Fo1986, Gl1994]) may also be established in such a way
(see [Po2003, Po2004]).

There is one final point to be handled carefully. We have to be sure that
after turning the discs, the deformed disc boundary passing through the point
p′0 ∈ Knr is not entirely contained in Knr.

Knr

Choice of p′0

p′0 p̃′0

D′

∂∆′
0,s
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This can be assured by replacing p′0 by another special nearby point p̃′0 ∈
Knr with a good transversality property as illustrated above. ¤

Theorem 5.20 is not yet the complete generalization of Theorem 5.15 to
nonpseudoconvex hypersurfaces, since D is assumed to be totally real at
every point. If D has hyperbolic complex tangencies, it is not clear whether
a sphere S ′ together with a strongly pseudoconvex boundary ∂Ω′ ⊃ S ′ as in
the above key lemma can be constructed. The recent Theorem 5.13 indicates
that this is possible if hyperbolic complex tangencies are holomorphically
flat, an assumption which would be rather ad hoc for the removal of compact
sets K ⊂ D.

In fact, assuming generally that M is an arbitrary globally minimal hy-
persurface, that a given surface S ⊂ M has arbitrary topology (not nec-
essarily diffeomorphic to an open 2-disc) and possesses complex tangen-
cies, the reduction to the filling Theorem 5.17 seems to be impossible.
Indeed, Fornæss-Ma ([FM1995]) constructed an unknotted nonfillable 2-
sphere S ⊂ C2 having only two elliptic complex tangencies. To the authors’
knowledge, the possibility of filling by Levi-flat 3-spheres some 2-spheres
lying in a nonpseudoconvex hypersurface is a delicate open problem. In ad-
dition, for the higher codimensional generalization of Theorem 1.2, the idea
of global filling seems to be irrelevant at present times, because no analog
of the filling Theorem 5.17 is known in dimension n > 3.

5.22. Beyond this survey. In the research article [26] placed in direct con-
tinuation to this survey, we consider surfaces S having arbitrary topology
and we generalize Theorem 5.20 to arbitrary codimension, localizing the
removability arguments and using only small analytic discs.
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[Fo1986] FORSTNERIČ, F.; Analytic discs with boundaries in a maximal real submani-
fold of C2, Ann. Inst. Fourier (Grenoble), 37 (1987), no. 1, 1–44.
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Characteristic foliations

on maximally real submanifolds of Cn

and removable singularities for CR functions

Joël Merker and Egmont Porten

Abstract. In present-day multidimensional complex analysis, the existing cohomo-
logical or functional characterizations of removable singularities (for holomorphic
or CR functions) do only seldom provide adequate insights into the geometrical
structures. Nonetheless, in the theory of CR functions, some geometric criteria
are accessible for Lp-removability in the spirit of the classical Denjoy theorem (cf.
the Painlevé problem), especially in the case of CR dimension 1, where, as in the
complex plane, a single ∂b operator is concerned.

We consider closed or compact singularities a priori contained in some surface S
embedded into a globally minimal hypersurfaceM ⊂ C2 (geometric assumptions).
If S is totally real except at finitely many complex tangencies that are hyperbolic in
the sense of Bishop, and if the union of the separatrices of its characteristic folia-
tion is a tree of curves having no cycles, we show that every compact set K ⊂ S is
removable. Already in the hypersurface case, we endeavor a new localization pro-
cedure yielding substantial generalizations of this statement, for the removability of
closed sets C ⊂M1 ⊂M contained in a totally real 1-codimensional submanifold
M1 embedded in some C 2,α (0 < α < 1) generic submanifold M ⊂ Cn (n > 2)
that has CR dimension 1. We establish that every characteristically pseudoconcave
subset C ⊂M1 ⊂M closed both in M1 and in M is removable.
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INTRODUCTION

The study of removable singularities for solutions of (partial) differential
equations, deeply rooted in the classical theory of holomorphic functions of
one complex variable, plays a major rôle in contemporary Analysis. His-
torically, the subject was initiated by Riemann’s basic removability theorem
(1854) — stating that O(C\{pt}) ∩ L∞loc(C\{pt}) = O(C) — and in the
last few years, the research field has enjoyed quite spectacular advances.
For instance, Painlevé’s long outstanding problem (see the Bourbaki sur-
vey [Pa2005]) about characterizing geometrically the compact sets K ⊂ C
for which O(C\K) ∩ L∞loc(C\K) = O(C), is nowadays considered to be
essentially solved ([To2003]) in terms of the average Menger curvature of
Radon measures supported on K.

For functions of several complex variables, the subject is even richer, be-
cause in higher dimensions, existing geometrical concepts and refined co-
homological tools broaden considerably the research perspectives. Also,
an adequate approach to removable singularities for operators of multi-
dimensional complex analysis must certainly take account of the compul-
sory Hartogs-type extension phenomena that are widely known and still
deeply studied in contemporary Cauchy-Riemann Geometry.

It is worth mentioning that since the 1990’s, singularities of CR functions
on boundaries of domains in complex manifolds attracted much attention.
An intensively studied question was to provide criterions insuring that the
Hartogs-Kneser extension theorem still holds true, when considering CR
functions that are defined only in the complement ∂Ω\K of a compact sub-
set K of a connected boundary ∂Ω b Cn (n > 2). For C 2 strongly pseudo-
convex boundaries contained in two-dimensional Stein manifolds, a satisfac-
tory function-theoretical characterization was obtained by Stout ([Stu1993]),
namely K is removable if and only if it is O(Ω)-convex. Slightly after, for
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arbitrary complex dimension n > 3, a complete cohomological characteri-
zation of different nature was obtained by Lupacciolu ([Lu1994]). A survey
of Chirka-Stout ([6]), a monograph of Kytmanov ([Ky1995]) and lecture
notes by Laurent-Thiébaut ([Lt1997]) already restitute these aspects excel-
lently and provide a valuable introduction to ∂ techniques in removable sin-
gularities.

In 1988, opening a broad new geometric trend with totally different tech-
niques, Jöricke established an outstanding removability theorem: closed
maximally real C 2 discs in strongly pseudoconvex boundaries ∂Ω b C2 are
removable. This was the first CR version of Denjoy’s approach to Painlevé’s
problem, where the singularity is assumed to be one-codimensional. Com-
pared to other results, it was particularly satisfactory to devise the geometri-
cal structure of removable sets, often invisible in functional-theoretic and in
cohomological characterizations.

In the late 1990’s, within the general framework of CR extension the-
ory that reached a considerable degree of achievement thanks to the works
of Trépreau and of Tumanov, it became mathematically accessible to en-
deavour the general study of (geometrically) removable singularities, for CR
functions defined on embedded CR manifolds M ⊂ Cn that have arbitrary
CR dimension and arbitrary codimension. In recent years, rather (almost)
complete removability results have been published by Jöricke for hypersur-
faces and by the two authors for general generic submanifolds. Usually, the
given generic M ⊂ Cn is assumed to be globally minimal, i.e. to consist
of a single CR orbit (a very weak assumption which allows M to possess
quite large Levi-flat regions); in fact, such orbits are the intrinsic objects
adequately linked to CR extension; also, they appear to be bricks that are
essentially independent; and in the technical details, proofs do in fact pro-
ceed orbitwise, so that known corollaries valuable for not globally minimal
M ’s follow from elementary arguments. Since it is wiser to refrain from
formulating superficial corollaries, one usually assumes global minimality
everywhere.

Towards a general unified theory of removable singularities for CR
functions, our finest joint result ([MP2002]) states that closed sets whose
(dimM − 2)-dimensional Hausdorff measure vanishes are always remov-
able on such globally minimal M ’s. Also, we obtained previously several
positive results ([MP1999]) in the case where the illusory singularity is as-
sumed to be a priori contained in a given submanifold N of M . Thanks to
the guiding ideas of Jöricke, complete results were obtained for M of CR
dimension > 2 (and of codimension > 1), with codimM N = 1, 2 or > 3,
but in the much more delicate case where M has only CR dimension = 1,
in the existing literature, the codimension of the singularity is assumed to be
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> 2 ([Me1997, Po1997, Jö1999a, Jö1999b, MP1999]), except notably when
M is a hypersurface ([Jö1988, FS1991, Du1993]).

Thus, in the subject, there remained essentially one single principal (dar-
ing and difficult) open question raised by Jöricke in [Jö1999b], namely to
study the (possibly very massive) singularities that are contained in a one-
codimensional maximally real submanifold M1 of a given generic subman-
ifold M ⊂ Cn having CR dimension equal to 1 and codimension > 2
(whence n > 3). As already mentioned briefly, the original motivation was
to elaborate CR versions of a celebrated characterization asserted by Denjoy
in 1909, who obtained a partial solution to the Painlevé problem that was
correct only in the case of a singularity contained in a real analytic curve;
nowadays, the best generalization (solution of Denjoy’s conjecture) says that
a compact set K ⊂ C contained a priori in some Lipschitz curve is remov-
able for bounded holomorphic functions if and only if it has zero length,
viz. zero one-dimensional Hausdorff measure (see [Pa2005] for a precise
historical account; recent results go far beyond Denjoy’s original approach).
In the expected CR generalization, M plays the rôle of a domain in C and
M1 plays the rôle of the curve.

As discovered by Jöricke in [Jö1988], unlike in the complex plane and
thanks to the freedom offered by the various Hartogs-type extension phe-
nomena, removability of illusory singularities may hold true even if they
have nonempty interior (in M1), and without requiring neither the vanishing
of some metrical (Lebesgue, Minkowski, Hausdorff) content, nor of some
auxiliary capacity. Jöricke also cleverly emphasized that the classical re-
movability theorems enjoyed by general linear partial differential operators
that were unified by Harvey and Polking in [HP1970] do only provide re-
stricted insight into the nature of CR singularities. In fact, because these
results are based on elementary metrical estimates showing that the singu-
larity becomes innocuous through integration by parts, the formulation of
these theorems does depend on the class (e.g. Lp

loc or C κ,α) and also, it
seems impossible to get L1-removability without a strong assumption of
growth near the singularity. On the contrary, Jöricke ([Jö1999a, Jö1999b])
and the two authors ([MP1999, MP2002]) obtained results formulated ge-
ometrically that are uniform with respect to the class — including L1

loc —
and that require no growth tameness.

Following this trend of thought, our main objective in the present research
paper is to answer completely the first Problem 2.1 raised in [Jö1999b] (and
mentioned above), with M ⊂ Cn (n > 2) of CR dimension 1 and M1 ⊂M
maximally real, both of class C 2,α (0 < α < 1). Since M1 ⊂ M has
null CR dimension, the standard processus of sweeping out by wedges be-
comes void, because small Bishop discs attached to M1 are not available.
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Accordingly, the proof of the main Proposition 1.13 below relies upon a
new localization device, based on families of analytic discs that are only
half-attached to M1 (following Bishop and Pinchuk), the very gist of the
argument being the selection of a special point to be removed. In the hyper-
surface case (only), previously known approaches relied upon a global Kon-
tinuitätssatz, or upon a global filling of 2-spheres by Levi-flat 3-balls (fol-
lowing Bedford-Klingenberg and Kruzhilin), but both tools have no known
controllable counterpart in higher codimension. So, as a final comment, we
point out that it is satisfactory to bring in this paper a purely local frame-
work for the treatment of one-codimensional singularities, even when M is
a hypersuface of C2.

The results presented here are entirely new in codimension > 2.

§1. CHARACTERISTIC FOLIATION AND REMOVABILITY:
MAIN RESULTS

1.1. Removability of totally real discs having hyperbolic complex tan-
gencies. By means of a global Kontinuitätssatz, Jöricke ([Jö1988]) showed
removability of closed maximally real smooth discs contained in strongly
pseudoconvex boundaries ∂Ω b C2. Applying the filling of 2-spheres by
Levi-flat 3-balls ([BK1991, Kr1991]), Forstnerič -Stout ([FS1991]) allowed
finitely many complex tangencies of hyperbolic type (in the sense of Bishop)
in the disc and established both its removability and its O(Ω)-convexity.
Reasoning with Rossi’s local maximum modulus principle and with Oka’s
criterion for holomorphic convexity, Duval ([Du1993]) re-obtained these re-
sult differently and generalized them to arbitrary surfaces S ⊂ ∂Ω.

More recently, suppressing convexity hypotheses, the second author
([Po2004]) showed removability of closed maximally real discs contained
in globally minimal hypersurfaces of C2. We point out that obtaining theo-
rems without any assumption of (pseudo)convexity on CR manifolds leads
to substantial difficulties, because one loses almost all of the strong inter-
weavings between function-theoretic tools and geometric arguments which
are valid in the pseudoconvex realm, for instance: Hopf lemma, plurisubhar-
monic exhaustions, envelopes of function spaces, local maximum modulus
principle, Stein neighborhood basis and semi-global control of hulls.

Our first statement unifies the mentioned results, still without pseudocon-
vexity; importantly, we also establish removability of certain compact sub-
sets of arbitrary surfaces, instead of plain discs, see Corollary 1.5 below.
Throughout this article, all (sub)manifolds are assumed to be embedded.

Theorem 1.2. Let M be a globally minimal C 2,α (0 < α < 1) hypersurface
in C2 and let D ⊂M be a C 2,α surface which is:

• diffeomorphic to the open unit 2-disc of R2 and:
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• totally real outside a discrete subset of isolated complex tangencies
which are hyperbolic in the sense of Bishop.

Then every compact subset K of D is CR-, W - and Lp-removable32.

The theorem holds with exactly the same proof if C2 is replaced by any
two-dimensional complex manifold, not necessarily Stein. As a direct corol-
lary, with M = ∂Ω b C2 being a C 2,α compact boundary, hence automati-
cally globally minimal ([Jö1999a, 29]), we obtain a Hartogs-Kneser exten-
sion theorem from ∂Ω\K. Also, the characterization of removable sets due
to Stout yields that if ∂Ω b C2 is a C 2,α boundary such that Ω has a Stein
neighborhood basis, then every K ⊂ D ⊂ ∂Ω as in the theorem is O(Ω)-
convex.

As a more substantial application, reminding that satisfactory geomet-
ric criteria for polynomial convexity of general surfaces in C2 are far to be
known, we derive new examples of polynomially convex sets contained in
weakly pseudoconvex boundaries. The arguments of proof are postponed to
Section 12.

Corollary 1.3. Let Ω b C2 be a domain with C 2,α boundary. Suppose that
Ω is polynomially convex (whence Ω is weakly pseudoconvex). Let D ⊂ ∂Ω
be an embedded 2-disc of class C 2,α which is totally real outside a discrete
subset of hyperbolic complex tangencies. Then each compact set K ⊂ D is
polynomially convex.

To describe briefly some aspects of the geometrical machinery underlying
Theorem 1.2, we remind ([Jö1988, FS1991, Du1993]) that the totally real
part of the 2-disc D is equipped with a so-called characteristic foliation FcD,
obtained by integrating the line distribution D 3 p 7−→ T cpM ∩ TpD, hence
canonical. Then FcD has singularities exactly at the complex hyperbolic tan-
gencies of D. If D is totally real at every point, the Poincaré-Bendixson
theorem assures the inexistence of limit cycles as well as of foci, of centers
and of saddle points, so that all characteristic curves must go from a point
of the boundary of D to another boundary point; in the left diagram below,
they are simply drawn as horizontal lines.

In [Du1993], Duval delineated a crucial, immediately seen geometric
property: for every compact set K ⊂ D (hence also trivially for every
subcompact K ′ ⊂ K ⊂ D), there exists at least one characteristic curve

32The classical notion of Lp-removability ([HP1970, Jö1988, Jö1999b, MP1999])
means that Lp

loc(M) ∩ Lp
loc,CR(M\K) = Lp

loc,CR(M); CR-removability means that
C 0

CR(M\K) extends holomorphically to some global one-sided neighborhood ωM of M ;
W -removability means essentially that the same extension property holds for O(ωM\K);
the reader is referred to [MP2002] for rigorous and precise definitions, valuable in arbi-
trary codimension, and to [6, Jö1999a] for similar concepts, presented from the standard
hypersurface perspective.
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γ touching K (resp. K ′) such that K (resp. K ′) is located in one closed
side of γ in some thin, elongated neighborhood of γ. Also, the tips of γ
being close to the boundary of D, they must lay at a positive distance from
K. Moving then such a curve γ slightly up and down, one sees an intuitive
processus of “erasing” the (bottom-left part in the picture) part of K which
is very similar to the classical Kontinuitätssatz, alias Continuity Principle, in
which one moves an analytic disc, keeping its boundary inside some (usu-
ally pseudoconcave) (Riemann) domain, in order to describe a part of an
envelope of holomorphy.

Strikingly, this informal analogy underlies a true removability fact, which
we formulate as an independent, main technical proposition, directly useful
to the proof of Theorem 1.2. All subsets C of a submanifold S of a manifold
M that are called closed are assumed to be closed both in M and in S. We
point out that now D is replaced by a 2-surface S which may have arbitrary
topology and that the removed set C is not necessarily compact, which will
be needed.

Proposition 1.4. Let M be a C 2,α globally minimal hypersurface in C2,
let S ⊂ M be a C 2,α surface, open or closed, with or without boundary,
which is totally real at every point. Let C be a proper closed subset of S
and assume that the following topological condition holds, meaning that C
is nontransversal to FcS:

• for every closed subset C ′ ⊂ C, there exists a simple C 2,α curve
γ : [−1, 1] → S, whose range is contained in a single leaf of the
characteristic foliation FcS (obtained by integrating the character-
istic line field T cM |S ∩ TS), with γ(−1) 6∈ C ′, γ(0) ∈ C ′ and
γ(1) 6∈ C ′, such thatC ′ lies completely in one closed side of γ[−1, 1]
with respect to the topology of S in a neighborhood of γ[−1, 1].

Then C is CR-, W - and Lp-removable.

In case S = D is a 2-disc and C = K is compact, the left diagram
provides an illustration.
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γ(−1) γ(1)γ(0)
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Fig. 1: Nontransversality to the characteristic foliation
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In the absence of a Poincaré-Bendixson theorem taming the topology of
the characteristic foliation (S is not a disc), this nontransversality condition
appears to be the most adequate cause of removability. In fact, it is well
known that boundaries of analytic discs or of Riemann surfaces attached
to a 2-surface S ⊂ ∂Ω contained in some compact strongly pseudoconvex
boundary ∂Ω b C2, are embedded circles everywhere transversal to FcS
(because of Hopf’s lemma), and it is clear that such holomorphic curves
Λ = {g = 0}, with g ∈ O(Ω) ∩ C 1(Ω), are never removable: it suffices to
set K := {g = 0} ∩ ∂Ω ⊂ S and to consider 1

g

∣∣
∂Ω\K . It is thus remarkable

that the nontransversality of C to FcS appears again on globally minimal CR
structures, where the distribution p 7→ T cpM is allowed to be very far from
contact.

Let us now briefly explain why the main Proposition 1.4 is necessary to
Theorem 1.2 (we recommend that the reader simultaneously watches Fig-
ure 22 in §11.3 below). At each hyperbolic point p, the phase diagram of FcD
is saddle-like and contains two local separatrices intersecting at p which are
smooth and transversal (cross-like). Hence we can decompose the 2-disc
D as a union D = TD ∪ Do, where TD consists of the union of the hy-
perbolic points of D together with the separatrices issuing from them, and
where Do := D\TD is the remaining open submanifold of D, obviously
contained in the totally real part of D. By the theory of Poincaré-Bendixson
([HS1974, FS1991, Du1993]), since D is a disc, TD must be a tree of C 1,α

curves which contains no subset homeomorphic to the unit circle. Accord-
ingly, we set KTD

:= K ∩ TD and Co := K ∩ Do, so that K = KTD
∪ Co

decomposes in two parts. Then Co is a relatively closed subset of Do, and
importantly, it is also closed in Mo := M\TD. Again thanks to Poincaré-
Bendixson, Co is nontransversal to the characteristic foliation of Do. So
Proposition 1.4 applies: we may remove Co with respect to Mo, namely we
get holomorphic extension to a global one-sided neighborhood ωMo of Mo

in C2.
Deforming M slightly inside ωMo , we are left with the much thinner sin-

gularity KTD
, of codimension 6 2 in M . Since KTD

contains no circle,
its removal will follow from known theorems ([6, Jö1999a, MP1999]; how-
ever, a technical investigation of the behavior of the CR orbits near TD will
be required).

Section 2 describes and summarizes the proof of the main Proposition 1.4
in geometric and in conceptional terms.

The nontransversality assumption is a common condition on C and on
the characteristic foliation FcS , namely on the relative disposition of C with
respect to FcS; Figure 3 below provides a second illustration of it. As already
mentioned, if S is diffeomorphic to a real 2-disc or if S = Do as above, then
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nontransversality holds true. Generally, it also holds when the characteristic
foliation is given by the level sets of some C 1,α real-valued function defined
on S. More interestingly, to conclude with removal in C2, we formulate a
consequence of Proposition 1.4 that is more general than Theorem 1.2, since
it holds without the restricted assumption that S be diffeomorphic to a real
2-disc. We believe that this application shows well the strength of our new
localization procedure.

Corollary 1.5. Let M be a C 2,α globally minimal hypersurface in C2, let
S ⊂ M be a C 2,α real 2-surface, open or closed, with or without boundary
which is totally real outside a discrete subset of isolated hyperbolic complex
tangencies and let K ⊂ S be a compact set. If TS denotes the union of
hyperbolic points of S together with all separatrices, assume that:

• K ∩ (S\TS) is nontransversal to FcS\TS
;

• K∩TS does not contain any subset homeomorphic to the unit circle.

Then K is CR-, W - and Lp-removable.

1.6. Passage to arbitrary codimension. Our principal motivation for the
present work was to devise a purely local strategy of proof for Theorem 1.2
in order to obtain higher codimensional removability results in the most deli-
cate case of CR dimension 1. Accordingly, letM be a C 2,α globally minimal
generic submanifold of codimension (n − 1) in Cn, with n > 2 arbitrary.
Let M1 be a C 2,α one-codimensional submanifold of M which is generic
in Cn, hence maximally real. As in the C2 case, M1 carries a characteris-
tic foliation FcM1 , whose leaves are the integral curves of the canonical line
distribution M1 3 p 7−→ TpM

1 ∩ T cpM .
Next, let K ⊂ M1 be a compact set. Of course, the assumption that

K locally lies in one closed side of some characteristic curve is meaning-
less inside M1, when its dimension n is > 3. Taking inspiration from
(pseudo)convexity theory, the appropriate condition requires that every com-
pact K ′ ⊂ K has at least one boundary point at which M1\K ′ becomes
concave with respect to characteristic segments.

Definition 1.7. The complement M1\K is called characteristically pseu-
doconcave if for every subcompact K ′ ⊂ K, there is a C 1 embedding
Φ : [−1, 1]× [0, c1] →M1, c1 > 0, such that:

• each horizontal leaf Φ
(
[−1, 1]×{cst}) is contained in a single char-

acteristic curve;
• for 0 6 cst < c1, the intersection Φ

(
[−1, 1] × {cst}) ∩ K ′ = ∅ is

void;
• Φ

({−1} × [0, c1]
) ∩K ′ = ∅ and Φ

({1} × [0, c1]
) ∩K ′ = ∅;
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• Φ
(
(−1, 1) × {c1}

) ∩ K ′ 6= ∅ is nonempty (but the two endpoints
Φ(−1, c1) and Φ(1, c1) must, by the above item, lie at a positive
distance from K ′).

In the left Figure 1 above, Φ amounts to translating γ downward. The
reader will have noticed the close similarity with the classical continuity
principle. In our setting, embedded families of holomorphic discs are re-
placed by families of characteristic segments, the endpoints of the segments
corresponding to the boundary circles of the discs. We remind that to verify
that a domain Ω ⊂ Cn is pseudoconvex in the sense of Hartogs, one has
to establish the Kontinuitätssatz for all appropriately embedded families of
holomorphic discs. In our case the geometry is much more rigid because the
directions of the embedded segments are already prescribed by the charac-
teristic foliation.

Unexpectedly33, our principal result in this paper establishes a deep link
between the characteristic pseudoconcavity of M1\K in the real sense and
the fact that the (partial) envelope of holomorphy ofM\K is pseudoconcave
enough to cover M .

Theorem 1.8. Let M ⊂ Cn be generic, C 2,α, of codimension (n − 1) and
globally minimal, let M1 ⊂ M be one-codimensional, C 2,α and maximally
real in Cn, and letK ⊂M1 be a compact set. IfM1\K is characteristically
pseudoconcave, then it is is CR-, W - and Lp-removable.

In fact, we recall from [Me1997, MP1999, MP2002] that the removability
of K means (essentially) that the (partial) envelope of holomorphy of any
wedgelike domain attached to M\K contains a complete wedge attached to
M . Technically speaking, the proof is of high level and before launching
the attack, we will formulate a more general main proposition, analogous to
Proposition 1.4 and valid for certain closed sets that are nontransversal to
FcM1 in a certain sense.

Meanwhile, we would like to mention that in the last Section 13 below
(which may be read independently), we will exhibit a crucial example of
a compact set K ⊂ M1 ⊂ M ⊂ C3 diffeomorphic to a two-dimensional
torus and everywhere transversal to FcM1 , namely TpK ⊕ FcM1(p) = TpM

1

for every p ∈ K, which is truly nonremovable. Since the embedded 2-torus
K has no boundary, the complement M1\K cannot be characteristically
pseudoconcave. This shows that the main geometrical assumption of the
theorem above is adequate. In addition, similarly as in [JS2000], we may
require (almost for free) thatM andM1 have the simplest possible topology.
Recall that, according to a classical definition, type 4 at a point p ∈M means

33Needless to say, there is no direct direct magical translation from characteristic seg-
ments to holomorphic curves.
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that the Lie brackets of the complex tangent bundle T cM up to length 4
generate TpM .

Theorem 1.9. There exists a triple (M,M1, K), where

(i) M is a C∞ generic submanifold in C3 of CR dimension 1, diffeo-
morphic to a real 4-ball;

(ii) M1 is a C∞ one-codimensional submanifold of M which is maxi-
mally real in Cn and diffeomorphic to a real 3-ball;

(iii) K is a compact subset of M1 diffeomorphic to a real 2-torus which
is everywhere transversal to the characteristic foliation FcM1 , hence
M1\K cannot be characteristically pseudoconcave;

(iv) M of finite type 4 at every point, hence globally minimal,

such that K is neither CR- nor W - nor Lp-removable with respect to M .

1.10. Characteristic nontransversality and main proposition. Let M ,
M1, FcM1 be as before and let C be a proper subset of M1, closed in M1

and closed in M . Here is the higher dimensional notion of characteristic
nontransversality, already illustrated by the right diagram above.

Definition 1.11. The closed set C ⊂ M1 ⊂ M is called nontransversal to
the characteristic foliation if:

• for every closed subset C ′ ⊂ C, there exists a simple C 2,α curve
γ : [−1, 1] → M1 whose range γ[−1, 1] is contained in a single
leaf of the characteristic foliation FcM1 with γ(−1) 6∈ C ′, γ(0) ∈ C ′

and γ(1) 6∈ C ′, there exists a local (n − 1)-dimensional transver-
sal R1 ⊂ M1 to γ passing through γ(0) and there exists a thin
elongated open neighborhood V1 of γ[−1, 1] in M1 such that if
πFc

M1
: V1 → R1 denotes the semi-local projection parallel to

the leaves of the characteristic foliation FcM1 , then γ(0) lies on the
boundary, relatively to the topology of R1, of πFc

M1
(C ′ ∩ V1).

Clearly, in the case n = 2, this amounts to say that C ′∩V1 lies completely
in one side of γ[−1, 1], as written in Proposition 1.4.

Lemma 1.12. The two conditions introduced so far are in fact equivalent:

• M1\C is characteristically pseudoconcave if and only if
• C is nontransversal to FcM1 .

Furthermore, for every nonempty closed C ′ ⊂ C, there exists p1 ∈ C ′,
there exists a characteristic embedded C 2,α curve γ := [−1, 1] → M1 with
γ(−1) 6∈ C ′, γ(0) = p1 and γ(1) 6∈ C ′ and there exists a thin C 1,α support
hypersurface H1 ⊂ M1 containing γ, foliated by characteristic curves and
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elongated along γ such that C ′ is contained in one closed side of H1 inside
M1, locally in a neighborhood of γ.

The second assertion, proved in Proposition 5.2, entails immediately the
equivalence. We may now formulate our main technical proposition (gener-
alizing Proposition 1.4) upon which Theorem 1.8 relies.

Proposition 1.13. If the closed set C ⊂ M1 ⊂ M is nontransversal to the
characteristic foliation, it is CR-, W - and Lp-removable.

We emphasize that this concise statement constitutes the essential core of
the present article. Sections 3, 4, 5, 6, 7, 8 and 9 are integrally devoted to its
proof.

1.14. Comparison with a third hypothesis sufficient for removability.
With C = K compact, in §2.17 below, we compare our main nontransver-
sality assumption to the following condition, suggested by a referee.

H{K} : there is an open neighborhood U of K in M1 and a C 1 submersion
ρ : U → V with values in a C 1 not necessarily connected (n −
1)-dimensional manifold V without boundary and without compact
components such that every level set ρ−1(q), q ∈ V , is a union of
leaves of FcU = FcM1

∣∣
U

.

We first verify that H{K} implies that K is nontransversal to FcM1 . How-
ever, the reverse implication does not hold, so that for Theorem 1.8, H{K}
is a strictly less general assumption than the characteristic pseudoconcavity
of M1\K. This was forseeable, since global foliations are rarely induced
by a submersion. In dimension n = 3, we thus construct an example of
(M,M1, K) withM1\K characteristically pseudoconcave for which H{K}
fails (see §2.17).

1.16. Application. For completeness, we formulate a higher codimensional
version of Corollary 1.5.

Corollary 1.17. Let M ⊂ Cn be generic, C 2,α, of codimension (n− 1) and
minimal at every point, let Λ1 ⊂ M be a C 2,α one-codimensional subman-
ifold, totally real outside Σ ∪ Λ2, where Σ ⊂ M is closed with vanishing
(dimM − 2)-dimensional Hausdorff measure and where

(1.18) Λ2 =
⋃
j∈J

Λ2
j

is a countable, locally finite union of disjoint connected 2-codimensional
C 2,α submanifolds Λ2

j ⊂ Λ1, and let K ⊂ Λ1 be a compact set. Assume that

• K ∩ (
Λ1\Λ2

)
is nontransversal to FcΛ1\Λ2;

• K ∩ Λ2
j is a proper subset of Λ2

j for every j ∈ J .
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Then K is CR-, W - and Lp-removable.

Since M is (locally) minimal at every point, M\E is globally minimal,
for every E ⊂ M . The removal of K ∩ (Λ1\Λ2) follows from the main
Proposition 1.13, the removal of each K ∩ Λ2

j is proved in [MP1999], and
the removal of Σ is established in [MP2002].

1.19. Acknowledgments. We would like to express our sincere gratitude
to Burglind Jöricke for her kind interest and for her clever suggestions that
incited us to improve substantially the presentation of our results.

§2. DESCRIPTION OF THE PROOF OF PROPOSITION 1.4 AND
ORGANIZATION

In this preliminary section, we summarize the hypersurface version
Proposition 1.4. Our goal is to provide a conceptional description of the
basic geometric constructions, which should be helpful to read the proof of
the general Proposition 1.13. Because precise, complete and rigorous for-
mulations will be developed in the next sections, we allow here the use of a
slightly informal language.

2.1. Strategy per absurdum. Let M , S, and C be as in Proposition 1.4. It
is known that both the CR- and the Lp-removability of C are a (relatively
mild) consequence of the W -removability of C (see §3.14 and Section 10
below). Thus, we shall describe in this section only the W -removability of
C.

First of all, as M is globally minimal, it may be proved that for every
closed subset C ′ ⊂ C, the complement M\C ′ is also globally minimal (see
Lemma 3.5 below). As M is of codimension one in C2, a wedge attached
to M\C is simply a connected one-sided neighborhood of M\C in C2. Let
us denote such a one-sided neighborhood by ω1. The goal is to prove that
there exists a (bigger) one-sided neighborhood ω attached to M to which
holomorphic functions in ω1 extend holomorphically. By the definition of
W -removability, this will show that C is W -removable.

Reasoning by contradiction, we shall denote by Cnr the smallest nonre-
movable subpart of C. By this we mean that holomorphic functions in ω1

extend holomorphically to a one-sided neighborhood ω2 of M\Cnr in C2

and that Cnr is the smallest subset of C such that this extension property
holds. If Cnr is empty, the conclusion of Proposition 1.4 holds, gratuitously:
nothing has to be proved. If Cnr is nonempty, to come to an absurd, it suf-
fices to show that at least one point of Cnr is locally removable. By this,
we mean that there exists a local one-sided neighborhood ω3 of at least one
point of Cnr such that holomorphic functions in ω2 extend holomorphically
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to ω3. In fact, the choice of such a point will be the most delicate and the
most tricky part of the proof.

In order to apply the continuity principle, as stated in [Me1997, 29],
we now deform slightly M inside the one-sided neighborhood ω2, keep-
ing Cnr fixed, getting a hypersurface Md (with d like “deformed”) satisfying
Md\Cnr ⊂ ω2. We point out that a local one-sided neighborhood of Md at
one point p of Cnr always contains a local one-sided neighborhood ofM at p
(the reader may draw a figure), so we may well work onMd instead of work-
ing on M (however, the analogous property about wedges over deformed
generic submanifolds is untrue in codimension > 2, see §3.16 below, where
supplementary arguments are required).

Replacing the notation Cnr by the notation C, the notation Md by the no-
tation M and the notation ω2 by the notation Ω, we see that Proposition 1.4
is reduced to the following main proposition, whose formulation is essen-
tially analogous to that of Proposition 1.4, except that it suffices to remove
at least one special point.

Proposition 2.2. Let M be a C 2,α globally minimal hypersurface in C2, let
S ⊂ M be a C 2,α surface which is totally real at every point. Let C be a
nonempty proper closed subset of S and assume that it is nontransversal to
FcS . Let Ω be an arbitrary neighborhood of M\C in Cn. Then there exists a
special point psp ∈ C and there exists a local one-sided neighborhood ωpsp
of M in C2 at psp such that holomorphic functions in Ω extend holomorphi-
cally to ωpsp .

2.3. Holomorphic extension to a half-one-sided neighborhood ofM . The
choice of the special point psp will be achieved in two main steps. According
to the nontransversality assumption, there exists a characteristic segment
γ : [−1, 1] → S with γ(−1) 6∈ C, with γ(0) ∈ C and with γ(1) 6∈ C such
that C lies in one (closed, semi-local) side of γ in S. As γ is a Jordan arc,
we may orient S in M along γ, hence we may choose a semi-local open
side (Sγ)

+ of S in M along γ. In the first main step (to be conducted in
Section 4 in the context of the general Proposition 1.13), we shall construct
what we call a semi-local half-wedge H W +

γ attached to (Sγ)
+ along γ. By

this, we mean the “half part” of a wedge attached to a neighborhood of the
characteristic segment γ in M , which yields a wedge attached to the semi-
local one-sided neighborhood (Sγ)

+. For an illustration, see Figure 8 below,
in which one should replace the notation M1 by the notation S. Such a half-
wedge may also be interpreted as a wedge attached to a neighborhood of γ in
S, but it should not be arbitrary, it should satisfy a further property: locally
in a neighborhood of every point of γ, either the half-wedge contains (Sγ)

+

or one of its two ribs contains (Sγ)
+, as illustrated in Figure 8 below. Most
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importantly, the cones of this attached half-wedge should vary continuously
as we move along γ, cf. again Figure 8.

The way how we will construct this half-wedge H W +
γ is as follows. As

illustrated in Figure 2 just below, we shall first construct a string of ana-
lytic discs Zr:s(ζ), where r is the approximate radius of Zr:s(∂∆), whose
boundaries are contained in (Sγ)

+ ⊂ M and which touch the curve γ
only at the point γ(s), for every s ∈ [−1, 1], namely Zr:s(1) = γ(s) and
Zr:s (∂∆\{1}) ⊂ (Sγ)

+.

M

M

γ(0)

γ(1)

γ(−1)

Zr:s(∂∆)

SCnr

S

(Sγ)+

(Sγ)−

Fig. 2: String of analytic discs attached to (M1
γ )+

Next, we fix a small radius r0. By deforming the discs Zr0:s(ζ) in Ω near
their opposite points Zr0:s(−1), which lie at a positive distance from the sin-
gularity C, we construct in Section 4 an extended family of analytic discs
Zr0,t:s(ζ), where t ∈ R is a small parameter, so that the disc boundaries
Zr0,t:s(∂∆) are pivoting tangentially to S at the point γ(s) ≡ Zr0,t:s(1),
which is assumed to remain fixed as t varies. Precisely, we mean that
∂Zr0,t:s

∂θ
(1) ∈ Tγ(s)S and that the mapping t 7−→ ∂Zr0,t:s

∂θ
(1) is of rank 1 at

t = 0. This construction and the next ones will be achieved thanks to pertur-
bations of the Bishop equation, as in [Tu1994, MP1999]. Furthermore, we
add a small parameter χ ∈ R corresponding to vertical translations of the
circles along S near γ, getting a family Zr0,t,χ:s(ζ) with the property that the
mapping (χ, s) 7−→ Zr0,t,χ:s(1) ∈ S is a diffeomorphism onto a neighbor-
hood of γ([−1, 1]) in S, still with the property that the point Zr0,t,χ:s(1) is
fixed equal to the pointZr0,0,χ:s(1) as t varies. Finally, we add a small param-
eter ν ∈ R with ν > 0 corresponding to horizontal translations of the circles
inside (Sγ)

+, getting a family Zr0,t,χ,ν:s(ζ) with Zr0,t,χ,0:s(ζ) ≡ Zr0,t,χ:s(ζ),
such that the mapping (χ, ν, s) 7−→ Zr0,t,χ,ν:s(1) is a diffeomorphism onto
the semi-local one-sided neighborhood (Sγ)

+ of S along γ in M , provided
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ν > 0. Then the semi-local attached half-wedge may be defined as

(2.4)
H W +

γ :=
{
Zr0,t,χ,ν:s(ρ) : |t| < ε, |χ| < ε, 0 < ν < ε,

1− ε < ρ < 1, −1 6 s 6 1
}
,

for some small ε > 0. In the first main technical step (Section 4), we shall
show that every holomorphic function f ∈ O(Ω) extends holomorphically
to H W +

γ . Then to prove Proposition 2.2, we must find34 a special point
psp ∈ C such that there exists a local one-sided neighborhood ωpsp at psp

such that holomorphic functions in Ω ∪ H W +
γ extend holomorphically to

ωpsp .

2.5. Field of cones on S. We have to keep memory of the geometric
disposal, of the orientation and of the size of H W +

γ . The way how
H W +

γ passes continuously above and under the half hypersurface (Sγ)
+

(
denoted (M1

γ )
+ in Figure 8

)
can be read off the full family of analytic

discs Zr0,t,χ,ν:s(ζ).
Thanks to a technical application of the implicit function theorem, we

can arrange from the beginning that the vectors ∂Zr0,t,χ,0:s

∂θ
(1) are tangent to

S at the point Zr0,0,χ,0:s(1) ∈ S when t varies, for all fixed s. Then by
construction, when t varies, the disc boundaries Zr0,t,χ,0:s(∂∆) are pivoting
tangentially to S at the point Zr0,t,χ,0:s(1) ≡ Zr0,0,χ,0:s(1). It follows that
when t varies, the oriented half-lines R+ · ∂Zr0,t,χ,0:s

∂θ
(1) describe an open

infinite oriented cone in the tangent space to S at the point Zr0,0,χ,0:s(1).
Consequently, we may define a field of cones p 7→ Cp as

(2.6) Cp :=

{
R+ · ∂Zr0,t,χ,0:s

∂θ
(1) : |t| < ε

}
,

at every point p = Zr0,0,χ,0:s(1) ∈ S of a neighborhood of γ in S. The
following figure provides an illustration. One should intuitively think that
the small cones Cp are generated when the small discs boundaries of Figure 2
pivote tangentially to S.

34However, most points p ∈ C are in fact not locally removable. Indeed, the simplest
example of a local CR singularity being the intersection ofM with some local holomorphic
curve Σ, which yields a local real curve µ := Σ ∩M , it may well happen that such a curve
µ is fully contained in the closed set C, since C which might have nonempty interior in S
(as in the figures).
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γ(0)

psp

γ(−1)

vλvλvλ

γ(1)

FCpp

p
FCp

Cp

Cp

Cnr

S

Fig. 3: Field of cones on TS and choice of a special point psp

After having defined this field of cones, we shall fill all the cones as fol-
lows. The motivation is to describe precisely what kinds of small Bishop
discs half-attached to S (in the sense of Pinchuk) will surely have the other
half of their boundaries contained in H W +

γ , so that a version of the conti-
nuity principle will be applicable to get Proposition 2.2.

Remind that a neighborhood of γ in S is foliated by characteristic seg-
ments, which are approximatively parallel to γ. In Figure 3 above, one
should think that the characteristic leaves are all horizontal. So there exists
a nowhere vanishing vector field p 7→ Xp defined in a neighborhood of γ
whose integral curves are characteristic segments. We then define the filled
cone FCp by

(2.7) FCp :=
{
λ ·Xp + (1− λ) · vp : 0 6 λ < 1, vp ∈ Cp

}
.

Geometrically, we rotate every half-line R+ · vp towards the characteristic
half-lineR+·Xp and we call the result the filling of Cp. In Figure 3 above, the
cone drawn near γ(0) coincides with its filling. Thus we have constructed a
field of filled cones p 7−→ FCp over a neighborhood of γ in S.

2.8. Small analytic discs half-attached to S. The next main observation
is that small analytic discs which are half-attached to S are essentially con-
tained in the half-wedge H W +

γ , provided that they are approximatively
directed by the cone Cp at the corresponding point p ∈ S. More is true: a
similar property holds with the filled cone FCp instead, and this fact will be
used in an essential way, since we will need discs close to the characteristic
direction.

Let us be more precise. Let ∂+∆ := {ζ ∈ ∂∆ : Re ζ > 0} denote
the positive half part of the unit circle ∂∆. We say that an analytic disc
A : ∆ → C2 is half-attached to S if A(∂+∆) is contained in S. Here, A is at
least of class C 1 over ∆ and holomorphic in ∆. In addition, we shall always
assume that our discs A are embeddings of ∆ into C2. We shall say that A
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is approximatively straight (in an informal sense) if A(∆) is close in C 1-
norm to an open subset of the complex line generated by the complex vector
∂A
∂ζ

(1). Finally, we say that A is approximatively directed by the filled cone
FCp at p = A(1), if the vector ∂A

∂θ
(1) ∈ TpS belongs to FCp. Although this

terminology will not be re-employed in the next sections, we may formulate
a crucial geometric observation as follows.

Lemma 2.9. A sufficiently small approximatively straight analytic disc A :
∆ → C2 of class at least C 1 which is half-attached to S and which is
approximatively directed by the filled cone FCp at p = A(1) ∈ S, necessarily
satisfies

(2.10) A
(
∆\∂+∆

) ⊂ H W +
γ .

In the context of the general Proposition 1.13, this property (with more
precisions) will be established in Section 8 below. Intuitively, the supple-
mentary freedom offered by the filling FCp comes from the fact that the
half-wedge H W +

γ is constructed by translating the discs horizontally (to-
ward us in the two above figures) in (S+

γ ), the distribution of horizontal
planes being approximatively equal to T cpM in the illustrations. In Figure 8,
one should think that a vector which varies in a vertical cone drawn there,
when it is multiplied by i, will cover the whole aperture of the filled cone
FCp (not only of Cp).

2.11. Choice of a special point. In the second main step of the proof (to
be conducted in Section 5 for the general Proposition 1.13), we shall choose
the desired special point psp of Proposition 2.2 to be removed locally as
follows. Since we shall use half-attached analytic discs (applying the conti-
nuity principle), we want to find a special point psp ∈ C so that the following
two conditions hold true:

(i) there exists a small approximatively straight analytic disc A : ∆ →
C2 with A(1) = psp which is half-attached to S such that A is ap-
proximatively directed by the filled cone FCpsp (so that the conclu-
sion of Lemma 2.9 above holds true);

(ii) the same disc satisfies A (∂+∆\{1}) ⊂ S\C.

In particular, since M\C is contained in Ω, it follows from these two con-
ditions that the (excised) disc boundaryA (∂∆\{1}) is contained in the open
subset Ω ∪H W +

γ , a property that will be appropriate for the application of
the continuity principle, as we shall explain in Section 9 below.

To fulfill conditions (i) and (ii) above, we first construct a supporting real
segment at a special point of the nonempty closed subset C ⊂ S.
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(Hpsp )−

(Hpsp )+

Hpsp

psp

S S

A(∂+∆)

Hpsp

FCpsp

C

Fig. 4: Half-boundary of a disc directed by a cone and touching Cnr

Lemma 2.12. There exists at least one special point psp ∈ C arbitrarily
close to γ in a neighborhood of which the following two properties hold
true:

(i’) there exists a small C 2,α open segment Hpsp ⊂ S passing through
psp such that an oriented tangent half-line to Hpsp at psp is contained
in the filled cone FCpsp , as illustrated in Figure 4 below;

(ii’) the same segment is a supporting segment in the following sense:
locally in a neighborhood of psp, the set C\{psp} is contained in one
open side (Hpsp)

− if Hpsp in S.

The way how we prove Lemma 2.12 is illustrated intuitively in Figure 3
above. For λ ∈ R with 0 6 λ < 1 very close to 1, the vector field p 7−→
vλp := λ · Xp + (1 − λ) · vp is very close to the characteristic vector field
p 7→ Xp. By construction, this vector field runs into the filled field of cones
p 7→ FCp. In Figure 3, the integral curves of p 7→ vλp are almost horizontal
if λ is very close to 1. If we choose the first integral curve (the bold one)
from the lower part of Figure 3 which touches C at one special point psp ∈
C and if we choose for Hpsp a small segment of this first integral curve,
we may check that properties (i’) and (ii’) are satisfied, modulo some mild
technicalities. A rigorous complete proof of Lemma 2.12 will be provided
in Section 5 below.

2.13. Construction of analytic discs half-attached to S. Small analytic
discs which are half-attached to a C 2,α maximally real submanifold M1 of
Cn and which are approximatively straight will be constructed in Section 7
below. In fact, it is known ([Pi1974]) that one can prescribe arbitrarily the
first order jet of a half-attached disc. However, prescribing psp = A(1) and
TpspHpsp = R· ∂A

∂θ
(1) does not suffices: it may well occur thatA(∂+∆) inter-

sects the singularityC at several other points than psp. Hopefully,Hpsp being
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totally real, we may curve it much in advance in some good holomorphic
system of coordinates so that the singularity C lies in the (closure of the)
convex side of Hpsp , denoted by (Hpsp)

− in Figure 4. Thanks to this trick,
provided only that the half boundaryA(∂+∆) ⊂ S is small and tangential to
the convex side (Hpsp)

− at psp = A(1), it will follow just by a Taylor series
argument that A

(
∂+∆\{1}) is contained in the good open side (Hpsp)

+ not
meeting C. In Figure 4 above, Hpsp is straight and A(∂+∆) is curved, which
is equivalent. Thanks to this trick, we avoid having to construct discs with
prescribed second order jet. Thus, the two geometric properties (i’) and (ii’)
satisfied by the real segment Hpsp may be realized by the half-boundary of a
half-attached analytic disc.

2.14. Translation of half-attached discs and continuity principle. By
means of the results of Section 7, we shall see that we may include the
disc A(ζ) in a parametrized family Ax,v(ζ) of analytic discs half-attached to
S, where x ∈ R2 and v ∈ R are small, so that the mapping x 7→ Ax,0(1) ∈ S
is a local diffeomorphism onto a neighborhood of psp in S and so that the
mapping v 7→ ∂A0,v

∂θ
(1) is of rank 1 at v = 0. Furthermore, we introduce a

new parameter u ∈ R in order to “translate” the totally real surface S in M
by means of a family Su ⊂ M with S0 = S and Su ⊂ (Sγ)

+ for u > 0.
Thanks to the flexibility of Bishop’s equation, we deduce that there exists
a deformed family of analytic discs Ax,v,u(ζ) which are half-attached to Su
and which satisfy Ax,v,0(ζ) ≡ Ax,v(ζ). In particular, this family covers a
local one-sided neighborhood ωpsp of M at psp defined by

(2.15) ωpsp := {Ax,v,u(ρ) : |x| < ε, |v| < ε, |u| < ε, 1− ε < ρ < 1} ,
for some ε > 0.

In the third and last main step of the proof (to be conducted in Section 9
below), we shall prove that every disc Ax,v,u(ζ) with u 6= 0 is analytically
isotopic to a point with the boundary of every disc of the isotopy being
contained in Ω ∪H W +

γ . In fact, for u 6= 0, the half-boundary Ax,v,u(∂+∆)
is contained in Su ⊂ Ω; the other half Ax,v,u(∂−∆) remains stably inside
H W +

γ , as was arranged in advance thanks to (2.10) (also for u = 0); and
when u > 0, the whole disc Ax,v,u(∆) is contained in Ω ∪ H W +

γ , hence
analytically isotopic to a point there (just shrink its radius).

Thanks to the continuity principle, we will deduce that every holomor-
phic function f ∈ O

(
Ω ∪H W +

γ

)
extends holomorphically to ωpsp minus

a certain thin closed subset Cpsp of ωpsp . Finally, we shall conclude both
the proof of Proposition 2.2 and the proof of Proposition 1.4 by checking
that the thin closed set Cpsp is in fact removable for holomorphic functions
defined in ωpsp\Cpsp .
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2.16. Organization. In Sections 3, 4, 5, 6, 7, 8 and 9, the proof of Proposi-
tion 1.13 will be endeavoured directly in arbitrary codimension, without any
further reference to the hypersurface version. We point out that the crucial
geometric argument which enables us to choose the desired special point
will be conducted in the central Section 5 below.

In Section 10, we check that both the CR- and the Lp-removability of C
are a consequence of the W -removability of C. In Section 11, we provide
the proofs of Theorem 1.2 and of Corollary 1.5. Section 12 treats the cri-
terion of polynomial convexity stated as Corollary 1.3. Finally, Section 13
proves Theorem 1.9.

2.17. Comparison of the nontransversality assumption with H{K}.
Firstly, we claim that H{K} implies that K is nontransversal to FcM1 . In-
deed, given a subcompact K ′ ⊂ K, we look at the compact ρ(K ′) ⊂ V .
Considering a family of spheres of increasing radius centered at some point
r1 ∈ V

∖
ρ(K ′) close to ρ(K ′), we may find a first touched point q1 ∈ ρ(K ′)

at which a small spherical cap of the limit sphere constitutes a local support
hypersurface N1 ⊂ V with q1 ∈ N1; indeed, the interior of the limit ball
being contained in V

∖
ρ(K ′) by construction, it follows that ρ(K ′) is situ-

ated only in the closed side exterior to the cap N1. Then H1 := ρ−1(N1)
constitutes a C 1,α support hypersurface as in Lemma 1.12 which is foliated
by characteristic curves whose endpoints lie in ∂U , at a positive distance
from K, q.e.d.

Example 2.18. We produce an example contradicting the reverse implica-
tion.

a) Let T := R2/Z2 be the standard 2-dimensional real torus and let πT :
R2 → T denote the quotient map. For any slope α, the straight lines {y =
αx+ b} descend to a foliation Fα of T . We fix α ∈ (4, 8) and we set

KT := πT
({

(x+ t, α t) ∈ R2 : 1/2 6 x 6 3/4, 0 6 t 6 1/α
})
.

Geometrically, KT is a closed parallelogram wrapped in y-direction once
around T . Its long sides

(
of length

√
1 + α−2

)
are contained in two leaves

and its short sides
(
of length 1/4

)
do meet along a segment of (small) length

1/4− 1/α > 0.
Since 4 < α < 8, the intersections of KT with the leaves are closed seg-
ments of length equal to

√
1 + α−2 for 1/2+1/4−1/α < x 6 3/4, or equal

to 2
√

1 + α−2 for 1/2 6 x 6 1/2 + 1/4 − 1/α, as e.g. the green bold leaf
in the left diagram. Note in particular that KT does not contain any whole
characteristic leaf.
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Fig. 5: A nontransversal compact K for which H{K} fails
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T

T

M1

M1
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2
ε
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ε

K

b) As was intended, we point out that for every (connected) neighborhood
UT of KT in T , the restricted foliation Fα

∣∣
UT

cannot be parametrized by
some submersion ρT : UT → VT . Indeed, for dimensional reasons, VT
should necessarily be a real interval and then, the restriction of ρT to the
transversal πT

(
[1/2, 3/4] × {0}) should be strongly monotonous. But this

is impossible, because the green bold leaf intersects twice this transversal at
two different points.

c) Unfortunately, the parallelogram KT is transversal to Fα, since for in-
stance, the circle (of length 1) πT

({3/4}× [0, 1]
) ⊂ KT occurs to be every-

where transversal. Hopefully, we may increase the dimension by a unity. So
we set M̃1 := T × (−ε, ε), and we embed it as a maximally real manifold
M1 ⊂ C3 by means of the obvious quotient of the map φ : R2 × (−ε, ε) →
C3 defined by φ(t1, t2, t3) :=

(
exp(2πi t1), exp(2πi t2), t3

)
. Equipping the

fibers T × {t3} with parallel copies of Fα yields on M̃1 a foliation by (quo-
tiented) lines. We define FcM1 as its pushforward and we let K be the image
of K̃ := KT × [−ε/2, ε/2].

d) Let TFcM1 ⊂ TM1 ⊂ TC3 be the bundle of real lines tangent to FcM1 .
Since M1 is totally real, the bundle JTFcM1 =

⋃
p∈M1 JpTpF

c
M1 obtained

by complex multiplication is nowhere tangent to M1. We choose a C∞

manifold M containing M1 such that at every p ∈ M1, TpM is spanned by
TpM

1 and JpTpFcM1 . By construction, M is generic (provided it is defined to
be a sufficiently thin strip along M1) and the characteristic foliation of M1

coincides with FcM1 . Proceeding as in the the proof of Theorem 1.9(iv), we
can even arrange that M is of type 4 at every point, hence globally minimal.

e) We claim that M1\K is characteristically pseudoconcave. Indeed, let
K ′ ⊂ K be compact and let h ∈ [−ε/2, ε/2] be maximal such that φ(T ×
{h}) ∩ K ′ 6= ∅. Through any point p ∈ φ(T × {h}) ∩ K ′ there passes
a compact characteristic segment I whose endpoints are not contained in
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K ′. Translating I upwards (with respect to t3), we derive the characteristic
pseudoconcavity of M1\K.

f) Finally, we claim that K does not satisfy H{K}. Assume on the con-
trary that there exists a submersion ρ : U → V as required in H{K}. For
δ > 0 very small, the δ-neighborhood Uδ of K in M1 is contained in U . Re-
stricting ρ toUδ∩φ(T∩{0}) and pulling back via φ, we obtain a parametriza-
tion ρT of Fα in a very thin connected neighborhood UT ofKT with values in
a 1-dimensional manifold VT without boundary. But b) already contradicted
this.

§3. STRATEGY PER ABSURDUM FOR THE PROOF OF PROPOSITION 1.13

3.1. Preliminary. As in [6, Me1997, MP1999, MP2002, Po2000], we shall
proceed by contradiction. This strategy possesses a considerable advantage:
it will not be necessary to control the size of the local subsets of C that are
progressively removed, which will simplify substantially the presentation
and the understandability of the reasonings. We shall explain how to reduce
CR- and Lp-removability of C to its W -removability. Also, will show that
the W -removability of C can be reduced to the simpler case where the func-
tions which we have to extend are even holomorphic in a neighborhood of
M\C in Cn. Although such a strategy is essentially carried out in detail in
previous references (with some variations), we shall for completeness recall
the complete reasonings briefly here, in §3.2 and in §3.16 below.

3.2. Global minimality of M\C. Background about CR orbits may be
found in [Jö1999a, 29]. Using the characteristic nontransversality, we shall
apply the following two Lemmas 3.3 and 3.5 about the CR structure of the
complement M\C ′, where C ′ ⊂ C ⊂ M1 is an arbitrary proper closed
subset of C.

Lemma 3.3. Let M be a C 2,α generic submanifold of Cn (n > 2) of codi-
mension (n−1) and of CR dimension 1, letM1 be a C 2,α one-codimensional
submanifold of M which is maximally real in Cn and let C ′ be an arbitrary
proper closed subset ofM1. IfC ′ is nontransversal to the characteristic foli-
ation, then for every point p′ ∈ C ′, there exists a C 2,α curve γ : [0, 1] →M1

satisfying dγ(s)/ds ∈ Tγ(s)M
1 ∩ T cγ(s)M\{0} at every s ∈ [0, 1], such that

γ(0) = p′ and γ(1) does not belong to C ′.

Proof. We proceed by contradiction and we suppose that there exists a point
p′ ∈ C ′ such that all C 2,α curves γ : [0, 1] → M1 with dγ(s)/ds ∈
Tγ(s)M

1 ∩ T cγ(s)M\{0} which have origin p′ are entirely contained in C ′.
It follows immediately that all such γ are contained in a single character-
istic leaf, and that the whole leaf is contained in C ′, contradicting the non-
transversality assumption. ¤
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Lemma 3.5. With M , M1, C and C ′ as in the preceding lemma, assume
that for every point q′ ∈ C ′, there exists a C 2,α curve γ : [0, 1] → M1 with
dγ(s)/ds ∈ Tγ(s)M

1 ∩ T cγ(s)M\{0} at every s ∈ [0, 1], such that γ(0) = q′

and γ(1) does not belong to C ′. Then the CR orbit in M\C ′ of every point
p ∈M\C ′ coincides with its CR orbit in M minus C ′, namely

(3.6) OCR

(
M\C ′, p) = OCR(M, p)\C ′.

In particular, if M is globally minimal, then M\C ′ is also globally minimal.

Proof. We formulate a preliminary lemma.

Lemma 3.7. Under the assumptions of Lemma 3.5, for every point q′ ∈
C ′ ⊂M1, there exists a C 1,α locally embedded submanifold Ωq′ of M pass-
ing through q′ satisfying Tq′Ωq′ + Tq′M

1 = Tq′M , such that

(1) Ωq′ is a T cM -integral submanifold, namely T cpM ⊂ TpΩq′ , for every
point p ∈ Ωq′;

(2) Ωq′\C ′ is contained in a single CR orbit of M ;
(3) Ωq′\C ′ is also contained in a single CR orbit of M\C ′.

Proof. So, let q′ ∈ C ′ ⊂M1. Since M1 is generic in Cn, there exists a C 1,α

vector field Y defined in a neighborhood of q′ which is complex tangential
to M and locally transversal to M1, see Figure 6 just below (for easier
readability, we have erased the hatching of C ′ in a neighborhood of q′).

Fig. 6: CR orbits in the complement M\C′
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Following the integral curve of Y issued from q′, we can define a point q′ε in
an ε-neighborhood of q′ which does not belong to M1. By assumption, there
exists a C 2,α curve γ : [0, 1] →M1 with dγ(s)/ds ∈ Tγ(s)M1∩T cγ(s)M\{0}
such that γ(0) = q′ and γ(1) does not belong to C ′. Furthermore, there
exists a vector field X defined in a neighborhood of γ([0, 1]) in M which is
complex tangential to M , whose restriction to M1 is a semi-local section of
TM1 ∩ T cM |M1 , such that γ is an integral curve of X and such that γ(1) =
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exp(X)(q′) ∈ M1\C ′. We can assume that the vector field Y is defined
in the same neighborhood of γ([0, 1]) in M and everywhere transversal to
M1. If ε is sufficiently small, i.e. if q′ε is sufficiently close to q′, the point
r′ε := exp(X)(q′ε) is still very close to M1. Thus, we can define a new point
r′ ∈ M1 to be the unique intersection with M1 of the integral curve of Y
issued from r′ε. By choosing ε small enough, the point r′ε will be arbitrarily
close to γ(1) 6∈ C ′, and consequently, we can assume that r′ also does not
belong to C ′, as drawn in Figure 6. Notice that the integral curve of X
from q′ε to r′ε is contained in M\M1, since the flow of X stabilizes M1. We
deduce that the two points r′ε and r′ belong to the CR orbit OCR(M\C ′, q′ε).

Let Ωr′ denote a small piece of the orbit (an immersed submanifold)
OCR(M\C ′, r′) passing through r′. By standard properties of CR orbits,
Ωr′ is an embedded C 1,α submanifold of M\C ′ of the same CR dimension
as M\C ′. Of course, r′ε belongs to Ωr′ . Since Y is complex tangential to M ,
the submanifold Ωr′ is necessarily stretched along the flow lines of Y , hence
it is transversal to M1.

We then define the submanifold exp(−X)(Ωr′), close to the point q′ (we
shall argue in a while that it passes in fact through q′). Since the flow of
X stabilizes M1, it follows that exp(−X)(Ωr′) is transversal to M1 and
that exp(−X)(Ωr′) is divided in two parts by its one-codimensional C 1,α

submanifold M1 ∩ exp(−X)(Ωr′). Furthermore, we observe that the flow
of X stabilizes the two sides of M1 in M , semi-locally in a neighborhood
of γ([0, 1]), since it stabilizes M1. Consequently, every integral curve of X
issued from every point in Ωr′\M1 stays in M\M1, hence in M\C ′ and it
follows that the submanifold

(3.8) exp(−X)(Ωr′)\M1,

consisting of two connected pieces, is contained in the single CR orbit
OCR(M\C ′, r′). By the characteristic property of a CR orbit, this means
that the two connected pieces of exp(−X)(Ωr′)\M1 are CR submanifolds
of M\C ′ of the same CR dimension as M\C ′. Furthermore, since the inter-
section M1 ∩ exp(−X)(Ωr′) is one-codimensional, it follows by continuity
that the C 1,α submanifold exp(−X)(Ωr′) is in fact a CR submanifold of M
of the same CR dimension as M .

Since q′ε belongs to exp(−X)(Ωr′) and since the flow of the complex
tangent vector field Y necessarily stabilizes the T cM -integral submanifold
exp(−X)(Ωr′), the point q′ which belongs to an integral curve of Y issued
from q′ε, must belong to the submanifold exp(−X)(Ωr′), which we can now
denote by Ωq′ := exp(−X)(Ωr′), as in Figure 6. This finishes to prove
property (1).

Observe that locally in a neighborhood of q′, the integral curves of Y are
transversal to M1 and meet M1 only at one point. Shrinking if necessary
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Ωq′ a little bit and using integral curves of Y from both sides of M1, we
attain points in (M1\C ′) ∩Ωq′ . Hence Ωq′\C ′ is contained in the single CR
orbit OCR(M\C ′, r′), which proves property (3). Using again Y to attain
points of C ′ ∩ Ωq′ , we deduce also that Ωq′ is contained in the single CR
orbit OCR(M, r′), which proves property (2).

The proof of Lemma 3.7 is complete. ¤

We can now prove Lemma 3.5. It suffices to establish that for every two
points p ∈ M\C ′ and q ∈ OCR(M, p)\C ′, the point q belongs in fact to
OCR(M\C ′, p).

Since q ∈ OCR(M, p), there exists a piecewise C 2,α curve λ : [0, 1] →M
with λ(0) = p, λ(1) = q and dλ(s)/ds ∈ T cλ(s)M\{0} at every s ∈ [0, 1]
at which λ is differentiable. For every s with 0 6 s 6 1, we define a local
C 1,α submanifold Ωλ(s) of M passing through λ(s) as follows:

• if λ(s) does not belong to C ′, choose for Ωλ(s) a piece of the CR
orbit of λ(s) in M\C ′;

• if λ(s) belongs to C ′, choose for Ωλ(s) the submanifold constructed
in Lemma 3.7 above.

Then for each s, the complement Ωλ(s)\C ′ is contained in a single CR
orbit of M\C ′. Since each Ωλ(s) is a T cM -integral submanifold, a neigh-
borhood of λ(s) in the arc λ([0, 1]) is necessarily contained Ωγ(s). By com-
pactness of [0, 1], we can therefore find an integer k > 1 and real numbers
(3.9)
0 = s1 < r1 < t1 < s2 < r2 < t2 < · · · · · · < sk−1 < rk−1 < tk−1 < sk = 1,

such that λ([0, 1]) is covered by Ωλ(0) ∪ Ωλ(s2) ∪ · · · ∪ Ωλ(sk−1) ∪ Ωλ(1) and
such that in addition, λ([rj, tj]) ⊂ Ωλ(sj) ∩ Ωλ(sj+1) for j = 1, . . . , k − 1.

Lemma 3.10. The following union minus C ′

(3.11)
(
Ωλ(0) ∪ Ωλ(s2) ∪ · · · · · · ∪ Ωλ(sk−1) ∪ Ωλ(1)

)∖
C ′

is contained in a single CR orbit of M\C ′.
Proof. It suffices to prove that for j = 1, . . . , k − 1, the union

(
Ωλ(sj) ∪

Ωλ(sj+1)

)∖
C ′ minus C ′ is contained in a single CR orbit of M\C ′.

Two cases are to be considered. Firstly, assume that λ([rj, tj]) is not con-
tained in C ′, namely there exists uj with rj 6 uj 6 tj such that

(3.12) γ(uj) ∈
(
Ωλ(sj) ∩ Ωλ(sj+1)

) \C ′.
Because Ωλ(sj)\C ′ and Ωλ(sj+1)\C ′ are both contained in a single CR orbit
of M\C ′, it follows from (3.12) that they are contained in the same CR orbit
of M\C ′, as desired.
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Secondly, assume that λ([rj, tj]) is contained in C ′. Choose uj arbitrary
with rj 6 uj 6 tj . By construction, λ(uj) belongs to Ωλ(sj) ∩ Ωλ(sj+1)

and both Ωλ(sj) and Ωλ(sj+1) are T cM -integral submanifolds of M passing
through the point λ(uj). Let Y be a local section of T cM defined in a
neighborhood of λ(uj) which is not tangent to M1 at λ(uj). On the integral
curve of Y issued from λ(uj), we can choose a point λ(uj)ε arbitrarily close
to λ(uj) which does not belong to C ′. Since Y is a section of T cM , it is
tangent to both Ωλ(sj) and Ωλ(sj+1), hence we deduce that

(3.13) γ(uj)ε ∈
(
Ωλ(sj) ∩ Ωλ(sj+1)

) \C ′.
Consequently, as in the first case, it follows that Ωλ(sj)\C ′ and Ωλ(sj+1)\C ′
are both contained in the same CR orbit of M\C ′, as desired. ¤

Since p and q belong to the set (3.11), we deduce that p = λ(0) ∈ M\C ′
and q = λ(1) ∈ OCR(M, p)\C ′ belong to the same CR orbit of M\C ′,
which completes the proof of Lemma 3.5. ¤

3.14. Reduction of CR- and of Lp-removability to W -removability.
Thus, in Proposition 1.13, M\C is globally minimal. It follows ([Me1994,
Jö1996]) that there exists a wedgelike domain attached to M\C to which
C 0
CR(M) extends holomorphically. Consequently, the CR-removability of

C ⊂ M1 claimed in Proposition 1.13 is an immediate consequence of its
W -removability. Based on the construction of analytic discs half-attached
to M1 which will be achieved in Section 7, we shall also be able to settle the
reduction of Lp-removability in Section 10.

Lemma 3.15. Under the assumptions of Proposition 1.13, if the closed
subset C ⊂ M1 is W -removable, then it is Lp-removable, for all p with
1 6 p 6 ∞.

3.16. Strategy per absurdum: removal of a single point of the resid-
ual non-removable subset. Thus, it suffices to establish that C is W -
removable. Let us fix a (nonempty) wedgelike domain W1 attached toM\C.
Our precise goal is to establish that there exists a wedgelike domain W2 at-
tached to M (including C) and a wedgelike domain W3 ⊂ W1 ∩W2 attached
to M\C such that for every holomorphic function f ∈ O(W1), there exists
a holomorphic function F ∈ O(W2) which coincides with f in W3. At first,
we need some more definitions.

Let C ′ be an arbitrary closed subset of C. We shall say that M\C ′ enjoys
the wedge extension property if there exist a wedgelike domain W ′

2 attached
toM\C ′ and a wedgelike subdomain W ′

3 ⊂ W1∩W ′
2 attached toM\C such

that, for every function f ∈ O(W1), there exists a function F ′ ∈ O(W ′
2 )

which coincides with f in W ′
3 .
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The notion of wedge removability can be localized as follows. Let again
C ′ ⊂ C be arbitrary. We shall say that a point p′ ∈ C ′ is locally W -
removable with respect to C ′ if for every wedgelike domain W ′

1 attached to
M\C ′, there exists a neighborhood U ′ of p′ in M , there exists a wedgelike
domain W ′

2 attached to (M\C ′)∪U ′ and there exists a wedgelike subdomain
W ′

3 ⊂ W ′
1 ∩ W ′

2 attached to M\C ′ such that for every holomorphic func-
tion f ∈ O(W ′

1 ), there exists a holomorphic function F ′ ∈ O(W ′
2 ) which

coincides with f in W ′
3 .

Supppose now that M\C ′1 and M\C ′2 enjoy the wedge extension prop-
erty, for some two closed subsets C ′1, C

′
2 ⊂ C. Using the CR edge-of-the-

wedge theorem ([Tu1994]), the two wedgelike domains attached to M\C ′1
and to M\C ′2 can be glued together (after appropriate shrinking) to pro-
duce a wedgelike domain W1 attached to M\(C ′1 ∩ C ′2) in such a way that
M\(C ′1 ∩ C ′2) enjoys the W -extension property. Also, if M\C ′ enjoys the
wedge extension property and if p′ ∈ C ′ is locally W -removable with re-
spect to C ′, then again by means of the CR edge of the wedge theorem, it
follows that there exists a neighborhood U ′ of p′ inM such that (M\C ′)∪U ′
enjoys the wedge extension property.

Based on these preliminary remarks, we define the following set of closed
subsets of C:

(3.17) C :=
{
C ′ ⊂ C closed ; M\C ′ enjoys the W -extension property

}
.

Then the residual set

(3.18) Cnr :=
⋂

C′∈C

C ′

is a closed subset of M1 contained in C. It follows from the above (abstract
nonsense) considerations that M\Cnr enjoys the wedge extension property
and that no point of Cnr is locally W -removable with respect to Cnr. Here,
we may think that the letters “nr” abbreviate “non-removable”, because by
the very definition of Cnr, none of its points should be locally W -removable.
Notice also that M\Cnr is globally minimal, thanks to Lemma 3.5.

Clearly, to establish Proposition 1.4, it is enough to show that Cnr = ∅.
We shall argue indirectly (by contradiction) and assume that Cnr 6= ∅. In

order to derive a contradiction, it clearly suffices to show that there exists at
least one point p ∈ Cnr which is in fact locally W -removable with respect
to Cnr.

At this point, we notice that the main assumption that C is nontransversal
to FcM1 in Proposition 1.13 implies trivially that every closed subset C ′ of
C is also nontransversal to FcM1 . In particular Cnr is nontransversal to FcM1 .
Consequently, by following a per absurdum strategy, we are led to prove
a statement wich is totally similar to Proposition 1.13 except that we now
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have only to establish that a single point of Cnr is locally W -removable with
respect to Cnr. This preliminary logical consideration will simplify substan-
tially the whole architecture of the proof. Another important advantage of
this strategy is that we are even allowed to select a special point psp ofCnr by
requiring some nice geometric disposition of Cnr in a neighborhood of psp

before removing it. Sections 4 and 5 below are devoted to such a selection.
So we are led to show that for every wedgelike domain W1 attached to

M\Cnr, there exists a special point psp ∈ Cnr, there exists a neighborhood
Upsp of psp inM , there exists a wedgelike domain W2 attached to (M\Cnr)∪
Upsp and there exists a wedgelike domain W3 ⊂ W1∩W2 attached to M\Cnr

such that for every holomorphic function f ∈ O(W1), there exists a function
F ∈ O(W2) which coincides with f in W3.

A further convenient simplification of the task may be achieved by de-
forming slightly M inside the wedge W1 attached to M\Cnr. Indeed, by
means of a partition of unity, we may perform arbitrarily small C 2,α defor-
mationsMd ofM leavingCnr fixed and movingM\Cnr inside the wedgelike
domain W1. Furthermore, we can make Md to depend on a single small real
parameter d > 0 with M0 = M and Md

∖
Cnr ⊂ W1 for all d > 0. Now,

the wedgelike domain W1 becomes a neighborhood of Md in Cn. Let us
denote by Ω this neighborhood. After some substantial technical work has
been performed, at the very end of the proof of Proposition 1.13 (Section 9),
we shall construct a local wedge W d

psp of edge Md at psp by means of small
Bishop analytic discs glued to Md, to Ω and to another subset (which we
will call a half-wedge, see Section 4 below) such that every holomorphic
function f ∈ O(Ω) extends holomorphically to W d

psp . Using the stability of
Bishop’s equation under perturbations, we shall argue in §9.23 below that all
our constructions are stable under such small deformations35, whence in the
limit d → 0, the wedges W d

psp tend smoothly to a local wedge Wpsp := W 0
psp

of edge a neighborhood Upsp of psp in M0 ≡M . In addition, we shall derive
univalent holomorphic extension to Wpsp . Finally, using again the edge of
the wedge theorem to fill in the space between W1 and Wpsp , possibly after
appropriate contractions of these two wedgelike domains, we may construct
a wedgelike domain W2 attached to (M\C) ∪ Upsp and a wedgelike domain
W3 ⊂ W1 ∩ Wpsp attached to M\C such that for every holomorphic func-
tion f ∈ O(W1), there exists a function F ∈ O(W2) which coincides with
f in W3. In conclusion, we will thus reach the desired contradiction to the
definition of C nr.

35We remind from [Me1997, MP1999, MP2002] that in codimension > 2, a wedge of
edge a deformation Md of M does not in general contain a wedge of edge M . This is why
stability arguments are needed.
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To summarize, we have essentially shown that it suffices to prove Propo-
sition 1.13 with two extra simplifying assumptions.

• Instead of functions which are holomorphic in a wedgelike domain
attached to M\Cnr, we consider functions which are holomorphic in
a neighborhood Ω of M\Cnr in Cn.

• Proceeding by contradiction, it suffices to remove at least one point
of Cnr.

After replacing Cnr by C and Md by M , we are led to establish the fol-
lowing main assertion, to which Proposition 1.13 is reduced.

Theorem 3.19. Let M be a C 2,α globally minimal generic submanifold of
Cn of codimension (n−1) hence of CR dimension 1, let M1 ⊂M be a C 2,α

one-codimensional submanifold which is maximally real in Cn, and let C be
a nonempty proper closed subset of M1. Assume that C is nontransversal
to the characteristic foliation FcM1 . Let Ω be an arbitrary neighborhood of
M\C in Cn. Then there exist a special point psp ∈ C, there exists a local
wedge Wpsp of edge M at psp and there exists a subneighborhood Ω′ ⊂ Ω
of M\C in Cn with Wpsp ∩ Ω′ connected such that for every holomorphic
function f ∈ O(Ω), there exists a holomorphic function F ∈ O

(
Wpsp ∪ Ω′)

which coincides with f in Ω′.

§4. CONSTRUCTION OF A SEMI-LOCAL HALF WEDGE

4.1. Preliminary. Later, in Section 5 below, we will analyze the assumption
of characteristic nontransversality, but in the present Section 4, we shall not
at all take account of it. With M and M1 as above, let γ : [−1, 1] → M1

be a C 2,α curve, embedding the segment [−1, 1] into M , but not necessarily
characteristic. In the present section, our goal is to construct a semi-local
half-wedge attached to a one-sided neighborhood of M1 along γ with the
property that holomorphic functions in the neighborhood Ω of M\C in Cn
do extend holomorphically to this half-wedge. First of all, we need to define
what we understand by the term “half-wedge”.

4.2. Three equivalent definitions of attached half-wedges. We shall de-
note by ∆n(p, δ) the open polydisc centered at p ∈ Cn of radius δ > 0.
Let p1 ∈ M1, and let C1 be an open infinite cone in the normal space
Tp1Cn/Tp1M . Classically, a local wedge of edge M at p1 is a set of the
form: Wp1 := {p + c1 : p ∈ M, c1 ∈ C1} ∩ ∆n(p1, δ1), for some δ1 > 0.
Sometimes, we shall use the following terminology ([Tu1994, Me1994]): if
v1 is a nonzero vector in Tp1Cn/Tp1M , we shall say that Wp1 is a local wedge
at (p1, v1). Thus, the positive half-line R+ · v1 generated by the vector v1 is
locally contained in the wedge Wp1 .
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For us, a local half-wedge of edge M at p1 will be a set of the form

(4.3) H W +
p1

:=
{
p+ c1 : p ∈ U1 ∩ (M1)+, c1 ∈ C1

} ∩∆n(p1, δ1).

This yields a first definition and we shall formulate two further equivalent
definitions.

Let ∆ denote the unit disc in C, let ∂∆ denote its boundary, the unit circle
and let ∆ = ∆ ∪ ∂∆ denote its closure. Throughout this article, we shall
denote by ζ = ρ eiθ the variable of ∆ with 0 6 ρ 6 1 and with |θ| 6 π.

Concretely, our real local half-wedges (as to be constructed in this sec-
tion) will be defined by means of a Cn-valued map (t, χ, ν, ρ) 7−→ Zt,χ,ν(ρ)
of class C 2,α−0 =

⋂
β<α C 2,β which comes from a parametrized family of

analytic discs of the form ζ 7→ Zt,χ,ν(ζ), where the parameters t ∈ Rn−1,
χ ∈ Rn, ν ∈ R satisfy |t| < ε, |χ| < ε, |ν| < ε for some small ε > 0,
and where Zt,χ,ν(ζ) is holomorphic with respect to ζ in ∆ and C 2,α−0 in ∆.
This mapping will satisfy the following three properties:

(i) the map χ 7→ Z0,χ,0(1) is a diffeomorphism onto a neighborhood of
p1 in M1, the map (χ, ν) 7→ Z0,χ,ν(1) is a diffeomorphism onto a
neighborhood of p1 in M , and (M1)+ corresponds to ν > 0;

(ii) Zt,0,0(1) = p1 and the half-boundary Zt,χ,ν

({
eiθ : |θ| 6 π

2

})
is

contained in M for all t, all χ and all ν;

(iii) the vector v1 := ∂Z0,0,0

∂θ
(1) ∈ Tp1Cn is nonzero and belongs to

Tp1M
1. Furthermore, the rank of the Rn−1-valued C 1,α−0 mapping

(4.4) Rn−1 3 t 7−→ ∂Zt,0,0

∂θ
(1) ∈ Tp1M1 mod

(
Tp1M

1 ∩ T cp1M
) ∼= Rn−1

is maximal equal to (n− 1) at t = 0.

By holomorphicity of the map ζ 7→ Zt,χ,ν(ζ), we have ∂Zt,χ,ν

∂θ
(1) = J ·

∂Zt,χ,ν

∂ρ
(1), where J denotes the complex structure of TCn. Since J induces

an isomorphism Tp1M/T cp1M
∼−→ Tp1Cn/Tp1M , it follows from property

(iii) above that the vectors ∂Zt,0,0

∂ρ
(1) cover an open cone containing Jv1 in

the quotient space Tp1M/T cp1M , as v varies. Then a local half-wedge of
edge (M1)+ at p1 will be a set of the form
(4.5)
H W +

p1
:=

{
Zt,χ,ν(ρ) ∈ Cn : |t| < ε, |χ| < ε, 0 < ν < ε, 1−ε < ρ < 1

}
.

We mention that a complete local wedge of edge M at p1 can also be pro-
duced by such a family Zt,χ,ν(ζ) and may be defined as Wp1 :=

{
Zt,χ,ν(ρ) :

|t| < ε, |χ| < ε, |ν| < ε, 1 − ε < ρ < 1
}

, the parameter ν being allowed
to be negative (the points Z0,χ,ν(1) then lie behind the “wall” M1, namely
in (M1)−).
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As may be checked, this second definition of a half-wedge is essentially
equivalent to the first one, in the sense that a half-wedge in the first sense
always contains a half-wedge in the second sense, and vice versa, after ap-
propriate shrinkings.

Furthermore, we may distinguish two cases: either the vector v1 =
∂Z0,0,0

∂θ
(1) is not complex-tangential to M at p1 (generically true) or it is.

In the first case, after possibly shrinking ε > 0, it may be checked that a
local half-wedge of edge (M1)+ coincides with the intersection of a (full)
local wedge Wp1 of edge M at p1 with a one-sided neighborhood (N1)+ of
a local hypersurface N1 which intersects M locally transversally along M1

at p1, as drawn in the left hand side of the following figure, where M is of
codimension two.

Wp1

Cn

M M
M

Cn

p1

M

−Jv1

Figure 7: Geometric structure of a local half-wedge

N1

M1

p1

(M1)+

N1 (N1)+

H W +
p1

H W +
p1

W 1
p1

M1

M1
(M1)+

In the second case, v1 = ∂Z0,0,0

∂θ
(1) belongs to the characteristic direction

Tp1M
1 ∩ T cp1M , so the vector −Jv1 which is interiorly tangent to the disc

Z0,0,0(∆), is tangent to M at p1, is not tangent to M1 at p1, but points
towards (M1)+ at p1. It may then be checked that a local half-wedge of
edge (M1)+ coincides with a local wedge W 1

p1
of edge M1 at (p1,−Jv1)

containing the side (M1)+ in its interior, as drawn in the right hand side of
Figure 7 above, in which M is of codimension one. This provides the third
and the most intuitive definition of the notion of local half-wedge.

Finally, we may define the desired notion of a semi-local attached half-
wedge. Let γ : [−1, 1] → M1 be an embedded C 2,α segment in M1. We
fix a coherent family of one-sided neighborhoods (M1

γ )
+ of M1 in M along

γ. A half-wedge attached to a one-sided neighborhood (M1
γ )

+ of M1 along
γ is a domain H W +

γ which contains a local half-wedge of edge (M1)+ at
γ(s) for every s ∈ [−1, 1]. Another essentially equivalent definition is to
require that we have a family Zt,χ,ν:s(ρ) of maps smoothly varying with the
parameter s such that at each point γ(s) = Zt,χ,ν:s(1), the three conditions
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(i), (ii) and (iii) introduced above to define a local half-wedge are satisfied.
Intuitively speaking, the direction of the cone defining the local half wedge
at the point γ(s) varies smoothly with respect to s.

γ(−1) γ(1)γ(0)

M

M−

M+

C2

Fig. 8: Semi-local half-wedge attached to a hypersurface

M1
M1

(M1
γ)+

H W +
γ

(M1
γ)+

Proposition 4.6. Let M , M1, C, Ω be as in Theorem 3.19 and let γ :
[−1, 1] → M1 be an embedded C 2,α curve. Then there exist a neighbor-
hood Vγ of γ[−1, 1] in M , there exists a semi-local one-sided neighborhood
(M1

γ )
+ ofM1 inM along γ and there exists a semi-local half-wedge H W +

γ

attached to (M1
γ )

+ ∩ Vγ with Ω ∩H W +
γ connected (shrinking Ω if neces-

sary) such that for every holomorphic function f ∈ O(Ω), there exists a
holomorphic function F ∈ O

(
H W +

γ ∪ Ω
)

with F |Ω = f .

To build H W +
γ , we shall construct families of analytic discs with bound-

aries in (M1
γ )

+. First of all, we need to formulate a special, adapted version
of the so-called approximation theorem ([BT1981]).

4.7. Local approximation theorem. As observed in [Me1997, MP1999,
MP2002], when dealing with natural geometric assumptions on the singular-
ity to be removed — for instance, a two-codimensional singularity N ⊂M
with TpN ⊃ T cpM at some points p ∈ N or metrically thin singularities
E ⊂ M with HdimM−2(E) = 0 — it is impossible to show a priori that
continuous CR functions on M minus the singularity are approximable by
polynomials, which justifies the introduction of deformations of M and the
use of the continuity principle. But in the present situation, the genericity of
M1 helps much.

Lemma 4.8. Let p1 ∈ M1 and denote by (M1)± the two sides in which
M is divided by M1 near p1. Then there exist two neighborhoods U1 and
V1 of p1 in M with V1 ⊂⊂ U1 such that for every continuous CR function
f ∈ C 0

CR ((M1)+ ∩ U1), there exists a sequence of holomorphic polynomi-
als (Pν)ν∈N wich converges uniformly to f on (M1)+ ∩ V1.
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Proof. We adapt [BT1981]. In coordinates z = (z1, . . . , zn) = x+ iy ∈ Cn
vanishing at p1, we can assume that the tangent plane to M1 at p1 is Rn =
{y = 0}. We include M1 in a one-parameter family of maximally real
submanifolds M1

u ⊂ M , where u ∈ Rd is small, with M1
0 = M1, such that

M1
u ∩V1 makes a foliation of M ∩V 1, for some neighborhood V1 ⊂⊂ U1 of

p1 inM and such thatM1
u ∩V1 is contained in (M1)+ for u > 0. In addition,

we can assume that all the M1
u coincide with M1

0 in a neighborhood of ∂U1.
Assume to simplify that the CR function f is of class C 1 on (M1)+ ∩U1,

let τ ∈ R with τ > 0, fix u > 0, whence M1
u ∩V 1 is contained in (M1)+, let

ẑ ∈ (M1)+∩V 1 be an arbitrary point and consider the following convolution
integral of f with the Gaussian kernel:

(4.9) Gτf(ẑ) :=
(τ
π

)n/2 ∫

U1∩M1

e−τ(z−bz)
2

f(z) dz,

where (z − ẑ)2 := (z1 − ẑ1)
2 + · · ·+ (zn − ẑn)

2 and dz := dz1 ∧ · · · ∧ dzn.
We claim that the value of Gτf(ẑ) is the same if we replace integration on
U1∩M1 by integration on U1∩M1

bu , where M1
bu is the unique maximally real

leaf to which ẑ belong. Indeed, the region between M1 and M1
bu is an open

diaphragm-like subset Σ ⊂M whose boundary ∂Σ = M1 −M1
bt is entirely

contained in (M1)+ ∩ U1 and then Stokes’ theorem gives:
(4.10)

Gτf(ẑ) =
(τ
π

)n/2 ∫

U1∩Mbt

e−τ(z−bz)
2

f(z) dz +
(τ
π

)n/2 ∫

Σ

d
(
e−τ(z−bz)

2

f(z) dz
)

=
(τ
π

)n/2 ∫

U1∩Mbt

e−τ(z−bz)
2

f(z) dz,

where the second integral vanishes, because f and e−(z−bz)2 are C 1
CR.

Analyzing the real and the imaginary part of the phase function−τ(z−ẑ)2

on M1
bu , one verifies ([BT1981]) that the integral over U1 ∩ M1

bu tends to
f(ẑ) as τ tends to ∞, provided that the submanifold U1 ∩Mbz is sufficiently
close to the real plane Rn in C 1 norm (Gauss’ kernel is an approximation
of Dirac’s measure). Finally, developing in power series, truncating the ex-
ponential in the first expression (4.9) which defines Gτf(ẑ) and integrating
termwise, we get a sequence of polynomials (Pν(z))ν∈N. ¤

4.11. A family of straightenings. Our main goal is to construct a semi-
local half-wedge attached to a one-sided neighborhood (M1

γ )
+ of M1 in M

along γ, which shall consist of analytic discs attached to (M1
γ )

+. First of all,
we need a convenient family of normalizations of the local geometries of M
and of M1 along the points γ(s) of our characteristic curve γ, for all s with
−1 6 s 6 1.
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Let Ω be a thin neighborhood of γ([−1, 1]) inCn, say a union of polydiscs
of fixed radius centered at the points γ(s). Then there exists n real valued
C 2,α functions r1(z, z̄), . . . , rn(z, z̄) defined in Ω such that M ∩ Ω is given
by the (n − 1) Cartesian equations r2(z, z̄) = · · · = rn(z, z̄) = 0 and such
that moreover, M1 ∩ Ω is given by the n Cartesian equations r1(z, z̄) =
r2(z, z̄) = · · · = rn(z, z̄) = 0. We first center the coordinates at γ(s) by
setting z′ := z − γ(s). Then the defining functions centered at z′ = 0
become

(4.12) rj

(
z′ + γ(s), z̄′ + γ(s)

)
− rj

(
γ(s), γ(s)

)
=: r′j(z

′, z̄′ : s),

for j = 1, . . . , n, and they are parametrized by s ∈ [−1, 1]. Now, we drop
the primes on coordinates and we denote by rj(z, z̄ : s), j = 1, . . . , n, the
defining equations for the new Ms and M1

s , which correspond to the old M
and M1 locally in a neighborhood of γ(s). Next, we straighten the tangent
planes by using the linear change of coordinates z′ = As ·z, where the n×n
matrix As is defined by As := 2i

(
∂rj
∂zk

(0, 0 : s)
)

16j,k6n
. Then the defining

equations for the two transformed M ′
s and for M1′

s are given by

(4.13) r′j(z
′, z̄′ : s) := rj

(
A−1
s · z′, A−1

s · z′ : s
)
,

and we check immediately that the matrix
(
∂r′j
∂zk

(0, 0 : s)
)

16j,k6n
is equal to

2i times the n × n identity matrix, whence T0M
′
s = {y′2 = · · · = y′n = 0}

and T0M
′
s
1 = {y′1 = y′2 = · · · = y′n = 0}. It is important to notice that

the matrix As is only C 1,α with respect to s. Consequently, if we now drop
the primes on coordinates, the defining equations for Ms and for M1

s are of
class C 2,α with respect to (z, z̄) and only of class C 1,α with respect to s.

Applying then the C 2,α implicit function theorem, we deduce that there
exist (n − 1) functions ϕj(x, y1 : s), j = 2, . . . , n, which are all of class
C 2,α with respect to (x, y1) in a real cube In+1(2ρ1) :=

{
(x, y1) ∈ Rn×R :

|x| < 2ρ1, |y1| < 2ρ1

}
, for some ρ1 > 0, which are uniformly bounded in

C 2,α-norm as the parameter s varies in [−1, 1], which are of class C 1,α with
respect to s, such that Ms may be represented in the polydisc ∆n(ρ1) by the
(n− 1) graphed equations

(4.14) y2 = ϕ2(x, y1 : s), . . . . . . , yn = ϕn(x, y1 : s),

or more concisely by y′ = ϕ′(x, y1 : s), if we denote the coordinates
(z2, . . . , zn) simply by z′ = x′ + iy′. Here, by construction, we have the
normalization conditions ϕj(0 : s) = ∂xk

ϕj(0 : s) = ∂y1ϕj(0 : s) = 0,
for j = 2, . . . , n and k = 1, . . . , n. Sometimes in the sequel, we shall
use the notation ϕj(z1, x

′ : s) instead of ϕj(x, y1 : s). Similarly, again by
means of the implicit function theorem, we obtain n functions hk(x : s), for
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k = 1, . . . , n , which are of class C 2,α in the cube In(2ρ1) (after possibly
shrinking ρ1) enjoying the same regularity property with respect to s, such
that M1

s is represented in the polydisc ∆n(ρ1) by the n graphed equations

(4.15) y1 = h1(x : s), y2 = h2(x : s), . . . . . . , yn = hn(x : s).

In addition, we can assume that

(4.16) hj(x : s) ≡ ϕj (x, h1(x : s) : s) , j = 2, . . . , n.

Here, by construction, we have the normalization conditions hk(0 : s) =
∂xl
hk(0 : s) = 0 for k, l = 1, . . . , n.
In the sequel, we shall denote by ẑ = Φs(z) the final change of coor-

dinates which is centered at γ(s) and which straightens simultaneously the
tangent planes to M at γ(s) and to M1 at γ(s) and we shall denote by Ms

and by M1
s the transformations of M and of M1.

Also, we must remind that the following regularity properties hold for the
functions ϕj(x, y1 : s) and hk(x : s).

(a) For fixed s, they are of class C 2,α with respect to their principal
variables, namely excluding the parameter s.

(b) They are of class C 1,α with respect to all their variables, including
the parameter s.

(c) Each of their first order partial derivative with respect to one of their
principal variables is of class C 1,α with respect to all their variables,
including the parameter s.

Indeed, these properties are clearly satisfied for the functions (4.13) and
they are inherited after the two applications of the implicit function theorem
which yielded the functions ϕj(x, y1 : s) and hk(x : s).

4.17. Contact of a small “round” analytic disc with M1. Let r ∈ R with
0 6 r 6 r1, where r1 is small in comparison with ρ1. Then the “round”
analytic disc ∆ 3 ζ → Ẑ1;r(ζ) := ir(1− ζ) ∈ C with values in the complex
plane equipped with the coordinate z1 = x1 + iy1 is centered at the point ir
of the y1-axis, is of radius r and is contained in the open upper half plane
{z1 ∈ C : y1 > 0}, except its boundary point Ẑ1;r(1) = 0. In addition, the
tangent direction ∂

∂θ
Ẑ1;r(1) = r is directed along the positive x1-axis, see in

advance Figure 9 below.
We denote by T1 the Hilbert transform36 on ∂∆ vanishing at 1, namely

(T1X)(1) = 0, whence T1(T1(X)) = −X + X(1). Thanks to a standard
processus, we may lift this scalar disc ir(1− ζ) as disc attached to M of the
form

(4.18) Ẑr:s(ζ) =
(
ir(1− ζ), Ẑ ′r:s(ζ)

) ∈ C× Cn−1,

36Complete, self-contained background is provided in [29].
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where the real part X̂ ′
r:s(ζ) of Ẑ ′r:s(ζ) satisfies the following Bishop-type

equation on ∂∆

(4.19) X̂ ′
r:s(ζ) = −

[
T1ϕ

′(Ẑ1;r(·), X̂ ′
r:s(·) : s

)]
(ζ), ζ ∈ ∂∆.

By [Tu1994, Tu1996, 29], if r1 is sufficiently small, there exists a solu-
tion which is C 2,α−0 with respect to (r, ζ), but only C 1,α−0 with respect to
(r, ζ, s). Notice that for r = 0, the disc Ẑ1;0(e

iθ) is constant equal to 0 and
by uniqueness of the solution of (4.19), it follows that Ẑ ′0:s

(
eiθ

) ≡ 0. It fol-
lows trivially that ∂θX̂0:s

(
eiθ

) ≡ 0 and that ∂θ∂θX̂0:s

(
eiθ

) ≡ 0, which will
be used in a while. Notice also that X̂r:s(1) = 0 for all r and all s.

On the other hand, since by assumption, we have h1(0 : s) = 0 and
∂xk

h1(0 : s) = 0 for k = 1, . . . , n, it follows from the chain rule that if we
set

(4.20) F (r, θ : s) := h1

(
X̂r:s

(
eiθ

)
: s

)

where θ satisfies 0 6 |θ| 6 π, then the following four equations hold
(4.21)
F (0, θ : s) ≡ 0, F (r, 0 : s) ≡ 0, ∂θF (r, 0 : s) ≡ 0, ∂θF (0, θ : s) ≡ 0.

We deduce that there exists a constant C > 0 such that the following five
inequalities hold for 0 6 |θ| 6 π, for 0 6 r 6 r1, for s ∈ [−1, 1] and for
|x| 6 ρ1:

(4.22)





∣∣X̂r:s

(
eiθ

)∣∣ 6 C · r,
∣∣∂θX̂r:s

(
eiθ

)∣∣ 6 C · r,
∣∣∂θ∂θX̂r:s

(
eiθ

)∣∣ 6 C · r α
2 ,

n∑

k=1

∣∣∂xk
h1(x)

∣∣ 6 C · |x|,
n∑

k1,k2=1

∣∣∂xk1
∂xk2

h1(x)
∣∣ 6 C.

As in Lemma 6.4 (see below), the third inequality comes from
∂θ∂θX̂0:s

(
eiθ

) ≡ 0 and X̂r:s

(
eiθ

) ∈ C 2,α/2.
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Computing now the second derivative of F (r, θ : s) with respect to θ, we
obtain
(4.23)

∂θ∂θF (r, θ : s) =
n∑

k=1

∂xk
h1

(
X̂r:s

(
eiθ

)
: s

) · ∂θ∂θX̂k;r:s

(
eiθ

)
+

+
n∑

k1,k2=1

∂xk1
∂xk2

h1

(
X̂r:s

(
eiθ

)) · ∂θX̂k1;r,s

(
eiθ

) · ∂θX̂k2;r,s

(
eiθ

)
,

and we may apply the majorations (4.22) to get

(4.24)

∣∣∂θ∂θF (r, θ : s)
∣∣ 6 C ·

∣∣X̂r:s(e
iθ)

∣∣ · C · r α
2 + C · (C · r)2

6 r · C3
[
r

α
2 + r2

]
.

Lemma 4.25. If r1 6 min
(
1,

(
1

4C3π2

) 2
α
)
, then Ẑr:s

(
∂∆\{1}) is contained

in (M1
s )

+ for all r with 0 < r 6 r1 and all s with −1 6 s 6 1.

Proof. In the polydisc ∆n(ρ1), the positive half-side (M1
s )

+ in M is repre-
sented by the single equation y1 > h1(x : s), hence we have to check that
Ŷ1;r

(
eiθ

)
>

∣∣h1

(
X̂r:s

(
eiθ

)
: s

)∣∣, for all θ with 0 < |θ| 6 π.
The y1-component Ŷ1;r

(
eiθ

)
of Ẑr:s

(
eiθ

)
is equal to r

(
1−cos θ

)
. We have

the elementary minoration r(1−cos θ) > r ·θ2 · 1
π2 , valuable for 0 6 |θ| 6 π.

Also, taking account of the second and of the fourth relations (4.21), Taylor’s
integral formula yields

(4.26) F (r, θ : s) =

∫ θ

0

(θ − θ′) · ∂θ∂θF
(
r, θ′ : s

) · dθ′.

Observing that r2 6 r
α
2 , since 0 < r 6 r1 6 1, and using the majora-

tion (4.24), we may estimate, taking account of the assumption on r1 written
in the statement of the lemma:

(4.27)
∣∣F (r, θ : s)

∣∣ 6 r · θ
2

2
· C3[2r

α
2 ] 6 r · θ2 · 1

4π2
.

This yields the desired inequality r(1− cos θ) >
∣∣F (r, θ : s)

∣∣. ¤

We now fix once for all a radius r0 with 0 < r0 6 r1. In the remain-
der of the present Section 4, we shall deform the disc Ẑr0:s(ζ) by adding
many more parameters. We notice that for all θ with 0 6 |θ| 6 π

4
,

we have the trivial minoration ∂θ∂θŶ1;r0

(
eiθ

)
= r0 cos θ > r0√

2
. Also,

by (4.24) and by the inequality on r1 written in Lemma 4.25, we deduce∣∣∂θ∂θh1

(
X̂r0:s

(
eiθ

))∣∣ 6 r0
2π2 for all θ with 0 6 |θ| 6 π. Since we shall need

a generalization of Lemma 4.25 in Lemma 4.51 below, let us remember
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these two interesting inequalities, valid for 0 6 |θ| 6 π
4
:

(4.28)
∣∣∂θ∂θh1

(
X̂r0:s

(
eiθ

))∣∣ 6 r0
2π2

<
r0√
2

6 ∂θ∂θŶ1;r0

(
eiθ

)
.

4.29. Normal deformations of the disc Ẑr:s(ζ). So, we fix r0 small with
0 < r0 6 r1 and we consider the disc Ẑr0:s(ζ) for ζ ∈ ∆. Then the point
Ẑr0:s(−1) belongs to (M1

s )
+ for each s and stays at a positive distance from

M1
s as s varies in [−1, 1]. It follows that we can choose a subneighborhood

ωs of Ẑr0:s(−1) in Cn which is contained in Ω and whose diameter is uni-
formly bounded from below.

M x′

x1

y1

bZr0,t:s(1) = 0

∂
∂θ
bXr0,t:s(1)

∂
∂θ
bXr0:s(1)

bZr0:s(−1)

Fig. 9: Normal deformations of the analytic disc Ẑr0:s(ζ)

ωs

bZr0,t:s(∂∆)

(M1
s )+

(M1
s )−

M1
s

M1
s

Following [Tu1994, 29], we introduce normal deformations of the an-
alytic discs Ẑr0:s(ζ). Let κ : Rn−1 → Rn−1 be a C 2,α mapping fix-
ing the origin and satisfying ∂xk

κj(0) = δjk (Kronecker’s symbol). For
j = 2, . . . , n, let ηj = ηj(z1, x

′ : s) be a real-valued C 2,α function com-
pactly supported in a neighborhood of the point of Rn+1 with coordinates(
Ẑ1;r0:s(−1), X̂ ′

r0:s(−1)
)

and equal to 1 at this point. We then define the
C 2,α deformed generic submanifold Ms,t of equations

(4.30)
y′ = ϕ′(z1, x

′ : s) + κ(t) · η′(z1, x
′ : s)

=: Φ′(z1, x
′, t : s).

Notice that Ms,0 ≡Ms and that Ms,t coincides with Ms in a small neighbor-
hood of the origin, for all t. If µ = µ(eiθ : s) is a real-valued nonnegative
C 2,α function defined for eiθ ∈ ∂∆ and for s ∈ [−1, 1] whose support is
concentrated near the segment {−1}× [−1, 1], then ([Tu1996, 29]), for each
fixed s ∈ [−1, 1], there exists a C 2,α−0 solution of the Bishop-type equation

(4.31) X̂ ′
r0,t:s

(
eiθ

)
= −

[
T1Φ

′(Ẑ1;r0:s(·), X̂ ′
r0,t:s

(·), tµ(· : s) : s
)] (

eiθ
)
,
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which produces the family of analytic discs

(4.32) Ẑr0,t:s
(
eiθ

)
:=

(
Ẑ1;r0:s(e

iθ), X̂ ′
r0,t:s

(eiθ) + iT1

[
X̂ ′
r0,t:s

(·)](eiθ)
)

having boundaries contained in M ∪ ωs. Taking account of the regularity
properties (a), (b) and (c) stated after (4.16), the general solution Ẑr0,t:s(ζ)
enjoys similar regularity properties.

(a) For fixed s, it is of class C 2,α−0 with respect to (t, ζ).
(b) It is of class C 1,α−0 with respect to all the variables (t, ζ, s).
(c) Each of its first order partial derivative with respect to the principal

variables (t, ζ) is of class C 1,α−0 with respect to all the variables
(t, ζ, s).

Since the solution is C 1,α−0 with respect to s, it crucially follows that the
vector

(4.33) v1:s := −∂Ẑr0,t:s
∂ρ

(1),

which points inside the analytic disc, varies continuously with respect to
s. The next key proposition may be established as in [Tu1994, MP1999],
taking account of the uniformity with respect to s.

Lemma 4.34. There exists a real-valued nonnegative C 2,α function µ =
µ(eiθ : s) defined for eiθ ∈ ∂∆ and s ∈ [−1, 1] whose support is concen-
trated near {−1} × [−1, 1] such that the mapping

(4.35) Rn−1 3 t 7−→ ∂X̂ ′
r0,t:s

∂θ

(
eiθ

)∣∣∣
θ=0

∈ Rn−1

is maximal equal to (n− 1) at t = 0.

Geometrically speaking, since the vector ∂ bX1;r0:s

∂θ

(
eiθ

)∣∣
θ=0

is nonzero, it
follows that when the parameter t varies, the set of lines generated by the
vectors ∂ bXr0,t:s

∂θ

(
eiθ

)∣∣
θ=0

covers an open cone in the space Tp1M
1 ≡ Rn

equipped with coordinates (x1, x
′), see again Figure 9 above for an illustra-

tion.

4.36. Adding pivoting and translation parameters. Let χ = (χ1, χ
′) ∈

R × Rn−1 and ν ∈ R satisfying |χ| < ε and |ν| < ε for some small ε > 0.
Then the mapping
(4.37)
Rn+1 3 (χ1, χ

′, ν) 7−→ (
χ1 + i[h1(χ : s) + ν], χ′ + iϕ′

(
χ, h1(χ : s) + ν : s

) )

=: p̂(χ, ν : s) ∈Ms

is a C 2,α diffeomorphism onto a neighborhood of the origin in Ms with:
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(a) ν > 0 if and only if p̂(χ, ν : s) ∈ (M1
s )

+;
(b) ν = 0 if and only if p̂(χ, ν : s) ∈M1

s ;
(c) ν < 0 if and only if p̂(χ, ν : s) ∈ (M1

s )
−.

If τ ∈ R with |τ | < ε is a supplementary parameter, we now define a
crucial deformation of the first component Ẑ1;r0:s

(
eiθ

)
by setting

(4.38) Ẑ1;r0,τ,χ,ν:s

(
eiθ

)
:= ir0

(
1− eiθ

)
[1 + iτ ] + χ1 + i[h1(χ : s) + ν].

Of course, we have Ẑ1;r0,0,0,0:s

(
eiθ

) ≡ Ẑ1;r0:s

(
eiθ

)
. Geometrically speaking,

this perturbation corresponds to add firstly a small “rotation parameter” τ
which rotates (and slightly dilates) the disc ir0

(
1− eiθ) passing through the

origin in Cz1 , to add secondly a small “translation parameter” (χ1, χ
′) which

will enable to cover a neighborhood of the origin in M1
s and to add thirdly a

small translation parameter ν along the y1-axis. Consequently, with this first
C-valued component Ẑ1;r0,τ,χ,ν:s

(
eiθ

)
, we can construct aCn-valued analytic

disc Ẑr0,t,τ,χ,ν:s(ζ) satisfying

(4.39) Ẑr0,t,τ,χ,ν:s(1) = p̂(χ, ν : s),

simply by solving the perturbed Bishop-type equation which extends (4.31)
(4.40)
X̂ ′
r0,t,τ,χ,ν:s

(
eiθ

)
= −

[
T1

(
Φ′(Ẑ1;r0,τ,χ,ν:s(·), X̂ ′

r0,t,τ,χ,ν:s
(·), tµ(· : s) : s

))] (
eiθ

)
.

Of course, thanks to the sympathetic stability of Bishop’s equation under
perturbation, the solution exists and satisfies smoothness properties entirely
similar to the ones stated after (4.32). To summarize, we list the seven vari-
ables upon which our final family of analytic discs depends.
(4.41)

Ẑr0,t,τ,χ,ν:s(ζ) :





r0 = approximate radius.
t = normal deformation parameter.
τ = pivoting parameter.

χ = parameter of translation along M1.

ν = parameter of translation in M transversally to M1.

s = parameter of the characteristic curve γ.
ζ = unit disc variable.

For every t and every χ, we now want to adjust the pivoting parameter
τ in order that the disc boundary Ẑr0,t,τ,χ,0:s

(
eiθ

)
for ν = 0 is tangent to

M1
s . This tangency condition will be useful in order to derive the crucial

Lemma 4.51 below.

Lemma 4.42. Shrinking ε if necessary, there exists a unique C 1,α−0 map
(t, χ, s) 7→ τ(t, χ : s) defined for |t| < ε, for |χ| < ε and for s ∈ [−1, 1]
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satisfying τ(0, 0 : s) = ∂tjτ(0, 0 : s) = ∂χk
τ(0, 0 : s) = 0 for j =

1, . . . , n− 1 and k = 1, . . . , n, such that the vector

(4.43)
∂

∂θ

∣∣
θ=0

Ẑr0,t,τ(t,χ:s),χ,0:s

(
eiθ

)

is tangent to M1
s at the point Ẑr0,t,τ(t,χ:s),χ,0:s(1) = p̂(χ, 0 : s) ∈M1

s .

Proof. We remind that Ms is represented by the (n − 1) scalar equations
y′ = ϕ′(x, y1 : s) and that M1

s is represented by the n equations y1 =
h1(x : s) and y′ = ϕ′(x, h1(x : s) : s) ≡ h′(x′ : s). We can therefore
compute the Cartesian equations of the tangent plane to M1

s at the point
p̂(χ, 0 : s) = χ+ ih(χ : s):
(4.44)




Y1 − h1(χ : s) =
n∑

k=1

∂xk
h1(χ : s) [Xx − χk] ,

Y′ − ϕ′(χ, h1(χ : s) : s) =
n∑

k=1

(
∂xk

ϕ′ + ∂y1ϕ
′ · ∂xk

h1

)
[Xk − χk] .

On the other hand, we observe that the tangent vector

(4.45)
∂

∂θ

∣∣
θ=0

Ẑr0,t,τ,χ,0:s

(
eiθ

)
=

(
r0[1 + iτ ],

∂

∂θ

∣∣
θ=0

Ẑ ′r0,t,τ,χ,0:s

(
eiθ

))

is already tangent to Ms at the point p̂(χ, 0 : s), because Ms,t ≡ Ms in a
neighborhood of the origin. More precisely, since Φ′ ≡ ϕ′ in a neighborhood
of the origin, we may differentiate with respect to θ at θ = 0 the relation

(4.46) Ŷ ′
r0,t,τ,χ,0:s

(
eiθ

) ≡ ϕ′
(
X̂r0,τ,χ,0:s

(
eiθ

)
, Ŷ1;r0,τ,χ,0:s

(
eiθ

)
: s

)

which is valid for |θ| 6 π
2
, noticing in advance that it follows immediately

from (4.38) that

(4.47)
∂

∂θ

∣∣
θ=0

X̂1;r0,τ,χ,0:s

(
eiθ

)
= r0 and

∂

∂θ

∣∣
θ=0

Ŷ1;r0,τ,χ,0:s

(
eiθ

)
= r0τ,

hence we obtain by a direct application of the chain rule
(4.48)

∂

∂θ

∣∣
θ=0

Ŷ ′
r0,t,τ,χ,0:s

(
eiθ

)
= ∂y1ϕ

′ · r0τ+

+
n∑

k=1

∂xk
ϕ′ · ( ∂

∂θ

∣∣
θ=0

X̂k;r0,t,τ,χ,0:s

(
eiθ

))
.
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By (4.44), the vector (4.45) belongs to the tangent plane to M1
s if and only

if
(4.49)



r0τ =
n∑

k=1

∂xk
h1(χ : s)

[
∂

∂θ

∣∣
θ=0

X̂k;r0,t,τ,χ,0:s

(
eiθ

)]
,

∂

∂θ

∣∣
θ=0

Ŷ ′r0,t,τ,χ,0:s

(
eiθ

)
=

n∑

k=1

(
∂xk

ϕ′ + ∂y1ϕ
′ · ∂xk

h1

) ·
[
∂

∂θ

∣∣
θ=0

X̂k;r0,t,τ,χ,0:s

(
eiθ

)]
.

We observe that the first line of (4.49) together with the relation (4.48) al-
ready obtained implies the second line of (4.49) by an obvious linear com-
bination. Consequently, the vector (4.45) belongs to the tangent plane to
M1

s at p̂(χ, 0 : s) if and only if the first line of (4.49) is satisfied. As
r0 is nonzero, as the first order derivatives ∂xk

h1(χ : s) are of class C 1,α

and vanish at x = 0 and as ∂
∂θ

∣∣
θ=0

X̂k;r0,t,τ,χ,0:s

(
eiθ

)
is of class C 1,α−0

with respect to all variables (t, τ, χ, s), it follows from the implicit func-
tion theorem that there exists a unique solution τ = τ(t, χ : s) of the
first line of (4.49) which satisfies in addition the normalization conditions
τ(0, 0 : s) = ∂tjτ(0, 0 : s) = ∂χk

τ(0, 0 : s) = 0 for j = 1, . . . , n − 1 and
k = 1, . . . , n. This completes the proof of Lemma 4.42. ¤

We now define the analytic disc

(4.50) Ẑt,χ,ν:s(ζ) := Ẑr0,t,τ(t,χ:s),χ,ν:s(ζ).

Lemma 4.51. Shrinking ε if necessary, the following two properties are
satisfied:

(1) Ẑt,χ,0:s(∂∆\{1}) ⊂ (M1
s )

+ for all t, χ, ν and s with |t| < ε, with
|χ| < ε, with |ν| < ε and with −1 6 s 6 1.

(2) If ν satisfies 0 < ν < ε, then Ẑt,χ,ν:s(∂∆) ⊂ (M1
s )

+ for all t, χ and
s with |t| < ε, with |χ| < ε and with −1 6 s 6 1.

Proof. To establish (1), we first observe that the disc Ẑ0,0,0:s

(
eiθ

)
identifies

with the disc Ẑr0:s(e
iθ) defined in §4.29. According to Lemma 4.25, we

know that Ẑ0,0,0:s(∂∆\{1}) is contained in (M1
s )

+. By continuity, if ε is
sufficiently small, we can assume that for all t with |t| < ε, for all χ with
|χ| < ε and for all θ with π

4
6 |θ| 6 π, the point Ẑt,χ,0:s

(
eiθ

)
is contained in

(M1
s )

+. It remains to control the part of ∂∆ which corresponds to |θ| 6 π
4
.

Since the disc Ẑt,χ,ν:s

(
eiθ

)
is of class C 2 with respect to all its principal

variables
(
t, χ, ν, eiθ

)
, if |t| < ε, if |χ| < ε and if 0 6 |θ| 6 π

4
, for suffi-

ciently small ε, then the inequalities (4.28) are just perturbed a little bit, so
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we can assume that

(4.52) ∂θ∂θŶ1;t,χ,0:s

(
eiθ

)
> r0 >

r0
2

>
∣∣∂θ∂θh1

(
X̂t,χ,0:s

(
eiθ

))∣∣.
We claim that the inequality

(4.53) Ŷ1;t,χ,0:s

(
eiθ

)
>

∣∣h1

(
X̂t,χ,0:s

(
eiθ

))∣∣
holds for all 0 < |θ| 6 π

4
, which will complete the proof of property (1).

Indeed, we first remind that the tangency to M1
s of the vector

∂
∂θ

∣∣
θ=0

Ẑt,χ,0:s

(
eiθ

)
at the point p̂(χ, 0 : s) is equivalent to the first re-

lation (4.49), which may be rewritten in terms of the components of the disc
Ẑt,χ,0:s

(
eiθ

)
as follows

(4.54) ∂θŶ1;t,χ,0:s(1) =
n∑

k=1

[∂xk
h1]

(
X̂t,χ,0:s(1)

) · ∂θX̂k;t,χ,0:s(1).

Substracting this relation from (4.53) and substracting also the relation
Ŷ1;t,χ,0:s(1) = h1

(
Xt,χ,0:s(1)

)
, we see that it suffices to establish that for

all θ with 0 < |θ| 6 π
4
, we have the strict inequality

(4.55)
Ŷ1;t,χ,0:s

(
eiθ

)− Ŷ1;t,χ,0:s(1)− θ · ∂θŶ1;t,χ,0:s(1) >

>
∣∣h1

(
X̂t,χ,0:s

(
eiθ

))− h1

(
X̂t,χ,0:s(1)

)−
n∑

k=1

[∂xk
h1]

(
X̂t,χ,0:s(1)

) · ∂θX̂k;t,χ,0:s(1)
∣∣

However, by means of Taylor’s integral formula, this last inequality may be
rewritten as
(4.56)∫ θ

0
(θ−θ′)·∂θ∂θŶ1;t,χ,0:s

(
eiθ

′)·dθ′ > ∣∣
∫ θ

0
(θ−θ′)·∂θ∂θ

[
h1

(
X̂t,χ,0:s

(
eiθ

′))]·dθ′∣∣

and it follows immediately by means of (4.52).
Secondly, to check property (2), we observe that by the definition (4.37),

the parameter ν corresponds to a translation of the z1-component of the disc
boundary Ẑt,χ,0:s(∂∆) along the y1 axis. More precisely, we have

(4.57)
∂

∂ν
Ŷ1;t,χ,ν:s(ζ) ≡ 1 and

∂

∂ν
X̂1;t,χ,ν:s(ζ) ≡ 0.

On the other hand, differentiating Bishop’s equation (4.40), and using the
smallness of the function Φ′, it may be checked that

(4.58)
∣∣∣ ∂
∂ν
Ẑ ′r0,t,τ,χ,ν:s(e

iθ)
∣∣∣ << 1,

if r0 and ε are sufficiently small. It follows that the disc boundary
Ẑt,χ,ν:s(∂∆) is globally moved in the direction of the y1-axis as ν > 0
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increases, hence is contained in (M1
s )

+. The proof of Lemma 4.51 is com-
plete. ¤

4.59. Holomorphic extension to a semi-local attached half-wedge. As a
consequence of Lemma 4.34, of (4.39) and of property (2) of Lemma 4.51,
we conclude that for every s ∈ [−1, 1], our discs Ẑt,χ,ν:s(ζ) satisfy all the
requirements (i), (ii) and (iii) of §4.2 insuring that the set defined by
(4.60)

H W +
s :=

{
Ẑt,χ,ν:s(ρ) : |t| < ε, |χ| < ε, 0 < ν < ε, 1− ε < ρ < 1

}

is a local half-wedge of edge (M1
s )

+ at the origin in the ẑ-coordinates, which
corresponds to the point γ(s) in the z-coordinates. Coming back to the
coordinates z = Φ−1

s (ẑ), we define the family of analytic discs

(4.61) Zt,χ,ν:s(ζ) := Φ−1
s

(
Ẑt,χ,ν:s(ζ)

)
.

Given an arbitrary f ∈ O(Ω) as in Proposition 4.6, through the change of
coordinates ẑ = Φs(z) and by restriction to (M1

s )
+, we get a CR function

f̂s ∈ C 0
CR

(
(M1

s )
+ ∩ U1

)
, for some small neighborhood U1 of the origin in

Cn, whose size is uniform with respect to s. Thanks to an obvious gener-
alization of the approximation Lemma 4.8 with a supplementary parame-
ter s ∈ [−1, 1], we know that there exists a second uniform neighborhood
V1 ⊂⊂ U1 of the origin in Cn such that f̂s is uniformly approximable by
polynomials on (M1

s )
+ ∩ V1. Furthermore, choosing r0 and ε sufficiently

small, we can insure that all the discs Ẑt,χ,ν:s(ζ) are attached to (M1
s )

+∩V1.
As in [Trp1990, Tu1994, Me1994, Jö1996], it then follows from the max-
imum principle applied to the approximating sequence of polynomials that
for each s ∈ [−1, 1], the function f̂s extends holomorphically to the half-
wedge defined by (4.60). Finally, we deduce that the holomorphic function
f ∈ O(Ω) extends holomorphically to the semi-local half-wedge attached
to the one-sided neighborhood (M1

γ )
+ defined by

(4.62)
H W +

γ :=
{
Zt,χ,ν:s(ρ) : |t| < ε, |χ| < ε, 0 < ν < ε, 1−ε < ρ < 1, −1 6 s 6 s

}
.

Without shrinking Ω near the points Zt,χ,ν:s(−1) (otherwise, the crucial rank
property of Lemma 4.34 would degenerate), we can shrink the open set Ω
in a very thin neighborhood of the characteristic segment γ in M and we
can shrink ε > 0 if necessary in order that the intersection Ω ∩ H W +

γ

is connected. By the principle of analytic continuation, this implies that
there exists a well-defined holomorphic function F ∈ O

(
Ω ∪H W +

γ

)
with

F |Ω = f .
The proof of Proposition 4.6 is complete. ¤
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§5. CHOICE OF A SPECIAL POINT OF Cnr TO BE REMOVED LOCALLY

5.1. Choice of a first supporting hypersurface. Continuing with the proof
of Theorem 3.19, we now analyze the assumption that C is nontransversal
to FcM1 . We first construct a foliated support hypersurface H1.

Lemma 5.2. Under the assumptions of Theorem 3.19, there exists a C 2,α

embedded characteristic curve γ : [−1, 1] → M1 with γ(−1) 6∈ C, γ(0) ∈
C, γ(1) 6∈ C, and there exists a C 1,α hypersurface H1 of M1 with γ ⊂ H1

which is foliated by characteristic segments close to γ, such that locally in a
neighborhood of H1, the closed subset C is contained in γ ∪ (H1)−, where
(H1)− denotes an open one-sided neighborhood of H1 in M1.

Proof. By the nontransversality assumption, there exists a first characteris-
tic curve γ̃ : [−1, 1] → M1 with γ̃(−1) 6∈ C, γ̃(0) ∈ C and γ̃(1) 6∈ C,
there exists a neighborhood V 1

eγ of γ̃ in M1 and there exists a local (n− 1)-
dimensional submanifold R1 passing through γ̃(0) which is transversal to γ̃
such that the semi-local projection πFc

M1
: V 1

eγ → R1 parallel to the charac-
teristic curves maps C onto the closed subset πFc

M1
(C) with the property that

πFc
M1

(γ̃) lies on the boundary of πFc
M1

(C) with respect to the topology of R1.
This property is illustrated in the right hand side of the following figure.

However, we want in addition a foliated supporting hypersurface H1,
which does not necessarily exist in a neighborhood of γ̃. To construct H1,
let us first straighten the characteristic lines in a neighborhood of γ̃, getting
a product [−1, 1]× [−δ1, δ1]n−1, for some δ1 > 0, equipped with coordinates
(s, χ) = (s, χ2, . . . , χn) ∈ R×Rn−1, so that level-set {χ = cst} correspond
to characteristic lines. Such a straightening is only of class C 1,α, because
the line distribution T cM |M1 ∩ TM1 is only of class C 1,α. Clearly, we may
assume that δ1 is so small that there exists s1 with 0 < s1 < 1 such that the
two cubes [−1,−s1]× [−δ1, δ1]n−1 and [s1, 1]× [−δ1, δ1]n−1 do not meet the
singularity C.

δ1

δ1

δ1

eγ(−1) eγ(1)eγ(s1)

γ(1)

1 1
s1 s1

χ1

eγ(0)

Fig. 10: Construction of a support hypersurface H1 χ0

δ1

R1

Qτ

C

[−1, 1]×Qτ

πFc
M1

(C)

eγ(−s1)

γ(−1)
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We may identify the transversal R1 with [−δ1, δ1]n−1; then the projection
of γ̃ is the origin of R1. By assumption, πFc

M1
(C) is a proper closed subset

of R1 with the origin lying on its boundary. We can therefore choose a point
χ0 in the interior of R1 lying outside πFc

M1
(C). Also, we can choose a small

open (n − 1)-dimensional ball Q0 centered at this point which is contained
in the complement R1\πFc

M1
(C). Furtermore, we can include this ball in a

one parameter family of C 1,α domains Qτ ⊂ R1, for τ > 0, which are parts
of ellipsoids stretched along the segment which joins the point χ0 with the
origin of R1.

We then consider the tube domains [−1, 1]×Qτ in [−1, 1]× [−δ1, δ1]n−1.
Clearly, there exists the smallest τ1 > 0 such that the tube [−1, 1] × Qτ1

meets the singularity C on its boundary [−1, 1] × ∂Qτ1 . In particular, there
exists a point χ1 ∈ ∂Qτ1 such that the characteristic segment [−1, 1]×{χ1}
intersects C. Increasing a little bit the curvature of ∂Qτ1 in a neighbor-
hood of χ1 if necessary, we can assume that πFc

M1
(C) ∩ Qτ1 = {χ1} in

a neighborhood of χ1. Moreover, since by construction the two segments
[−1,−s1]× {χ1} ∪ [s1, 1]× {χ1} do not meet C, we can reparametrize the
characteristic segment [−1, 1]×{χ1} as γ : [−1, 1] →M1 with γ(−1) 6∈ C,
γ(0) ∈ C and γ(1) 6∈ C. Since all characteristic lines are C 2,α, we can
choose the parametrization to be of class C 2,α. For the supporting hypersur-
face H1, it suffices to choose a piece of [−1, 1]× ∂Qτ1 near [−1, 1]× {χ1}.
By construction, this supporting hypersurface is only of class C 1,α and we
have that C is contained in γ ∪ (H1)− semi-locally in a neighborhood of γ,
as desired. ¤

5.3. Field of cones on M1. With the characteristic segment γ constructed
in Lemma 5.2, by an application of Proposition 4.6, we deduce that there
exists a semi-local half-wedge H W +

γ attached to (M1
γ )

+ ∩ Vγ , for some
neighborhood Vγ of γ in M , to which O(Ω) extends holomorphically.

Then, we remind that by (4.37), (4.39) and (4.50), for all twith |t| < ε, the
point Ẑt,χ,0:s(1) identifies with the point p̂(χ, 0 : s) ∈ M1

s defined in (4.37)
(which is independent of t) and the mapping χ 7→ Ẑt,χ,0:s(1) ∈ M1

s is a
local diffeomorphism.

Sometimes in the sequel, we shall denote the disc Zt,χ,ν:s(ζ) ≡
Φ−1
s

(
Ẑt,χ,ν:s(ζ)

)
defined in (4.61) by Zt,χ1,χ′,ν:s(ζ), where

χ′ = (χ2, . . . , χn) ∈ Rn−1. Since the characteristic curve is directed
along the x1-axis, which is transversal in T0M

1
s to the space {(0, χ′)}, it

follows that the mapping (s, χ′) 7−→ Zt,0,χ′,0:s(1) = Φ−1
s (p̂(0, χ′, 0 : s)) is,

independently of t, a diffeomorphism onto its image for s ∈ [−1, 1] and for
χ′ close to the origin in Rn−1. To fix ideas, we shall let χ′ vary in the closed
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cube [−ε, ε]n−1 (analogously to the fact that s runs in the closed interval
[−1, 1]) and we shall denote by V 1

γ the closed image of this diffeomorphism.
At every point p := Zt,0,χ′,0:s(1) = Z0,0,χ′,0:s(1) of this neighborhood

V 1
γ , we define an open infinite oriented cone contained in the n-dimensional

linear space TpM1 by

(5.4) Cp := R+ ·
{
∂Zt,0,χ′,0:s

∂θ
(1) : |t| < ε

}
.

The fact that Cp is indeed an open cone follows from Lemma 4.34,
from (4.61) and from the fact that Φ−1

s is a biholomorphism. This cone
contains in its interior the nonzero vector

(5.5) v0
p :=

∂Z0,0,χ′,0:s

∂θ
(1) ∈ Cp ⊂ TpM

1\{0}.

We shall say that Cp is the cone created at p by the semi-local attached half-
wedge H W +

γ (more precisely, by the family of analytic discs which covers
this semi-local half-wedge).

As p varies, p 7→ Cp constitutes a field of cones over V 1
γ , as illustrated by

Figures 3 and 11.

γ(0)γ(−1)

γ(1)

p

p

p
p

p

v0
p

v0
p

v0
p

v0
p

v0
p

v0
p

v0
p

Fig. 11: Field of cones on TM1 associated to the family Zt,0,χ′,0,s(ζ)

M1

V 1
γ Cp pCp

Cp Cp

CpCp
CpCp

V 1
γ

p

p
v0

p

The map p 7→ v0
p is a C 1,α−0 vector field tangent to M1, contained in

the field of cones p 7→ Cp. Over V 1
γ , we also introduce a nowhere zero

characteristic vector field X which satisfies exp(sX)(γ(0)) = γ(s) for all
s ∈ [−1, 1]. As in Section 2, for every p ∈ V 1

γ , we define the filled cone

(5.6) FCp := R+ ·
{
λ ·Xp + (1− λ) · vp : 0 6 λ < 1, vp ∈ Cp

}
.

In TpM1 equipped with linear coordinates (x1, . . . , xn) such that the charac-
teristic direction T cpM∩TpM1 isx the x1-axis, we draw Cp, its filling FCp and
its projection π′(Cp) onto the (x2, . . . , xn)-space parallelly to the x1-axis.
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x3, . . . , xn

x1
x2

p

x2 x1

x3, . . . , xn

p

Cp

v0
p

π′
“

v0
p

”

E

Fig. 12: A cone in TpM1 and its filling along the characteristic direction

C

C′

FCp

TpM1

π′(Cp)

For every nonzero vector vp ∈ Cp, it may be checked that a small neigh-
borhood of the origin in the positive half-line R+ · Jvp generated by Jvp is
contained in the attached half-wedge H W +

γ .

Lemma 5.7. Fix a point p ∈ V 1
γ and a vector vp in the cone Cp created by

the semi-local attached half-wedge H W +
γ at p. Suppose that there exist

two constants c1 > 0 and Λ1 > 1 such that for every c with 0 < c 6 c1,
there exists a C 2,α−0 analytic disc Ac(ζ) with Ac(∂+∆) ⊂M1, such that:

(i) the positive half-line generated by the boundary of Ac at ζ = 1
coincides with the positive half-line generated by vp, namely R+ ·
∂Ac

∂θ
(1) ≡ R+ · vp;

(ii) |Ac(ζ)| 6 c2 · Λ1 for all ζ ∈ ∆ and c · 1
Λ1

6
∣∣∂Ac

∂θ
(1)

∣∣ 6 c · Λ1;

(iii)
∣∣∂Ac

∂θ

(
ρeiθ

)− ∂Ac

∂θ
(1)

∣∣ 6 c2 · Λ1 for all ζ = ρeiθ ∈ ∆.

If c1 is sufficiently small, then for every c with 0 < c 6 c1, the closed disc
minus its half-boundary Ac

(
∆\∂+∆

)
is contained in the semi-local half-

wedge H W +
γ .

Furthermore, the same conclusion holds if the nonzero vector vp belongs
to the filled cone FCp.

Details will be provided later. In fact, the reason why we introduce filled
cones FCp is because, for the selection of a special, locally removable point
of C, we shall see that the corresponding direction R+ · ∂Ac

∂θ
(1) ≡ R+ · vp

of half-boundary A(∂+∆) ⊂ M1 must unavoidably be almost parallel to
the characteristic direction, and hopefully, vectors vp ∈ FCp may approach
the characteristic direction arbitrarily. Indeed, not only we will have to
assure that Ac

(
∆\∂+∆

) ⊂ H W +
γ (which works already for vp ∈ Cp),

but also, we will have to insure that the disc Ac with Ac(1) ∈ C satisfies
Ac

(
∂+∆\{1}), as drawn in Figure 4, in order to be able to apply the conti-

nuity principle.
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5.8. Choice of the special point psp. We can now answer the question im-
plicitly left inside Theorem 3.19: how to choose the special point psp to
be removed locally?

Lemma 5.9. Let γ be the characteristic segment constructed in Lemma 5.2,
let H W +

γ be the semi-local attached half-wedge of edge (M1
γ )

+ ∩ Vγ con-
structed in Proposition 4.6, and let p 7→ FCp be the filled field of cones
created by H W +

γ . Then there exists a special point psp ∈ C ∩V 1
γ such that:

(i) there exists a C 2,α local supporting hypersurfaceHsp ofM1 passing
through psp such that, locally in a neighborhood of psp, the closed
subset C is contained in (Hsp)

− ∪ {psp}, where (Hsp)
− denotes an

open one-sided neighborhood of Hsp in M1; and:
(ii) there exists a nonzero vector vsp ∈ TpspHsp which belongs to the

filled cone FCpsp .

Proof. According to Lemma 5.2, the singularityC is contained in γ∪(H1)−,
where H1 is a C 1,α hypersurface containing γ which is foliated by charac-
teristic segments. If λ ∈ [0, 1) is very close to 1, the vector field over V 1

γ

defined by

(5.10) p 7−→ vλp := λ ·Xp + (1− λ) · vp ∈ TpM1

is very close to the characteristic vector field Xp, so the integral curves of
p 7→ vλp are very close to the integral curves of p 7→ Xp. If λ is suffi-
ciently close to 1, we can choose a subneighborhood V λ

γ ⊂ V 1
γ of γ which

is foliated by integral curves of p 7→ vλp . As in Lemma 5.2, let us fix an
(n − 1)-dimensional submanifold R1 transversal to γ and passing through
γ(0). Since the vector field p 7→ vλp is very close to the characteristic vector
field, it follows that after projection onto R1 parallelly to the integral curves
of p 7→ vλp , the closed set C ∩ V λ

γ is again a proper closed subset of R1.
We notice that, by its very definition, the vector vλp belongs to the filled cone
FCp for all p ∈ V λ

γ .
We can proceed exactly as in the proof of Lemma 5.2 with the foliation

of V λ
γ induced by the integral curves of the vector field p 7→ vλp , instead of

the characteristic foliation, except that we want a supporting hypersurface
Hsp which is of class C 2,α. Consequently, we first approximate the vector
field p 7→ vλp by a new vector field p 7→ ṽλp whose coefficients are of class
C 2,α (with respect to every local graphing function ofM1) and which is very
close to the vector field p 7→ vλp in C 1,α-norm. Again, we get a subneigh-
borhood Ṽ λ

γ ⊂ V λ
γ of γ which is foliated by integral curves of p 7→ ṽλp and a

projection of C∩ Ṽ λ
γ which is a proper closed subset of R1. Moreover, if the

approximation is sufficiently sharp, we still have ṽλp ∈ FCp for all p ∈ Ṽ λ
γ .
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Then by repeating the reasoning which yielded Lemma 5.2, we deduce that
there exists an integral curve γ̃ of the vector field p 7→ ṽλp satisfying (after
reparametrization) γ̃(−1) 6∈ C, γ̃(0) ∈ C and γ̃(1) 6∈ C, together with
a C 2,α supporting hypersurface H̃ of Ṽ λ

γ which contains γ̃ such that C is
contained in γ̃ ∪ (H̃)−.

γ(−1)

γ(1)

p

vp

Xp

vp

p

Fig. 13: Dotted integral curve of the vector field p 7→ vλ
p and choice of psp

evλ
psp

γ(0)

eγ
psp vpsp

C

V 1
γ

eV λ
γ

V 1
γ

eV λ
γ

Xp
p

vp vpp
Xp

Hpsp Hpspeγ

eγ

vp
Xp

Xp
p

M1

To conclude the proof of Lemma 5.9, for the desired special point psp, it
suffices to choose γ̃(0). For the desired local supporting hypersurface Hpsp ,
we cannot choose directly a piece of H̃ passing through psp, because an
open interval contained in C ∩ γ̃ may well be contained in H̃ . Fortunately,
since we know that locally in a neighborhood of psp, the closed subset C
is contained in (H̃)− ∪ γ̃, it suffices to choose for the desired supporting
hypersurface Hpsp ⊂M1 a piece of a C 2,α hypersurface passing through p1,
tangent to H̃ at p1 and satisfying Hpsp\{psp} ⊂ (H̃)+ in a neighborhood
of psp. Finally, for the nonzero vector vsp, it suffices to choose any positive
multiple of the vector ṽλpsp . This completes the proof of Lemma 5.9. ¤

5.11. Main removability proposition. We can now formulate the main re-
movability proposition to which Theorem 3.19 is now fully reduced. We
localize the situation at psp, we denote this point simply by p1, we de-
note its supporting hypersurface simply by H1 and we denote its associ-
ated vector simply by v1 ∈ Tp1H

1. At p1, we have a local half-wedge
H W +

p1
⊂ H W +

γ .

Proposition 5.12. Let M ⊂ Cn be a C 2,α generic submanifold of codimen-
sion n − 1 > 1, hence of CR dimension 1, let M1 ⊂ M be a C 2,α one-
codimensional submanifold which is maximally real in Cn, let p1 ∈ M1,
let H1 ⊂ M1 be a C 2,α one-codimensional submanifold of M1 passing
through p1 and let (H1)− denote an open local one-sided neighborhood of
H1 in M1. Let C ⊂ M1 be a nonempty proper closed subset of M1 with
p1 ∈ C which is situated, locally in a neighborhood of p1, only in one side
of H1, namely C ⊂ (H1)− ∪ {p1}. Let Ω be a neighborhood of M\C in
Cn, let H W +

p1
be a local half-wedge of edge (M1)+ at p1 generated by a
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family of analytic discs Zt,χ,ν(ζ) satisfying the properties (i), (ii) and (iii) of
§4.2, let Cp1 ⊂ Tp1M

1 be the cone created by H W +
p1

at p1 and let FCp1 be
its filling. As a main hypothesis, assume that there exists a nonzero vector
v1 ∈ Tp1H1 which belongs to the filled cone FCp1 .

(I) If v1 does not belong to T cp1M , then there exists a local wedge
Wp1 of edge M at (p1, Jv1) with Wp1 ∩

[
Ω ∪H W +

p1

]
connected

(shrinking Ω∪H W +
p1

if necessary) such that for every holomorphic
function f ∈ O

(
Ω ∪H W +

p1

)
, there exists a holomorphic function

F ∈ O
(
W1 ∪

[
Ω ∪H W +

p1

])
with F

∣∣
Ω∪H W +

p1

= f .

(II) If v1 belongs to T cp1M , then there exists a neighborhood ωp1 of
p1 in Cn with ωp1 ∩

[
Ω ∪H W +

p1

]
connected (shrinking Ω ∪

H W +
p1

if necessary) such that for every holomorphic function
f ∈ O

(
Ω ∪H W +

p1

)
, there exists a holomorphic function F ∈

O
(
ωp1 ∪

[
Ω ∪H W +

p1

])
with F

∣∣
Ω∪H W +

p1

= f .

The remainder of Section 5, and then Sections 6, 7, 8 and 9 are entirely
devoted to the proof of this proposition.

5.13. A dichotomy. We shall indeed distinguish two cases:

(I) the nonzero vector v1 does not belong to the characteristic direction
Tp1M

1 ∩ T cp1M ;

(II) the nonzero vector v1 belongs to the characteristic direction Tp1M
1∩

T cp1M .

We must clarify the main assumption that v1 belongs to the filling FCp1 of
the cone Cp1 ⊂ Tp1M

1 created by the local half-wedge H W +
p1

. As we have
observed in §4.2, in the (generic) situation of Case (I), a local half-wedge
may be represented geometrically as the intersection of a (complete) local
wedge of edge M at p1, with a local one-sided neighborhood (N1)+ of a
hypersurface N1 passing through p1, which is transversal to M and which
satisfies N1 ∩M ≡ M1 in a neighborhood of p1. The slope of the tangent
space Tp1N

1 to N1 at p1 with respect to the tangent space Tp1M to M at
p1 may be understood in terms of the cone Cp1 , as we will now explain.
Afterwards, we shall consider Case (II) separately.

5.14. Cones, filled cones, subcones and local description of half-wedges
in Case (I). For the sake of concreteness, it will be convenient to work in a
holomorphic coordinate system z = (z1, . . . , zn) = (x1 + iy1, . . . , xn+ iyn)
centered at p1 in which Tp1M = {y2 = · · · = yn = 0} and Tp1M

1 =
{y1 = y2 = · · · = yn = 0} (the existence of such a coordinate system which
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straightens both Tp1M and Tp1M
1 is a direct consequence of the consider-

ations of §4.11). Let π′ : Tp1M
1 → Tp1M

1
/
(Tp1M

1 ∩ T cp1M) denote the
canonical projection, namey π′(x1, x2, . . . , xn) = (x2, . . . , xn). Sometimes,
we shall denote the coordinates by (z1, z

′) = (x1+iy1, x
′+iy′) ∈ C×Cn−1.

In these coordinates, the characteristic direction at p1 is the x1-axis and
we may assume that the tangent plane at p1 of the one-sided neighborhood
(M1)+ is given by Tp1(M

1)+ = {y′ = 0, y1 > 0}.
Let Cp1 ⊂ Tp1M

1 be the cone created by H W +
p1

and let C′p1 := π′ (Cp1)
be its projection onto the x′-space, which yields an (n − 1)-dimensional
infinite cone in the x′-space, open in this space. Notice that, by the defini-
tion (5.6) of the filling (along the characteristic direction), the two projec-
tions π′(Cp1) and π′(FCp1) are identical. We must now explain how these
three cones Cp1 , FCp1 , C′p1 and the nonzero vector v1 ∈ FCp1 are disposed,
geometrically.

x3, . . . , xnTpM1

p1

x1

x2

x1, x2

y2

p1

y1

v1

M

C2

(N1)+

H W +
1

N1

N1 C′1
C′p1

C1

Cp1

FCp1Σ1

(Σ1)+

Fig. 14: Cone created by the half-wedge and its relation to the half-wedge

Because the discs Zt,χ,ν of Proposition 5.12 (constructed in Section 4) are
small, the tangent vector ∂Z0,0,0

∂θ
(1) is necessarily close to the complex tan-

gent plane T cp1M : this may be checked directly by differentiating Bishop’s
equation (4.40) with respect to θ, using the fact that the C 1-norm of Φ′ is
small. Moreover, since this vector ∂Z0,0,0

∂θ
(1) also belongs to Tp1M

1, it is
in fact close to the positive x1-axis. Furthermore, since the vector v1 be-
longs to FCp1 which contains the vector ∂Z0,0,0

∂θ
(1), and since in the proof

of Lemma 5.9 above we have chosen the special point, the supporting hy-
persurface and the vector v1 with a parameter λ very close to 1, it follows
that the vector v1 ≡ ṽλpsp is even closer to the positive x1-axis. However,
we suppose in Case (I) that v1 is not directed along the x1-axis, so v1 has
coordinates (v1;1, v2;1, . . . , vn;1) ∈ Rn with v1;1 > 0, with |vj;1| << v1;1 for
j = 2, . . . , n and with at least one vj;1 being nonzero.

We need some general terminology. Let C be an open infinite cone in a
real linear subspace E of dimension q > 1. We say that C′ is a proper sub-
cone and we write C′ ⊂⊂ C (see the left hand side of Figure 12 above for
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an illustration) if the intersection of C′ with the unit sphere of E is a rela-
tively compact subset of the intersection of C with the unit sphere of E, this
property being independent of the choice of a norm on E. We say that C is a
linear cone if it may be defined by C = {x ∈ E : `1(x) > 0, . . . , `q(x) > 0}
for some q linearly independent real linear forms `1, . . . , `q on E.

In the x′-space, we now choose an open infinite strictly convex linear
proper subcone C′1 ⊂⊂ C′p1 with the property that v1 belongs to its filling
FC′1, cf. Figure 14. Here, we may assume that C′1 is described by (n − 1)
strict inequalities `′1(x

′) > 0, . . . , `′n−1(x
′) > 0, where the `′j(x

′) are linearly
independent linear forms. It then follows that there exists a linear form
σ(x1, x

′) of the form σ(x1, x
′) = x1 + a2x2 + · · · + anxn such that the

original filled cone FCp1 is contained in the linear cone
(5.15)

C1 :=
{
(x1, x

′) ∈ Rn : `′1(x
′) > 0, . . . , `′n−1(x

′) > 0, σ(x1, x
′) > 0

}
,

which contains the vector v1. This cone is automatically filled, namely C1 ≡
FC1.

We remind that by genericity of M , the complex structure J of TCn
induces an isomorphim Tp1M/T cp1M → Tp1Cn/Tp1M . Hence JC′p1 and
JC′1 are open infinite strictly convex linear proper cones in Tp1Cn/Tp1M ∼=
{(0, y′) ∈ Cn}. Since JC′1 is a proper subcone of JC′p1 and since in the clas-
sical definition of a wedge, only the projection of the cone onto the quotient
space Tp1M/T cp1M has a contribution to the wedge, it then follows that the
complete wedge Wp1 associated to the family Zt,χ,ν(ζ) (cf. the paragraph
after (4.5)) contains a wedge of the form

(5.16) W1 :=
{
p+ c′1 : p ∈M, c′1 ∈ JC′1

} ∩∆n(p1, δ1),

for some δ1 with 0 < δ1 < ε, where ε is as in §4.2. Furthermore, as observed
in §4.2, there exists a C 2,α hypersurface N1 of Cn passing through p1 with
the property that N1 ∩M ≡ M1 locally in a neighborhood of p1 such that,
shrinking δ1 > 0 if necessary, the local half-wedge H W +

p1
contains a local

half-wedge H W +
1 of edge (M1)+ at p1 which is described as the geomet-

ric intersection of the complete wedge Wp1 with a one-sided neighborhood
(N1)+, namely

(5.17) H W +
1 := W1 ∩ (N1)+.

An illustration for the case n = 2 where M ⊂ C2 is a hypesurface is pro-
vided in the left hand side of Figure 14. In addition, it follows from the
definition of H W +

p1
by means of the segments Zt,χ,ν

(
(1 − ε, 1)

)
that we

can assume that

(5.18) Tp1(N
1)+ = Tp1M ⊕ J(Σ1)+,
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where (Σ1)
+ is the hyperplane one-sided neighborhood {(x1, x

′) :
σ(x1, x

′) > 0} ⊂ Tp1M
1. Equivalently, Tp1(N

1)+ is represented by
the inequality y1 + a2y2 + · · · + anyn > 0. Consequently, there exists
a C 2,α function ψ(x, y′) with ψ(0) = ∂xk

ψ(0) = ∂yj
ψ(0) = 0 for

k = 1, . . . , n and j = 2, . . . , n such that N1 is represented by the equa-
tion y1 + a2y2 + · · · + anyn = ψ(x, y′) and (N1)+ by the inequation
y1 + a2y2 + · · ·+ anyn > ψ(x, y′).

5.19. Cones, filled cones, subcones and local description of half-wedges
in Case (II). Secondly, we assume that the nonzero vector v1 of Proposi-
tion 5.12 belongs to the characteristic direction Tp1M

1∩T cp1M . In this case,
as observed in §4.2, the half-wedge H W +

p1
coincides with a local wedge

of edge M1 at (p1, Jv1). After a real dilation of the z1-axis, we can assume
that v1 = (1, 0, . . . , 0). Choosing an open infinite strictly convex linear
proper subcone C2 ⊂⊂ Cp1 ⊂ Tp1M

1 = Rnx defined by n strict inequalities
`1(x) > 0, . . . , `n(x) > 0, where the `j(x) are linearly independent real lin-
ear forms — of course with C2 containing the vector v1 — it follows that
there exists δ1 > 0 such that the half-wedge H W +

p1
contains the following

local wedge of edge M1 at p1:

(5.20) W2 :=
{
p+ c2 : p ∈M1, c2 ∈ JC2

} ∩∆n(p1, δ1).

We remind that it was observed in §4.2 (cf. especially the right hand side
of Figure 7) that W2 contains (M1)+ locally in a neighborhood of p1. In
§5.22 below, we shall provide a more concrete representation of W2 in an
appropriate system of coordinates.

5.21. A trichotomy. Let us pursue this discussion more concretely by intro-
ducing further normalizations. Our goal will now be to construct appropri-
ate normalized coordinate systems. Analyzing further the dichotomy intro-
duced in §5.13 by taking account of the presence of the one-codimensional
submanifold H1 ⊂ M1, we shall distinguish three cases by dividing Case
(I) in two subcases (I1) and (I2).

(I1) The nonzero vector v1 does not belong to the characteristic direction
Tp1M

1 ∩ T cp1M and dim R
(
Tp1H

1 ∩ T cp1M
)

= 0.
(I2) The nonzero vector v1 does not belong to the characteristic direction

Tp1M
1∩T cp1M and dim R

(
Tp1H

1 ∩ T cp1M
)

= 1 (this possibility can
only occur when n > 3).

(II) The nonzero vector v1 belongs to the characteristic direction
Tp1M

1 ∩ T cp1M .

In case (I1), we notice that the assumption Tp1H
1 ∩ T cp1M = {0} implies

that v1 does not belong to the characteristic direction, because v1 ∈ Tp1H
1.

Also, in case (II), we notice that dim R
(
Tp1H

1 ∩ T cp1M
)

= 1 because v1 ∈
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Tp1H
1, because Tp1H

1 ⊂ Tp1M
1 and because the characteristic direction

Tp1M
1 ∩ T cp1M is one-dimensional.

In each of the above three cases, it will be convenient in Section 8 be-
low to work with simultaneously normalized defining (in)equations for M ,
for M1, for (M1)+, for H1, for (H1)+, for C′1, for v1, for C1, for (N1)+

and for H W +
p1

, in a single coordinate system centered at p1. In the next
paragraphs, we shall set up further elementary normalization lemmas in a
common system of coordinates, firstly for Case (I1), secondly for Case (I2)
and thirdly for Case (II). This technical work is unavoidable and it will be
achieved rigorously.

First of all, in the above coordinate system (z1, z
′) with Tp1M = {y2 =

· · · = yn = 0} and with Tp1M
1 = {y1 = y2 = · · · = yn = 0}, by means

of the implicit function theorem, we can represent locally M by (n − 1)
graphed equations of the form y2 = ϕ2(x, y1), . . . , yn = ϕn(x, y1), where
the ϕj are C 2,α functions satisfying ϕj(0) = ∂xk

ϕj(0) = ∂y1ϕj(0) = 0 for
j = 2, . . . , n, k = 1, . . . , n and we can representM1 by n graphed equations
y1 = h1(x), y2 = h2(x), . . . , yn = hn(x), where the hj are C 2,α functions
satisfying hj(0) = ∂xk

hj(0) = 0 for j, k = 1, . . . , n.

5.22. First order normalizations in Case (I1). Thus, let us deal first with
Case (I1). After a possible permutation of coordinates, we can assume that
Tp1H

1, which is a one-codimensional subspace of Tp1M
1, is given by the

equations

(5.23) x1 = b2x2 + · · ·+ bnxn, y1 = 0, y′ = 0,

for some real numbers b2, . . . , bn. If we define the linear invertible transfor-
mation ẑ1 := z1 − b2z2 − · · · − bnzn, ẑ′ := z′, then the plane Tp1H

1 written
in (5.23) clearly transforms to the plane x̂1 = ŷ1 = ŷ′ = 0, and (fortu-
nately) Tp1M and Tp1M

1 are left unchanged, namely Tp1M̂ = {ŷ′ = 0} and
Tp1M̂

1 = {ŷ1 = ŷ′ = 0}.
Dropping the hats on coordinates, we have Tp1M = {y′ = 0}, Tp1M

1 =
{y1 = y′ = 0}, Tp1H

1 = {x1 = y1 = y′ = 0}. Let C′1 ⊂⊂ C′p1 be the open
infinite strictly convex linear cone introduced in §5.14, which is contained in
the real (n−1)-dimensional space {(0, x′)} and which is defined by (n−1)
strict inequalities `′1(x

′) > 0, . . . , `′n−1(x
′) > 0. By means of a real linear

invertible transformation of the form ẑ1 := z1, ẑ′ := A′ · z′, where A′ is an
(n−1)×(n−1) real matrix, we can transform C′1 to a cone Ĉ′1 defined by the
simpler inequalities x̂2 > 0, . . . , x̂n > 0. Fortunately, this transformation
stabilizes Tp1M , Tp1M

1 and Tp1H
1.

Dropping the hats on coordinates, we now have Tp1M = {y′ = 0},
Tp1M

1 = {y1 = y′ = 0}, Tp1H
1 = {x1 = y1 = y′ = 0} and

C′1 = {(0, x′) : x2 > 0, . . . , xn > 0}. Then the nonzero vector v1 ∈ Tp1H1
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which belongs to C′1 has coordinates v1 = (0, v2;1, . . . , vn;1) ∈ Rn, where
v2;1 > 0, . . . , vn;1 > 0. By means of real dilations or real contractions of the
real axes Rx2 , . . . ,Rxn (a transformation which does not perturb the previ-
ously achieved normalizations), we can arrange that v1 = (0, 1, . . . , 1) and
that Tp1(M

1)+ = {y′ = 0, y1 > 0}, Tp1(H
1)+ = {y = 0, x1 > 0}.

Finally, the linear one-codimensional subspace Σ1 ⊂ Tp1M
1 introduced

in §5.14 which does not contain the characteristic direction Tp1M
1∩T cp1M ≡

Rx1 may be represented by an equation of the form σ(x1, x
′) := x1 +a2x2 +

· · ·+ anxn = 0, for some real numbers a2, . . . , an. The vector v1 belongs to
the cone C1 defined by (5.15), hence a2+· · ·+an > 0. After a dilation of the
x1-axis, we can even assume that a2+· · ·+an = 1. We remind that by (5.18),
the half-space Tp1(N

1)+ is given by y1 +a2y2 + · · ·+anyn > 0, hence there
exists a C 2,α function ψ(x, y′) with ψ(0) = ∂xk

ψ(0) = ∂yj
ψ(0) = 0 for

k = 1, . . . , n and j = 2, . . . , n such that (N1)+ is represented by the inequa-
tion y1 +a2y2 + · · ·+anyn > ψ(x, y′). Consequently, in this coordinate sys-
tem, we may represent concretely the local half-wedge H W +

1 ⊂ H W +
p1

constructed in §5.14 as

(5.24)





H W +
1 =

{
(z1, z

′) ∈ Cn : |z1| < δ1, |z′| < δ1,

y1 + a2y2 + · · ·+ anyn − ψ(x, y′) > 0,

y2 − ϕ2(x, y1) > 0, . . . , yn − ϕn(x, y1) > 0
}
.

For the continuation of the proof of Proposition 5.12, it will also be con-
venient to proceed to further second order normalizations of the totally real
submanifolds M1 and H1. These normalizations will all be tangent to the
identity tranformation, hence they will leave the previously achieved nor-
malizations unchanged.

5.25. Second order normalizations in Case (I1). Let us then perform a
second order Taylor development of the defining equations of M1

(5.26) y = h(x) =
n∑

k1,k2=1

ak1,k2 xk1xk2 + o(|x|2),

where the ak1,k2 = 1
2
∂xk1

∂xk2
h(0) are vectors of Rn. If we define the qua-

dratic invertible transformation

(5.27) ẑ := z − i

n∑

k1,k2=1

ak1,k2 zk1zk2 = Φ(z),

which is tangent to the identity mapping at the origin, then for x + iy =
x + ih(x) ∈ M1, we have by replacing (5.26) in the imaginary part of ẑ
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given by (5.27)

(5.28)

ŷ = y −
n∑

k1,k2=1

ak1,k2 xk1xk2 +
n∑

k1,k2=1

ak1,k2 yk1yk2

= o(|x|2)
= o

( ∣∣Re Φ−1(ẑ)
∣∣2 )

= o
( |(x̂, ŷ)|2 )

,

whence by applying the C 2,α implicit function theorem to solve (5.28) in
terms of ŷ, we find that M̂1 := Φ(M1) may be represented by an equation
of the form ŷ = ĥ(x̂), for some Rn-valued local C 2,α mapping ĥ which
satisfies ĥ(x̂) = o(|x̂|2).

Dropping the hats on coordinates, we can assume that the functions
h1, . . . , hn vanish at the origin to second order. Since Tp1H

1 = {y =
0, x1 = 0}, there exists a C 2,α function g(x′) with g(0) = ∂xk

g(0) = 0
for k = 2, . . . , n such that (H1)+ is given by the equation x1 > g(x′). We
want to normalize also the defining equation x1 = g(x′) of H1. Instead
of requiring, similarly as for h1, . . . , hn, that g vanishes to second order at
the origin (which would be possible), we shall normalize g in order that
g(x′) = −x2

1− · · · − x2
n + o

(|x′|2+α
)

(which will also be possible, thanks to
the total reality of H1).

The reason why we want (H1)+ = {x1 > g(x′)} to be strictly con-
cave is a trick to avoid having to construct discs half-attached to M1 with
prescribed second order jet, in order that their half-boundary does almost
not touch the singularity C, which lies behing the wall H1 ⊂ M1, namely
C ⊂ p1 ∪ (H1)−. In Section 8 below, we shall construct such discs whose
half-boundary is almost tangent to (H1)− at p1, and by arranging in advance
strong geometric convexity of (H1)−, it will suffice that the half boundaries
are tangent to H1. in Figure 18, the half boundaries are the vertical lines
slightly rotated and indeed, they do not enter much (H1)−.

Thus, we perform a second order Taylor development of the defining
equations of H1

(5.29)





x1 = g (x′) =
n∑

k1,k2=2

bk1,k2 xk1xk2 + o
(∣∣x′

∣∣2),

y = h
(
g(x′), x′

)
=: k

(
x′

)
= o

(∣∣x′
∣∣2),
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where the bk1,k2 = 1
2
∂xk1

∂xk2
g(0) are real numbers. If we define the qua-

dratic invertible transformation

(5.30)




ẑ1 := z1 −

n∑

k1,k2=2

bk1,k2 zk1zk2 − z2
2 − · · · − z2

n,

ẑ′ := z′,

which is tangent to the identity mapping, then for
(
g(x′) + ik1(x

′), x′ +

ik′(x′)
) ∈ H1, we have by replacing (5.29) in the real part of ẑ1, given

by (5.30):
(5.31)

x̂1 = x1 −
n∑

k1,k2=2

bk1,k2 xk1xk2 +
n∑

k1,k2=2

bk1,k2 yk1yk2 −
n∑

k=2

x2
k +

n∑

k=2

y2
k,

= − x2
2 − · · · − x2

n + o
(∣∣x′

∣∣2)

= − x̂2
2 − · · · − x̂2

n + o
(∣∣(x̂, ŷ)

∣∣2).
Similarly (dropping the elementary computations), we may obtain for the
imaginary part of ẑ1 and for the imaginary part of ẑ′

(5.32) ŷ1 = o
(∣∣(x̂, ŷ)

∣∣2) and ŷ′ = o
(∣∣(x̂, ŷ)

∣∣2),
whence by applying the C 2,α implicit function theorem to solve the sys-
tem (5.31), (5.32) in terms of x̂1, ŷ1 and ŷ′, we find that Ĥ1 := Φ(H1) may
be represented by equations of the form

(5.33)

{
x̂1 = ĝ

(
x̂′

)
= −x̂2

2 − · · · − x̂2
n + o

(∣∣x̂′
∣∣2),

ŷ = k̂
(
x̂′

)
= o

(∣∣x̂′
∣∣2).

It remains to check that the above transformation has not perturbed the pre-
vious second order normalizations of h1, . . . , hn (this is important), which
is easy: replacing y by h(x) = o(|x|2) in the imaginary parts of ẑ1 and of ẑ′

defined by the transformation (5.30), we get firstly

(5.34)

ŷ1 = y1 −
n∑

k1,k2

bk1,k2 (xk1yk2 + yk1xk2)− 2
n∑

k=2

xkyk

= o
(|x|2)

= o
(∣∣Re Φ−1(ẑ)

∣∣2) = o
(∣∣(x̂, ŷ)

∣∣2),
and similarly

(5.35) ŷ′ = o
(∣∣(x̂, ŷ)

∣∣2),
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whence by applying the C 2,α implicit function theorem to solve the sys-
tem (5.34), (5.35) in terms of ŷ, we find that M̂1 := Φ(M1) may be repre-
sented by equations of the form ŷ = ĥ (x̂) = o

(∣∣x̂
∣∣2). Thus, after dropping

the hats on coordinates, all the desired normalizations are satisfied. We now
summarize these normalizations and we formulate just afterwards the anal-
ogous normalizations for Cases (I2) and (II).

5.36. Simultaneous normalizations. In the following lemma, the final
choice of sufficiently small radii ρ1 > 0 and δ1 > 0 is made after that
all the biholomorphic changes of coordinates are performed.

Lemma 5.37. Let M , M1, p1, H1, v1, (H1)+, H W +
p1

, Cp1 and FCp1 be as
in Proposition 5.12. Then there exists a sub-half-wedge H W +

1 contained
in H W +

p1
such that the following normalizations hold in each of the three

cases (I1), (I2) and (II):

(I1) If dim R
(
Tp1H

1 ∩ T cp1M
)

= 0 (whence v1 6∈ T cp1M ), then there
exists a system of holomorphic coordinates z = (z1, . . . , zn) =
(x1 + iy1, . . . , xn + iyn) vanishing at p1 with the vector v1 equal
to (0, 1, . . . , 1), there exists positive numbers ρ1 and δ1 with 0 <
δ1 < ρ1, there exist C 2,α functions ϕ2, . . . , ϕn, h1, . . . , hn, g,
k1, . . . , kn, ψ, all defined in real cubes of edge 2ρ1 and of the ap-
propriate dimension, and there exist real numbers a1, . . . , an with
a2 + · · · + an = 1, such that, if we denote z′ := (z2, . . . , zn) =
x′ + iy′, then M , M1, (M1)+, H1, (H1)+ and N1 are represented
in the polydisc of radius ρ1 centered at p1 by the following graphed
(in)equations and the sub-half-wedge H W +

1 ⊂ H W +
p1

is repre-
sented in the polydisc of radius δ1 centered at p1 by the following
inequations

(5.38)



M : y2 = ϕ2(x, y1), . . . . . . , yn = ϕn(x, y1),

M1 : y1 = h1(x), y2 = h2(x), . . . . . . , yn = hn(x),

(M1)+ : y1 > h1(x), y2 = ϕ2(x, y1), . . . . . . , yn = ϕn(x, y1),

H1 : x1 = g(x′), y1 = k1(x
′), . . . . . . , yn = kn(x

′),

(H1)+ : x1 > g(x′), y1 = h1(x), y2 = h2(x), . . . . . . , yn = hn(x),

N1 : y1 + a2y2 + · · ·+ anyn = ψ(x, y′),

H W +
1 : y1 + a2y2 + · · ·+ anyn > ψ(x, y′),

y2 > ϕ2(x, y1), . . . , yn > ϕn(x, y1),

where we can assume that M1 coincides with the intersection M ∩
{y1 = h1(x)}, that H1 coincides with the intersection M1 ∩ {x1 =
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g(x′)} and thatN1 containsM1, which yields at the level of defining
equations the following three collections of identities

(5.39)





h2(x) ≡ ϕ2(x, h1(x)), . . . . . . , hn(x) ≡ ϕn(x, h1(x)),

k1(x
′) ≡ h1(g(x

′), x′), . . . . . . , kn(x′) ≡ hn(g(x
′), x′),

ψ(x, h′(x)) ≡ h1(x) + a2h2(x) + · · ·+ anhn(x),

and where the following normalizations hold:
(5.40)



ϕj(0) = ∂xk
ϕj(0) = ∂y1ϕj(0) = 0, j = 2, . . . , n, k = 1, . . . , n,

hj(0) = ∂xk
hj(0) = ∂xk1

∂xk2
hj(0) = 0, j, k, k1, k2 = 1, . . . , n,

g(0) = ∂xk
g(0) = kj(0) = ∂xk

kj(0) = 0, j = 1, . . . , n, k = 2, . . . , n,

∂xk1
∂xk2

g(0) = −δk2k1 , k1, k2 = 2, . . . , n,

ψ(0) = ∂xk
ψ(0) = ∂yj

ψ(0) = 0, k = 1, . . . , n, j = 2, . . . , n.

In other words, T0M = {y′ = 0} (hence T c0M coincides with the
complex z1-axis), T0N

1 = {y1 + a2y2 + · · · + anyn = 0} and the
second order Taylor approximations of the defining equations ofM1,
of H1 and of (H1)+ are the quadrics

(5.41)





T (2)
p1
M1 : y1 = 0, . . . . . . , yn = 0,

T (2)
p1
H1 : x1 = −x2

2 − · · · − x2
n, y1 = 0, . . . . . . , yn = 0,

T (2)
p1

(H1)+ : x1 > −x2
2 − · · · − x2

n, y1 = 0, . . . . . . , yn = 0.

(I2) Similarly, if dim R
(
Tp1H

1 ∩ T cp1M
)

= 1 and if v1 6∈ T cp1M (this
possibility can only occur in the case n > 3), then there exists
a system of holomorphic coordinates z = (z1, . . . , zn) = (x1 +
iy1, . . . , xn+iyn) vanishing at p1 with v1 equal to (1, . . . , 1, 0), there
exists positive numbers ρ1 and δ1 with 0 < δ1 < ρ1, there exist
C 2,α-smoooth functions ϕ2, . . . , ϕn, h1, . . . , hn, g, k1, . . . , kn, ψ all
defined in real cubes of edge 2ρ1 and of the appropriate dimen-
sion, such that if we denote z′′ := (z1, . . . , zn−1) = x′′ + iy′′ and
z′ = (z2, . . . , zn) = x′ + iy′, then M , M1, (M1)+, H1, (H1)+

and N1 are represented in the polydisc of radius ρ1 centered at
p1 by the following graphed (in)equations and the sub-half-wedge
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H W +
1 ⊂ H W +

p1
is represented in the polydisc of radius δ1 cen-

tered at p1 by the following inequations
(5.42)



M : y2 = ϕ2(x, y1), . . . . . . , yn = ϕn(x, y1),

M1 : y1 = h1(x), y2 = h2(x), . . . . . . , yn = hn(x),

(M1)+ : y1 > h1(x), y2 = ϕ2(x, y1), . . . . . . , yn = ϕn(x, y1),

H1 : xn = g(x′′), y1 = k1(x
′′), . . . . . . , yn = kn(x

′′),

(H1)+ : xn > g(x′′), y1 = h1(x), y2 = h2(x), . . . . . . , yn = hn(x),

N1 : y2 + · · ·+ yn−1 − yn = ψ(x, y′),

H W +
1 : y2 + · · ·+ yn−1 − yn > ψ(x, y′),

y1 > ϕ1(x, y1), . . . , yn−1 > ϕn−1(x, y1),

where we can assume that M1 coincides with the intersection M ∩
{y1 = h1(x)}, that H1 coincides with the intersection M1 ∩ {x1 =
g(x′)} and thatN1 containsM1, which yields at the level of defining
equations the following three collections of identities

(5.43)





h2(x) ≡ ϕ2(x, h1(x)), . . . . . . , hn(x) ≡ ϕn(x, h1(x)),

k1(x
′′) ≡ h1(x

′′, g(x′′)), . . . . . . , kn(x′′) ≡ hn(x
′′, g(x′′)),

ψ(x, h′(x)) ≡ h1(x) + h2(x) + · · ·+ hn−1(x)− hn(x),

and where the following normalizations hold:
(5.44)



ϕj(0) = ∂xk
ϕj(0) = ∂y1ϕj(0) = 0, j = 2, . . . , n, k = 2, . . . , n,

hj(0) = ∂xk
hj(0) = ∂xk1

∂xk2
hj(0) = 0, j, k, k1, k2 = 1, . . . , n,

g(0) = ∂xk
g(0) = kj(0) = ∂xk

kj(0) = 0, j = 1, . . . , n, k = 1, . . . , n− 1,

∂xk1
∂xk2

g(0) = −δk2k1 , k1, k2 = 1, . . . , n− 1,

ψ(0) = ∂xk
ψ(0) = ∂yj

ψ(0) = 0, k = 1, . . . , n, j = 2, . . . , n.

In other words, T0M = {y′ = 0} (hence T c0M coincides with the
complex z1-axis), T0N

1 = {y1 + y2 + · · · + yn−1 − yn = 0} and
the second order Taylor approximations of the defining equations of
M1, of H1 and of (H1)+ are the quadrics

(5.45)



T (2)
p1
M1 : y1 = 0, . . . . . . , yn = 0,

T (2)
p1
H1 : xn = −x2

1 − · · · − x2
n−1, y1 = 0, . . . . . . , yn = 0,

T (2)
p1

(H1)+ : xn > −x2
1 − · · · − x2

n−1, y1 = 0, . . . . . . , yn = 0.

(II) Finally, if dim R
(
Tp1H

1 ∩ T cp1M
)

= 1 and if v1 ∈ T cp1M (this pos-
sibility can occur in all cases n > 2), then there exists a system of
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holomorphic coordinates z = (z1, . . . , zn) = (x1+iy1, . . . , xn+iyn)
vanishing at p1 with v1 equal to (1, 0, . . . , 0), there exist positive
numbers ρ1 and δ1 with 0 < δ1 < ρ1, there exist C 2,α-smoooth func-
tions ϕ2, . . . , ϕn, h1, . . . , hn, g, k1, . . . , kn all defined in real cubes
of edge 2ρ1 and of the appropriate dimension, such that if we denote
z′′ := (z1, . . . , zn−1) = x′′ + iy′′ and z′ = (z2, . . . , zn) = x′ + iy′,
then M , M1, (M1)+, H1 and (H1)+ are represented in the polydisc
of radius ρ1 centered at p1 by the first five (in)equations of (5.42) to-
gether with the normalizations (5.45) and such that the local wedge
W2 ⊂ H W +

p1
of edge M1 at p1 is represented in the polydisc of

radius δ1 centered at p1 by the following inequations
(5.46){

W2 : y1 − h1(x) > − [y2 − h2(x)] , . . . . . . , y1 − h1(x) > − [yn − hn(x)] ,

y1 − h1(x) > y2 − h2(x) + · · ·+ yn − hn(x).

5.47. Summarizing figure and proof of Lemma 5.37. To illustrate this
technical lemma, by specifying the value n = 3, we draw the cones C1 and
C2 together with the vector v1, the tangent plane Tp1H

1 and the hyperplane
Σ1 in the three cases (I1), (I2) and (II). In the left part of this figure, the
cone C1 is given by x2 > 0, x3 > 0, x1 > −1

2
x2 − 1

2
x3, namely we choose

the values a2 = a3 = 1
2

for the drawing; in the central part, the cone C1 is
given by x1 > 0, x2 > 0, x2 > x3; in the right part, the cone C2 is given by
x1 > −x2, x1 > −x3, x1 > x2 + x3.

x1

Tp1M1

p1

Tp1M1
x3

x3

Σ1

x2

x3

x2

x1

Tp1M1

Tp1H1

p1

Fig. 15: The subcone C1 in the three cases (I1), (I2) and (II)

v1

Σ1

C1

C1

x2

p1

Tp1H1

x1

C2

Tp1H1

v1

v1

Proof. Case (I1) has been completed before the statement of Lemma 5.37.
For Case (I2), we reason similarly, as follows. We start with the nor-

malizations Tp1M = {y′ = 0} and Tp1M
1 = {y = 0} as in the end of

§5.21. By assumption, Tp1H
1 contains the characteristic direction, which

coincides with the x1-axis. By means of an elementary real linear transfor-
mation of the form ẑ1 := z1, ẑ′ = A′ · z′, we may first normalize Tp1H

1 to
be the hyperplane (after dropping the hats on coordinates) {xn = 0, y = 0}.
Similarly, we may normalize v1 to be the vector (1, 1, . . . , 1, 0). Let again
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π′ : (x1, x
′) 7→ x′ denote the canonical projection on the x′-space. Then

π′(v1) = (1, . . . , 1, 0). Using again a real linear transformation of the
form ẑ1 := z1, ẑ′ = A′ · z′, we can assume that the proper subcone
C′1 ⊂⊂ C′p1 ≡ π′(Cp1) which contains the vector v1 is given (after drop-
ping the hats on coordinates) by

(5.48) C′1 : x2 > 0, . . . , xn−1 > 0, x2 + · · ·+ xn−1 > xn.

Following §5.14 (cf. Figure 14), we choose a linear cone C1 ⊂⊂ FCp1
defined by the (n − 1) inequations of C′1 plus one inequation of the form
x1 > a2x2 + · · · + anxn with 1 > a2 + · · · + an−1, since v1 belongs to
C1. Then by means of a real linear transformation of the form ẑ1 := z1 +
a2z2+· · ·+anzn, ẑ′ := z′, which stabilizes π′(v1) and the inequations (5.48)
of C′1, we can assume that the supplementary inequation for C1, namely the
inequation for (Σ1)+, is simply (after dropping the hats on coordinates) x1 >
0. Then the vector v1 is mapped to the vector of coordinates (1− a2− · · · −
an, 1, . . . , 1, 0), which we map to the vector of coordinates (1, 1, . . . , 1, 0) by
an obvious positive scaling of the x1-axis. In conclusion, in the final system
of coordinates, the cone C1 is given by

(5.49) C1 : x1 > 0, x2 > 0, . . . , xn−1 > 0, x2 + · · ·+ xn−1 − xn > 0.

This implies that the half-wedge H W +
1 ⊂ H W +

p1
may be represented

by the inequations of the last two line of (5.42). To conclude the proof of
Case (I2) of Lemma 5.37, it suffices to observe that, as in Case (I1), the
further second order normalizations do not perturb the previously achieved
first order normalizations, because the transformations are tangent to the
identity mapping at the origin.

Finally, we treat Case (II) of Lemma 5.37, starting with the system of
coordinates (z1, . . . , zn) of the end of §5.21. After an elementary real lin-
ear transformation stabilizing the characteristic x1-axis, we can assume that
v1 = (1, 0, . . . , 0) and that the convex infinite linear cone C2 introduced in
§5.19 which contains v1 is given by the inequations

(5.50) x1 > −x2, . . . . . . , x1 > −xn, x1 > x2 + · · ·+ xn.

This implies that the local wedge W2 ⊂ H W +
p1

of edge M1 at p1 intro-
duced in §5.19 may be represented by the inequations (5.46). Finally, the
second order normalizations, which are tangent to the identity mapping, are
achieved as in the two previous cases (I1) and (I2).

The proof of Lemma 5.37 is complete. ¤

§6. THREE PREPARATORY LEMMAS IN HÖLDER SPACES

We first collect a few very elementary lemmas that will be useful in our
geometric construction of half-attached analytic discs (Section 7). The index
notation gxk

denotes partial derivative.
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6.1. Local growth of C 2,α mappings. Let n ∈ N with n > 1 and let x =
(x1, . . . , xn) ∈ Rn. We consider the norm |x| := max16k6n |xk|. If g =
g(x) is an Rn-valued C 1 map defined in the real cube {x ∈ Rn : |x| <
2ρ1}, for some ρ1 > 0, and if |x′|, |x′′| 6 ρ, for some ρ < 2ρ1, then for
j = 1, . . . , n, we have the mean value inequality

(6.2)
∣∣gj(x′)− gj(x

′′)
∣∣ 6 |x′ − x′′| ·

( n∑

k=1

sup
|x|6ρ

|gj,xk
(x)|

)
.

By the definition of the norm |·|, we deduce
∣∣g(x′)−g(x′′)

∣∣ 6 ||g||C 1 ·|x′−x′′|.
Let α with 0 < α < 1 and let h = h(x) =

(
h1(x), . . . , hn(x)

)
be an

Rn-valued C 2,α map defined in {x ∈ Rn : |x| < 2ρ1}. For every ρ < 2ρ1,
we define:

||h||C 2,α({|x|6ρ}) := sup
|x|6ρ

|h(x)|+
n∑

k=1

sup
|x|6ρ

∣∣hxk
(x)

∣∣ +
n∑

k1,k2=1

∣∣hxk1
xk2

(x)
∣∣+

(6.3) +
n∑

k1,k2=1

sup
|x′|, |x′′|6ρ, x′ 6=x′′

∣∣hxk1
xk2

(x′)− hxk1
xk2

(x′′)
∣∣

|x′ − x′′|α <∞.

Lemma 6.4. Under the above assumptions, let

(6.5) K1 := ||h||C 2,α({|x|6ρ1}) <∞
be the C 2,α norm of h over {|x| 6 ρ1} and assume that hj(0) = 0,
hj,xk

(0) = 0 and hj,xk1
xk2

(0) = 0, for all j, k, k1, k2 = 1, . . . , n. Then
for |x| 6 ρ1 we have:

(6.6)





[1] : |h(x)| 6 |x|2+α ·K1,

[2] :
n∑

k=1

|hxk
(x)| 6 |x|1+α ·K1,

[3] :
n∑

k1,k2=1

∣∣∣hxk1
xk2

(x)
∣∣∣ 6 |x|α ·K1.

6.7. A C 1,α estimate for composition of mappings. Recall that ∆ is the
open unit disc in C and that ∂∆ is its boundary, namely the unit circle. We
shall constantly denote the complex variable in ∆ := ∆ ∪ ∂∆ by ζ = ρ eiθ,
where 0 6 ρ 6 1 and where |θ| 6 π, except when we consider two points
ζ ′ = eiθ

′ , ζ ′′ = eiθ
′′ , in which case we may obviously choose |θ′|, |θ′′| 6 2π

with 0 6 |θ′ − θ′′| 6 π. Let now X(ζ) =
(
X1(ζ), . . . , Xn(ζ)

)
be an Rn-

valued mapping which is C 1,α on ∂∆. We define its C 1,α-norm precisely
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by
(6.8)

||X||C 1,α(∂∆) := sup
|θ|6π

∣∣X(
eiθ

)∣∣+ sup
|θ|6π

∣∣∣dX
(
eiθ

)

dθ

∣∣∣+ sup
0<|θ′−θ′′|6π

∣∣dX(eiθ′ )
dθ − dX(eiθ′′ )

dθ

∣∣
|θ′ − θ′′|α ,

and its C 1-norm ||X||C 1(∂∆) by keeping only the first two terms.

Lemma 6.9. If h is as in Lemma 6.5, and if moreover
∣∣X (

eiθ
)∣∣ 6 ρ for all

θ with |θ| 6 π, withe ρ 6 ρ1, then we have the following composition norm
estimates:

||h(X)||C 1,α(∂∆) 6 sup
|x|6ρ

|h(x)|+
( n∑

k=1

sup
|x|6ρ

|hxk
(x)|

)
· ||X||C 1(∂∆)+

+
( n∑

k1,k2=1

sup
|x|6ρ

∣∣∣hxk1
xk2

(x)
∣∣∣
)
· π1−α · [||X||C 1(∂∆)

]2 +

+
( n∑

k=1

sup
|x|6ρ

|hxk
(x)|

)
· ||X||C 1,α(∂∆),

(6.10)
n∑

k=1

||hxk
(X)||C α(∂∆) 6

∑

k=1

sup
|x|6ρ

|hxk
(x)|+

+
( n∑

k1,k2=1

sup
|x|6ρ

∣∣∣hxk1
xk2

(x)
∣∣∣
)
· π1−α · ||X||C 1(∂∆),

n∑

k1,k2=1

∣∣∣
∣∣∣hxk1

xk2
(X)

∣∣∣
∣∣∣
C α(∂∆)

6
n∑

k1,k2=1

sup
|x|6ρ

∣∣∣hxk1
xk2

(x)
∣∣∣+

+ ||h||C 2,α({|x|6ρ}) ·
(||X||C 1(∂∆)

)α
.

Proof. We summarize the computations. Applying the definition (6.8), us-
ing the chain rule for the calculation of dh

(
X(eiθ)

)
/dθ, and using the trivial

inequality |a′b′ − a′′b′′| 6 |a′| · |b′ − b′′|+ |b′′| · |a′ − a′′|, we may majorize
(6.11)

||h(X)||C 1,α(∂∆) 6 sup
|θ|6π

∣∣∣h(X(eiθ))
∣∣∣ +

( n∑

k=1

sup
|θ|6π

∣∣∣hxk
(X(eiθ))

∣∣∣
)
· max
16k6n

sup
|θ|6π

∣∣∣dXk(eiθ)
dθ

∣∣∣+

sup
0<|θ′−θ′′|6π

n∑

k=1

∣∣hxk
(X(eiθ

′
))− hxk

(X(eiθ
′′
))

∣∣
|θ′ − θ′′|α · max

16k6n
sup
|θ′|6π

∣∣∣dXk(eiθ
′
)

dθ

∣∣∣+

( n∑

k=1

sup
|θ′′|6π

∣∣∣hxk
(eiθ

′′
)
∣∣∣
)
·
(

max
16k6n

sup
0<|θ′−θ′′|6π

∣∣dXk(eiθ′ )
dθ − dXk(eiθ′′ )

dθ

∣∣
|θ′ − θ′′|α

)
,
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which yields the first inequality of (6.10) after using (6.2) for the second line
of (6.11) and the trivial majoration |θ′ − θ′′|1−α 6 π1−α. The second and
the third inequalities of (6.10) are established similarly, which completes
the proof. ¤

Lemma 6.12. With h as in Lemma 6.4, suppose that there exist constants
c1 > 0, K2 > 0 with c1K2 6 ρ1 such that for each c ∈ R with 0 6 c 6 c1,
there exists Xc ∈ C 1,α(∂∆,Rn) with ||Xc||C 1,α(∂∆) 6 c · K2. Then there
exists a constant K3 > 0 such that the following three estimates hold:

(6.13)





||h(Xc)||C 1,α(∂∆) 6 c2+α ·K3,
n∑

k=1

||hxk
(Xc)||C α(∂∆) 6 c1+α ·K3,

n∑

k1,k2=1

∣∣∣∣hxk1
xk2

(Xc)
∣∣∣∣

C α(∂∆)
6 cα ·K3.

Proof. Applying Lemmas 6.4 and 6.9, we see that it suffices to choose

(6.14) K3 := max
(
K1K

2+α
2 (3 + π1−α), K1K

1+α
2 (1 + π1−α), 2K1K

α
2

)
,

which completes the proof. ¤

Up to now, we have introduced three positive constants K1, K2, K3. In
Sections 7, 8 and 9 below, we shall introduce further positive constants K4,
K5, K6,K7, K8, K9, K10, K11, K12, K13, K14, K15,K16, K17, K18 andK19,
whose precise value will not be important.

§7. FAMILIES OF ANALYTIC DISCS HALF-ATTACHED TO MAXIMALLY
REAL SUBMANIFOLDS

7.1. Preliminary. If ∂+∆ :=
{
ζ ∈ ∂∆ : Re ζ > 0

}
denotes the positive

half-boundary of ∆, we say that an analytic disc A ∈ O(∆,Cn)∩C 0(∆) is
half-attached to a set E ⊂ Cn if A(∂+∆) ⊂ E.

We will construct local families of analytic discs Z1
c,x,v(ζ) : ∆ → Cn,

where c ∈ R+ is small, where x ∈ Rn is small and where v ∈ Rn is small,
which are half-attached to a C 2,α maximally real submanifold M1 of Cn,
which satisfy Z1

c,0,v(1) ≡ p1 ∈ M1, such that the boundary point Z1
c,x,v(1)

covers a neighborhood of p1 in M1 when x varies (c and v being fixed) and
such that the tangent vector

∂Z1
c,0,v

∂θ
(1) at the fixed point p1 covers a cone in

Tp1M
1 when v varies. With this choice, when x varies, v varies and ζ varies

(but c is fixed), the set of points Z1
c,x,v(ζ), covers a thin wedge of edge M1

at p1. By maximal reality of M1, the tangent vector
∂Z1

c,0,v

∂θ
(1) ∈ Tp1M1 will

be arbitrary, hence the associated wedge can have arbitrary orientation.
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To summarize symbolically the structure of the desired family:

(7.2) Z1
c,x,v(ζ) :





c = small scaling factor,
x = translation parameter,
v = rotation parameter,
ζ = unit disc variable.

We begin our constructions in the “flat” case where the maximally real sub-
manifold M1 coincides with Rn. Afterwards, we perform a pertubation ar-
gument, using the scaling parameter c in an essential way.

7.3. A family of analytic discs sweeping Rn ⊂ Cn with prescribed first
order jets. We denote the coordinates over Cn by z = x + iy = (x1 +
iy1, . . . , xn + iyn). Let c ∈ R with c > 0 be a “scaling factor”, let n > 2,
let x = (x1, . . . , xn) ∈ Rn, let v = (v1, . . . , vn) ∈ Rn and consider the
algebraically parametrized family of analytic discs defined by

(7.4) Bc,x,v(s+ it) :=
(
x1 + cv1(s+ it), . . . , xn + cvn(s+ it)

)
,

where s + it ∈ C is the holomorphic variable. For c 6= 0, the map
Bc,x,v embeds the complex line C into Cn and sends R into Rn with ar-
bitrary first order jet at 0: center point Bc,x,v(0) = x and tangent direction
∂Bc,x,v(s)/∂s|s=0 = cv.

To localize our family of analytic discs, we restrict the map (7.4) to the
following specific set of values: 0 6 c 6 c0 for some c0 > 0; |x| 6 c ;
|v| 6 2 ; and |s+ it| 6 4. To localize Rn, we shall denote M0 := {x ∈ Rn :
|x| 6 ρ0}, where ρ0 > 0, and we notice that Bc,x,v({|s + it| 6 4}) ⊂ M0

for all c, all x and all v provided that c0 6 ρ0/9.
We then consider the mapping (s+ it) 7−→ Bc,x,v(s+ it) as a local (non-

smooth) analytic disc defined in the rectangle {s + it ∈ C : |s| 6 4, 0 6
t 6 4} whose bottom boundary part Bc,x,v([−4, 4]) is a small real segment
contained in Rn.

7.5. A useful conformal equivalence. To get rid of the corners of the rec-
tangle, we proceed as follows. In the complex plane equipped with coordi-
nates s + it, let D(i

√
3, 2) be the open disc of center i

√
3 and of radius 2.

Let µ : (−2, 2) → [0, 1] be an even C∞ function satisfying µ(s) = 0
for 0 6 s 6 1; µ(s) > 0 and dµ(s)/ds > 0 for 1 < s < 2; and
µ(s) =

√
3 − √

4− s2 for
√

3 6 s < 2. The simply connected domain
C+ ⊂ {t > 0} which is represented in Figure 16 may be formally defined
as

(7.6)

{
C+ ∩ {t >

√
3− 1} := D(i

√
3, 2) ∩ {t >

√
3− 1},

C+ ∩ {0 < t <
√

3− 1} := {s+ it ∈ C : t > µ(s)}.
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Fig. 16: A useful conformal mapping
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Let Ψ : ∆ → C+ be a conformal equivalence (Riemann’s theorem). Since
the boundary ∂C+ is C∞, the mapping Ψ extends as a C∞ diffeomorphism
∂∆ → ∂C+. After a reparametrization of ∆, we can (and we shall) as-
sume that Ψ(∂+∆) = [−1, 1], Ψ(1) = 0 and Ψ(±i) = ±1. It follows that
dΨ(eiθ)/dθ is a positive real number for all eiθ ∈ ∂+∆.

7.7. Flat families of half-attached analytic discs. Thanks to Ψ, we can
define a family of small analytic discs which are half-attached to the flat
maximally real manifold M0 ≡ {x ∈ Rn : |x| 6 ρ0} as follows

(7.8) Z0
c,x,v(ζ) := Bc,x,v

(
Ψ(ζ)

)
=

(
x+ cvΨ(ζ)

)
.

We then have Z0
c,x,v(∂

+∆) ⊂ M0 and Z0
c,x,v(1) = x. Notice that every disc

Zc,x,v
(
∆

)
is contained in a single complex line. Starting with a maximally

real submanifold of Cn as in Proposition 5.12, but dealing with the flat max-
imally real submanifold M0 ≡ Rn, we first construct a flat model of the
desired family of analytic disc.

Lemma 7.9. Let p0 ≡ 0 ∈ M0 denote the origin and let v0 ∈ Tp0M
0 be

a tangent vector with |v0| = 1. Then there exists a constant Λ0 > 0 and
there exists a C∞ family A0

c,x,v(ζ) of analytic discs defined for c ∈ R with
0 6 c 6 c0 for some c0 > 0 with c0 6 ρ0/9, for x ∈ Rn with |x| 6 c and for
v ∈ Rn with |v| 6 c, which enjoys the following six properties:

(10) A0
c,0,v(1) = p0 = 0 for all c and all v.

(20) A0
c,x,v : ∆ → Cn is an embedding and

∣∣A0
c,x,v(ζ)

∣∣ 6 c · Λ0 for all c,
all x, all v and all ζ .

(30) A0
c,x,v(∂

+∆) ⊂M0 for all c, all x and all v.

(40) ∂A0
c,0,0

∂θ
(1) is a positive multiple of v0 for all c 6= 0.

(50) For all c, all v and all eiθ ∈ ∂+∆, the mapping x 7−→ A0
c,x,v

(
eiθ

) ∈
M0 is of rank n.
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(60) For all eiθ ∈ ∂+∆, all c 6= 0 and all x, the mapping v 7−→
∂A0

c,x,v

∂θ

(
eiθ

)
is of rank n at v = 0. Consequently, when v varies,

the positive half-lines R+ · ∂Ac,0,v

∂θ
(1) describe an open infinite cone

containing v0 with vertex p0 in Tp0M
0.

Proof. Proceeding similarly as in the proof of Lemma 5.37, we can find a
new complex affine coordinate system centered at p0 and stabilizing Rn,
which we shall still denote by (z1, . . . , zn), in which the vector v0 has coor-
dinates (0, . . . , 0, 1). In this coordinate system, we then construct the family
Z0
c,x,v(ζ) as in (7.8) above and we define the desired family simply as fol-

lows:

(7.10) A0
c,x,v(ζ) := Z0

c,x,v0+v(ζ),

where we restrict the variations of the parameter v to |v| 6 c. Notice that
every disc A0

c,x,v

(
∆

)
is contained in a single complex line. All the prop-

erties are then elementary consequences of the explicit expression (7.8) of
Z0
c,x,v(ζ).
Finally, we notice that it follows from properties (50) and (60) that the set

of points A0
c,x,v(ζ), where c > 0 is fixed, where x varies, where v varies and

where ζ varies covers a local wedge of edge M0 at p0. ¤

7.11. Curved families of half-attached analytic discs. Our main goal in
this section is to obtain a statement similar to Lemma 7.9 after replacing the
flat maximally real submanifold M0 ∼= Rn by a curved C 2,α maximally real
submanifold M1. We set up a formulation which will be appropriate for the
achievement of the proof of Proposition 5.12 (Sections 8 and 9).

We will first construct a family Z1
c,x,v(ζ) as a perturbation of the family

Z0
c,x,v(ζ), and then shrink the domain of variation of x, requiring |x| 6 c2,

in order to insure small disc size 6 c2 · Λ1 (instead of 6 c · Λ1, which
would be the property analogous to (20)). Then c will not be considered as
a parameter, so we denote by A1

x,v:c(ζ) the desired family, putting c after a
semicolon. In fact, in our construction, we unavoidably loose the C 2,α−0-
smoothness with respect to c, and the family degenerates to a constant for
c = 0.

Lemma 7.12. Let M1 be C 2,α maximally real submanifold of Cn, let p1 ∈
M1 and let v1 ∈ Tp1M

1 be a tangent vector with |v1| = 1. Then there
exists a positive constant Λ1 > 0 and there exists c1 ∈ R with c1 > 0 such
that for every c ∈ R with 0 < c 6 c1, there exists a family A1

x,v:c(ζ) of
analytic discs defined for x ∈ Rn with |x| 6 c2 and for v ∈ Rn with |v| 6 c
which is C 2,α−0 with respect to (x, v, ζ) and which enjoys the following six
properties:
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(11) A1
0,v:c(1) = p1 for all v.

(21) A1
x,v:c : ∆ → Cn is an embedding and

∣∣A1
x,v:c(ζ)

∣∣ 6 c2 · Λ1 for all
x, all v and all ζ .

(31) A1
x,v:c(∂

+∆) ⊂M1 for all x and all v.

(41) ∂A1
0,0:c

∂θ
(1) is a positive multiple of v1.

(51) The mapping x 7−→ A1
x,0:c(1) ∈M1 is of rank n.

(61) The mapping v 7−→ ∂A1
0,v:c

∂θ

(
eiθ

)
is of rank n at v = 0. Consequently,

as v varies, the positive half-lines R+ · ∂A1
0,v:c

∂θ
(1) describe an open

infinite cone containing v1 with vertex p1 in Tp1M
1 and the set of

points A1
x,v:c(ζ), as |x| 6 c2, |v| 6 c and ζ ∈ ∆ vary, covers a

wedge of edge M1 at (p1, Jv1).

In Figure 18 below, we represent the cone property (61). The remainder of
this Section 7 is entirely devoted to complete the proof of Proposition 7.12.

7.13. Perturbed family of analytic discs half-attached to a maximally
real submanifold. Thus, let M1 ⊂ Rn be a locally defined maximally real
C 2,α submanifold passing through the origin. We can assume it to be repre-
sented by n Cartesian equations

(7.14) y1 = h1(x1, . . . , xn), · · · · · · , yn = hn(x1, . . . , xn),

where |x| 6 ρ1 for some ρ1 > 0, where h = h(x) is of class C 2,α in
{|x| < 2ρ1}, and where, importantly, hj(0) = hj,xk

(0) = hj,xk1
xk2

(0) = 0,
for all j, k, k1, k2 = 1, . . . , n. We set K1 := ||h||C 2,α({|x|6ρ1}). Also, we can
assume that v1 = (0, . . . , 0, 1).

Our first goal is to produce a C 2,α−0 family of analytic discs Z1
c,x,v(ζ)

which are half-attached to M1 and which are C 2-close to the original family
Z0
c,x,v(ζ). After having constructed the family Z1

c,x,v(ζ), we shall define the
desired family A1

x,v:c(ζ).
Let d ∈ R with 0 6 d 6 1 and let the maximally real submanifold Md

(like “M deformed”) be defined precisely as the set of z = x+ iy ∈ Cn with
|x| 6 ρ1 which satisfy the n Cartesian equations

(7.15) y1 = d · h1(x1, . . . , xn), · · · · · · , yn = d · hn(x1, . . . , xn).

Of course, Md
∣∣
d=0

≡ {x ∈ Rn : |x| 6 ρ1} contains the M0 of Lemma 7.9
if we choose ρ0 6 ρ1, and moreover, Md

∣∣
d=1

≡ M1. Adding d ∈ [0, 1] as a
parameter, we will construct a family of analytic dics Zd

c,x,v(ζ) half-attached
to Md which is of class C 2,α−0 with respect to all its variables (c, x, v, d, ζ).
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The disc Zd
c,x,v(ζ) =: Xd

c,x,v(ζ) + iY d
c,x,v(ζ) is half-attached to Md if and

only if

(7.16) Y d
c,x,v(ζ) = d · h (

Xd
c,x,v(ζ)

)
, for ζ ∈ ∂+∆.

and in addition, Y d
c,x,v should be a harmonic conjugate of Xd

c,x,v. However,
the condition (7.16) does not give any relation between Xd

c,x,v and Y d
c,x,v on

the negative part ∂−∆ of the unit circle. To fix this point, we assign the
following complete equation on the unit circle

(7.17) Y d
c,x,v(ζ) = d · h(Xd

c,x,v(ζ)
)

+ Y 0
c,x,v(ζ), for all ζ ∈ ∂∆,

which coincides with (7.16) for ζ ∈ ∂+∆, since we have Z0
c,x,v(∂

+∆) ⊂ Rn
by construction. Also, we require that Xd

c,x,v(1) = x, whence Y d
c,x,v(1) =

d · h(x).
By a theorem due to Privalov (see e.g. [29]), the Hilbert transform T1

has bounded norm |||T1|||κ,α ' cst
α(1−α)

as a linear operator C κ,α(∂∆,Rn) →
C κ,α(∂∆,Rn) for κ ∈ N and 0 < α < 1, where cst is an absolute constant.

Thus, the mapping ζ 7→ Y d
c,x,v(ζ) should necessarily coincide with the

harmonic conjugate ζ 7→ [
T1X

d
c,x,v

]
(ζ) + d · h(x) (this property is already

satisfied for d = 0) and we deduce that Xd
c,x,v(ζ) should satisfy the Bishop-

type equation

(7.18) Xd
c,x,v(ζ) = −T1

[
d · h (

Xd
c,x,v

)]
(ζ) +X0

c,x,v(ζ), for all ζ ∈ ∂∆.

Conversely, if Xd
c,x,v is a solution of this functional equation, then setting

Y d
c,x,v(ζ) := T1X

d
c,x,v(ζ)+d ·h(x), the analytic disc Zd

c,x,v(ζ) := Xd
c,x,v(ζ)+

iY d
c,x,v(ζ) is half-attached to Md and more precisely, it satisfies (7.17).
Thanks to the solvability of Bishop’s equation ([Tu1996, 29]), if c satisfies

0 6 c 6 c1 with c1 > 0 sufficiently small, there exists a unique solution
Xd
c,x,v(ζ) to (7.18) which is C 2,α with respect to ζ and C 2,α−0 with respect

to all the variables (c, x, v, d, ζ), where 0 6 c 6 c1, |x| 6 c, |v| 6 2
and ζ ∈ ∆. We shall now estimate the difference ||Zd

c,x,v − Z0
c,x,v||C 1,α(∂∆)

and prove that it is bounded by a constant times c2+α. In particular, if c1 is
sufficiently small, this will imply that Zd

c,x,v is nonconstant.

7.19. Size of the solutionXd
c,x,v(ζ) in C 1,α-norm. Following the beginning

of the proof of the existence theorem in [Tu1996, 29], we introduce the map

(7.20) F : X(ζ) 7−→ X0
c,x,v(ζ)− T1

[
d · h(X)

]
(ζ)

from a neighborhood of 0 in C 1,α(∂∆,Rn) to C 1,α(∂∆,Rn), and then we
perform a Picard iteration scheme, setting firstly X{0}dc,x,v(ζ) := X0

c,x,v(ζ)
and then inductively

(7.21) X{ν + 1}dc,x,v(ζ) := F
(
X{ν}dc,x,v(ζ)

)
,
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for every integer ν > 0. According to [Tu1996, 29], the sequence(
X{ν}dc,x,v(ζ)

)
ν∈N converges in C 1,α(∂∆) towards the unique solution

Xd
c,x,v(ζ) of (7.18). We want to extract the supplementary information that∣∣∣∣Xd
c,x,v

∣∣∣∣
C 1,α(∂∆)

6 c ·K2 for some positive constant K2, which will play the
rôle of the constant K2 of Lemma 6.12.

By construction (cf. (7.8)) there exists a constant K4 > 0 such that

(7.22)
∣∣∣∣X0

c,x,v

∣∣∣∣
C 2,α(∂∆)

6 c ·K4.

Lemma 7.23. Setting K5 := K1(3 + π1−α)|||T1|||C 1,α(∂∆), if

(7.24) c1 6 min
( ρ1

2K4

,
( 1

22+αK1+α
4 K5

) 1
1+α

)
,

then Xd
c,x,v satisfies

∣∣Xd
c,x,v

(
eiθ

) ∣∣ 6 ρ1 for all eiθ ∈ ∂∆ and there exists
K2 > 0 such that

(7.25)
∣∣∣∣Xd

c,x,v

∣∣∣∣
C 1,α(∂∆)

6 c ·K2.

In fact, it suffices to choose K2 := 2K4.

Proof. Indeed, applying Lemmas 6.4 and 6.9, ifX ∈ C 1,α(∂∆,Rn) satisfies∣∣X(eiθ)
∣∣ 6 ρ1 for all eiθ ∈ ∂∆ and ||X||C 1,α(∂∆) 6 c · 2K4 for all c 6 c1,

where c1 is as in (7.24), we may estimate (remind 0 6 d 6 1):
(7.26)
||F (X)||C 1,α(∂∆) 6

∣∣∣∣X0
c,x,v

∣∣∣∣
C 1,α(∂∆)

+ |||T1|||C 1,α(∂∆) · ||h(X)||C 1,α(∂∆)

6 c ·K4 + |||T1|||C 1,α(∂∆) ·K1(c · 2K4)
2+α(3 + π1−α)

= c · (K4 + c1+α22+αK2+α
4 K5

)

6 c · (K4 + c1+α
1 22+αK2+α

4 K5)

6 c · 2K4.

From the last inequality, it also follows that
∣∣F(

X(eiθ)
)∣∣ 6 ρ1 for all eiθ ∈

∂∆. Consequently, the iteration (7.21) is well defined for all ν ∈ N and from
the inequality (7.26), we deduce that the limit Xd

c,x,v satisfies the desired
estimate

∣∣∣∣Xd
c,x,v

∣∣∣∣
C 1,α(∂∆)

6 c · 2K4. ¤

Corollary 7.27. Under the above assumptions, there exists a constant K6 >
0 such that

(7.28)
∣∣∣∣Xd

c,x,v −X0
c,x,v

∣∣∣∣
C 1,α(∂∆)

6 c2+α ·K6.
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Proof. We estimate
(7.29)∣∣∣∣Xd

c,x,v −X0
c,x,v

∣∣∣∣
C 1,α(∂∆)

6 |||T1|||C 1,α(∂∆) ·
∣∣∣∣h (

Xd
c,x,v

) ∣∣∣∣
C 1,α(∂∆)

6 |||T1|||C 1,α(∂∆) ·K1(c · 2K4)
2+α(3 + π1−α)

6 c2+α ·K5(2K4)
2+α.

so that it suffices to set K6 := K5(2K4)
2+α. ¤

7.30. Smallness of the deformation in C 2-norm. As already mentioned,
the solution Xd

c,x,v(ζ) is in fact C 2,α with respect to ζ and C 2,α−0 with
respect to all variables (d, c, x, v, ζ). We can therefore differentiate twice
Bishop’s equation (7.18). First of all, if X ∈ C 2,α−0(∂∆,Rn), we remind
the commutation relation ∂

∂θ
(TX) = T

(
∂X
∂θ

)
, whence

(7.31)
∂

∂θ
(T1X) = T

(∂X
∂θ

)
,

since T1X = TX −TX(1). We may then compute the first order derivative
of (7.18):
(7.32)
∂

∂θ
Xd
c,x,v

(
eiθ

)− ∂

∂θ
X0
c,x,v

(
eiθ

)
= −T

[
d ·

n∑

l=1

∂h

∂xl

(
Xd
c,x,v

) ∂Xd
l;c,x,v

∂θ

] (
eiθ

)
.

and then its second order partial derivatives ∂2/∂vk∂θ, for k = 1, . . . , n:
(7.33)
∂2Xd

c,x,v

∂vk∂θ
− ∂2X0

c,x,v

∂vk∂θ
= − T

[
d ·

n∑

l1,l2=1

∂2h

∂xl1∂xl2

(
Xd
c,x,v

) ∂Xd
l1;c,x,v

∂vk

∂Xd
l2;c,x,v

∂θ
+

+ d ·
n∑

l=1

∂hj
∂xl

(
Xd
c,x,v

) ∂2Xd
l;c,x,v

∂vk∂θ

]
.

Let now K2 be as in (7.25) and let K3 be as in Lemma 6.12, applied to
Xd
c,x,v(ζ).

Lemma 7.34. If in addition to the inequality (7.24), the constant c1 satisfies

(7.35) c1 6
( 1

2K3|||T |||C α(∂∆)

) 1
1+α

,

then there exists K7 > 0 such that for all d, all c, all x, all v, and for
k = 1, . . . , n:

(7.36)





∣∣∣
∣∣∣∂

2Xd
c,x,v

∂vk∂θ
− ∂2X0

c,x,v

∂vk∂θ

∣∣∣
∣∣∣
C α(∂∆)

6 c2+α ·K7,

∣∣∣
∣∣∣∂

2Xd
c,x,v

∂θ2
− ∂2X0

c,x,v

∂θ2

∣∣∣
∣∣∣
C α(∂∆)

6 c2+α ·K7.
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Proof. We check only the first inequality, the second being similar. In-
troducing for the second line of (7.33) a new simplified notation R :=

−T
[
d ·∑n

l1,l2=1
∂2h

∂xl1
∂xl2

(
Xd
c,x,v

) ∂Xd
l1;c,x,v

∂vk

∂Xd
l2;c,x,v

∂θ

]
and setting further ob-

vious simplifying changes of notation, we can rewrite (7.33) as

(7.37) X d −X 0 = R − T
[
d ·H X d

]
.

Thanks to the inequality
∣∣∣∣Xd

c,x,v

∣∣∣∣
C 1,α(∂∆)

6 c · K2 already established in
Lemma 7.23 and thanks to Lemma 6.12, we know that the vector R ∈
C α(∂∆,Rn) and the matrix H ∈ C 1,α(∂∆,Mn×n(R)) are small:

(7.38)

{
||R||C α(∂∆) 6 c2+α · |||T |||C α(∂∆)K3(K2)

2

||H ||C α(∂∆) 6 c1+α ·K3.

We then rewrite (7.37) under the form

(7.39) X d −X 0 = S − T
[
d ·H (X d −X 0)

]
,

with S := R − T [d ·H X 0]. Using the inequality ||X 0||C α(∂∆) 6 c ·K4

which is a direct consequence of (7.22) and taking (7.38) into account, we
deduce:

(7.40) ||S ||C α(∂∆) 6 c2+α · |||T |||C α(∂∆)

[
K3(K2)

2 +K3K4

]
.

Taking the C α(∂∆) norm of both sides of (7.39), we deduce the estimate

(7.41)

∣∣∣∣X d −X 0
∣∣∣∣

C α(∂∆)
6 c2+α · |||T |||C α(∂∆) [K3(K2)

2 +K3K4]

1− c1+α · |||T |||C α(∂∆)K3

6 c2+α · 2|||T |||C α(∂∆)

[
K3(K2)

2 +K3K4

]
,

where we use (7.35). It suffices to setK7 := 2|||T |||C α(∂∆) [K3(K2)
2 +K3K4].

¤

7.42. Adjustment of the tangent vector. Let v1 ∈ Tp1M1 with |v1| = 1, as
in Lemma 7.12. Coming back to the first family Z0

c,x,v(ζ) defined by (7.8),
we observe that

(7.43)





∂Z0
j;c,0,v1

∂xk
(1) = δjk, j, k = 1, . . . , n,

∂2Z0
j;c,0,v1

∂vk∂θ
(1) = c

∂Ψ

∂θ

(
eiθ

)
δjk, j, k = 1, . . . , n.

From now on, we shall set d = 1 and we shall only consider the family
Z1
c,x,v(ζ). Thanks to the estimates (7.28) and (7.36), we deduce that if c1 is

sufficiently small, then for all c with 0 < c 6 c1, the two Jacobian matrices

(7.44)
(∂Z1

j;c,0,v1

∂xk
(1)

)
16j,k6n

and
(∂2Z1

j;c,0,v1

∂vk∂θ
(1)

)
16j,k6n
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are invertible. It would follow that if set A1
x,v:c(ζ) := Z1

c,x,v1+v(ζ), then
the disc A1

x,v:c(ζ) would satisfy the two rank properties (51) and (61) of
Lemma 7.12. However, the tangency condition (41) would certainly not be
satisfied, because as d varies from 0 to 1, the disc Zd

c,x,v(ζ) undergoes a
nontrivial deformation.

Consequently, for every c with 0 < c 6 c1, we have to adjust the “cone
parameter” v in order to maintain the tangency condition.

Lemma 7.45. For every c with 0 < c 6 c1, there exists a vector v(c) ∈ Rn
such that

(7.46)
∂Z1

c,0,v1+v(c)

∂θ
(1) =

∂Z0
c,0,v1

∂θ
(1) = c · ∂Ψ

∂θ
(1) · v1.

Furthermore, there exists a constant K8 > 0 such that |v(c)| 6 c1+α ·K8.

Proof. Unfortunately, we cannot apply the implicit function theorem, be-
cause the mapping Z1

c,x,v is identically zero when c = 0, so we have to
proceed differently. First, we set

(7.47) C1 :=
∂Ψ

∂θ
(1), and C2 := ||Ψ||C 2(∆).

The constant C2 will be used only in Section 8 below. Choose K8 > 2K6

C1
.

According to the explicit expression (7.8), the set of points

(7.48)
{∂X0

c,0,v1+v

∂θ
(1) ∈ Rn : |v| 6 c1+α ·K8

}

covers a cube in Rn centered at the point
∂X0

c,0,v1

∂θ
(1) of radius c2+α · C1K8.

Thanks to the estimate (7.28), we deduce that the (deformed) set of points

(7.49)
{∂X1

c,0,v1+v

∂θ
(1) ∈ Rn : |v| 6 c1+α ·K8

}

covers a cube in Rn centered at the same point
∂X0

c,0,v1

∂θ
(1), but of radius

(7.50) c2+α · C1K8 − c2+α ·K6 > c2+α ·K6.

Consequently, there exists at least one v(c) ∈ Rn with |v(c)| 6 c1+α · K8

such that (7.46) holds, which completes the proof. ¤
7.51. Construction of the familyA1

x,v:c(ζ). We can now complete the proof
of the main Lemma 7.12. First of all, with Ψ(ζ) as in §7.5, we consider the
composed conformal mapping

(7.52) ζ 7−→ cΨ(ζ) 7−→ i− cΨ(ζ)

i+ cΨ(ζ)
=: Φc(ζ).

The image Φc(ζ) of the unit disc is a small domain contained in ∆ and
concentrated near 1.
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∂∆

1

Φc(∆)

1

i

−i

−1 0

∂∆

Φc 8c

10c

10c

1− 10c

∆

Φc(∆)

∂∆ ∂∆

Fig. 17: A sub-half-disc

More precisely, assuming that c satifies 0 < c 6 c1 with c1 << 1 as in the
previous paragraphs, and taking account of the definition of Ψ(ζ), it can be
checked easily that Φc(1) = 1, that Φc(∂

+∆) is contained in {eiθ ∈ ∂+∆ :
|θ| < 10c}, and that
(7.53)
Φc

(
∆\∂+∆

) ⊂ {ζ ∈ ∆ : |ζ−1| < 8c} ⊂ {ρeiθ ∈ ∆ : |θ| < 10c, 1−10c < ρ < 1}.
the second inclusion being trivial.

We can finally define the desired family of analytic discs, writing the pa-
rameter c after a semi-colon, since we have lost the C 2,α−0-smoothness with
respect to it after the application of Lemma 7.45, and since c will be fixed
afterwards anyway:

(7.54) A1
x,v:c(ζ) := Z1

c,x,v1+v(c)+v

(
Φc(ζ)

)
.

We restrict the variation of the parameters x to |x| 6 c2 and v to |v| 6 c.
Property (41) holds immediately, thanks to the choice of v(c). Proper-
ties (11), (31), (51) and (61) as well as the embedding property in (21)
are direct consequences of the immersive properties (7.44) satisfied by
Z1
c,x,v1+v(c)+v(ζ), using the chain rule and the nonvanishing of the partial de-

rivative ∂Φc

∂θ
(1). The size estimate in (21) follows from (7.25), from (7.28),

from the restriction of the domains of variation of x and of v and from (7.53).
This completes the proof of Lemma 7.12. ¤

§8. GEOMETRIC PROPERTIES OF FAMILIES OF HALF-ATTACHED
ANALYTIC DISCS

8.1. Preliminary. By Lemma 7.12, for every c with 0 < c 6 c1, the family
of half-attached analytic discs A1

x,v:c(ζ) covers a local wedge of edge M1

at p1. However, not only we want the family A1
x,v:c to cover a local wedge

of edge M1 at p1, but we certainly want to remove the point p1 of Proposi-
tion 5.12 by means of the continuity principle. Consequently, in each one
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of the three geometric situations (I1), (I2) and (II) which we have normal-
ized in Lemma 5.37 above, we shall firstly deduce from the tangency condi-
tion (41) of Lemma 7.12 that the (excised) half-boundary A1

0,0:c

(
∂+∆\{1})

is contained in the open side (H1)+ (this is why we have normalized in
Lemma 5.37 the second order terms of the supporting hypersurface H1 in
order that (H1)+ is strictly concave; we also want that A1

0,0:c(∂
+∆\{1}) is

contained in (H1)+ in order to apply the continuity principle). Secondly, we
shall show that for all x with |x| 6 c2, the disc interior Ax,0:c(∆) is con-
tained in the local half-wedge H W +

1 in the cases (I1), (I2) and is contained
in the wedge W2 in case (II).

8.2. Geometric disposition of the discs with respect to H1 and to H W +
1

or to W2. We remember that the positive c1 of Lemmas 7.12, 7.23 and 7.34
was shrunk explicitely, in terms of the constants K1, K2, K3, . . . . In this
section, we shall again shrink c1 a finite number of times, but without men-
tioning all the similar explicit inequalities which will appear. The precise
statement of the main lemma of this section, which is a continuation of
Lemma 7.12, is as follows; whereas we can essentially gather the three cases
in the formal statement of the lemma, it is necessary to treat them separately
in the proof, because the normalizations of Lemma 5.37 differ.

Lemma 8.3. Let M , let M1, let p1, let H1, let v1, let (H1)+, let H W +
1

(or let H W 2) and let a coordinate system z = (z1, . . . , zn) vanishing at
p1 be as in Case (I1), as in Case (I2) or as in Case (II) of Lemma 5.37.
Aa a local one-dimensional submanifold T 1 ⊂M1 transversal to H1 in M1

and passing through p1, choose T1 := {(x1, 0, . . . , 0) + ih(x1, 0, . . . , 0))} in
Case (I1) and T1 := {(0, . . . , 0, xn) + ih(0, . . . , 0, xn))} in Cases (I2) and
(II). For every c with 0 < c 6 c1, let A1

x,v:c(ζ) be the family of analytic discs
satisfying properties (11), (21), (31), (41), (51) and (61) of Lemma 7.12.
Shrinking c1 if necessary, then for every c with 0 < c 6 c1, the following
three further properties hold:

(71) A1
0,0:c

(
∂+∆\{1}) ⊂ (H1)+;

(81) A1
x,0:c

(
∂+∆

)
is contained in (H1)+ for all x such that the point

A1
x,0:c(1) belongs to T 1 ∩ (H1)+;

(91) A1
x,v:c

(
∆\∂+∆

)
is contained in the half-wedge H W +

1 or in the
wedge W2 for all x and all v.

Proof. We treat only Case (I1), the other two cases being similar. Figure 18
just below illustrates properties (71) and (81) and also properties (11), (51)
and (61) of Lemma 7.12.
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M1

M1

x2, . . . , xn−1

x1

v1xn

p1

Fig. 18: View of the family of half boundaries in M1

H1

(H1)− (H1)+

T 1

A1
x,0:c(1)

A1
x,0:c(∂

+∆)

A1
0,v:c(∂

+∆)

A1
0,0:c(∂

+∆)

By construction of A1
x,v:c, if the scaling parameter c1 is small enough, the

disc A1
x,v:c

(
∆

)
is only a slightly deformed small part of the straight complex

lineC·(v1+Jv1), where v1 ∈ Tp1H1 is as in Lemma 7.12. Intuitively speak-
ing, the reason why property (71) holds true then becomes clear: the open set
(H1)+ is strictly concave and the small, almost straight curve A1

0,0:c(∂
+∆)

is tangent to H1 at p1. Concerning (81), when x varies, the small segments
A1
x,0:c(∂

+∆) are essentially translated to the right (inside M1) by the vec-
tor x ∈ Rn. Also, (91) should hold because the half-wedge H W +

1 (or
the wedge W2) is directed by J v1. The next paragraphs will establish these
properties rigorously.

Firstly, let us prove property (71) in Case (I1). According to Lemma 5.37,
the vector v1 is given by (0, 1, . . . , 1) and the side (H1)+ ⊂ M1 is defined
by x1 > g(x′) = −x2

2− · · · − x2
n + ĝ(x′), with ĝ(x′) = o

(|x′|2) by ( 5.40)3.

According to Lemma 6.4, we then have |ĝ(x′)| 6 K9 ·
( ∑n

j=2 x
2
j

)α+2
2 , for

some constant K9 > 0. Since the strictly concave open subset
(
H̃1

)+ of M1

with C 2,α boundary defined by x1 > −x2
1−· · ·−x2

n+K9 ·
( ∑n

j=2 x
2
j

) 2+α
2 is

contained in (H1)+, it suffices to prove property (71) with (H1)+ replaced
by (H̃1)+.

By construction, the disc boundary A0,0:c(∂∆) is tangent at p1 to H1,
hence also to H̃1. Intuitively, it is again clear that the (excised) half-
boundary A0,0:c

(
∂+∆\{1}) should then be contained in the strictly concave

side (H̃1)+, see again Figure 18 above.
To proceed rigorously, we come back to the definition A1

0,0:c(ζ) ≡
Z1
c,0,v1+v(c) (Φc(ζ)), with the tangency condition (7.46) satisfied. First of all,
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denoting v(c) = (v1(c), . . . , vn(c)), we compute the second order deriva-
tives of the similar discs attached to M0:
(8.4)




∂2Z0
1;c,0,v1+v(c)

∂θ2
(1) = c · ∂

2Ψ

∂θ2

(
eiθ

) · v1(c),

∂2Z0
j;c,0,v1+v(c)

∂θ2
(1) = c · ∂

2Ψ

∂θ2

(
eiθ

) · (1 + vj(c)), j = 2, . . . , n.

Using the definition (7.47), the inequality |v(c)| 6 c1+α ·K8 and the second
estimate (7.36), we deduce that

(8.5)





∣∣∣
∂2Z1

1;c,0,v1+v(c)

∂θ2
(1)

∣∣∣ 6 c2+α ·K7 + c2+α · C2K8 =: c2+α · 2K10

∣∣∣
∂2Z1

j;c,0,v1+v(c)

∂θ2
(1)

∣∣∣ 6 c · 2C2, j = 2, . . . , n.

Applying then Taylor’s integral formula F (θ) = F (0) + θ · F ′(0) +∫ θ

0
(θ − θ′) · ∂θ∂θF (θ′) · dθ′ to F (θ) := X1

1;c,0,v1+v(c)

(
eiθ

)
and afterwards

to F (θ) := X1
j;c,0,v1+v(c)

(
eiθ

)
for j = 2, . . . , n, taking account of the tan-

gency conditions
(8.6)
∂X1

1;c,0,v1+v(c)

∂θ
(1) = 0,

∂X1
j;c,0,v1+v(c)

∂θ
(1) = c · C1, j = 2, . . . , n,

(a simple rephrasing of (7.46)) and using the inequalities (8.5), we deduce

(8.7)

{ ∣∣X1
1;c,0,v1+v(c)

(
eiθ

)∣∣ 6 θ2 · c2+α ·K10,∣∣X1
j;c,0,v1+v(c)

(
eiθ

)− θ · c · C1

∣∣ 6 θ2 · c · C2, j = 2, . . . , n.

Recall the equation of (H̃1)+:

(8.8) x1 > g̃(x′) := −x2
2 − · · · − x2

n +K9

( n∑
j=2

x2
j

) 2+α
2

We now claim that if c1 is sufficiently small, then for every θ with 0 < |θ| <
10c, we have

(8.9) X1
1;c,0,v1+v(c)

(
eiθ

)
> g̃

(
X1

2;c,0,v1+v(c)(e
iθ), . . . . . . , X1

n;c,0,v1+v(c)(e
iθ)

)
.

Since Φc(∂
+∆) is contained in {eiθ ∈ ∂+∆ : |θ| < 10c}, this will imply

the inclusion proving (71):

(8.10)

A1
x,v:c

(
∂+∆\{1}) = Z1

c,0,v1+v(c)

(
Φc(∂

+∆\{1})) ⊂
⊂ Z1

c,0,v1+v(c)

({eiθ ∈ ∂+∆ : 0 < |θ| 6 10c})

⊂ (H̃1)+.
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To prove the claim, using (8.7), we get a minoration of the left hand side
of (8.9):

(8.11) X1
1;c,0,v1+v(c)

(
eiθ

)
> −θ2 · c2+α ·K10.

On the other hand, using two inequalities which are direct consequences of
the second line of (8.7), provided that c1 satisfies 10c1 · C2 6 C1

2
, we have:

(8.12)

∣∣X1
j;c,0,v1+v(c)

(
eiθ

)∣∣ 6 |θ| · c · (C1 + |θ| · C2) 6 |θ| · c · 3C1

2
,

[
X1
j;c,0,v1+v(c)

]2 > θ2 · c2 · (C1 − |θ| · C2)
2 > θ2 · c2 · C

2
1

4
,

for j = 2, . . . , n. We deduce the following majoration of the right hand side
of (8.9):

(8.13)

g̃
(
X1

2;c,0,v1+v(c)(e
iθ), . . . . . . , X1

n;c,0,v1+v(c)(e
iθ)

)
=

= −
n∑

j=2

[
X1
j;c,0,v1+v(c)

]2 +K9

( n∑

j=2

[
X1
j;c,0,v1+v(c)(e

iθ)
]2

) 2+α
2

6 −θ2 · c2 · C
2
1

4
(n− 1) + |θ|2+α · c2+α ·

((n− 1)9C2
1

4

) 2+α
2
K9

6 −θ2 · c2
(C2

1

4
(n− 1)− cα ·

((n− 1)9C2
1

4

) 2+α
2
K9

)
.

Thanks to the minoration (8.11) and to the majoration (8.13), in order that
the inequality (8.9) holds for all θ with 0 < |θ| 6 10c, it suffices that the
right hand side of (8.11) be greater than the last line of (8.13). Writing this
(strict) inequality and clearing the factor θ2 · c2, we see that it suffices that

(8.14) −K10 · cα > −
(C2

1

4
(n− 1)− cα ·

((n− 1)9C2
1

4

) 2+α
2
K9

)
,

or equivalently

(8.15) c1 <
( C2

1

4
(n− 1)

K10 +
( (n−1)9C2

1

4

) 2+α
2 K9

) 1
α
.

This completes the proof of property (71).
Secondly, let us prove property (81) in Case (I1). As above, we come

back to the definition A1
x,0:c(ζ) := Z1

c,x,v1+v(c) (Φc(ζ)) and we remind that
A1
x,0:c(1) = Z1

c,x,v1+v(c)(1) = x+ ih(x), which follows by putting d = 1 and
ζ = 1 in (7.18). Thanks to the inclusion Φc(∂

+∆) ⊂ {eiθ ∈ ∂+∆ : |θ| <
10c}, it suffices to prove that the segment Zc,x,v1+v(c)

({
eiθ : |θ| < 10c

})
is

contained in the open side (H̃1)+ ⊂ (H1)+ defined by the inequation (8.8),
if the point x+ih(x) belongs to the transverse half-submanifold T 1∩(H1)+,
namely if x = (x1, 0, . . . , 0) with x1 > 0. In the sequel, we shall denote
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the disc Z1
c,x,v1+v(c)(ζ) by Z1

c,x1,x′,v1+v(c)(ζ), emphasizing the decomposition
x = (x1, x

′) ∈ R× Rn−1, and we shall also use the convenient notation
(8.16)
Z
′1
c,x1,x′,v1+v(c)

(
ρeiθ

)
:=

(
Z1

2;c,x1,x′,v1+v(c)(ρe
iθ), . . . . . . , Z1

n;c,x1,x′,v1+v(c)(ρe
iθ)

)
.

So, we have to show that for all c with 0 < c 6 c1, all x1 with 0 < x1 6 c2

and all θ with |θ| < 10c, then the following strict inequality holds true:

(8.17) X1
1;c,x1,0,v1+v(c)(e

iθ) > g̃
(
X1′
c;x1,0,v1+v(c)(e

iθ)
)
.

First of all, coming back to the family of discs attached to M0, we see by

differentiating (7.8) twice with respect to x1 that
∂2Z0

c,x1,0,v1+v(c)

∂x2
1

(ζ) ≡ 0.
Next, by differentiating twice Bishop’s equation (7.18) with respect to x1

and by reasoning as in Lemma 7.34, we get the estimate

(8.18)
∣∣∣
∣∣∣
∂2Z1

c,x1,0,v1+v(c)

∂x2
1

∣∣∣
∣∣∣
C α(∂∆)

6 c2+α ·K7,

with, say, the same constant K7 > 0 as in Lemma 7.34, after enlarging it
if necessary. Applying then Taylor’s integral formula F (x1) = F (0) + x1 ·
∂x1F (0)+

∫ x1

0
(x1−x̃1)·∂x1∂x1F (x̃1)·dx̃1 to F (x1) := X1

1;c,x1,0,v1+v(c)

(
eiθ

)
,

we deduce the minoration
(8.19)

X1
1;c,x1,0,v1+v(c)

(
eiθ

)
> X1

1;c,0,0,v1+v(c)

(
eiθ

)
+x1·

∂X1
1;c,0,0,v1+v(c)

∂x1

(
eiθ

)
−x2

1·c2+α·K7

2
.

On the other hand, by differentiating Bishop’s equation (7.18) with respect
to x1 at x = 0, the derivative ∂x1x yields the vector (1, 0, . . . , 0) and we
obtain
(8.20)
∂Xc,0,0,v1+v(c)

∂x1

(
eiθ

)
= − T1

[ n∑

l=1

∂h

∂xl

(
X1
c,0,0,v1+v(c)(·)

) ∂X1
l;c,0,0,v1+v(c)

∂x1
(·)

]
(eiθ)+

+ (1, 0, . . . , 0).

Using then (6.13) 2 and (7.25), we deduce from (8.20)

(8.21)

∣∣∣
∣∣∣
∂X1

1;c,0,0,v1+v(c)

∂x1

(·)− 1
∣∣∣
∣∣∣
C α(∂∆)

6 c2+α · |||T1|||C α(∂∆)K2K3,

∣∣∣
∣∣∣
∂X1

j;c,0,0,v1+v(c)

∂x1

(·)
∣∣∣
∣∣∣
C α(∂∆)

6 c2+α · |||T1|||C α(∂∆)K2K3.

Thanks to (8.21) 1, we can work out the minoration (8.19) by replacing the

first order partial derivative
∂X1

1;c,0,0,v1+v(c)

∂x1

(
eiθ

)
> 0 in the right hand side
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of (8.19) by the constant 1, and applying trivial minoration −x2
1 > −x1,

which yields:

(8.22) X1
1;c,x1,0,v1+v(c)

(
eiθ

)
> X1

1;c,0,0,v1+v(c)

(
eiθ

)
+ x1 − x1 · c2+α ·K11,

for some constant K11 > 0. On the other hand, using the inequalities
|∂xj

g̃(x′)| 6 |x′| + K9 · |x′|1+α · (1 + α
2

)
(n − 1)

α
2 for j = 2, . . . , n, us-

ing the estimate (7.25) and using (6.2), we deduce an inequality of the form

(8.23) g̃
(
X

′1
c,x1,0,v1+v(c)(e

iθ)
)

6 g̃
(
X

′1
c,0,0,v1+v(c)(e

iθ)
)

+ x1 · c ·K12,

for some constant K12 > 0. Finally, putting together the two inequal-
ities (8.22) and (8.23), and using the following immediate consequence
of (8.9):

(8.24) X1;c,0,0,v1+v(c)

(
eiθ

)
> g̃

(
X

′1
c,0,0,v1+v(c)(e

iθ)
)
,

valuable for all θ with |θ| < 10c, we deduce the desired inequality (8.17):
(8.25)



X1
1;c,x1,0,v1+v(c)

(
eiθ

)
> X1

1;c,0,0,v1+v(c)

(
eiθ

)
+ x1 − x1 · c2+α ·K11

> g̃
(
X

′1
c,0,0,v1+v(c)(e

iθ)
)

+ x1 − x1 · c2+α ·K11

> g̃
(
X

′1
c,x1,0,v1+v(c)(e

iθ)
)

+ x1 − x1 · c ·K11 − x1 · c ·K12

> g̃
(
X

′1
c,x1,0,v1+v(c)(e

iθ)
)
,

for all x1 with 0 < x1 6 c2, all θ with |θ| < 10c and all c with 0 < c 6 c1,
provided

(8.26) c1 6 1/2

K11 +K12

.

This completes the proof of property (81).

Thirdly, let us prove property (91) in Case (I1). The half-wedge H W +
1

is defined by the n inequalities of the last two lines of (5.38), where a2 +
· · · + an = 1. For notational convenience, we set a1 := 1 and we write the
first inequality defining H W +

1 simply as
∑n

j=1 ajyj > ψ(x, y′).
Because Φc

(
∆\∂+∆

)
is contained in the open sector

{
ρeiθ ∈ ∆ :

|θ| < 10c, 1 − 10c < ρ < 1
}

, taking account of the definition (7.54) of
A1
x,v:c(ζ), in order to check property (91), it clearly suffices to show that

Z1
c,x,v1+v(c)+v

({
ρeiθ ∈ ∆ : 1 − 10c < ρ < 1, |θ| < 10c

})
is contained in

H W +
1 , which amounts to establish that for all x with |x| 6 c2, all v with

|v| 6 c, all ρeiθ with 1− 10c < ρ < 1 and with |θ| < 10c, the following two
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collections of strict inequalities hold true
(8.27)
n∑

k=1

akY
1
j;c,x,v1+v(c)+v

(
ρeiθ

)
> ψ

(
X1
c,x,v1+v(c)+v

(
ρeiθ

)
, Y

′1
c,x,v1+v(c)+v

(
ρeiθ

))
,

Y 1
j;c,x,v1+v(c)+v

(
ρeiθ

)
> ϕj

(
X1
c,x,v1+v(c)+v

(
ρeiθ

)
, Y 1

1;c,x,v1+v(c)+v

(
ρeiθ

))
,

for j = 2, . . . , n, provided c1 is sufficiently small, where we use the nota-
tion (8.16).

We first treat the collection of (n− 1) strict inequalities in the second line
of (8.27). First of all, by differentiating (7.8) twice with respect to θ, we
obtain

(8.28)
∂2Z0

c,x,v1+v(c)+v

∂θ2

(
eiθ

)
= c · ∂

2Ψ

∂θ2

(
eiθ

) · [v1 + v(c) + v] .

Using (7.36)2, we deduce that there exists a constant K13 > 0 such that

(8.29)
∣∣∣
∂2Z1

c,x,v1+v(c)+v

∂θ2

(
eiθ

)∣∣∣ 6 c ·K13.

Using the inequality (6.2), using (8.29), and then taking account of the in-
equalities |θ| < 10c, |x| 6 c2 and |v| < c, we deduce the inequality

(8.30)

∣∣∣
∂Z1

c,x,v1+v(c)+v

∂θ

(
eiθ

)−
∂Z1

c,0,v1+v(c)

∂θ
(1)

∣∣∣ 6 c · (|θ|+ |x|+ |v|)

6 c2 ·K14,

for some constant K14 > 0. On the other hand, differentiating (7.8) with
respect to θ at θ = 0 and applying the inequality (7.28), we obtain

(8.31)
∣∣∣
∂Z1

c,0,v1+v(c)

∂θ
(1)− c · C1 · (0, 1, . . . , 1)

∣∣∣ 6 c2+α ·K6,

where C1 = ∂Ψ
∂θ

(1), as defined in (7.47). We remind that for every C 1 func-
tion Z on ∆ which is holomorphic in ∆, we have i ∂

∂θ
Z(eiθ) = − ∂

∂ρ
Z(eiθ).

Consequently, we deduce from (8.30) the following first (among three) in-
teresting inequality

(8.32)
∣∣∣−

∂Z1
c,x,v1+v(c)+v

∂ρ

(
eiθ

)− c · C1 · (0, i, . . . , i)
∣∣∣ 6 c2 ·K15,

for some K15 > 0. Next, according to the definition (7.8), we have

(8.33)
∂2Z0

c,x,v1+v(c)+v

∂ρ2

(
ρeiθ

)
= c · ∂

2Ψ

∂ρ2

(
ρeiθ

) · (v1 + v(c) + v).

Reasoning as in the proof of Lemma 7.34, we may obtain an inequality
similar to (7.36), with the second order partial derivative ∂2/∂θ2 replaced by
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the second order partial derivative ∂2/∂ρ2. Putting this together with (8.33),
we deduce that there exists a constant K16 > 0 such that

(8.34)
∣∣∣
∂2Z1

c,x,v1+v(c)+v

∂ρ2

(
ρeiθ

)∣∣∣ 6 c · 2K16.

Applying then Taylor’s integral formula F (ρ) = F (1) + (ρ− 1) · ∂ρF (1) +∫ ρ

1
(ρ− ρ̃) · ∂ρ∂ρF (ρ̃) · dρ̃ to the functions F (ρ) := Y 1

k;c,x,v1+v(c)+v

(
ρeiθ

)
for

k = 1, . . . , n, we deduce the second interesting collection of inequalities,
for k = 1, . . . , n:
(8.35)∣∣∣Y 1

k;c,x,v1+v(c)+v

(
ρeiθ

)− Y 1
k;c,x,v1+v(c)+v

(
eiθ

)−

− (ρ− 1) ·
∂Y 1

k;c,x,v1+v(c)+v

∂ρ

(
eiθ

)∣∣∣ 6 (1− ρ)2 · c ·K16,

On the other hand, thanks to the normalizations of the functions ϕj(x, y1)
given in (5.40), we get (increasing possibly K1 > 0) two inequalities:
(8.36)
n∑

k=1

|ϕj,xk
(x, y1)|+ |ϕj,y1(x, y1)| 6 (|x|+ |y1|) ·K1,

∣∣ϕj(x, y1)− ϕj
(
x̃, ỹ1

)∣∣ 6
( |x− x̃|+ |y1 − ỹ1|

) ·
( n∑

k=1

sup
|x|, |y1|6c·K2

|ϕj,xk
(x, y1)|+

+ sup
|x|, |y1|6c·K2

|ϕj,y1(x, y1)|
)
,

for j = 2, . . . , n, provided |x|, |x̃|, |y1|, |ỹ1| 6 c · K2. On the other hand,

computing
∂Z0

c,x,v1+v(c)+v

∂ρ

(
ρeiθ

)
in (7.8), using (7.25), (7.28) and an inequal-

ity of the form (6.2), we deduce that there exists a constant K17 > 0 such
that

(8.37)
∣∣∣Z1

c,x,v1+v(c)+v

(
ρeiθ

)− Z1
c,x,v1+v(c)+v

(
eiθ

)∣∣∣ 6 (1− ρ) · c ·K17.

Finally, using the inequality |Z1
c,x,v1+v(c)+v

(
ρeiθ

)| 6 c·K2 obtained in (7.25),
using the collection of inequalities (8.36) and using the inequality (8.37), we
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may deduce the third (and last) interesting inequality for j = 2, . . . , n:
(8.38)∣∣∣ϕj

(
X1
c,x,v1+v(c)+v(ρe

iθ), Y 1
1;c,x,v1+v(c)+v(ρe

iθ)
)−

− ϕj
(
X1
c,x,v1+v(c)+v(e

iθ), Y 1
1;c,x,v1+v(c)+v(e

iθ)
)∣∣∣ 6

(∣∣∣X1
c,x,v1+v(c)+v(ρe

iθ)−X1
c,x,v1+v(c)+v(e

iθ)
∣∣∣+

+
∣∣∣Y 1

1;c,x,v1+v(c)+v(ρe
iθ)− Y 1

1;c,x,v1+v(c)+v(e
iθ)

∣∣∣
)
·

·
( n∑

k=1

sup
|x|, |y1|6c·K2

∣∣ϕj,xk
(x, y1)

∣∣ + sup
|x|, |y1|6c·K2

∣∣ϕj,y1(x, y1)
∣∣
)

6

6 (1− ρ) · c2 ·K18,

for some constant K18 > 0.
We can now complete the proof of the collection of inequalities in the

second line of (8.27). As before, let c with 0 < c 6 c1, let ρ with
10c < ρ < 1, let θ with |θ| < 10c, let x with |x| 6 c2, let v with |v| 6 c
and let j = 2, . . . , n. Starting with (8.35), using (8.32), using the fact that
Z1
c,x,v1+v(c)+v

(
∂+∆

) ⊂M1 ⊂M and using (8.38), we have

Y 1
j;c,x,v1+v(c)+v

(
ρeiθ

)
>

> Y 1
j;c,x,v1+v(c)+v

(
eiθ

)
+ (ρ− 1) ·

∂Y 1
j;c,x,v1+v(c)+v

∂ρ

(
eiθ

)− (1− ρ)2 · c ·K16 >

> Y 1
j;c,x,v1+v(c)+v

(
eiθ

)
+ (1− ρ) · c · C1 − (1− ρ) · c2 ·K15 − (1− ρ)2 · c ·K16

= ϕj
(
X1

1;c,x,v1+v(c)+v

(
eiθ

)
, Y 1

1;c,x,v1+v(c)+v

(
eiθ

))
+ (1− ρ) · c · C1−

(8.39)
− (1− ρ) · c2 ·K15 − (1− ρ)2 · c ·K16

> ϕj
(
X1

1;c,x,v1+v(c)+v

(
ρeiθ

)
, Y 1

1;c,x,v1+v(c)+v

(
ρeiθ

))
+ (1− ρ) · c · C1−

− (1− ρ) · c2 ·K15 − (1− ρ)2 · c ·K16 − (1− ρ) · c2 ·K18

> ϕj
(
X1

1;c,x,v1+v(c)+v

(
ρeiθ

)
, Y 1

1;c,x,v1+v(c)+v

(
ρeiθ

))
+ (1− ρ) · c · [C1−

−c ·K15 − 10c ·K16 − c ·K18]

> ϕj
(
X1

1;c,x,v1+v(c)+v

(
ρeiθ

)
, Y 1

1;c,x,v1+v(c)+v

(
ρeiθ

))
+ (1− ρ) · c · C1

2
> ϕj

(
X1

1;c,x,v1+v(c)+v

(
ρeiθ

)
, Y 1

1;c,x,v1+v(c)+v

(
ρeiθ

))
,

provided that

(8.40) c1 6 C1/2

K15 + 10K16 +K18

.
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This yields the collection of inequalities in the second line of (8.27).
For the first inequality (8.27), we proceed similarly. Recall that

v1 = (0, 1, . . . , 1), that a1 = 1 and that a2 + · · · + an = 1. Since
Z1
c,x,v1+v(c)+v(∂

+∆) ⊂ M1 ⊂ N1, we have for all θ with |θ| 6 π
2

the
following relation
(8.41)

n∑

k=1

ak Y
1
k;c,x,v1+v(c)+v

(
eiθ

)
= ψ

(
X1
c,x,v1+v(c)+v(e

iθ), Y
′1
c,x,v1+v(c)+v(e

iθ)
)
.

Using that ψ vanishes to order one at the origin by the normalization con-
ditions (5.40) and proceeding as in the previous paragraph concerning the
functions ϕj , we obtain an inequality similar to (8.38):
(8.42)∣∣∣ψ

(
X1
c,x,v1+v(c)+v(ρe

iθ), Y
′1
c,x,v1+v(c)+v(ρe

iθ)
)−

− ψ
(
X1
c,x,v1+v(c)+v

(
eiθ

)
, Y

′1
c,x,v1+v(c)+v(e

iθ)
)∣∣∣ 6 (1− ρ) · c2 ·K19,

for some constant K19 > 0.
As before, let c with 0 < c 6 c1, let ρ with 10c < ρ < 1, let θ with

|θ| < 10c, let x with |x| 6 c2 and let v with |v| 6 c. Using then (8.35),
(8.32), (8.41) and (8.42), we deduce the desired strict inequality

n∑

k=1

ak Y
1
k;c,x,v1+v(c)+v

(
ρeiθ

)
>

n∑

k=1

ak Y
1
k;c,x,v1+v(c)+v

(
eiθ

)
+

+ (1− ρ)
[ n∑

k=1

ak
(−

∂Y 1
k;c,x,v1+v(c)+v

∂ρ

(
eiθ

))]− (1− ρ)2 · c · (
n∑

k=1

ak
)
K16

>
n∑

k=1

ak Y
1
k;c,x,v1+v(c)+v

(
eiθ

)
+ (1− ρ)

[ n∑

j=2

aj · c · C1 −
n∑

k=1

ak · c2 ·K15

]
−

(8.43)
− (1− ρ)2 · c · 2K16

>
n∑

k=1

ak Y
1
k;c,x,v1+v(c)+v

(
eiθ

)
+ (1− ρ) · c · C1−

− (1− ρ) · c2 · 2K15 − (1− ρ)2 · c · 2K16

= ψ
(
X1
c,x,v1+v(c)+v

(
eiθ

)
, Y

′1
c,x,v1+v(c)+v

(
eiθ

))
+

+ (1− ρ) · c · [C1 − c · 2K15 − 10c · 2K16]
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> ψ
(
X1
c,x,v1+v(c)+v

(
ρeiθ

)
, Y

′1
c,x,v1+v(c)+v

(
ρeiθ

))
+

+ (1− ρ) · c · [C1 − c · 2K15 − 10c · 2K16 − c ·K19]

> ψ
(
X1
c,x,v1+v(c)+v

(
ρeiθ

)
, Y

′1
c,x,v1+v(c)+v

(
ρeiθ

))
+ (1− ρ) · c · C1

2
> ψ

(
X1
c,x,v1+v(c)+v

(
ρeiθ

)
, Y

′1
c,x,v1+v(c)+v

(
ρeiθ

))
,

provided c1 6 C1/2
2K15+20K16+K19

. This yields the first inequality of (8.27) and
completes the proof of (91) in Case (I1). ¤

§9. END OF PROOF OF PROPOSITION 1.13: APPLICATION OF THE
CONTINUITY PRINCIPLE

9.1. Preliminary. In this section, we complete the proof of Proposi-
tion 5.12, hence the proof of Theorem 3.19, hence also the proof of the
main Proposition 1.13 (at last!).

Translating M1 inside M , we will introduce a supplementary small real
parameter u, getting a family A1

x,v,u:c(ζ) of analytic discs partially attached
to the translate M1

u . Applying the continuity principe to this family of discs,
we shall show that, in Cases (I1) and (I2), there exists a local wedge Wp1 of
edge M at p1 to which O

(
Ω ∪ H W +

1

)
extends holomorphically; in Case

(II), there will exist a whole (small) neighborhood ωp1 of p1 in Cn to which
O

(
Ω∪W2

)
extends holomorphically. To organize well this last main step of

the proof of Proposition 5.12, we shall consider jointly Cases (I1), (I2) and
then afterwards Case (II) separately.

9.2. Translations of M1 in M . According to Lemma 5.37, in Case (I1),
the one-codimensional submanifold M1 ⊂ M is given by the equations
y′ = ϕ′(x, y1) and x1 = g(x′). If u ∈ R is a small real parameter, we may
define a “translation” M1

u of M1 in M by the n equations

(9.3) M1
u : y′ = ϕ′(x, y1), x1 = g(x′) + u.

Clearly, we have M1
u ⊂ (M1)+ if u > 0 and M1

u ⊂ (M1)− if u < 0.
We may perturb the family of analytic discs Zd

c,x,v(ζ) half-attached to M1

satisfying Bishop’s equation (7.18) by requiring that it is attached to M1
u .

Thanks to the stability under perturbation of the solutions to Bishop’s equa-
tion, we then obtain a new family of analytic discs Zd

c,x,v,u(ζ) which is half-
attached to M1

u and which is of class C 2,α−0 with respect to all variables
(c, x, v, u, ζ). For u = 0, this solution coincides with the family Zd

c,x,v(ζ)
constructed in §7.13. Using a similar definition as in (7.54), namely setting
A1
x,v,u:c(ζ) := Z1

c,x,v1+v(c)+v,u

(
Φc(ζ)

)
, we obtain a new family of analytic

discs which coincides, for u = 0, with the family A1
x,v:c(ζ) of Lemmas 7.12

and 8.3.
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In Case (I2), taking account of the normalizations stated in Lemma 5.37,
we may also construct a similar family of analytic discs A1

x,v,u:c(ζ). From
now on, we fix the scaling parameter c with 0 < c 6 c1, so that the nine
properties (11) to (91) of Lemmas 7.12 and 8.3 are satisfied by A1

x,v,0:c(ζ).

9.4. Definition of a local wedge of edge M at p1 in Cases (I1) and (I2).
First of all, in Cases (I1) and (I2), we restrict the variation of the parame-
ter v to a certain (n − 2)-dimensional linear subspace V2 of Tp1Rn ' Rn
as follows. By hypothesis, the vector v1 does not belong to the char-
acteristic direction Tp1M

1 ∩ T cp1M , so the real vector space (R · v1) ⊕(
Tp1M

1 ∩ T cp1M
) ⊂ Tp1M

1 is 2-dimensional. We choose an arbitrary
(n − 2)-dimensional real vector subspace V2 ⊂ Tp1M

1 which is a sup-
plementary in Tp1M

1 to (R · v1) ⊕
(
Tp1M

1 ∩ T cp1M
)

and we shall let the
parameter v vary only in V2. Also, we choose a local (n − 1)-dimensional
submanifold X1 ⊂M1 passing through p1 with R · v1 ⊕ Tp1X1 = Tp1M

1.
From the rank properties (51) and (61) of Lemma 7.12 and from the def-

initions of V2 and of X1, it may then be verifed (as in [MP1999, MP2002])
that, for ε > 0 small enough with ε << c2, the mapping

(9.5)
(
x, v, u, ρ, θ

) 7−→ A1
x,v,u:c

(
ρ eiθ

)

is a one-to-one immersion37 from the open set
{
(x, v, u, ρ) ∈ X1×V2×R×

R× R : |x| < ε, |v| < ε, |u| < ε, 1− ε < ρ < 1, |θ| < ε
}

onto its image
(9.6)
Wp1 :=

{
A1
x,v,u:c

(
ρeiθ

) ∈ Cn : (x, v, u, ρ, θ) ∈ X1 × V2 × R× R× R,

|x| < ε, |v| < ε, |u| < ε, 1− ε < ρ < 1, |θ| < ε
}
,

which is a local wedge of edge M at (p1, Jv1), with Wp1 ∩M = ∅.
Let the singularity C with p1 ∈ C and C\{p1} ⊂ (H1)−, let the neigh-

borhood Ω of M\C in Cn, let the half-wedge H W +
p1

be as in Proposi-
tion 5.12, and let the sub-half-wedge H W +

1 ⊂ H W +
p1

be as in §5.14 and
Lemma 5.37. In Cases (I1) and (I2), we shall prove that a (sufficiently thick)
part of the envelope of holomorphy of Ω ∪H W +

1 contains the wedge Wp1

and is schlicht over it.

9.7. Boundaries of analytic discs. Since we want to apply the continuity
principle, we must verify that most discs A1

x,v,u:c(ζ) have their boundaries in
Ω ∪ H W +

1 . To this aim, we decompose the boundary ∂∆ in three closed

37This property will be crucial to insure uniqueness of the holomorphic extension, when
we apply the continuity principle in Lemma 9.16.
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parts ∂∆ = ∂1∆ ∪ ∂2∆ ∪ ∂3∆, where

(9.8)





∂1∆ :=
{
eiθ ∈ ∂∆ : |θ| 6 π/2− ε

} ⊂ ∂+∆,

∂2∆ :=
{
eiθ ∈ ∂∆ : π/2 + ε 6 |θ| 6 π

} ⊂ ∂−∆,

∂3∆ :=
{
eiθ ∈ ∂∆ : π/2− ε 6 |θ| 6 π/2 + ε

} ⊂ ∂∆,

where ε with 0 < ε << c2 is as in §9.4 just above. This decomposition is
illustrated in the left Figure 19 below. Next, we observe that the two points
A1

0,0,0:c(i) andA1
0,0,0:c(−i) belong to (H1)+ ⊂M\C ⊂ Ω, hence there exists

a fixed open neighborhood of these two points which is contained in Ω. We
shall denote by ω3 such a (disconnected) neighborhood, for instance the
union of two small open polydiscs centered at these two points. To proceed
further, we need a crucial geometric information about the boundaries of the
analytic discs A1

x,v,u:c(ζ) with u 6= 0.

Lemma 9.9. In Cases (I1) and (I2), after shrinking ε > 0 if necessary, then

(9.10) A1
x,v,u:c (∂∆) ⊂ Ω ∪H W +

1 ,

for all x with |x| < ε, for all v with |v| < ε and for all nonzero u 6= 0 with
|u| < ε.

Proof. Firstly, since A1
0,0,0:c(±i) ∈ ω3, it follows just by continuity of

the family A1
x,v,u:c(ζ) that, after possibly shrinking ε > 0, the closed arc

A1
x,v,u:c

(
∂3∆

)
is contained in ω3, for all x with |x| < ε, for all v with

|v| < ε and for all u with |u| < ε. Secondly, since A1
0,0,0:c(∂

2∆) ⊂
A1

0,0,0:c

(
∂−∆\{i,−i}) ⊂ H W +

1 , then by property (91) of Lemma 8.3, it
follows just thanks to continuity of the family A1

x,v,u:c(ζ) that, after possibly
shrinking ε > 0, the closed arc A1

x,v,u:c

(
∂2∆

)
is contained in H W +

1 , for all
x with |x| < ε, for all v with |v| < ε and for all u with |u| < ε. Thirdly, it
follows from the inclusion A1

x,v,u:c

(
∂1∆

) ⊂ A1
x,v,u:c

(
∂+∆

) ⊂ M1
u and from

the inclusion M1
u ⊂ Ω for all u 6= 0 that, after possibly shrinking ε > 0, the

closed arc A1
x,v,u:c

(
∂1∆

)
is contained in Ω, for all x with |x| < ε, for all v

with |v| < ε and for all u with |u| < ε and u 6= 0. ¤
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Fig. 19: Decomposition of ∂∆ and isotopies of the analytic discs Ax,v,u:c(ζ)
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9.11. Analytic isotopies. Following [Me1997], two analytic discs A′, A′′ ∈
O(∆,Cn) ∩ C 1(∆) which are both embeddings of ∆ into Cn are said to
be analytically isotopic if there exists a C 1 family of embedded analytic
discs Aτ ∈ O(∆,Cn) ∩ C 1(∆), τ ∈ [0, 1], with A0 = A′ and A1 = A′′.
If D ⊂ Cn is a domain, a disc A′ is analytically isotopic to a point with
boundaries inside D if A′′

(
∆

) ≡ p′′ ∈ D is a constant disc, if each Aτ is
embedded, for 0 6 τ < 1, and if Aτ (∂∆) ⊂ D for 0 6 τ 6 1.

In Case (I1), we fix some x0 = (x1;0, 0, . . . , 0) ∈ Rn with 0 < x1;0 < ε.
Then A1

x0,0,0:c(1) = x0 + ih(x0) belongs to T 1 ∩ (H1)+. Analogously, in
Cases (I2), we fix some x0 = (0, . . . , 0, xn;0) ∈ Rn with 0 < xn;0 < ε.
Then in this second case, the point A1

x0,0,0:c(1) = x0 + ih(x0) also be-
longs to T 1 ∩ (H1)+. We fix this reference disc A1

x0,0,0:c(ζ), which satisfies
Ax0,0,0:c(∂

+∆) ⊂ (H1)+.

Lemma 9.12. In Cases (I1) and (I2), every disc A1
x,v,u:c(ζ) with |x| < ε,

|v| < ε, |u| < ε and u 6= 0 is analytically isotopic to the disc A1
x0,0,0:c(ζ),

with the boundaries of the analytic discs of the isotopy being all contained
in Ω∪H W +

1 . The same property is enjoyed by every disc A1
x,v,0:c such that

A1
x,v,0:c(∂

+∆) ⊂ (H1)+.
Furthermore, A1

x0,0,0:c

(
∆

) ⊂ Ω ∪ H W +
1 , hence A1

x0,0,0:c is analytically
isotopic to a point with boundaries inside Ω∪H W +

1 (just shrink its radius).
Consequently, all discs A1

x,v,u:c with u 6= 0 and all discs A1
x,v,0:c with

A1
x,v,0:c(∂

+∆) ⊂ (H1)+ are analytically isotopic to a point with boundaries
inside Ω ∪H W +

1 .

Proof. Since {u = 0} is a hyperplane of the whole parameter space, there
exists a C 2,α−0 curve τ 7→ (x(τ), v(τ), u(τ)) in the parameter space which
joins a given arbitrary point (x∗, v∗, u∗) with u∗ 6= 0 to the point (x0, 0, 0)
without meeting the hyperplane {u = 0}, except at its endpoint (x0, 0, 0).
According to the previous Lemma 9.9, each boundary A1

x(τ),v(τ),u(τ):c(∂∆)

is then automatically contained in Ω ∪H W +
1 .
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Also, if A1
x,v,0:c(∂

+∆) ⊂ (H1)+, whence in particular A1
x,v,0:c(1) =

x + ih(x) ∈ (H1)+, we first isotope A1
x,v,0:c to A1

x,0,0:c just by moving in
the v-parameter space along straight segment [0, v] . Thanks to the strong
convexity of (H1)− and to the almost straighteness of the half boundaries
(Figure 18) which rotate slightly as v′ ∈ [0, v] varies, the half boundary
A1
x,v′,0:c(∂

+∆) stays in (H1)+, while the remainder part of the boundary
A1
x,v′,0:c

(
∂−∆\{±i}) stays in H W +

1 . Then A1
x,0,0:c is trivially isotopic to

A1
x0,0,0:c.
Finally, since A1

x0,0,0:c(1) belongs to T 1 ∩ (H1)+, property (81) of
Lemma 8.3 insures that A1

x0,0,0:c

(
∂+∆

)
is contained in (H1)+, hence in Ω.

Then property (91) says that A1
x0,0,0:c(1)

(
∆\∂+∆

)
is contained in H W +

1 ,
which completes the proof. ¤
9.13. holomorphic extension to a local wedge of edge M at p1. In Cases
(I1) and (I2), we define a C 2,α−0 connected hypersurface of Wp1:

(9.14)
Mp1 :=

{
A1
x,v,0:c

(
ρeiθ

)
: (x, v, ρ, θ) ∈ X1 × V2 × R× R,

|x| < ε, |v| < ε, 1− ε < ρ < ε, |θ| < ε
}
,

together with a proper subset of Mp1:
(9.15)
Cp1 :=

{
A1
x,v,0:c

(
ρeiθ

)
: (x, v, ρ, θ) ∈ Rn × V2 × R× R,

A1
x,v,0:c

(
∂+∆

) 6⊂ (H1)+, |x| < ε, |v| < ε, 1− ε < ρ < ε, |θ| < ε
}
.

M M

Cn

M1 p1

Fig. 20: The proper closed subset Cp1 of the hypersurface Mp1 ⊂ Wp1

Wp1

ΩΩ

Cp1

H W +
1

Mp1

We can now state the main lemma of this section, completing the proof of
Proposition 5.12.

Lemma 9.16. In Cases (I1) and (I2), after possibly shrinking Ω in a
small neighborhood of p1 and after possibly shrinking ε > 0, the set
Wp1 ∩

[
Ω ∪H W +

1

]
is connected and for every holomorphic function f ∈
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O
(
Ω ∪H W +

1

)
, there exists a holomorphic function F ∈ O

(
Ω ∪H W +

1 ∪
Wp1

)
such that F |Ω∪H W +

1
= f .

Proof. Remind that ε << c2 and remind that the wedge Wp1 with Wp1∩M =
∅ in the two cases is of size O(ε). Since the singularity C is contained in
(H1)−∪{p1} ⊂M1, its complementM\C is locally connected near p1. The
half-wedge H W +

1 defined in Lemma 5.37 by simple inequalities is of size
O(δ1). If ε << δ1, after shrinking Ω if necessary in a smal neighborhood of
p1 whose size is O(ε), it follows that we can assume that Wp1∩

[
Ω ∪H W +

1

]
is connected.

Let f be an arbitrary holomorphic function in O
(
Ω∪H W +

1

)
. Thanks to

the isotopy Lemma 9.12, applying the continuity principle ([Me1997]), we
deduce that f extends holomorphically to a (very, very thin) neighborhood
in Cn of every disc A1

x,v,u:c

(
∆

)
with u 6= 0 and also, to neighborhood in Cn

of every disc A1
x,v,0:c

(
∆

)
such that A1

x,v,0:c(∂
+∆) ⊂ (H1)+.

Using the fact that the mapping (9.5) is one-to-one onto Wp1 , we deduce
that f extends uniquely at all such points A1

x,v,u:c

(
ρeiθ

) ∈ Wp1 simply by
means of Cauchy’s formula:

(9.17) f
(
A1
x,v,u:c(ρe

iθ)
)

:=

∫

∂∆

f
(
A1
x,v,u:c(ζ̃)

)

ζ̃ − ρeiθ
dζ̃.

Consequently, f extends holomorphically and uniquely to the domain
Wp1\Cp1 . Let F ∈ O

(
Wp1\Cp1

)
denote this holomorphic extension. Since

Wp1 ∩
[
Ω ∪H W +

1

]
is connected, it follows that [Wp1\Cp1 ]∩

[
Ω ∪H W +

1

]
is also connected. From the principle of analytic continuation, we de-
duce that there exists a well-defined function, still denoted by F , which
is holomorphic in [Wp1\Cp1 ] ∪

[
Ω ∪H W +

1

]
and which extends f , namely

F |Ω∪H W +
1

= f .
We remind that A1

0,0,0:c(∂
+∆) is tangent to (H1)− at p1. By continu-

ity, for small enough ε, it follows that A1
x,v,u:c(∂

+∆) ∩ C is contained in
A1
x,v,u:c

({
eiθ : |θ| 6 π

4

})
for all |x| < ε, |v| < ε, |u| < ε. Thus

A1
x,v,u:c(∂

+∆)∩Ω is always nonempty. The C 2,α−0 hypersurface Mp1 ⊂ Wp1

is foliated by small pieces of analytic discs. Each such piece is necessarily
contained in a single CR orbit of Mp1 . The residual singularity of the holo-
morphic function F can only be C ′

p1
:= Cp1\Ω. Since A1

x,v,u:c

(
∂+∆\{eiθ :

|θ| 6 π
4

})
is contained in Ω, it follows that C ′

p1
⊂ Mp1 cannot contain any

CR orbit of Mp1 . According to Lemma 2.10 of [MP1999], F then extends
holomorphically and uniquely through C ′

p1
.

The proofs of Lemma 9.16 and of Proposition 5.12 in Cases (I1) and (I2)
are complete. ¤
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9.18. End of proof of Proposition 5.12 in Case (II). According to
Lemma 5.37, in Case (II), the one-codimensional totally real submanifold
M1 ⊂M is given by the equations y′ = ϕ′(x, y1) and xn = g(x′′). If u ∈ R
is a small real parameter, we may define a “translation” M1

u of M1 in M by
the equations

(9.19) y′ = ϕ′(x, y1), xn = g
(
x′′

)
+ u.

Similarly as in §9.2, we may construct a family of analytic discs A1
x,v,u:c(ζ)

half-attached to M1
u . We then we fix a small scaling parameter c with 0 <

c 6 c1 so that properties (11) to (91) of Lemmas 7.12 and 8.3 hold true for
A1
x,v,0:c.
We restrict the variation of the parameter v to an arbitrary (n − 1)-

dimensional subspace V1 of Tp1M
1 ' Rn which is supplementary to the

real line R · v1 in Tp1M
1 (this makes a difference with §9.4). Also, we

choose a local (n− 1)-dimensional submanifold X1 ⊂M1 passing through
p1 with R · v1 ⊕ Tp1X1 = Tp1M

1. If ε > 0 is small enough with ε << c2,
then for every fixed u, the mapping

(9.20) (x, v, u, ρ) 7−→ A1
x,v,u:c(ρ)

is a one-to-one immersion from the open set {(x, v, ρ) ∈ Rn×V1×R×R :
|x| < ε, |v| < ε, 1− ε < ρ < 1} into Cn onto its image
(9.21)

W 1
u :=

{
A1
x,v,u:c

(
ρeiθ

) ∈ Cn : (x, v, ρ) ∈ Rn × R× R× R,

|x| < ε, |v| < ε, 1− ε < ρ < 1, |θ| < ε
}

is a local wedge of edge M1
u . Clearly, this wedge W 1

u is C 2,α−0 with respect
to u.

Using the fact that in Case (II) we have

(9.22)
∂A1

0,0,0:c

∂θ
(1) = v1 = (1, 0, . . . , 0) ∈ Tp1M1 ∩ T cp1M,

one can prove that Lemma 9.9 holds true with H W +
1 replaced by W2

in (9.10) and also that Lemma 9.12 holds true, again with H W +
1 re-

placed by W2. Similarly as in the proof of Lemma 9.16, applying then
the continuity principle and using the fact that the mapping (9.20) is one-
to-one, after possibly shrinking Ω in a neighborhood of p1, and shrinking
ε > 0, we deduce that for each u 6= 0, there exists a holomorphic function
F ∈ O

(
Ω ∪W2 ∪W 1

u

)
with F

∣∣
Ω∪W2

= f .
To conclude, it suffices to observe that for every fixed small u with −ε <

< u < 0, the wedge W 1
u contains in fact a neighborhood ωp1 of p1 in Cn

(the reader may draw a figure).
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The proofs of Proposition 5.12 and of Theorem 3.19 are complete now.
¤

9.23. End of proof of Proposition 1.13. In order to derive Proposition 1.13
from Theorem 3.19, we now remind the necessity of supplementary argu-
ments about the stability of our constructions under deformation.

Coming back to the strategy developped in §3.16, we had a first wedge W1

attached toM\Cnr. Using a partition of unity, we introduce a one-parameter
C 2,α family of generic submanifolds Md, d ∈ R, d > 0, with M0 ≡ M ,
with Md containing Cnr and with Md\Cnr contained in W1. In the proof of
Theorem 3.19, thanks to this deformation, the wedge W1 was replaced by a
neighborhood Ω of M\Cnr in Cn.

In Sections 4 and 5, we constructed a semi-local half-wedge (H W +
γ )d

attached to a one-sided neighborhood of (M1)d in Md along a characteristic
segment γd of Md. Now, we crucially claim that by arranging well this de-
formation Md, we may achieve that the geometric extent of this semi-local
half-wedge is uniform as d > 0 tends to zero, namely (H W +

γ )d tends to a
nonvoid semi-local half-wedge (H W +

γ )0 attached to a one-sided neighbor-
hood of M1 in M along γ, as d tends to zero. Indeed, in Section 4 we have
constructed a family of analytic discs (Zt,χ,ν:s(ζ))

d (cf. (4.61)) which covers
the half-wedge (H W +

γ )d. Thanks to the stability of Bishop’s equation un-
der C 2,α perturbations, the deformed family (Zt,χ,ν:s(ζ))

d =: Z d
t,χ,ν:s(ζ) is

also of class C 2,α−0 with respect to the parameter d. We remind that for ev-
ery d > 0, the family Z d

t,χ,ν:s(ζ) was in fact constructed by means of a family
Ẑd
r0,t,τ,χ,ν:s

(ζ) obtained by solving Bishop’s equation (4.40), where we now
add the parameter d in the function Φ′. In order to construct the semi-local
attached half-wedge, we have used the rank property stated in Lemma 4.34.
This rank property relied on the possibility of deforming the disc Ẑr0,t:s(ζ)
near the point Ẑd

r0,t:s
(−1) in the open neighborhood Φs(Ω) ≡ Φs

(
W1

)
of

Φs

(
Md

)
. As d > 0 tends to zero, if Md tends to M , the size of the neigh-

borhood Φs

(
W1

)
shrinks to zero, hence it could seem that the we have no

control on the semi-local attached half-wege (H W +
γ )d as d > 0 tends to

zero. Fortunately, since the points Ẑd
r0,0:s(−1) in a neighborhood of which

we introduce the deformations (4.30) stay at a uniformly positive distance
δ > 0 from the characteristic segment γ, we may choose the deformation
Md of M to tend to M as d tends to zero only in some thin, elongated tubu-
lar neighborhood of γ, whose width is small in comparison to this distance
δ. By smoothness with respect to d of the family Z d

t,χ,ν:s(ζ), we then deduce
that the semi-local half-wedge (H W +

γ )d tends to a nontrivial semi-local
half-wedge (H W +

γ )0 as d tends to zero, which proves the claim.
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Next, again thanks to the stability of Bishop’s equation under perturba-
tions, all the constructions of Sections 5, 6, 7, 8 and 9 above may be achieved
to depend in a C 2,α−0 way with respect to d, hence uniformly. Importantly,
we observe that if the deformationMd is chosen so thatMd tends toM only
in a small neighborhood of p1 of size << ε, then the shrinking of ε which
occurs in Lemma 9.9 may be achieved to be uniform as d tends to zero, be-
cause the part Ax,v,u:c(∂3∆) stays in a uniform compact subset of Ω, as d
tends to zero. At the end of the proof of Proposition 5.12, we then obtain
univalent holomorphic extension to a local wedge W d

p1
of edge Md or to a

neighborhood ωdp1 of Md in Cn, and they tend smoothly to a wedge W 0
p1

of
edge M at p1 or to a neighborhood ωp1 of p1 in Cn.

The proof of Proposition 1.13 is complete. ¤

§10 W -REMOVABILITY IMPLIES Lp-REMOVABILITY

10.1. Preliminary. From [Me1994, Jö1996], we remind that ifM ′ is a glob-
ally minimal C 2,α generic submanifold of Cn of CR dimension m > 1 and
of codimension d = n − m > 1, there exists a wedge W ′ attached to M ′

constructed by means of analytic discs glued progressively to M ′ and to
some intermediate conelike submanifolds attached to M ′. Classically, one
deduces that continuous CR functions onM ′ extend holomorphically to W ′,
and continuously to M ′ ∪W ′.

For Lp
loc,CR functions, some supplementary, routine, though not straight-

forward, work has to be achieved. First of all, on a C 2 generic submanifold
M ′ of Cn, the approximation theorem states that every Lp

loc,CR function on
M ′ is locally the limit, in the Lp norm, of a sequence of polynomials (cf.
Lemma 3.3 in [Jö1999b]). In the case where M ′ is a hypersurface, studied
in [Jö1999b], the wedge is in fact a one-sided neighborhood of M ′, which
we will denote by S ′. The theory of Hardy spaces on the unit disc transfers
to parameterized families of small analytic discs glued to M ′, provided the
boundaries of these discs foliate an open subset of M ′. Using Carleson’s
imbedding theorem and the Lp approximation theorem, Jöricke established
in [Jö1999b] that every Lp

loc,CR function defined in a globally minimal C 2

hypersurface M ′ extends holomorphically in the Hardy space Hp(S ′) of
holomorphic functions defined in S ′ which enjoy Lp boundary values on
M ′. In [Po2000, Po2004], the theory was built in higher codimension, in-
troducing and studying the Hardy space Hp(W ′) (see also [29]).

10.2. Lp-removability of nullsets. Let us say that a subset Φ of a C 2,α

generic submanifold is stably W -removable if it is W -removable with re-
spect to every compactly supported sufficiently small C 2,α deformation Md
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of M leaving Φ fixed. Just by abstract nonsense, the singularity C of Propo-
sition 1.13 (in which it only remains to show L

p-removability) is seen to be
stably removable.

Proposition 10.3. Let M be a C 2,α generic submanifold of Cn of CR di-
mension m > 1 and of codimension d = n − m > 1, hence of dimension
(2m+ d), let Φ ⊂M be a nonempty proper closed subset whose (2m+ d)-
dimensional Hausdorff measure is equal to zero. Assume that M\Φ is glob-
ally minimal and let W be a wedge attached to M\Φ such that every func-
tion in Lp

loc(M) ∩ CR(M\Φ) extends holomorphically as a function in the
Hardy space Hp(W ). If Φ is stably W -removable, then Φ is Lp-removable.

Let us summarize informally the arguments. Fix f ∈ Lp
loc(M) ∩

CR(M\Φ). As soon as wedge extension over points of Φ is known, we
may deform M over Φ in the wedgelike domain, thus erasing the singularity
Φ. We get a Lp

loc,CR function fd on the deformed manifold Md, without sin-
gularities anymore. As a crucial fact, when the deformation Md tend to M ,
we shall have a uniform Lp control of the extension fd, and this will insure
that fd tends to a CR extension of f through Φ.

Proof. We claim that Φ is Lp-removable for every p with 1 6 p 6 ∞
if and only if Φ is L1-removable. Indeed, suppose that for every func-
tion f ∈ L1

loc(M) ∩ CR(M\Φ), and every smooth (n,m − 1)-form with
compact support, we have

∫
M
f · ∂ψ = 0. Since Lp

loc is contained in
L1
loc (by Hölder’s inequality), this property holds in particular for every

g ∈ Lp
loc(M) ∩ CR(M\Φ), hence Φ is Lp-removable, as claimed.

Let f ∈ L1
loc,CR(M\Φ) ∩ L1(M) be an arbitrary function. The goal is

to show that f is in fact CR on Φ. Of course, it suffices to show that f is
CR locally at every point of Φ. So, we fix an arbitrary point q ∈ Φ. If ψ
is an arbitrary (n,m− 1)-form of class C 1 supported in a sufficiently small
neighborhood of q, we have to prove that

∫
M
f · ∂ψ = 0.

We also fix a small open polydisc Vq centered at q. We first claim that
we can assume that the L1

loc function f is holomorphic in a neighborhood of
(M\Φ) ∩ Vq in Cn. Indeed, since M\Φ is globally minimal, there exists a
wedge W attached to M\Φ such that every L1

loc,CR function on M\Φ, and
in particular f , extends holomorphically as a function which belongs to the
Hardy space H1(W ). By slightly deforming (M\Φ) ∩ Vq into W along
Bishop discs glued to M\Φ, keeping Φ fixed, using the theory of Hardy
spaces in wedges developed in [Po1997, MP1999, Po2000, Po2004, 29], we
may obtain the following deformation result with L1 control.

Proposition 10.4. For every ε > 0, there exists a small C 2,α−0 deformation
Md of M with support contained in V q and there exists a function fd ∈
L1
loc(M

d) ∩ CR (
Md\Φ)

, such that
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(1) Md ∩ Vq ⊃ Φ ∩ Vq 3 q.

(2)
(
Md\Φ) ∩ Vq ⊂ W ∩ Vq.

(3) fd is holomorphic in the neighborhood W ∩ Vq of (Md\Φ) ∩ Vq in
Cn.

(4) M ∩ Vq and Md ∩ Vq are graphed over the same (2m + d) linear
real subspace and

∣∣∣∣Md ∩ Vq −M ∩ Vq
∣∣∣∣

C 2,β 6 ε.

(5) The volume forms of M ∩ Vq and of Md ∩ Vq may be identified and∣∣f − fd
∣∣
L1(M∩Vq)

6 ε.

Let us be more explicit about conditions (4) and (5). Without loss of gen-
erality, we can assume that in coordinates (z, w) = (x + iy, u + iv) ∈
Cm × Cd centered at q, we have TqM = {v = 0}, hence the generic
submanifolds M and Md are represented locally by vectorial equations
v = ϕ(x, y, u) and v = ϕd(x, y, u), where ϕ and ϕd are defined in the real
cube I2m+d(2ρ1), for some small ρ1 > 0 and that Vq is the polydisc ∆n(ρ1)
of radius ρ1. Then condition (4) simply means that ||ϕd−ϕ||C 2(I2m+d(ρ1)) 6 ε
and condition (5) is clear if we choose dxdydu as the volume form on M
and on Md.

Suppose that for every ε > 0 and for every deformation Md, we can show
that the function L1

loc function fd on Md is in fact CR over Md ∩ ∆n(ρ1).
Then we claim that f is CR in a neighborhood of q.

Indeed, to begin with, let us denote by L1, . . . , Lm a basis of (0, 1) vector
fields tangent to M , having coefficients depending on the first order deriva-
tives of ϕ. More precisely, in slightly abusive matrix notation, we can choose
the basis L := ∂

∂z̄
+ 2(i − ϕu)

−1 ϕz̄
∂
∂w̄

. Let us denote this basis vectorially
by L = ∂

∂z̄
+ A ∂

∂w̄
. To compute the formal adjoint of L with respect to the

local Lebesgue measure dxdydu on M , we choose two C 1 functions ψ, χ
of (x, y, u) with compact support in I2m+d(ρ1). Then the integration by part∫
L(ψ) · χ · dxdydu =

∫
ψ · TL(χ) · dxdydu yields the explicit expression

TL(χ) := −L(χ)− Aw̄ · χ of the formal adjoint of L.
It follows immediately that if we denote by T (L

d
) the formal adjoint of

the basis of CR vector fields tangent to Md, then we have an estimate of the
form ||T (L

d
)− T (L)||C 1 6 C · ε, for some constant C > 0. Recall that fd is

assumed to be CR in Md∩∆n(ρ1). Equivalently, we have
∫
fd · T (L

d
)(ψ) ·

dxdydu = 0 for every C 1 function ψ with compact support in the cube
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I2m+d(ρ1). Then we deduce that (some explanation follows)
(10.5)∣∣∣∣

∫
f · TL(ψ) · dxdydu

∣∣∣∣ =

∣∣∣∣
∫ [

f · TL(ψ)− fd · T (L
d
)(ψ)

]
· dxdydu

∣∣∣∣

6
∣∣∣∣
∫ [

f · TL(ψ)− f · T (L
d
)(ψ) + f · T (L

d
)(ψ)− fd · T (L

d
)(ψ)

]
· dxdydu

∣∣∣∣

6 C1(ψ) · ε ·
∫

I2m+d(ρ1)

|f | · dxdydu+ C2(ψ) ·
∫

I2m+d(ρ1)

|f − fd| · dxdydu

6 C(ψ, f, ρ1) · ε,
taking account of property (5) of Proposition 10.4 for the passage from the
third to the fourth line, where C(ψ, f, ρ1) is a positive constant. As ε was
arbitrarily small, it follows that

∫
f · TL(ψ) · dxdydu = 0 for every ψ,

namely f is CR on M ∩∆n(ρ1), as was claimed.
It remains to show that fd is CR on Md ∩∆n(ρ1). For every deformation

Md stabilizing Φ as in Proposition 10.4, the wedge W attached to M\Φ is
still a wedge attached toMd\Φ and it contains a neighborhood of

(
Md\Φ)∩

∆n(ρ1) in Cn. As Φ was supposed to be stably removable, it follows that
there exists a wedge W1 attached to Md (including points of Φ) to which
holomorphic functions in W extend holomorphically.

Consequently, replacing Md ∩ ∆n(ρ1) by M , we are led to prove the
following lemma, which, on the geometric side, is totally similar to Propo-
sition 10.3, except that the wedge W attached to M\Φ appearing in the
formulation of Proposition 10.3 is now replaced by a neighborhood Ω of
M\Φ in Cn.

Lemma 10.6. Let M be a C 2,α generic submanifold of Cn of CR dimension
m > 1 and of codimension d = n − m > 1, let Φ ⊂ M be a nonempty
proper closed subset whose (2m + d)-dimensional Hausdorff measure is
equal to zero. Let Ω be a neighborhood ofM\Φ inCn and let W1 be a wedge
attached to M , including points of Φ. Let f ∈ L1

loc(M) and assume that its
restriction to M\Φ extends as a holomorphic function f ′ ∈ O(Ω ∪ W1).
Then f is CR all over M .

Proof. It suffices to prove that f is CR at every point of Φ. Let q ∈ Φ be
arbitrary and let Wq be a local wedge of edge M at q which is contained in
W1. Without loss of generality, we can assume that in coordinates (z, w) =
(x + iy, u + iv) ∈ Cm × Cd vanishing at q with TqM = {v = 0}, the
generic submanifold M is represented locally in the polydisc ∆n(ρ1) by
v = ϕ(x, y, u) for some C 2,α Rd-valued mapping ϕ defined on the real
cube on I2m+d(ρ1). First of all, we construct a family of analytic discs half
attached to M whose interior is contained in the local wedge Wq ⊂ W1.
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Lemma 10.7. There exists a family of analytic discs As(ζ), with s ∈
R2m+d−1, |s| 6 2δ for some δ > 0, and ζ ∈ ∆, which is of class C 2,α−0 with
respect to all variables, such that

(1) A0(1) = q.
(2) As(∆) ⊂ ∆n(ρ1).
(3) As(∆) ⊂ Wq ∩∆n(ρ1).
(4) As(∂+∆) ⊂M .
(5) As(i) ∈M\Φ and As(−i) ∈M\Φ for all s.
(6) The mapping [−2δ, 2δ]2m+d−1×[−π/2, π/2] 3 (s, θ) 7−→ As(e

iθ) ∈
M is an embedding onto a neighborhood of q in M .

(7) There exists ρ2 > 0 such that the image of [−δ, δ]2m+d−1 ×
[−π/4, π/4] through this mapping contains M ∩∆n(ρ2).

Proof. Let M1 be a C 2,α maximally real submanifold of M passing through
q such that M1∩Φ is of zero measure with respect to the Lebesgue measure
of M1. Let t ∈ Rd and include M1 in a parametrized family of maximally
real submanifolds M1

t which foliates a neighborhood of q in M . Starting
with a family of analytic discs A1

c,x,v(ζ) which are half-attached to M1 as
constructed in Lemma 7.12 above, we first choose the rotation parameter
v0 and a sufficiently small scaling factor c0 in order that A1

c0,0,v0
(±i) does

not belong to Φ. In fact, this can be done for almost every (c0, v0), be-
cause the mapping (c, v) 7→ A1

c,0,v(±i) is of rank n at every point (c, v)
with c 6= 0 and v 6= 0. In addition, we adjust the rotation parameter
v0 in order that the vector Jv0 points inside a proper subcone of the cone
which defines the wedge Wq. If the scaling parameter c is sufficiently small,
this implies that A1

c0,0,v0
(∆) is contained in Wq ∩ ∆n(ρ1), as in Lemma 8.3

above. The translation parameter x runs in Rn and we may select a (n− 1)-
dimensional parameter subspace x′ which is transversal in M1 to the half
boundary A1

c0,0,v0
(∂+∆). With such a choice, there exists δ > 0 such that

the mapping [−2δ, 2δ]n−1 × [−π/2, π/2] 3 (x′, θ) 7−→ A1
c0,x′,v0(e

iθ) is a
diffeomorphism onto a neighborhood of q in M1. Finally, using the sta-
bility of Bishop’s equation under perturbations, we can deform this family
of discs by requiring that it is half attached to M1

t , thus obtaining a family
As(ζ) := A1

c0,x′,v0,t(ζ) with s := (x′, t) ∈ R2m+d−1. Shrinking δ if neces-
sary, we can check as in the proof of Lemma 8.3 (91) that property (3) holds.
This completes the proof. ¤

Let now f ∈ L1
loc(M) and let f ′ ∈ O(Ω ∪ W1). Thanks to the foliation

propery (6) of Lemma 10.7, it follows from Fubini’s theorem that for almost
every translation parameter s, the mapping eiθ 7→ f

(
As(e

iθ)
)

defines a L1

function on ∂+∆. In addition, the restriction of the function f ′ ∈ O(Ω∪W1)
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to the disc As(∆) ⊂ Wq ⊂ W1 yields a holomorphic function f ′ (As(ζ)) in
∆.

Lemma 10.8. For almost every s with |s| 6 2δ, the function f ′ (As(ζ))
belongs to the Hardy space H1(∆).

Proof. Indeed, for almost every s, the intersection Φ ∩ As(∂+∆) is of zero
one-dimensional measure. By the assumption of Lemma 10.6, the restriction
of f ◦As and of f ′ ◦As to ∂+∆\Φ coincide. Recall that ∂−∆ = {ζ ∈ ∂∆ :
Re ζ 6 0}. Since As(±i) does not belong to Φ and since As

(
eiθ

)
belongs

to Wq for all θ with π/2 < |θ| 6 π, it follows that f ◦As|∂+∆ and f ′◦As|∂−∆

(which is holomorphic in a neighborhood of ∂−∆ in C) match together in a
function which is L1 on ∂∆. Let us denote this function by fs. Furthermore,
fs extends holomorphically to ∆ as f ′ ◦ As|∆. Consequently, f ′ ◦ As|∆
belongs to the Hardy space H1(∆). ¤

Since the boundary value of f ′ on M\Φ along the family of discs As(ζ)
coincides with f , we can now denote both functions by the same letter f .

For ε > 0 small, let now χε
(
s, eiθ

)
be a C 2 function on [−2δ, 2δ] × ∂∆

which equals ε for |s| 6 δ and for θ ∈ [−π/4, π/4] and which equals 0
if either π/2 6 |θ| 6 π or |s| > 2δ/3. We may require in addition that
||χε||C 2 6 ε. We define a deformation M ε of M compactly supported in a
neighborhood of q by pushing M inside Wq along the family of discs As(ζ)
as follows:

(10.9) M ε :=
{
As

(
[1− χε(s, e

iθ)] eiθ
)

: |θ| 6 π/2, |s| 6 2δ
}
.

Notice that M ε coincides with M outside a small neighborhood of q. Then
we have ||M ε−M ||C 2 6 C ·ε, for some constant C > 0 which depends only
on the C 2 norms of As(ζ) and of χε(s, eiθ). If the radius ρ2 is as in Property
(7) of Lemma 10.7 above, the deformationM ε∩∆n(ρ2) is entirely contained
in Wq and since f is holomorphic in Wq, its restriction to M ε ∩ ∆n(ρ2) is
obviously CR.

i

0

e−i π
4

ei π
4

−1 1

1− ε

1− ε

−i

M

Cn

0

C

Fig. 21: The arc Γε,s and the deformation Mε

Γε,s

∂∆

∆
MεA(∂∆)

As(∂∆)

As(∂∆)

∂∆
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As in [Jö1999b, MP1999, Po2000], we notice that for every s and every
ε, the one-dimensional Lebesgue measure on the arc

(10.10) Γε,s :=
{
[1− χε(s, e

iθ)]eiθ ∈ ∆ : |θ| 6 π
}

is a Carleson measure. Thanks to the geometric uniformity of these arcs Γε,s,
it follows from an inspection of the proof of Carleson’s imbedding theorem
that there exists a (uniform) constant C such that for all s with |s| 6 2δ and
all ε, one has the estimate

(10.11)
∫

Γε,s

∣∣∣f
(
As

([
1− χε(s, e

iθ)
]
eiθ

))∣∣∣ · dθ 6 C

∫

∂∆

|f | · dθ.

We are now ready to complete the proof of Lemma 10.6. Let πx,y,u
denote the projection parallel to the v-space from Cn onto the (x, y, u)-
space. The mapping (s, θ) 7→ πx,y,u (As(θ)) may be used to define new
coordinates in a neighborhood of the origin in Cm × Rd, an open subset
above which M and M ε are graphed. We shall now work with these co-
ordinates. With respect to the coordinates (s, θ), on M and on M ε, we
have formal adjoints TL and T (L

ε
) of the basis of CR vector fields with

an estimation of the form
∣∣∣∣T (L

ε
)− TL

∣∣∣∣
C 1 6 C · ε, for some constant

C > 0. Let now ψ = ψ(s, θ) be C 1 function with compact support in
the set {|s| < δ, |θ| 6 π/4}. By construction, the subpart of M ε defined by
M̃ ε := {As

(
[1− χε(s, e

iθ)] eiθ
)

: |θ| 6 π/4, |s| 6 δ} is contained in the
wedge Wq, hence the restriction of the holomorphic function f ∈ Wq to M̃ ε

is obviously CR on M̃ ε.
For simplicity of notation, we shall denote f

(
As(e

iθ)
)

by fs(θ) and
f

(
As

([
1− χε(s, e

iθ)
]
eiθ

))
by f εs (θ). Since by construction for every

ε > 0, the L1 function (s, θ) 7→ f εs (θ) is annihilated in the distributional
sense by the CR vector fields L

ε
on M̃ ε, we may compute (not writing the

arguments (s, θ) of ψ)
∣∣∣∣∣
∫

|s|6δ

∫

|θ|6π/4
fs(θ) · TL(ψ) · dsdθ

∣∣∣∣∣ =

=

∣∣∣∣∣
∫

|s|6δ

∫

|θ|6π/4

[
fs(θ) · TL(ψ)− fεs (θ) · T (Lε)(ψ)

] · dsdθ
∣∣∣∣∣

6
∣∣∣∣∣
∫

|s|6δ

(∫

|θ|6π/4

[
fs(θ) · TL(ψ)− fs(θ) · T (Lε)(ψ)+

(10.12)
+fs(θ) · T (Lε)(ψ)− fεs (θ) · T (Lε)(ψ)

] · dθ) · ds∣∣
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6 C1(ψ) · ε ·
∫

|s|6δ

∫

|θ|6π/4
|fs(θ)| · dsdθ+

+ C2(ψ) ·
∫

|s|6δ

∫

|θ|6π/4
|fs(θ)− f εs (θ)| · dsdθ

6 C1(ψ, f, δ) · ε+ C2(ψ, δ) ·max
|s|6δ

∫

|θ|6π/4
|fs(θ)− fεs (θ)| · dsdθ.

Thanks to the estimate (10.11) and thanks to Lebesgue’s dominated conver-
gence theorem, the last integral tends to zero as ε tends to zero. It follows
that the integral in the first line can be made arbitrarily small, hence it van-
ishes. This proves that f is CR in a neighborhood of q and completes the
proof of Lemma 10.6. ¤

The proof of Proposition 10.3 is complete. ¤

§11. PROOFS OF THEOREM 1.2 AND OF COROLLARY 1.5

11.1. Tree of separatrices linking hyperbolic points. Let M ⊂ C2 be
a globally minimal C 2,α hypersurface, let S ⊂ M be a C 2,α surface and
let K ⊂ S be a proper compact subset of S. Assume that S is totally
real outside a discrete subset of complex tangencies which are hyperbolic in
the sense of Bishop. Since we aim to remove the compact subset K of S,
we can shrink the open surface S around K in order that S contains only
finitely many such hyperbolic complex tangencies, which we shall denote
by {h1, . . . , hλ}, where λ is some integer, possibly zero. Furthermore, we
can assume that ∂S is C 2,α. As a corollary of the qualitative theory of planar
vector fields, due to Poincaré-Bendixson ([HS1974]), we know that

(i) the hyperbolic points h1, . . . , hλ are singularities of the characteristic
foliation FcS;

(ii) through every hyperbolic point h1, . . . , hλ, there are exactly four
C 2,α open separatrices;

(iii) after perturbing slightly the boundary ∂S if necessary, these sepa-
ratrices are all transversal to ∂S and the union of all separatrices
together with all hyperbolic points makes a finite tree without cycles
in S.

Precisely, by an (open) separatrix, we mean a C 2,α curve τ : (0, 1) → S
with dτ

ds
(s) ∈ Tτ(s)S ∩ T cτ(s)M\{0} for every s ∈ (0, 1), namely its tan-

gent vectors are all nonzero and characteristic, such that one limit point, say
lims→0 τ(s) is a hyperbolic point, and the other lims→1 τ(s) either belong
to the boundary ∂S or is a second hyperbolic point.

From the local study of saddle phase diagrams ([Ha1982]), we get in ad-
dition:
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(iv) there exists ε > 0 and for every l = 1, . . . , λ, there exist two
curves γ1

l , γ
2
l : (−ε, ε) → S which are of class C 1,α, not more,

with γil (0) = hl and dγi
l

dt
(s) ∈ Tγi

l (s)
S ∩ T c

γi
l (s)
M\{0} for every

s ∈ (−ε, ε) and for i = 1, 2, such that the four open segments
γ1
l (−ε, 0), γ1

l (0, ε), γ
2
l (−ε, 0) and γ2

l (0, ε) cover the four pieces of
open separatrices incoming at hl.

Let τ1, . . . , τµ : (0, 1) → S denote all the separatrices of S, where µ is
some integer, possibly equal to zero. By the finite hyperbolic tree TS of S,
we mean:

(11.2) TS :=
{
h1, . . . , hλ

} ⋃

16k6µ
τk(0, 1).

We say that TS has no cycle if it does not contain any subset homeomorphic
to the unit circle. For instance, in the case where S ≡ D is diffeomorphic to
a real disc (as in the assumptions of Proposition 1.4), its hyperbolic tree TD
necessarily has no cycle. However, in the case where S is an annulus (for
instance), there is a trivial example of a characteristic foliation with one (or
two, or more) hyperbolic point(s) and a circle in the hyperbolic tree.

11.3. Hyperbolic decomposition in the disc case. Let the real disc D and
the compact subset K ⊂ D be as in Theorem 1.2. We shrink D slightly and
smooth out its boundary, so that its hyperbolic tree TD is finite and has no
cycle. We may decompose D as the disjoint union

(11.4) D = TD ∪Do,

where the complement of the hyperbolic treeDo := D\TD is an open subset
of D entirely contained in the totally real part of D. Then Do has finitely
many connected componentsD1, . . . , Dν , the hyperbolic sectors ofD. Also,
for j = 1, . . . , ν, we define the proper closed subsets Cj := Dj ∩K of Dj .

Fig. 22: Removal of hyperbolic sectors and removal of a tree without cycles

K

C4
C5

C2
C3

TD

C8

C7

C1

D

C6
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Again from the Poincaré-Bendixson theory, we know that for every com-
ponent Dj (in which the characteristic foliation is nonsingular), the proper
closed subset Cj is nontransversal to FcDj

. In the figure, we have drawn the
characteristic curves only in the two sectors D4 and D6.

11.5. Global minimality of some complements. We state a generalization
of Lemma 3.5 to the case where some hyperbolic complex tangencies are
allowed. Its proof is not immediate.

Proposition 11.6. Let M be a C 2,α hypersurface in C2 and let S ⊂ M
be C 2,α surface which is totally real outside a discrete subset of hyperbolic
complex tangencies. Assume that the hyperbolic tree TS of S has no cycle.
Then for every compact subset K ⊂ S and for every point p ∈M\K:

(11.7) OCR(M\K, p) = OCR(M, p)\K.
As a corollary, M\K is globally minimal if M is so.

Proof. As above, we may assume that S coincides with the shrinking of a
slightly larger surface and has finitely many hyperbolic points {h1, . . . , hλ}.
Let KTS

:= K ∩ TS be the track of K on the hyperbolic tree TS . Since KTS

may in general coincide with any arbitrary closed (e.g. Cantor) subset of
TS , in order to fix ideas, it will be convenient to deal with an enlargement
K of KTS

, simply defined by filling the possible holes of KTS
in TS: more

precisely, K should contain all hyperbolic points of S together with all sep-
aratrices joining them and for every separatrix τk(0, 1) with right limit point
lims→1 τk(s) belonging to the boundary of S, we require that K contains
the segment τk[0, r1], where r1 < 1 is close enough to 1 in order that K
effectively contains KTS

. Equivalently, K is a small shrinking of TS , still
compact in S.

TS

h2h1

Fig. 23: the disposition of K, KTS and K

K K
KTS

K

∂S

r

r′
Y

M

The main step in the proof of Proposition 11.6 is as follows.

Lemma 11.8. We have OCR

(
M\K, q) = OCR(M, q)

∖
K, for every q ∈

M\K.
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Before pursuing, we establish the proposition. The inclu-
sion OCR(M\K, p) ⊂ OCR(M, p)\K is trivial. Reversely, for
q ∈ OCR(M, p)\K arbitrary, we must find a piecewise smooth complex-
tangential curve joining q to p and running entirely in M\K. We first join p
to some p′ ∈M\S and q to some q′ ∈M\S as follows.

Lemma 11.9. The CR orbit OCR(M\K, r) of every r ∈ M\K contains
points r′ ∈M\S arbitrarily close to r.

Proof. If r ∈M\S, the claim is gratuitous. If r ∈ S∖{h1, . . . , hλ}, whence
S is totally real in a neighborhood of r, we just choose a local section Y of
T cM defined near r which is transversal to S at r and we follow the integral
curve of Y to escape from S, as shown by the figure.

If r = hl is a hyperbolic point, we may use one of the four separatrices to
join r to some point r′′ ∈ TS close to r and 6= hl, hence in the totally real
part of S. Then we join r′′ to some r′ ∈ M\S as above by means of some
vector field Y ′′ transversal to S at r′′. ¤

Necessarily, both p′ and q′ belong to OCR(M, p)\K and hence, in order
to get (11.7), it suffices to produce a piecewise smooth complex-tangential
curve joining q′ to p′ which runs in M\K.

Taking for granted Lemma 11.8, we first get a piecewise smooth complex-
tangential curve joining q′ to p′ and running in M ′ := M\K. Equivalently,
q′ ∈ OCR(M ′, p′). The set C ′ := K ∩ M ′ is closed in M ′, is closed in
S ′ := S\K and is nontransversal to FcS′ . Lemmas 3.3 and 3.5 showed that
OCR

(
M ′\C ′, r′) = OCR(M ′, r′)\C ′, for every r′ ∈ M ′\C ′. Consequently,

there exists a piecewise smooth complex-tangential curve joining q′ to p′

which runs in M ′\C ′, hence in M\K. Thus q′ ∈ OCR(M\K, p′) and hence
in conclusion, q ∈ OCR(M\K, p), which completes the proof of Proposi-
tion 11.6. ¤

It remains to establish Lemma 11.8. As M is a hypersurface of C2, its CR
orbits are of dimension either 2 or 3. We state an analog to Lemma 3.7.

Lemma 11.10. Let M , S, TS and K ⊂ TS be as above. There exists a
connected embedded submanifold Ω ⊂ M containing the hyperbolic tree
TS such that:

(1) Ω is a T cM -integral manifold, namely T cpM ⊂ TpΩ for every p ∈ Ω;

(2) Ω is contained in a single CR orbit of M ;

(3) Ω\K is also contained in a single CR orbit of M\K.

More precisely, Ω is an open neighborhood of TS if it is of real dimension
3 and a complex curve surrounding TS if it is of dimension 2.
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Reasoning as in Lemma 3.10, to get Lemma 11.8, starting with a piece-
wise smooth complex tangential curve joining q to some arbitrary r ∈
OCR(M, q)\K, if it meets K, we can modify the trajectory by running only
inside Ω\K (surrounding the obstacle), whence r ∈ OCR

(
M\K, q). This

completes the proof of Lemma 11.8, granted Lemma 11.10, which we now
prove. ¤
Proof. We shall construct Ω by means of a complex-tangential flowing pro-
cedure, stretching and enlarging local pieces of it.

Fix any point p0 ∈ K\{h1, . . . , hλ}. Since S is totally real near p0, there
exists a locally defined T cM -tangent vector field Y which is transversal to
S at p0. Consequently, for δ > 0 small enough, the small curve I0 :=
{exp(sY )(p0) : −δ < s < δ} is transversal to S at p0 and moreover, the
two half-curves

(11.11) I±0 :=
{

exp(sY )(p0) : 0 < ±s < δ
}

lie in M\S.
Since p0 ∈ K belongs to some open separatrix τk(0, 1), there exists a

C 1,α complex-tangential vector field X defined in a neighborhood of p0 in
M which is tangent to S and whose integral curve passing through p0 is a
piece of τk(0, 1). Since Y is transversal to S at p0, it follows that the set

(11.12) ω0 :=
{

exp(s2X)
(
exp(s1Y )(p0)

)
: −δ < s1, s2 < δ

}

is a small C 1,α one-codimensional submanifold of M passing through p0

which is transversal to S at p0. Clearly, Tp0ω0 = T cp0M . Thanks to
the fact that the flow of X stabilizes S, we see that the integral curves
s2 7→ exp(s2X)(exp(s1Y )(p0)) are contained in M\S for every starting
point exp(s1Y )(p0) ∈ I0 with s1 6= 0, namely for all s1 6= 0. We deduce
that each one of the two open halves
(11.13)

ω±0 :=
{

exp(s2X)(exp(s1Y )(p0)) : 0 < ±s1 < δ, −δ < s2 < δ
}

is contained in a single CR orbit of M\K.
To pursue, abandoning the consideration of ω−0 , we shall assume that the

piece of CR orbit ω+
0 is of real dimension 2, whence it is a complex curve.

Afterwards, we shall treat the (simpler) case where ω+
0 is 3-dimensional.

By the S-boundary of a set E ⊂ M\S, we shall mean the intersection
∂E ∩ S of the boundary of E in M with S. Thus, the S-boundary of ω+

0 is
just the piece of characteristic curve

{
exp(s2X) : −δ 6 s2 6 δ

}
, contained

in τk(0, 1).
Since τk(0, 1) is an embedded segment, we may suppose from the begin-

ning that the vector field X is defined in a neighborhood of τk(0, 1) in M .
Using then the flow of X , we may prolong the small piece ω+

0 to get a semi-
local C 1,α submanifold ω+

k stretched along τk(0, 1). Again, this piece ω+
k is
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(by construction) contained in a single CR orbit ofM\K. By the fundamen-
tal stability property of CR orbits under flows, we deduce that ω+

k is in fact
a long thin complex curve in M\K whose S-boundary contains τk(0, 1).

τj(0, 1)

Fig. 24: Orbit neighorhood of the compact set KTS
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Remind that by definition of separatrices, the point τk(0) is always a hy-
perbolic point. There is a dichotomy: either τk(1) is also a hyperbolic point
or it lies in ∂S. If τk(1) is a hyperbolic point, then by the definition of K,
the complete closed separatrix τk[0, 1] is contained in K, hence it may not
be crossed by means of a CR curve running in M\K.

So we must again prolong ω+
k and in the neighborhood of the hyperbolic

point hl = τk(0), the geometric situation is different. As in the figure, let
τj(0, 1) be the separatrix issued from hl next to τl[0, 1].

Lemma 11.14. There exists a long thin complex curve ω+
j whose S-

boundary contains τj(0, 1) which is contained in the same CR orbit as ω+
k

and which matches up with ω+
k near hl. Geometrically, ω+

k and ω+
j coincide

near hl and constitute a piece of cornered complex curve.

Proof. We introduce local holomorphic coordinates (z, w) = (x + iy, u +
iv) ∈ C2 vanishing at hl in which the hypersurface M is given as the graph
v = ϕ(x, y, u), where ϕ is a C 2,α function. Since M contains the complex
curve ω+

k , it is Levi degenerate at hl ∈ ω+
k . Thus, we may assume that∣∣ϕ(x, y, u)

∣∣ 6 C · (|x|+ |y|+ |u|)2+α.
The surface S, as a subset of M , is represented by one supplementary

C 2,α equation of the form u = h(x, y). According to Bishop ([Bi1965]), a
suitable change of holomorphic coordinates normalizes

(11.15)
h(x, y) = zz̄ + γ (z2 + z̄2) + O

(|z|2+α
)

= (2γ + 1)x2 − (2γ − 1) y2 + O
(|z|2+α

)
,

where γ ∈ R+ is a biholomorphic invariant satisfying γ > 1
2

by the hyper-
bolicity assumption. Then the tangents at hl to the two half-separatrices τk
and τj are given respectively by the linear (in)equations x > 0, y = −2γ+1

2γ−1
x,
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u = 0 and x < 0, y = −2γ+1
2γ−1

x, u = 0. In the figure below, where we do
not draw the axes, the u-axis is vertical, the y axis points behind hl and the
x-axis is horizontal, from the left to the right.

Fig. 25: Behavior of the complex curve orbit around a hyperbolic point
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The saddle-looking surface S is represented in the 3-dimensional space
M ; the horizontal plane passing through hl is thought to be the complex
tangent plane T chl

M .
We introduce two T cM -tangent vector fields X1 and X2 defined in a

neighborhood of hl = τk(0) = τj(0) with X1(hl) directed along τk in the
sense of increasing s and X2(hl) directed along τj in the sense of increasing
s, defined by

(11.16)





X1 =
∂

∂x
−

(
2γ + 1

2γ − 1

)
∂

∂y
+ A1(x, y, u)

∂

∂u
,

X2 = − ∂

∂x
−

(
2γ + 1

2γ − 1

)
∂

∂y
+ A2(x, y, u)

∂

∂u
,

with A1 and A2 being certain rational functions of the first order jet of ϕ.
Since ϕ vanishes to second order at hl, the two C 1,α coefficients A1 and A2

satisfy

(11.17) |A1, A2(x, y, u)| < C · (|x|+ |y|+ |u|)1+α
.

Let Z denote the vector field X1 + X2, as shown in the top of the left
Figure 25. Using the flow of Z we begin by extending the banana-looking
piece ω+

k of complex curve by introducing the submanifold ω consisting of
points

(11.18) exp(s2Z)(τk(s1)),

where 0 < s1 < δ and 0 < s2 < δ, for some small δ > 0. One checks that
all these points stay inM\S, hence are contained in the same CR orbit as ω+

k

in M\K. By the stability property of CR orbits, it follows that ω is a piece
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of complex curve contained in M\K. Roughly, the (horizontal) projection
of ω onto T chl

M covers ∼ 1
8

of a neighborhood of hl in T chl
M .

For 0 < s < δ, let µ(s) := exp(sZ)(hl) denote the CR curve lying
“between” τk and τj and which constitutes a part of the boundary of ω. Let
p be an arbitrary point of this curve, close to hl.

Lemma 11.19. The integral curve s 7→ exp(−sX1)(p) of−X1 issued from p
necessarily intersects S at a point q close to hl and close to τj (cf. Figure 25).

Proof. This integral curve is contained in the real 2-surface passing through
hl defined by

(11.20) Σ :=
{

exp(−s2X1)(exp(s1Z)(hl)) : −δ < s1, s2 < δ
}
,

for some δ > 0. Because the vector fields X1, X2 and Z = X1 + X2 have
C 1,α coefficients, the surface Σ is only C 1,α in general. In M equipped with
the three real coordinates (x, y, u), we may parametrize Σ by a mapping of
the form

(11.21) (s1, s2) 7−→
(
s2 − 2s1

(2γ + 1

2γ − 1

)
, s2

(2γ + 1

2γ − 1

)
, u(s1, s2)

)
,

where u is of class C 1,α. It is clear that u(0) = us1(0) = us2(0) = 0, so that
there is a constant C such that

(11.22) |u(s1, s2)| < C · (|s1|+ |s2|
)1+α

.

Furthermore, we claim that u satisfies the better estimate

(11.23) |u(s1, s2)| < C · (|s1|+ |s2|
)2+α

,

for some constant C > 0. In other words, Σ osculates the complex tangent
plane T chl

M to second order at hl : Σ is more flat than S at hl. Since the
second order terms zz̄ + γ(z2 + z̄2) of the graphing function h of S are
nonvanishing, the curve s 7→ exp(−sX1)(p) must necessarily intersect the
saddle S, whence Lemma 11.19 follows.

To verify the remaining claim, we will reason with the two linear combi-
nations L1 := ∂

∂x
+ B1(x, y, u)

∂
∂u

and L2 := ∂
∂y

+ B2(x, y, u)
∂
∂u

of X1 and
X2. This will lighten the computations (with X1 and X2, the principle is the
same).

Here, B1 and B2 are C 1,α and satisfy (11.17). Denote by s1 7−→(
s1, λ(s1), µ(s1)

)
the integral curve of L1 passing through the origin. It

is C 2,α and we have

(11.24) |λ(s1)| < C · |s1|2+α and |µ(s1)| < C · |s1|2+α,

for some C > 0. In the definition of Σ, we replace X1 and X2 by L1

and L2 (with X1 and X2, the principle is the same, although the obtained
graphing function uL(s1, s2) differs). Considering the composition of flows



392

exp(s2L2)
(
exp(s1L1)(0)

)
, we have to solve the system of ordinary differ-

ential equations

(11.25)
dx

ds2

= 0,
dy

ds2

= 1,
du

ds2

= B2(x, y, u)

with initial conditions

(11.26) x(0) = s1, y(0) = λ(s1), u(0) = µ(s1).

This yields x(s1, s2) = s1, y(s1, s2) = λ(s1) + s2 and the integral equation

(11.27) uL(s1, s2) = µ(s1) +

∫ s2

0

B2

(
s1, s

′
2 + λ(s1), u

L(s1, s
′
2)

)
ds′2.

Since uL already satisfies (11.22), inserting the estimate (11.17) satisfied by
B2 and integrating, it is now elementary to obtain

∣∣uL(s1, s2)
∣∣ 6 C ·

∣∣s1| +
|s2|

)2+α. ¤

We can now achieve the proof of Lemma 11.14. So, for various points
p = µ(s) close to hl the intersection points q ∈ S exist. If all points q
belong to τj , we are done: the piece ω extends as a cornered (roughly 1

4
)

piece of complex curve with S-boundary τk ∪ τj near hl.
Assume therefore that one such point q does not belong to τj , as drawn

in the left hand side of Figure 25. Suppose that q lies above τj , the case
where q lies under τj being similar. The characteristic curve γ′ ⊂ S passing
through q stays above τj and is nonsingular. Prolongating the complex curve
ω in M\K by means of the flow of −X1, we deduce that there exists at q
a local piece ω+

q of complex curve with S-boundary contained in γ′ which
is contained in the same CR orbit as ω. Using then the flow of a CR vector
having γ′ as an integral curve, we can prolong ω+

q along γ′, which yields a
long thin banana-looking complex curve with boundary in γ′. However, this
piece may remain too thin. Fortunately, thanks to the flow of X1 −X2, we
can extend it as a piece ω′ of complex curve with boundary γ′ which then
goes over hl, with respect to a complex projection onto T chl

M , as illustrated
in Figure 25 above. We claim that this yields a contradiction.

Indeed, as ω and ω′ are complex curves, they are locally defined as graphs
of holomorphic functions g and g′ defined in domains D and D′ in the com-
plex line T chl

M . By construction, there exists a point in r ∈ D ∩ D′ at
which the values of g and g′ are distinct. However, since by construction
g and g′ coincide in a neighborhood of the CR curve joining p to q, they
must coincide at r because of the principle of analytic continuation: this is
a contradiction. In conclusion, the CR orbit passes through the hyperbolic
point hl, in a neighborhood of which it consists of a cornered complex curve
with boundary τk ∪ τj . This completes the proof of Lemma 11.14. ¤
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We can now conclude Lemma 11.10. Again, we may prolong ω+
j all along

τj(0, 1). If τj(1) is a new hyperbolic point hm, again we prolong, etc.
Since the hyperbolic tree TS does not contain any cycle, after some steps,

an endpoint τk(1) will not be a hyperbolic point, hence belong to ∂S. But
we arranged at the beginning that K ∩ τk(0, 1) = τk(0, r1], where r1 < 1.
It is then crucial that when a limit point τk(1) belongs to ∂S, we escape
from K and using a local CR vector field Y transversal to S, we may cross
the separatrix τk(0, 1) at some point τk(r2) where r2 satisfies r1 < r2 <
1. Hence, we pass to the other side of S in M and then, by means of a
further prolongation, we turn around to the other side of τk(0, 1). Also, the
two pieces in either side of τk(0, 1) match up at least in a C 1,α way. Then
thanks to the stability property of orbits under flows, we deduce that these
two pieces match up as a piece of complex curve containing τk(0, 1) in its
interior.

Continuing the prolongation, we construct the complex curve Ω surround-
ing TS , which is obviously contained in a single CR orbit of M . Further-
more, by construction, Ω\K is contained in a single CR orbit of M\K.
Thus, we have established Lemma 3.12 under the assumption that the initial
CR orbit of q+

0 is two-dimensional.
Assume finally that the CR orbit of q+

0 is 3-dimensional. By a similar
(and in fact easier) propagation procedure, we may construct a neighbor-
hood Ω in M of the hyperbolic tree satisfying conditions (1), (2) and (3) of
Lemma 11.10. ¤

11.28. Proofs of Theorem 1.2 and of Corollary 1.5. We treat directly the
more general Corollary 1.5. As already known, it suffices to establish the
W -removability of K.

Let ω1 be a one-sided neighborhood of M\K in C2. Let K ⊂ TS be
a filling of KTS

= K ∩ S, as in Lemma 11.8. By this lemma, M\K is
globally minimal. Because K ∩ (S\TS) is nontransversal to FcS\TS

by as-
sumption, we may apply Proposition 1.4 to the totally real surface S\TS in
the globally minimal M\K to remove K ∩ (S\TS). We deduce that there
exists a one-sided neighborhood ω2 of M\K in C2 such that (after shrink-
ing ω1 if necessary), holomorphic functions in ω1 extend holomorphically
to ω2. Then we slightly deform M inside ω2 over points of K ∩ (S\TS).
We obtain a C 2,α hypersurface Md with Md\K ⊂ ω2. Also, by stability of
global minimality under small perturbations, we can assume that Md is also
globally minimal.

Since M and Md are of codimension 1, the union of a one-sided neigh-
borhood ωd of Md in C2 together with ω2 constitutes a complete one-sided
neighborhood ofM inC2. To conclude the proof of Corollary 1.5, it suffices
therefore to show the following.
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Lemma 11.29. K is CR-, W - and Lp-removable.

Proof. Let Knr ⊂ K denote the smallest nonremovable subset. Reasoning
by contradiction, assume Knr is nonempty.

Let T ′ be a connected component of the minimal subtree of T containing
Knr. By a subtree of a tree T defined as in (11.2) above, we mean of course
a finite union of some of the separatrices τ1(0, 1) together with all hyper-
bolic points which are endpoints of separatrices. Since T ′ does not contain
any cycle, there exists at least one extremal branch of T ′, say τ1(0, 1) after
renumbering.

At first, suppose to simplify that the subtree T ′ consists only of a single
branch τ1[0, 1]. Thanks to properties (iii) and (iv) of §11.1, we can enlarge
a little bit this branch by prolongating the curve τ1(0, 1) as an open C 2,α

Jordan arc τ1[0, 1 + ε), for some ε > 0. But then by [Me1997, MP1999],
every proper closed subset of τ1[0, 1 + ε) is W -removable, hence Knr is
removable, a contradiction.

If T ′ consists of at least two branches, with τ1(1) being an extremal point,
since the hyperbolic point τ1(0) belongs to another separatrix τk[0, 1] ⊂ T ′,
it follows from the assumption that T ′ is the smallest subtree containing Knr

that Knr ∩ τ1(0, 1] must be nonempty. But then since we may prolong τ1 to
(0, 1 + ε], by [Me1997, MP1999] again, Knr ∩ τ1(0, 1] is W -removable, a
contradiction to its definition. ¤

The proofs of Theorem 1.2 and of Corollary 1.5 are complete. ¤

§12. POLYNOMIAL CONVEXITY OF CERTAIN REAL 2-DISCS

12.1. Convexity and removability. Let K b D ⊂ ∂Ω b C2 be as in
Corollary 1.3. Recall that K is polynomially convex if it coincides with its
polynomial hull

(12.2) K̂ :=
{
z ∈ C2 : |p(z)| 6 max

w∈K
|p(w)|, for every p ∈ C[z1, z2]

}
.

In complex dimension n = 2 (only), removability is closely related to con-
vexity properties ([Jö1988, FS1991, Stu1993, Du1993]). Indeed, for strictly
pseudoconvex domains Ω b C2, a structural result due to Stout shows that a
compact set K ⊂ ∂Ω is removable if and only if it is O

(
Ω

)
-convex38. If in

addition Ω is polynomially convex, removability of K holds if and only ifK
is polynomially convex. In such a situation, removability yields information
about polynomial convexity as a byproduct.

Corollary 1.3 improves these results, passing to weakly pseudoconvex
boundaries. For totally real discs in convex boundaries, it was already shown

38To define the O
(
Ω

)
-hull, simply replace polynomials by functions holomorphic in

some (unspecified) neighborhood of Ω.
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in [Po2004]. So far, it seems to be the best available insight into polynomial
convexity of discs in C2 (more generally, one may also consider surfaces S
as in Corollary 1.5 instead of discs as in Theorem 1.2). In fact, the general
question of characterizing polynomial convexity of arbitrary surfaces (not
contained in pseudoconvex boundaries), even for totally real discs in C2, is
still mostly open ([HN1994], pp. 353–355).

Proof of Corollary 1.3. Since Ω (containing K) is assumed to be polynomi-
ally convex, we deduce:

(12.3) K̂ ∩ (
C2\Ω)

= ∅, or equivalently: K̂ ⊂ Ω.

Firstly, a general fact of independent interest will yield K̂ ∩ ∂Ω = K.

Lemma 12.4. Let Ω b C2 be a domain with C 2,α boundary whose closure
is polynomially convex and let K ⊂ Ω be an arbitrary compact set. Then
K̂ ∩ (

∂Ω\K)
coincides with the union of all the complex-curve CR orbits

of ∂Ω\K.

Indeed, in the situation of Corollary 1.3,K b D lies in a globally minimal
boundary ∂Ω and we already verified in Proposition 11.6 that ∂Ω\K is also
globally minimal, namely it contains no complex-curve CR orbit, whence
K̂ ∩ ∂Ω = K.

Secondly, we will control K̂ ∩ Ω thanks to the pseudoconvexity of Ω
∖
K̂.

Lemma 12.5. Let Ω b C2 be an arbitrary pseudoconvex domain. Then for
any compact set K b C2\Ω, the open set Ω

∖
K̂ is a union of pseudoconvex

domains.

Granted these two lemmas and Theorem 1.2, we may conclude the
proof of Corollary 1.3. Indeed, since K̂ does not meet ∂Ω\K, there is
a domain contained in Ω

∖
K̂ whose closure contains the connected hyper-

surface ∂Ω\K, namely a one-sided neighborhood V (∂Ω\K). The W -
removability of K in Theorem 1.2 yields univalent holomorphic extension
from V (∂Ω\K) to Ω. Thus, there can exist only one pseudoconvex compo-
nent of Ω

∖
K̂, the domain Ω itself ! Thus Ω

∖
K̂ = Ω, which, together with

K̂ ⊂ Ω and K̂ ∩ ∂Ω = K, gives K̂ = K. ¤
Proof of Lemma 12.4. We assume K 6= ∅ throughout.

Let O be a complex-curve CR orbit of ∂Ω\K. Its closure O
∂Ω\K

in ∂Ω\K
is a relatively closed subset of ∂Ω\K laminated by complex curves, in which
O (as well as every other maximal connected complex curve) is dense, for
the topology induced from ∂Ω\K (see [Jö1999a, 29]). The full closure
O
∂Ω ⊃ O

∂Ω\K
is compact and the complement O

∂Ω∖
O
∂Ω\K

is contained in
K. Since C2 cannot contain any compact set laminated by complex curves
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([Jö1999a, 29]) and since K 6= ∅, this complement O
∂Ω∖

O
∂Ω\K ⊂ K must

be nonempty.
Pick z ∈ O and let p be an arbitrary holomorphic polynomial. To verify

that |p(z)| 6 maxK |p|, two cases occur.

(a) The maximum of |p| on the compact set O
∂Ω

is attained at some
point w ∈ O

∂Ω∖
O
∂Ω\K

; then w ∈ K, whence obviously |p(z)| 6
|p(w)| 6 maxK |p|.

(b) The maximum of |p| on O
∂Ω

is attained at some point w ∈ O
∂Ω\K

;
then by the lamination property, w belongs to (the interior of) some
immersed complex curve O ′, again dense in the sense that O ′∂Ω\K

=

O
∂Ω\K

. The maximum principle entails that p|O′ is equal to a con-
stant σ ∈ C, whence by continuity p

∣∣
O′∂Ω\K , p

∣∣
O

∂Ω\K and p
∣∣
O

∂Ω are

all equal to the same constant σ and since O
∂Ω∩K 6= ∅, we conclude

that |p(z)| 6 max
O

∂Ω |p| = |p(w)| = |σ| 6 maxK |p|.
Thus, it remains to show that every point p ∈ ∂Ω\K which belongs to

a 3-dimensional
(
hence open in ∂Ω\K)

CR orbit does not belong to K̂.
The local Oka criterion ([Stu1971]) is suitable for that purpose. We state an
adapted and simplified version, using discs.

If K ⊂ C2 is a compact set, a point p0 ∈ C2 does not belong to K̂
provided one can construct a continuous one-parameter family

{
At

}
06t61

of analytic discs At : ∆ → C2 such that

• At(∆) ∩K = ∅ for every t with 0 6 t 6 1;

• At(∂∆) ∩ K̂ = ∅ for every t with 0 6 t 6 1;

• A1(∆) ∩ K̂ = ∅;

• p0 ∈ A0(∆).

Since everything is biholomorphically invariant, we observe a direct anal-
ogy with the continuity principle.

Thus, let O be an open, 3-dimensional CR orbit of ∂Ω\K. Since O has
CR dimension 1, it contains some strongly pseudoconvex points (otherwise
T cO would be Frobenius-integrale, hence O would be a complex-curve CR
orbit). To establish O ∩ K̂ = ∅, it is thus sufficient to show:

(i) no strictly pseudoconvex point p0 ∈ ∂Ω\K can be contained in K̂;
and:

(ii) the property q 6∈ K̂ propagates along CR curves running inside O .
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To show (i), we choose local holomorphic coordinates centered at p0 in
which Ω corresponds to

(12.6) y2 > |z1|2 + O
(|z1|+ |x2|

)2+α
.

For small ε > 0, the family At(ζ) :=
(
εζ, −ε i t), which translates down-

wards a small piece of the complex line T cp0∂Ω, does satisfy the four items
above, whence p0 6∈ K̂.

Gratuitously, we deduce that all points p′0 belonging to some neighbor-
hood Up0 of p0 in ∂Ω\K also avoid K̂.

To show (ii), we recall from [Tu1994, 29] that for every q ∈ O =
OCR

(
∂Ω\K, p0

)
and for every small ε > 0, there exist ` ∈ N with

` = O(1/ε) and a chain of C 2,α−0 analytic discs A1, A2, . . . , A`−1, A` at-
tached to M with the properties:

• A1(−1) =: p′0 ∈ Up0;
• A1(1) = A2(−1), A2(1) = A3(−1), . . . , A`−1(1) = A`(−1);
• A`(1) = q;
• ||Ak||C 1(∆) 6 ε, for k = 1, 2, . . . , `;

• each Ak is an embedding ∆ → C2.

By construction ([Tu1994, 29]), the projections onto T c
Ak(1)

∂Ω of each
Ak(ζ) are round discs ∆ 3 ζ 7→ λ(1− ζ) ∈ C, for some appropriate λ ∈ C
satisfying |λ| = O(ε). Hence we are reduced to proving for a small round
disc the implication A(−1) 6∈ K̂ =⇒ A(1) 6∈ K̂. Roundness is useful to
control the geometry.

We first consider the case where A is transverse to ∂Ω at A(1), namely
−∂A

∂ρ
(1) 6∈ TA(1)∂Ω. Since Ω is pseudoconvex, this vector −∂A

∂ρ
(1) points

inside Ω. We choose coordinates centered at A(1) in which Ω is represented
by y2 > ϕ(x1, y1, x2), with ϕ(0) = 0 and dϕ(0) = 0. Perturbing slightly
the base point A(1) and solving an appropriate Bishop-type equation, we
may as in [Tu1994, MP1999, MP2002] construct a 2-parameter family of
analytic discs As1,s2 attached to ∂Ω\K with A0,0 = A whose boundaries
As1,s2(∂∆) foliate a neighborhood of A(1) in ∂Ω\K. Then the interiors
As1,s2(∆) foliate the pseudoconvex side of ∂Ω\K near A(1). Fixing a very
small δ > 0, there exists a unique As′1,s′2 such that the point A(1) = 0 is
contained in the image of pushed-down disc As′1,s′2 + (0,−iδ). For an η > 0

which is approximately equal to twice the diameter of As′1,s′2(∆), we look at
the family At := As′1,s′2 + (0,−it), where δ 6 t 6 η. Clearly the final disc
Aη(∆) lies in C2\Ω, hence it does not meet K̂ ⊂ Ω. Also, the boundaries
At(∂∆) do not intersect K̂ since they lie in C2\Ω for all t with δ 6 t 6 η.
Since the At are round discs graphed over the z1-axis, we find holomorphic
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defining functions as required in the Oka criterion. Hence we deduce that⋃
δ6t6η At

(
∆

) 3 A(1) does not meet K̂.
The second case where A is tangent to M at A(1) can be reduced to the

above arguments by means of a preliminary slight normal deformation of the
disc near the point A(−1) ([Tu1994, MP1999, MP2002]) which produces a
new disc Ad nontangent to ∂Ω at A(1). ¤

Proof of Lemma 12.5. We verify that Ω
∖
K̂ does satisfy the Kontinuitätssatz.

Let Φ be an injective holomorphic map sending a neighborhood of [0, 1] ×
{|z2| 6 1} in C2 into C2. Assuming that Φ maps

(12.7)
({0} × {|z2| 6 1})

⋃ (
[0, 1]× {|z2| = 1})

into Ω\K̂, we have to show Φ
(
[0, 1]× {|z2| 6 1}) ⊂ Ω\K̂ also.

Assume on the contrary that there exists a smallest t∗ ∈ (0, 1] such that
Φ

({t∗} × {|z2| < 1}) 6⊂ Ω\K̂. Then the open analytic disc Φ
({t∗} ×

{|z2| < 1}) contains a point of ∂Ω or a point of K̂
∖
∂Ω. In the first case,

we would contradict the pseudoconvexity of Ω and in the second case, we
would contradict the Oka criterion for K̂. ¤

§13. PROOF OF THEOREM 1.9

13.1. The geometric recipe. We first construct the 2-torus K = T 2, then
construct the maximally realM1 and finally defineM as a certain thickening
of M1. The argument to insure global minimality of M involves computa-
tions with Lie brackets and is postponed to the end.

Firstly, in R3 = R3 ⊕ i{0} ⊂ C3 equipped with the coordinates
(x1, x2, x3), where xj = Re zj for j = 1, 2, 3, pick the “standard” 2-
dimensional torus T 2 of Cartesian equation

(13.2)
(√

x2
1 + x2

2 − 2

)2

+ x2
3 = 1.

This torus is stable under the rotations directed by the x3-axis; its intersec-
tion with the (x1, x3)-plane consists of two circles of radius 1 centered at the
points x1 = 2 and x1 = −2; it bounds a three-dimensional open “full” torus
T 3; both T 2 and T 3 are contained in the ball B3 of radius 5 centered at the
origin.

It is better to drop the square root: one checks that the equations of T 2

and T 3 are equally given by T 2 := {ρ = 0} and T 3 := {ρ < 0}, by means
of the polynomial defining function

(13.3) ρ(x1, x2, x3) := (x2
1 + x2

2 + x2
3 + 3)2 − 16 (x2

1 + x2
2),

which has nonvanishing differential at every point of T 2. Consequently, the
extrinsinc complexification of T 2, namely the complex hypersurface defined
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by

(13.4) Σ := {(z1, z2, z3) ∈ C3 : ρ(z1, z2, z3) = 0}
cuts R3 along T 2 with the transversality property TxR3 ∩ TxΣ = TxT

2 for
every point x ∈ T 2.

Secondly, according to Reeb ([CLN1985]) see also the figures there),
by considering the space R3 ≡ S3\{∞} as a punctured three-dimensional
sphere S3, one may glue a second three-dimensional full torus T̃ 3 to T 3

along T 2 with∞ ∈ T̃ 3 and then construct a foliation of S3 by 2-dimensional
surfaces all of whose leaves, except one, are diffeomorphic to R2, are con-
tained in either T 3 or in T̃ 3 and are accumulating on T 2, and finally, whose
single compact leaf is the above 2-torus T 2. This yields the so-called Reeb
foliation of S3, which is C∞ and orientable. Consequently, there exists a
C∞ smooth vector field L = a1(x) ∂x1 + a2(x) ∂x2 + a3(x) ∂x3 of norm 1,
namely a1(x)

2 + a2(x)
2 + a3(x)

2 = 1 for every x ∈ R3, which is every-
where orthogonal (with respect to the standard Euclidean structure) to the
leaves of the Reeb foliation. Geometrically, the integral curves of L accu-
mulate asymptotically on the two nodal (central) circles of T 3 and of T̃ 3.

The open ball B3 ⊂ R3 of radius 5 centered at the origin will be our max-
imally real submanifold M1. The two-dimensionaly torus T 2 will be our
nonremovable compact set K. The integral curves of the vector field L will
be our characteristic lines. Since L is orthogonal to T 2, these characteris-
tic lines will of course be everywhere transverse to K, so that K = T 2 is
nontransversal to the integral curves of L.

Thirdly, it remains to construct the generic submanifold M of CR dimen-
sion 1 containing M1 and to check that K will be nonremovable.

First of all, we notice that L provides the characteristic directions of M1

if and only if TxM = TpR3 ⊕ R J L(x) for every point x ∈ M1 ≡ B3.
Consequently, all submanifoldsM ⊂ C3 obtained by slightly thickeningM1

in the direction of J L(x) will be convenient; in other words, only the first
jet of M along M1 is prescribed by our choice of the characterisctic vector
field L. Notice that all such thin strips M along M1 will be diffeomorphic
to a real 4-ball.

The fact that K is nonremovable for all such generic submanifolds M is
now clear: the hypersurface Σ = {z ∈ C3 : ρ(z) = 0} satisfying TxΣ =
TxT

2 ⊕ R J TxT 2 for all x ∈ T 2 and L being transversal to T 2, we easily
deduce the transversality property TxΣ + TxM = TxC3 for all x ∈ T 2,
a geometric property which insures that the holomorphic function 1/ρ(z),
which is CR on M\K, does not extend holomorphically to any wedge of
edge M at any point of K. Intuitively, TxΣ/TxM absorbs all the normal
space TxC3/TxM at every point x ∈ T 2 = K, leaving no room for any open
cone.
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Finally, to fulfill all the hypotheses of Proposition 1.13 (except of course
nontransversality of K to FcM1), we have to insure that M is globally min-
imal. We claim that by bending strongly the second and the fourth order
jet of M along M1 (without modifying the first order jet which must be
prescribed by J L), one may insure that M is of type 4 in the sense of Defi-
nition 4.22(III) in [29] at every point of M1; since being of finite type is an
open property, it follows that M is finite type at every point provided that,
as a strip, M is sufficiently thin along M1. As is known, finite-typeness at
every point implies local minimality at every point which in turn implies
global minimality. This completes the recipe.

13.5. Finite-typisation. To complete the arguments of Theorem 1.9, it re-
mains to construct a generic submanifold M ⊂ C3 of CR dimension 1 sat-
isfying TxM = TxM

1 ⊕ R J L(x) for every x ∈ M1, which is of type 4 at
every point x ∈M1.

First of all, let us denote by L = a1(x) ∂x1 + a2(x) ∂x2 + a3(x) ∂x3 the
unit vector field which was constructed as a field orthogonal to the Reeb
foliation: it is defined over R3 and has C∞ coefficients satisfying a1(x)

2 +
a2(x)

2 + a3(x)
2 = 1 for all x ∈ R2. The two-dimensional quotient vector

bundle TR3/(RL) with contractible base being necessarily trivial, it follows
that we can complete L by two other C∞ unit vector fields K1 and K2

defined over R3 such that the triple (L(x), K1(x), K2(x)) forms a direct
orthonormal frame at every point x ∈ R3. Let us denote the coefficients of
K1 and of K2 by

(13.6)
K1 = ρ1 ∂x1 + ρ2 ∂x2 + ρ3 ∂x3 ,

K2 = r1 ∂x1 + r2 ∂x2 + r3 ∂x3 ,

where ρj and rj for j = 1, 2, 3 are C∞ functions of x ∈ R3 satisfying
ρ2

1 + ρ2
2 + ρ2

3 = 1 and r2
1 + r2

2 + r2
3 = 1. In our case, K1 and K2 may even

be constructed directly by means of a trivialization of the bundle tangent to
the Reeb foliation.

Let P > 0 be a constant, which will be chosen later to be large. Since by
construction we have the two orthogonality relations a1ρ1 +a2ρ2 +a3ρ3 = 0
and a1r1 +a2r2 +a3r3 = 0, it follows that every generic submanifold MP ⊂
C3 defined by the two Cartesian equations

(13.7)
0 = ρ = y1 ρ1(x) + y2 ρ2(x) + y3 ρ3(x) + P

[
y2

1 + y2
2 + y2

3

]
,

0 = r = y1 r1(x) + y2 r2(x) + y3 r3(x) + P 3
[
y4

1 + y4
2 + y4

3

]

enjoys the property that the vector field JL(x) = a1(x) ∂y1 + a2(x) ∂x2 +
a3(x) ∂x3 is tangent to MP at every x ∈ R3. As desired, we deduce that
T cxM = RL(x) ⊕ JRL(x) for every x ∈ R3, a property which insures that
RL(x) is the characteristic direction of M1 in MP , independently of P .
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To complete the final minimalization argument for the construction of a
nonremovable compact set C := T 2 ⊂ M1 ⊂ M which appears in the
Introduction, it suffices now to apply the following lemma with R = 5.
Though calculatory, its proof is totally elementary.

Lemma 13.8. For every R > 0, there exist P > 0 sufficiently large such
that MP is of type 4 at every point x ∈ R3 with x2

1 + x2
2 + x2

3 6 R2.

Proof. As above, let MP = {z ∈ C3 : ρ = r = 0}. By writing the tangency
condition, one checks immediately that the one-dimensional complex vector
bundle T 1,0MP is generated overC by the vector fieldL := A1 ∂z1+A2 ∂z2+
A3 ∂z3 , with the explicit expressions

(13.9)

A1 := 4ρz3rz2 − 4ρz2rz3 ,

A2 := 4ρz1rz3 − 4ρz3rz1 ,

A3 := 4ρz2rz1 − 4ρz1rz2 .

Using the expressions (13.7) for ρ and r, we see that these three components
restrict on {y = 0} as the Plücker coordinates of the bivector (K1, K2),
namely

(13.10)

A1|y=0 = ρ2r3 − ρ3r2 =: ∆2,3,

A2|y=0 = ρ3r1 − ρ1r3 =: ∆3,1,

A3|y=0 = ρ1r2 − ρ2r1 =: ∆1,2.

As K1 and K2 are of norm 1 and orthogonal at every point, it follows by
direct computation that ∆2

2,3 + ∆2
3,1 + ∆2

1,2 = 1 and that the vector of co-
ordinates (∆2,3,∆3,1,∆1,2) is orthogonal to both K1 and K2. Moreover, as
the orthonormal trihedron (L(x), K1(x), K2(x)) is direct at every point, we
deduce that necessarily

(13.11) ∆2,3 ≡ a1, ∆3,1 ≡ a2, ∆1,2 ≡ a3.

Next, we compute in length A1, A2 and A3 using (13.7). As their com-
plete explicit development will not be crucial for the sequel and as we shall
perform with them differentiations and linear combinations yielding rela-
tively complicated expressions, let us adopt the following notation: by R0,
we denote various expressions which are polynomials in the jets of the func-
tions ρ1, ρ2, ρ3 and r1, r2, r3. Similarly, by RI , by RII , by RIII and by
RIV , we denote polynomials in the transverse variables (y1, y2, y3) which
are homogeneous of degree 1, 2, 3 and 4 and have as coefficients various
expressions R0.

Importantly, we make the convention that such expressions R0, RI , RII ,
RIII and RIV should be totally independent of the constant P . Conse-
quently, if P appears somehow, we shall write it as a factor, as for instance
in P RI or in P 3 RIII .
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With this convention at hand, we may develope (13.9) using the expres-
sions (13.7) by writing out only the terms which will be useful in the sequel
and by treating the rest as controlled remainders. Let us detail the computa-
tion of A1:
(13.12)

A1 = 4

[
− i

2
ρ3 − iPy3 + RI

] [
− i

2
r2 − 2iP 3y3

2 + RI

]
−

− 4

[
− i

2
ρ2 − iPy2 + RI

] [
− i

2
r3 − 2iP 3y3

3 + RI

]

= −ρ3r2 − 4P 3ρ3y
3
2 + RI − 2Pr2y3 + P 4RIV + PRI + RI + P 3RIV + RII

+ ρ2r3 + 4P 3ρ2y
3
3 + RI + 2Pr3y2 + P 4RIV + PRI + RI + P 3RIV + RII

= ρ2r3 − ρ3r2 + 2Pr3y2 − 2Pr2y3 + 4P 3ρ2y
3
3 − 4P 3ρ3y

3
2+

+ RI + RII + PRII + P 3RIV + P 4RIV .

In the development, before simplification, we firstly write out in lines 3 and
4 all the 9 × 2 terms of the two product: for instance, the third term of
the first product, namely 4(− i

2
ρ3)(RI), yields a term RI whereas the fifth

term 4(−iPy3)(−2iP 3y3
2) yields a term P 4RIV ; secondly, we simplify the

obtained sum: by our convention, RI + RI = RI , whereas RI + PRI

cannot be simplified, since the large constant P will be chosen later. With
these technical explanations at hand, we shall not provide any intermediate
detail for the further computations, whose rules are totally analogous. For
A1, A2 and A3, we obtain
(13.13)




A1 = ρ2r3 − ρ3r2 + 2Pr3y2 − 2Pr2y3 + 4P 3ρ2y
3
3 − 4P 3ρ3y

3
2+

+ RI + RII + PRII + P 3RIV + P 4RIV ,

A2 = ρ3r1 − ρ1r3 + 2Pr1y3 − 2Pr3y1 + 4P 3ρ3y
3
1 − 4P 3ρ1y

3
3+

+ RI + RII + PRII + P 3RIV + P 4RIV ,

A3 = ρ1r2 − ρ2r1 + 2Pr2y1 − 2Pr1y2 + 4P 3ρ1y
3
2 − 4P 3ρ2y

3
1+

+ RI + RII + PRII + P 3RIV + P 4RIV .

Now that we have written the complex vector field L and its coefficients
A1,A2 andA3, in order to establish Lemma 13.8, it suffices to choose P > 0
sufficiently large in order that the four complex vector fields

(13.14) L |y=0, L|y=0,
[
L,L

] |y=0,
[
L,

[
L,

[
L,L

]]] |y=0

are linearly independent at every point x ∈ R3 with x2
1 + x2

2 + x2
3 6 R2. At

the end of the proof, we shall explain why we cannot insure type 3 at every
point, namely why the consideration of

[
L,

[
L,L

]] |y=0 instead of the length
four last Lie bracket in (13.14) would fail.
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As promised, we shall now summarize all the subsequent computations.
As we aim to restrict the last Lie bracket to {y = 0} which is of length
four and whose coefficients involve derivatives of order at most three of the
coefficients A1, A2 and A3, we can already neglect the last two remainders
P 3RIV and P 4RIV in (13.13). In other words, we can consider A1, A2 and
A3 mod(IV ). Similarly, in the computation of the Lie bracket

(13.14)
[
L,L

]
=: C1 ∂z1 + C2 ∂z2 + C3 ∂z3 − C1 ∂z̄1 − C2 ∂z̄2 − C3 ∂z̄3 ,

before restriction to {y = 0}, we can restrict our task to developing the
coefficients

(13.16)

C1 := A1A1,z̄1 + A2A1,z̄2 + A3A1,z̄3 ,

C2 := A1A2,z̄1 + A2A2,z̄2 + A3A2,z̄3 ,

C3 := A1A3,z̄1 + A2A3,z̄2 + A3A3,z̄3

only modulo order (III), which yields by means of the expressions (13.13)
(13.17)

C1 mod (III) ≡ −iPρ1 + 6iP 3a3ρ2y
2
3 − 6iP 3a2ρ3y

2
2 + R0 + RI+

+ PRI + P 2RI + RII + PRII + P 2RII ,

C2 mod (III) ≡ −iPρ2 + 6iP 3a1ρ3y
2
1 − 6iP 3a3ρ1y

2
3 + R0 + RI+

+ PRI + P 2RI + RII + PRII + P 2RII ,

C3 mod (III) ≡ −iPρ3 + 6iP 3a2ρ1y
2
2 − 6iP 3a1ρ2y

2
1 + R0 + RI+

+ PRI + P 2RI + RII + PRII + P 2RII .

We must mention the use of natural rule hold for computing the partial
derivatives Aj,z̄k

: we have for instance ∂z̄k

(
RII

)
= RI + RII . Also,

we have used the hypothesis that (L(x), K1(x), K2(x)) provides a direct
orthonormal frame at every x ∈ R3, which yields in particular the three
relations

(13.18) a2r3− a3r2 = −ρ1, a3r1− a1r3 = −ρ2, a1r2− a2r1 = −ρ3.

After mild computation, the coefficients F1, F2 and F3 of the length four Lie
bracket
(13.19)[
L,

[
L,

[
L,L

]]]
= F1 ∂z1 + F2 ∂z2 + F3 ∂z3 +G1 ∂z̄1 +G2 ∂z̄2 +G3 ∂z̄3

are given, after restriction to {y = 0}, by

(13.20)

F1|y=0 = 3iP 3a3
2ρ3 − 3iP 3a3

3ρ2 + R0 + PR0 + P 2R0,

F2|y=0 = 3iP 3a3
3ρ1 − 3iP 3a3

1ρ3 + R0 + PR0 + P 2R0,

F3|y=0 = 3iP 3a3
1ρ2 − 3iP 3a3

2ρ1 + R0 + PR0 + P 2R0,
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We can now complete the proof of Lemma 13.8. In the basis
(∂z1 , ∂z2 , ∂z3 , ∂z̄1 , ∂z̄2 , ∂z̄3), the 4 × 6 matrix associated with the four
vector fields (13.14) (without mentioning |y=0)

(13.21)




0 0 0 a1 a2 a3

a1 a2 a3 0 0 0
C1 C2 C3 −C1 −C2 −C3

F1 F2 F3 G1 G2 G3




has rank four at a point x ∈ R3 if and only if the 3×3 determinant in the left
low corner is nonvanishing, namely if and only if the developped expression
(13.22)∣∣∣∣∣∣∣∣

a1 a2 a3

−iPρ1 + R0 −iPρ2 + R0 −iPρ3 + R0

3iP 3a3
2ρ3 − 3iP 3a3

3ρ2+ 3iP 3a3
3ρ1 − 3iP 3a3

1ρ3+ 3iP 3a3
1ρ2 − 3iP 3a3

2ρ1+
+R0 + PR0 + P 2R0 +R0 + PR0 + P 2R0 +R0 + PR0 + P 2R0

∣∣∣∣∣∣∣∣
= 3P 4

(
r3[a

3
1ρ2 − a3

2ρ1] + r2[a
3
3ρ1 − a3

1ρ3] + r1[a
3
2ρ3 − a3

3ρ2]
)
+

+ R0 + PR0 + P 2R0 + P 3R0 + P 4R0

= 3P 4
(
a4

1 + a4
2 + a4

3

)
+ R0 + PR0 + P 2R0 + P 3R0 + P 4R0

is nonvanishing.
At this point, the conclusion of the lemma is now an immediate conse-

quence of the following trivial assertion: Let a1, a2 and a3 be C∞ functions
on R3 satisfying a1(x)

2 + a2(x)
2 + a3(x)

2 = 1 for all x ∈ R3 and let R0
0 ,

R0
1 , R0

2 , R0
3 and R0

4 be C∞ functions on R3. For every R > 0, there exists
a constant P > 0 large enough so that the function

(13.23) 3P 4
(
a4

1 + a4
2 + a4

3

)
+ R0

0 + PR0
1 + P 2R0

2 + P 3R0
3 + P 4R0

4

is positive at every x ∈ R3 with x2
1 + x2

2 + x2
3 6 R2.

If we had put y3
1 + y3

2 + y3
3 instead of y4

1 + y4
2 + y4

3 in the second
equation (13.7), we would have considered the length three Lie bracket[
L,

[
L,L

]] |y=0 instead of the length four Lie bracket in (13.14), and hence
instead of the quartic a4

1 + a4
2 + a4

3 in (13.23), we would have obtained the
cubic a3

1 + a3
2 + a3

3, a function which (unfortunately) vanishes, for instance
if a1(x) = 1√

2
, a2(x) = − 1√

2
and a3(x) = 0. We notice that in our example,

this value of (a1, a2, a3) is indeed attained at the point x ∈ T 2 of coordi-
nates ( 3√

2
,− 3√

2
, 0), whence the necessity of passing to type 4. The proof of

Lemma 13.8 is complete. ¤
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A Morse-theoretical proof
of the Hartogs extension theorem

Joël Merker and Egmont Porten

Abstract. 100 years ago exactly, in 1906, Hartogs published a celebrated extension
phenomenon (birth of Several Complex Variables), whose global counterpart was
understood later: holomorphic functions in a connected neighborhood V (∂Ω) of a
connected boundary ∂Ω b Cn (n > 2) do extend holomorphically and uniquely
to the domain Ω. Martinelli in the early 1940’s and Ehrenpreis in 1961 obtained a
rigorous proof, using a new multidimensional integral kernel or a short ∂ argument,
but it remained unclear how to derive a proof using only analytic discs, as did
Hurwitz (1897), Hartogs (1906) and E.E. Levi (1911) in some special, model cases.
In fact, known attempts (e.g. Osgood 1929, Brown 1936) struggled for monodromy
against multivaluations, but failed to get the general global theorem.

Moreover, quite unexpectedly, Fornæss in 1998 exhibited a topologically strange
(nonpseudoconvex) domain ΩF ⊂ C2 that cannot be filled in by holomorphic discs,
when one makes the additional requirement that discs must all lie entirely inside ΩF.
However, one should point out that the standard, unrestricted disc method usually
allows discs to go outsise the domain (just think of Levi pseudoconcavity).

Using the method of analytic discs for local extensional steps and Morse-
theoretical tools for the global topological control of monodromy, we show that
the Hartogs extension theorem can be established in such a way.

J. Geom. Anal. 17 (2007), no. 3, 513–546.
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§1. THE HARTOGS EXTENSION THEOREM
AND THE METHOD OF ANALYTIC DISCS

100 years ago exactly, in 1906, the publication of Hartogs’s thesis ([14]
under the direction of Hurwitz) revealed what is now considered to be the
most striking fact of multidimensional complex analysis: the automatic,
compulsory holomorphic extension of functions of several complex vari-
ables to larger domains, especially for a class of “pot-looking” domains,
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nowadays called Hartogs figures, that may be filled in up to their top. Soon
after, E.E. Levi [25] applied the Hurwitz-Hartogs argument of Cauchy in-
tegration on complex affine circles moving in the domain (firstly discov-
ered in [21]), in order to perform local holomorphic extension across strictly
(Levi) pseudoconcave boundaries. The so-called method of analytic discs
was born, historically.

Hartogs extension theorem. Let Ω b Cn be a bounded domain having con-
nected boundary. If n > 2, every function holomorphic in some connected
open neighborhood V (∂Ω) of ∂Ω extend holomorphically and uniquely in-
side Ω, i.e.:

∀ f ∈ O
(
V (∂Ω)

)
, ∃ ! F ∈ O

(
Ω ∪ V (∂Ω)

)
s.t. F

∣∣
V (∂Ω)

= f.

Classically, one also presents an alternative formulation, which is checked
to be equivalent — think that K = Ω

∖
V (∂Ω).

Hartogs theorembis. If Ω b Cn (n > 2) is a domain and if K ⊂ Ω is any
compact such that Ω\K connected, then O(Ω\K) = O(Ω)

∣∣
Ω\K .

Already in [14] (p. 231), Hartogs stated such a global theorem in the typi-
cal language of those days, without claiming single-valuedness however —
something that he consistently mentions in other places. Later in [32], Os-
good (who gives the reference to Hartogs) “proves” unique holomorphic
extension with discs, but what is written there is seriously erroneous, even
when applied to a ball. In 1936, well before Milnor ([31]) had popular-
ized Morse theory, using topological concepts and a language which are
nowadays difficult to grasp, Brown ([5]) fixed somehow single-valuedness
of the extension39: discretizing Ω\K to tame the topology, he exhaustsCn by
spheres of decreasing radius (as we will do in this paper), but we believe that
his proof still contains imprecisions, because the subtracting process that we
encounter unavoidably when applying Morse theory does not appear in [5].

Since the 1940’s, few complex analysts have seriously thought about test-
ing the limit of the disc method probably because the motivation was gone,
and in fact, the possible existence of an elementary rigorous proof of the
global Hartogs extension theorem using only a finite number of Hartogs fig-
ures remained a folklore belief; for instance, in [35], p. 133, it is just left as
an “exercise”. But to the authors’ knowledge, no reliable mathematical pub-
lication shows fully how to perform a rigorous proof of the global theorem,
using only the original Hurwitz-Hartogs-Levi analytic discs as a tool.

39 We thank an anonymous referee for pointing historical incorrections in the prelimi-
nary version of this paper and for providing us with exact informations.
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On the other hand, thanks to the contributions of Kneser ([24]), of Fueter
([11]), of Martinelli ([27, 28]), of Bochner ([4]) and of Fichera ([9]), power-
ful multidimensional integral kernels were discovered that provided a com-
plete proof, from the side of Analysis. Soon after, Ehrenpreis ([8]) found
what is known to be the most concise proof, based on the vanishing of ∂-
cohomology with compact support. This proof was learnt by generations of
complex analysts, thanks to Hörmander’s book [18]. Range’s Correction of
the Historical Record [30] provides an excellent account of the very birth
of integral formulas in Cn. Since the 1960’s, ∂ techniques, L2 methods and
integral kernels developed into a vast field of research in Several Complex
Variables, c.f. [18, 2, 16, 15, 29, 6, 7, 22, 21, 26, 16].

A decade ago, Fornæss [10] produced a topologically strange domain ΩF

that cannot be filled in by means of analytic discs, when one makes the ad-
ditional requirement that discs must all lie entirely inside the domain. Pos-
sibly, one could interpret this example as a “defeat” of geometrical methods.

But in absence of pseudoconvexity, it is much more natural to allow
discs to go outside the domain, because the local E.E. Levi extension the-
orem already needs that. In fact, as remarked by Bedford in his review [3]
of [10], Hartogs’ phenomenon for Fornæss’ domain ΩF may be shown to
hold straightforwardly by means of the usual, unrestricted disk method.

Furthermore, the study of envelopes of holomorphy (see the monograph
of Jarnicki and Pflug [22] for an introduction to Riemann domains spread
over Cn and [29] for applications in a CR context) shows well how natural it
is to deal with sucessively enlarged (Riemann) domains. Bishop’s construc-
tive approach, especially his famous idea of gluing discs to real submani-
folds, reveals to be adequate in such a widely open field of research. We
hence may hope that, after the very grounding historical theorem of Hartogs
has enjoyed a renewed proof, geometrical methods will undergo further de-
velopments, especially to devise fine holomorphic extension theorems that
are unreachable by means of contemporary ∂ techniques.

In this paper, we establish rigorously that the Hartogs extension theorem
can be proved by means of a finite number of parameterized families of
analytic discs (Theorems 2.7 and 5.4). The discs we use are all (tiny) pieces
of complex lines in Cn. The main difficulty is topological and we use the
Morse machinery to tame multisheetedness.

At first, we shall replace the boundary ∂Ω by a C∞ connected oriented
hypersurface M b Cn (n > 2) for which the restriction to M of the Eu-
clidean norm function z 7→ ||z|| is a good Morse function (Lemma 3.3),
namely there exist only finitely many points p̂λ ∈ M , 1 6 λ 6 κ, with
||p̂1|| < · · · < ||p̂κ|| at which z 7→ ||z|| restricted to M has vanishing differ-
ential. We also replace V (∂Ω) by a very thin tubular neighborhood Vδ(M),



410

0 < δ << 1, and Ω by a domain ΩM b Cn bounded by M . Next, we will
introduce a modification of the Hartogs figure, called a Levi-Hartogs figure,
which is more appropriate to produce holomorphic extension from the cut
out domains

{||z|| > r
}∩ΩM , where the radius r will decrease, inductively.

Local Levi pseudoconcavity of the exterior of a ball then enables us to pro-
long the holomorphic functions to

{||z|| > r− η}∩ΩM , for some uniform η
with 0 < η << 1, which depends on the dimension n > 2, on δ, and on the
diameter of Ω. We hence descend stepwise to lower radii until the domain
is fully filled in.

br2

br1

br3

br4

br5
br6

merge

suppress

create

Fig. 1: Filling the domain, creating, merging and suppressing components

br2

br3

However, this naive conclusion fails because of multivaluations and a cru-
cial three-piece topological device is required. We begin by filling the top
of the domain, which is simply diffeomorphic to a cut out piece of ball. Ge-
ometrically speaking, Morse points p̂λ, 1 6 λ 6 κ, are the only points of
M at which the family of spheres

({||z|| = r
})

0<r<∞ are tangent to M .
We denote ||p̂λ|| =: r̂λ with r̂1 < · · · < r̂κ. In Figure 1, we have κ = 6.
For an arbitrary fixed radius r with r̂λ < r < r̂λ+1, and some fixed λ with
1 6 λ 6 κ − 1, we consider all connected components M c

>r, 1 6 c 6 cλ,
of the cut out hypersurface M ∩ {||z|| > r

}
. Their number cλ is the same

for all r ∈ (
r̂λ, r̂λ+1

)
. In Figure 1, when r̂3 < r < r̂4, we see three such

components.

By descending discrete induction r 7→ r − η, we show that each such
connected hypersurface M c

>r ⊂ {||z|| > r
}

bounds a certain domain
Ω̃c
>r ⊂

{||z|| > r
}

which is relatively compact in Cn and that holomorphic
functions in Vδ(M) do extend holomorphically and uniquely to Ω̃c

>r. While
approaching a lower Morse point, three different topological processes will
occur40: creating a new component Ω̃c′

>r−η to be filled in further; merging

40A certain number of other simpler cases will also happen, where the components Ω̃c
>r

do grow regularly with respect to holomorphic extension, possibly changing topology.
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two components Ω̃
c′1
>r−η and Ω̃

c′2
>r−η which meet; and suppressing one super-

fluous component Ω̃
c′1
>r−η.

The unavoidable multivaluation phenomenon will be tamed by the idea
of separating ab initio the components M c

>r, 1 6 c 6 cλ. Indeed, an ad-
vantageous topological property will be shown to be inherited through the
induction r 7→ r − η, hence always true, namely that two different domains
Ω̃c1
>r and Ω̃c1

>r are either disjoint or one is contained in the other. Conse-
quently, the multivaluation aspect will only happen in the sense that the two
uniquely defined and univalent holomorphic extensions f c1r to Ω̃c1

>r and f c2r
to Ω̃c2

>r can be different on Ω̃c1
>r, in case Ω̃c1

>r ⊂ Ω̃c2
>r, or vice versa. In this

way, we avoid completely to deal with Riemann domains spread over Cn.

Some of the elements of our approach should be viewed in a broader con-
text. In their celebrated paper [1] (see also [15]), Andreotti and Grauert
observed that convenient exhaustion functions can be used to prove very
general extension and finiteness results on q-concave complex varieties.
Their arguments implicitly contained a geometrical proof of the Hartogs
extension theorem in the case where the domain Ω ⊂ Cn is pseudoconvex
(whence Fornæss’ counter-example must be nonpseudoconvex). However,
in contrast to our finer method, the existence of an internal strongly pseudo-
convex exhaustion function ρ on a complex manifold X excludes ab initio
multisheetedness: indeed, in such a circumstance, extension holds stepwise
from shells of the form

{
z ∈ X : a < ρ(z) < b

}
just to deeper shells

{a′ < ρ < b} with a′ < a (details are provided in [27]), namely the topol-
ogy is controlled in advance by ρ and multiple domains as Ω̃c

>r above cannot
at all appear.

There is a nice alternative approach to the (singular) Hartogs extension
theorem via a global continuity principle, realized in [21] by Jöricke and
the second author, with the purpose of understanding removable singulari-
ties by means of (geometric) envelopes of holomorphy. The idea is to per-
form holomorphic extensions along one-parameter families of holomorphic
curves (not suppose to be discs). A basic extension theorem on some ap-
propriate Levi flat 3-manifolds, called Hartogs manifolds in [21], is shown
via stepwise extension in the direction of an increasing real parameter. The
geometrical scheme of this construction has a common topological element
with our method: the simultaneous holomorphic extension to collections of
domains that are pairwise either disjoint or one is contained in the other.

On the other hand, our technique only rely upon the existence of appropri-
ate exhaustion functions, without requiring neither the existence of Levi-flat
3-manifolds nor the existence of global holomorphic functions in the ambi-
ent complex manifold. In addition, inspired by a definition formulated by
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Fornæss in [10], we establish that only a finite number of Levi-Hartogs fig-
ures is needed in the filling process. Finally, we would like to mention that
a straightforward adaptation of the proof developed here would yield a geo-
metrical proof of the Hartogs-type extension theorem of Andreotti and Hill
([2]), which is valid for arbitrary domains in (n−1)-complete manifolds (in
the sense of Andreotti-Grauert [10]).

Twenty-two colored illustrations appear, each one being inserted at the
appropriate place in the text. Abstract geometrical thought being intrinsi-
cally pictural, we hope to address to a broad audience of complex analysts
and geometers.

§2. PREPARATION OF THE BOUNDARY AND UNIQUE EXTENSION

2.1. Preparation of a good C∞ boundary. Denote by ||z|| := (|z1|2+ · · ·+
|zn|2

)1/2 the Euclidean norm of z = (z1, . . . , zn) ∈ Cn and by Bn(p, δ) :={||z−p|| < δ
}

the open ball of radius δ > 0 centered at a point p. If E ⊂ Cn
is any set,

Vδ(E) := ∪p∈E Bn(p, δ)
is a concrete open neighborhood of E.

As in the Hartogs theorem, assume that the domain Ω b Cn has con-
nected boundary ∂Ω and let V (∂Ω) be an open neighborhood of ∂Ω, also
connected. Clearly, there exists δ1 with 0 < δ1 << 1 such that ∂Ω ⊂
Vδ1(∂Ω) ⊂ V (∂Ω); of course, Vδ1(∂Ω) is then also connected. Choose a
point p0 ∈ Cn with dist (p0,Ω) = 3, center the coordinates (z1, . . . , zn) at
p0 and consider the distance function

(2.2) r(z) := ||z − p0|| = ||z||.
It is crucial to prepare as follows the boundary, replacing (Ω, ∂Ω) by
(ΩM ,M), thanks to some transversality arguments that are standard in
Morse theory ([31] and [17], Ch. 6).

Lemma 2.3. There exists a C∞ connected closed and oriented hypersurface
M ⊂ Vδ1/2(∂Ω) such that:

(i) M bounds a unique bounded domain ΩM with Ω ⊂ ΩM ∪ V (∂Ω);
(ii) the restriction rM(z) := r(z)

∣∣
M

of the distance function r(z) = ||z||
to M has only a finite number κ of critical points p̂λ ∈M , 1 6 λ 6
κ, located on different sphere levels, namely

2 6 r(p̂1) < · · · < r(p̂κ) 6 5 + diam(Ω);

(iii) all the (2n − 1) × (2n − 1) Hessian matrices
H[rM ](p̂1), . . . ,H[rM ](p̂κ) have a nonzero determinant.
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mn∂Ω

mnM

mnp0

mnV (∂Ω) mnFig. 2: Preparing the boundary

mn∂Ω

Sometimes, rM satisfying (ii) and (iii) is called a good Morse function on
M . We will shortly say that M is a good boundary.

If kλ is the number of positive eigenvalues of the (symmetric) Hessian
matrix H[rM ](p̂λ), the extrinsic Morse lemma ([31, 17]) shows that there ex-
ist 2n real coordinates

(
v, x1, . . . , xkλ

, y1, . . . , y2n−kλ−1

)
in a neighborhood

of p̂λ in Cn such that

• the sets {v(z) = cst} simply correspond41 to the spheres {r(z) =
cst} near p̂λ;

• (
x1, . . . , xkλ

, y1, . . . , y2n−kλ−1

)
provide (2n − 1) local coordinates

on the hypersurface M , whose graphed equation is normalized to be
the simple hyperquadric

v =
∑

16j6kλ

x2
j −

∑

16j62n−kλ−1

y2
j .

Classically, the number (2n − kλ − 1) of negatives is called the Morse
index of r(z)

∣∣
M

at p̂λ; we will call kλ its Morse coindex.
For rather general differential-geometric objects, Morse theory enables to

control a significant part of homotopy groups and of (co)homologies, e.g.
via Morse inequalities. In our case, we shall be able to control somehow the
global topology of the cut-out domains ΩM ∩ {||z|| > r} that re external to
closed balls of radius r, filling them progressively by means of analytic discs
contained in small (Levi-)Hartogs figures (Section 3). We start by checking
rigorously that the Hartogs theorem can be reduced to some good boundary.

2.4. Unique holomorphic extension. If U ⊂ Cn is open, O(U ) denotes
the ring of holomorphic functions in U .

41In fact, one can just take the translated radius r(z)−r(p̂λ) as the coordinate v = v(z).
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Definition 2.5. Given two connected open sets U1 ⊂ Cn and U2 ⊂ Cn with
U1 ∩ U2 nonempty, we will say42 that O(U1) extends holomorphically to
U1 ∪U2 if :

• the intersection U1 ∩U2 is connected;
• there exists an open nonempty set V ⊂ U1 ∩U2 such that for every
f1 ∈ O(U1), there exist f2 ∈ O(U2) with f2|V = f1|V .

It then follows from the principle of analytic continuation that f1|U1∩U2 =
f2|U1∩U2 , so that the joint function F , equal to fj on Uj for j = 1, 2, is well
defined, is holomorphic in U1 ∪U2 and extends f1, namely F |U1 = f1.

In concrete extensional situations, the coincidence of f1 with f2 is con-
trolled only in some small V ⊂ U1 ∩U2, so the connectedness of U1 ∩U2

appears to be useful to insure monodromy. Sometimes also, we shall briefly
write O(U1) = O(U1 ∪U2)

∣∣
U1

, instead of spelling rigorously:

∀ f1 ∈ O
(
U1

) ∃ F ∈ O
(
U1 ∪U2

)
such that F

∣∣
U1

= f1.

Lemma 2.6. Suppose that for some δ with 0 < δ 6 δ1/2 so small that
Vδ(M) ' M × (−δ, δ) is a thin tubular neighborhood of the good bound-
ary M ⊂ Vδ1/2(∂Ω) ⊂ V (∂Ω), the Hartogs theorem holds for the pair
(ΩM ,Vδ(M)):

O
(
Vδ(M)

)
= O

(
ΩM ∪ Vδ(M)

)∣∣
Vδ(M)

.

Then the general Hartogs extension property holds:

O
(
V (∂Ω)

)
= O

(
Ω ∪ V (∂Ω)

)∣∣
V (∂Ω)

.

Proof. Let f ∈ O
(
V (∂Ω)

)
. By assumption, its restriction to Vδ(M) ⊂

V (∂Ω) enjoys an extension Fδ ∈ O
(
ΩM ∪ Vδ(M)

)
. To ascertain that f and

Fδ coincide in ΩM ∩ V (∂Ω), connectedness of ΩM ∩ V (∂Ω) is welcome.

����������������������������������������
����������������������������������������
����������������������������������������
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����������������������������������������

V (∂Ω)

∂Ω

M

∂Ω

M

ΩM

Vδ(M)

γ

γ
p

q

Fig. 3: Checking connectedness of ΩM ∩ V (∂Ω)

Letting p, q ∈ ΩM ∩V (∂Ω), there exists a C∞ curve γ : [0, 1] → V (∂Ω)
connecting p to q. If γ meets M , let p′ be the first point on γ ∩M and let
q′ be the last one. We then modify γ, joining p′ to q′ by means of a curve

42Because in the sequel, the union U1 ∪U2 would sometimes be a rather long, compli-
cated expression (see e.g. (3.9)), hence uneasy to read, we will also say that O(U1) extends
holomorphically and uniquely to U2.
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µ entirely contained in the connected hypersurface M . It suffices to push
µ slightly inside ΩM to get an appropriate curve running from p to q inside
ΩM ∩ V (∂Ω). Thus, ΩM ∩ V (∂Ω) is connected. It follows, moreover, that
the open set

[
ΩM ∪ Vδ(M)

] ∩ V (∂Ω) =
[
ΩM ∩ V (∂Ω)

] ⋃
Vδ(M)

is also connected, so the coincidence f = Fδ, valid in Vδ(M), propagates to[
ΩM ∩ V (∂Ω)

] ∪ Vδ(M). Finally, the function

F :=

{
Fδ in ΩM ∪ Vδ(M),

f in V (∂Ω)\ΩM ,

is well defined
(
since Fδ = f in Vδ(M)\ΩM 'M × (0, δ)

)
, is holomorphic

in
ΩM ∪ V (∂Ω) = Ω ∪ V (∂Ω)

and coincides with f in V (∂Ω). ¤

Thus, we are reduced to establish global holomorphic extension with
some good, geometrically controlled data.

Theorem 2.7. Let M b Cn (n > 2) be a connected C∞ hypersurface
bounding a domain ΩM b Cn. Suppose to fix ideas that 2 6 dist

(
0,ΩM

)
6

5 and assume that the restriction rM := r|M of the distance function r(z) =
||z|| to M is a Morse function having only a finite number κ of critical points
p̂λ ∈M , 1 6 λ 6 κ, located on different sphere levels:

2 6 r̂1 := r(p̂1) < · · · < r̂κ := r(p̂κ) 6 5 + diam
(
ΩM

)
.

Then there exists δ1 > 0 such that for every δ with 0 < δ 6 δ1, the (tubular)
neighborhood Vδ(M) enjoys the global Hartogs extension property into ΩM :

O
(
Vδ(M)

)
= O

(
ΩM ∪ Vδ(M)

)∣∣
Vδ(M)

,

by “pushing” analytic discs inside a finite number of Levi-Hartogs figures
(§3.3), without using neither the Martinelli kernel, nor solutions of an aux-
iliary ∂ problem.

§3. QUANTITATIVE HARTOGS-LEVI EXTENSION
BY PUSHING ANALYTIC DISCS

3.1. The classical Hartogs figure. Local Hartogs phenomena can now enter
the scene. They involve translating (“pushing”) analytic discs and they will
provide small, elementary extensional steps to fill in ΩM .
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Given ε ∈ R with 0 < ε << 1 and a ∈ N with 1 6 a 6 n − 1, we split
the coordinates z ∈ Cn as (z1, . . . , za) together with (za+1, . . . , zn), and we
define the (n− a)-concave Hartogs figure by

H n−a
ε :=

{
max
16i6a

|zi| < 1, max
a+16j6n

|zj| < ε
}

⋃ {
1− ε < max

16i6a
|zi| < 1, max

a+16j6n
|zj| < 1

}
.

1− ε0

1

ε

|z2|

|z1|1

H 2−1
ε

z1

y2C2

∆2 Aε′
z2(∆)

Aε′
z2(∂∆)

Fig. 4: Two views of the standard Hartogs figure H 2−1
ε ⊂ C2

0

x2

Lemma 3.2. O
(
H n−a

ε

)
extends holomorphically to the unit polydisc

Ĥ n−a
ε :=

{
z ∈ Cn : max

16i6n
|zi| < 1

}
= ∆n.

Proof. As in the diagram, we consider only n = 2, a = 1, the general case
being similar. Pick an arbitrary f ∈ O

(
H 2−1

ε

)
. Letting ε′ with 0 < ε′ < ε,

letting z2 ∈ C with |z2| < 1, the analytic disc

ζ 7−→ (
[1− ε′] ζ, z2

)
=: Aε

′
z2

(ζ),

where ζ belongs to the closed unit disc ∆ = {|ζ| 6 1}, has its boundary
Aε

′
z2

(∂∆) = Aε
′
z2

({|ζ| = 1}) contained in H 2−1
ε , the set where f is de-

fined. Lowering dimensions by a unit, we draw discs as (green) segments
and boundaries of discs as (green) bold points. Thus, we may compute the
Cauchy integral

F (z1, z2) :=
1

2πi

∫

∂∆

f
(
Aε

′
z2

(ζ)
)

ζ − z1

dζ.

Differentiating under the sum, the function F is seen to be holomorphic.
In addition, for |z2| < ε, it coincides with f , because the full closed disc
Aε

′
z2

(
∆

)
is contained in H 2−1

ε and thanks to Cauchy’s formula. Clearly, the
Aε

′
z2

(∆) all together fill in the bidisc ∆2. One may think that, as z2 varies,
discs are “pushed” gently by a virtual thumb. ¤
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3.3. Levi extension and the Levi-Hartogs figure. Geometrically, the stan-
dard Hartogs figure is not best suited to perform holomorphic extension from
a strongly (pseudo)concave boundary. For instance, in the proof of Theo-
rem 2.7, we will encounter complements in Cn of some closed balls whose
radius decreases step by step, and more generally spherical shells whose
thickness increases interiorly. Thus, we delineate an appropriate set up.

For r ∈ R with r > 1 and for δ ∈ R with 0 < δ << 1, the sphere
S2n−1
r = {z ∈ Cn : ||z|| = r} of radius r is the interior (and strongly

concave) boundary component of the spherical shell domain

S r+δ
r :=

{
r < ||z|| < r + δ

}
=

⋃

p∈S2n−1
r

Bn(p, δ) ∩ {||z|| > r}.

Cn

xn

yn

z′

ε1

ε1 − (ε1)
2 ε1

ε2L H ε1,ε2 0
p

S r+δ
r

S2n−1
r

Bn
r

TpS2n−1
r

Fig. 5: Relevance of the Levi-Hartogs figure

Near a point p ∈ S2n−1
r (left figure), all copies of Cn−1 (in green) which

are parallel to the complex tangent plane T cpS
2n−1
r and which lie above the

real plane TpS2n−1
r are entirely contained in Cn

∖
Bnr . To remain inside the

shell S r+δ
r , we could (for instance) restraint our considerations to some

half-cylinder of diameter ≈ δ, but it will be better to shape a convenient
half parallelepiped. Accordingly, for two small εj > 0, j = 1, 2, we intro-
duce a geometrically relevant Levi-Hartogs figure (right illustration, reverse
orientation):

L H ε1,ε2 :=
{

max
16i6n−1

|zi| < ε1, |xn| < ε1, −ε2 < yn < 0
}

⋃ {
ε1 − (ε1)

2 < max
16i6n−1

|zi| < ε1, |xn| < ε1 |yn| < ε2

}
.

To fill in this (bed-like) figure, we just compute the Cauchy integral on ap-
propriate analytic discs (the (green) horizontal ones) whose boundaries re-
main in L H ε1,ε2 .

Lemma 3.4. O
(
L H ε1,ε2

)
extends holomorphically to the full paral-

lelepiped

̂L H ε1,ε2 :=
{

max
16i6n−1

|zi| < ε1, |xn| < ε1, |yn| < ε2

}
.
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Next, we must reorient and scale L H ε1,ε2 in order to put it inside the
shell. For every point p ∈ S2n−1

r , there exists some complex unitarian affine
map

Φp : z 7−→ p+ Uz,

with U ∈ SU(n,C), sending the origin 0 ∈ L H ε1,ε2 to p and T0L H ε1,ε2

to TpS2n−1
r , which in addition sends the half-parallelepiped (open) part out-

side Bnr . But we have to insure that Φp

(
L H ε1,ε2

)
as a whole (including the

thin walls) lies outside Bnr .

Lemma 3.5. If ε1 = c δ and ε2 = c δ2 with some appropriate43 positive
constant c < 1, then Φp

(
L H ε1,ε2

)
is entirely contained in the shell S r+δ

r .

Furthermore, Φp

( ̂L H ε1,ε2

)
contains a rind of thickness c δ

2

r
around some

region Rp ⊂ S2n−1
r whose (2n− 1)-dimensional area equals ' c δ2n−1.

p

Φp
`
L H ε1,ε2

´
p

z′

yn
xn

S r+δ
r

S r+δ
r

cδ

c δ2

r

cδ2n−2

Rp

S2n−1
r

c δ2

r

c δ2

r

cδ

Fig. 6: Size of the piece of (green lemon) rind

By a (radial) rind of thickness η > 0 around an open region R ⊂ S2n−1
r ,

we mean
Rind

(
R, η

)
:=

{
(1 + s)z : z ∈ R, |s| < η/r

}
.

We require that |s| < η/r to insure that at every z ∈ R, the half-line (0z)+

emanating from the origin intersects Rind
(
R, η

)
along a symmetric segment

of length 2 η centered at z.
In the diagram above, we draw (in green) only the lower part of the small

region Rp got in Lemma 3.5. Its shape, when projected onto TpS2n−1
r , can

either be (approximately) a parallelepiped
{|z′| < c δ, |xn| < c δ

}
, as in the

figure, or say, a ball
{(||z′||2 + |xn|2

)1/2
< c δ

}
; only the scaling constant c

changes.
The rigorous proof of the lemma (not developed here) involves elementary

reasonings with geometric inequalities and a dry explicit control of the con-
stants that does not matter for the sequel. The main argument uses the fact
that S2n−1

r detaches quadratically from TpS
2n−1
r , similarly as the parabola{

y = −1
r
x2

}
separates from the line {y = 0} in R2

x,y.

43We let the letter c (resp. C) denote a positive constant < 1 (resp. > 1), absolute or
depending only on n, which is allowed to vary with the context.
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Since the area of S2n−1
r equals 2πn

(n−1)!
r2n−1 = C r2n−1, by covering S2n−1

r

with such adjusted Rp ⊂ Φp

( ̂L H ε1,ε2

)
of area c δ2n−1 and by controlling

monodromy (see rigorous arguments below) we deduce:

Corollary 3.6. By means of a finite number 6 C
(
r
δ

)2n−1 of Levi-Hartogs
figures, O

(
S r+δ
r

)
extends holomorphically to the slightly deeper spherical

shell S r+δ

r−c δ2

r

.

This application could seem superfluous, because large analytic discs with
boundaries contained in S r+δ

r would yield holomorphic extension to the
whole ball Bnr+δ in one single step. However, in our situation illustrated by
Figure 1, when intersecting S2n−1

r with the neighborhood Vδ(M), we shall
only get small subregions of S2n−1

r . Hopefully, thanks to our local Levi-
Hartogs figures, we may obtain a suitable semi-global extensional statement,
valuable for proper subsets of the shell S r+δ

r whose shape is arbitrary. The
next statement, not available by means of large discs, will be used a great
number of times in the sequel.

Proposition 3.7. Let R ⊂ S2n−1
r (with r > 1 and n > 2) be a relatively open

set having C∞ boundary N := ∂R and let δ > 0 with 0 < δ << 1. Then
holomorphic functions in the open piece of shell (a one-sided neighborhood
of R ∪ N):

Shellr+δr

(
R ∪ N

)
:=

(
Cn

∖
Bnr

) ∩ Vδ
(
R ∪ N

)

=
⋃

p∈R∪N

Bn(p, δ) ∩ {||z|| > r}

do extend holomorphically to a rind of thickness c δ
2

r
around R by means of

a finite number 6 C area(R)
δ2n−1 of Levi-Hartogs figures.

Fig. 7: Semi-global extension from a pseudoconcave piece of shell

N = ∂R N = ∂R

R R

S2n−1
r

S2n−1
r

Shellr+δ
r

`
R ∪ N

´

Rind
`
R, c δ2 r−1

´

Proof. We must control uniqueness of holomorphic extension (monodromy)
into rinds covered by successively attached Levi-Hartogs figures. Noticing
c δ2 r−1 << δ, the considered rinds are much thinner than the piece of shell.

Lemma 3.8. If R′ ⊂ R is an arbitrary open subset and if Rp′ ⊂
Φp′

( ̂L H ε1,ε2

)
is a small Levi-Hartogs region centered at an arbitrary point
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p′ ∈ R, then the intersection

(3.9) Rind
(
Rp′ , c δ

2 r−1
) ⋂ (

Shellr+δr

(
R ∪ N

) ⋃
Rind

(
R′, c δ2 r−1

))

is connected.

Admitting the lemma for a while, we pick a finite number m 6 C area(R)
δ2n−1

of points p1, . . . , pm ∈ R ∪ N such that the associated local regions Rpk

contained in the filled Levi-Hartogs figures Φpk

( ̂L H ε1,ε2

)
provided by

Lemma 3.5 do cover R ∪ N, namely Rp1 ∪ · · · ∪ Rpm ⊃ R ∪ N.
Starting with R′ := ∅ and p′ := p1, unique holomorphic extension of

O
(
Shellr+δr (R ∪ N)

)
to Rind

(
Rp′ , c δ

2 r−1
)

holds by means of Lemma 3.4,
monodromy being assured thanks to the connectedness of the intersec-
tion (3.9). Reasoning by induction, fixing some k with 1 6 k 6 m − 1,
setting R′ := ∪16j6k Rpj

, p′ := pk+1 and assuming that unique holomorphic
extension is got from Shellr+δr

(
R ∪ N

)
into

Shellr+δr

(
R∪N

)⋃
Rind

(
R′, c δ2 r−1

)
= Shellr+δr

(
R∪N

) ⋃

16j6k
Rind

(
Rpj , c δ

2 r−1
)
,

we add the Levi-Hartogs figure Φpk+1

( ̂L H ε1,ε2

)
constructed in Lemma 3.5,

and we get unique holomorphic extension to Rind
(
Rpk+1

, c δ2 r−1
)
, mon-

odromy being assured again thanks to the connectedness of the intersec-
tion (3.9). Since Rind

(
R, c δ2 r−1

) ⊂ ⋃
16k6m Rind

(
Rpk

, c δ2 r−1
)
, the

proposition is proved. ¤
Proof of Lemma 3.8. To establish connectedness of the open set (3.9), pick-
ing two arbitrary points q0, q1 in it, we must produce a curve joining q0
to q1 inside (3.9). The two radial segments of length 2 c δ2 r−1 passing
through q0 and q1 that are centered at two appropriate points of S2n−1

r are
by definition both entirely contained in Rind

(
Rp′ , c δ

2 r−1
)

as well as in
Rind

(
R′, c δ2 r−1

)
. Thus, moving radially, we may join inside (3.9) q0 to

a new point q′0 and q1 to a new point q′1, which both belong to the upper
half-rind {

(1 + s) z : z ∈ Rp′ , 0 < s < c δ2 r−1
/
r
}
.

Since this upper half-rind is connected and contained in Shellr+δr

(
R ∪ N

)
,

we may finally join inside (3.9) the point q′0 to q′1. ¤
In the sequel, in order to avoids several gaps and traps, we will put em-

phasis on rigourously checking univalence of holomorphic extensions.

§4. FILLING DOMAINS OUTSIDE BALLS OF DECREASING RADIUS

4.1. Global Levi-Hartogs filling from the farthest point. We can now
launch the proof of Theorem 2.7. The δ1 is first chosen so small that Vδ(M)
is a true tubular neighborhood of M for every δ with 0 < δ 6 δ1. Shrinking
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even more δ1, in balls of radius δ1 centered at its points, the hypersurface M
is well approximated by its tangent planes.

The farthest point of ΩM from the origin is unique and it coincides
with p̂κ since by assumption p̂κ is the single critical point of r(z)

∣∣
M

with
||p̂κ|| = max16λ6κ ||p̂λ||. By assumption also, the Hessian matrix of r(z)

∣∣
M

is nondegenerate at p̂κ; this also follows automatically from the inclusion
ΩM ⊂ Bnbrκ , which constrains strong convexity ofM at p̂κ. Consequently, ac-
cording to the Morse lemma ([31], [17], Ch. 6), there exist local coordinates
(θ1, . . . , θ2n−1) on M centered at p̂κ such that the intersection M ∩ S2n−1

r is
given by the equation

−θ2
1 − · · · − θ2

2n−1 = r − r̂κ,

for all r close to r̂κ. Thus M ∩ S2n−1
r is empty for r > r̂κ; it reduces to {p̂κ}

for r = r̂κ; and it is diffeomorphic to a (2n − 2)-sphere for r < r̂κ close to
r̂κ.

Similarly, the nearest point of ΩM from the origin is unique and it coin-
cides with p̂1; notice that hence κ > 2. Also, the second farthest critical
point p̂κ−1 lies at a distance r̂κ−1 < r̂κ from 0. If necessary, we shrink δ1 to
insure

(4.2) δ1 << min
16λ6κ−1

{
r̂λ+1 − r̂λ

}
.

Next, for every radius r with r̂κ−1 < r < r̂κ, we introduce the cut out
domain

Ω>r := ΩM ∩ {||z|| > r
}

together with the cut out hypersurface

M>r := M ∩ {||z|| > r
}
.
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Fig. 8: Filling the domain from the farthest point

Ω>r

bpκ−1

Cn

brκ−1

bpκ

r

Vδ(M)

M

brκ

Rr
Nr Nr

bpκ

M

r

bpκ−1

M

Vδ(M)

Ω>r
Vδ

`
M>r

´
>r

M>r

r

Wr

Since there are no critical points of r(z)
∣∣
M

in the interval
(
r̂κ−1, r̂κ

)
,

Morse theory shows that M>r is a deformed spherical cap diffeomorphic
to R2n−1 for every r with r̂κ−1 < r < r̂κ. Also, Ω>r is then a piece of
deformed ball diffeomorphic to R2n.
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The boundary in Cn of Ω>r

∂Ω>r = M>r ∪ Rr ∪ Nr

consists of M>r together with the open subregion Rr := ΩM ∩
{||z|| = r

}
of

S2n−1
r which is diffeomorphic toR2n−1 and has boundary Nr := M∩{||z|| =
r
}

diffeomorphic to the unit (2n− 2)-sphere. Thus, the global geometry of
Ω>r is understood.

We can also cut out Vδ(M), getting Vδ(M)>r. The central figure shows
that when r > r̂κ−1 is very close to r̂κ−1, a parasitic connected component
W>r of Vδ(M)>r might appear near p̂κ−1. After filling Ω>r progressively
by means of Levi-Hartogs figures (see below), because Ω>r ∩ Vδ(M)>r is
not connected in such a situation, no unique holomorphic extension can be
assured, and in fact, multivalence might well occur.

A trick to erase such parasitic components W>r is to consider instead the
open set

Vδ
(
M>r

)
>r

= Vδ
(
M>r

) ∩ {||z|| > r
}
,

putting a double “>r”. It is drawn in the right figure and it is always diffeo-
morphic to M>r × (−δ, δ).

From pieces of shells as in Proposition 3.7 which embrace spheres of
varying radius r, holomorphic extension holds to (symmetric) rinds whose
thickness c δ r−1 also varies. To simplify, we introduce the smallest appear-
ing thickness

(4.3) η := min
br16r6brκ

c δ r−1 = c δ r̂κ
−1,

and we observe that it follows trivially from Proposition 3.7 (just by shrink-
ing and by restricting) that holomorphic extension holds to some rind around
R of arbitrary smaller thickness η′ > 0 with 0 < η′ 6 η. In the sequel, our
rinds shall most often have the uniform thickness η, and sometimes also, a
smaller one η′. Shrinking the constant c of η in (4.3), we insure η << δ1.

Summarizing, we list and we compare the quantities introduced so far:

(4.4)





0 < δ 6 δ1 neighborhood Vδ(M)

2 6 r(p̂1) < · · · < r(p̂κ) 6 5 + diam
(
ΩM

)
Morse radii

δ 6 δ1 << min
16λ6κ−1

{
r̂λ+1 − r̂λ

}
smallness of Vδ(M)

η := c δ2 r̂−1
κ uniform useful rind thickness

η << δ thickness of extensional rinds is tiny

Proposition 4.5. For every cutting radius r with r̂κ−1 < r < r̂κ arbitrarily
close to r̂κ−1, holomorphic functions in the open set

Vδ
(
M>r

)
>r

= Vδ
(
M>r

) ∩ {||z|| > r
}
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do extend holomorphically and uniquely to Ω>r by means of a finite number
6 C

(brκ
δ

)2n−1[brκ−r
η

]
of Levi-Hartogs figures.

Proof. We fix such a radius r with r̂κ−1 < r < r̂κ. Putting a single Levi-
Hartogs figure at p̂κ as in Proposition 3.7, we get unique holomorphic exten-
sion to Ω>brκ−η. Since η << δ, we have r̂κ − η > r̂κ−1. If the radius r̂κ − η
is already < r, we just shrink to η′ := r̂κ− r < η the thickness of our single
rind, getting unique holomorphic extension to Ω>brκ−η′ = Ω>r.

Performing induction on an auxiliary integer k > 1, we suppose that, by
descending from r̂κ to a lower radius r′ := r̂κ − kη assumed to be still > r,
holomorphic functions in Vδ

(
M>r

)
>r

extend holomorphically and uniquely
(remind Definition 2.5) to Ω>r′ .

Lemma 4.6. For every radius r′ with r̂κ−1 < r < r′ < r̂κ,

(4.7) Shellr
′+δ
r′

(
Rr′ ∪ Nr′

)
is contained in Ω>r′

⋃
Vδ

(
M>r

)
>r
.
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Fig. 9: A shell contained in the cap-shaped domain and the associated rind

Shellr
′+δ

r′
`
Rr′ ∪ Nr′

´

ΩM

r′

r

r′

r

M M

Ω>r′−ηbpκ bpκ
Ω>r′

Rind−
`
Rr′ , η

´

Proof. Picking an arbitrary point p ∈ Rr′ ∪ Nr′ , we must verify that

Bn(p, δ) ∩ {||z|| > r′}
is contained in the right hand side of (4.7).

If p ∈ Nr′ ⊂M , whence p ∈M>r, we get simply what we want:

Bn(p, δ) ∩ {||z|| > r′} ⊂ Vδ
(
M>r

) ∩ {||z|| > r′}
⊂ Vδ

(
M>r

) ∩ {||z|| > r}
= Vδ

(
M>r

)
>r
.

If p ∈ Rr′
∖
Nr′ , whence p ∈ ΩM , reasoning by contradiction, we assume

that there exists a point q ∈ Bn(p, δ) ∩ {||z|| > r′} in the cut out ball which
does not belong to the right hand side of (4.7). Since Ω>r′ = ΩM ∩ {||z|| >
r′}, we have q 6∈ ΩM .

Reminding Rr′ ⊂ S2n−1
r′ , the tangent plane TpS2n−1

r′ = TpRr′ divides Cn

in two closed half-spaces, T
+

p S2n−1
r′ exterior to Bnr′ and the opposite one

T
−
p S2n−1

r′ . We distinguish two (nonexclusive) cases.
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p

q

ep
q

eq

ep
p

Fig. 10: Checking that the shell is contained in the cut out domain

M>r′

r′
Rr′ r′

Nr′

M>r′

Rr′

Ω>r′Ω>r′

Firstly, suppose that the half-line (pq)+ is contained in T
+

p S2n−1
r′ , as in the

left figure. Since p ∈ ΩM and q 6∈ ΩM , there exists at least one point p̃ of
the open segment (p, q) which belongs to M , hence p̃ ∈M>r. Then

||q − p̃|| < ||q − p|| < δ,

whence q ∈ Bn(p̃, δ) ∩ {||z|| > r} and we deduce that q ∈ Vδ
(
M>r

)
>r

belongs to the right hand side of (4.7), contradiction.
Secondly, suppose that the half-line (pq)+ is contained in T

−
p S2n−1

r′ , as in
the right figure. Let q̃ ∈ (p, q) be the middle point. In the plane passing
through 0, p and q, consider a circle passing through p and q and centered at
some point close to 0 in the open segment (0, q̃). It has radius < r′ close to
r′. The open arc of circle between p and q is fully contained in {||z|| > r′}.

Since p ∈ ΩM and q 6∈ ΩM , there exists at least one point p̃ of the open
arc of circle between p and q which belongs to M , hence p̃ ∈M>r. But then
(p, q) is the hypothenuse of the triangle pqp̃ (remind r′ > 1 and ||q − p|| <
δ << 1), whence ||q − p̃|| < ||q − p|| < δ, hence again as in the first case, we
deduce that q ∈ Vδ

(
M>r

)
>r

, contradiction. ¤

If the slightly smaller radius

r′′ := r′ − η = r̂κ − (k + 1)η

is already < r, we will shrink to η′ := r̂κ − r − kη < η the thickness of
the final extensional rind. Otherwise, in the generic case, r̂κ − (k + 1)η is
still > r. The final (exceptional) case being formally similar, we continue
the proof with r′ = r̂κ − kη and r′′ = r′ − η, assuming that r′′ > r.

Setting r′ := r̂κ − kη in the auxiliary Lemma 4.6, functions holomor-
phic in Ω>r′ ∪ Vδ

(
M>r

)
>r

restrict to Shellr
′+δ
r′

(
Rr′ ∪ Nr′

)
and then, thanks

to Proposition 3.7, these restricted functions extend holomorphically to
Rind

(
Rr′ , η

)
.

Lemma 4.8. The following intersection of two open sets is connected:

(4.9) Rind
(
Rr′ , η

) ⋂ (
Ω>r′ ∪ Vδ

(
M>r

)
>r

)
.

Furthermore, the union of the same two open sets contains

(4.10) Ω>r′−η ∪ Vδ
(
M>r

)
>r
.
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Thus we get unique holomorphic extension to (4.10) and finally, by in-
duction on k and taking account of the final step where η should be shrunk
appropriately, we get unique holomorphic extension to Ω>r ∪ Vδ

(
M>r

)
>r

.
The number of utilized Levi-Hartogs figures is majorated by the product

of the number of needed rinds ∼ brκ−r
η

times the maximal area of Rr′ , which
we roughly majorate by the area C (r̂κ)

2n−1 of the biggest sphere S2n−1
brκ , ev-

erything being divided by the area c δ2n−1 covered by a small Levi-Hartogs
figure. This yields the finite number claimed in Proposition 4.5, achieving
its proof. ¤

Proof of Lemma 4.8. [May be skipped in a first reading] To establish con-
nectedness, we decompose the rind as

Rind+ :=
{
(1 + s)z : z ∈ Rr′ , 0 < s < η/r′

}

Rind0 := Rr′ ,

Rind− :=
{
(1− s)z : z ∈ Rr′ , 0 < s < η/r′

}
,

so that Rind = Rind−∪Rind0∪Rind+, without writing the common argument(
Rr′ , η

)
.

Obviously, the upper Rind+ is diffeomorphic to Rr′ × (0, η) ' R2n−1 ×
(0, η), hence is connected. We claim that, moreover, the full Rind+ is con-
tained in Ω>r′ ∪ Vδ

(
M>r

)
>r

, whence

(4.11) Rind+ = Rind+
⋂ (

Ω>r′ ∪ Vδ
(
M>r

)
>r

)
.

Indeed, let q′ ∈ Rind+, hence of the form q′ = (1 + s)p′ for some p′ ∈
Rind0 = Rr′ and some s with 0 < s < η/r′. If the half-open-closed segment
(p′, q′] is contained in ΩM , hence in Ω>r′ = ΩM ∩ {||z|| > r′

}
, we get for

free q′ ∈ Ω>r′ .
If on the contrary, (p′, q′] is not contained in ΩM , then there exists a point

q̃′ ∈ (p′, q′] with q̃′ ∈ M = ∂ΩM , whence q̃′ ∈ M>r′ ⊂ M>r (remind
r′−η > r). The ballBn(q̃′, δ) then contains q′, because ||q′−q̃′|| < ||q′−p′|| 6
η << δ. This shows q′ ∈ Vδ

(
M>r

)
>r

, achieving the claim.
Thus, the (upper) subpart (4.11) of the intersection (4.9) is already con-

nected.
To conclude the proof of connectedness, it suffices to show that every

point p′ of the remaining part

(4.12)
(
Rind0 ∪ Rind−

) ⋂ (
Ω>r′ ∪ Vδ

(
M>r

)
>r

)

can be joined, by means of some appropriate continuous curve running in-
side the intersection (4.9), to some point q′ of the connected upper sub-
part (4.11). Thus, let p′ in (4.12) be arbitrary.
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If p′ ∈ Rind0 ∩ (
Ω>r′ ∪ Vδ

(
M>r

)
>r

)
, it suffices to join radially p′ to

q′ = (1 + sε)p
′, for some sε with 0 < sε << η. Indeed, such a q′ then

belongs to Rind+ ∩ (
Ω>r′ ∪ Vδ

(
M>r

)
>r

)
.

If p′ ∈ Rind− ∩ (
Ω>r′ ∪ Vδ

(
M>r

)
>r

)
, then necessarily p′ ∈ Vδ

(
M>r

)
>r

,
because by definition:

Rind−
(
Rr′ , η

) ∩ Ω>r′ = ∅.
So there is a point q ∈M>r with p′ ∈ Bn(q, δ).

Fig. 11: Joining a point p′ of the lower rind to the connected upper rind

r′
Rind

`
Rr′ , η

´

q

Vδ

`
M>r

´
>r

M>r

p′

r′

p′

Rind
`
Rr′ , η

´
M>r

Vδ

`
M>r

´
>r

Bn(q, δ)

Bn(q, δ)

q
q′t

p′tq′

q′′

q′

We then distinguish two exclusive cases: either r(q) > r′ or r(q) < r′.
Firstly, assume r(q) > r′ (left diagram).
If 0, p′ and q are aligned, we simply join p′ to the point q′ := (1 +

sε)
r′
r(p′) p

′ which belongs to Rind+. The segment [p′, q′] is then entirely con-
tained in Rind ∩ Bn(q, δ)>r, hence in (4.9).

Otherwise, in the unique plane passing through 0, p′ and q, consider the
point q′′ := r(p′)

r(q)
q, satisfying r(q′′) = r(p′) and belonging to (0, q). Since

q′′ is the orthogonal projection of q onto Bn(0, r(p′)), we get ||q − q′′|| <
||q − p′|| < δ, whence q′′ ∈ Bn(q, δ). The circle of radius r(p′) centered at 0
joins p′ to q′′ by means of a small arc which is entirely contained in Bn(q, δ).
Denote by γ : [0, 1] → Bn(q, δ) a parametrization of this arc of circle, with
γ(0) = p′ and γ(1) = q′′.

If γ[0, 1] is entirely contained in Rind−, we conclude by joining q′′ radially
to the point q′ := (1 + sε)

r′
r(q′′) q

′′.
If γ[0, 1] is not contained in Rind, let t1 ∈ (0, 1) satisfying γ[0, t1) ⊂

Rind− but γ(t1) 6∈ Rind−. Then γ(t1) belongs to ∂Rind− and since
r(γ(t1)) = r(p′) still satisfies r′ − η < r(p′) < r′, necessarily γ(t1)
belongs “vertical part” of ∂Rind−, namely to the strip

{
(1 − s)z : z ∈

Nr′ , 0 6 s 6 η/r′
}

. Hence the point q′′′ := r′
r(γ(t1))

γ(t1) belongs to Nr′ .
We now modify γ by constructing a curve which remains entirely inside
Bn(q′′′, δ)>r ⊂ Vδ

(
M>r

)
>r

as follows: choose t2 < t1 very close to t1,
join p′ to γ(t2) ∈ Rind− through γ and then γ(t2) radially to the point
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q′ := (1 + sε)
r′

r(γ(t2))
γ(t2) ∈ Rind+. The resulting curve is entirely con-

tained in (4.9). In conclusion, we have joined p′ to a suitable point q′, as
announced.

Secondly, assume that r(q) < r′. Consider the normalized gradient vector
field ∇rM

||∇rM || , defined and nowhere singular onM∩{
r̂κ−1 < ||z|| < r̂κ

}
, hence

on M>r

∖{p̂κ}. For t ∈ [0, 2 η], denote by t 7→ qt the integral curve of ∇rM
||∇rM ||

passing through q, satisfying q0 = q, qt ∈M and r(qt) = r(q) + t. Together
with its center q, the ball is translated as Bn(qt, δ). Accordingly, the point
p′ is moved, yielding a curve p′t such that p′t occupies a fixed position with
respect to the moving ball. Explicitly: p′t = p′ + q′t − q. Thanks to r′ > 1

and δ << 1, one may check44 that dr(p
′
t)

dt
> 1− cr′,δ, for some small positive

constant cr′,δ <1.
Thus, as t increases, the point p′t moves away from 0 at speed almost

equal to 1. Since r′ − η < r(p′0) < r′, we deduce that for t = 2 η, we have
r(p′2η) > r′, namely p′2η has escaped from Rind−. Consequently, there exists
t1 ∈ (0, 2η) with p′t ∈ Rind− for 0 6 t < t1 such that p′t1 ∈ ∂Rind−.

The boundary of Rind− has three parts: the top Rr′ , the bottom
{
(1 −

η/r′)z : z ∈ Rr′
}

and the (closed) strip
{
(1−s)z : z ∈ Nr′ , 0 6 s 6 η/r′

}
.

The limit point p′t1 cannot belong to the bottom, since r(p′t1) > r(p′0) >
r′ − η.

Since by construction p′t ∈ Bn(qt, δ) with qt ∈ M>r, we observe that
p′t ∈ Vδ

(
M>r

)
>r

for every t ∈ [0, 2 η]. Consequently:

p′t ∈ Rind−
⋂

Vδ
(
M>r

)
>r
, ∀ t ∈ [0, t1).

Assuming that p′t1 ∈ ∂Rind− belongs to the top Rr′ = Rind0, we may
join p′t1 radially to q′ := (1 + sε)p

′
t1

. In this way, p′ is joined, by means
of a continuous curve running in the intersection (4.9), to the point q′ =
(1 + sε)p

′
t1

belonging to the connected upper subpart (4.11).
Finally, assume that p′t1 ∈ ∂Rind− belongs to the strip

{
(1 − s)z : z ∈

Nr′ , 0 6 s 6 η/r′
}

. The point q′′ := r′
r(p′t1 )

p′t1 belongs to Nr′ ⊂ M>r,

and we will construct a small curve running entirely inside Bn(q′′, δ)>r ⊂
Vδ

(
M>r

)
>r

. Choose t2 ∈ (0, t1) very close to t1, join p′ to p′t2 ∈ Rind− as
above (but do not go up to p′t1) and then join p′t2 radially to the point q′ :=

(1+sε)
r′

r(p′t2 )
p′t2 , which belongs to Rind+. The small radial segment from p′t2

to q′ is entirely contained in Bn(q′′, δ) and in the full Rind. In conclusion, p′

is joined, by means of a continuous curve running in the intersection (4.9),

44If the spheres S2n−1
r for r close to r′ would be hyperplanes — they almost are in

comparison to Bn(qt, δ) — we would have exactly r(p′t) = r(p′) + t, whence dr(p′t)
dt = 1.
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to this point q′ = (1 + sε)
r′

r(p′t2)
p′t2 which belongs to the connected upper

subpart (4.11).
The proof of the connectedness of the intersection (4.9) is complete.

We now show that the union, instead of the intersection in (4.9), con-
tains (4.10).

Let p′ ∈ Ω>r′−η\Ω>r′ , whence r′ − η < ||p′|| 6 r′. The radial half line{
t p′ : 0 < t <∞}

emanating from the origin and passing through p′ meets
S2n−1
r′ at the point q′ = r′

||p′|| p
′.

If the closed segment [p′, q′] is contained in Ω>r′−η, then q′ ∈ ΩM . Since
||q′|| = r′ and since Rr′ = ΩM ∩ {||z|| = r′

}
, we get q′ ∈ Rr′ , whence

p′ ∈ Rind
(
Rr′ , η

)
.

If on the contrary, the closed segment [p′, q′] is not contained in Ω>r′−η,
then there exists q̃′ ∈ (p′, q′] with q̃′ ∈ M = ∂ΩM , whence q̃′ ∈ M>r′−η ⊂
M>r. Since η << δ, we deduce p′ ∈ Bn(q̃′, δ) and finally p′ ∈ Vδ

(
M>r

)
>r

.
The proofs of Lemma 4.8 and hence also of Proposition 4.5 are complete.

¤

§5. CREATING DOMAINS, MERGING
AND SUPPRESSING CONNECTED COMPONENTS

5.1. Topological stability and global extensional geometry between reg-
ular values of rM . In the preceding Section 4, for r with r̂κ−1 < r < r̂κ, we
described the simple shape of the cut out domain Ω>r = ΩM ∩ {||z|| > r},
just diffeomorphic to a piece of ball. Decreasing the radius under r̂κ−1, the
topological picture becomes more complex. At least for radii comprised
between two singular values of r(z)

∣∣
M

, Morse theory assures geometrical
control together with constancy properties.

Lemma 5.2. Fix a radius r satisfying r̂λ < r < r̂λ+1 for some λ with
1 6 λ 6 κ− 1, hence noncritical for the distance function r(z)|M . Then:

(a) TzM + TzS
2n−1
r = TzCn at every point z ∈M ∩ S2n−1

r ;
(b) the intersection M ∩ S2n−1

r is a C∞ compact hypersurface Nr ⊂
S2n−1
r of codimension 2 in Cn, without boundary and having finitely

many connected components;
(c) Nr′′ is diffeomorphic to Nr′ , whenever r̂λ < r′′ < r′ < r̂λ+1;
(d) M>r = M ∩ {||z|| > r} has finitely many connected components

M c
>r, with 1 6 c 6 cλ, for some cλ <∞ which is independent of r;

(e) M c
>r′′ is diffeomorphic to M c

>r′ , whenever r̂λ < r′′ < r′ < r̂λ+1, for
all c with 1 6 c 6 cλ;

(f) M ∩ {r′′ < ||z|| < r′} is diffeomorphic to Nr′ × (r′′, r′), hence also
to Nr′′ × (r′′, r′), whenever r̂λ < r′′ < r′ < r̂λ+1;
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Proof. We summarize the known arguments of proof (cf. [31] and [17],
Ch. 6). Equivalently, (a) says that dr : TzM → Tr(z)R is onto, and this
holds true since by assumption M ∩ {

r̂λ < ||z|| < r̂λ+1

}
contains no critical

points of r(z)|M . Then (b) follows from this transversality (a).
Next, consider the Euclidean metric (v, w) :=

∑2n
k=1 vk wk on Cn ' R2n,

which induces a Riemannian metric (·, ·)M on M , a nondegenerate positive
bilinear form on TM . The gradient ∇(r|M) of r(z)|M is the vector field
on M defined by requiring that

(∇(r|M), X
)
M

= d
(
r|M

)
(X) for all C∞

(locally defined) vector fields X on M . Let D := 2 Re
∑n

k=1 zk
∂
∂zk

be the
radial vector field which is obviously orthogonal to spheres and consider the
orthogonal projectionXD of D|M on TM , a C∞ vector field onM . We want
to scale the gradient as Vr,M := λ · ∇(r|M) so that its radial component is
identically equal to one, namely, so that

(
Vr,M ,D

) ≡ 1, which gives the
equation:

1 = λ
(∇(r|M), D

)
= λ

(∇(r|M), XD

)
= λ

(∇(r|M), XD

)
M

= λ d
(
r|M

)
(XD).

To simply set λ := 1
d(r|M )(XD)

, we must establish that XD cannot belong to
Ker d

(
r|M

)
at any point z ∈M ∩ {

r̂λ < ||z|| < r̂λ+1

}
of a noncritical shell.

We check this. At such a point z, D(z) is not orthogonal to TzM (other-
wise TzM would coincide with TzS2n−1

||z|| ), whence its orthogonal projection
XD(z) is 6= 0. By definition, (D −XD)(z) is orthogonal to TzM 3 XD(z),
hence it is orthogonal to XD(z) inside the 2-dimensional plane Πz generated
by XD(z) 6= 0 and by D(z) 6= 0. If, contrary to what we want, XD(z) would
belong to Ker d

(
r|M

)
= TzS

2n−1
||z|| , then it would be orthogonal to D(z), and

in the plane Πz, we would have both D(z) and the hypothenuse
(
D−XD

)
(z)

orthogonal to XD(z), which is impossible.
Thus, in spherical coordinates (r, ϑ1, . . . , ϑ2n−1) restricted to a non-

critical shell, the r-component of the C∞ scaled gradient vector field
Vr,M := ∇(r|M )

(∇(r|M ),D)
is ≡ 1. We deduce that the flow (wherever defined)

zs := exp(sVr,M
)
(z) simply increases the norm as ||zs|| = ||z|| + s, whence

exp
(
(r′ − r′′)Vr,M

)
(·) induces a diffeomorphism from Nr′′ onto Nr′: this

yields (c). Also, (z′′, s) 7−→ exp
(
(r′′ + s)Vr,M

)
(z′′) gives the diffeomor-

phism of Nr′′ × (r′ − r′′) onto the strip M ∩ {
r′′ < ||z|| < r′

}
, which is

(f).
Next, the compact manifold with boundary M>r ∪ Nr surely has finitely

many connected components, whose number is constant for all r̂λ < r <
r̂λ+1, because when r increases or decreases, the connected components of
the slices Nr do slide smoothly in S2n−1

r without encountering each other:
this is (d). Finally, (e) follows from (f) and the trivial fact that the two
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segments (r′′, r0) and (r′, r0) are diffeomorphic, whenever r̂λ < r′′ < r′ <
r0 < r̂λ+1. ¤

We can now state the very main technical proposition of this paper.

Proposition 5.3. Fix a radius r satisfying r̂λ < r < r̂λ+1 for some λ with
1 6 λ 6 κ−1 and letM c

>r, c = 1, . . . , cλ, denote the collection of connected
components of M ∩ {||z|| > r}. Then:

(i) each M c
>r bounds in {||z|| > r} a unique domain Ω̃c

>r which is rela-
tively compact in Cn;

(ii) the boundary in Cn of each Ω̃c
>r, namely:

∂Ω̃c
>r = M c

>r ∪ Nc
r ∪ R̃cr

consists of M c
>r together with some appropriate union Nc

r of finitely
many connected components of Nr = M ∩ {||z|| = r} and with an
appropriate region R̃cr ⊂ S2n−1

r delimited by Nc
r;

(iii) two such domains Ω̃c1
>r and Ω̃c2

>r, associated to two different con-
nected components M c1

>r and M c2
>r of M>r, are either disjoint or one

is contained in the other;
(iv) for c1 6= c2, the regions R̃c1r and R̃c2r are either disjoint or one is con-

tained in the other, while their boundaries Nc1
r and Nc2

r are always
disjoint;

(v) for each c = 1, . . . , cλ, every function f holomorphic in Vδ
(
M>r

)
>r

has a restriction to Vδ
(
M c

>r

)
>r

which extends holomorphically and
uniquely to Ω̃c

>r by means of a finite number of Levi-Hartogs figures.

We point out that in (i) and (ii), neither Ω̃c
r nor R̃cr need be contained in

our original domain ΩM (as it was the case in Section 4 for r̂κ−1 < r <
r̂κ): this is why we introduced a widetilde notation. We refer to the middle
Figure 1 for an illustration. Similarly, neither Ω̃c

r nor R̃cr need be contained
in Cn

∖
ΩM : they both may intersect ΩM and Cn

∖
ΩM . Also, the number of

connected components of Nc
r is > that of R̃cr and may be >, as illustrated

below.

Fig. 12: Possible topologies of the cut out hypersurfaces M>r

As a direct application, we may achieve the proof of our principal result.
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Theorem 5.4. Under the precise assumptions of Theorem 2.7, holomor-
phic functions in Vδ(M) do extend holomorphically and uniquely to ΩM

by means of a finite number of Levi-Hartogs figures:

∀ f ∈ O
(
Vδ(M)

) ∃ F ∈ O
(
ΩM ∪ Vδ(M)

)
s.t. F

∣∣
Vδ(M)

= f.

Proof. In the main Proposition 5.3, we choose r = r̂1 + ε (where ε > 0 sat-
isfies ε << δ) very close to the last, smallest singular radius. Then M>r has
a single connected component, M>r itself, and it simply bounds

(
ΩM

)
>r

.
The remainder part of M , namely M ∩ {||z|| 6 r̂1 + ε

}
is diffeomorphic

to a very small closed (2n − 1)-dimensional spherical cap and is entirely
contained in Vδ(M).

Fix an arbitrary function f ∈ O
(
Vδ(M)

)
and restrict it to Vδ

(
M>r

)
>r

.
Thanks to the proposition, f extend holomorphically and uniquely to(
ΩM

)
>r

by means of a finite number of Levi-Hartogs figures. Since

Vδ(M)
⋂ (

Vδ
(
M>r

)
>r
∪ (

ΩM

)
>r

)

is easily seen to be connected, we get a globally defined extended function
which is holomorphic in

Vδ(M)
⋃ (

Vδ
(
M>r

)
>r
∪ (

ΩM

)
>r

)
= Vδ(M) ∪ ΩM .

This completes the proof. ¤
Proof of Proposition 5.3. In (i), let us check the uniqueness of a relatively
compact Ω̃c

>r. Since M c
>r inherits an orientation from M , the complement{||z|| > r

}∖
M c

>r has at most 2 connected components. As M b Cn is
bounded, at least one component contains the points at infinity, hence there
can remain at most one component of

{||z|| > r
}∖
M c

>r that is relatively
compact in Cn.

If r satisfies r̂κ−1 < r < r̂κ, Proposition 4.5 already completes the proof.
Assume therefore that r satisfies r̂µ < r < r̂µ+1, for some µ ∈ N with

1 6 µ 6 κ − 1. For every λ with 2 6 λ 6 κ − 1, it will be convenient
to flank each singular radius r̂λ by the following two very close nonsingular
radii

(5.5) r̂−λ := r̂λ − η/2 and r̂+
λ := r̂λ + η/2 ,

with η being the same uniform thickness of extensional rinds as before. We
fix once for all an arbitrary function f holomorphic in Vδ

(
M>r

)
>r

. Letting
λ be arbitrary with µ 6 λ 6 κ − 1, the logic of the proof shows up two
topologically distinct phenomena that we overview.

A: Filling domains through regular radii intervals. Assume that at the
regular radius r̂−λ+1 = r̂λ+1 − η

2
, all domains Ω̃c

>br−λ+1

, c = 1, . . . , cλ, as well
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as the corresponding holomorphic extensions, have been constructed. Then
prolong the domains (without topological change) as Ω̃c

>br+λ
, c = 1, . . . , cλ,

up to r̂+
λ = r̂λ + η

2
and fill in the conquered territory by means of a finite

number of Levi-Hartogs figures.

B: Jumping across singular radii and changing the domains. Restart-
ing at r̂+

λ with the domains Ω̃c
>br+λ

, c = 1, . . . , cλ, distinguish three cases as

follows. Remind from §2.3 that M is represented by v =
∑

16j6kλ
x2
j −∑

16j62n−kλ−1 y
2
j in suitable coordinates (x, y, v) centered at p̂λ, where kλ

is the Morse coindex of r(z)|M at p̂λ.

(I) Firstly, assume kλ = 0, namely z 7→ r(z)|M has a local maximum
at p̂λ, or inversely, assume kλ = 2n − 1, namely z 7→ r(z)|M has a
local minimum at p̂λ. This is the easiest case, the only one in which
new domains can be born or die, locally.

(II) Secondly, assume kλ = 1. This is the most delicate case, because
in a small neighborhood of p̂λ, the cut out hypersurface M>br+λ has
exactly 2 connected components, so that two different enclosed do-
mains Ω̃c1

>br+λ
and Ω̃c2

>br+λ
can meet here; it may also occur that the

two parts near p̂λ belong to the same domain, i.e. that c2 = c1.
While descending down to r̂−λ , we must analyze the way how the
two (maybe the single) component(s) merge. Three subcases will be
distinguished, one of which showing a crucial trick of subtracting
one growing component from a larger one which also grows (right
Figure 1).

(III) Thirdly, assume that 2 6 kλ 6 2n − 2. In all these cases, locally
in a neighborhood of p̂λ, the cut out hypersurface M>br+λ has exactly
1 connected component and the way how the corresponding single
enclosed domain Ω̃c

>br+λ
grows will be topologically constant.

Reasoning by induction on λ and applying the filling processes A and
B, we then descend progressively inside deeper spherical shells, checking
all properties of Proposition 5.3. When approaching the bottom radius r of
Proposition 5.3, it will suffice to shortcut A or B appropriately in order to
complete the proof.

5.6. Filling domains through regular radii intervals. Recall that r̂µ <
r < r̂µ+1, let λ with µ 6 λ 6 κ− 1 and consider the regular radius interval[
r̂+
λ , r̂

−
λ+1

]
. We suppose first that r 6 r̂+

λ , so that we may descend inside the
whole spherical shell

{
r̂+
λ < ||z|| 6 r̂−λ+1

}
. Afterwards, we explain how we

stop in the case where λ = µ and r̂+
µ < r < r̂−µ+1.
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By descending induction on λ through A and B, we may assume that
at the superlevel set (·)>br−λ+1

, the domains Ω̃c
>br−λ+1

enclosed by M c
>br−λ+1

for
1 6 c 6 cλ have been constructed and that each restriction f cbr−λ+1

of f ∈
O

(
Vδ

(
M>r

)
>r

)
to Vδ

(
M c

>br−λ+1

)
>br−λ+1

extends holomorphically and uniquely
to the domain

(5.7) Ω̃c
>br−λ+1

⋃
Vδ

(
M c

>br−λ+1

)
>br−λ+1

.

For every radius r′ with r̂+
λ 6 r′ < r̂−λ+1, the cut out hypersurface

M>r′ =
⋃

16c6cλ M
c
>r′ has the same number of connected components,

each M c
>r′ is diffeomorphic to M c

>br−λ+1

and the difference M c
>r′

∖
M c

>br−λ+1

is

diffeomorphic to N c
br−λ+1

× (
r′, r̂−λ+1

]
. Furthermore, each prolongation Ω̃c

>r′

of Ω̃c
>br−λ+1

is obviously defined just by adding the tube domain surrounded

by M c
>r′

∖
M c
br−λ+1

. Then each N c
r′ = ∂R̃cr′ has finitely many connected com-

ponents N c,j
r′ , with 1 6 j 6 jλ,c, where jλ,c is independent of r′.
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Fig. 13: Getting Vδ

`
Mc

>br+
λ

´
br+
λ

by adding legs to Vδ

`
Mc

>br−
λ+1

´
br−
λ+1

bpλ+1

bpλ

br+
λ

br−λ+1

Vδ

`
Mc

>br−
λ+1

´
>br−

λ+1

Vδ

`
Mc

>br+
λ

´
>br+

λ

r′

Since f was defined in Vδ
(
M>r

)
>r

and since r 6 r̂+
λ , we claim that each

restriction f cbr−λ+1

may be extended holomorphically and uniquely to

(5.8) Ω̃c
>br−λ+1

⋃
Vδ

(
M c

>br+λ
)
>br+λ

.

Indeed, to the original domain of definition (5.7) of f cbr−λ+1

which was con-

tained in
{||z|| > r̂−λ+1

}
, we add in the enlarged domain (5.8) a finite number

jλ,c of tubular domains around the connected components of M c
>r′

∖
M c

>br−λ+1

.

Because δ was chosen so small that Vδ(M) is a small tubular neighborhood
ofM , and because f ∈ O

(
Vδ

(
M>r

)
>r

)
is uniquely defined, we get a unique

extension, still denoted by f cbr−λ+1

, to (5.8).
We can now apply the same reasoning as in Proposition 4.5, which con-

sists of progressive holomorphic extension by means of thin rinds. Repro-
ducing the proof of Lemma 4.6 (with changes of notation only), we get for
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every radius r′ with r̂+
λ < r′ 6 r̂−λ+1 that

(5.9) Shellr
′+δ
r′

(
R̃cr′ ∪ Nc

r′
)

is contained in Ω̃c
>r′

⋃
Vδ

(
M c

>br+λ
)
>br+λ

.

Similarly, reproducing the proof of Lemma 4.8 yields the connectedness of

Rind
(
Rcr′ , η

) ⋂ (
Ω̃c
>r′ ∪ Vδ

(
M c

>br+λ
)
>br+λ

)
,

and furthermore, this yields that the union, instead of the intersection, con-
tains

Ω̃c
>r′−η

⋃
Vδ

(
M c

>br+λ
)
>br+λ

,

whenever r′−η is still > r̂+
λ (otherwise, shrink conveniently the thickness of

the last extensional rind, as in the proof of Proposition 4.5). Thus, by piling

up
br−λ+1−br+λ

η
rinds and by using a finite number 6 C

(brκ
δ

)2n−1
[br−λ+1−br+λ

η

]
of

Levi-Hartogs figures, we get unique holomorphic extension to

(5.10) Vδ
(
M c

>br+λ
)
>br+λ

⋃
Ω̃c
>br+λ

.

Finally, if r satisfies r̂+
µ < r < r̂−µ+1, descending from (·)>br−µ+1

with
λ = µ as above, we just stop the construction of rinds to (·)>r by shrinking
appropriately the thickness of the last extensional rind.

The property (iii) that enclosed domains Ω̃c
>r are either disjoint or one

is contained in the other remains stable as r decreases through the whole
nonsingular interval

(
r̂λ, r̂λ+1

)
, because their (moving) boundaries always

remain disjoint, so that property (iv) is also simultaneously transmitted to
lower regular radii. This completes A.

5.11. Localizing (pseudo)cubes at Morse points. We now study B. Recall
that r̂µ < r < r̂µ+1, let λ with µ 6 λ 6 κ − 1 and suppose that r 6 r̂−λ , so
that starting from (·)>br+λ , we may (and we must) continue the Hartogs-Levi
filling inside the whole thin spherical shell

{
r̂−λ < ||z|| 6 r̂+

λ

}
. Similarly as

above, the way how we should stop the process in the case where λ = µ and
r̂µ < r < r̂+

µ is obvious.

By descending induction on λ through A and B, we may assume that at r̂+
λ ,

the domains Ω̃c
>br+λ

enclosed by M c
>br+λ

for 1 6 c 6 cλ have been constructed

and that each restriction f cbr+λ
of f ∈ O

(
Vδ

(
M c

>r

)
>r

)
to Vδ

(
M c

>br+λ

)
>br+λ

ex-
tends holomorphically to the domain (5.10) of the previous paragraph.

By an elementary analysis of the Morse normalizing quadric, we will see
that in some small (pseudo)cube centered at p̂λ, there passes in most cases
only one component M c

>br+λ
, while in a single exceptional case, there can

pass two (at most) different connected components M c1
>br+λ

and M c2
>br+λ

. We
will consider only this single (or these two) component(s), because the other



435

components do pass regularly and without topological change accross p̂λ,
hence are filled in by Levi-Hartogs figures exactly as in A.

Shrinking the δ1 of Theorem 2.7 if necessary (remind 0 <
δ 6 δ1), we may assume that the Morse normalizing coordinates(
v, x1, . . . , xkλ

, y1, . . . , y2n−1−kλ

)
near p̂λ are defined in the ball Bn(p̂λ, δ1)

and that the map

z 7−→ (
v(z), x(z), y(z)

)
, Bn(p̂λ, δ1) −→ R2n

is close in C 1 norm to its differential at p̂λ, so that it is almost not distorting.
Then δ1 shall not be shrunk anymore.

Because in the estimates of the (finite) number of Levi-Hartogs figures, η
only appears as a denominator in a factor r′−r′′

η
(cf. Proposition 4.5), it is al-

lowed to work with extensional rinds of smaller universal positive thickness,
at the cost of spending a number of pushed analytic discs that is greater, of
course, but still finite. If necessary, we shrink η > 0 to insure that η1/2 << δ.
Then η will not be shrunk anymore.

Thanks to these preliminaries, we may define a convenient (pseudo)cube
centered at p̂λ by
(5.12)
Cη :=

{
z ∈ Bn(p̂λ, δ1) : |v(z)| < η, ||x(z)|| < 2 η1/2, ||y(z)|| < 2 η1/2

}
.

It then follows that Cη is properly contained in Vδ(M) and is relatively small.
Reminding that v(z) = r(z)−r(p̂λ), the radial thickness of Cη is equal to 2η,
twice the difference r̂+

λ − r̂−λ = η. We draw a diagram assuming kλ = 2n−1
(see only the left one).

Vδ(M)
Fig. 14: The radial (pseudo)cube Cη centered at p̂λ

v

bpλ

M

x

x

Cη

v

Vδ(M)

x

br+
λ

br−
λ

Cη

brλ

Mc
>br

λ+
Mc

>br
λ+

eΩc
>br

λ+

4η1/2

2η1/2

Rind−bpλ
Rind−

η/2
η/2
η/2
η/2

2η

2η2η

5.13. Topology of horizontal super-level sets in the complement of
quadrics. Simultaneously to the proof, we provide an auxiliary elemen-
tary study. Let n ∈ N with n > 2, let k ∈ N with 0 6 k 6 2n − 1, let
x = (x1, . . . , xk) ∈ Rk, let y = (y1, . . . , y2n−1−k) ∈ R2n−1−k, let v ∈ R,
and in R2n equipped with the coordinates (x, y, v), consider the quadric of
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equation

(5.14) v =
∑

16j6k
x2
j −

∑

16j62n−1−k
y2
j ,

which we will denote by Qk. The coordinate v playing the rôle of r(z) −
r(p̂λ) near a singular radius r̂λ having Morse coindex kλ, we want to under-
stand how the topology of the super-level sets

{
v > ε

} ∩ (
R2n\Qk

)

(which relate to the possible domains Ω̃c
>r for r close to r̂λ) do change when

the parameter ε descends from a small positive value to a small negative
value.

Fig. 15: Growing of superlevel domains near a local maximum or minimum

In the case k = 0 (left figure) the quadric looks like a spherical cap,
its complement R2n

∖
Q0 having exactly two connected components. For

positive values of ε, there is only one (green) super-level component {v >
ε} ∩ (

R2n
∖
Q0

)
. As ε becomes negative, this component grows regularly,

allowing a newly created hole to widen inside the slices {v = ε}. The (blue)
holes then pile up to constitute a newly created, local component M c

>br−λ
.

The (reverse) case k = 2n− 1 exhibits the local end of some component
M c

>br−λ
. In a while, we will see that there is a salient topological difference

between the two remaining (less obvious) cases 2 6 k 6 2n− 2 and k = 1,
the exceptional one. Before pursuing, we conclude the proof of B in case p̂λ
is a local maximum or minimum.

We assume kλ = 2n − 1, the case kλ = 0 being already considered
(essentially completely) in Section 4. Observe that M>br+λ ∩Cη is diffeomor-
phic to S2n−2× (c/2, c), hence connected. Thus, let M c

>br+λ
denote the single

component entering Cη. By descending induction through A and B, M c
>br+λ

bounds a relatively compact domain of holomorphic extension Ω̃c
>br+λ

, with

∂Ω̃c
>br+λ

= M c
>br+λ

∪ Nc
br+λ
∪ R̃cbr+λ

, as in property (ii) of Proposition 5.3, all the

other properties also holding true on (·)>br+λ . Denote by R̃c,kbr+λ
, 1 6 k 6 kλ,c,

the connected components of R̃cbr+λ
and by Nc,j

br+λ
, 1 6 j 6 jλ,c, with jλ,c > kλ,c,

the components of Nc
br+λ

.
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eRc,1

br+
λ

eΩc

>br+
λ

Fig. 16: Two distinct Hartogs-Levi fillings at a point of Morse coindex 2n− 1

brλRind−

br+
λ

bpλ br−λ

eΩc

>br+
λ

Vδ

`
Mc

>br+
λ

´
>br+

λ
Mc

>br+
λ

eRc,2

br+
λ

eRc,1

br+
λ

Rind−

We do the numbering so that Cη encloses the first (small) Nc,1

br+λ
, which is

diffeomorphic to a small (2n− 2)-dimensional sphere. Also, we number so
that the boundary of R̃c,1br+λ

in S2n−1

br+λ
contains Nc,1

br+λ
, whence R̃c,1br+λ

meets Cη. We
do not draw Cη.

Observe that, by means of extensional rinds that are symmetric around the
other components R̃c,2br+λ

, . . . , R̃
c,kλ,c

br+λ
, we may achieve the Hartogs-Levi filling

exactly as in A, because r(z)|M is regular in Vδ
(
Nc,j

br+λ

)
, for every j such that

Nc,j

br+λ
is contained in the boundary of each of these other components. Hence

it remains only to discuss what is happening in a neighborhood of the single
component R̃c,1br+λ

, and especially near p̂λ.

For the disposition of Ω̃c
>br+λ

∩ Cη, or equivalently of R̃c,1br+λ
∩ Cη, two cases

occur. Let
(
v, x1, . . . , x2n−1

)
be the Morse coordinates centered at p̂λ.

(a) As illustrated by the left figure above, Ω̃c
>br+λ

∩ Cη consists of the

space45 lying above
{
v = η/2

}
and above

{
v = x2

1 + · · ·+ x2
2n−1

}
,

a cap-shaped space which is clearly connected; the region R̃c,1br+λ
is

then diffeomorphic to a small (2n− 1)-dimensional ball.

(b) As illustrated by the right figure above, Ω̃c
>br+λ

∩ Cη consists of the

space lying above
{
v = η/2

}
but below

{
v = x2

1 + · · · + x2
2n−1

}
;

the dimension of S2n−1

br+λ
being > 3, the region R̃c,1

br+λ
∩Cη is connected,

a fact that a one-dimensional diagram cannot show adequately; then
Ω̃c
>br+λ

∩ Cη is also connected.

In case (a), near p̂λ, a piece of Ω̃c
>br+λ

ends up while descending to the
lower super-level set (·)>br−λ . We do not use any extensional rind there, we

45Sets written “{·}” here are understood to be subsets of Cη .
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just observe that unique holomorphic extension is got for free in
[
Vδ

(
M c

>br−λ
)
>br−λ

]
∩ Cη,

since this domain is fully contained in Vδ
(
M>r

)
>r

.

In case (b), we apply Hartogs Levi extension to Rind
(
R̃c,1br+λ

, η
)

and we get
unique holomorphic extension from (5.10) to

[
Vδ

(
M c

>br−λ
)
>br−λ

]⋃
Rind

(
R̃c,1br+λ

, η
)
.

The union of this open set together with (5.10) contains a unique well de-
fined domain Ω̃c

>br−λ
with the property that the passage from R̃c,1

>br+λ
to R̃c,1

>br−λ
fills a hole, as illustrated by the right diagram above, whence Nc

>br−λ
has one

less connected component, because the (2n− 2)-sphere Nc,1
>brλ+ε drops when

ε < 0.
The properties that two different domains Ω̃c1

>br+λ
and Ω̃c2

>br+λ
are either dis-

joint or one is contained in the other is easily seen to be inherited by Ω̃c1
>br−λ

and Ω̃c2
>br−λ

: it suffices to distinguish two cases: c2 6= c and c1 6= c, or c2 6= c

and c1 = c; to look at (a) or (b) and then to conclude.

The proof of B in case kλ = 2n − 1 is complete. The case kλ = 0
is similar: two subcases (a’) — reverse (a) — and (b’) — reverse (b) —
then appear; subcase (a’) exhibits the birth of a new component (blue left
Figure 15), as already fully studied in Section 4 while subcase (b’) (green
left Figure 15) shows that an external component descends regularly as do
clouds around a hill.

5.15. The regular cases 2 6 kλ 6 2n− 2. Let k with 2 6 k 6 2n− 2 and
consider the quadric Qk of (5.14). We claim that Qk ∩

{
v > ε

}
has exactly

one connected component for every ε > 0. Indeed, Qk ∩
{
v > ε

}
can be

represented as
⋃

y1,...,y2n−k−1

⋃

ε′>ε

{
x2

1 + · · ·+ x2
k = ε′ + y2

1 + · · ·+ y2
2n−1−k

}
.

Since ε′ is always positive, we hence have a smoothly parameterized family
of (k − 1)-dimensional spheres that are all connected. Consequently, the
union is also connected, as claimed.

To view the topology more adequately, in the case n = 2, we draw a short
movie consisting of the 3-dimensional slices

{
v = ε′

} ∩ (
R2n

∖
Qk

)
, where

ε′ = 2
3
η, 1

2
η, 0, −1

2
η. To conceptualize (in case n = 2) the super-level
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sets
{
v > ε

} ∩ (
R2n

∖
Qk

)
=

⋃

ε′>ε

{
v = ε′

} ∩ (
R2n

∖
Qk

)
,

it suffices to pile up intuitively the images of the corresponding movie.
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Fig. 17: Sliced view of the growing of the two possible domains in case 2 6 kλ 6 2n− 2

So let M c
>br+λ

be the single connected component of M ∩ {||z|| > r̂+
λ

}

that enters Cη. The corresponding domain Ω̃c
>br+λ

can be located from one or
the other side. Its prolongation up to the deeper sublevel set (·)>br−λ (viewed
only inside Cη) consists of piling up the (blue) small symmetric regions or
the (green) surrounding regions drawn above.

We do the numbering so that Nc,1

br+λ
enters Cη, being a (connected) hyper-

boloid as drawn in the first picture of Figure 17 and so that R̃c,1br+λ
enters Cη

as one (connected, blue or green) side of this hyperboloid. As previously
in the two cases kλ = 0 and kλ = 2n − 1, the Hartogs-Levi filling goes
through exactly as in the regular case A for all other R̃c,2br+λ

, . . . , R̃
c,kλ,c

br+λ
. Next,

by putting finitely many Levi-Hartogs figures in Rind
(
R̃c,1br+λ

, η
)

we get holo-
morphic extension from the domain (5.10) to

[
Vδ

(
M c

>br−λ
)
>br−λ

]⋃
Rind

(
R̃c,1br+λ

, η
)
.

The intersection of (5.10) with this open set is connected because R̃c,1br+λ
is con-

nected, and the union of both contains a well defined domain Ω̃c
>br−λ

obtained
by adding the (blue or green) slices of Figure 17.

§6. THE EXCEPTIONAL CASE kλ = 1

6.1. Illustration. To begin with the most delicate case, we draw a 3-
dimensional diagram showing a saddle-like M localized in a (pseudo)cube
Cη centered at p̂λ.
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Cη

x

v

y

M

M−
>ε M+

>ε

R−ε

bpλ

Cη

Mc2

>br+
λ

Mc1

>br+
λ

Fig. 18: Slices and superlevel sets at a Morse point of coindex kλ = 1

bpλ br−
λ

br+
λ

eRc1,1

br+
λ

eRc2,1

br+
λ

eR∗
br−
λ

{v = ε}

For every ε satisfying 0 < ε < η, there are two connected components
M−

>ε and M+
>ε of M>brλ+ε ∩ Cη, namely the two upper tips of the saddle,

defined in equations by

M±
>ε :=

{
v = x2 − y2

1 − · · · − y2
2n−2

} ∩ {± x > 0
} ∩ {

v > ε
}
.

With ε = 1
2
η, we are simply looking atM>br+λ ∩Cη. By descending induction

through A and B, we are given two domains of holomorphic extension Ω̃c1
>br+λ

and Ω̃c2
>br+λ

whose boundary contains M−
>η/2 and M+

>η/2, respectively.
Firstly, we assume that c2 6= c1. Since each one of the two pieces of

hypersurfaces M−
>η/2 and M+

>η/2 has two sides, there are 2× 2 = 4 subcases

to be considered for the relative disposition of Ω−
>η/2 := Ω̃c1

>br+λ
∩ Cη and of

Ω+
>η/2 := Ω̃c2

>br+λ
∩ Cη, with c2 6= c1.

(a) Ω−
>η/2

(
resp. Ω+

>η/2

)
consists of the space lying above the hyperplane

{v = η/2} and below the left (resp. right) tip of the saddle, namely
in equations:

Ω±
>η/2 =

{
v > η/2

} ⋂ {± x > 0
}⋂ {

v < x2 − y2
1 − · · · − y2

2n−2

}
.

(b) Ω−
>η/2 is the small nose as in (a) but Ω+

>η/2 consists of the other
side, i.e. of the (rather bigger) space lying inside

{
v > η/2

}
left to

M+
>η/2, namely in equations:

Ω+
>η/2 =

{
v > η/2

}∖({
x > 0

}⋂ {
v 6 x2 − y2

1 − · · · − y2
2n−2

})
.

(c) Symetrically to (b), Ω+
>η/2 is the small nose as in (a) but

Ω−
>η/2 =

{
v > η/2

}∖({
x < 0

}⋂ {
v 6 x2 − y2

1 − · · · − y2
2n−2

})
.

(d) Finally, Ω−
>η/2 is as in (c) and Ω+

>η/2 is as in (b).
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The last subcase (d) cannot occur, because it is ruled out by property (iii)
of Proposition 5.3, which holds on the super-level set (·)>br+λ by the inductive
assumption.

Secondly, we assume that c2 = c1. Then there can occur a subcase (a’)
very similar to (a), in which c2 = c1, so that Ω−

>η/2 and Ω+
>η/2 belong to the

same enclosed relatively compact domain. But with c2 = c1, no subcase
similar to (b) — or to (c) — can occur, because M−

>η/2 ⊂ ∂Ω+
>η/2 — or

M+
η/2 ⊂ ∂Ω−

>η/2 — would then bound the same relatively compact domain
from its both sides, but we already know from the beginning of the proof,
that one side at least must always contain the points at infinity.

Finally, with c2 = c1 = c, there remains the following last subcase (un-
seen previously).

(e) Ω>η/2 := Ω̃c
>br+λ

∩ Cη consists of the space lying above
{
v = η/2

}

and above the saddle, namely

Ω>η/2 =
{
v > η/2

}⋂ {
v > x2 − y2

1 − · · · − y2
2n−2

}
.

As M = ∂ΩM lies in Cn with n > 2, whence 2n − 2 > 2, there is at
least one dimension of y ∈ R2n−2 which is missing in the left figure above.
To view the topology more adequately, coming back to the abstract quadric
Q1 and assuming n = 2, we plan to draw a short movie consisting of the
3-dimensional slices

{
v = ε′

} ∩ (
R2n

∖
Q1

)
, where ε′ = 2

3
η, 1

2
η, 0, −1

2
η.

Recall that we are interested in the connected components of the super-
level sets

{
v > ε

} ∩ (
R2n

∖
Q1

)
=

⋃

ε′>ε

{
v = ε′

} ∩ (
R2n

∖
Q1

)
.

As suggested by this sliced union, to conceptualize these 4-dimensional (in
case n = 2) super-level sets, it suffices to pile up intuitively the images of
the corresponding movie.
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v = 0
¯

merge

˘
v = − 1
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˘
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3
η
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Fig. 19: Sliced view of the merging of the two domains in subcase (a) of kλ = 1

Here, the second picture shows R̃c1br+λ
∩Cη (in blue, to the left) together with

R̃c1br+λ
∩ Cη (in black, to the right). Then the third picture shows how the two

components do touch and the fourth one shows how they should be merged
as ε′ = −1

2
η becomes negative. The complete discussion follows in a while.
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We next offer the movie of (b), the movie of (c) being obtained from it
just by a reflection across the hyperplane {x = 0}.
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Fig. 20: Sliced view of the substraction of the left domain in subcase (b) of kλ = 1

substract

Here again, the second picture shows R̃c1br+λ
∩ Cη (in blue, to the left) to-

gether with R̃c2br+λ
∩ Cη (the large (black) region, containing the small (blue)

one). Then the third picture, namely the slice ε′ = 0, shows a not allowed
situation: the left cone does bound two regions from its two sides, contrary
to the a priori unique relatively compact domain Ω̃c1

brλ ⊂
{||z|| > r̂λ

}
we

are seeking to construct, when starting from Ω̃c1
br+λ

. The trick is then to sup-
press the (blue) small slice, or equivalently to subtract it from the (black)
large slice which contains it. Then the black winning slice continues to grow
up to

{
v = −η/2} (fourth picture). The complete discussion follows in a

while.
Finally, here is the (simpler) movie of (e).
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Fig. 21: Sliced view of the growing of the external domain in subcase (e) of kλ = 1

6.2. Jumping across the singular radius: merging process. Assuming
kλ = 1, we can now complete B in subcase (a), postponing subcase (a’).
We look at Figures 17 and 18.

Let M c1
>br+λ

∩ Cη and M c2
>br+λ

∩ Cη be the two “nose” components of M>br+λ
entering Cη. Here, c2 6= c1. By descending induction through A and B,
M c1

>br+λ
and M c2

>br+λ
bound some two relatively compact domains of holomor-

phic extension Ω̃c1
>br+λ

and Ω̃c2
>br+λ

with ∂Ω̃c1
>br+λ

= M c1
>br+λ

∪ Nc1
br+λ
∪ R̃c1br+λ

and

∂Ω̃c2
>br+λ

= M c2
>br+λ

∪ Nc2
br+λ
∪ R̃c2br+λ

as in property (ii) of Proposition 5.3, all the
other properties also holding true on (·)>br+λ .

We remind that the other domains Ω̃c
>br+λ

for c 6= c1 and c 6= c2 with
1 6 c 6 cλ do pass regularly through r̂λ up to (·)>br−λ , thanks to A.



443

For i = 1, 2, denote by R̃ci,kbr+λ
, 1 6 k 6 kλ,ci , the connected components of

R̃cibr+λ
and by Nci,j

br+λ
, 1 6 j 6 jλ,ci , with jλ,ci > kλ,ci , the components of Nci

br+λ
.

We do the numbering so that R̃c1,1br+λ
(resp. R̃c2,1br+λ

) enters Cη to the left (resp.

right), together with Nc1,1

br+λ
(resp. Nc2,1

br+λ
), as illustrated by Figure 17.

As in the case kλ = 2n − 1, for i = 1, 2, by means of extensional rinds
that are symmetric around the other components R̃ci,2br+λ

, . . . , R̃
ci,kλ,ci

br+λ
, we may

achieve the Hartogs-Levi filling exactly as in A, because r(z)|M is regular in
Vδ

(
Nci,j

br+λ

)
, for every j such that Nci,j

br+λ
is contained in the boundary of each of

these other components. Hence it remains only to discuss what is happening
in a neighborhood of the two components R̃ci,1br+λ

, i = 1, 2, and especially near
the saddle point p̂λ.

While descending from r̂+
λ to r̂−λ , the two regions R̃c1,1br+λ

⊂ S2n−1

br+λ
and

R̃c2,1br+λ
⊂ S2n−1

br+λ
do merge as a single connected region contained in S2n−1

br−λ
that

we will denote by R̃∗br−λ
, see the right Figure 17. In Morse theory ([31, 17]),

one speaks of attaching a one-cell, since in the merging process, the two
regions are essentially joined by means of a (thickened) segment directed
along the x-axis. It follows that the two hypersurfaces M c1

>br+λ
and M c2

>br+λ
do

merge as a connected hypersurfaceM∗
>br−λ

containing them, and furthermore,

that the two domains Ω̃c1
>br+λ

and Ω̃c2
>br+λ

do prolong uniquely up to the slightly

deeper super-level set (·)>br−λ , merging as a uniquely defined domain Ω̃∗
>br−λ

which is relatively compact in Cn and which contains R̃∗br+λ
in its boundary

∂Ω̃∗
>br+λ

.
As c2 6= c1, the new number of domains in the interval (r̂λ−1, r̂λ) is low-

ered by a unit, i.e. cλ−1 = cλ − 1 (if c2 = c1 as in (a’), the number would
not change, i.e. cλ−1 = cλ).

For i = 1, 2, let f cibr+λ
denote the restriction of f ∈ O

(
Vδ

(
M>r

)
>r

)
to

Vδ
(
M ci

>br+λ

)
>br+λ

. By descending induction through A and B, f cibr+λ
extends holo-

morphically and uniquely to Ω̃ci
>br+λ

. Then both functions do extend holomor-
phically and uniquely to

Vδ
(
M∗

>br−λ
)
>br−λ

,

since they coincide with f near p̂λ. We then introduce the two extensional
rinds Rind

(
R̃cibr+λ

, η
)
, drawn in the right Figure 17. Two applications of Propo-

sition 3.7 together with a geometrically clear connectedness property yield
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unique holomorphic extension to

Rind
(
R̃c1br+λ

, η
) ⋃

Rind
(
R̃c2br+λ

, η
) ⋃

Vδ
(
M∗

>br−λ
)
br−λ

⋃
Ω̃c1
>br+λ

⋃
Ω̃c2
>br+λ

.

In sum, we have got unique holomorphic extension to

Vδ
(
M∗

>br−λ
)
br−λ

⋃
Ω̃∗
>br−λ

.

To establish (iv) of Proposition 5.3 at (·)>br−λ , it suffices to show (iii),
which is checked to be equivalent. We observe that, for logical reasons
only, a given region R̃cbr+λ

for c 6= c1 and c 6= c2 can:

• be disjoint from R̃c1br+λ
and also disjoint from R̃c2br+λ

;

• be contained in R̃c1br+λ
or (exclusive “or”) in R̃c2br+λ

;

• contain R̃c1br+λ
or (inclusive “or”) R̃c2br+λ

.

But we claim that in the latter case, R̃cbr+λ
necessarily contains both regions

R̃c1br+λ
and R̃c2br+λ

. Indeed, otherwise the boundary Nc
br+λ

of R̃cbr+λ
should separate

R̃c1br+λ
∩ Cη from R̃c2br+λ

∩ Cη in the level set
{
v = η

2

} ∩ Cη, which is impossible

since Nc
br+λ
∩ Cη is exactly equal to

(
Nc1,1

br+λ
∩ Cη

) ⋃ (
Nc2,1

br+λ
∩ Cη

)
, not more.

It follows in all cases that Nc
br+λ

= ∂R̃cbr+λ
is disjoint from Cη, hence it lies in{

r̂−λ 6 ||z|| 6 r̂+
λ

}∖
Cη. Consequently, the regular flow of ∇ rM

||∇rM || on
[
M ∩ {

r̂−λ 6 ||z|| 6 r̂+
λ

}] ∖
Cη

pushes down regularly Nc
br+λ

, as a uniquely defined compact 2-codimensional

Nc
br−λ
⊂ S2n−1

br+λ
, disjointly from the newly created merged boundary N∗br−λ

=

∂Ω̃∗
>br−λ

⊂ S2n−1

br−λ
. This information suffices now to check that (iii) and (iv) of

Proposition 5.3 are transmitted to (·)>br−λ , just for logical reasons.

The proof of B in case kλ = 1, subcase (a) is complete. Subcase (a’)
involves only minor differences.

6.3. Subtracting process. We now summarize the discussion of subcase
(b), focusing only on topological aspects and dropping the formal consid-
erations about holomorphic extensions. For an adequate three-dimensional
illustration, think of a smoothly cut cylindrical piece of modelling clay in
which a thin finger drills a hole.
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M

brλ brλ

N∗br−
λ

Nc1,2

br+
λ

Nc1,1

br+
λbr+

λ

br−λ

Fig. 22: Three-dimensional view of subcase (b) at a point of Morse coindex kλ = 1

As in §5.6, in Cη, there enter exactly two domains Ω̃ci
>br+λ

, i = 1, 2, with

Ω̃c1
>br+λ

⊂ Ω̃c2
>br+λ

by the induction assumption. Also, there enter two connected

regions R̃ci,1er+λ
⊂ S2n−1

br+λ
, i = 1, 2, with R̃c1,1er+λ

⊂ R̃c2,1er+λ
. Their boundaries contain

two connected hypersurfaces Nci,1

br+λ
of S2n−1

br+λ
, i = 1, 2, which enter Cη as the

two caps of the third pic of Figure 19.
By descending the interval (r̂λ, r̂

+
λ ) up to (·)>brλ , we get two regions R̃ci,1brλ ,

i = 1, 2, that touch at p̂λ, namely the left cone and the exterior of the right
cone in the second pic of Figure 19.

While descending further to (·)>brλ−ε, with ε > 0 very small, the left
cone does merge with the right (white) cone. Observe that the points of this
(white) cone may be joined continuously to points of the (white) right cap
of the first pic, which by hypothesis lies outside Ω̃c2

>br+λ
, hence in the same

connected component as the points at infinity. Consequently, we cannot
prolong the left domain Ω̃c1

>br+λ
so that its prolongation contains the left cone

in the slice {v = 0} (third pic), because no admissible prolongation would
enjoy the relative compactness (i) of Proposition 5.3. Hence we have no
other choice except to suppress Ω̃c1

>brλ when attaining (·)>brλ . We then get a
new domain Ω̃∗

>brλ defined as Ω̃c2
>brλ minus the closure of Ω̃c1

>brλ (subtraction
process), which is checked to be relatively compact in Cn. This domain
then descends as a uniquely defined domain Ω̃∗

>br−λ
at (·)>br−λ . We also get a

corresponding connected region R̃∗br−λ
approximately equal to R̃c2,1brλ minus the

closure of R̃c1,1brλ whose boundary contains a connectedd N∗br−λ
(bottom right

Figure 21), obtained by merging Nc1,1
brλ with Nc2,1

brλ .

The last subcase (e) above is topologically similar to what happens in
§5.15, hence the proof of Proposition 5.3 is complete. ¤
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The Hartogs extension theorem
on (n− 1)-complete complex spaces

Joël Merker and Egmont Porten

Abstract. Performing local extension from pseudoconcave boundaries along Levi-
Hartogs figures and building a Morse-theoretical frame for the global control of
monodromy, we establish a version of the Hartogs extension theorem which is valid
in singular complex spaces (and currently not available by means of ∂ techniques),
namely: for every domain Ω of an (n− 1)-complete normal complex space of pure
dimension n > 2, and for every compact set K ⊂ Ω such that Ω\K is connected,
holomorphic or meromorphic functions in Ω\K extend holomorphically or mero-
morphically to Ω. Assuming that X is reduced and globally irreducible, but not
necessarily normal, and that the regular part

[
Ω\K]

reg
is connected, we also show

that meromorphic functions on Ω\K extend meromorphically to Ω.

J. für die reine und angewandte Mathematik, to appear.

Table of contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448.
2. Statement of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450.
3. Geometrical preparations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452.
4. Holomorphic extension to Dreg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457.
5. Meromorphic extension on nonnormal complex spaces . . . . . . . . . . . . . . . . . . . 463.

[5 colored illustrations]

§1. INTRODUCTION

The goal of the present article is to establish a Hartogs extension the-
orem — known until now on complex manifolds — in normal singular
complex spaces which enjoy appropriate convexity conditions. For local ex-
tensional steps, we apply geometric constructions that are closely related to
the Andreotti-Grauert bump method developed since the 1980’s by Henkin
and Leiterer ([15], cf. also [25]). For the global topological control of mon-
odromy — a new feature, compared to the classical k-concavity theory —
we push forward the Morse-theoretical frame introduced recently in [27].

In its original form, the theorem states that in an arbitrary bounded domain
Ω b Cn (n > 2), every compact set K ⊂ Ω with Ω\K connected is an illu-
sory singularity for holomorphic functions, namely O(Ω\K) = O(Ω)

∣∣
Ω\K

(for history, motivations and background, we refer e.g. to [16, 29, 30]). By
now, the shortest proof, due to Ehrenpreis, follows easily from the simple
proposition that ∂-cohomology with compact support vanishes in bidegre
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(0, 1) (see [18]). Along these lines and after results due to Kohn-Rossi, the
Hartogs theorem was generalized to (n − 1)-complete complex manifolds
by Andreotti-Hill [2], i.e. manifolds exhausted by a C∞ function whose
Levi-form has at least 2 positive eigenvalues at every point. We also refer to
[23] for an approach via the holomorphic Plateau boundary problem.

To endeavor the theory in general singular complex spaces
(
X,OX

)
, it

is at present advisable to look for methods avoiding global ∂ techniques,
as well as global integral kernels, because such tools are not yet avail-
able. The geometric Hartogs theory was attacked long ago by Rothstein,
who introduced the notion of q-convexity. On the other hand, within
the modern sheaf-theoretic setting, the so-called Andreotti-Grauert theory
([1, 15, 24]) allows to perform extension (of holomorphic functions, of dif-
ferentials forms, of coherent sheaves, etc.) from shell-like regions of the
form

{
z ∈ X : a < ρ(z) < b

}
into their inside

{
z ∈ X : ρ(z) < b

}
, where

ρ is a fixed (n−1)-convex exhaustion function for X . Geometrically speak-
ing, one performs holomorphic extension by means of the Grauert bump
method through the level sets of ρ in the direction of decreasing values,
jumping finitely many times across the critical points of ρ.

However, a satisfying, complete generalization of the Hartogs theorem
should apply to general excised bounded domains Ω\K lying in an (n− 1)-
complete complex space

(
X,OX

)
, not only to shells {a < ρ < b} relative

to the (n − 1)-convex exhaustion function. But then, after perturbing and
smoothing out ∂Ω, one must unavoidably take account of the critical points
of ρ

∣∣
∂Ω

and also of the possible multi-sheetedness of the intermediate step-
wise extensions. This causes considerably more delicate topological prob-
lems than in the well known Grauert bump method, in which monodromy
of the holomorphic (or meromorphic, or sheaf-theoretic) extensions from
{a < ρ < b} to {a′ < ρ < b} with a′ < a is almost freely assured46, even
across critical points of ρ. Considering simply a domain Ω b Cn (n > 2),
with obvious exhaustion ρ(z) := ||z||, the classical Hartogs theorem based
on analytic discs and on Morse theory was worked out in [27], where em-
phasis was put on rigor in order to provide with firm grounds the subsequent
works on the subject. The essence of the present article is to transfer such an
approach to (n − 1)-complete general complex spaces, where ∂ techniques
are still lacking, with some new difficulties due to the singularities. Another
current, active direction of research studies extension phenomena related to
the geometry of the target space, see e.g. [19].

46The reader in referred to point 2) of the proof of Prosition 4.1 below and to Figure 3
in Section 4 for an illustration of the concerned univalent extension argument.
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§2. STATEMENT OF THE RESULTS

Thus, let
(
X,OX

)
be a reduced complex analytic space of pure dimension

n > 2. We will use open covers X =
⋃
j∈J Uj together with holomorphic

isomorphisms ϕj : Uj → Aj onto some closed complex analytic sets Aj
contained in balls B̃j ⊂ CNj , some Nj > 2. By definition ([8, 13]), a
C∞ function f : X → C is locally represented as f |Uj

= f̃j ◦ ϕj for
some collection of C∞ “ambient” functions f̃j : B̃j → C, j ∈ J . A real-
valued continuous function ρ onX is an exhaustion function if sublevel sets
{z ∈ X : ρ(z) < c} are relatively compact in X for every c ∈ R. A
C∞ function ρ : X → R is called strongly q-convex if the C∞ ambient
ρ̃j : B̃j → R can be chosen to be strongly q-convex, i.e. their Levi-forms
i ∂∂(ρ̃j) have at least Nj − q + 1 positive eigenvalues at every point, for
all j ∈ J . Finally47, X is called q-complete if it possesses a C∞ strongly
q-convex exhaustion function. Note that the 1-complete spaces are precisely
the Stein spaces.

We will mainly work with a normal (n − 1)-complete X , and we recall
that a reduced complex space

(
X,OX

)
is normal if the sheaf of weakly

holomorphic functions, namely functions defined and holomorphic on the
regular part Xreg = X\Xsing which are L∞loc on X , coincides with the com-
plete sheaf OX of holomorphic functions on X . Then Xsing is of codimen-
sion > 2 at every point of X ([8, 13]) and for every open set U ⊂ X , both
restriction maps

(2.1) OX(U) −→ OX

(
U\Xsing

)
and MX(U) −→ MX

(
U\Xsing

)

are bijective48, where MX denotes the meromorphic sheaf. To generalize
Hartogs extension, normality of X is an unavoidable assumption, because
there are examples of Stein surfaces S having a single singular point p̂which
are not normal ([13], vol. II, p. 196), whenceK := {p̂} fails to be removable
for holomorphic functions defined in a neighborhood of K.

We can now state our main result.

Theorem 2.2. LetX be a connected (n−1)-complete normal complex space
of pure dimension n > 2. Then for every domain Ω ⊂ X and every compact
set K ⊂ Ω with Ω\K connected, holomorphic or meromorphic functions on
Ω\K extend holomorphically or meromorphically and uniquely to Ω:

OX(Ω\K) = OX(Ω)
∣∣
Ω\K or MX(Ω\K) = MX(Ω)

∣∣
Ω\K .

47 The previous definitions are known to be independent of the choices — covering,
embeddings ϕj , dimensions Nj , extensions (̃•), see [8, 10, 13].

48 The first statement yields immediately that every point z ∈ X has a neighborhood
basis

(
Vk

)
k∈N such that Xreg ∩ Vk is connected; also, Xreg itself is connected as soon as

X is so. The second statement is known as Levi’s extension theorem ([11], p. 185).
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Some comments on the hypotheses are in order. Firstly, connectedness
of X is not a restriction, since otherwise, Ω would be contained in a single
component of X . Secondly, as X is (n − 1)-complete, i ∂∂

(
ρ
∣∣
Xreg

)
has at

least 2 positive eigenvalues at every point z ∈ Xreg, and consequently, each
super-level set {

z ∈ X : ρ(z) > c
}
,

has a pseudoconcave boundary at every smooth point z ∈ Xreg with
dρ(z) 6= 0 and in fact, the Levi-form of this boundary has at least one
negative eigenvalue at z. Thirdly, by a theorem of Ohsawa ([28]), every
(connected) n-dimensional noncompact complex manifold is n-complete,
and in fact, easy examples show that Hartogs extension may fail: take the
product X := R × S of two Riemann surfaces, with R compact and S
noncompact, take a point s ∈ S and set K := R × {s}; by [9], there ex-
ists a meromorphic function function having a pole of order 1 at s, whence
O(X) does not extend through K. Consequently, in the category of strong
Levi-form assumptions, (n− 1)-convexity is sharp.

For the theorem, the main strategy of proof consists of performing holo-
morphic or meromorphic extension entirely within the regular part of X .

Proposition 2.3. WithX , Ω andK as in Theorem 2.2, holomorphic or mero-
morphic functions on

[
Ω\K]

reg
extend holomorphically or meromorphically

to Ωreg.

Notice that both
[
Ω\K]

reg
and Ωreg are connected (footnote 3). Then

by (2.1), extension immediately holds to Ω. This yields Theorem 2.2 if one
takes the proposition for granted; Sections 3 and 4 below are devoted to
prove this proposition.

For meromorphic extension, one could in principle well avoid the assump-
tion of normality. In the case of meromorphic extension, we get a general
result valid for reduced spaces without further local assumptions.

Theorem 2.4. Let X be a globally irreducible (n − 1)-complete reduced
complex space of pure dimension n > 2. Then for every domain Ω ⊂ X and
every compact set K ⊂ Ω with [Ω\K]reg connected, meromorphic functions
on Ω\K extend meromorphically and uniquely to Ω:

MX(Ω\K) = MX(Ω)
∣∣
Ω\K .

If moreover the data lie in OX(Ω\K), the extension is weakly holomorphic.

The proof, also relying upon an application of Proposition 2.3, is post-
poned to Section 5; an example in §5.1 shows that requiring only that Ω\K
is connected does not suffices.
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For the proposition, the main difficulty is that Xsing can in general cross
Ω\K. We will approach Xsing from the regular part and fill in progressively
Ωreg by means of the super-level sets of a suitable modification µ of the
exhaustion ρ, such that µ is still strongly (n − 1)-convex but exhausts only
Xreg in a neighborhood of Ω. To verify that the extension procedure devised
in [27] can be performed, preparational constructions are required.

§3. GEOMETRICAL PREPARATIONS

3.1. Smoothing out the boundary. To launch the filling procedure, we
want to view the connected open set Ω\K as a neighborhood of some con-
venient connected hypersurface M contained in

(
Ω\K) ∩Xreg.

Lemma 3.2. Let X , Ω and K be as in Theorem 2.2. Then there is a do-
main D b Ω containing K such that M := ∂D ∩Xreg is a C∞ connected
hypersurface of Xreg.

Proof. Suppose first that X = Cn. Let d be a regularized distance func-
tion ([31]) for K, i.e. a C∞ real-valued function with K = {d = 0} and
1
c
dist (x,K) 6 d(x) 6 c dist (x,K) for some constant c > 1, where dist is

the Euclidean distance in R2n. By Sard’s theorem, there are arbitrarily small
ε > 0 such that M̂ := {d = ε} is a C∞ hypersurface of R2n bounding the
open set Ω̂ := {d < ε} which satisfies K ⊂ Ω̂ b Ω. However, since M̂
need not be connected, we must modify it.

To this aim, we pick finitely many disjoint closed simple C∞ arcs
γ1, . . . , γr which meet M̂ transversally only at their endpoints such that
M̂ ∪ γ1 ∪ · · · ∪ γr is connected. Since Ω\K is connected, we can insure
that each γk is contained in Ω\K.
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mnFig. 1: Connectifying the smoothed out boundary
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We can then modify M̂ in the following way: we cut out a very small ball
in M̂ around each endpoint of every γk, and we link up the connected com-
ponents of the excised hypersurface with r thin tubes ' R × S2n−2 almost
parallel to the γk, smoothing out the corners appearing near the endpoints.
The resulting hypersurface M is C∞ and connected. Since each γk is either
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contained in Ω̂ ∪ M̂ or in R2n
∖
Ω̂, a new open set D with ∂D = M is ob-

tained by either deleting from Ω̂ or adding to Ω̂ the thin tube around each
γk. All the tubes around the γk which are contained in R2n

∖
Ω̂ constitute thin

open tunnels between the components of Ω̂, whence D is connected.
On a general complex space X , the idea is to embed a neighborhood of Ω

smoothly into some Euclidean space RN and then to proceed similarly.
We can assume that the holomorphic isomorphisms φj : Uj → Aj ⊂

B̃j ⊂ CNj are defined in slightly larger open sets U ′j c Uj , for all j ∈ J .
Pick C∞ functions λj having compact support in U ′j and satisfying λj = 1

on U j; prolong them to be 0 on X outside U ′j . By compactness, there is a
finite open cover:

Ω ⊂ Uj1 ∪ · · · ∪ Ujm .
Consider the C∞ map, valued in RN with N := 2(Nj1 + · · · + Njm) + m,
which is defined by:

Ψ :=
(
λj1 · φj1 , . . . , λjm · φjm , λj1 , . . . , λjm

)
.

It is an immersion at every point x of Uj1 ∪ · · · ∪ Ujm , because x belongs
to some Ujk , whence the jk-th component λjk · φjk ≡ φjk of Ψ is even
an embedding of Uk 3 x. Furthermore, we claim that Ψ separates points.
Indeed, if we set:

Wjk :=
{
z ∈ X : λjk(z) = 1

}
,

then clearly Ujk ⊂ Wjk ⊂ U ′jk . Pick two distinct points x, y ∈ Uj1 ∪ · · · ∪
Ujm . Then x belongs to some Ujk , so λjk(x) = 1. If λjk(y) 6= 1, then
Ψ(y) 6= Ψ(x) and we are done. If λjk(y) = 1, i.e. if y ∈ Wjk , then the jk-th
component of Ψ distinguishes x from y, since λjk · φjk(y) = φjk(y) differs
from φjk(x) because φjk embeds U ′jk into R2Njk . So Ψ embeds into RN the
neighborhood Uj1 ∪ · · · ∪ Ujm of Ω.

We choose a regularized distance function dΨ(K) for Ψ(K) in RN . We
stratify X so that Xreg is the single largest stratum (remind it is connected)
and then stratify Xsing by listing all connected components of

[
Xsing

]
reg

,
then continuing with

[
Xsing

]
sing

, and so on inductively. By Sard’s theorem
and the stratified transversality theorem ([17]), for almost every ε > 0, the
intersection {

x ∈ RN : dΨ(K)(x) = ε
} ∩Ψ

(
Ωreg

)

is a C∞ real hypersurface of Ψ(Ωreg) having finitely many connected com-
ponents which are contained in Ψ

(
[Ω\K]reg

)
. Importantly, we can construct

the thin connecting tubes so that they lie all entirely inside Ψ
([

Ω\K]
reg

)
,

thanks to the fact that Ψ
(
Ωreg

)
is locally (arcwise) connected, also near

points of Ψ
(
Ωsing

)
. Then the remaining arguments are the same and we
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put everything back to X via Ψ−1, getting a connected C∞ hypersurface
M ⊂ [Ω\K]reg and a domain D with K ⊂ D b Ω. (We remark that
normality of X was crucially used.) ¤

As we said, we will perform the filling procedure entirely inside Xreg.
This is possible thanks to an idea of Demailly which consists of modifying
the initial exhaustion ρ so that Xsing is put at −∞. A recent application of
this idea also appears in [7].

3.3. Putting Xsing into a well. By Lemma 5 in [4], there exists an almost
plurisubharmonic function49 v on X which is C∞ on Xreg and has poles
along Xsing:

Xsing =
{
v = −∞}

.

As in Section 2, if Aj = ϕj(Uj) is represented in a local ball B̃j ⊂ CNj of
radius rj > 0 centered at zj ∈ CNj as the zero-set {gj,ν = 0} of finitely
many functions gj,ν holomorphic in a neighborhood of the closure of B̃j , the
local ambient ṽj : B̃j → {−∞} ∪ R is essentially of the form50:

ṽj = log
( ∑

ν

|gj,ν |2
)
− 1

r2
j − |z − zj|2 .

Thus, locally on each B̃j , the function v we pick from [4] is of the form:

ṽj = ũj + r̃j,

with ũj strictly psh, C∞ on B̃j
∖[

Aj
]
sing

, equal to {−∞} on
[
Aj

]
sing

and

with a remainder r̃j which is C∞ on the whole of B̃j . Notice that each ṽj is
L∞loc.

3.4. Modified strongly (n−1)-convex exhaustion function µ. Pick a con-
stant C > 0 such that maxD (ρ) < C.

Lemma 3.5. There exists ε0 > 0 such that for all ε with 0 < ε 6 ε0, the
function:

µ := ρ+ ε v

is C∞ on Xreg and satisfies:

(a) maxD (µ) < C;
(b) Xsing = {µ = −∞};

49 i.e. by definition, a function which is locally the sum of a psh function and of a C∞

function, or equivalently, a function v whose complex Hessian i ∂∂ v has bounded negative
part.

50 In addition, a regularized maximum function ([4]) is used to smoothly glue these
different definitions on all finite intersections Aj1 ∩ · · · ∩ Ajm and the formula given here
is exact on a sub-ball C̃j ⊂ B̃j .
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(c) µ is strongly (n− 1)-convex in a neighborhood of {ρ 6 C}.

Proof. Property (b) holds provided only that ε < C−maxD (ρ)

maxD (v)
. Furthermore,

(a) is clear since ρ is C∞ and since Xsing = {v = −∞}. To check (c), we
compute Levi-forms as (1, 1)-forms:

(3.6)
i ∂∂ µ̃j = i ∂∂ ρ̃j + ε i ∂∂ ṽj

= i ∂∂ ρ̃j + ε i ∂∂ ũj + ε i ∂∂ r̃j.

Here, ε i ∂∂ ũj adds positivity to i ∂∂ ρ̃j (since ũj is psh), whereas the neg-
ative contribution due to i ∂∂ r̃j is bounded from below on {ρ 6 2C}, and
consequently, ε > 0 can be chosen small enough so that i ∂∂ µ̃j still has 2
eigenvalues > 0 at every point. ¤

In the next section, while applying the holomorphic extension procedure
of [27], we shall have to insure that the extensional domains attached to M
from either the outside or the inside cannot go beyond {ρ 6 C}. So we have
to prepare in advance the curvature of the limit hypersurface {ρ = C}∩Xreg.

Enlarging C of an arbitrarily small increment if necessary, we can assume
(thanks to Sard’s theorem) that C is a regular value of ρ

∣∣
Xreg

, so that

Λ := {ρ = C} ∩Xreg

is a C∞ real hypersurface of Xreg.

Lemma 3.7. Lowering again ε > 0 if necessary, the following holds:

(d) At every point q of the C∞ real hypersurface Λ = {ρ = C} ∩Xreg,
one can find a complex line Eq ⊂ T cqΛ on which the Levi-forms of
both ρ and µ are positive.

Here, q 7→ Eq might well be discontinuous, but this shall not cause any
trouble in the sequel.

Proof. Each p ∈ {ρ = C} is contained in some Uj(p), whence ρ is rep-
resented by an ambient function ρ̃j(p) : B̃j(p) → R whose Levi-form has
at least Nj(p) − n + 2 eigenvalues > 0. By diagonalizing the Levi matrix
i ∂∂ρ̃j(p) at the central point of B̃j(p), we may easily define, in some small
open sub-ball C̃j(p) ⊂ B̃j(p) having the same center, a C∞ family q̃ 7→ F̃eq of
complex (Nj(p) − n + 2)-dimensional affine subspaces such that the Levi-
form of ρ̃j(p) is positive definite on every F̃eq, for every q̃ ∈ C̃j(p).

Next, if we set Vj(p) := ϕ−1
j(p)

(
C̃j(p)

)
, which is an open subset of Uj(p), we

can cover the compact set {ρ = C} by finitely many Vj(p), hence there is a
finite number of points pa, a = 1, . . . , A, such that

{ρ = C} ⊂ Vj(p1) ∪ · · · ∪ Vj(pA).
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According to (3.6), on each C̃j(pa), a = 1, . . . A, we have:

i ∂∂ µ̃j(pa) = i ∂∂ ρ̃j(pa) + ε i ∂∂ ũj(pa) + ε i ∂∂ r̃j(pa).

We choose ε > 0 so small that the remainder ε i ∂∂ r̃j(pa) does not perturb
positivity on C̃j(pa) for every a = 1, . . . A, and we get that i ∂∂ µ̃j(pa) is still
positive on F̃eq for every q̃ ∈ C̃j(pa), and every a = 1, . . . A.

Let q ∈ {ρ = C} ∩ Xreg. Then q ∈ Vj(pa) for some a. We set q̃ :=

ϕj(pa)(q) ∈ C̃j(pa) and we define:

Fq :=
(
dϕj(pa)

)−1
(
F̃eq ∩ Teq Aj(pa)

)
.

Then the complex linear spaces F̃eq and Fq are at least of dimension 2 and the
Levi-form of µ is positive on any 1-dimensional subspace Eq ⊂ Fq ∩ T cq Λ.

¤

Next, applying Morse transversality theory, we may perturb µ in Xreg ∩
{ρ < 2C} in an arbitrarily small way, so that51:

(e) µ is a Morse function on Xreg ∩ {ρ < 2C} having finitely many or
at most countably many critical points; moreover, different critical
points of µ are located in different level sets {µ = c}.

Of course, if they are infinite in number, critical values can only accu-
mulate at −∞. Similarly, we may perturb ρ very slightly near {ρ = C} so
that:

(f) the C∞ hypersurface {ρ = C} ∩ Xreg does not contain any critical
point of µ.

Finally, again thanks to Morse transversality theory, we may perturb the
connected C∞ hypersurface M ⊂ ∂D of Lemma 3.2 in an arbitrarily small
way so that52:

(g) M does not contain critical points of µ, and µ
∣∣
M

is a Morse func-
tion on M having finitely many or at most countably many critical
points; moreover, any two different critical points of µ or of µ

∣∣
M

have different critical values.

We draw a diagram, where Xsing is symbolically represented as a contin-
uous broken line having spikes, with a level-set {µ = ĉ} which is critical for
µ
∣∣
M

and a single critical point p̂ ∈M ∩ {µ = ĉ}.

51 The previous four properties being preserved, especially (d) on {ρ = C}.
52 The perturbed M being still contained in {ρ < C} and in the original connected

corona Ω\K.
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mnFig. 2: The smooth boundary M , a level-set of µ and Xsing
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§4. HOLOMORPHIC EXTENSION TO Dreg

For c ∈ R, we introduce

Xµ>c := {z ∈ X : µ(z) > c}.
This open set is contained in Xreg, since Xsing = {µ = −∞}. For every
connected component M ′

µ>c of

Mµ>c := M ∩Xµ>c = M ∩ {µ > c},
we want to fill in (by means of a finite number of families of analytic discs) a
certain domain Q′µ>c which is enclosed by M ′

µ>c inside {µ > c}. Similarly
as in Proposition 5.3 of [27], we must consider all the connected compo-
nents M ′

µ>c and analyze the combinatorics of how they merge or disappear.
Let V (M) be a thin tubular neighborhood of M , whose thinness shrinks

to zero while approaching Xsing. For every connected component M ′
µ>c of

Mµ>c, we denote by V
(
M ′

µ>c

)
µ>c

the part of V (M) around M ′
µ>c again

intersected with {µ > c}. It is a connected tubular neighborhood of M ′
µ>c

inside {µ > c}.

Proposition 4.1. Let c ∈ R with c < maxM (µ) < C be any regular
value of µ and of µ

∣∣
M

. Let M ′
µ>c be any nonempty connected compo-

nent of M ∩ Xµ>c. Then there is a unique connected component Q′µ>c of
Xµ>c

∖
M ′

µ>c which is relatively compact in Xreg and contained in {ρ < C}
with the property that two different domains Q′µ>c and Q′′µ>c are either dis-
joint or one is contained in the other. Furthermore, for every holomorphic
or meromorphic function f defined in the thin tubular neighborhood V (M)
of M , there exists a unique holomorphic or meromorphic extension F , con-
structed by means of a finite number of (n−1)-concave Levi-Hartogs figures
and defined in

Q′µ>c
⋃

V
(
M ′

µ>c

)
µ>c

,

such that F = f when both functions are restricted to V
(
M ′

µ>c

)
µ>c

.
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Proof. We only describe the modifications one must bring to the arguments
of [27].

1) The Levi-form of the compact C∞ boundary {µ = c} of the super-
level set {µ > c} (contained in Xreg) has 1 negative eigenvalue, so that the
Levi extension theorem with analytic discs (cf. the survey [26]) applies at
each point of {µ = c}. In Section 3 of [27], we defined (n − a)-concave
Hartogs figures for 1 6 a 6 n − 1, but we used only 1-concave ones,
because the Levi-form of exterior of spheres {||z|| < r} in Cn had (n − 1)
negative eigenvalues. Here, we start from (n− 1)-concave Hartogs figures,
we modify them similarly as in Section 3 of [27] (details are skipped) and
we call them (n− 1)-concave Levi-Hartogs figures.

Next, we use a finite number of these figures, via some local charts of
Xreg, to cover {µ = c} and to show that holomorphic53 (or meromorphic)
functions in {µ > c} extend to a slightly deeper super-level set {µ > c− η}
(provided no critical point of µ or of µ

∣∣
M

is encountered in the shell {c >
µ > c− η}), for some η > 0 which depends on X , on n, on µ, but not on c.

2) Contrary to the Cn case treated in [27], µ may have critical points on
Xreg. Grauert’s theory shows how to jump across them with ∂ techniques,
and we summarize how we can proceed here54, using only analytic discs in
Levi-Hartogs figures.

Consider a point p̂ ∈ Xreg which is critical: dµ(p̂) = 0, and set ĉ := µ(p̂).
The Morse lemma provides local real coordinates centered at p̂ in which
µ = x2

1 + · · · + x2
k − y2

1 − · · · − y2
2n−k, for some k. Since i ∂∂ µ has at

least 2 positive eigenvalues everywhere, k is > 2. This is a crucial fact,
because this implies that super-level sets {µ > ĉ + δ} are all connected55

in a neighborhood of p̂, for every δ ∈ R close to 0, and moreover, that
these domains grow regularly and continuously as δ decreases from positive
values to negative values.

53 Since the configuration is always local and biholomorphic to Cn (n = dimXreg) and
since holomorphic envelopes coincide with meromorphic envelopes in Cn, meromorphic
functions enjoy exactly the same extension properties. Thus, in [27], results stated for
holomorphic functions are immediately true for meromorphic functions too.

54 We emphasize that, from the point of view of holomorphic extension, jumping across
critical points of µ on Xreg is much simpler than jumping across critical points of µ

∣∣
M

, cf.
the Cn case [27].

55 In R3 already, this is true for the “exterior” x2 + y2 − z2 > δ of the standard cone.
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mnFig. 3: Filling outside a neighborhood of p̂ and shifting p̂
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Next, we fix a ball B̂ centered at p̂ and we cut out a small neighborhood
Û ⊂ B̂ of p̂. If V̂ ⊂ Û is a small neighborhood, we consider the C∞

hypersurface: {
µ > ĉ+ η

2
}∖

V̂ .

Placing finitely many (n− 1)-concave Levi-Hartogs figures at points of this
hypersurface, we get holomorphic or meromorphic extension to

{
µ > ĉ −

η
2

}∖
V̂1, where V̂1 ⊂ V̂ is slightly bigger than V̂ . Repeating the filling

process finitely many times until
{
µ = ĉ− kη

2

}
does not intersect B̂, where k

is an odd integer, we fill in B̂
∖
Û . At each step, monodromy of the extension

is assured thanks to connectedness of
{
µ > ĉ + δ

}∖
Û , for every small

δ ∈ R. However, we cannot fill in Û directly this way.
The trick is to shift p̂. One introduces a C∞ perturbation µ′ of µ localized

near p̂ (namely µ′ = µ elsewhere) such that µ′ has another critical point
p̂′ (having the same Morse index of course), with corresponding neighbor-
hoods disjoint: Û ∩ Û ′ = ∅ and both contained in B̂ ∩ B̂′. We repeat the
Levi-Hartogs filling with µ′, getting holomorphic or meromorphic extension{
µ′ > ĉ − k′ η

2

}∖
Û ′, a domain which contains B̂′∖Û ′, hence contains Û .

Monodromy is again well controlled, just because topologically, B̂
∖
Û and

B̂′∖Û ′ are complete shells.

3) We prove the proposition by decreasing c. Provided c does not cross
critical values of µ

∣∣
M

, the domains Q′µ>c do grow regularly and continu-
ously, even when c crosses critical values of µ, according to what has been
said just above. At a critical value ĉ of µ

∣∣
M

, for a domain Qµ>bc whose clo-
sure contains the corresponding unique critical point p̂ ∈ M , similarly as
in [27], three cases may occur:

(i) the domain Q′µ>bc+δ grows regularly and continuously as δ decreases
in a neighborhood of 0;
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(ii) precisely when δ becomes negative, the domain Q′µ>bc+δ is merged
with a second domain Q′′µ>bc+δ whose closure also contains p̂ for δ =
0 (the case of three domains or more never occurs);

(iii) the domain Q′µ>bc+δ is contained in a bigger domain Q′′µ>bc+δ for all
small δ > 0, and exactly at δ = 0, the closure of the domain Q′µ>bc is
subtracted from Q′′µ>bc, yielding a new domain Q′′′µ>bc which starts to
grow regularly and continuously as Q′′′µ>bc+δ for small δ < 0.

We then check by decreasing induction on c that such domains are rela-
tively compact and are either disjoint or one is contained in the other, and we
achieve extension by means of (n − 1)-concave Levi-Hartogs figures simi-
larly as in [27]. But here, a single fact remains to be established, namely that
the domains Q′µ>c remain all contained inside the relatively compact region
{ρ < C}.

This is true at the beginning of the filling process, namely for c slightly
smaller than maxM (µ), because Mµ>c is then diffeomorphic to a small
spherical cap (hence connected) and the relatively compact domain enclosed
by Mµ>c inXµ>c

∖
Mµ>c is just the piece Dµ>c ofD, which is diffeomorphic

to a thin cut out piece of ball close to M and clearly contained in {ρ < C},
since D ∪M ⊂ {ρ < C} by (a).

To prove that all Q′µ>c are contained in {ρ < C}, we proceed by con-
tradiction. Let c∗ be first c (as c decreases) for which some Q′µ>c is not
contained in {ρ < C}. In the process described above of constructing the
domains Q′µ>c, the only discontinuity occurs in (iii) and it consists of a sup-
pression. Consequently, the domains Q′µ>c cannot jump discontinuously
across {ρ = C}, hence at c = c∗ (which might be either critical or noncriti-
cal), allQ′µ>c∗ are still contained in {ρ 6 C} and the boundary of at least one
domain, say Q∗µ>c∗ , touches the C∞ border hypersurface {ρ = C} ∩Xreg.

mnFig. 4: Tangent contact of the boundary of Q∗µ>c∗ with {ρ = C}

mn{ρ = C}

mn{ρ = C}

mnXsing

mnM

mnM

mnp∗

mnXsing

mn{µ = c∗}
mnN∗

c∗

mnQ∗µ>c∗

mnR∗c∗
mnXsing

On the other hand, by definition and by construction, for each c, the
boundary of each Q′µ>c consists of two parts: M ′

µ>c, which is contained
in M , hence remains always in {ρ < C}, together with a certain closed re-
gion R′µ=c ∪ N ′

µ=c contained in {µ = c}, with R′µ=c open and N ′
µ=c being
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the boundary in {µ = c} of R′µ=c. In fact, similarly as in Section 5 of [27],
R′µ=c is always contained in {µ = c}∖M and N ′

µ=c, always contained in
M ∩ {µ = c} is a C∞ real submanifold of Xreg of codimension 2 provided
c is noncritical for µ

∣∣
M

, while N ′
µ=c may have as a single singular (corner)

point p̂ for c = p̂ critical. But since N ′
µ=c is a subset of M ∩ {µ = c}, it is

always contained in {ρ < C}.
Consequently, the boundary of Q∗µ>c∗ can touch {ρ = C} only at some

point p∗ ∈ R∗µ=c∗ . So we have µ(p∗) = c∗ and ρ(p∗) = C, namely p∗ lies in
{µ = c∗} and on the C∞ hypersurface {ρ = C}.

By (f) above, p∗ ∈ {ρ = C} cannot be a critical point of µ, whence
{µ = c∗} and {ρ = C} are both C∞ real hypersurfaces passing through p∗.
Furthermore, {µ > c∗} is still contained in {ρ 6 C}, by definition of c∗,
whence Tp∗{ρ = C} = Tp∗{µ = c∗}.

Thanks to (d), there is a complex line

Ep∗ ⊂ T cp∗{ρ = C} = T cp∗{µ = c∗}
on which the Levi-forms of both ρ and µ are positive definite. On the other
hand, since {−µ < −c∗} is contained in {ρ < C}, the Levi-form of −µ
in the direction of Ep∗ should then be > the Levi-form of ρ in the same
direction. This is a contradiction, and the proof that all Q′µ>c remain in
{ρ < C} is completed. This finishes our proof of Proposition 4.1. ¤

4.2. End of proof of Proposition 2.3. As in Section 2 of [27], one checks
that extension holds from

[
Ω\K]

reg
to Ωreg provided holomorphic or mero-

morphic functions defined in the thin tubular neighborhood V (M) of M ⊂
Xreg do extend uniquely to Dreg

⋃
V (M). So we work with M , V (M) and

Dreg, and since everything is exhausted as c → −∞, the conclusion of the
proof of Proposition 2.3 is an immediate consequence of the following.

Proposition 4.3. For every regular value c > −∞ of µ
∣∣
M

, holomorphic
or meromorphic functions defined in V (M) do extend holomorphically or
meromorphically and uniquely to

Dµ>c

⋃
V

(
Mµ>c

)
µ>c

.

Proof. We set c1 := maxM(µ) = maxD(µ) < C. There is a unique “µ-
farthest point” p1 ∈M with µ(p1) = c1 and this point is obviously a critical
point of Morse index equal to −(2n − 1) for µ

∣∣
M

, by virtue of (g). Conse-
quently, for all c < c1 close to c1, there is a single connected component in
Mµ>c, namely Mµ>c itself, which is diffeomorphic to a small spherical cap
and encloses the domain Dµ>c, diffeomorphic to a thin cut out piece of ball.
For such c < c1 close to c1, the proposition is thus a direct consequence of
the previous Proposition 4.1.
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For arbitrary noncritical c, there is a well defined connected component
M1

µ>c ofMµ>c with p1 ∈M1
µ>c, and we denote byM2

µ>c, . . . ,M
k
µ>c the other

connected components of Mµ>c. Also, each connected component D∼
µ>c of

Dµ>c is bounded by some of the M j
µ>c, inside {µ > c}. The problem is that

the various extensions provided by Proposition 4.1 need not stick together,
but fortunately, we can go to deeper super-level sets {µ > c′}.

Lemma 4.4. For every c′ with −∞ < c′ 6 c which is noncritical for µ
∣∣
M

,
the µ-farthest point p1 belongs to a unique connected component M ′

µ>c′ of
M∩{µ > c′} and the enclosed domainQ′µ>c′ constructed by Proposition 4.1
contains D in a neighborhood of p1.

Proof. Indeed, if this were not true, there would exist the first c′ = c∗ (as
c′ 6 c decreases) for which Q′µ>c′ switches to the other side of M near p1.
According to the topological combinatorial processus (i), (ii), (iii) above,
this could only occur in case (iii) with c∗ critical, where a component is
suppressed from a bigger one Q′′µ>c∗ bounded by some M ′′

µ>c∗ , the sup-
pressed component necessarily being Q′µ>c∗ itself. Then the bigger com-
ponent Q′′µ>c∗ would contain the side of M which is exterior to D near p̂1,
whence

c′′1 := max
{
µ(q) : q ∈M ′′

µ>c∗
}

would necessarily be > c1, which contradicts c1 = maxM (µ). ¤

mnFig. 5: Filling deeper and connecting the components Mk
µ>c

mnDµ>c

mnp1

mnDµ>c

mnγ]mnγ]

mnM

mnM

mn{ρ = c}

mn{ρ = c′}

Next, since M is connected (according to Lemma 3.2), we can pick a
C∞ Jordan arc γ running in M which starts at p1 and visits every other
connected component M2

µ>c, . . . ,M
k
µ>c of Mµ>c. Since γ is compact, there

is a noncritical c′ > −∞ such that γ ⊂ {µ > c′}. Fix such a c′ and denote
by M ′

µ>c′ the connected component of M ∩ {µ > c′} to which p1 belongs.
Then let Q′µ>c′ be as in Lemma 4.4.

Lemma 4.5. The domain Q′µ>c′ contains Dµ>c.
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Proof. Near p1, this domain already contains a piece of D thanks to
Lemma 4.4. From the beginning, M is oriented, since it bounds the do-
main D. Thus, we can push γ slightly inside D, getting a curve γ] almost
parallel to γ which is entirely contained inD, and also contained in {µ > c′}
if the push is sufficiently small. Furthermore, γ] is also entirely contained in
Q′µ>c′ , because the extensional domain Q′µ>c′ is, at least near p1, located on
the same side (with respect to M ) as D.

LetD∼
µ>c be any connected component ofDµ>c. By construction, γ] visits

D∼
µ>c. Thus, every point ofD∼

µ>c may be joined to some point of γ] by means
of some auxiliary C∞ curve running in D∼

µ>c. All such auxiliary curves do
not meet M , hence they do not meet M ′

µ>c′ , whence they all run in Q′µ>c′ .
Consequently, by means of γ] and of the auxiliary curves in each D∼

µ>c, we
may connect, without crossing M even once, every point of Dµ>c with the
starting point of γ], contained in Q′µ>c′ near p1. Thus Dµ>c is effectively
contained in Q′µ>c′ . ¤

To conclude, an application of Proposition 4.1 yields unique extension to
Q′µ>c′

⋃
V

(
M ′

µ>c′
)
µ>c′ , and by plain restriction, we get unique extension to

Dµ>c

⋃
V

(
Mµ>c

)
µ>c

.

This completes the proofs of Propositions 4.3 and 2.3. ¤

§5. MEROMORPHIC EXTENSION ON NONNORMAL COMPLEX SPACES

5.1. An example. To see that the weaker assumption that Ω\K is connected
does not suffice, we consider X = C2/

(
(−1, 0) ∼ (+1, 0)

)
, the euclidean

C2 with two points identified. If we define the structure sheaf by OC2,z at
all single points and by OC2,± =

{
(f, g) ∈ OC2,−1 × OC2,1 : f(−1, 0) =

g(+1, 0)
}

at the double point (±1, 0), the space
(
X,OX

)
is reduced and

modelled near (±1, 0) on
{
(z, w) ∈ C2 × C2 : {z = 0} ∪ {w = 0}}. This

makes it easy to check that the function |z1 +1|2 + |z1−1|2 + |z2|2 descends
to a 1-convex exhaustion of X via the quotient projection π : C2 → X .
Letting Ω := X and K := π

({|z1 + 1|2 + |z2|2 = 1}), we see that Ω\K
is connected. Furthermore, O(Ω\K) consists of all functions holomorphic
in C2

∖{|z1 + 1|2 + |z2|2 = 1
}

which satisfy f(−1, 0) = f(+1, 0). Then
obviously, the conclusion of Theorem 2.4 does not hold.

5.2. Proof of Theorem 2.4. To begin with, we observe that Proposition
2.3 carries over without change to the more general setting of Theorem
2.4: indeed, thanks to the connectedness of [Ω\K]reg, we may construct
M and D as in Lemma 3.2; the construction of an almost psh function v
with Xsing = {v = −∞} holds without assumption of normality ([4]), and
then Propositions 4.1 and 4.3 do go through (notice that both Ω\K and Ωreg
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are connected). Thus MX(Ω\K) extends uniquely as MX

(
Ωreg ∪ [Ω\K]

)
,

holomorphicity being preserved.
Extension across Ωsing∩K is slightly more complicated than in the normal

case due to the fact that Ωsing may have components of codimension one. Let
π : X̂ → X be the normalization of X . Let Xnorm be the set of the normal
points of X . Recall that π restricts to a biholomorphism on π−1(Xnorm).
Topologically, π is a local homeomorphism over irreducible points of X
and separates the irreducible local components at reducible points. For every
open U ⊂ X , setting Û = π−1(U), we have a canonical isomorphism π∗ :

MX(U) → M bX(Û) ([11], p. 155). Hence it is enough to extend from
M bX

(
Ω̂\L)

to M bX(Ω̂), where Ω̂ := π−1(Ω) and L := π−1
(
Ωsing ∩K

)
.

By the Levi extension theorem, we can extend through all points of
z ∈ L with dim zπ

−1(Ωsing) 6 n − 2. Let H be an irreducible compo-
nent of Ωsing of codimension one. Since dim Ω̂sing 6 n − 2, it follows that
Ĥ ′ := π−1(H) ∩ Ω̂reg is dense, open and connected in Ĥ = π−1(H). Be-
cause X is (n−1)-convex, it cannot contain any compact analytic hypersur-
face according to Lemma 5.3 just below, andH has to intersect Ω\K. For di-
mensional reasons, Ĥ ′ intersects

[
π−1(Ω\K)

]
reg

, and we can apply the fol-
lowing version of the Levi extension theorem for complex manifolds ([12]):
Let Y be an analytic subset of a complex manifold of M of codimension at
least one. If U ⊂ M is a domain containing M\Y and intersecting each
irreducible one-codimensional component of Y , then holo-

/
meromorphic

functions on U extend holo-
/

meromorphically to M .
The remaining part of the singularity lies in Ω̂sing and can be removed

by the Levi extension theorem. If the original function on Ω\K is holo-
morphic, the extension on Ω̂ is so too, and its push-forward to Ω is weakly
holomorphic. The proof of Theorem 2.4 is complete. ¤

Lemma 5.3. An (n− 1)-convex complex space X of pure dimension n can-
not contain any analytic hypersurface Y which is compact.

Proof. Let ρ be an (n − 1)-convex exhaustion function. Let
(
Uj

)
j∈J be a

locally finite covering of X by open subsets which can be embedded onto
analytic subsets Aj of euclidean domains B̃j ⊂ CNj such that the push-
forward of ρ extends as an (n − 1)-convex function ρ̃j ∈ C∞(

B̃j
)
. By an

inductive deformation of ρ, we may arrange that all ρ̃j can be chosen to be
Morse functions without critical points on Aj .

If there is a compact analytic hypersurface Y ⊂ X , then ρ|Y attains a
global maximum at some point z0 ∈ Y . We can assume that z0 lies in some
ball B̃j , we denote by Ej ⊂ Aj ⊂ B̃j ⊂ CNj the local representative of
Y and we drop the index j, because the rest of the argument is local. By
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construction
{
z : ρ̃(z) = ρ̃(z0)

}
is a smooth (n− 1)-convex real hypersur-

face such that E ⊂ {ρ̃ 6 ρ̃(z0)}. Bending this hypersurface a little, we can
arrange that E is in fact contained in {ρ̃ < ρ̃(z0)}∪{z0} near z0. By (n−1)-
convexity of ρ̃, there is a piece Λ of a small (N − n+ 1)-dimensional com-
plex plane passing through z0 and contained in the complex tangent plane
T cz0{ρ̃ = ρ̃(z0)} on which the Levi-form i ∂∂ρ̃ is positive. Thus Λ is con-
tained in {ρ̃ > ρ̃(z0)} ∪ {z0} and has a contact of order exactly two with
{ρ̃ = ρ̃(z0)} at z0. Furthermore, if we pick a nonzero vector v ∈ Tz0CN
which points into {ρ > ρ(z0)}, the translates Λε := Λ + ε v do all lie in
{ρ > ρ(z0)} for every small ε > 0, whence Λε ∩ E is empty. But given that
Λ0 ∩ Y = {z0} 6= ∅, this contradicts the persistence, under perturbation, of
the intersection of two complex analytic sets of complementary dimensions
in CN . The lemma is proved. ¤
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On wedge extendability

of CR-meromorphic functions
Joël Merker and Egmont Porten

Abstract. Performing local extension from In this article, we consider metrically
thin singularities E of the solutions of the tangential Cauchy-Riemann operators on
a C 2,α-smooth embedded Cauchy-Riemann generic manifold M (CR functions on
M\E) and more generally, we consider holomorphic functions defined in wedge-
like domains attached to M\E. Our main result establishes the wedge- and the L1-
removability ofE under the hypothesis that the (dimM−2)-dimensional Hausdorff
volume of E is zero and thatM andM\E are globally minimal. As an application,
we deduce that there exists a wedgelike domain attached to an everywhere locally
minimal M to which every CR-meromorphic function on M extends meromorphi-
cally.

Mathematische Zeitschrift 241 (2002), 485–512.

1. INTRODUCTION AND STATEMENT OF RESULTS

In continuation with our previous works [MP1,2,3], we study the wedge
removability of metrically thin singularities of CR functions and its applica-
tion to the local extendability of CR-meromorphic functions defined on CR
manifolds of arbitrary codimension.

First we need to recall some fundamental notions concerning CR man-
ifolds. For a detailed presentation we refer to [Bo]. Let M be a con-
nected smooth CR generic manifold in Cm+n with CRdimM = m ≥ 1,
codimRM = n ≥ 1, and dim RM = 2m + n. We denote sometimes
N := m+n. In suitable holomorphic coordinates (w, z = x+ iy) ∈ Cm+n,
M may be represented as the graph of a differentiable vector-valued map-
ping in the form x = h(w, y) with h(0) = 0, dh(0) = 0. The manifold M is
called globally minimal if it consists of a single CR orbit. This notion gen-
eralizes the concept of local minimality in the sense of Tumanov, cf. [Trp],
[Tu1,2], [J1,2], [M], [MP1]. A wedge W with edge M ′ ⊂ M is a set of the
form W = {p + c : p ∈ M ′, c ∈ C}, where C ⊂ Cm+n is a truncated open
cone with vertex in the origin. By a wedgelike domain W attached to M we
mean a domain which contains for every point p ∈ M a wedge with edge a
neighborhood of p in M (cf. [MP1,2,3]).
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A closed subsetE ofM is called wedge removable (briefly W -removable)
if for every wedgelike domain W1 attached to M\E, there is a wedgelike
domain W2 attached to M such that for every holomorphic function f ∈
O(W1), there exists a holomorphic function F ∈ O(W2) which coincides
with f in some wedgelike open set W3 ⊂ W1 attached to M\E. We say
that E is L1-removable if every locally integrable function f on M which is
CR on M\E is CR on all of M (here, CR is understood in the distributional
sense).

Let Hκ denote κ-dimensional Hausdorff measure, κ ≥ 0. Our main result
is :

Theorem 2.4. Suppose M is C 2,α-smooth, 0 < α < 1. Then every closed
subset E of M such that M and M\E are globally minimal and such that
H2m+n−2(E) = 0 is W - and L1-removable.

(We shall say sometimes that E is of codimension 2+0 in M .) The
hypersurface case of this statement follows from works of Lupacciolu,
Stout, Chirka and others, with weaker regularity assumptions, M being C 2-
smooth, C 1-smooth or even a Lipschitz graph (see [LS], [CS]), so Theorem
1.1 is new essentially in codimension n ≥ 2. Recently, many geometrical
removability results have been established in case the singularity E is a sub-
manifold (see [St], [LS], [CS], [J2,3], [P1], [MP1,2,3], [JS], [P2], [MP4])
and Theorem 1.1 appears to answer one of the last open general questions in
the subject (see also [J3], [MP4] for related open problems). As a rule L1-
removability follows once W -removability being established (see especially
Proposition 2.11 in [MP1]). In the case at hand we have already proved L1-
removability by different methods earlier (Theorem 3.1 in [MP3]) and also
W -removability if M is real analytic (see [MP2, Theorem 5.1], with M be-
ing C ω-smooth and H2m+n−2(E) = 0).

For the special case where M is C 3-smooth and Levi-nondegenerate
(i.e. the convex hull of the image of the Levi-form has nonempty interior),
Theorem 1.1 is due to Dinh and Sarkis [DS]. It is known that this assumption
entails the dimensional inequality m2 ≥ n. Especially, in the case of CR di-
mensionm = 1, the abovementioned authors recover only the known hyper-
surface case (n = 1). We also point out a general restriction: by assuming
thatM is Levi-nondegenerate, or more generally that it is of Bloom-Graham
finite type at every point of M , one would not take account of propagation
aspects for the regularity of CR functions. For instance, it is well known
that wedge extendability may hold despite of large Levi-flat regions in man-
ifolds M consisting of a single CR orbit (cf. [Trp], [Tu1,2], [J1], [M]). For
the sake of generality, this is why we only assume that M and M\E are
globally minimal in Theorem 1.1.
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A straightforward application is as follows. First, by [Trp], [Tu1,2], [J1],
[M, Theorem 3.4], as M\E is globally minimal, there is a wedgelike do-
main W0 attached to M\E to which every continuous CR function (resp.
CR distribution) f on M\E extends as a holomorphic function with con-
tinuous (resp. distributional) boundary value f . Then Theorem 1.1 entails
that there exists a wedge W attached to M such that every such f extend
holomorphically as an F ∈ O(W ). There is a priori no growth control of F
up to E. However, as proved in [MP1, Proposition 2.11], in the case where
f is an element of L1(M) which is CR on M\E, some growth control of
Hardy-spaces type can be achieved on F to show that it admits a boundary
value b(F ) over M (including E) which is L1 and CR on M . This is how
one may deduce L1-removability from W -removability in Theorem 1.1.

We now indicate a second application of Theorem 1.1 to the extension of
CR-meromorphic functions. This notion was introduced for hypersurfaces
by Harvey and Lawson [HL] and for generic CR manifolds by Dinh and
Sarkis. Let f be a CR-meromorphic function, namely: 1. f : Df → P1(C)
is a C 1-smooth mapping defined over a dense open subset Df ofM with val-
ues in the Riemann sphere; 2. The closure Γf of its graph in Cm+n × P1(C)
defines an oriented scarred C 1-smooth CR manifold of CR dimension m
(i.e. CR outside a closed thin set) and 3. We assume that d[Γf ] = 0 in
the sense of currents (see [HL], [Sa], [DS], [MP2] for further definition).
According to an observation of Sarkis based on a counting dimension argu-
ment, the indeterminacy set Σf of f is a closed subset of empty interior in
a two-codimensional scarred submanifold of M and its scar set is always
metrically thin : H2m+n−2(Sc(Σf )) = 0. Moreover, outside Σf , f defines
a CR current in some suitable projective chart, hence it enjoys all the ex-
tendability properties of an usual CR function or distribution. However, the
complement M\Σf need not be globally minimal if M is, and it is easy
to construct manifolds M and closed sets E ⊂ M with H2m−1(E) < ∞
(m = dim CRM ) which perturb global minimality (see [MP1], p. 811). It
is therefore natural to make the additional assumption that M is minimal
(locally, in the sense of Tumanov) at every point, which seems to be the
weakest assumption which insures that M\E is globally minimal for arbi-
trary closed sets E ⊂M (even with a bound on their Hausdorff dimension).
Finally, under these circumstances, the set Σf will be W -removable: for its
regular part Reg(Σf ), this already follows from Theorem 4 (ii) in [MP1]
and for its scar set Sc(Σf ), this follows from Theorem 1.1 above. The re-
movability of Σf means that the envelope of holomorphy of every wedge
W1 attached to M\Σf contains a wedge W2 attached to M . As envelopes of
meromorphy and envelopes of holomorphy of domains in Cm+n coincide by
a theorem of Ivashkovich ([I]), we conclude :
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Theorem 2.4. Suppose M is C 2,α-smooth and locally minimal at every
point. Then there exists a wedgelike domain W attached to M to which
all CR-meromorphic functions on M extend meromorphically.

The remainder of the paper is devoted to the proof of Theorem 1.1. We
combine the local and the global techniques of deformations of analytic
discs, using in an essential way two important papers of Tumanov [Tu1]
and of Globevnik [G1]. In Sections 2 and 3, we first set up a standard lo-
cal situation (cf. [MP1,2,3]). These preliminaries provide the necessary
background for an informal discussion of the techniques of deformations of
analytic discs we have to introduce. After these motivating remarks, a de-
tailed presentation of the main part of the proof is provided in Section 4 (see
especially Main Lemma 4.3).
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when the second author was visiting the LATP, UMR 6632 du CNRS, at the
University of Provence, Aix-Marseille I. The second author is very grateful
to this institution for its hospitality.

2. LOCALIZATION

The following section contains important preliminary steps for the proof
of Theorem 1.1 (cf. [MP1,2,3]).

As in [CS, p.96], we shall proceed by contradiction, since this strategy
simplifies the general reasonings in the large. Also, in Section 3 below, we
shall explain how to reduce the question to the simpler case where the func-
tions which we have to extend are even holomorphic near M\E. Whereas
such a strategy is carried out in detail in [MP1] (with minor variations), we
shall for completeness recall the complete reasonings briefly here, in Sec-
tions 2 and 3.

Thus, we fix W1 attached toM\E and say that an open submanifoldM ′ ⊂
M containingM\E enjoys the W -extension property if there is a wedgelike
domain W ′ attached to M ′ and a wedgelike set W ′

1 ⊂ W ′ ∩W1 attached to
M\E such that, for each function f ∈ O(W1), its restriction to W ′

1 extends
holomorphically to W ′.

This notion can be localized as follows. LetE ′ ⊂ E be an arbitrary closed
subset of E. We shall say that a point p′ ∈ E ′ is (locally) removable (with
respect to E ′) if for every wedgelike domain W1 attached to M\E ′, there
exists a neighborhood U of p′ in M and a wedgelike domain W2 attached to
(M\E ′) ∪ U such that for every holomorphic function f ∈ O(W1), there
exists a holomorphic function F ∈ O(W2) which coincides with f in some
wedgelike open set W3 ⊂ W1 attached to M\E ′.
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Next, we define the following set of closed subsets of E:

E := {E ′ ⊂ E closed ; M\E ′ is globally minimal

and has the W -extension property}.
Then the residual set

Enr :=
⋂

E′∈E

E ′

is closed. Here, the letters “nr” abbreviate “non-removable”, since one ex-
pects a priori that no point of Enr should be removable in the above sense.
Notice that for any two sets E ′

1, E
′
2 ∈ E , M\E ′

1 and M\E ′
2 consist of a

single CR orbit and have nonempty intersection. Hence (M\E ′
1)∪ (M\E ′

2)
is globally minimal and it follows that M\Enr is globally minimal.

Using Ayrapetian’s version of the edge of the wedge theorem (see also
[Tu1, Theorem 1.2]), the different wedgelike domains attached to the sets
M\E ′ can be glued (after appropriate contraction of their cone) to a wedge-
like domain W1 attached to M\Enr in such a way that M\Enr enjoys the
W -extension property. Clearly, to establish Theorem 1.1, it is enough to
show that Enr = ∅.

Let us argue indirectly (by contradiction) and assume that Enr 6= ∅. With
respect to the ordering of sets by the inclusion relation, Enr is then the
minimal non-removable subset of E. In order to derive a contradiction
to the minimality of Enr, it suffices therefore to remove one single point
p ∈ Enr. More precisely one has to look for a neighborhood Up of p such
that Up ∪ (M\Enr) is globally minimal and has the W -extension property.

In order to achieve the first required property, it is very convenient to
choose the point p such that locally the singularity Enr lies behind a “wall”
through p. More precisely we shall construct a generic hypersurface M1 ⊂
M containing p such that a neighborhood V of p in M writes as the disjoint
union M+ ∪M− ∪M1 of connected sets, where M± are two open “sides”,
and the inclusion Enr ∩ V ⊂ M− ∪ {p} holds true. Since M1 is a generic
CR manifold, there is a CR vector field X on M defined in a neighborhood
of p which is transverse to M1. By integrating X , one easily finds a basis
of neighborhoods U of p in M such that U ∪ (M\Enr) is globally minimal.
Hence it remains to establish the W -extension property at p, which is the
main task.

For sake of completeness, we recall from [MP1] how to construct the
generic wall M1.

Lemma 5.3. There is a point p1 ∈ Enr and a C 2,α-smooth generic hyper-
surface M1 ⊂ M passing through p1 so that Enr\{p1} lies near p1 on one
side of M1 (see FIGURE 1).
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Proof. Let p ∈ Enr 6= ∅ be an arbitrary point and let γ be a piecewise
differentiable CR-curve linking p with a point q ∈ M\Enr (such a γ exists
because M and M\Enr are globally minimal by assumption). After short-
ening γ, we may suppose that {p} = Enr ∩ γ and that γ is a smoothly
embedded segment. Therefore γ can be described as a part of an integral
curve of some nonvanishing C 1,α-smooth CR vector field (section of T cM )
L defined in a neighborhood of p.

mnL

mnM

mnq

mnΥ

mnγ

mnFIGURE 1: CONSTRUCTION OF M1

mnQτ

mnp

mnEnr

mnM1

mnp1

Let H ⊂ M be a small (dim M − 1)-dimensional hypersurface of class
C 2,α passing through p and transverse to L. Integrating L with initial values
in H we obtain C 1,α-smooth coordinates (t, s) ∈ R × RdimM−1 so that for
fixed s0, the segments (t, s0) are contained in the trajectories of L. After a
translation, we may assume that (0, 0) corresponds to a point of γ close to p
which is not contained in Enr, again denoted by q. Fix a small ε > 0 and for
real τ ≥ 1, define the ellipsoids (see FIGURE 1 above)

Qτ := {(t, s) : |t|2/τ + |s|2 < ε}.
There is a minimal τ1 > 1 with Qτ1 ∩Enr 6= ∅. Then Qτ1 ∩Enr = ∂Qτ1 ∩Enr

and Qτ1 ∩ Enr = ∅. Observe that every ∂Qτ is transverse to the trajectories
of L out off the equatorial set Υ := {(0, s) : |s|2 = ε} which is contained
in M\Enr. Hence ∂Qτ1 is transverse to L in all points of ∂Qτ1 ∩ Enr. So
∂Qτ1\Υ is generic in Cm+n, since L is a CR field.

We could for instance choose a point p1 ∈ ∂Qτ1 ∩ Enr and take for M1

a neighborhood of p1 in ∂Qτ1 , but such an M1 would be only of class C 1,α

and we want C 2,α-smoothness.
Therefore we fix a small δ > 0 and approximate the family ∂Qτ , 1 ≤

τ < τ1 + δ, by a nearby family of C 2,α-smooth hypersurfaces ∂Q̃τ , 1 ≤
τ < τ1 + δ. Clearly this can be done so that the ∂Q̃τ are still boundaries of
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increasing domains Q̃τ of approximately the same size as Qτ and so that the
points where the ∂Q̃τ are tangent to L are also contained in M\Enr near the
equator Υ of Qτ .

The same reasoning as above shows that there exist a real number τ̃1 > 1,
a point p1 ∈ Enr and a generic hypersurface M0 passing through p1 (which
is a piece of ∂Q̃eτ1) such that Enr lies in the left closed side M−

0 ∪ M0 in
a neighborhood of p1 (see FIGURE 1). We want more: Enr\{p1} ⊂ M−

1 .
To achieve this last condition, it suffices to choose a C 2,α-smooth hyper-
surface M1 passing through p1 with Tp1M0 = Tp1M1 such that M1\{p1} is
contained in M+

0 . ¤

3. ANALYTIC DISCS

Let p1 be as in Lemma 2.1. First, we can choose coordinates vanishing at
p1 and represent M near p1 by the vectorial equation

(3.1) x = h(w, y), w ∈ Cm, z = x+ iy ∈ Cn,
where h = (h1, . . . , hn) is of class C 2,α and satisfies hj(0) = 0 and
dhj(0) = 0.

Let us recall some generalities (see [Bo] for background). Denote by ∆
the open unit disc in C. An analytic disc attached to M is a holomorphic
mapping A : ∆ → CN which extends continuously (or C k,α-smoothly) up
to the boundary ∂∆ and fulfills A(∂∆) ⊂M .

Discs of small size (for example with respect to the C 2,α-norm, 0 < α <
1) which are attached to M are then obtained as the solutions of the (modi-
fied) Bishop equation

(3.2) Y = T1[h(W (·), Y (·))] + y0,

where T1 denotes the harmonic conjugate operator (Hilbert transform on
∂∆) normalized at ζ = 1, namely satisfying T1u(1) = 0 for any u ∈
C 2,α(b∆,Rn). One verifies that every small C 2,α-smooth disc A(ζ) =
(W (ζ), Z(ζ)) = (W (ζ), X(ζ) + iY (ζ)) attached to M satisfies (3.2). Con-
versely, for W (ζ) of small C 2,α-norm, equation (3.2) possesses a unique so-
lution Y (ζ), and one easily checks that A(ζ) := (W (ζ), h(W (ζ), Y (ζ)) +
iY (ζ)) is then the unique disc attached to M with Y (1) = y0 and w-
component equal to W (ζ). According to an optimal analysis of the regu-
larity of Bishop’s equation due to Tumanov [Tu2] (and valid more generally
in the classes C k,α for k ≥ 1 and 0 < α < 1), Y (ζ) and then A(ζ) are of
class C 2,α over ∆.

After a linear transformation we can assume that the tangent space to M1

is given by {x = 0, u1 = 0} and that T0M
+ is given by {u1 > 0} near

the origin. Let ρ0 > 0 be small and let A be the analytic disc we obtain by
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solving

(3.3) Y = T1h[(W (·), Y (·))], with W (ζ) := (ρ0 − ρ0ζ, 0, . . . , 0).

Notice that the disc W1(ζ) := (ρ0 − ρ0ζ) satisfies W1(1) = 0 and
W1(∆\{1}) ⊂ {u1 + iv1 ∈ C : u1 > 0}. Elementary properties of Bishop’s
equation yield A(∂∆)\{1} ⊂ M+ if ρ0 > 0 is sufficiently small (cf. [MP1,
Lemma 2.4]). FIGURE 2 below is devoted to provide a geometric intuition
of the relative situation of the boundary of the disc A with respect to M1.

mn0 = A(1)

mnw2, . . . , wm, y

mnA(∂∆)
mnu1

mnM1

mnM+mnM−

mnv1
mnM

mnEnr

mnFIGURE 2: RELATIVE DISPOSITION OF Enr , M1 AND A(∂∆) INSIDE M

At first, we explain how one usually constructs small wedges attached to
M at p1 by means of deformations of analytic discs and then in Sections 4, 5
and 6 below, we shall explain some of the modifications which are needed in
the presence of a singularity Enr in order to produce wedge extension at p1.
Following [MP3, pp. 863–864], we shall include (or say, “deform”) A in a
parametrized family Aρ,s,v with varying radius ρ plus supplementary param-
eters s, v and withAρ0,0,0 = A. During the construction, we shall sometimes
permit ourselves to decrease parameters, related constants, neighborhoods
and domains of existence without explicit mentioning. At present, our goal
is to explain how we can add some conveninent extra simplifying assump-
tions to the hypotheses of Theorem 1.1, see especially conditions 1), 2) and
3) before Theorem 3.1 below.

Let W1 be the wedgelike domain attached to M\Enr constructed in Sec-
tion 2 and let f ∈ O(W1). We want to extend f holomorphically to a wedge
of edge a small neighborhood of the special point p1 ∈ Enr picked thanks
to Lemma 2.1. Let W2 ⊂ W1 be a small wedge attached to a neighborhood
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of A(−1) in M+. As in [Tu1,2], [MP1,3], we can construct analytic discs
Aρ,s,v = (Wρ,s,v, Zρ,s,v) attached to M ∪W2 with the following properties:

(1) The parameters s, v belong to neighborhoods Us, Uv of 0 in
R2m+n−1, Rn−1 respectively and ρ belongs to the interval [0, ρ1), for
some ρ1 > ρ0.

(2) The mapping (ρ, s, v) 7→ Aρ,s,v is of class C 2,β for all 0 < β < α.
For ρ 6= 0, these maps are embeddings of ∆ into Cm+n. Finally, we
have Aρ0,0,0 = A and the discs A0,s,v are constant.

(3) For every fixed v0 ∈ Uv, the union
⋃
s∈Us

Aρ0,s,v0({eiθ : |θ| < π/4})
is an open subset ofM containing the origin which is C 2,β-smoothly
foliated by the curves Aρ0,s,v0({eiθ : |θ| < π/4}).

(4) The mapping Uv 3 v 7→ [ d
dθ
Aρ0,0,v(e

iθ)]θ=0 ∈ T0M/T c0M ' Rn has
rank n − 1 and its image is transverse to the vector [ d

dθ
A(eiθ)]θ=0 ∈

T0M/T c0M ' Rn. In geometric terms, this property means that the
union of tangent real lines

R
[
d

dr
Aρ0,0,v(re

iθ)

]

ζ=1

= −iR
[
d

dθ
Aρ0,0,v(e

iθ)

]

θ=0

spans an open cone in the normal bundle to M , namely
T0Cm+n/T0M ∼= i(T0M/T c0M).

(5) Let ω = {ζ ∈ ∆ : |ζ − 1| < δ} be a neighborhood of 1 in ∆, with
some small δ > 0. It follows from properties (3) and (4) that the
union W =

⋃
s∈Us,v∈Uv

Aρ0,s,v(ω) is an open wedge of edge a neigh-
borhood of the origin in M which is foliated by the discs Aρ0,s,v(ω).

(6) The sets Ds,v =
⋃

0≤ρ<ρ1,|ζ|=1Aρ,s,v(ζ) are real two-dimensional
discs of class C 2,β embedded in M which are foliated (with a cir-
cle degenerating to a point for ρ = 0) by the circles Aρ,s,v(∂∆).

(7) There exists a (2m+n−2)-dimensional submanifoldH ofR2m+n−1

passing through the origin such that for every fixed v0 ∈ Uv, the
union

⋃
s∈H Ds,v0 is a (dim M)-dimensional open box foliated by

real 2-discs which is contained in M and which contains the origin.
Intruitively, it is a stack of plates.

Let us make some commentaries. We stress that the family Aρ,s,v is ob-
tained by solving the Bishop equation for explicitly prescribed data (see
[MP3, p. 837] or [MP1, p. 863]; the important Lemma 2.7 in [MP1] which
produces the parameter v satisfying (4) above is due to Tumanov [Tu1]).
Since Bishop’s equation is very flexible, this entails that every geometrical
property of the family is stable under slight perturbation of the data. Notice
for instance that as A is an embedding of ∆ into Cm+n, all its small defor-
mations will stay embeddings. In particular we get a likewise family Adρ,s,v
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if we replace M by a slightly deformed C 2,α-smooth manifold Md (this cor-
responds to replacing h by a function hd close to h in C 2,α-norm in (3.1),
(3.2) and (3.3)).

Further remark. If A′ is an arbitrary disc which is sufficiently close to A in
C 1,β-norm, for some 0 < β < α, we can also include A′ in a similar C 1,γ-
smooth (0 < γ < β) family A′ρ,s, without the parameter v, which satisfies
the geometric properties (3), (6) and (7) above. This remark will be useful
in the end of Section 4 below.

Using such a nice family Aρ,s,v which gently deforms as a family Adρ,s,v
under perturbations, let us begin to remind from [MP1] how we can add
three simplifying geometric assumptions to Theorem 1.1, without loss of
generality.

First of all, using a partition of unity, we can perform arbitrarily small
C 2,α-smooth deformations Md of M leaving Enr fixed and moving M\Enr

inside the wedgelike domain W1. Further, we can make Md to depend on
a single small real parameter d ≥ 0 with M0 = M and Md\Enr ⊂ W1

for all d > 0. Now, the wedgelike domain W1 becomes a neighborhood of
Md in Cm+n. In the sequel, we shall denote this neighborhood by Ω. By
stability of Bishop’s equation, we obtain a deformed disc Ad attached to Md

by solving (3.3) with hd in place of h. In the sequel, we will also consider a
small neighborhood Ω1 of Ad(−1) in Cm+n which contains the intersection
of the above wedge W2 with a neighborhood of A(−1) in Cm+n.

Again by stability of Bishop’s equation, we also obtain deformed families
Adρ,s,v attached to Md ∪ Ω1, satisfying properties (1)-(7) above. Recall that
according to [Tu2], the mapping (ρ, s, v, d) 7→ Adρ,s,v is C 2,β-smooth for all
0 < β < α. In the core of the proof of our main Theorem 1.1 (Sections 4, 5
and 6 below), we will show that, for each sufficiently small fixed d > 0, we
get holomorphic extension to the wedgelike set W d =

⋃
s∈Us,v∈Uv

Adρ0,s,v(ω)

attached to a neighborhood of 0 in Md. But this implies Theorem 2.4: In
the limit d → 0, the wedges W d tend smoothly to the wedge W := W 0

attached to a neighborhood of 0 in M0 = M . As the construction depends
smoothly on the deformations d, we derive univalent holomorphic extension
to W thereby arriving at a contradiction to the definition of Enr.

As a summary of the above discussion, we formulate below the local state-
ment that remains to prove. Essentially, we have shown that it suffices to
prove Theorem 1.1 with the following three extra simplifying assumptions:

1) Instead of functions which are holomorphic in a wedgelike open set
attached toM\Enr, we consider functions which are holomorphic in
a neighborhood of M\Enr in Cm+n.

2) Proceeding by contradiction, we have argued that it suffices to re-
move at least one point of Enr.



477

3) Moreover, we can assume that the point p1 ∈ Enr we want to remove
is behind a generic “wall” M1 as depicted in FIGURE 2.

Consequently, from now on, we shall denote the set Enr simply by E. We
also denote Md simply by M . We take again the disc A defined by (3.3) and
its deformation Aρ,s,v. The goal is now to show that holomorphic functions
in a neighborhood of M\E in Cm+n extend holomorphically to a wedge at
p1, assuming the “nice” geometric situation of FIGURE 2. To be precise,
we have argued that Theorem 1.1 is reduced to the following precise and
geometrically more concrete statement.

Theorem 2.4. Let M be a C 2,α-smooth generic CR manifold in Cm+n of
codimension n. Let M1 ⊂ M be a C 2,α-smooth generic CR manifold of
dimension 2m + n − 1 and let p1 ∈ M1. Let M+ and M− denote the two
local open sets in which M is divided by M1, in a neighborhood of p1. Sup-
pose that E ⊂ M is a nonempty closed subset with p1 ∈ E satisfying the
Hausdorff condition H2m+n−2(E) = 0 and suppose that E ⊂ M− ∪ {p1}
(FIGURE 2). Let Ω be a neighborhood of M\E in Cm+n, let A be the disc
defined by (3.3), let Ω1 be a neighborhood of A(−1) in Cm+n which is con-
tained in Ω and let Aρ,s,v be a family of discs attached to M ∪ Ω1 with the
properties (1)-(7) explained above. Then every function f which is holomor-
phic in Ω extends holomorphically to the wedge W =

⋃
s∈Us,v∈Uv

Aρ0,s,v(ω).

Of course, Theorem 3.1 would be obvious if E would be empty, but we
have to take account of E.

4. PROOF OF THEOREM 2.4, PART I

This section contains the part of the proof of Theorem 2.4 above which re-
lies on constructions with the small discs Aρ,s,v attached toM ∪Ω. Since we
want the boundaries of our discs to avoid E, we shall employ the following
elementary lemma several times, which is simply a convenient particular-
ization of a general property of Hausdorff measures [C, Appendix A6].

Lemma 5.3. Let N be a real d-dimensional manifold and let E ⊂ N be a
closed subset. Let U be a small neighborhood of the origin in Rd−1 and let
Φ : ∂∆× U → N (resp. Ψ : (0, 1)× U →M) be an embedding.

(i) If Hd−2(E) = 0, then the set of x ∈ U for which Φ(∂∆× {x}) ∩ E
is nonempty (resp. Ψ((0, 1) × {x}) ∩ E 6= ∅) is of zero (d − 2)-
dimensional Hausdorff measure.

(ii) If Hd−1(E) = 0, then for almost every x ∈ U in the sense
of Lebesgue measure, we have Φ(∂∆ × {x}) ∩ E = ∅ (resp.
Ψ((0, 1)× {x}) ∩ E = ∅).

Proof of Theorem 2.4: We divide the proof in five steps.
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Step 1: Holomorphic extension to a dense subset of W . We shall start by
constructing a holomorphic extension to an everywhere dense open subdo-
main of the wedge W =

⋃
s∈Us,v∈Uv

Aρ0,s,v(ω) by means of the disc tech-
nique (continuity principle).

For each fixed v0 ∈ Uv, the first dimensional count of Lemma 4.1 (which
applies by the foliation property (3) of the discs) yields a closed subset
Sv0 ⊂ Us depending on v0 and satisfying H2m+n−2(Sv0) = 0 such that
for every s /∈ Sv0 we have Aρ0,s,v0(∂∆)∩E = ∅. Notice also that Sv0 does
not locally disconnect Us, for dimensional reasons ([C, Appendix A6]).

By property (7) of Section 3, the real two-dimensional discs Ds,v0 foliate
an open subset ofM , for s running in a manifoldH of dimension 2m+n−2.
Consequently, for almost every s ∈ H , (in the sense of Lebesgue measure),
we have Ds,v0 ∩ E = ∅.
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Since E is closed, we claim that for every s /∈ Sv0 , it follows that we can
contract every boundary Aρ0,s,v0(∂∆) which does not meet E, to a point in
M without meeting E by an analytic isotopy (cf. [MP3, p. 864]). Indeed,
by shifting s to some nearby s′, we first move Aρ0,s,v0 into a disc Aρ0,s′,v0
which also satisfies Aρ0,s′,v0(∂∆) ∩ E = ∅. Choosing well s′, this boundary
belongs to a real disc Ds′,v0 satisfying Ds′,v0 ∩E = ∅. This can be achieved
with s′ arbitrarily close to s, since Sv0 does not disconnect Us. Then we
contract in the obvious manner the disc Aρ0,s′,v0 to the point A0,s′,v0(∆) by
isotoping its boundary inside Ds′,v0 (recall that Ds′,v0 is a union of boundary
of discs). Applying the continuity principle to this analytic isotopy of discs,
we see that we can extend every function f ∈ O(Ω) holomorphically to
a neighborhood of Aρ0,s,v0(∆) in Cm+n, for every s 6∈ Sv0 and for every
v0 ∈ Uv.
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From the nice geometry (5) of the family Aρ,s,v one easily derives that
the various local extensions near Aρ0,s,v0(ω) for s /∈ Sv0 fit in a univalent
function F ∈ O(W \EW ), where EW :=

⋃
s∈Sv0 ,v0∈Uv

Aρ0,s,v0(ω). Further-
more we observe that EW is laminated by holomorphic discs and satisfies
H2m+2n−1(EW ) = 0. This metrical property implies that W \EW is locally
connected. The remainder of the proof is devoted to show how to extend
F through EW . This occupies the paper up to its end. The difficulty and
the length of the proof comes from the fact that the disc method necessar-
ily increases by a factor 1 the dimension of the singularity: it transforms
a singularity set E ⊂ M of codimension 2+0 into a bigger singularity set
EW ⊂ W which is of codimension 1+0.

Step 2: Plan for the removal of EW . Let us remember that our goal is
to show that p1 is W -removable in order to achieve the final step in our
reasoning by contradiction which begins in Section 2. To show that p1 is
removable, it suffices to extend F through EW . At first, we notice that be-
cause H2m+2n−1(EW ) = 0, it follows that W \EW is locally connected, so
the part of the envelope of holomorphy of W \EW which is contained in W
is not multisheeted: it is necessarily a subdomain of W . In analogy with the
beginning of Section 2, let us therefore denote byEnr

W the set of points ofEW

through which our holomorphic function F ∈ O(W \EW ) does not extend
holomorphically. If Enr

W is empty, we are done, gratuitously. As it might cer-
tainly be nonempty, we shall suppose therefore that Enr

W 6= ∅ and we shall
construct a contradiction in the remainder of the paper. Let q ∈ Enr

W 6= ∅.
To derive a contradiction, it suffices to show that F extends holomorphically
through q. Philosophically again, it will suffice to remove one single point,
which will simplify the presentation and the geometric reasonings. Finally,
as Enr

W 6= ∅ is contained in EW , there exist a point ζ0 ∈ ∂∆ and parameters
(ρ0, s0, v0) such that q = Aρ0,s0,v0(ζ0). In the sequel, we shall simply denote
the disc Aρ0,s0,v0 by Anr. Obviously also, H2m+2n−1(Enr

W ) = 0.

Step 3: Smoothing the boundary of the singular disc Anr near ζ = −1.
In step 4 below, our goal will be to deform Anr to extend F through q.
As we shall need to glue a maximally real submanifold R1 of M along
Anr(∂∆\{|ζ + 1| < ε}) to some collection of maximally real planes along
Anr(ζ) for ζ ∈ ∂∆ near −1, and because C 2,β-smoothness of Anr will not
be sufficient to keep the C 2,β-smoothness of the glued object, it is conve-
nient to smooth out first Anr near ζ = −1 (see especially Step 2 of Section 6
below). Fortunately, we can use the freedom Ω1 (the small neighborhood of
A(−1) in Theorem 3.1) to modify the boundary of Anr. Thus, for technical
reasons only, we need the following preliminary lemma, which is simply
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obtained by reparametrizing an almost full subdisc of Anr. This prepara-
tory reparametrization is indispensible to state our Main Lemma 4.3 below
correctly.

Lemma 5.3. For every ε > 0, there exists an analytic disc A′ satisfying
(a) A′ is a C 2,β-smooth subdisc of Anr, namely A′(∆) ⊂ Anr(∆), such

that moreover A′(∆) ⊃ Anr(∆\{|ζ + 1| < 2ε}).
(b) A′ is real analytic over {ζ ∈ ∂∆ : |ζ + 1| < ε}.
(c) ||A′ − Anr||C 2,β ≤ ε.
(d) A′(∂∆) ⊂M ∪ Ω1.

Proof. Of course, (d) follows immediately from (a) and (c) if ε is sufficiently
small. To construct A′, we consider a C∞-smooth cut-off function µε :
∂∆ → [0, 1] with µε(ζ) = 1 for |ζ + 1| > 2ε and µε(ζ) equal to a constant
cε < 1 with cε > 1−ε for |ζ+1| < ε. Let ∆µε be the (almost full) subdisc of
∆ defined by {ζ ∈ ∆ : |ζ| < µε(ζ/|ζ|)}. Let ψε be the Riemann conformal
map ∆ → ∆µε . We can assume that ψε(−1) = −cε ∈ ∂∆µε ∩ R. By
Caratheodory’s theorem and by the Schwarz symmetry principle, ψε is C∞-
smooth up to the boundary and real analytic near ζ = −1. If ε is sufficiently
small and cε sufficiently close to 1, the stability of Riemann’s uniformization
theorem under small C∞-smooth perturbations shows that the disc

A′(ζ) := Anr(ψε(ζ)).

satisfies the desired properties, possibly with a slightly different small ε. ¤

Step 4: Variation of the singular disc. In the sequel, we shall constantly
denote the disc of Lemma 4.2 by A′. We set ζq := ψ−1

ε (ζ0), so that A′(ζq) =
q. Of course, after a reparametrization by a Blaschke transformation, we can
(and we will) assume that ζq = 0. By construction, A′|∂∆ is real analytic
near−1 and the point q = A′(0) is contained Enr

W , the set through which our
partial extension F does not extend a priori. To derive a contradiction, our
next purpose is to produce a discA′′ close toA′ and passing through the fixed
point q such that q can be encircled by a small closed curve in A′′(∆)\Enr

W ,
because in such a situation, we will be able to apply the continuity principle
as in the typical local situation of Hartog’s theorem (see (4) of Lemma 4.3
and Step 5 below).

At first glance it seems that we can produce A′′ simply by turning A′ a lit-
tle around q: indeed, Lemma 4.1 applies, since H2m+2n−1(Enr

W ) = 0. How-
ever, the difficult point is to guarantee that A′′ is still attached to the union of
M with the small neighborhood Ω1 of A(−1) in Cm+n. The following key
lemma asserts that these additional requirements can be fulfilled.

Lemma 5.3. Let A′ be the disc of Lemma 4.1, let q = A′(0) ∈ Enr
W and

let 0 < β < α be arbitrarily close to α. Then there exists a parameterized
family A′t′ of analytic discs with the following properties:
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(1) The parameter t′ ranges in a neighborhood Ut′ of 0 in R2m+2n−1 and
A′0 = A′.

(2) The mapping Ut′ × ∆ 3 (t′, ζ) 7→ A′t′(ζ) ∈ Cm+n is of class C 1,β

and each A′t′ is an embedding of ∆ into Cm+n.
(3) For all t′ ∈ Ut′ , the point q = A′t′(0) is fixed andA′t′(∂∆) ⊂M∪Ω1.

Furthermore, there exists a small δ > 0 such that the large boundary
part A′t′(∂∆\{|ζ + 1| < δ}) is attached to a fixed maximally real
(m+ n)-dimensional C 2,α-smooth submanifold R1 of M .

(4) For every fixed ρε > 0 which is sufficiently small and for t′ ranging
in a sufficiently small neighborhood of the origin, the union of circles

⋃

t′
{A′t′(ρεeiθ) : θ ∈ R}

foliates a neighborhood inCm+n of the small fixed circle {A′(ρεeiθ) :
θ ∈ R} which encircles the point q inside A′(∆). Consequently, by
Lemma 4.1, for almost all t′ ∈ Ut′ , the circle {A′t′(ρεeiθ) : θ ∈ R}
does not meet Enr

W .

Let us make some explanatory commentaries. Notice that the discs are
only C 1,β-smooth, because the underlying method of Sections 5 and 6 (im-
plicit function theorem in Banach spaces, cf. [G1]) imposes a real loss of
smoothness. If we could have produce a C 2,β-smooth family (assuming for
instance thatM was C 3,α-smooth from the beginning, or asking whether the
regularity methods of [Tu2] are applicable to the global Bishop equation),
we would have constructed a slightly different family and stated instead of
(4) the following conic-like differential geometric property:

(4’) The parameter t′ ranges over a neighborhood Ut′ of the origin in
R2m+2n−2 with A′t′(0) = q for all t′ and the mapping

Ut′ 3 t′ 7→ [∂A′t′/∂ζ](0) ∈ TqCm+n

has maximal rank at t′ = 0 with its image being transverse to the
tangent space of A′(∆) at q.
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In geometric terms, (4’) tells that A′ can be included in a family A′t′ of
discs passing through q which sweeps out an open cone with vertex in q.
Using some basic differential geometric computations, the reader can easily
check that the geometric property (4’) implies (4) after adding one supple-
mentary real parameter t′2m+2n−1 corresponding to the radius ρ = |ζ| of the
disc. Fortunately, for the needs of Step 5 below, the essential foliation prop-
erty stated in (4) will be valuable with an only C 1,β-smooth family and, as
stated in the end of (4), this family yields an appropriate disc A′t′ with empty
intersection with the singularity, namely A′t′({ρεeiθ : θ ∈ R}) ∩ Enr

W = ∅.
Using this Main Lemma 4.3, we can now accomplish the last step of the
proof of Theorem 3.1.

Step 5: Removal of the point q ∈ Enr
W . Let A′t′ the family that we obtain

by applying Main Lemma 5.3 to A′. According to the last sentence of Main
Lemma 4.3, we may choose t′ arbitrarily small and a positive radius ρε > 0
sufficiently small so that the boundary of analytic subdisc A′t′({ρεeiθ : θ ∈
R}) does not intersect Enr

W . Let us denote such a disc A′t′ simply by A′′

in the sequel. Furthermore, we can assume that A′′({ρεeiθ : θ ∈ R}) is
contained in the small ball Bε := {|z − q| ≤ ε} in which we shall localize
an application of the continuity principle (see FIGURE 5). Thus, it remains
essentially to check that F extends analytically to a neighborhood of q in
Cm+n by constructing an analytic isotopy of A′′ in (W \Enr

W ) ∪ Ω and by
applying the continuity principle.

One idea would be to translate a little bit in Cm+n the small disc
A′′({ρeiθ : ρ ≤ ρε, θ ∈ R}). However, there is a priori no reason for which
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such a small translated disc (which is of real dimension two) would avoid
the singularity Enr

W . Indeed, since we only know that H2m+2n−1(Enr
W ) = 0,

it is impossible in general that a two-dimensional manifold avoids such a
“big” set of Hausdorff codimension 1+0.

Of course, there is no surprise here: it is clear that functions which are
holomorphic in the domain W \Enr

W do not extend automatically through
a set with H2m+2n−1(Enr

W ) = 0, since for instance, such a set Enr
W might

contain infinitely many complex hypersurfaces, which are certainly not re-
movable. So we really need to consider the whole disc A′′ and to include
it into another family of discs attached to M ∪ Ω1 in order to produce an
appropriate analytic isotopy.

The good idea is to include A′′ in a family A′′ρ,s similar to the one in Sec-
tion 2 (with of courseAρ0,0 = A′′, but without the unnecessary parameter v),
since we already know that for almost all s ∈ Us, we can show as in Step 1
above that f (hence F too) extends holomorphically to a neighborhood of
Aρ0,s(∆) in Cm+n.

To construct this family, we observe that A′′ is not attached to M , but as
A′′ can be chosen arbitrarily close in C 1,β-norm to the original disc A at-
tached to M , it follows that A′′ is certainly attached to some C 1,β-smooth
manifold M ′′ close to M which coincides with M except in a neighborhood
of A′′(−1). Finally, the family A′′ρ,s is constructed as in Section 2 (but with-
out the parameter v, because in order to add the parameter v satisfying the
second order condition (4) of Section 3, one would need C 2,β-smoothness
of the disc). By Tumanov’s regularity theorem [Tu2], this family is again of
class C 1,β for all 0 < β < α. Using properties (3) and (6) and reasoning as
in Step 1 of this Section 4 (continuity principle), we deduce that the function
f of Theorem 3.1 extends holomorphically to a neighborhood of Aρ0,s(∆)
in Cm+n for all s ∈ Us, except those belonging to some closed thin set S
with H2m+n−2(S ) = 0. Since S does not locally disconnect Us, such an
extension necessarily coincides with the extension F in the intersection of
their domains.

In summary, by using the family A′′ρ,s, we have shown that for almost all
s, the function F extends holomorphically to a neighborhood of A′′ρ0,s(∆).
We can therefore apply the continuity principle to remove the point q.

Indeed, we remind that A′′ = A′′ρ0,0 and that by construction the small
boundary A′′ρ0,0({ρεeiθ : θ ∈ R}) which encircles q does not intersect Enr

W .
It is now clear that the usual continuity principle along the family of small
discs A′′ρ0,s({ρeiθ : ρ < ρε, θ ∈ R}) yields holomorphic extension of F at q
(see again FIGURE 5).
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Finally, the proof of Theorem 3.1 is complete modulo the proof of Main
Lemma 4.3, to which the remainder of the paper is devoted.

5. ANALYTIC DISCS ATTACHED TO MAXIMALLY REAL MANIFOLDS

A crucial ingredient of the proof of Theorem 2.4 is the description of
a family of analytic discs which are close to the given disc A′ of Main
Lemma 4.3 and which are attached to a maximally real submanifold R ⊂
M ∪ Ω1 (we shall construct such an R with A′(ζ) ∈ R for each ζ ∈ ∂∆
in Section 6 below). This topic was developed by E. Bedford–B. Gaveau,
F. Forstnerič in complex dimension two and generalized by J. Globevnik
to higher dimensions. In this introductory section, we shall closely follow
[G1,2].

We need the solution of the following more general distribution problem.
Instead of a fixed maximally real submanifold R, we consider a smooth
family R(ζ), ζ ∈ ∂∆, of maximally real submanifolds of CN , N ≥ 2, and
we study the discs attached to this family which are close to an attached disc
A′ of reference, i.e. fulfilling A′(ζ) ∈ R(ζ), ∀ ζ ∈ ∂∆. Let α > 0 be as
in Theorem 1.1 and let 0 < β < α be arbitrarily close to α, as in Main
Lemma 4.3.

Concretely, the manifolds R(ζ) are given by defining functions rj ∈
C 2,β(∂∆ × B,R), j = 1, . . . , N , where B ⊂ CN is a small open ball
containing the origin, so that rj(ζ, 0) = 0 and ∂r1(ζ, p) ∧ · · · ∧ ∂rN(ζ, p)
never vanishes for ζ ∈ ∂∆ and p ∈ B. We would like to mention
that in [G1, p. 289], the author considers the more general regularity
rj ∈ C β(∂∆,C 2(B)), but that for us, the simpler smoothness category
C 2,β(∂∆×B,R) will be enough. Then we represent

R(ζ) := {p ∈ A(ζ) +B : rj(ζ, p− A′(ζ)) = 0, j = 1, . . . , N},
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which is a C 2,β-smooth maximally real manifold by the condition on ∂rj .
We suppose the given reference disc A′ to be of class C 2,β up to the bound-
ary. Following [G1], we describe the family of nearby attached disc as
a C 1,β-smooth submanifold of the space C 2,β(∂∆,CN), with a loss of
smoothness.
Remark. At first glance the transition from a fixed manifold to the family
R(ζ) may appear purely technical. Nevertheless it gives in our application
a decisive additional degree of freedom: If we had to construct a fixed man-
ifold R containing the boundary of our given disc A′, the boundary of A′

would prescribe one direction of TR. It will prove very convenient to avoid
this constraint by the transition to distributions R(ζ) and this freedom will
be used in an essential way in Section 6 below.

It turns out that the problem is governed by an N -tuple κ1, . . . , κN ∈ Z
of coordinate independent partial indices which are defined as follows. As
in [G1], we shall always assume that the pull-back bundle (A′|∂∆)∗(TR(ζ))
is topologically trivial (this condition is dispensible, see [O]). For each ζ ∈
∂∆, let us denote by L(ζ) the tangent space to R(ζ) at A′(ζ). Then there is
a C 1,β-smooth map G : ∂∆ → GL(N,C) such that for each ζ ∈ ∂∆ the
columns of G are a (real) basis of L(ζ). By results of Plemelj and Vekua,
we can decompose the matrix function B(ζ) = G(ζ)G(ζ)−1, ζ ∈ ∂∆, as

B(ζ) = F+(ζ)Λ(ζ)F−(ζ),

with matrix functions

F+ ∈ O(∆, GL(N,C)) ∩ C 1,β(∆, GL(N,C)),

F− ∈ O(C\∆, GL(N,C)) ∩ C 1,β(C\∆, GL(N,C)),

and where Λ(ζ) is the matrix with powers ζκj on the diagonal and zero
elsewhere. In [G1] it is shown that the matrix B(ζ) depends only on the
family of maximally real linear space L(ζ) and that the κj are unique up
to permutation. They are called the partial indices of R along A′(∂∆) and
their sum κ = κ1 + · · · + κN the total index. We stress that only κ is a
topological invariant, in fact twice the winding number of det(G(ζ)) around
the origin. In the literature on symplectic topology, κ is called Maslov index
of the loop ζ 7→ L(ζ).

Building on work of Forstnerič [F], Globevnik [G1, Theorem 7.1] showed
that the family of all analytic discs attached to R(ζ) which are C 1,β-close to
A′ is a C 1,β-smooth submanifold of O(∆,CN)∩C 2,β(∆,CN) of dimension
κ+N , if all κj are non-negative (by a result due to Oh [O], this is even true
if κj ≥ −1 for all j). Furthermore the result is stable with respect to small
C 2,β-smooth deformations of M .

We shall need some specific ingredients of Globevnik’s construction.
Since all our later arguments will exclude the appearance of odd partial
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indices and since the expression of the square root matrix
√

Λ below is
less complicated for even ones, we shall suppose from now on that κj =
2mj, j = 1, . . . , N .

Firstly one has to replace G(ζ) by another basis of L(ζ) which extends
holomorphically to ∆. By [G1, Lemma 5.1], there is a finer decomposition

B(ζ) = Θ(ζ)Λ(ζ)Θ(ζ)−1,

where Θ ∈ O(∆, GL(N,C))∩C 1,β(∆, GL(N,C)). The substitute forG(ζ)
is

Θ(ζ)
√

Λ(ζ),

where
√

Λ(ζ) denotes the matrix with ζmj on the diagonal. We denote by
Xj (Yj) the columns of Θ(ζ)

√
Λ(ζ) (

√
Λ(ζ)) respectively. One can ver-

ify that the Xj(ζ) span L(ζ) ([G1, Theorem 5.1]). Observe Θ(ζ)
√

Λ(ζ) ∈
O(∆,CN) ∩ C 1,β(∆,CN).

Secondly one studies variations of A′|∂∆ as a function from ∂∆ to CN .
Every nearby C 1,β-smooth (not necessarily holomorphic) variation is a disc
close to A′ which can be written in the form ([F, p. 20])

G(u, f)(ζ) =
N∑
j=1

uj(ζ)Xj(ζ) + i

N∑
j=1

{fj(ζ) + i (T0fj)(ζ)}Xj(ζ),

where uj, fj ∈ C 1,β(∂∆,R), are uniquely determined by the variation. Here
T0 denotes the harmonic conjugation operator normalized at ζ = 0. The
condition G(u, f)(ζ) ∈ R(ζ), ∀ ζ ∈ ∂∆ is equivalent to the validity of
the system rj(ζ)(G(u, f)(ζ)) = 0, 1 ≤ j ≤ N . The implicit function
theorem implies that this system can be solved for f = φ(u) for C 1,β-
small u with a C 1,β-smooth mapping φ of Banach spaces C 1,β(∂∆,RN) →
C 1,β(∂∆,RN). This follows from [G1, Theorem 6.1] by an application of
the implicit function theorem in Banach spaces, except concerning the C 1,β-
smoothness, which, in our situation, is more direct and elementary than in
[G1], since we have supposed that rj ∈ C 2,β(∂∆×B,R).

Finally one has to determine for which choices of u the function
G(u, φ(u)) extends holomorphically to ∆. Writing

G(u, f)(ζ) = Θ(ζ)
N∑
j=1

{uj(ζ) + i [fj(ζ) + i (T0fj)(ζ)]} Yj,

we see that G(u, φ(u)) extends holomorphically, if and only if
(5.1)

Θ−1(ζ)G(u, φ(u))(ζ) =
N∑
j=1

{uj(ζ) + i [φ(u)j(ζ) + i (T0 φ(u)j)(ζ)]}Yj
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extends, i.e. if and only if the function ζ 7→ ∑N
j=1 uj(ζ)Yj(ζ) extends.

One can compute ([G1, p. 301]) that this is precisely the case, if hj(ζ) =
Y −1(ζ) uj(ζ) has polynomial components of the form
(5.2)
hj(ζ) = tj1 + i tj2 + (tj3 + i tj4) ζ + · · ·+ (tjκj−1

+ i tjκj
) ζmj−1 + tjκj+1

ζmj

+ (tjκj−1
− i tjκj

) ζmj+1 + · · ·+ (tj3 − i tj4) ζ
κj−1 + (tj1 − i tj2) ζ

κj ,

where all tjk are real. In total we get κj + 1 real parameters for the choice
of hj and hence κ + N parameters for our local family of discs attached to
R(ζ).

6. PROOF OF THEOREM 3.1, PART II

In this section we provide the final part of the proof of Theorem 2.4,
namely Main Lemma 4.3, which relies essentially on global properties of
analytic discs. The disc A′ of Main Lemma 4.3 need not be attached to M
but since it is close to A in C 2,β-norm, it is certainly attached to a nearby
manifold M ′ of class C 2,β which coincides with M except in Ω1. The idea
is now to first embed A′(∂∆) into a maximal real submanifold of M ∪ Ω1

whose partial indices are easy to determine. Then we shall explain how to
increase the partial indices separately by twisting R around A′(∂∆) inside
Ω1. The families of attached discs get richer with increasing indices and will
eventually contain the required discs A′t′ as a subfamily. We divide the proof
in four essential steps.
Step 1: Construction of a first maximally real manifold R1. Let h′ be
a defining function of M ′ as in (3.1). Then A′ is the solution of a Bishop
equation

Y ′ = T1(h
′(W ′, Y ′)) + y0,

whereW ′ ∈ C 2,β is thew-component ofA′ and y0 ∈ Rn is close to 0. Recall
that by construction, W ′(ζ) is close to the w-component (ρ0−ρ0ζ, 0, . . . , 0)
of the discA defined in (3.3). LetA′u∗,y be the discs defined by the perturbed
equation

Y ′
u∗,y = T1(h

′(W ′
u∗,y + (0, u∗), Y ′

u∗,y)) + y0 + y,

where u∗ := (u2, . . . , um) is close to 0 and y ∈ Rn is close to 0. We have
A′0,0 = A′. Since A defined by (3.3) and hence also A′ are by construction
almost parallel to the w1-axis, the union

R1 :=
⋃
u∗,y

A′u∗,y(∂∆)

is a maximally real manifold of class C 2,β contained in M ′ and containing
A′(∂∆). The explicit construction of R1 allows an easy determination of the
partial indices.
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Lemma 5.3. The partial indices of R1 with respect to A′(∂∆) are
2, 0, . . . , 0.

Proof. We begin by constructing N = m + n holomorphic vector fields
along A′(∂∆) which generate (over R) the tangent bundle of R1. We denote
ζ = eiθ ∈ ∂∆ and define first G1(ζ) := [∂A′(eiθ)/∂θ] as the push-forward
of ∂/∂θ. Next, we put{

Gk(ζ) := [∂A′u∗,0(ζ)/∂uk]|u∗=0, for k = 2, . . . ,m,

Gk(ζ) := [∂A′0,y(ζ)/∂yk−m]|y=0, for k = m+ 1, . . . , N.

For k = 2, . . . , N , Gk is the uniform limit of pointwise holomorphic dif-
ference quotients and therefore holomorphic itself. As A′u∗,y depends C 2,β-
smoothly on parameters, we obtain Gk ∈ C 1,β(∆,CN), k = 2, . . . , N .

By [G1, Proposition 10.2], the maximal number of linearly independent
holomorphically extendable sections equals the number of non-negative par-
tial indices. Hence we deduce that all κj are non-negative.

Furthermore it is easy to see that the total index κ, which is twice the
winding number of detG|∂∆ around 0, equals 2. Indeed, A′ is almost par-
allel to the w1 axis, the direction in which G1 has winding number 1, and
the vector fields G2, . . . , GN have a topologically trivial behaviour in the
remaining directions. This heuristic argument can be made precise in the
following way. One easily can smoothly deform the complex coordinates
zj, wk to (non-holomorphic coordinates) in which the matrix G(ζ) gets di-
agonal with diagonal entries ζ, 1, . . . , 1. In the deformed coordinates the
winding number of the determinant is obviously 1, and this remains un-
changed when deforming back to the standard coordinates.

In summary the only possible constellations for the partial indices are
2, 0, . . . , 0 and 1, 1, 0, . . . , 0. But [G1, Proposition 10.1] excludes the second
case as ∂A′/∂θ does not vanish on ∆, which completes the proof. ¤

Step 2: Gluing R1 with a family of maximally real planes. Our goal
is to twist the manifold R1 many times around the boundary of A′ in the
small neighborhood Ω1 of A′(−1) in order to increase its partial indices.
Since it is rather easy to increase partial indices when a disc is attached to a
family of linear maximally real subspaces of CN (using Lemma 6.3 below,
see the reasonings just after the proof), we aim to glue R1 with its family
of tangent planes TA′(ζ)R1 for ζ near −1. Before proceeding, we have to
take care of a regularity question: the family ζ 7→ TA′(ζ)R1 being only of
class C 1,β , some preliminary regularizations are necessary. We remind that
by Lemma 4.2 (b), the disc A′ is real analytic near ζ = −1. This choice of
smoothness is very adapted to our purpose. Indeed, using cut-off functions
and the Weierstrass approximation theorem, we can construct a C 2,β-smooth
maximally real manifold R2 to which A′ is still attached and which is also
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real analytic in a neighborhood of {A′(ζ) : |ζ + 1| < ε/2}. Of course,
this can be done with ||R2 − R1||C 2,β being arbitrarily small, so the partial
indices of A′ with respect to R2 are still equal to (2, 0, . . . , 0).

Using real analyticity, we can now glue R2 with its family of maximally
real tangent planes TA′(ζ)R2 for |ζ + 1| < ε/4 in a smooth way as follows.
After localization near A′(−1) using a cut-off function, the gluing problem
is reduced to the following statement.

Lemma 5.3. Let R be small real analytic maximally real submanifold of
CN , let p ∈ R and let γ(s), s ∈ (−ε, ε), be a real analytic curve inR passing
through p. Then there exist smooth functions rj(s, z) ∈ C∞((−ε, ε)×B,R),
for j = 1, . . . , N , where B is a small open ball centered at the origin in CN ,
such that

(1) rj(s, γ(s)) ≡ 0.
(2) rj(s, z) ≡ rj(z) ≡ the defining functions of R for |s| ≥ ε/2.
(3) For all s with |s| ≤ ε/4, the set {z ∈ CN : rj(s, z) = 0, j =

1, . . . , N} coincides with the tangent space of R at γ(s).

Proof. Choosing coordinates (z1, . . . , zN) vanishing at p, we can asssume
that R is given by rj(z) := yj − ϕj(x) = 0 with ϕj(0) = 0 and dϕj(0) = 0,
and that γj(s) = xj(s) + iyj(s), where yj(s) := ϕj(x(s)). Let χ(s) be a
C∞-smooth cut-off function satisfying χ(s) ≡ 0 for |s| ≤ ε/4 and χ(s) ≡ 1
for |s| ≥ ε/2. We choose for rj(s, z) the following functions:

yj−yj(s)−
N∑

k=1

∂ϕj
∂xk

(x(s)) [xk−xk(s)]−χ(s)


 ∑

K∈NN ,|K|≥2

∂Kx ϕj(x(s))

K !
[x− x(s)]K


 .

Clearly, the rj are C∞-smooth and (3) holds. As ϕj is real analytic in a
neighborhood of γ, property (2) holds by Taylor’s formula. ¤

In summary, we have shown that we can attach A′ to some C 2,β-smooth
family (R3(ζ))ζ∈∂∆ of maximally real submanifolds such that R3(ζ) coin-
cides with R2 for |ζ + 1| ≥ ε/2 and such that R3(ζ) coincides with the
maximally real plane TA′(ζ)R2, for |ζ+1| ≤ ε/4. Clearly, the partial indices
of A′ with respect to the family R3(ζ) are still equal to (2, 0, . . . , 0).

Step 3: Increasing partial indices. This step is the crucial one in our ar-
gumentation. Recall that the partial indices are defined in terms of vector
fields along A′(∂∆). In the previous section we have described how to se-
lect distinguished vector fieldsXk as the columns of Θ

√
Λ, where Θ,Λ were

associated to a decomposition of G3(ζ)G3(ζ)
−1

, where the columns of the
matrix G3(ζ) span TA′(ζ)R3(ζ). Our method is to modify the vector fields



490

Xk by replacing them by products gkXk with the boundary values of cer-
tain holomorphic functions gk. It turns out that the indices can be read from
properties of the gk. Here is how the gk are constructed.

For convenience in the following lemma, we shall represent ∂∆ by the
real closed interval [−π, π] where π is identified with −π.

Lemma 5.3. For every small ε > 0, every integer ` ∈ N, there exists a
holomorphic function h ∈ O(∆) ∩ C∞(∆) such that

(1) h(ζ) 6= 0 for all ζ ∈ ∆.
(2) The function g(ζ) := ζ` h(ζ) is real-valued over {eiθ : |θ| ≤ π −

ε/8}.
It follows that the winding number of g|∂∆ around 0 ∈ ∆ is equal to `.

Proof. Let v(ζ) be an arbitrary C∞-smooth 2π-periodic extension to R of
the linear function −`θ defined on [−π + ε/8, π − ε/8]. Let T0 be the har-
monic conjugate operator satisfying (T0 u)(0) = 0 for every u ∈ L2(∂∆).
Since T0 is a bounded operator of the C k,α spaces of norm equal to 1, the
function T0 v is C∞-smooth over ∂∆. It suffices to set h := exp(−T0 v+iv).
Indeed,

ζ` h(ζ) = ei`θ e−T0 v+iv

is real for θ ∈ [−π + ε/8, π − ε/8], as desired. ¤
Let L(ζ) denote the tangent space TA′(ζ)R3(ζ) and let Xk(ζ) be C 1,β-

smooth vector fields as the columns of the matrix Θ
√

Λ constructed in Sec-
tion 5 above. We remind that the Xk(ζ) span L(ζ). Further, as the partial
indices of A′(ζ) with respect to R3(ζ) are (2, 0, . . . , 0), we have

Θ(ζ)
√

Λ(ζ) = (ζ Θ1(ζ),Θ2(ζ), . . . ,ΘN(ζ)).

Now, let us choose an arbitrary collection of nonnegative integers
`1, `2, . . . , `N and associated functions g`1(ζ) = ζ`1 h`1(ζ), . . . ,
g`N (ζ) = ζ`N h`N (ζ) satisfying (1) and (2) of Lemma 6.3 above.
With these functions, we define a new family of maximally real manifolds
to which A′(ζ) is still attached as follows:

(a) For |θ| ≤ π − ε/8, R4(ζ) ≡ R3(ζ).
(b) For |θ| ≥ π − ε/8, namely for ζ close to −1,

R4(ζ) := spanR (ζ g`1(ζ) Θ1(ζ), g`2(ζ) Θ2(ζ), . . . , g`N (ζ) ΘN(ζ)).

It is important to notice that this definition yields a true C 2,β-smooth fam-
ily of maximally real manifolds, thanks to the fact that the family R3(ζ) is
already a family of real linear spaces for |ζ + 1| ≤ ε/4, by construction.
Interestingly, the partial indices have increased:

Lemma 5.3. The partial indices of R4(ζ) along ∂A are equal to 2 +
2`1, 2`2, . . . , 2`N .
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Proof. By construction, since the functions g`j(ζ) are real-valued over {eiθ :
|θ| ≤ π − ε/8}, the tangent space TA′(ζ)R4(ζ) is spanned for all ζ ∈ ∂∆ by
the N vectors

ζ g`1(ζ) Θ1(ζ), g`2(ζ) Θ2(ζ), . . . , g`N (ζ) ΘN(ζ),

which form together a N × N matrix which we will denote by G4(ζ). By
Section 5, we can read directly from the matrix identity

G4(ζ)G4(ζ)
−1

= (h`1(ζ) Θ1(ζ), . . . , h`N (ζ) ΘN(ζ))×
× diag (ζ2+2`1 , ζ2`2 , . . . , ζ2`N ) × (h`1(ζ) Θ1(ζ), . . . , h`N (ζ) ΘN(ζ))

−1

that the partial indices of A′(ζ) with respect to R4(ζ) are equal to (2 +
2`1, 2`2, . . . , 2`N), as stated. ¤

Step 4: Construction of the family A′t′ . Now, as we need not very large
partial indices, we choose `1 = 1, `2 = 2, . . . , `N = 2, so the partial indices
are simply (4, 4, . . . , 4). Moreover, the matrix Y (ζ) is equal to the diagonal
matrix diag (ζ2, ζ2, . . . , ζ2). Concerning the 5N parameters (tj1, t

j
2, t

j
3, t

j
4, t

j
5)

appearing in equation (5.2) above, we even choose tj1 = tj2 = tj5 = 0. Then
by the result of Globevnik, we thus obtain a family of discs depending on
the 2N -dimensional real parameter t := (tj3 + i tj4)1≤j≤N . The functions hj
and uj defined in Section 5 are thus equal to

{
hj(t, ζ) := (tj3 + i tj4) ζ + (tj3 − i tj4) ζ

3,

uj(t, ζ) := (tj3 + i tj4) ζ̄ + (tj3 − i tj4) ζ.

It remains to explain how we can extract the desired family A′t′ by reducing
this (2m + 2n)-dimensional parameter space to some of dimension (2m +
2n−1) such that property (4) of Main Lemma 4.3 is satisfied. Let us denote
by ht and ut the maps ζ 7→ h(t, ζ) and ζ 7→ u(t, ζ). By equation (5.1), we
have

G(ut, φ(ut))(ζ) = Θ(ζ)
N∑
j=1

{uj(t, ζ) + i [φ(ut)j(ζ) + i T0 φ(ut)j(ζ)]} Yj(ζ).

and by Section 5, the C 1,β-smooth discs

A′t(ζ) := A′(ζ) +G(ut, φ(ut))(ζ)

are attached to R4(ζ). By [G1, p. 299 top], the differential of φ at 0 is null:
Duφ(0) = 0. It follows that

∂

∂t

[
Θ(ζ)

N∑
j=1

i [φ(ut)j(ζ) + i T0 φ(ut)j(ζ)] Yj(ζ)

]

t=0

≡ 0.
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So on the one hand, we can compute for j = 1, . . . , N

(6.1)





[
∂A′t
∂tj3

]

t=0

= ρeiθ Θ(0) (0, . . . , 0, 1, 0, . . . , 0) + O(ρ2),

[
∂A′t
∂tj4

]

t=0

= ρeiθ Θ(0) (0, . . . , 0, i, 0, . . . , 0) + O(ρ2),

where O(ρ2) denotes a holomorphic disc in O(∆,CN) ∩ C 0,β(∆,CN) van-
ishing up to order one at 0. For ρ > 0 small enough and θ arbitrary, it follows
that these 2m+ 2n vectors span Cm+n. On the other hand, we compute

(6.2)
[
∂A′t
∂θ

]

t=0

= ρeiθ Θ(0) (ia1, . . . , iaN) + O(ρ2),

where the constants aj are defined by A′(ζ) = (a1ζ, . . . , aNζ) + O(ζ2) and
do not all vanish (since A′ is an embedding).

Let us choose a (2m + 2n − 1)-dimensional real plane H which is sup-
plementary to RΘ(0) (ia1, . . . , iaN) in Cm+n. Using (6.1), we can choose
a (2m + 2n − 1)-dimensional real linear subspace T ′ ⊂ R2m+2n and ρε
small enough such that, after restricting the family A′t with t′ ∈ T ′, the
(2m+ 2n− 1) vectors [∂A′t′/∂t

′
j]t′=0, j = 1, . . . , 2m+ 2n− 1, are linearly

independent with the vector (6.2) for all ζ ∈ ∆ of the form ζ = ρεe
iθ. It

follows that the mapping

(eiθ, t′) 7→ A′t′(ρεe
iθ)

is a local embedding of the circle ∂∆ times a small neighborhood of the
origin in R2m+2n−1, from which we see that the foliation property (4) of
Main Lemma 4.3 holds.

This completes the proof of Step 4, the proof of Main Lemma 4.3, the
proof of Theorem 3.1 and the proof of Theorem 1.1.
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