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Chapter H

Invariant Families of Infinitesimal Transformations

A Priori Linear Dependence Relations
We study in this chapter the general linear combination:

er X1+ +eg Xy
of ¢ > 1 given arbitrary local infinitesimal transformations:

- 0
X = Z Eki() Bz, (k=1--q)
i1

having analytic coefficients;; () and which we assume to be independent
of each other. When one introduces new variables- ¢;(zy,...,z,) in
place of ther;, every transformatiorX,, of our family receives another form,
but it may sometimes happen under certain circumstancethinaomplete
family in its wholeness remains unchanged, namely thaethes functions

e, = ei(e1, ..., e,) suchthat:

gp*(el X+ + equ) =ej(e) X1 +---+ e (e) X,
where, as usual, th&] = >°" | &.(2')z2 denote the same vector fields,

viewed in the target spacg, . . ., z/,. Without loss of generality because we
work locally, it is assumed implicitly that the diffeomorigm ¢ is close to
the identity map.

Definition. The familye; X; +- - -+¢, X, of infinitesimal transformations is
said toremain invariant after the introduction of the new variahle= ¢(x)

if there are functions;, = ¢} (ey, . .., ¢,) depending orp such that:

(1) cp*(ele—i----—i-equ) :e'l(e)X{+---+ef](e)X;;

alternately, one says that the famdgmitsthe transformation which is rep-
resented by the concerned change of variables.

Proposition. Then the functions, (e) in question necessarily are linear:

q

/

€r = E Pkj * €5 (k=1--q),
j=1

1<5<q

with the constant matriXpy,, ) L<h<q

being invertible:e, = 37, pi; - €.
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PROOF Indeed, through the change of coordinatés= ¢(z), if we
write that the vector fields(, are transferred to:

@*(Xk) = Z Xk(xi) % = Z TIki(I&, c ,x;) % (k=1--q),
i=1 ? i=1 %

with their coefficients),; = nx;(2’) being expressed in terms of the target
coordinates, and if we substitute the resulting expregsitan(1), we get the
following linear relations:

1) Z ey, - &ri(2') = Z er - Mi(2') (i=1-n).
k=1 k=1

The idea is to substitute here fof exactly the same numberof different
systems of fixed values:

argl),...,xg),xf),...,xﬁf), ...... ,a:@,...,xﬁlq)
that are mutually in general position and considered wilcbasidered as
constant. In fact, according to the proposition on?@, or equivalently,
according to the assertion formulated just below the longimbcated on
p. ??, the linear independence df;, ..., X, insures that for most such
points, the long; x gn matrix in question:

L o DY S R R
11 1n 11 In 11 1In
1 1 2 2

e gl €D ol £ .l

has rank equal tg, where we have set?) := &, (z)). Consequently,
while considering the values &f;(z*)) and of; () asconstant the
linear system above is solvable with respect to the unknaosrsnd we
obtain:

q

/

€ = E Pkj " €5 (k=1--q),
j=1

for some constantg,;. In addition, we claim that the determinant of the

. 1<G<q « . . .
matrix (pkj)lgigz is in fact nonzero. Indeed, the linear independence

of Xi,..., X, being obviously equivalent to the linear independence of
0. (X1), ..., 9«(X,), the other corresponding long matrix:
1 1 2 2
my o mi e ol e ne o
1 1 2 2
77(51) . 77(51) A 775{) sl
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then also has rank equal gand we therefore can also solve symmetrically:

q
= D€ (k=1-q),
j=1
with coefficientsp,; which necessarily coincide with the elements of the
inverse matrix. OJ

Families Invariant through One-Term Subgroups

For an important application to the study of the adjoint grauChap. L,
we now want to study families, X; + - - - + e, X, that are invariant when
the transition frome to a new variable’ is performed by an arbitrary trans-
formation of some one-term group = exp(tY')(x), whereY  is any (local,
analytic) vector field. Here, we can just translate the pregeon of R5,
pp. 249-253, since it does not demand any adaptation.

Under which conditions does the fami}y e, X, f remain invarian
through every transformatiorf = f;(z1, ..., x,,t) of the one-term grou
Y f, that is to say, under which conditions does a relation:

hold for all systems of values, .. .e,, t, in which thee;, aside from thg
e;, yet only depend upaf?

174

When, in order to introduce new variablesin f, we apply the gen
eral transformation:

ri=x;+t- Y@+ (i=1-n)
of the one-term groupy f, we obtain according to Chap. 8, p. 141, for-
mula (5) here: lemma on p. ?7]:
Xif =X f+t(XY' =YX f)+;
hence also inversely:
(3) Xif=Xpf +t[Y, Xi] +---,

which is convenient for what follows.

Now, if every infinitesimal transformatioX . f +¢[Y, X;] +- - - shall
belong to the familye, X, f + - - - + ¢,X, f, and in fact so for every valye
of ¢, then obviously every infinitesimal transformatifyi, X, | must alsq
be contained in this family. As a result, certain necessandions for
the invariance of our family would be found, conditions whamount tg




4 H. Invariant Families of Infinitesimal Transformations

the fact that; relations of the form:
4) Y, X,] = Z g X, f (k=1-q)

should hold, in which th@kj denote absolute constants.
If the family of the infinitesimal transformations:
61'X1f+~'~+6q~qu
is constituted so that for every, a relation of the form (4) holds tru

Y f. By this fixing of terminology, we can state as follows theulegust
obtained:

If the family of the infinitesimal transformations:
er- Xaf+-4eg - Xof
admits all transformations of the one-term grouy, then it also admit
the infinitesimal transformatiol f.

But the converse too holds true, as we will now show.

We want to suppose that the family of the transformati®hs;, X, f
admits the infinitesimal transformatioYi f, hence that relations of tk
form (4) hold true. If now the familyy _ e, X, f shall simultaneously ac

possible to determine;, ..., e, as functions ok, ..., ¢, in such a way
that the equation:
q q
D ek Xif = en Xif
k=1 k=1

|s |dent|cally satisfied, as soon as one introduces thehlariain place of
"inthe X} f. Consequently, ifX; f takes the form:

/ Z” 9
ka: Qﬂ-(xl,...,xn,t) —a:L’
i=1 v

expression:

Zek X.f = ZZek Cri(x1, .. Ty, t )gg

mit all finite transformations of the one-term grotpf, then it must b¢

D

-

then we want to say thate family admits the infinitesimal transformatijon

°2)

174

after the introduction of the, then thee), must be determined so that the

k=1 k=1 =1
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is free oft, hence so that the differential quotient:

0 of 9
ot Z ek Xif = Z f Zegcgki(l’l,-..,xn,t)

VanisheS|[1deed, differentiation with respect to ¢ of e; X; + - -- + e, X, yields

0= 2 Y7 | ex Xi); but at the same time, themust still also satisfy the

initial condition: e), = e, for ¢t = 0.

In order to be able to show that under the assumptions made
really are functionsg’ of the required constitution, we must at first calcu
the differential quotient'

/ OCki( xl,.. yTnyt) Of

for this, we shall take an |nd|rect route.
Above, we saw thafX; f can be expressed in the following way
terms ofzq, ..., z, andt:

Xif=Xpf +t[Y, Xp] +---,
when the independent variablesentering theX; are determined by th

equationsr, = f;(x1,...,z,,t) of the one-term group”f. So the de}

sired differential quotient obtains by differentiation tbie infinite powe
series int lying in the right-hand side, or differently enunciatedisitthe
coefficient ofr; in the expansion of the expression:

Xif + (¢4 7)Y, X+ Zs;ﬂ ) S = X

with respect to powers af. Here, the:c” mean the quantities:
o = filxr, .. 1, t+T).

However, the expansion coefficiefiintwickelungscoefficient] dis-
cussed just above appears at first as an infinite series ofrpaf/&é but
there is no difficulty to find a finite closed expression for it.

As we know, the transition from the variablesto the variable
x, = fi(xy,...,z,,t) occurs through a transformation of the one-tg
groupY f, and to be precise, through a transformation with the patea
t. One comes from the to thez! = f;(xy,...,x,, t+7) through a trang
formation ofthe samegroup, namely through the transformation with
parameter + 7. But this transformation can be substituted for the sud
sion of two transformations, of which the first possessegptrameter,

the
ate

n

e

vJ

eI'’m

the
ces-

and the second the parameterconsequently, the transition from théto
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thez” is likewise got through a transformation of the one-termugry f,
namely through the transformation whose paramter is

o = filx, .. a2 7).
From this, we conclude that the series expansioX pf with respec
to powers ofr reads:

X f=Xif+7[Y, X;] +
As a result, we have found a finite closed expression for thpaesior

coefficient mentioned a short while ago; the sought diffea¢muotient
B(X ! is hence:

0

ot
Naturally, this formula holds generally, whatever also ocaa choos
as the two infinitesimal transformations, f andY f. However, in ou
specific caseX, f,..., X, f, Y f are not absolutely arbitrary, but they gre
linked together through the relations (4). So under theraggions madg
above, we receive:

X f) < )
(6) T = ; e - X, f (k=1--q).

(5) X, f=Y, X, =YX, f-X.Y'[.

137

174

Now, if we form the differential quotient of | e; X, f with respect tq
t, we obtain:

;2 o XS = Zdekx,;ﬂzezzgky-x;f
_Z{dek+zgyke}ka

Obviously, this expression vanishes only whendhsatisfy the differen
tial equations:

de,
) S Z G, (k=1--0).

But from this thee), can be determlned as functionstoh such a way tha
for t = 0, eache), converts into the correspondirg; in addition, thee’
are linear homogeneous functions of the

If one puts the value in question of thein the expression | e) X f
and then returns from the’ to the initial variablesz, ..., z,, then
> ¢ X; will be independent of, that is to say, it will be equal to

—
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> e, Xif. Consequently, the family of the infinitesimal transforioas
> e, X f effectively remains invariant by the change of variablegues-
tion.

As a result, we can state the following theorem:

Theorem 43.*) A family of cc?~! infinitesimal transformations; -
Xy f + -+ e, - X, f remains invariant, through the introduction of ngw
variablesz’ which are defined by the equations of a one-term group:

ri=x+t Yo, +--- (i=1-n),
if and only if betweeny” f and theX, f there areq relations of the form:

4) Y, X;] Z g - X f (k=1-0),

in which the g;,, denote constants. If these conditions are fulfilled,

then by the concerned change of variablgs,e, X, f receives the form
> e, Xif, whereej, ... e determine themselves from the differential
equations:

de,
k+zgyke —0 Gete,

while taking account of the initial conditions;, = e, for ¢t = 0.

*) Lie, Archiv for Mathematik og Naturvidenskab Vol. 3, Chktiania 1878.

If one performs the integration of which the preceding tleaglr
speaks, hence determindgs. . ., ¢/. from the differential equations:

de!
& _ zgyke -

taking as a basis the initial condltlons{ = ¢, for t = 0, then one obtains
equations of the form:

q
623 = Z dkj(t) C € (k=1--q).
j=1

It is clear that these equations represent the finite tramsfoons of a cert
tain one-term group, namely the one which is engendereddinfimites-

imal transformation:
q q
S A e}
k=1 v=1

(cf. Chap. 3, pages 47 and 4&;{e: Chap. C]).




Chapter L
The Adjoint Group

Fundamental Differential Equations
for the Inverse Transformations
According to a fundamental theorem stated or?f.a general-term
continuous transformation group) = fi(z; a4, ..., a,) satisfies partial dif-
ferential equationsyl = 77, y;(a)-&i(f1, .- ., fn) that are used every-
where in the basic Lie theory. For the study of the adjoinugrove must
also know how to write precisely the fundamental differahgiquations that
are satisfied by the group ofversetransformations:

= fi(a": i(a) (=10,
and this is easy. Following an already known path, we museddegin by
differentiating these equations with respect to the patarse;:

(9% B r afz ,o 8|l .
day, ; da (' i(a)) Dar (a) (i=1-m; k=1-7).

Naturally, we replace here tlgeg by their valueszgz1 Yy - &i given by the
fundamental differential equations, and we obtain a dosbie:

ox; oy
dar Z Z WJ 5]2 ( i(a )) day, (a)

ll]l

Z ﬂkﬂ gjl (i=1-mn; k=1--r),

which we contract to a single sum by simply introducing thiéofeing new
r x r auxiliary matrix of parameter functions:
d . ai,
Urj(a) = ; W (i(a)) 8—%(01) (kyj =17,
whose precise expression will not matter anymore. It nowaiesito check
that this matrix(ﬁkj(a))ii: is invertible for alla in a neighborhood of the
identity element = (eq, ..., e,). We in fact claim that:

Uijle) = o7,
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which will clearly assure the invertibility in question. Atst, we remember
from Theorem 3 on p??thaty;(e) = —47. Thus secondly, it remains now
only to check tha%(e) = —4t, arather known fact.

To check this, we differentiate with respectdg the trivial identities:
e; = mj(a, i(a)),j=1,...,r, getting:

8mj 8m 8Il '
0 aak (6, 6) + Z abl ( )a—ak(e) (j=1--7).

=1

From another side, by differentiating the two familiesrodentitiesa; =
m;(a,e) andb; = mj(e, b) with respect taz, and with respect td;, we
immediately get two expressions:

am 5 (9mj o
8ak( e) =6, and P, (e,e) =9

which, when inserted just above, yield the announgéde) = —dj.. Some-

times, we will writeg(z; a) instead off (z; i(a)). As a result:

Lemma. The finite continuous transformation group = f;(x;a) and its

inverse transformations; = g;(x;a) := fi(z; i(a)) both satisfy funda-
mental partial differential equations of the form:

Zl/)kg Eﬂ 2 (w; )) (i=1-n; k=1-7),
(1) o

01’1
8ak 7' Z D (a fﬂ )) (i=1-m; k=1-7),

\

where ) and ¢ are some two" x r matrices of analytic functions with
—r;(e) = VUi(e) = 67, and where the function$;; appearing inboth
systems of equations:

fji(iﬂ) = o) j(w; e) (i=1-n; j=1-7)

are, up to an overall minus sign, just the coefficients ofithefinitesimal
transformations

obtained by differentiating the finite equations with regjge the parameters
at the identity element.
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Transfer of Infinitesimal Transformations by the Group
We now differentiate with respect t@, the identically satisfied equa-
tions:
2 = fi(9(2'; a); a) (i=1--n),
which just say that an arbitrary transformation of the gréoifpwed by its
inverse regives the identity transformation, and we imratdy get:

(i=1-n; k=1-7).

8fz agz/ afz
0= Z ox, Oay &zk

Thanks to the above two systems of partial differential équa, we may
then replac%ﬂ by its value from(1), and alsong; by its value from(1);:

=3 {2 i uto)} 3

(i=1-n; k=1--1).

) a) §i(f)

In order to bring these equations to a more symmetric forgiong [25]

pp. 44-45, we fixc and we multiply, fori = 1 to n, thei-th equation
by %, we apply the summatio_; ,, we use the fact that, through the
diffeomorphismz — f,(x) = 2/, the coordinate vector fields transform as

= gg{i 2., which just means in contemporary notation that:

(fa)*(%) = Z?:l g;::’ Bi:c; (v=1-n),

and we obtain, thanks to this observation, completely syimonequations:

0= Z Urj(a) Z & () a%*Z Vs (a) Z E(2) a% k=1,

in which the push-forward$f, ). (;=) are now implicitly understood. It
is easy to see that exactly the same equations, but with thesdp push-
forwards (g, ) ( ) are obtained by subjecting to similar calculations the

reverse, |dent|cally satisfied equations:= gi(f(L a); ) Consequently,
we have obtained two families of equations:

)
0= Z ﬁkg Z €jV 83: » + Z ¢k] Z g]u —7
v=1 V lz—gq(x’) .

0=2> dij(a) Z §iv(®) g t Z Vij(@ Z Sl
v=1 v=1 v 7=1

(k=1-7)

Z/

xr—>fa( )
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in which we represent push-forwards of vector fields by thalsgl of vari-
able replacement — ¢,(z’) in the first line, and similarly in the second
line, by’ — f.(z).

Synthetic, geometric counterpart of the computations.To formulate the
adequate interpretation, we mustintroduce the two systémfinitesimal
transformationsi( < k£ < r):

X = Z Eri() a% and Z Eri( 8 ,>
i=1

where the second ones are defined tekactly the same vector fields the
first ones, though considered on tHespace. This target, auxiliary space
has in fact to be considered to be #@mespace as the-space, because the
considered transformation group acts on a single individpace. So we
can also consider thaf, coincides with the value ok, atz’ and we shall
sometimes switch to another notation:

X];EXk "

Letting nowJ andd be the inverse matrices ofand of¢, namely:
Z %k a) Yrj(a) = 5{; Z 5lk(a) Uyj(a) = 5[7

we can multiply the first (resp. the second) line of (3);5)((@) (resp. by
Vix(a)) and then make summation over= 1, ..., r in order to get resolved
equations:

0= Z Z Wk; a) Oj(a) X; + X| (k=1-7),

k:l]l

O_Xz—l-zzﬂlk a) Yrja (k=1--1),

k=1 j=1

in which we have suppressed the push-forward symbols. Weezutly
rewrite such equations under the contracted form:

Xp =Y pirla) X] and Xip =Y o) X,
= =

(k=1-1),

by introducing some two appropriate auxiliaryx r matricesp;i(a) :=

— 1y Una)vii(a) andpji(a) == — Y"1, vu(a) vy;(a) of analytic func-
tions (whose precise expression does not matter here) veldpkend only
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upona and which, naturally, are inverses of each other. A diagiamtrat-
ing what we have gained at that point is welcome and intditikielpful.

K™ ((171,...,3377.)

Xi fa(Xp) =
: T
)-(T E ga(x

Fig. : Transfer of infinitesimal transformations by the group

> pik(a) X;

Proposition. If, in each one of the basic infinitesimal transformations of
the finite continuous transformation group= f(z; a) = f,(z) having the
inverse transformations = g,(z’), namely if in the vector fields

Xp =Y &ulw) 0
i=1

one introducesthe new variablest’ = f,(z), that is to say: replaces
r by go(2') and 7= by >/, %=(z; a) ;Z-, then one necessarily ob-
tains a linear comblnatlon of the same infinitesimal tramsfations
X =>" &i(e)) 8% at the pointz’ with coefficients depending only upon

the parameters,, ..., a,:

(fa)*(Xk‘x) - (ga)*(Xk‘ga(gE,)) = Z pu(ar, ... a.)-X; v
=1

(k=1--7), gkz(x) = _gcj;z ([E, 6)7

(k=1-7).

Of course, through the inverse change of varialile- f,(x), the infinites-
imal transformationsX. are subjected to similar linear substitutions:

) (fa) Z plk (k=1--7).

Coincidence with the Contemporary Presentation

Afterwards, thanks to the linearity of the tangent map, wdude that
the general transformation of our group:

X=e Xi+ - +e X,
by means of somearbitrary constants

(9a) (X7,

coordinatized in the bas{s},)

1<k<r
el,...,e. € K, then transforms as:
(ga)*<61X1+ _'_erX ’g () > Zek’zplk

k=1
=: ¢} (e; a) X1 ot

+ (e a) X,
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and hence we obtain thtte change of variableg’ = f,(x) performed by
a general transformation of the group then acts linearly ba space~ K"
of its infinitesimal transformations

62:(‘9; CL) = Z pkl(a) - (k=1--7),
=1

by just multiplying the coordinates by the matrixo;(a).

In contemporary treatises, the action of the group on ititesimal
transformations coincides in substance with what Lie hadsdd in the
1870’s. Indeed, to bridge the Babelian-like gap, we conside general
infinitesimal transformationX’ o = € Xi+--+eX, v of the group as
being based at the poimnt, and we compute the adjoint actionl f,, (X x)
of f, on X| ; this expression is nowadays defined by just differentgagin
t = 0 the compositionf, o exp(tX) o f, ! which represents the action of
the interior automorphism associatedftpon the one-parameter subgroup
exp(tX)(-) generated by:

Ad fu(X|,) = %(fa oexp(tX)(-) o f, 1(95/)) =0
= (fa)*% <exp(tX) (fa_l(xl))) 0
= (fa)* (X}fa_l(gc/))
= (92)" (X, (21
= (9a)" <61 Xttt X’“}gm/))

=ei(e; a) Xu|, + - +e(e a) X,

'’

We thus recoveexactlythe linear actione), = e (e; ai,...,a,) boxed

above.
X{ga(w’)
]
ga(a')

Fig. : Differentiating the action of an interior automorphi sm

Infinitesimal Generators of the Adjoint Group

After these preliminaries devoted to survey, to modernize @ clarify
selected topics of the first chapters @B], we can now just translate the



14 Volume I, Chapter 16, § 76.

very clear presentation of Lie’s theory of the adjoint gromptten out by
Engel and Lie.

Chapter 16 (Vol. I).
The adjoint group.

Let 2 = fi(xy,..., 2, a1,...,a,) be anr-term group with ther
infinitesimal transformations:

N~ Of
Xif = ; i) 57 (=101,

If one introduces the’ as new variables in the expressiph e, X, f, then
as it has been already shown in Chap. 4, Prop. 4, preBantituted just
above], one gets for all values of thg, an equation of the form:

Here, thee) are certain linear, homogeneous functions ofd¢heith coef-
ficients that depend upan, . . ., a,:

(1) 6222 prjlan, ... ax) - ej.
j=1

If one again introduces ih | e) X f the new variables! = f;(x, b),
then one receives:

T

T
S e Xif =Y el X/f,
k=1 k=1

where:

(1) eZ:Zpkj(bl,...,br)~e;.
=1

But now because the equatiaris= f;(x, a) represent a group, the' are
consequently linked with the through relations of the form! = f;(x, ¢)
in which thec depend only upon andb:

Ck = gpk(alw"a&ﬁ bla"'7b1“)'

Hence one passes directly from théo thez” so one finds:

d e Xif =) el X[f,
k=1 k=1
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and to be precise, one has:

@) = prilera) ey =Y pri(e1(ad),. .. pn(a,b)) - e
j=1 j=1

From this, it can be deduced that the totality of all transfationg
. = > prj(a) - e; forms a group. Indeed, by combination of the edua-
tions (1) and (1) it comes out:
ep = Z Prj(biy .o be) - plar, ... a.) - ey,
J,v=L..r
what must naturally coincide with the equations (1”) andantf for all
values of the:, thea and theb. Consequently, there are theidentities:

o (e1(ab), ... or(a, b)) Z piv(ar, ... a.) - pri(by, ... b)),

from which it results that the famlly of the transformatians= > p;(a)-
e, effectively forms a group.

To everyr-term groupz; = f;(z, a) therefore belongs a fully detg
mined linear homogeneous group:

=
1

j=1

which we want to call thadjoint groupy) [ ADJUNGIRTE GRUPPH of the
groupzx! = fi(x, a).

*) Lie, Archiv for Math., Vol. 1, Christiania 1876.

We considefor examplehe two-term groum = ax + b with the two
independent infinitesimal transformatlorgé x . We find:
df df df df df daf
61%—9—621’@:61GF+@2( _b)d/ 1d/_'_/2/d,’
whence we obtain for the adjoint group of the gratp= ax + b the

following equations:

e} = ae; — bey, ey = e,

which visibly really represent a group.

The adjoint group of the group’ = f;(z, a) contains, under t
form in which it has been found above, preciselgrbitrary parameters:
ai, ...,a,. Butforeveryindividual group’ = f;(z, a), a special researgh
is required to investigate whether the parameiers. ., a, are all essentidl
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in the adjoint group. Actually, we shall shortly see thatréharer-term
groups whose adjoint group does not contagssential parameters.
Besides, in all circumstances, one transformation comgseiadjoint
group of the group;, = f;(x, a), namely the identity transformation; fpr
if one sets foruy, ..., a, in the equations (1) the system of values which
produces the identity transformatiafi = z; in the groupz, = fi(z, a),
then one obtains the transformatiof}: = ey, ..., e. = e,, which hencg
is always present in the adjoint group. However, as we sleal] & car
happen that the adjoint group consists only of the identagsformation

! /
61—61,...76

.= €r.

§ 76.
In order to make accessible the study of the adjoint groupmust
above all determine its infinitesimal transformations. \@sily reach this
end by an application of the Theorem 43, Chap. 15, p. B&2:[p. 7] ; yet

we must in the process replace the equatigns- f;(z, a) of our group
by the equivalentanonical equations:

o

/ t - .
(2) xi:%—i‘I;)\k'Xkl’H-“' (i=1--n),
which represent theo” ! one-term subgroups of the group= f;(z, a).
According to Chap. 4, p. 6%¢re: p. ?7], the a;, are defined here as func-

tions of¢t and,, ..., A, by the simultaneous system:
da -
3) d—: = le A agilas, ... ar) T

By means of the equations (2), we have therefore to introtheaew
variablesr’, in ) e, X f and we must as a result obtain a relation offthe

form: . .
k=1 k=1

The infinitesimal transformation denoted bByf in Theorem 43 on p. 252
[here: p. 7] now writes: \; X1 f+-- -+ A\, X,.f; we therefore receive in olir
case:

Y (Xi(f) = Xe(Y() = D A [Xos X
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Consequently, we obtain the following differential eqoas fore, . . ., e:
@ Ty Y w0
v Cyks €. — s=1--1).
dt v=1 k=1 e ( )

We consider the integration of these differential equatias an exe
cutable operation, for it is known that it requires only tlesalution of an
algebraic equation of-th degree. So if we perform the integration on

basis of the initial conditione), = e, for ¢ = 0, we obtain- equations of

the form:
(5) 6;9 = Z ¢kj(>\1t, R )\ﬂf) T € (k=1--7),
j=1
which are equivalent to the equations (1), as soon asg,tlae expresse
as functions of\¢, ..., \,t in the latter.

It follows from this that the equations (5) represent theoadjgroup
too. But now we have derived the equations (5) in exactly émesway a
if we would have wanted to determine all finite transformasievhich arg
engendered by the infinitesimal transformations:

T 8](. T
; )\1/ hgnr Ckus €k 8—65 - ; )\l/ : Euf
(cf. p. 51 above).Consequently we conclude that the adjoint grgip
consists of the totality of all one-term groups of the foxy&; f + - - - +
A ELf.

If amongst the family of all infinitesimal transformations £, f +

the

d

\"&J

.-+ + \,. E,. f there are exactly transformations and not more which are

indepedent, say f,..., E,f, then all the finite transformations of t

e

one-term groups; E, f+-- -+ A, E, f are already contained in the totaljty

of all finite transformations of thec”~! groups\, E1f + -+ A\, E, f.
The totality of thesex” finite transformations forms the adjoint grot
e, = > pr;(a) - e;, which therefore contains only essential paramete
(Chap. 3, Theorem 8, p. 65dre: p. ?7)).

According to what precedes, it is to be supposed fhgt, ..., £, f
are linked together through relations of the form:

Ip:

P
[E;u EV} - Z Juvs * Ef;
s=1
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we can also confirm this by a computation. By a direct caloutatit
comes:

1.r o
EH(EV(f>) - EV (Eu(f)) - Z (Cﬂ,uk Ckvo — Cruk Ck,u,cr) €r %
ok, g

But between the;,, there exist the relations:

Z (Cwuk Ckvo + Cuvk Ckrno + Cunk Ck,u,o‘) - 07
k=1
which we have deduced from the Jacobi identity some time afj
Chap. 9, Theorem 27, p. 170efe: ??]). If we yet use for this thg
Conkk = —Cmpp @ANACpry = —cCrpo, WE can bring the right hand-side
our equation fof E,,, E,] to the form:

T l.r
3 3 af
Cuvk Crko € 57
k=1 o, T

o

whence it comes: :
[Eua Eu] = Z Cuvk * Ekf
k=1

Lastly, under the assumptions maoTe above, the right hardcsid be ex
pressed by means &f, f, ..., E, f alone, so that relations of the form:

p
(B BJ] =) Guus - Buf
s=1

really hold, in which they,,,; denote constants.
Before we continue, we want yet to recapitulate in cohesion

up till now.

matione; X, f + - - - + e, X,.f of ther-term groupz; = f;(z, a) the new
variablez’ in place ofz, then one obtains an expression of the form:

- Xif e XOf
in the process, the' are linked with the: through equations of the shap

D (
t
of

[

ZUSAMMENHANGE WIEDERHOLEN the results of the chapter obtained

Theorem 48. If one introduces in the general infinitesimal transfor-

T

/ —

e, = pri(ay, ... a.) - € (k=1-71),
j=1
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which represent a group in the variablesthe so-called adjoint group
the groupz = f;(z, a). This adjoint group contains the identity trar
formation and is engendered by certain infinitesimal transfations; if,
betweenX; f,..., X, f, there exist the Relations:

Xza Xk Z Ciks * X f (i, k=1--7),

and if one sets:

1..r
of
Euf = Z Ciuk €5 0—6143 (n=1-7),
k7j

then\; E1f + -+ -+ A\, E.f is the general infinitesimal transformation
the adjoint group and betweeh, f, ..., E, f, there are at the same tin
the Relations:

EZ, Ek, Z Ciks - B f (i, k=1-71).

If two r-term groustlf, ..., X, fandYif,... Y, f are constitute
in such a way that one has equally:

[Xi, Xi] = Z Ciks * Xs, Vi, Vi] = Z Ciks " Y f,

s=1 s=1
with the same constants,, in the two cases, then both groups obviot
have the same adjoint group. Later, we will see that in cert&icum-
stances, also certain groups which do not possess an eqnbénof terms
can nonetheless have the same adjoint group.

f
S_

of

j

sly

Excellent Infinitesimal Transformations

§ 77.

Now, by what can one recognize how many independent infiaites
transformation there are amondstf, ..., E,.f?
If £1f,..., E,.f are not all independent of each other, then there

least one infinitesimal transformation, ¢, £, f that does vanish ident-

cally. From the identity:

Zgu Z Cjuk‘eja =0
=

is at
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it comes out:
T
Z G Cjuk =0
pn=1

for all values ofj andk, and consequently the expression:

[Xj’ Z Gu - Xuf] = Z { Z Iu Cjuk} Xif
pn=1 k=1 pn=1

vanishes, that is to say: the infinitesimal transformatjong, X, f is
exchangeable with all the infinitesimal transformations¥;f. Con-
versely, if the groupX, f,..., X, f comprises an infinitesimal transfq
mation) | g, X, f which is exchangeable with all th€, f, then if follows
in the same way that the infinitesimal transformatpong,, £, f vanishes
identically.

In order to express this relationship in an as brief as péssiianner
we introduce the following naming:

An infinitesimal transformation) ¢, X, f of the r-term group
Xi1f,..., X, f is called andexcellentinfinitesimal transformation of th
group if it is exchangeable with all th&, f.

Incidentally, the excellent infinitesimal transformatsoof the grouf
X, f,..., X, f are also characterized by the fact that they keep their
through the introduction of the new variablés= f;(z, a), whichever val
ues the parameters, . .., a, can have. Indeed, if the infinitesimal traj
formation ) g, X, f is excellent, then according to Chap. 15, p. 3
there is a relation of the form:

> G Xuf =22 9 XS
In addition, the cited developments show that each finitesftamation of
the one-term group | ¢, X, f is exchangeable with every finite transf

form

59,

O

r-

mation of the groupX, f, ..., X..f.

> The cited developments. <



Chapter M

The Projective Group

Projective SpaceKP" and Homogeneous Coordinates

Let K = R or C. The n-dimensional (%-fold-extended”)projective
space(over K) is the setKP™ of (vector) lines in the vector spad€™*!.
One can se&P" as the quotient setK"*'\{0})/ ~ of nonzero vectors
e € K"\ {0} modulo the equivalence relatieh~ e if and only ife’ = e,
for some) € K (naturally, A # 0). Thus, we have a canonicplojection
map r : K*1\ {0} — KP" that associates to each vectahe vector line
Kuv it spans. Hereg(ue) = 7(e) for everye € K"\ {0} and ally # 0.

When considered as a basisif*!, any collection of(n + 1) linearly
independent vector&ey, e1, . .., e,) in K*™\{0} is enough to determine
uniquely every nonzero vecter= xgeg + x1e1 + - - - + x,e, of K*™! by its
coordinatesr, x4, . . ., x,, and hence also, to determine uniquely the pro-
jected pointP = w(e) = m(ue) of the projective spackP”.

Given a basige;, ey, . . ., e,) of K*™!, we can therefore associate to ev-
ery projective pointP = w(e) a certain(n + 1)-tuple of elements ok,
calledhomogeneous coordinate$ P (relative to the basis in question) and
denotedxg: x;:---:x,], namely the coordinates of any vector zqeq +
xrie1 + - -+ + xpe, With m(e) = P. By definition, thesén + 1)-tuples have
at least one nonzero component, and for reasons of cohetéeganust be
left unchanged by any homothety of nonzero ratia K:

[To:my - x| = [pxe:pay - - - pxy].

Thus, each representative of any equivalence class yirider|;.z] provides
homogeneous coordinates for a well defined p&irt KP". Notice that the
(n+1) pointsPy = 7(ey), P = 7(e1), ..., P, = 7(e,) have homogeneous
coordinategl:0:---: 0], [0:1:---:0],...,[0:0:---:1].

However while thinking intrinsically inside the projective spaceo
collection of (n + 1) projective points in general positioR,, P, ...,
P, can be sufficient to “coordinatizetiniquelyall points P of KP" by
means of some lifted basigg, ¢i, ..., ¢,), wheree; € 7 (P;); indeed,
any other such basig], e}, ..., e.) with P, = m(e!) is necessarily of the

rn
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form (e}, e, ... el) = (Noeo, A€, . .., A\ne,) With arbitrary \; # 0, but a
variable vector

! N !
e = Xpey + X161 + -+ Tpey = Toey + x€] + - -+ T e

which is a lift of a variable projective poinP = 7(e) has homogeneous
coordinates:

gyl = [wo/Noiwr /A1 i /A
# [xg:xyie - xy]

which are in generatlifferentin the alternative lifted basi&, 5, .. ., el)).
The introduction of ar{n + 2)-th point P, ,; € KP™ shall insure here that
Ao = A1 = --- = )\, = u must all be equal, whence homogeneous coordi-

nates will be uniquely defined b, P, ..., P,, P,,.1, @ we now explain.

Projective frames. A (n + 2)-tuple of pointsP,, Py, .. ., P,, P,,1 of KP"

is called aprojective framéf any (n + 1) among th€n + 2) lines7(F),
7N P), ..., 7 YPy,), 7 (P, 1) spanK""!. This is a precise sense of
being “mutually in general position”.

Lemma. For any projective framé, P, ..., P,, P11, there exis{n + 2)
vectorseg, eq, . . ., €,, €41 IN K" with the first(n + 1) oneseg, e1, . . ., e,
constituting a basis dk**!, and with:

€n+t1 =€ t+e1+---+e,
such that they provide a lift of the projective frame, namely
m(eg) =Ry, m(ey) =Py, - , mle,) =P,, and w(epy1) = Pui1.

Any other such lift(eg, e}, ..., e, el ,,) differs from(eg,eq,...,en, €n11)
just up to a homothetye, = pe;, i = 0,1,...,n,n + 1, for some nonzero
we K.

PROOF Lift the first (n + 1) points Py, Py,..., P, to any basis
(€, €1, ..., e,) Of K" namelyr(ey) = By, w(er) = Pi, ..., 7(en) = P,
and consider the coordinatés,, =1, . .., x,) in this basis of some nonzero
vectore, .1 = xgey + 161 + -+ + x,e, chosen in the liner (P, )
associated to the last point. Then all thénere must be nonzero; otherwise,
if say zp = 0, the(n + 1) linesKey, ..., Ke,, Ke,,; would be contained
in the hyperplandz, = 0}, in contradiction to general position. So we can
replace the basig, e1, . . ., e,) by just(zgeg, z1€1, . . ., z,€,), and we then
havee, ;1 = ey +e; +---+e,, as desired.

Next, supposing (¢;) = w(e;) forthe(n+1) firstindices: = 0, 1,. .., n,
there must, as already seen, exist nonzegra K such thak], = \;e;, but if
in addition, also for the last index, one requirgs;,, ) = 7(e,41), Namely
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e, = peny1, We deduce by inserting,,, = e + ¢} + --- + ¢, and
nt1 = €0+ €1+ -+ ey

A€o + A€+ -+ Apey, = €], = peni1 = peg + per + -+ pen,

whence\, = = \; = --- = \,, as claimed. O
Given a basigey, ¢1, . . ., e,) for K**!, the mapping which send8 =

m(xoeo + ey + -+ + xpe,) 0 [xo 1 1 -+ 1 x,] IS called aprojective

coordinate system

Proposition. Projective coordinate systems, : z; : - - - : z;,,] are in one-to-

one correspondence with projective frant@s Py, ..., P,, P,,.1, namely:

Py +—[1:0:---:0], P, «—[0:1:---:0],...,
ooy Py —[0:0:--21),  Ppyq — [1:1:e--21].
PROOF. O

Projective Frames

Any linear automorphism € GL,,,;(K) of K"™! sends lines oK"*! to
lines, so passing to the quotient mapdefinesP(u) : KP* — KP". The
maps obtained this way are callptbjective transformations
Lemma. Two linear automorphisms;,us € GL,.,(K) yield thesame
projective transformatiof?(u;) = P(uy) of KP™ if and only if there exists a
nonzero constant € K such thatuy(e) = Auy(e) for all e € K"+

PROOF. If uy = Auy, obviouslyP(uy) = P(u,;). Conversely, ifP(u;) =
P(u,), then for everye € E\{0}, there exists a nonzero constant de-
pendinga priori on e, such thatuy(e) = A.ui(e). Here, Ao = A, at least
whene’ = pe is collinear toe. On the other hand, takingande’ linearly
independent and expressing e + ¢’) in two ways:

Aeu(e) + Aeui(e) = ug(e) + us(e) =
=us(e+€') = Aejeur(e +¢') =
= )\e+e’u1 (6) + )\e+e’u1(e/)>
we get\. = \..« = Ao fOr anye ande’, so\., = \ is constant. O

Given another € GL,,;,(K), we can writédP(vou) = P(v)oP(u) and we

also clearly hav@®(uou™') = P(u~' ou) = P(Idgn+1) = Idgp». It follows

that the projective transformations &fP" into itself form a group, called
the projective groumf KP" and denotedGL,,(K). The lemma shows that

PGL,(K) = GL,11(K) /K - I,11 = SL,41 (K).
Theorem. Let (Fy, Pi,...,P,, P,yq) and (P, P,..., P, P/, ,) be two

(n + 2)-tuples of points oKP" which both constitute a projective frame.
Then there exists aniqueprojective transformation = P(u) € PGL,,(K),
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u € GL,;1(K), which maps the first frame to the second one, namely such
thath(P;) = P/fori=0,1,...,n,n+ 1.

PROOFE The lemma p. 22 enables us to IR, P, ..., P, as a basis
(eo,€1,...,€,) Such thatr(eg + e; + --- + ¢€,) = P,11 and similarly, to
lift Py, P{,..., P, as(e€),....e,) with w(eg + e} +---+e€) = P,
The mapu defined byu(eg) = ef, u(er) = €}, ..., u(e,) = €., and simply
extended by linearity, whenegey + e, + -+ +¢,) = e, + €}, + -+ €,
does the job: its projectivizatiol := P(u) clearly satisfies(F;) = P/, for
1=0,1,...,n,n+ 1.

On the other hand, if = IP(v) is another such projective transformation
performingk(P;) = Pj, namelyv(e;) = \e; fori = 0,1,...,n and also
v(ent1) = pe, .., we deduce by inserting, ., = ey +e; +--- + ¢, and
€ =€y e+ e

o€y + Ai€] 4 -+ Anen, = v(epin) = pey, = pey + pey + -+ pen,,
whencely = p = A\, = --- = \,, SOv = pu and hence: = P(v) =
P(u) = h: this shows uniqueness. O

Structural Properties

Chapter 26 (Vol I).
The General Projective Group.

The equations:
(1) x:, _ A1y L1+ Gpy Ty + G100 S
a17n+1 T + -+ an,nﬂ Tn + an+1,n+1
determine a group, as one easily convinces oneself, thalk®genera
projective groupof the manifoldz,, ..., z,. In the present chapter, we
want to study somehow more closely this important group ciis alsa
called the group of altollineationsof the spacexy, ..., z,, by focusing

our attention especially on its subgroups.

§ 134.

The(n + 1)? parameters are not all essential: there indeed appg¢ars
just their ratios; one of the parameters, best; 1, can hence be s
equal to 1. The values of the parameters are subjected toedtacr
tion that the substitution determinanty8STITUTIONSDETERMINANT]
> +a - ant10+1 Should not be equal to zero; because at the game

(D
—
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time with it the functional determinant [INCTIONALDETERMINANT]:
S+ 6‘”1 . % would also vanish.

The |dentical transformation is contained in our grouppirespond
to the values of the parameters:

\°ZJ

a/l/l/:]-7 auyzo (U7V:1"'n+1vu¢y)7

for which indeed it comes) = z;. As a consequence of that, one pb-
tains the infinitesimal transformations of the group by ggs/to thea,,, the
values:

ayy =1+ Wow, Ap+in+l = 17 Ay = Wyv,
where thev,,, mean infinitesimal quantities. Thus one finds:

x, = (xy+ Z waHernH,y) <1— Z w%n+1x“+---),

1spsn 1spsn
or by leaving out the quantities of second or higher order:
x,—x, = Z W Ty + W1 — Ty Z Wynt1 Ty
1spsn 1spsn
If one sets here all the,, with the exception of a single one equalf to

zero, then one recognizes bit by bit that our group comptises(n + 2)
independent infinitesimal transformations:

of af - af
2 ;i T 1,k=1-n
@) oz, om, " ijl I 0z, (=t
The general projective group of thefold extended space, ..., z,

therefore containsi(n + 2) essential parameters and is engendered by
infinitesimal transformations. The analytic expressioitte latter behave
regularly for every point of the space.

1%

From now on, we will as a rule writg; for . Inaddition, for reasons
of convenience, we want to introduce the abbreV|at|ons

z; pr = T, iﬂiziﬂkpkzp

in this chapter. Lastly, we still want to agree on thatshould mean zerp
every time; andk are distinct from each other, whereas by contrgsthall
have the value 1; a terminology fixing that we have alreadypsestbfrom
time to time. On such a basis, we can write as follows theigglatwhich
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come out through Combinatiomrhcketting] of the infinitesimal transfor
mationsp;, T, P;:

[pi, pi] =0, [P, P] =0, (i, Pi] = Thi + € Z T,

v=1

[Pz'> Tk:l/} = Eik Pvs [Pi, Tk:l/} = —&i Py,

[Ek; T}j,l/] = Eku iril/ —&ui Tukz'
One easily convinces oneself that these relations remashanyed

when one substitutes in them thg T}, and P; by the respective expre
sions standing under them in the pattern:

pi, T, B
3)

Py, =Ty, ps
Thus in this way, the general projective group can be reftene as

holoedric Isomorph to itself

One could presume that there is a transformatiofi: = ®;(x1,...,z,)
which transfers the infinitesimal transformations:

n
pi, LiPk, Ti Z LkPk
k=1
respectively to:
n
/ !/ /! /
xizxkpkzv —TPi» Py
k=1

But there is no such transformation,

because the infinitesimal transformationgs, . .., p, engender am-term
transitivegroup, while:z} >~ ) p}., ... ,z}, > x)p} engender an-termintran-
sitive group.

First in the next chapter we will learn to see the full sigrafion
of this important property of the projective group, when ttencepi

cially the duality will be introduced.

of contact transformation [BRUHRUNGSTRANSFORMATION and espet

[92)

> Duality and contact transformations. <

The general infinitesimal transformation:
Z @i Pi + Z bikﬂk+z ¢ P
i=1 ik=1 i=1

of our group is &lready per se] expanded in powers ofy, . . ., x,, and vis
ibly contains only terms of zeroth, first and second ordethi@it. One
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formations of zeroth order im, out of which no infinitesimal transformg-
tion of first or second order in the can be deduced linearly. For instance,
1, ..., pn @ren such infinitesimal transformations. From this it follows
thatthe general projective group is transitive
Besides, there ane? infinitesimal transformations of first order in the
x;, forinstance alk;;p, = T}, out of which no one of second order can|be
deduced linearly. Finally it yet arisestransformations of second order}in

thex: .
x; Z repe = b
k=1

In agreement with the Proposij[ion 9 of the Chap. 15 on p. 264ttare
exchangeable in pairs and in addition, Thgtogether with the?; engendey
a subgroup in which the group of th& is contained as invariant subgroqlp.

easily realizes that the group comprisemdependent infinitesimal tranE-

> A check. A (local) Lie subgroupH of a (local) Lie group& is invariant
in G, meaning thay Hg~! = H for everyg € G, if and only if, at the level
of the two corresponding Lie algebrgsindg, on haglh, g] C h. Here, the
concerned bracket relations ate?, T, | = —c; Pi. <

As one sees, and also as it follows from our remark above abeut
relationship between the and theP;, thep; are also exchangeable in pdirs
and they engender together with thg a subgroup in which the group pf
thep; is invariant.

§ 135.

For the most important subgroups of the general projectioe g it
is advisable to employ special names. If, in the generalesgion (1) of §
projective transformation, one lets the denominator redocl, then on
gets dinear transformation:

=

11%

/ .
Ty, = Q1 Ty + 0+ Apy Ty + Apg1p (v=1--n);

all transformations of this kind constitute the so-callgeneral Iine}

group We have already indicated at the end of the previous pagragra
the infinitesimal transformations of this group; they ardweed by line
combination from the the following(n + 1) ones:

Dis  TiPk (i, k=1--m).
If one interpretse, . . ., z,, as coordinates of amfold extended spage
R, and if one translates the way of expressing into the ordispage, the

=)
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one can say that the general linear group consists of aleptigg trans
formations which leave invariant the infinitely fan — 1)-fold extendec
even manifold, or briefly, thenfinitely far plane[UNDENDLICH FERNE
EBENE] M,,_;.

Next, if one remembers that by execution of two finite lingansfor-
mations one after the other, the substitution determingntsta,; - - - a,,
multiply them, then one realizes without difficulty that ttegality of all
linear transformations whose determinant equals 1 cassita subgrouy
and in fact, an invariant subgroup, which we want to callghecial linea
group One finds easily that as thén + 1) — 1 independent infinitesim
transformations of this group, the following can be chosen:

Di,  TiPk, TiDi — TPk (i2k).

mogeneous i, then one obtains thgeneral linear homogeneous grol
T, = a1+ F Gy T (v=1-n),

whose infinitesimal transformations all possess the foymb,, x;p, and
hence can be linearly deduced from thetransformations:z;p,. Also
this group visibly contains an invariant subgroup, special linear homd
geneous groudor which: Y~ +ay; - - - a,, has the value 1. The? — 1
infinitesimal transformations of this latter are:

TiPk, TiDi — TPk (i2k);

has the form3" i, k ay, z;px, where then? arbitrary constants;; are onlyj
subjected to the conditiop’ «a;; = 0.

Since the expressior{'xipk, Zj xjpj} always vanishes, it is obvio
that the last two named groups astaticand consequentlynprimitive
Indeed, if one sets:

i [L’; / .
P = Yi x—% =Y (i=1-n-1),
then one receives:
;o Ayt Ap10Yn—1 T Ay
Yo = a1,nY1 + e+ An—1,nYn—1 + Qp,n
It results from this that in both cases there transformed by the:? —
1)-term general projective group of tHe — 1)-fold extended manifol
Y1, - - -, Yn_1. CoOnsequently, this group is Isomorph with the generab

If, amongst all linear transformations, one restricts @ifés those hot

therefore the general infinitesimal transformation of theugp in question

I ——

=

p

homogeneous group of anfold extended manifold and with the speg

ial
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linear homogeneous group as well, though the Isomorphidmolsedrid

only for the special linear homogeneous group, since thes @mntaing

n? — 1 parameters.
Theorem 96.The special linear homogeneous group:

TiPk, TiPi — TPk (izk=1-n)

in the variablesey, . . ., z,, is imprimitive and holoedric Isomorph with tle

general projective group of afn — 1)-times extended manifold.
The formally simplest infinitesimal transformations of thenera

projective group are,...,p,; these generate, as already observed, a

group actually: the group of aftanslations
=2+ (i=1-n),

which obviously is simply transitive.

Generally, m arbitrary infinitesimal translations, for instan
P1,---,Pm, always generate am-term group. For all of these grouf
the following holds:

Proposition 1. All m-term groups of translations are conjugate
each other inside the general projective group, and eveid@ihe generg
linear group.

Indeed, them independent infinitesimal transformations of sug
group always have the form:

Z b;u/pll (p=1--m),
v=1

where not alln x m determinants of thé,, vanish.
But we can very easily show that by means of some linear toamsf-

tion, new variables’, ..., 2/, can be introduced for which one has:
p,/u - Z b;wpu (p=1--m).
v=1
In fact, letp), = py 25+ + - -+ + p, 3% then we only need to set:
I ©
oz,
= Opy (v=1-n; p=1--m),

o,

I

h a
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while the -2z . 92v remain arbitrary. We can give to these last ohes

oz, Ozt

some values such that the equations:

n n
/ /
T, = E b x, + E Crv T (v=1-n)
pu=1

T=m-+1
determine a transformation, and this transformation texssthe giver
group of translations to the groyp, ..., p/,. From this, our propositio
follows immediately.

We want to at least indicate a second proof of the same priopaosiAs al-
ready observed, the general linear group leaves invarfentrifinitely far plang
M,_1, and in fact, it is even the most general projective grouphis hature
Now, every infinitesimal translation is directed by an inffy far point and ig
completely determined by this poingvery m-term group of translations can
therefore be represented by am-fold extended, infinitely far, straight manifdid
M,,,. But two infinitely far straightV/,,, always can be transferred one to the other
by a linear transformation which leaves invariant the inély far plane. Consq
quently, allm-term groups of translations are conjugate to each oth@tdrthe
general linear group, and in the same way, inside the gepesgctive group.

-

The correspondence indicated earlier which takes placedset the
p; and thep, yields, as we prove instantly, the

Proposition 2. All m-term groups, whose infinitesimal transforma-
tions possess the forln e; P;, are conjugate to each other inside the gen-
eral projective group.

For the proof, we start from the fact that two subgroups argugate
inside a grougs, when the one can be, by means of a transformatign of
the adjoint group of~,, transferred to the other; here, we have to inag-
ine the subgroups as an even manifold in the space ., e,, which is
transformed by the adjoint grougf( Chap. 16, p. 280;hgre: ??p. ??]).
If we now write the transformations of the projective grougtfy in the
sequence;, T;., P; and next in the sequend@, —T};, p;, then in theg
two cases we get the same adjoint group. But sincerbwi@rm groups
of translations can always be transferred one to the othehéydjoint
group, this must also always be the case with mxderm groups whose
infinitesimal transformations can be deduced linearly ftbeP;. Further
more, it even immediately comes out that tweterm groups of this sof
are already conjugate to each other inside the gi@u;,. With that, out
proposition is proved.

~—+

> Explanation. Structure is invariant by this involution. <
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§ 136.

We consider now one after the other the general projectivamrthe
general linear group and the linear homogeneous group,celoel preciseg
we want to examine whether there are invariant subgroupsvéich one
are contained in these three groups.

At first, the general projective group. Let:

S = Z Q; Pi —l—Z Z Bik Dk +Z Vi T Z TEPk
i=1 i=1 k=1

=1 k=1

be an infinitesimal transformation of an invariant subgrdbpn necessay-
ily [p,, S]and|[p,., [p,, S]] are also tranformations of the same subgrgup.
Consequently, in our invariant subgroup, there would celstaappear a
infinitesimal translatior _ p; p;.

> A check. Itis nonzero. <

But because all infinitesimal translations are conjugateaich othe
inside the general projective group, they would all app&anthermore
since it is invariant, the subgroup would necessarily congd transfor-
mations:|p;, x; Y x;p;|, or after computation:

-

Ti Pk (i 2k), Tipi + Z TjiPj-
7j=1
Adding the n transformations: z;p; + Zj x;p;, one obtains: (n +
1) > x;p;, whence z;p; and therefore in general alk;p,. Fi-
nally, the invariant subgroup would yet contain all tramsfations
[zipi, i >, mepr], hence ally; >°, xxpy, and thus it would be identica
to the general projective group itself. Thus, our first regil

Theorem 97.The general projective group imvariables is simple)

*) Lie, Math. Ann., Vol. XXV, p. 130.

Correspondingly, the special linear homogeneous group:

(4) TPk, TP — TpPr (i2k)
is also simple.

The general linear homogeneous group withithénfinitesimal trans
formationsx;p, contains, as we have seen above, an invariant subgroup
with n? — 1 parameters, namely the just named group (4).

If there is yet a second invariant subgroup, then this oneoaisly
cannot contain the group (4), and in the same way, it evenatamave
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an infinitesimal transformation in common with the same grosinc
such transformations would constitute an invariant subgrm the sim
ple group (4) ¢f. Prop. 10 of the Chap. 15 on p. 264).

> The cited proposition. It just says that the infinitesimal transformations
that are in common between two invariant subgroups of a gtodip like-
wise form an invariant subgroup @f. For abstract or for vector field Lie
algebras, it saysfh, N b2, g| C by N b, whenever two Lie subalgebras

andh, of a Lie algebragy are ideals in it:[h;, g] C b, fori =1,2. <

Taking the Proposition 7 of Chap. 12 on p. 211 into accouifd)ldws that,
a possible second invariant subgroup can contain only oin@tesimal
transformation, and to be precise, one of the form:

n 1..n
Z xip;i + Z Qik TiDk (Z?:l Qi :0)‘
i=1 ik

Besides, according to Proposition 11 of Chap. 15 on p. 26 ,sdme
transformation must be exchangeable with every transfoomaof the
group (4), from which it follows that the transformation:

1..r

n
E Qif; TiPk (Zi:l @i :0)
ik

must be excellent inside the group (4).

> The cited propositions. The first one boils down to the dimension
formula for intersections of Lie algebras: if arterm group contains two
subgroups withn andu parameters, then these two have at least 1« — r
independent infinitesimal transformations in common, d&danes in com-
mon do actually form a subgroup.

The second cited proposition states that if two invariarhgsaups
Yif,...,Yf and Zif,...,Z,f of a group G have no infinitesimal
transformations in common, then all the brackgts Z,| vanish. It is
just because, by the invariancy assumption, each brgdkef,| must
be expressible as a linear combination of tHeand also as a linear
combination of theZ,, as well, but since no infinitesimal transformation is
shared, brackets must hence all be zero.

So applying this observatiod, , z;p; + Zi’k oy x;pr Must be excellent
inside the group (4), as was,, x;p; for free. <
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up thatzp; + - - - + z,p, and (4) are the only two invariant subgroupg
the groupz;py.

Theorem 98. The general linear homogeneous gratp;. in n vari-
ables contains only two invariant subgroups, namely thecispdinear
homogeneous group and the one-term graui, + - - - + T, pn.

At present, one easily manages to set up all invariant grofipise
general linear group. Let:

S = Z a; p; + Z Z Bik Tipr
=1 =1 k=1
be a transformation of such a subgroup. Then together Sitiiso[p;, S|
belongs to the invariant subgroup; hence the same certaomnyains ¢
translation, and because of Proposition 1, p. 29, it costailhof them.

> Check. Itis nonzero. <
The smallest invariant subgroup therefore consists ofrirestations them
selves; every other one must, aside from the translatiditiscentain a
series of infinitesimal transformations of the fortn}. >, ok 2;p,. But

geneous group;p,. So we find:

Theorem 99. The general linear groupp;, x;p, contains only thre
invariant subgroup¥), namely the three ones:

Di Di, Tip1+ -+ TpDn Di, TiPk, Tipi — TkPr  (i2k),
with respectively:, n + 1 andn? +n — 1 parameters.

*) Lie, Math. Ann., Vol. XXV, p. 130.

If, as already done several times, we employ the terminoladggh is

of the general linear group are firstly the group of all tratisins, secondl
the group of all similitudes [&AHNLICHKEITSTRANSFORMATIONENEN:
(x1 —2Y)p1 + -+ (2, — 2¥)p,, and lastly the most general linear gra
which leaves all volumes unchanged.

§ 137.

But there is no such transformation, whence alldhevanish and it shows

e

these latter ones visibly engender an invariant subgrdwplimear homot

1%

common for the ordinary space, we can say: the three invuasidygroup$

~

of

=4

up



Prologue for Part Il

Classification of Lie algebras
of holomorphic vector fields

Before launching ourselves on the classification theoreims yith Engel and
his Master Lie, we provide brief recalls of the basic fundataktheory (Part I).

Suppressing in Advance lllusory Parameters

As an example, we illustrate how do these three principleswm get
rid of redundants:;’'s. Developing thef; of z, = f;(x,a) in power series
with respect tar — z, in some (unnamed, connected) neighbourhood of a
fixed pointz:
filw,a) = > Ul(a) (x — 20)",
aeNn
we get an infinite number of analytic function§ = U/’ (a) of the parame-
ters that are defined in some uniform domain, apf K”. Then we claim
that superfluous,’s can be visible by just looking at the rank of theeffi-
cient mappindJ.., in its wholeness:

Uo : K" 3 ar— (U(a))

If for instance there is one parameter, sqyupon which absolutelyo ¢/
does depend, then this mép, clearly has rank< r» — 1 at every point.
Specifically, one looks at thgeneric ranky,, of U.,, an integer satisfying
0 < pso < 7, Nnamely the maximal possible rank 0f,, which is in fact
attained at every point € U\ D outside a certainproper closed analytic set
D. So, avoiding D, if we relocalize to a small neighbourhood of some point
a € U\D, a suitable application of the constant rank theorem, ¥zgid by
an appropriate local diffeomorphisin— @ = @(a) of the parameter space,
enables to show2E]; [ here: see Chapter A]) that the new coefficientd, (a)
become absolutely independent ofthep, last parameterg, 1, ...,a,:
they thus have become visibly superfluous.

1<i<n
aeNn

e K.

1 technically defined to be the zero-set ofall x p., minors of the Jacobian matrix
U’ aeN™ 1<i<n
( Oa; )1<j<7" '
Here and in the sequel, what can be said at points of the esoapsetsD would
require sophisticated tools from Singularity Theory th&tlaeyond the scope of the present
work.
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Definition.  The parameter§a,...,a,) of given point transforma-
tion equationsz; = f;(z,a) are calledessentialif, after developing
fi(z,a) = 3" enn Ul(a) (x — xo)* in power series at some), the generic
rank p.. of the coefficient mappin : a — (Z/{é(a))i;\in is maximal,

equal to the number of parametersp,, = r.

In this case, the transformation equations are caltetbrm [r-
GLIEDRIG]; we adopt the translation ofl]. From now on, parameters will
always be assumed to be essential

Concept of local Lie group

We restitute here basic definitions and theorems withoutesiging the
formal rigor about (shrunk) domains that Chap. B will fullyopide.

In arbitrary dimensiom > 1, a finite continuous transformation group
onK" is a finitely parametrized family of analytic point diffeompdic trans-
formations:

= filzy, .. T a1, ..., a,) (i=1-n)

enjoying the following three properties.

Group composition law: Whenever it is well defined, the successign=
f(z;a) andz” = f(a';b) of any two such transformations, namely:

o = f(f(z;a);b) = f(a;c)
always identifies to an element of te@mefamily, for some new parameter:
c=m(a,b)

uniquely and precisely defined by a certain local analyticonma :
K" x K" — K", which, from its side, inherits automatically the property
m(m(a,b),c) = m(a,m(b,c)) from the associativity of diffeomorphism
composition.

Existence of an identity element: There exists a special parameter
(e1,...,e,) suchthatf(x; e) = x is just the identity mapping.

Underlying group multiplication law: The analytic map(a,b) +—
m(a,b), which can sometimes also be alternatively written shortly
(a,b) — a - b, is a local continuougroup law in the sense that:

e For all a, one should havei - e = e - a = a, a property which follows
in fact from:

f(zia-e) = f(f(zia)e) = f(z;a) = f(f(zse);a) = f(z;e-a)
thanks to the postulated uniqueness ef m(a, b).
e Also, the inherited associativity: - b) - ¢ = a - (b - ¢) should hold.
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¢ Inverse-element map: Finally, as a last axiom which isot a con-
sequence of the group composition law, there must existal thtfeomor-
phismi : K" — K" defined in a neighbourhood efwith i(e) = e such that
a- i(a) = i(a) - a = e, namelyi(a) represents the group inverseaqfand
moreovera — i(a) is an analytic, necessarily diffeomorphic, local map. In
particular, writing now that the composition:

f(f(x;a);b) = fasa-b)

is just performed by group multiplication between paramstene then for-
mally deduces: <

f(f(za)si(a)) = f(wia-i(a)) =2 = f(x:i(a) - a) = f(f(z:i(a)); a).

Notion of r-term continuous transformation group

It is useful for further reading to remember that in Lie’srtenology,
a “finite continous (transformation) group of a spageecisely means a
finite-dimensional, local, analytic Lie group actieh= f(z;a) as above;
Lie does not emphasizes the everywhere presupposed aitgytiut he
uses instead the wordontinuousto make clear the contrast of his own
theory with the discrete Galois theory of algebraic equeithat inspired
him (thorough, exciting history appears ih7]). What we nowadays call a
local Lie group namely aK™ around some identity elementquipped with
a local analytic group multiplicatiofu, b) — m(a, b) = a- b together with
an analytic inverse-element map— i(a), is called by Lie the parameter
group of a transformation grolippages 401-429 of Vol. | are devoted to
its general study. Finally, for Lie, the adjective-ferni means that the
r written parametersa,,...,a,) are essential, or equivalently, that the
dimension of the parameter group is exactlyyn summary:

“r-term group of x4, ...,z,"” <= r-dimensional Lie group acting onK"

Introduction of Infinitesimal Transformations

Next, lettinge denote either an infinitesimal quantity in the sense of Leib-
niz, or a small quantity subjected to Weierstrass’ rigorepsilon-delta for-

malism, for fixedk € {1,2,...,r}, we consider all the points:
o= fi(z;er,...ente,... e)
i
— Z+— 7 .8_'_... i=1--n
x ar (x;€) (i=1-n)

that are infinitesimally pushed from the starting points= f(x;e) by
adding the tiny incrementto only thek-th identity parameter,. One may
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reinterpret this common spatial move by introducing thet@efeld (and a
new notation for its coefficients):

. "0 fl 8
K= Z &zk . Z Suil 0xl

which is either written as a derivation in modern style, onsidered as a
column vector:

T(% %)

day,’ ) Oay,

= T(&kl?"'?ﬁkﬂ) .

based atz, where7(-) denotes a transposition, yielding column vectors.
Thenz' =z +¢ X + - - -, or equivalently:

Iy N (i=1--n),

where the left out terms+ - - -” are of course arD(s?), so that from the
geometrical viewpointy’ is infinitesimally pushed along the vectmj}x up
to a lengthe.

as /./ ./ as
EEEE A b b
/{6 a1 c’/{//// 7 \ \r+ex\\

Fig. : Infinitesimal displacementz’ = x + ¢ X ¢ of all points

More generally, still starting from the identity parametewhen we add
to e an arbitrary infinitesimal increment:

(61+5>\1,...,ek+5)\k,...,er+5)\7,),

where™(Aq, ..., \,) }e is a fixed, constant vector baseckah the parameter
space, it follows by linearity of the tangential map, or gls&t by the chain
rule in coordinates, that:

Afi

filz; e+€)‘):xi+2‘€)‘k'@—&k(

k=1
:xi+52)\k'€ki(x)+"'>
k=1

so that all points’ = =z +¢ X + - - - are infinitesimally and simultaneously
pushed along the vector field:

X = M X{ o4 A X

which is the general linear combination of th@revious basic vector fields
X k=1,...,r

zie) o
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Occasionally, Lie wrote that such a vector fieldbelongs to the group
' = f(z;a), to mean thafX comes itself with the infinitesimal moveé =
x + ¢ X itis supposed to perform (dots should now be suppressedun in
ition), and hence accordingly, Lie systematically calledrsanX an in-
finitesimal transformatignviewing indeedr’ = x + ¢ X as just a case of
x' = f(z,a). Another, fundamental angery deep reason why Lie said that
X belongs to the group’ = f(x, a) is that he showed that local transforma-
tion group actions are in one-to-one correspondence wélptirely linear
vector spaces:

VeCﬁK(Xl,XQ, . ,XT>,

of infinitesimal transformations, which in fact also inheai crucial addi-
tional algebraic structure directly from the group multiplication law.

Lie's Basic Main Theorem and Its Converse

Indeed, the major discovery that Lie made in the wihtéB73—
74 was that the infinitesimal transformatiods,, ..., X, are not only
closed under Jacobi bracket as in the so-called Frobeniasrdm:
(X, X;] = >._, cjs(2) X,, a condition which insures the existence
of local foliations (integrability), but also and principa the concerned
coefficient functions,;;(x) are in factconstant c;;s(z) = ¢;s € K. From
Vol. | of the Theorie der Transformationsgruppene translate both Lie’s
bracket statement and its converse.

Theorem 1.22. If an r-term continuous transformation group in the vari-
ablesz, ..., x, contains the- infinitesimal transformations:

Xl = ¥ Gulwn ) ok i,

1<i<n

then between these infinitesimal transformations, theist pairwise rela-
tions of the form:

Xp(Xi(f) = Xi(Xi(£) = D erga Xa(),

1<s<r
where thec;,;, designate numerical constants.

In contemporary mathematics, one calls, . . ., X,, aLie algebra of (lo-
cal) analytic vector fieldsThe assumption that the parameters are essential

3 The birth of the theory is beautifully reinscribed in its toigcal perspective by
T. Hawkins in [L7]. There, it is explained that the Poisson-Jacobi brackentity:
0= [[X,Y]. Z] + [[2, X]. Y] + []Y, Z], X] between three local vector fields has
been reconsidered by Lie, after deep reflection, to be ltireausethe totality of contact
transformations leaving a function invariant formgraup, the mentioned identity issuing
in Lie's views from the differentiation of a commutator rétm and from group associativ-
ity.



II-Prologue 39

is shown to imply that the infinitesimal transformations(y, ..., X, are
linearly independent

Most importantly, Lie showed conversely that the infiniteal, linear,
algebraic datum of any local Lie algebra of vector fields oa #pace
x1,...,T,, €nables one to reconstitute readily a local transformagroup.

Theorem 1.24. If r independent infinitesimal transformations stand pair-
wise in the relationships:

Xi(X;() = X;(Xu(f)) = [X, X;] = Z Crjs Xsf,

1<s<r

where thec;, are constants, then the collection of the"~! one-term
group$:

MXif4+ A X S

constitutes am-term group which contains the identity transformation and
whose transformations organize together as inverses irspai

Here, one should think that what we nowadays call the locabegn-
tial map, here viewed as the integration of a (parametrizedjor field, is
implicitly applied toX; X, f + --- 4+ A, X, f, namely:

exp (M X1+ + M X ) (2) = flz; )

reconstitutes thénite equations:’ = f(x; \) of the group. Lie’s exponen-
tial Theorem 1.11 indeed states that thinearly independent infinitesimal
transformationsXy, . .., X, engender a transformation group, in the sense
that the equations:

T

! YDV
xgzxi—i—z A &i() + Z 2 X(§ji) + -+ (i=1-n)
k=1

— 1.2
k,j=1
deliver the finite transformations, = f;(x; A) of the group, %o that the
totality of all these finite transformations is identicaltivthe totality of all
transformations of the groug, = f;(x; A\)” ([25], p. 75).

As exemplified by the above statement of Theorem 1.24, itfscel of
Lie’s thought to identify plainly a transformation grouptivihe correspond-
ing Lie algebra. In fact, after a Lie algebra has been claskifiy means
of several normalization procedures, taking the expoaétdiget some fi-
nite equations follows (in principle) by direct, unproblatic computations.
Here is a relevant excerpt from \Vol. |, p. 55.

4 0n considersg); : ---: A\,;] as homogeneous coordinates in the projective space of
dimension — 1.
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Lie’s main classification problem

For Lie, the central question of the monumental theory hetecewas
to classify, up to equivalence all possible finite transfororagroups lo-
cally, generically, and principally up to the “physicallysaningful” three-
dimensional space.

Classification of Lie algebras of local analytic vector field
in dimensions 1, 2 and 3 in neighbourhoods of generic points

Naturally, two r-term transformation groups’ = f(z;a) and
y' = g(y; b) acting on spaces of the same dimension with the same number
of essential parameters asguivalent[AHNLICH] if there exist both a
change of parametefs = ((a), and a change of coordinatgs= ¢(z)
of the source space which acts simultaneously’as ¢(z’) on the target
space, such that, after plugging in as one should, one hdash®llowing
relation:

o =07 Y) = ¢ (9(w);b) = ¢ (9(p(2)); Bla)) = f(; a),
to be identically satisfied for any anda.

Accordingly, at the infinitesimal level, two Lie algebraslotal holo-
morphic vector fieldsX, ..., X, andYi,...,Y, of the same dimension
acting on two spaces, ..., x, andy,, ..., y, of the same dimensiomare
(locally) equivalentif there exists a diffeomorphism — y = y(z) which
sends eachX,, to some linear combinatiok,; Y; + - - - + )\, Y, of theY;
with constant coefficients,;.

Thus, for Lie and for us who will in this work follow his waké)e& ques-
tion amounts to the following main problem that we now ddsein length
for future comprehension.

1) To find all possible finite-dimensional Lie algebr&s, . . ., X, of lo-
cal holomorphic vector fields

“ 0
=1

defined in some initial domaiti C C", the mathematical rules of the game
allowing a finite number ofree relocalizationsnamely: the rules allow to
restrict a finite number of times the considerations to a Enaubdomain
in order to perform every appearing mathematical operatbich would
necessitate that a certain analytical quantity is noncengeé.

5 Coordinatewise transformation rules for vector fields uradeiffeomorphism will be
recalled in a while.

6 By free relocalization, one then avoids for instance thepdeeblem of providing a
normal form for asingleanalytic vector fieldX at a singular point (a question which is still
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2) To bring each such systeny,, . .., X, of vector fields to an as simple
as possible normal forng.g. to achieve that a majority af,; be null, and
that the remaining ones to be either monomials of small dggoe very
simple polynomials, or exponentials of linear functionspaybe possibly
arbitrary functions, but of a number of variables that skdug smaller than
n.

3) To precisely distinguish the possible systems of vectadgibly devis-
ing and introducing either geometrical, coordinate-iretegent, or calcu-
latory, purely algebraicatonceptswhich enable one to build classification
boxes, sub-boxes, and further sub-boxes to which to drevedlight groups.

4) To draw up extensive tables of the found Lie algebras of vdttals
that arecompleteandmutually exclusive

Finest classification theorems should indeed not only peVists that
capture as a first step all possible objects enjoying someitdefnathemat-
ical properties, but they should also, as a second step) aleghe obtained
tables, namely remove thoroughly the various overlaps lwban occur be-
tween the found classes. Experience in various matheméatds indeed
shows that quite often, the branches of a given classificdtee obtained
by one, or by another means, do penetrate into each athavoidably

Working principally over C Sometimes (but not in the present Chap. 1),
the algebraic closedness of the ground field appears to lokedeespecially
for the classification theorems of primitive Lie algebrasdimensions 2
(Chap. 3 and Chap. 1.29) and 3 (Chap. 7). Although the mgjorfitthe
general statements reminded here in Vol. 11l by Engel anddioidnold over

C and overR as well, it is safer to plainly understand, when nothing isl sa
about the field, that all the considerations are restricdemmplex numbers.

Comment principles Finally, apologizing for having interrupted so
lengthily the flow of thought just when Engel and Lie do lauritie
classification achievements of Vol. Ill, we briefly list ouomament
principles:

e Reconstitute details of proof that rely upon preliminarpwiedge of
\ols. | and Il;

¢ Do not translate the contents into abstract mathematingliage;

e Insert geometrical illustrations and summarizing tablewall.

unresolved in full generality, even in dimension= 2), because at a generic point, such a
nonzeroX may be straightened simply té%



Division |I.

The Finite Continuous Groups
of The Straight Line and of the Plane.

The present first Division comprises the determinatiore$Bim-
MUNG] of all finite continuous groups of point transformations the
straight line and on the plane (Chapters 1, 3, 4). Besidexjntprises
the determination of all projective groups on the line andtlom plane
(Chap. 2, 8 4 and Chap. 5). Subsequent to these studiesnesir Iho
mogeneous groups in two and in three variables will in addibe drawr
up [AUFGESTELLT] (Chap. 2, 8 5 and Chap. 6). Moreover, it is still to
mentioned that, through the developments of Chaps. 3 andahianctior
with Chap. 23 of the Volume II, the determination of all fingentinuous
groups of contact transformations of a plane is also accisimgydl.

In what has been said, the results of the first Division aradbigoiden-
tified. Notably, one can underline what follows concerning form of the
specific groups, namely: it turns out that the finite contumigroups of th
straight line are all equivalenfHNLICH] to projective groups. Howevs
for the plane, this is no longer valid, although in the plathe, infinitesi-
mal transformations of any finite continuous group can be bisught tg
a very simple form: for the transitive groups, aside from pbstely ra-
tional functions, only exponential functions occur in suicform; for the

tant results about the form of the groups on the line and orplthee as
early as in the year 1874, in no. 22 of the Go6tt. Nachr.

intransitive groups, arbitrary functions appear. Lie psitkd these impof

be

U

]

> Translation note. Two continuous transformation groups which trans-

form one into the other by an invertible change of coordisagéad by a s
multaneous invertible change of parameters as well, atecc&HNLICH”

by Lie (vol. I, p. 24); since the adjective “similar” belong®stly to a non-
conceptual lexical field, we translatéHNLICH” by “equivalent”, assum-

ing that contemporary readers know well of the problenegdivalenceof

the problem of classification and of the problem of providaggsimple as
possible normal forms, for transformation groups or forieas other math-
ematical objects Apud Lie notably, the word “BESTIMMUNG” denotes a

complete solution of the problem which embraces all itsétagpects. Fin
results are drawn up as extensive tablesgHLLE] of groups. <

al
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Chapter 1.

Determination of all Finite Continuous Transformation Gro ups
of the Once-Extended EINFACH AUSGEDEHNTEN Manifold.

At first, we develope two different methods which deliver ushaut
difficulty all transformation groups of the once-extendedmifold. After
that, we show that the determination of these groups alsowslalready
almost immediately from the results of Chap. 29 in Vol. I.

> Reminding Lie’s principles of thought.From the beginning, it will be
assumed that:

e mathematical objects are analytic;

e relocalization is freely allowed;

e open sets are small, usually unnamed, and alwaysected <

§ 1.
An r-term group f-GLIEDRIGE GRUPPH of the once-extended mah-
ifold x is represented by an equation of the form:

= f(x,a,...,a.),
with r parameters, . . ., a,. It is engendered by independent infinites|-
mal transformations:
_ df _ daf
le_él(‘r) @7 ’ er_ér(x)d ’

which satisfy relations in pairs of the form:

X, X, = (& don _ d@) Z i X

(i,k=1-7).

> Lie algebras and local Lie groupsAt this very beginning of Volume llI,
Lie and Engel of course take for granted the one-to-one spaedence be-
tween finite-dimensional Lie algebras of local holomorplector fields and
local Lie groups that they already established in greatildeta Chapter 9
of Volume I. So the first goal here is to classify Lie algebrastloe one-
dimensionalz-space.

Here, the symbof in X f shouldnot be confused with thg in 2/ =
f(z,a). In fact, Lie always writes a vector field derivation asting on a
test function which halways designates by the symbgl <
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Every transformation of the one-term group:
t t?
/
=xi+ &+ —— X (&G i=1-n
Z; $+15+1.2 (&) + (i=1-n)
is obtained by repeating infinitely many tinfeSN\ENDLICHMALIGE WIE-
DERHOLUNG]| the infinitesimal transformation:

Y _ o 9f of
xz_xz—i_éz&t or X(f>_§16$1+ _'_fnaxn

Or yet more briefly:

The one-term group in question is engendered by its infimitsy
transformations.

In contrast to the infinitesimal transformatiof( f ), we call the equg

tions:
(=it i X (&) +
x,:"[/‘i < _ i o ..
E 1 1-2

the finite equations of the one-term group in question.

> Comment. This is just a brief reminder of the general theory: expo-

nentiating an infinitesimal transformation yields the #néquations:, =

exp(tX)(x;), i = 1,...,n that are written here after expanding them with

respect ta. Intuitively, they derive from the infinitesimal move$ = z; +
&;0t by means of infinite iteration, namelgtegration <

The general infinitesimal transformation of our group reads

: d d
X[= Z ex &k(T) - é =¢(2) éa
k=1

whereey, . . ., e, denote arbitrary constants. Now, sinkef, ..., X, f are
independent infinitesimal transformations and since asngexuence ¢
that,&, . . ., &, satisfy no linear relation:

a1§1+"'+a7‘§7‘:0
with constant coefficients, it follows that the function:
E=eabi+ - +ed

with r arbitrary constants,, . . . , e, is the general solution of anth order
linear differential equation:

dr dr—1 d

T o) T @) R @) g =0

which, on its side, completely determines the general it&@nmal trans}

—h

formation of our group and hence, the group itself. We thues Séhe
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defining equation&f. Vol. I, Chap. 11)of anr-term transformation grou
of the once-extended manifold are made of-gh order linear ordinar
differential equation

> Explanation. Let us restate and prove what is considered to be known.

Assertion. If r given arbitrary analytic functiong; (z), ..., &, (x) are lin-
early independent, then possibly after relocalizatiorgréhexists a monic
r-th order ordinary differential equation:

€0 oy (z) - gt 44 a(r)-£=0
whose general solution is the general linear combinatioae; & + - - - +

e &

Lemma. Let&; (z), ..., & () ber analytic functions. Then there exist con-
stantsay, . . ., a, not all zero making a linear dependence relatigy; (=) +
-+ a,.&-(x) = 0 between the;, if and only if their Wronskian:

W(, ... &) = 51 ET =0
gy 1) &Erfl)

vanishes identically.

PROOF OF THE LEMMA In one direction, the existence of constamts
not all zerosuchtha&i=a; & + - - +a,_1 &1 + a, & with, say:a, = —1
after renumbering and dilation, implies that the Wronskian
(@

& 0 & aréy + -+ ar—1&1
& - & a&l+ -+ arél
W(&r,. . 6-1,6) = : : : =0
g g g g
obviously vanishes, because of colum linear dependence.

Conversely, suppose that the Wronski®(¢i,...,&-1,&,) = 0
vanishes identically and establish linear dependenceef;thReasoning
by induction onr, we can assume that the subWronske(¢,, ..., &, 1)
does not vanish identically, since otherwige, ...,¢.—; (and hence
&1, ...,&.1,& too) would already be, without any effort, linearly depen-

dent. We then expand the determin&Mts;, ..., ¢ 1,&,.) along its last
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column:
(b)
S o & &
0= : : :
6%7“71) o én(rfll) 7(‘1”71)
51 . / 1
:57(,7’—1) -W(§1,~-,§r—1)—"'+(—1)T_1§r' : . : ;
gyfl) . 7(‘1”71)

we relocalize to a neighbourhood of a point where the mertiosub-
Wronksian does not vanish and we divide the above equatitmiieading
coefficient, getting:

(c) 0=V +m& ™+t

for some analytic functions; (z), . .., a,._1(z) defined in some subdomain.
Recall (B5]) that the space of solutions of such @n- 1)-th order ordinary
differential equation is a vector space of dimensjen— 1). But we in
fact already know thanks t@) that the general linear combinatiené; +
-+ 4 e, &1 constitutes trivially a solution ofd), by just replacing in the
first, big determinant oflf), and since this combination generates(an-
1)-dimensional space, waust have¢, = a; & + - -+ + a, &, form some
appropriate constants. Finally, we remark that thanks to the principle of
analytic continuation, the relatidh= a; & (z) + - -+ a,—1 &1 (x) — & (2)
propagates from the subdomain where we could divid&\ky, ..., &, 1)

to the original domain of definition of thg. O

PROOF OF THE ASSERTION Again and similarly, the Wronskian of the
(r + 1) functions linked by the relatiof = e, &; + - - - + ¢, & — £, vanishes
identically:

OEW(fl,,fraf): 1 T
R SR
1 51{

=& W, &) = (CD)TE P
SN
and by expanding it along its last column, we get an ordinatly order

differential equation which we may bring to a monic form ireteet where
the subWronskialV (&, . . ., &) is different from zero. O«



The Finite Groups of the Straight Line. 47

We now imagine in our mind that, in the neighbourhood of a puwii
general position which we choose as the origin of coords)étee infin
itesimal transformations of our group are expanded in pewér.. The
defining equation that is solved with respect to thi order differentia
guotient of¢ shows [oc. cit., p. 188 sq.) that in our group no infinitesimal
transformation of--th or higher order inr is available, hence no infirrTi
tesimal transformation exists whose power series withaesspx begins
with terms ofr-th or higher order. Consequently, we can always imapine
r independent infinitesimal transformations of the groupsamin such &

—J

way that the one of zeroth, the one of first, ..., the ong-of 1)-th order,
in x are:
( d
Xof = (1+a0w+-~-)£
d
(1) X1f=(x+a1x2+---)£
d
L erlf = (.Tril + ar,lx’" -+ .- ) é

We can naturally use thesandependent infinitesimal transformationg in
place of the initially chosenX, f,..., X, f.

> Explanation. If the coefficienté = e & + -+ - + e,.&,. of an arbitrary

infinitesimal transformatioX f of the group satisfie§= O(z"),i.e.£(0) =
= ¢=1(0) = 0, then uniqueness of solutions to the aboweE implies

¢ = 0. One thus gets the invertibility of thex r matrix (a]) associated to

the truncated expansiofigr) = a? + alz + - -+ +a '2""! + O(2") of the

r linearly independent coefficients, . . ., &., whence lastly, a triangulation

may be performed. <

At present, we remember that two infinitesimal transforovadi ofi-
th andk-th order respectively produce by combination a transfdiomeof
(i + k — 1)-th or higher orderlpc. cit. p. 193, Theor. 30); in our case, e

find:

(2) [(x’+~-~)%, (xk—|—~-~)%] = ((k—z’)x“’“’l +) %,
where on the right-hand side the term(of- £ — 1)-th order visibly nevef
can vanish, when and £ are different from each other. A short whjle
ago, we have seen that auterm group contains no infinitesimal transfpr-
mation ofr-th or higher order, so we can conclude that in our grouq the
numbers;, £ and: + k£ — 1 must always be smaller than Hence if wg
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choose fori the largest possible valué:= » — 1 and likewise fork £ i
the largest possible valué: = r — 2, then we obtain for the numberof
terms of our group the condition:

r—1l+r—-2-1<r,

that is to sayr < 4.
Thus in the once-extended manifold there is no finite coatiagroug
with more than three parameters.

> Vanishing order of infinitesimal transformations. In n variables
(x1,...,2,), an analytic functiorg (z1, ..., x,) is said to be oforder> p
with respect tox; — 2%,...,z, — 2 if, in its power series expansion
£ =D nern Caroan (@1 — 29)0 - (2, — ) at 2, the coefficients:,
vanish for all multiindicesy with oy + - - - + «,, < o — 1. An infinitesimal
transformationX f = > | gi(x)a% is said to beof order at2° if its

n coefficientst; are of order> p atz°, and one of them at least ot of
order> p + 1, namely it is of order= L. <

> The cited theoremlts precise statement, valuable for an arbitrary num-
bern of variables, implicitly offers a direct proof.

Theorem 1.30.1f X f andY f are two infinitesimal tranformations:

: 0 v 0

1<k<n 1<j<n

whose power series expansions with respect to powers-of!, . .., z,,—z°
begin respectively with terms @fth order and with terms of-th order,

namely eacif,ff‘) (resp. eachyj(.“)) is @ homogeneous polynomial of degree
i (resp. v) in z — g, then the power series expansion of the infinitesimal

transformation

_ - (O )08 of
XY f-YX[f=[X, Y]f—;{; ( L S )+ }axj
begins with terms ofu + v — 1)-th order which are perfectly determined by
the terms of:-th order of X f and by the terms af-th order ofY f. If these
terms of(x + v — 1)-th order vanish, then one can only say about the power
series expansion ¢, Y| that it starts with terms ofu + v)-th or of higher
order. 4

We now treat the three possible cases one after the aothert, 2, 3.

If » = 1, the group contains only one infinitesimal transformatiop o
the form:

daf

dz’

Xof = (1+:+)



The Finite Groups of the Straight Line. 49

/x dx
r =
0 1+---

as a new variable in place af This is allowed, since; is an ordinary
power series i which vanishes for: = 0 and in the same way; is an
ordinary power series im; which vanishes fox; = 0. In the new variabl
x1, Xof becomes of the form:

We now introduce:

\1%

df
X()f - d—xl
This infinitesimal transformation engenders a once-teraugrwhose fi
nite transformations read:, = z; + a; this is the group of all translations
of the once-extended manifold.

In caser = 2, we have two infinitesimal transformations:

_ df _ 4
Xof =(14-) o Xf=(t) o
which give by combination [OMBINATION]:
d,
[Xo, Xl} :(1+"')£,

and consequently there is a relation of the form:
[Xo, Xi] = Xof + X Xuf,

or, if we introduceX, f + A X f as a newX, f:

(3) [Xo, Xi1] = Xof.

If we now choose as in the first case the variableso thatX, f takes the

form: dd—jl then it becomesX; f = & % and because of the relation (3):
d
i =1, & = x1 + Const,
dIl

where, incidentally, the constant of integration vaniskage the infinites
imal transformationX; f must also be of the first order in the new varigble
x1 (Mol. I, p. 197, Prop. 1).

> The cited general propositiorEven in an arbitary numberof variables,
its proof is straightforward.

Proposition. If one introduces, into an infinitesimal transformatioh =
o @(x)% supposed to be gf-th order with respectta; —29, ..., x, —
29, new variablegy, . .., y,:

Yk =Yy + Z ari(z; — z7) + Z arij (x; — a7) (v — a7) + -+

1<i<n 1<6,j<n
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where the determinant;;| of the first order part is nonzero, thexi trans-
forms into an infinitesimal transformation of ordgrwith respect toy; —

y?,...,yn—yg. <

Both infinitesimal transformations:

Xofzi X1f=$1i

dIl ' dIl
engender a two-term group with the finite transformatioris= a, 2, +as;
this is the general linear group of the once-extended mihifo

Lastly, if = 3, then the group comprises three infinitesimal trangfor-
mations of the form:

_ daf _ df 2
Xof =1+ )%7 Xif=(z+ )%, Xof = (2" +--+)
whence there exist relations of the following shape:

[Xo, X1] = Xof + M Xaf + X Xaf,
[Xo, Xo] =2X1f + pnXof,

(X1, Xo] = X f.

%7

It we set:
Xof =Xof + a1 Xif + s Xof,
then it follows:
[ Xo, Xi] =Xof + (M — o) Xof + (A2 — 2a0) Xof,
[ Xo, Xo] =2X1f + (a1 + p) Xof,
or, when we choose; = \; and2ay = Ao
[ Xo, X1] = Xof, [ Xo, Xo] =2X1f + (M +p) Xof.
From the Jacobian identity:
[ Xo. X1], Xo] + [[ X1, Xa], Xo] + [Xa, Xo], X1] =0,
it ensues finally:
[ Xo, Xo] + [Xs, Xo] + (M + ) Xof =0,
whence:\; + p = 0, and we have:
4 [Xo, Xi] = X, [ X0, Xo] =2X, (X1, Xo] = Xo.

> Comment about notationIn the original German text, a Lie “bracket”

is called a “@MBINATION” (between two infinitesimal transformations),
or sometimes named as just an “equationLEBCHUNG]. It is denoted
(X1X>), always with parentheses, usually without comma, but with a
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comma whenX; and X, are explicit vector fields written in coordinates
(see below, throughout), and without the symbol of functignwhich is
traditionally almost always present to denote an individaéinitesimal
transformationX f. But remarkably in the eq. (4) just abovg,has been
removed in the three right-hand sides.

As the only update of notation we allow in comparison to then@mn
text, we systematically translate brackets-as. <

=

The infinitesimal transformation¥, f and X, f obviously engende
for themselves a two-term group which falls under the presicase, angd
which hence can, through an appropriate change of the vVarigbbe
brought to the form:

daf daf

— Xif =x—.

dz’ W= dx

At the same time X, f receives a certain new forng, <, where¢,, on
account of the relation (4), must satisfy the equations:

Xof =

d d
5221', xg_éé:f%
in consequence of what it is identically equakfo Thus we have:
~ daf df 2 df
of dr’ f=z dz’ of = dr

The finite equations of the three-term group engendereddsetmfinitest
imal transformations write:
;01 + (g
N 1+ asx '
this is the general projective group of the once-extendegifoid.

So we have gained the important theorem:

Theorem 1.*) Every finite continuous group of the once-extended
manifold has at most three parameters; such a group is etpnvaithern
to the one-term group:

¥=x+a
of all translations, or to the two-term general linear group
¥ = a, + as,

or finally to the three-term general projective group:
; Q1+ axx
1+ asx )

*) Lie, Gott. Nachr., Dec. 1874 and Math. Ann., vol. 16, thethwal used in the te

—
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coming from the second reference.

> Lie's discovery of Theorem 1.At the end of the his first synthetical
memoir (4], p. 93; [1], pp. 380-381), Lie explained how the discovery
of this first classification Theorem 1 appeared spectacuidrmotivating
to him: “In the course of investigations on first-order palrtifferential
equations, | observed that the formulas that occur in ttsipliine become
amenable to a remarkable interpretation by means of theepdiof an infin-
itesimal transformation. In particular, the so-called$3on-Jacobi theorem
is closely connected with the composition of infinitesinrahsformations.
By following up on this observation | arrived at the surpnigiresult that all
transformation groups of a simply extended manifold candaeiced to the
linear form by a suitable choice of variables, and also thatetermination
of all groups of am-fold extended manifold can be achieved by the integra-
tion of ordinary differential equationsThis discovery, whose first traces go
back to Abel and Helmholtz, became the starting point of mpyneears of
research on transformation groups.” <

> Historical note. Thomas Hawkins summarizes as follows the develop-
ment of Lie’s classification problem: X}], p. 76): “Along with his efforts

to polish up his theoretical treatment of the general clasgion problem,
Lie expended considerable effort on the actual deternongtip to equiv-
alence) of all groups for small values of Judging by his brief note in the
Gottinger Nachrichtef22], by the end of 1874 he had resolved the problem
for n = 2 to his own satisfaction, using in part geometrical meanst iBu
was not until 1878 that he managed to translate his resutipumblishable,
analytical terms @3], p. 78). At that time, he also announced that he had
solved the problem forn = 3 but restricted to groups of point transforma-
tions. However, the calculations needed to do this remaioeextensive to
make publication feasibleZ[/], p. 122), and Lie contented himself with par-
tial results (R7], pp. 122—-262). As for the problem fer arbitrary, in R5],

p. 598, he expressed the view that it would probably neveebelved.” <

We have seen that every two-term group of the once-extendea-m
fold can be brought to the form:
daf daf
(5) e x e
From this, one can conclude that two independent infinitaktnansfor-
mations:
daf daf

lezfl %, X2f:§2%
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of the once-extended manifold can never be interchangeat#eT-
AUSCHBAR]; indeed, if they were so, then they would engender a {wo-
term group which would not be of the same composition as tbem(5),
hence would also not be equivalent to it. Besides, from theliton of
interchangeability:

L dg daN df
(X1, Xo] = <§1 Tr — & %) i 0,
one also finds immediately that and¢&; differ from each other only by
a constant factor, hence that f and X, f, if they are supposed to Ipe

interchangeable, cannot be independent from each otharsegaentlyj,
we get the

Proposition 1. Two independent infinitesimal transformations offthe
once-extended manifold are never interchangeable.

> Translation note. Present-daycommutativity is called by Engel-Lie
“VERTAUSCHBARKEIT’, a concept that we translate lgterchangeability
S0 as to be faithful to the text. It just means vanishing oftirigckets. <

> Transformation groups having the same compositioiwo (local) Lie
algebras of linearly independent vector fields:

X —= : PICIIRIR R o7 7) =Ll-r
k ;_1 Eri(1 z )&Ei (k=1--7)

of the same dimension, but not necessarily acting on a saite same
dimension:

- 0
Yk:znkﬂ(yh?ym)a—f (k=1--7)
p=1 Yu

are said to havadentical compositiofGLEICHZUSAMMENGESETZ SEIN
by Lie if they areisomorphic[HOLOEDRISCH ISOMORPHi as plain Lie al-
gebrasj.e. if among all the infinitesimal transformatioagY; + - - - + ¢, Y,
of the second family, there arelinearly independent linear combinations
D => -, MY, k=1,...,r, having thesamestructure constants as the
Xy, namely[ Xy, X;) =370, cus Xs and [D, D] = 0, cus s, With
identicalcy,s. <
> Vector fields and Lie brackets under change of coordinatéhe text
uses the general fact that equivalence of two local Lie alggehbinder a
change of coordinates — 7= = Z(x) implies that they have the same
composition. Let us explain this (of course obvious) claand, on this
occasion, recall some basics about variable changes.

Under such a (local) diffeomorphism — = = Z(x), a function f(z)
transforms to the functiorf(z) defined by the identity (z) = f(z(z)), or
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by the equivalent identity’ () = f(z(T)), with T — = = z(z) simply
denoting the inverse (local) diffeomorphism. Differetitig these two iden-
tities with respect ta; and with respect t@;, we get the classical (tensorial-
like) transformation rule for coordinate vector fields:

0 "\ 0z; 0 0 "\ Jz; O
&m 1 8[L'Z 8:1:j 8@ — 8@ 8[L'j

J]=

Consequently, fok = 1,...,r, eachX), = Y7 | &;(xz) ;> transforms by
linearity to the |nf|n|te3|mal transformatlon defined by fbemula

— 0T ; 0
K=Y Y 6uleld) 52 a(o) 1

i=1 j=1

0
() = Z Xi(@(x)) -

= Z gkg(f)
Jj=1
6@

and having new coefficients; ;(7) := > | & (z(7)) e (z()) naturally
defined on the target spage Throughout, we shall simply writ&;, = X,

and f(z) = f(z), without any function symbol for the diffeomorphjsas

Lie usually did; contemporary formalism would write instea= ¢(x) and

X1 = .(Xy). Then the canonical invariance property of the Lie bracket
says: [ Xi, Xi] = [ Xk, Xi], a property that may be checked calculatorily
from the coordinatewise definition:

Xk,Xlz[mea th ]

o aglz afkl 0

by just inserting the transformation rula)an the developments of brackets.
Coming back to the claim, it is now obvious that

[Ylm 7] Xk:, Xz Z Cris Xs = Z Chis X
and (X) have the same struc-

Thus, the two Lie algebra@(k)lgkgr \<her
ture constants, hence are trivially isomorphic.

One may argue that a conceptual, abstract and coordindepémdent
presentation of the transformation rulé§ = ¢.(X) and [X,Y]| =
¢.([X,Y]) would be less instructive here; indeed, because the main
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objective of Lie is to perform several normalization progess in order to
bring systems of infinitesimal transformations to an as &ngs possible
normal form, explicit computations in coordinates are, andst be, of
centralimportance. 4

One observes that the groups of the once-extended manifeldlla
transitive. If one wants, one can even say that they are pvimi

> Note. Transitivity and primitivity will be dealt with and redefiden a
while, seeChap. 3. <

§ 2.

In the beginning of the 8§ 1, we saw that to eaeterm group of thq

once-extended manifold belongs a linear ordinedth order differentia
equation:

14

T r—1
by which it is completely defined: the defining equation of gneup in
guestion. One can now also determine the groups of the otteedrq
manifold in the way that one seeks every differential equraivhich is the
defining equation of a group. This is what we now want to cautp

*) Already in the years 1870, Lie has determined the grouptherstraight line in thig
manner, or anyway in 1882. At that time, he occupied himséli the reduction of th
differential equatiorg”’ + 2a¢’ + o’¢ = 0 to the form&”” = 0. From his general theol
of integration it follows immediately that for this to hold,Riccati equation of order o
must be satisfied.

172

o <

If the linearr-th order differential equation:
(6) ¢ 4oy (@)€Y - b (1) 4 (7)€ =0

Is supposed to be the defining equation eft@rm group, then accordirjg
to Vol. I, Theor. 28, p. 187, the following is necessary anficent: when-
ever{(x) andn(x) are any two solutions of the differential equation (6),
thenén’ — &'n must also always be a solution of this equation.

> Explanation, and the cited theorem.The general solutiog(xz) =
e1&i(x) + - + e.&.(x) is a linear combination of fundamental, linearly
independent solutions. Thus, for the infinitesimal transformations
Xi = &(x) %, i = 1,...,r, to be a Lie algebra of solutions of (6), it
is necessary and sufficient that the coefficiggt — ¢;¢; of each bracket
[X;, X;] be also a solution of (6).
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Theorem 1.28.If &4, ..., &, are functions ofcy, . .., x,, be determined by a
certain linear homogeneous partial differential equation
(%y
Z A;u/ 61/ + Z Buwr (9x7r =0 (n=12..),

then the expressiaf af +--- 4+, 8f represents the general infinitesimal
transformation of a finite continuous group if and only ifsfiy the most
general system of solutions of these differential equatatepends only on
a finite number of arbitrary constants, and secondly from paaticular

systems of solutior., . . ., &, and§;, . . ., &, by formation of the: ex-
pressions:
= 0€; 0
Z (szuﬁ _€]V i) (i=1--n),
v=1 I/ 1/
one always obtains a new system of solutions. <
In order to find the condition which comes out from this for tbac-
tionsay(x),. .., a.(z), we set up the equation:
dr Il dr—l Il
dz” dxr—1

and we express in it theth and thgr + 1)-th derivatives of and ofy by
means of:

(8) &, L Y,
thanks to (6) and to:
(6") " +ay ()Y ey (2) 0+ an(z)n = 0.
In this way, between the quantities (8), we obtain an eqoatfdahe form:
(9) > Au (€M —gWy) =0,
0<i4, k<r—1

and this equation must be identically satisfied, whiché\aardn can be, a
solutions of ther-th order differential equation (6). From this, it folloys
immediately that (9) must actually hold identically for &llues of thg
quantities (8), and hence that the coefficient of every iiddial expression:
@nk) — ¢ must be identically zero.
At first, we consider the two cases= 1 andr = 2.
If » = 1, the differential equation (6) has the form:

(10) & +alr)E=0.
If £(x) andn(z) are any two solutions of this equation, then the expregsion
¢&n' — &'n vanishes evidently and hence is again a solution of (10)] As

v/
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a consequence of that, the functiafiz) is submitted to absolutely 1
restriction.
In caser = 2, eq. (6) has the form:

(11) "+ ar(x) & + ap(x) £ = 0.
Now, one has:
dien’ — ¢ d2(en — ¢
(577dx ') L (5212 ') — ey — "y 4y — My,

so (7) receives the form:
6(77/,/+06177/,+06277/) —77(5”/—0—0416”—0—0426/) +£l77/l_€/177/ — 0’

hence if one expressé€s, n”, £, by means of, n, ¢, n/, then it comedq;

(—ay +as)(&n' — &'n) =0,

and this is for our case the equation (9) discussed abovee, ithex factof

of £&n' — ¢'n must vanish, whence we find; = «a,, and we realize that th
equation (11) is always the defining equation of a two-terougrif and
only if it possesses the form:

" +a(x)d +a(x) £ =0.
On its own side, the functioa(z) is subjected to no restriction.

We come to the case> 2.
As one easily sees, one has:

am 6 " — 6, m m m m
( gxm ) = &n — gty (m — 1)(6/77( )¢ )77/>
m(m — 3 _ m—
(12 )(éflln(m 1) _5( 1)7]//) e

a series which ends up with tBem + 1)-th or with the (m + 2)-th term,
according to the entire number being odd or even. Consequently, if
now only take into consideration all the terms in which apmeaivatives
of at least(r — 1)-th order, then we can write the equation (7) as folloy

En — U 4 (r = 1) (") — €M)+

r(r—3 _ .
(1 - )(6//77(7“ 1) 6( 1)77//)+

+on{€n"™ — €M+ (r = 2) (€Y — €U0 J+

(0]

e

Ve

<

S:

+ (@7(7“*1) _ 6(7“*1)77> L =0.



58 Volume Ill, Division I, Chapter1, § 2.

We reshape this equation by using the relations:
€0 4N 4=,

and the corresponding relations feras well, and we find that the eqy
tion (9) has the form:

—a} (En" 7 =€) —an (D — €Uy )+
+%(§’/n(r—l) _ f(r—l)n'/) +.o=0,

where the left out terms only contain derivatives of ordevdo than the
(r — 1)-th order. At present, by setting identically to zero theftioents
of the indivivual expression&”n®) — ¢®)n0) we receiver(r — 3) = 0
and: a; = of = 0. It thus turns out that can only be larger than
when it is at the same time equal to 3, and thatfer 3, our differential

equation (6) must have the form:
(12) "+ a(2) + as(x)€ = 0.

In order to determine the functioms andas more precisely, we forr
the equation:
d*(&n' — &) d(én' —&n)
g tar == as(&n =€) =0,
and we get:

&' — Wy +2('n" — €") + aa(en” — €"n) + as(&rf — ') = 0;

therefore, by taking account of the equation (12), of:
W 1 " + (ah + as)é + ahe =0,
and of the corresponding equations femwe find:

(—ay + 2a3) (&' — €n) = 0.
Consequentlyv, must be equal tQas, but this the unique condition th
ap andas have to satisfy.

If we setay(x) = 2a(x), then the defining equation of the most g
eral three-term group of the once-extended manifold besowsable in
the form:

"+ 2a()¢ + o/ ()€ = 0.
As a result, all the groups of the once-extended manifolddater-

a_

2

=)

fat

D
7

mined and we have the
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Proposition 2. The defining equation of a finite continuous grou
the once-extended manifold always has one of the three forms

'+ a(x)s =0,
(13) "+ (@)l +a'(x)¢ =0,

"+ 2a(x)¢ + o/ (2)€ = 0;
Here, the functiormy(z) is submitted to no restriction.

Above, we have generally found all the groups of the oncereleg
manifold, and among the found groups are obviously conthaiso the
three types of groups that we have listed in the precedinggpaph; in-
deed, if we setv = 0, we obtain the three defining equations:

(14) =0 =0 "=0,
which produce the three groups
af - df _df df o df L df
R - L - LV T
dx dx dx dx dx dx
one after the other. Consequently, it still remains to ptbagit is possible
by introduction of a new variable, to reshape the definingagiqus (13

so that they receive the simple form (14).
In order to produce this proof, we imagine that: = F'(z) is intro-

duced as a new variable in placexof By this, the infinitesimal transfor

mation: if
X f = -
f =& o
takes the form:
df ' df df
Xf = o . F A i
[=E)g =€) F@) g-=a(n) 5
whence one has:
)
Fr
Furthermore:
/ / le”
6 - 51 - W?
, Lo ) )l FF" — 2F1/2
I e R

) QR _ 3F1/2 d F'F" — 2F1/2
fm = fiﬁF, - fi 2 - 51% T’

) of

where, for reasons of abbreviatic&f) is written in place 01‘%.
1
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a )k
d+ (- p)a=0
a B 1 d
(- B
o F'F" — §F//2
f’+2<ﬁ— F/42 >§{+
1 d o F'F" — %F//2
tra s )

If we now introduce the new variable, in the equations (13), thgn
these receive the following form:

but if these equations are supposed to take the simple fafmtfien in theg
first two cases we just need to employ fora solution of the differentig
equation:

F" = aF’
whilst in the last case, a solution of the equation:
FE" §F1/2 _ CVFIQ
5 .
With that, the required proof is supplied.

§ 3.

Up to now, we have directly determined the groups of the opce-
extended manifold, without using more from the theory of fingt vol-
ume than a few general propositions of the first chapters. itBshiould
not be passed over in silence that the determination of alljgg of the
once-extended manifold already follows immediately frdme tesult o}
Chap. 29 in Volume I.

> Note. This important rigidity Theorem 1.112 (Mol. |, p. 63hdre: see

p. ?7]), located at the very end of Vol. |, states that the threel Webwn
transitive groups: projectiveGL,(C), affineA,(C) = GL,(C) x C™ and
special affineSA,,(C) = SL,(C) x C™ are the only ones which can enjoy
maximal free mobility at the infinitesimal, first order leyabmely the lin-
earized isotropy group of any point be equaldb,(C) or toSL,(C). The
result is heavily used below for the classification of prim@tiocal Lie group
actions onC? (Chap. 3, 8 7, p. 90 sq.). Chap. N?? translates and comments
its complete proof. <

As we have seen in the beginning of § 1, eaeterm group of th
once-extended manifold comprises, in the neighbourhoa@doointz = 0
in general position, one infinitesimal transformation ofatk order inzx,
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further, one of first, one of second, . .., ongof- 1)-th order, but not any
of r-th or higher order.

If we now consider the cases= 1, » = 2, r > 2 somehow into mor
detail, then we realize at once that they correspond exa&atihe threg
cases distinguished on p. 626d. cit. [here: see p. ?7]), if we setn = 1
there. Indeed, if = 1, ourr-term group comprises in the neighbourhg¢od
of z = 0 exactlyn = 1 infinitesimal transformation of zeroth order? —
1 = 0 of first order, and not any of higher order. If secondly-= 2, then
the group comprises exactlytransformations of zeroth order? = 1 of
first order, but not any of higher order. If finally > 2, then the grou
comprises: = 1 transformations of zeroth order? = 1 of first order andg
in addition, still some of higher order. From this, it follewthat we cay
apply immediately to our case the result which is obtainetiénChap. 24
of Vol. I. If we do that, then we receive immediately the résiated in
Theorem 1 on p. 6. While doing so, it turns out in particulaattthe
special linear group of a-fold extended space transforms, for= 1, to
the group of all translations of the once-extended manifold

D

J

A ——
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Chapter 2.

Determination of all Subgroups
of the General Projective Group on the Line
and of the General Linear Homogeneous Group in the Plane.

The knowledge of all subgroups of the two groups named initleg t
is indispensable for later general studies about the grotifse plane*)
While determining these subgroups, we naturally get at #mestime a
determination of all subgroups of every group that has tineeseomposit
tion as one of the two groups referred to in the tise€\Vol. I, Theor. 33
p. 210).

*) The continuous subgroups of the general linear homogesngmup:zp, yq, xq, yq in
two variablesr, y have been determined for the first time in the 1878 Norvegisahi
cf. also Math. Ann., vol. 16; on this occasion, the variableg, are interpreted &
Cartesian coordinates in the plane, and also as homogeneotdinates in a bundle ¢f
rays [STRAHLBUSCHEL]. Later, Stephanos has conducted interesting researcius tie
mentioned groups.

(2]

> The cited theorem. Placed at the end of Chap. 12, Theorem 1.33 states
that,in principle, the determination of all subgroups of a given finite contin-
uous groupX, f, ..., X, f involves only algebraic operations on the struc-
ture constants appearing in the bracket relatipkis, X,] = >""_, Cpo; -
X, so that two isomorphic local groups (Lie algebras) obviptsve iso-
morphic collections of local subgroups (Lie subalgebradgnre precisely,
Lie describes the following general recipe, which dateklad 878.

One wants to determine all possibtedimensional { < m < r) Lie

subalgebras of the form:

Yu = Z hup ’ Xp
1<psr
which are concretely represented by somex » unknown constant matrix
(hup) supposed to be of rank. Then here th&’, generate a Lie subalgebra
if and only if their brackets in pairs:

Y Y= > hyphue - [X,, X,] (1<p<v<n)

1<p,o<r

are linear combinations of themselves alone, namely arehefform
Yo luwn - Y, for somel,,, € K. But since by assumption we have

[X,, X,] = >, Chr - X, for somestructure constants’,,, € K,
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we can hence plug in these brackets in order to read morespihgdine
requirement:

E hup hua CV,oa'ﬂ' : XT = [Y;u Yll:| (I<p<vr)
1<Pv‘777'<7"
= E luwr : Y7r
1<r<m

= Z Z lumrh/frT'XT-

1<rm 1<r<r

Then by identifying the coefficients of;, of X, ..., and ofX,, the sought
matrices(h,,,) should therefore be such that for every pair of indiges)
with 1 < ¢ < v < r, there existm solutionsl,,, ..., .., to the linear
nonhomogeneous systemroéquations:

l,u,zzl hll + - F l,u,l/m hml - Zp,a hup hl/U C’pcrl

l/u/l hlr + -+ l;wm hmr = Zp,a hup hua Cpara

whose both sides depend upon the unknowps But for every fixed pair
(u, v), the existence of sudh, . just amounts to require that thigr + 1) x r
matrix:

hll e hml Zp,a h,up hl/o‘ C(pcrl

hlr e hmr Zp,a h,u,p hl/O' Cpcrr

whose firstn < r columns are already supposed to be of rankshould be
of rankm also. Equivalently, all of it§m + 1) x (m+ 1) minors should van-
ish. Equating to zero all these minors then furnishes a fmitaber of alge-
braic equations for the,,,, which clearly depend only on the structure con-
stants; furthermore, by reasoning backwards, one ealy that every sys-
tem of solutions:,, to these algebraic equations yields:ardimensional
Lie subalgebra oi, . .., X,, provided of course that one only keeps solu-
tion matrices(h,,,) whose rank equals:.

Nonetheless, this brute process rapidly becomes unwieddsoan as
r > 3, and it does not take account of the natural fact that two s
H, and H, of a (dis)continuous groupr should have equal rightss|LE-
ICHBERECHTIGT SEIN when they are conjugate to each other by an inner
automorphism, namely wheH, = ¢ 'H,g for someg € G. Much finer
reasonings will be developed by Lie. <
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For reasons of convenience, we shall from now on shortlyawrit

a _
da:_p

the infinitesimal transformation in one variahlgand in the same way, we
shall make use of the abbreviations:
af of
or b, 8_y =q
for the infinitesimal transformations in two variablesy. We have in fact
used similar designations earlier seéfor instance \Vol. |, p. 555).

§ 4.

The general projective group of the once-extended manifalsl 3-
term, so it shall be shortly named “tli&,” in the present paragraph.

> Translation note. Today, one would write instead: “so it shall be shortly
namedGs”, without the determinate article “the”; but to be faithfid the
text, we maintain it, throughout. <

Our G3 comprises theo? finite transformations:
;T +a
oazx+ 17
and is engendered by the three independent infinitesinredftvtemations

Xif=p, Xof=uap, Xsf=2a"

(seeChap. 1 or Vol. |, p. 554 sq.). Its general infinitesimal tf@nsation
therefore possesses the form:

Xf=(e; +exx+esa?)p,

whereey, €5, e3 indicate arbitrary constants.

The (g3 is transitive, and even threefold transitive (Mol I, p. 631L(s
[here: see Chap. N??]), that is to say, it always comprises a transformagion
by virtue of which any three distinct points of the manifaidan be trang
ferred to any three other points; here, the point at infinigkes absolutely
no difference.

> The concept of composition (structure)ln the next paragraph, the word
compositioZUSAMMENSETZUNG appears. Quotingl[7], p. 168, it was
Killing in [ 20] (p. 163) who suggested that “Lie’s designatiaomposition
of group$ [Z USAMMENSETZUNG DERGRUPPEN was not the best choice
to describe the theory he had now so greatly, albeit termtigtimdvanced.
He pointed out that according to Lie, a group was either stnoplcompos-
ite, and yet one also spoke of the composition of simple ggoupn the
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basis of this inconsistency, he advocated speaking ingiE#ue “shapé
[GESTALTUNG] of a group rather than its composition. Unbeknownst to
Killing, E. Vessiot and W. de Tannenberg, the first two gradsaf the
Ecole Normale Supérieure to study with Lie in Leipzig, hagkatly in a
sense met Killing’s objection. In their lengthy review ottfirst volume

of Lie’s Theorie der Transformationsgruppehey expressed Lie’s idea of
the ZUSAMMESETZUNG by the French wordstructure([39], p. 137). In
his own publications, E. Cartan always referredastructure des groupes
thereby establishing this expression in the vocabularyventieth-century
mathematics.” <

The composition [SAMMENSETZUNG| (Vol. |, Chap. 17) of the7;
is determined by the equations:

(1) [Xb XQ] = lea [Xb X3] = 2X2f7 [X27 X3} - X3f7
and its adjoint grouplgc. cit., Chap. 16) therefore reads as follows:

_ of of
Erf = —e Be, 2e3 ey’

_ of of
Eyf = e ey €3 863’

B of of
ng— 2616—62_'_62 8—63

Since theG; contains no excellentAUSGEZEICHNETH infinitesimal
transformation, this adjoint group is three-term.

> The adjoint group. From \ol. I, Chap. 16, we summarize the
needed prerequisites. L&t = f;(z; a) be an arbitrary finite continu-

ous r-term group with ther independent infinitesimal transformations
Xy = Yo &ilx) 2 i = 1,...,r whose coefficients are defined by

P ox;
Eri() = 5L (w; e).

Theorem 1.48. If one introduces the general transformation of the group
7 = f(z;a) itself as a change of variable, if X, denotes the transformed
Xk, and if one defines on the target spacihe infinitesimal transformations
Xy =20 &ki(T) a% with thesamecoefficient functions,; of z, then the
general infinitesimal transformation X; + - - - + e, X, of ther-term group

Z; = fi(x; a) transforms to:

61X1+"'+€TXT26171+"'+6r7r

=ei(e; a) X+ +e.(e;a) X,,
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and after reexpressing it in terms of th‘Nék, one obtains that the, are
related to the:; by linear equations of the form:

T
€ = E Pkl(ala“-aar)'el (k=1--7),
I=1

which represent the so-calleatjoint groupof the groupz = f(z; a), a
transformation group subjected to the composition law:

piv (p1(a,b), ..., or(a,b)) Z piv(ar, ... a.) - pri(br,...,0.),

if one denote (f(z; a); b) = f(w; ¢(a,b)). This adjoint group contains
the identity transformation and it is engendered by certiafinitesimal
transformations as follows: letting

Xza Xk: Z Ciks * X f (t,k=1-1)

denote the structure of the group, if one introduces thealif®mogeneous
infinitesimal transformations defined on the linear spacai@oed with the
coordinatege, . .., e,) by:

Z Cj//,k €j 5 — a (p=1-1),

k,j=1

then)\; £y + --- + A\, E, is the general infinitesimal transformation of the
adjoint group and th&v,, have the same structure as thg:

[EZ‘, Ek] = Z Ciks * Esf (i, k=1--7).
s=1
Although theE, f have the same structure as thgf which are inde-
pendent by essentiality of the parametershey neechot be likewise lin-
early independent. In fact, if a certain infinitesimal tfamshation X ¢*¢ =
> g, X, f commutes with all theX, f, then
For instance, the four-term linear homogeneous group:

o ,0 L9 9
o Y or oy’ 4 Oy
under study in the present chapter ... <

> Excellent infinitesimal transformations. An infinitesimal transforma-
tion Z;Zl c, X, f of a finite continuous groug, f, ..., X, f is calledex-

cellent when it commutes with all infinitesimal transformations bétad-
joint group.

T
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Theorem 1.49. The adjoint groupe, = > pri(a) - ¢, of anr-term group
X1 f,..., X, f containsr essential parameters if and only if no one amongst
the oo™ ! infinitesimal transformationy ¢, X, f is excellent; by contrast,
the adjoint group has less than say exactlyr — m essential parameters
when the groupX, f, ..., X,.f comprises exactly» and not more indepen-
dent excellent infinitesimal transformations. <

At first, we want to study which types of one-term subgrouscam
tained in ourGj, or, what amounts to the same, we want to determine all
types of infinitesimal transformations existing in it. Foat, we make use
of the ideas and methods developed in Vol I, pp. 278-287.

> Summary. <

In the general infinitesimal transformationf of our GG3, if we inter-
pret the quantities,, e, e3 as homogeneous point-coordinates jiR -
TCOORDINATEN] of a plane, then every infinitesimal transformation and
hence also, every one-term subgroup of thewill be represented by fa
point of this plane, and conversely each point of the plarieésmage of
an infinitesimal transformation and with that at the sameetiof a one
term subgroup of thér;.

At present, we imagine that the points of the plane., e; are trans
formed by the adjoint groug; f, E» f, E3f of our G35 and we seek a
smallest invariant manifolds which appear in the plasee{ol. |, p. 225),
that is to say, all invariant manifolds whose points aresfarmed by th¢
adjoint group in such a way that every point in general positn such
a manifold transfers to all other points of that kind. Eveugls smalles
invariant manifold then represents a type of infinitesimmahsformatior
and hence also, a type of one-term subgroup of(the In the indicatedl
way, we obtain all such types, because two one-term subgroeipng tq
the same type, when they are conjugate§ICHBERECHTIGT] to each
other inside th&~3, but this happens if and only if the image-point [B -
PUNKT] of the one can be transferred to the image-point of the dilgex|
transformation of the adjoint group, that is to say, whenithage-point$
of the two lie on the same smallest invariant manifold.

Consequently, one now searches for all manifolds of the g
e1, ez, e3 Which remain invariant by the adjoint group. Next, sirgee,, 3
are homogeneous point-coordinates, the manifolds in muesill be rep-
resented by systems of equations homogeneotls i, es, that is to say,

14

—F

an
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by systems of equations which admit the infinitesimal tramsftion:

of af of
Efzela—el—i‘eza—eQﬂLe:sa—eg-
Our problem therefore amounts to determine all systems ogons in
e1, €9, es that remain invariant by the four-ternviERGLIEDRIGE] group:
Eif, Esf, BEsf, Ef. We undertake this determination under the guidd

of Theorem 42, Vol. |, p. 237. We thus form the matrix:

—E€9 —263 0

€1 0 —e3
(2) 0 261 €9
€1 €9 €3

Since the determinants in three rowsREIREIHIG] of this matrix do nol
all vanish identically, if we then set all three-row detemnamts equal t
zero, we receive, disregarding the meaningless systemuattieqs:e; =
e; = e3 = 0, the equation:

(3) e3 —4dejes =0,

which surely represents a manifold of the desired constitut Further-
more, if we observe that by virtue of (3), not all two-by-twpWEIREI-

by setting equal to zero all two-by-two determinants, theless system (
equationse; = ey = e3 = 0, then we recognize that except the conic §
tion (3), the adjoint group leaves invariant no point-fig[P&NKTFIGUR]
of the planeey, e,, es.

With that are found all types of one-term subgroups of ¢hg they
are two: the subgroups of the first type are represented lgepoints o}
the plane which do not lie on the conic section (3), the sulygsmf the
second type by the points of this conic section. Therefave,dne-term
subgroups of thé-; are conjugate to each other inside thegif and only
if their point-images lie either both outside the conic 8®t{3), or both
on this conic-section.

If we want to have one representative for the two types of tene:
subgroups, we need only to select any two points of the plvehich the
first does not lie on the conic section, while the other liestofiwo such

xp IS a representative of the first type, and the one-term suwipgras a
representative of the second type.

HIGEN] determinants of the matrix (2) vanish, and that we only rex¢

\nce

1=

174

—

bEC-

points are:e; = e3 = 0 ande, = e3 = 0, whence the one-term subgroup

The two found types can be characterized in a very simple Branr
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Indeed, if one looks for all points of the once-extended ricdahiz
that remain invariant by the one-term group:

Xf=(e; +exx+esa?)p,
then one only has to solve the second order equation:
4) ez’ +egw + e = 0;

the roots of this equation are the abscissas of the sougtiamt points
Now, if: €3 — 4e1e3 # 0, thenX f belongs to the first type, so the eqla-
tion (4) has two different roots, out of which however one teninfin-
itely large, and consequently in this ca&e’ leaves invariant two sepp-
rate points out of which one can also lie at infinity. If on thteer hang
e2 — 4 eje3 = 0, then the equation (4) has two collapsing roots, which|can
also be infinitely large, and consequently in this cASgleaves invariant
a doubly counting [@PPELT ZAHLENDEN point, which can lie either ip
the Finite or in the Infinite. One sees easily that in each diesotwo dis-
cussed cases, the one-term subgrdyfis fully determined by the poin{s
that it leaves invariant.

> Projective lineCP!. <

Let:
Xf=eaXif+eXof +e3Xaf, Y[f=eaXif+eXof+e3X3f
be any two independent infinitesimal transformations of@srso that al
two-column determinants of the matrix:

€1 €3 €3
€1 &2 €3
should not vanish. By Combination &f f with Y f, we obtain the infini
tesimal transformation:
(5) [X, Y} = (61 E9 —6281) X1f+2(€1 63—6361)X2f+
+ (62 £3 — €3 82) X3f
Under the assumptions mad€f andY f are represented by two d

ferent points in the plang, e, 3, and in the same walyX, Y| by a point
with the homogeneous coordinates:

—h
|

h = €182 — €287, 77222(6153—6351)7 T]3 = €2E3 — €3¢E2.

This point can be geometrically defined in a very simple wageed, if
satisfies obviously the two equations:

eame —2e1m3 —2ezm =0, €aMp —2e1m3 —2¢e3m =0,
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therefore it lies both on the polar ef;, es, e3 with respect to the con
section (3) and on the polar ef, 5, £3. In other words:

a straight line and by looking for the polar of this line witespect to th
conic sectiones — 4 ejez = 0.

If Xf andY f are any two independent infinitesimal transforrpa-
tions of ourGs, one finds the image-point of the infinitesimal transfor-
mation [X, Y} by connecting the image-points &ff and ofY f through

1%

> Polars and the proposed geometric construction. <

This geometric construction of the image-point [df, Y] from the
the image-points ok f and ofY f shows clearly that two independent
finitesimal transformations of our; are never interchangeablef.(p. 53).

points are distinct and the connection linegRBINDUNGSLINIE] of their
image-points always possesses a completely determinad ptlence th
expressior{ X, Y] can never vanish identically.
At presentitis very easy to indicate all two-term subgroopiheGs.
If Xf andY f are two independent infinitesimal transformati
of such a subgroup, then its general infinitesimal transétiom writes

e1, €2, e3. But now, in order thatX f andY f really engender a two-ter
subgroup, it is yet necessary and sufficient that an equafitre form:

[X, Y} == Cle + CQYf
holds — in other words: a straight line of the planee,, e; represents

section (3), that is to say, if it is a tangent to this conidieec Therefore]

sented by the tangents to the conic-sectign: 4 ¢;e3 = 0.

AXf + pnYf, so the subgroup is represented by a line in the pl

two-term subgroup of thé€'s if it contains its polar with respect to the cof

The two-term subgroups of tl&; in the planee,, ey, e3 are repre-

n-

Namely, if X f andY f are independent of each other, then their image-

1%

DNS

ane:
W

—

c

> Brief explanation. <

It is clear that by means of the adjoint grodfy f, Es f, E5f, every
tangent of the conic section can be transferred to any o#mgrent, an
consequently all the two-term subgroups of éiyrare conjugate to eag
other inside th&7;: there is one single type of two-term subgroup in
G3. As representative of this type we can select the tangeritetgoint
es = e3 = 0. The equation of this tangent writes; = 0, from which

we find as subgroup representative: zp. This is the largest subgrodip

h
the

ce

contained in thé&7; which leaves invariant the point at infinity. Next, sir]
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every pointr, and the point at infinity too, can be transferred by meatr
our (G5 to every other point, it turns out that each two-term subgrof}
our (G5 leaves untouched one point in the Finite or in the Infinitel Hrat
it is fully determined by the indication of this invariantipt

We now sum up the gained result.

Theorem 2. Every subgroup of the general projective groyp:zp,

one of the three subgroups:

b, xp p ;

in the first of these three possible cases, it leaves one puiatiant, in
the second, two separate points, in the third two coincigiaopts, and ir
fact, it is completely determined by the indication of thenpothat are
invariant by it.

22 p of the once-extended manifaldis, within this group, conjugate {o

s of

> A diagram to summarize the theoremWe drawKP! as an infinite line
whose two extreme points should be identified togimglepoint at infinity

oo (it is the Riemann sphere in cake= C).

. . (o0 (o)
p@ ~>4>~>~>04>~1>41>~>OOO . & ~
(] .
xp: 0 o
- < <t~ < I I 3 .
o o
2, . :
0 .
xp' —_— — > > > — © .
00 & . i} il i

Fig. : Subgroups of PGL; (K) are recognized from their fixed points

The infinitesimal transformation?p fixes 0 twice. In the left diagram, we

therefore encircl® twice. Similarly,p fixesoo twice, because through—

T = % it transfers to—z2 p. Then the right diagram shows the fixed points

of the three groups of the theorem. <

It goes without saying that the preceding developmentsgraasfthey
only depend upon the composition of the groupp, 22p, find applicatior]
to every three-term groufy, f, X, f, X3 f of the composition:

1) [X1, Xo] = X4, (X1, X3] =2Xof, [Xo, X3] = X5f.

Especially, it comes out immediately that every subgroupuah a grouj
IS conjugate, inside the group, to one of the three subgroups

Xif, Xof Xof Xif |

=
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We want now yet derive one noteworthy proposition that wallisefu
later on.
Let:

Yif =an Xaf +apXof + a3 Xsf (i=1,2,3)
be any three infinitesimal transformations of a three-termoug

we now interpret the abovec? infinitesimal transformations; X, f +
es Xof + e3 X3f as points of a plane, by understandinges, e3 as ho
mogeneous point-coordinates, thery, Y, f, Y3 f are represented by thr
points and moreovelf,Yl, Yg] is the polar of the straight line between {
pointsY; f andY, f with respect to the conic section} — 4 ¢;e3 = 0 and
[Y1, Y3] is the polar of the straight line betweénf andYsf. From this
it follows thatY; f is the polar of the straight line which connects W
each other the two points’;, Y>| and [Y;, Y3], whence there must ex
a relation of the form:

(Y1, Vo], [Y3, Ys]] = p- YA f,

wherep denotes a constant. By calculation, one fipd&ry easily and a

a result one finds the

Proposition 1. If X, f, X5 f, X3f is a three-term group of the comp
sition:

1) [X1, Xo] = X4f, (X1, X3] =2Xof, [Xo, X3] = X5f,
and if:

Yif =an Xof +ap Xof + iz X3f (i=1,2,3)
are any three infinitesimal transformations of this groupen there exist
a relation of the form:

a1 G2 (g3
(6) HYhYz], [Yl,Y:SHZQ Qg1 Qg Qa3 |- Yif.

Q31 (rzp (V33

§ 5.
We now turn to the general linear homogeneous group:
{ ¥ =ar+ayy

v =azx+asy

(7)

X1f, Xof, X5f, of which we suppose that it has the composition (1).

be
he

th
St

O-

of the twice-extendedZwWEIFACH AUSGEDEHNTEN manifold z, y.
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This group is four-term, so it shall be shortly named as @héin the
present paragraph; it is engendered by the four indepenaigmtesimal
transformations:

(8) Tp, Yyp, ¢, Yq.

> The theorem cited right below. <

It results from Vol. |, Theorem 98, p. 561 that of; only containg
two invariant subgroups, namely the special linear homegas:

9) xq, TP —Yq, yp,
which is three-term, and in addition also one which is onmaiteengen
dered by the excellent infinitesimal transformation:

Tp +yq.
The three-term group (9) is particularly important, be@iiss (Vol. |,
Theorem 96, p. 558) holoedrically isomorphielJLOEDRISCH ISG
MORPH] to the general projective group of the once-extended no&iff
one chooses as point-coordinates of the once-extendedatakthie vari-
abler and associates the infinitesimal transformations (9), tieeadter the
other, to the transformations:

(10) +p7 —2 XP; —I2Pa
then the holoedric isomorphism between the two groups (8)(&6) im-
mediately comes to light.

> A check. Considerz:y| as homogeneous coordinatesiéf'. On the
chart{z # 0}, sety := . Differentiating the typical functional identity
f(z,y) = §(r) = §(¥) with respect tar and toy, one gets as usual the
transformation rules for coordinates vector fields:

O =—%0, and 0y = 10,

so that, setting := J,, we obtain, one after the other, the desired projec-
tivizations:

rq =9, xp — yq = —2p, yp = —£*p, zp +yq =0,
having indeed the expressions claimed in the text. <

Since it is advisable to make visible the existence of theitwariant
subgroups of oulG,, we substitute from here on the four independent
infinitesimal transformations (8) of oy, for the following four:

Xif=zq, Xof=xp—yq, X3f=uyp,
Xuf =xp+yq.
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The composition of ouf7, is now represented by the equations:
(X1, Xo] = —2X,f, (X1, X5] = Xof, [Xo, X3) = —2X;f
|:X17 X4:| - |:X27 X4:| — |:X37 X4:| = 0.

To begin with, we again determine all types of one-term sobpgs
existing in theG,. To this purpose, in the general infinitesimal trans
mation:

e1xq + e2(xp — yq) + esyp + ea(wp + yq)
of our group, we interpret the quantitieg . . . , e, as homogeneous poi
coordinates of a thrice-extende@®HEIFACH AUSGEDEHNTEN Sspace
Then we imagine in our mind that the points of this space amsformeq
by the adjoint group:
af af
Eif= 26— —e3—
f €2 e, €3 des
of of

Bof = —2¢, =L %y 2L
o f €1 De, + 2Zes Des

E3f: 61——262—

E4f =0
of our G3, and we seek all smallest manifolds invariant by the
joint group — in other words: we look for all systems of eqoas

Eif,..., E,f and in addition yet the transformation:

of of of of
Ef:618—61+628—62+636—63+648—64.
From the beginning, we can for all that leave out the idefi}icanishing
transformationt, f.
The transformationg?; f, Es» f, Es f, Ef engender a four-term groy
whose determinant:
262 —E€3 0 0
—261 0 263 0
0 er —2e 0
€1 €9 €3 €4

(11)

vanishes identically, whereas its three-by-three sulbohéteants are not a
identically null. The four equations:

for-

ad-

in the variables, ..., e, which admit the infinitesimal transformatiohs

P

Elf - 07 E2f - 07 E3f - 07 Ef =0
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therefore have one solution in common, which, set equal tarhitrary
constant, provides a family ab! invariant surfaces, namely the family
the surfaces of degree two:

2
€5 + eres

€

(12) = const,
among which, as limiting cases, are comprised a cefie: ¢;e; = 0 and
a doubly counting planes = 0.

In order to find the remaining invariant manifolds, we mugtesgial
to zero the three-by-three and the two-by-two subdetemténaf (11). By
setting to zero [NILLSETZEN] the three-by-three subdeterminants, we
firstly the system of equations:

(13) e% + e1e3 =0, es =0,

hence an invariant conic section: the cutting-curveH{8ITTCURVE] of
the invariant conee? + e;e; = 0 with the invariant planee, = 0. Sec
ondly, we obtain:

(14) e1 = ey =e3 =0,

e2+eje3 = 0; this is the image-point of the excellent infinitesimal stor-
mation of ourG,, the transformationp + yq. By setting equal to zero g
two-by-two subdeterminants, we obtain only the system abégns (14)
hence nothing new.

With this, all manifolds of the spacs, . . ., e, invariant by the grou
E\f,...,E.f are found, because the conic section (13) visibly cont

the three-term invariant subgroup (9) of dtly is precisely represented
the planez, = 0 inthe space, . . ., e4; on the other hand, the points of t
planee, = 0 are obviously transformed by the adjoint grotipf, ..., B4 f
exactly as they are by the adjoint grolp f, > f, E5 f of the three-tern
group (9), sincef, f leaves untouched all points of the space and h
also all points of the plane, = 0. From the developments of the previd
paragraph we now obtain immediately that in the plape- 0, there is nd
other invariant manifold as a certain conic section.

hence an invariant point: the peak point|$zE] of the invariant cond:

no smaller invariant manifold. Besides, we could have mtedi the ocj
curence of the plane, = 0 and of the conic section (13) lying on it, since

of

get

D
NS

DY
he

ence
us

> Equivalent reformulation. <

1 Note. This is a claim, to be argued presently; what happens in the limiting plane e4 = 0 could
have been studided before.
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form of a very well known group. Indeed, in the spage. . ., ¢4, if one

else than the group of all rotations around the peint e; = e3 = 0; the
oo! second degree surfaces (12) simply arethespheres with the cent
€1 = €9 = €3 = 0.

One can still mention that the group, f, F» f, Esf is only anothef

imagines the homogeneous system of coordinates choserthnasway,
that the plane, = 0 is transferred to the plane at infinity, and that the cgnic
section (13) is transferred to the imaginary circle, thengyaup is nothing

(D
—_

> Imaginary circle. e? + e +¢2 = 0in C3. <

After we have found all manifolds invariant by the grg

Eif, ..., E.f, we can immediately indicate all types of infinitesimal sgn

formations, or, what amounts to the same, all types of orma-seibgroups
of ourG,. Every such type is indeed represented in the space. , e, by
a manifold invariant by the adjoint group; f, ..., E,f and in fact, by 4
so-called smallest invariant manifoldge p. 67). In this way, one obtaif
the following:

1) Every nondegenerate surface of second degree amongoth
ones (12) represents a type, but only at each time, all poirise conid
section (13) must be excluded. So theseaaredifferent types.

2) The conice + eje3 = 0 represents one type, when one leaves
the peak point and the conic section (13).

The remaining types are:

3) The planez, = 0, to the exclusion of the conic section (13).

4) The conic section (13).

5) The peak point; = e; = e3 = 0 of the conice? + e e3 = 0.

If we want to have one representative for each of the foune4)
we must select each time one point on the concerned smallesiant
manifold. In the first case for instance the invariant madife represente

by an equation of the form:

ei = 62(63 + ere3),

wherec means a finite constant distinct from zero, and whegre. ., e,
can take all values which do not satisfy the equation (13).w8ocan
choose:

er =e3 =0, ey =1,

up

=

S

e

out

|®N
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and saye, = ¢, so that for thex! types of the first species, we obtain the
oo! representatives:

1) xp — yq + c(xp + yq) (c#0).

Here, one has to become aware of the fact that two equallyssgpealue
of ¢ [i.e. the two values +c and —c] always produce two infinitesimal trans-
formations which lie on the same second degree surfaceeghehich are
conjugate to each other inside thg. It's because the equatief) = ¢? is
satisfied both by, = c and bye, = —c as well.

In a similar way, we can choose as a representative of theinamag
types the following one-term groups:

V7

2) xq+ xp+yq, 3) zp—yq, 4) xq, 5) xp+yq.

Now it yet remains to determine all two-term and all thresrtesub-
groups of oulG,.

Let:

Yif = azxq+ Bi(zp—yq) + viyp + di(zp + yq)
(i=1,2)

be two independent infinitesimal transformations of 6ur If we leave
out from them the term with:p + yq, we then obtain the two reduc
[VERKURZTEN] infinitesimal transformations:

Y,f = aizq+Bi(xp — yq) + viyp

19%
o

However, these reduced transformations need not anymonelbpendent
from each other, but one has in any case:

(15) Y1, Yo] = [Y1, Y2,

since indeedp+yq is exchangeable with all infinitesimal transformatipns
of theGy.

The equation (15) leads us to a very simple constructioneirttage
point of [V;, Y5] from the image-points of; f and ofY f.

Indeed, the reduced infinitesimal transformatiofsf andY, f ob-
viously belong to the special linear homogeneous grau@: xp — yq,
yp, SO they are represented by points of the plane= 0. One obtain
the image-points o ; f and ofY,f when one connects, by means ¢
straight line, the image-points of, f and ofY; f with the pointxp + yq,
i.e. with the peak point of the con€ + e,e3 = 0, and when one looks fat
the intersection point [SHNITTPUNKTE| of these straight lines with the
planee, = 0, or more briefly: when one projects the pointsf andY; f

o7

—
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from the pointzp + yq onto the plane, = 0. Thus one finds the poi
V1, Y] = [V, Y] by looking for the polar, with respect to the col
section (13), of the connection line between the two poiftg, Y, f in
the planez, = 0.

In general, the indicated construction for the poﬁm, Y2] always
produces a completely determined point of the plane= 0, but it doeg
not produce any determined point, only when the connectizn df thej
two pointsY; f and Y, f passes through the poinp + yq, namely ei-
ther when the two point¥’; f andY’, f coincide and one has;, V5] =

pointzp + yq and one hasgY;, Y>| = 0. It follows from this thattwo in-
dependent infinitesimal transformations of @y are exchangeable if ar]
only if the connection line of their image-points passesulgh the poin

p +yq.

transformations are exchangeable are found; every sudrcuip is rep
resented by a straight line which contains the paint+ yq. But now,
each straight line through the point + y¢ which is not a generator of tH
conice2 +e; ez = 0 can visibly be transferred to every other straight ling

way, every generator of this conic can be transferred to éimgroln othe
words:

In our G4, there are two types of two-term subgroups with excha
able infinitesimal transformations. The subgroups of thst fype are rep
resented by the straight lines of the spage. .., e, which contain th¢
pointzp + yq, but are not generators of the comic+ e;e3 = 0 and those

the two types we can choose the two-term subgroups:

Tp —Yyq, Tp+yq and  zq, Tp+ygq.

Every still remaining two-term subgroup of tlie; is represented b
a straight line which does not touch the painpt+ yq. This straight ling

mon with that plane. In the first case, we obviously have td déth a
subgroup of the special linear homogeneous graypxp — yq, yp, SO the
subgroup in question is necessarily represented by a tangéme conig

itesimal transformations of the subgroup, then the pfiift 5], which is

[Y1, Y5] = 0, or when one of the points; f andY, f coincides with the

—

As a result, all two-term subgroups of oGf; whose infinitesima|l

the same nature by means of the adjoint group of@yrand in the samg

of the second type are the generators of this conic. As aseptative of

lies either completely in the plang = 0 or it has just one point in conp-

section (13). In the second caseYiff andY; f are two independent infip-

—

c

14

d

e
b Of

nge-

14 T

A3~

y

a fully determined point of the plang = 0, must lie on the straight line
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—~+

betweenY; f andY, f, and consequentIle, Yg} must just be the poir
that the connection line betweeéfy f andY>f has in common with the
planee, = 0. One then easily recognizes that the p({M{, Yg] lies on
the conic section (13) and that the straight line betwigehandY; f must
be contained in a tangential plane to the caijie- ¢;e3 = 0. Conversely
every straight line which hits the conic section (13) andahhlies in g
tangential plane to the conié + e e3 = 0 really represents a two-term
subgroup.

> Explanation. <

As a result, all two-term subgroups of ti&, whose infinitesimd|
transformations are not exchangeable are found. They atéy/fall the
tangents to the conic section (13) in the plage= 0, and secondly &
tangents to the coni€ + e;e3 = 0 which hit the conic section (13), bt
which neither pass through the point + yq, nor lie in the plane, = 0.

The subgroups of the first category are all conjugate withn edber
inside theGG, and they form a type for itself, and as a representative pf it,
we can choose the group:

rq, TP —Yq.

As far as the subgroups of the second category are conceonefl,
thinks over that the nondegenerate amongst the surfacgé{k2cong
degree all come into contact with the comric+ e;e; = 0 alongside thg
conic section (13), hence that the generators of thesecasrfaf seconfl
degree all lie on the tangential planes to the cafjie- e;e3 = 0. The
subgroups of the second category are therefore representbd spacs
e1, ..., eq Dy the generators of the surfaces of second degree (12)réat a
nondegenerate. Now, every point of such a surface of secegreéd which
does not lie on the conic (13) is transferred by the adjointigrto every
other point, whence each generator of the surface can alsam&ferreg
to every other generator of the same family on the surfacereds sucp
a generator can never be transferred by the adjoint groupgenaratof
of another surface of second degree, and also never to tkefathily on
the same surface; the latter follows from the fact that theiatigroup
is continuous. According to that, the two-term subgroupshefsecon
category decompose in infinitely many types. Each nondegenens
amongst the surfaces (12) of second degree produces twaygues) of
which one is represented by the first family of generatorsthadther by
the second family. In order to have a representative for eacih type
we only need to indicate in an arbitrary tangential planenef¢onice3 +

A4

A4

==
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erez = 0 all the tangents of this conic which come into contact wité|th
conic section (13), but which neither lie in the plang = 0, nor pas$
through the pointp+yq, since each tangential plane of the conic is indeed
transferred to any other one by the the adjoint group. If faareple we
choose the tangential plane to the conic which containsaire pq, then
for our infinitely many types, we receive the representative

xq, xp—yq+ c(zp+yq),
wherec means a finite constant disctinct fram
Here, two equally opposed values ofalways furnish subgroups
which are represented by two generators of the same surfaesond de}
gree, but these generators belong to different familied, @msequently
the two subgroups in question are not conjugate to each othigle the
G4.

==

Finally, the three-term subgroups of o4y are still to be determine

A three-term subgroups; of the G, is represented by a plane in the
spaceey, . .., e4. If this plane coincides with the plarg = 0, then they;
is nothing but the three-term invariant subgroup:

9) Tq, Tp—Yq, Yp

of theG4. In every other case, the image-planalBEBENE] of g3 cuts
the planez, = 0 in a straight line which necessarily represents a two-{erm
subgroup of thé&7, and at the same time, a subgroup of the group (9). From
this, it follows that the straight line in question is a tang& the coni
section (13) and that the image-plane of the subgrguomes into contagt
with this conic section. Next, it} f andY,f are any two independept
infinitesimal transformations qj; and if Y; f has its image-point on the
mentioned tangent to the conic section, while the imagetpdiY; f doe

not lie on this tangent, then the infinitesimal transformm@fiY;, Y>| must
either vanish identically, or have its image-point on tlasdgent; the fir
case occurs only when the three poivitg, Ys f andzp+yq lie in a straigh

line, the second only when the plane, which is determinetlyyand b

the tangent, also contains the poiptt-yq. Consequently, the image-plane
of g3 must pass through the poinp + yq, when it does not coincide with
the planez, = 0, and it must be a tangent plane to the cafie-e;e3 = 0.
Also, as one easily convinces oneself, every tangentialeptd this conig
really represents a three-term subgroup of@he All these subgroups afe
conjugate to each other inside thg, because every tangential plang to
the conic is transferred, by the adjoint group, to every othe
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Thus, there are two types of three-term subgroups of HurThe first
type is made up of the invariant subgroup:

rq, Tp—Yq, Yp,
alone; the groups of the second type are represented indlcesp. . ., 4
by the tangential planes to the coni€ + e;e; = 0; a representative ¢f
this type is the group:
rq, Tp—yq, Tp-+yq.
We now sum up the gained results:
Theorem 3. If a subgroup of the general linear homogeneous group
Gy.
rq, Tp—yq, Yyp, Tp-+yq
of the planer, y is three-term, then it either is the invariant subgroup:
1 xq, TP —Yq, yp
or it is conjugate, inside the general linear homogeneousugr to the
subgroup:
2 rq, Tp—yq, Tp+yq |;
everytwo-term subgroup of the7, is, inside the(z4, conjugate to one (¢
the subgroups:

3 xq, xp —yq+clxp+yq) ez 4 | zq, xp—yq

—

5 Tp —yq, TP +yq 6 | zq¢ xzp+uyq)|.
Finally, everyone-term subgroup of the&~, is conjugate either to one pf
the subgroups:

7 rp —yq+clzp +yq) o 8 |ap—yq

9 xq+ xp + yq 10 xq
or it is engendered by the excellent infinitesimal transfaron:

11 rp + yq
of theG,. The arbitrary constant appearing in the two cases is an esse-
nial parameter, that is to say, to different values:@brrespond subgrougs
that are not conjugate inside th&;.

It goes without saying on the basis of the preceding devedps)thaf
for every four-term group which has the same compositiorhaggenerd
linear homogeneous group of the planeg;, we can immediately indicaje
in general all types of subgroups, and also all subgroups.
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While, up to now, we only occupied ourselves with the comipas

of theGy:

xrq, Tp—Yq, yp, Tp+Yyq,
we yet want, as a conclusion, to make a few observations dbedt, in
its quality of group of the plane, y.

TheG, leaves the point = y = 0 invariant and substitutes with each
other theco! straight lines passing through this point. But also, ambngs
the infinitesimal transformations of tle,, there is only one which leaves
untouched every straight line through the point= y = 0, it is the ex
cellent infinitesimal transformationp + yq of the group. Consequently,
the co! straight lines through the point= y = 0 are transformed by oyr
G4 by means of a three-term group, which is projective and isomi-
cally isomorph MEROEDRISCH ISOMORPHi to the G4. Obviously, this
three-term group is nothing but the general projective grotithe oncet
extended manifold; one can easily convince oneself dyresftithat. In-
deed, the variables, y can be interpreted as homogeneous coordinates of
the oo! straight lines through the point = y = 0; if one now replacep
these two homogeneous coordinates by the non-homogeneous:

€Ty = —,
)
and if one determines howy is transformed by the infinitesimal transfor-
mations of the’,, then one finds that it will be transformed precisely] by
means of the general projective gropp z,p:, z%p; of the once-extenddd
manifold. For the execution of this computatisee\Vol. I, p. 579,cf. also
ibidem p. 558, Theorem 96.

> The computation. <
> The cited theorem.
Theorem 1.96. The special linear homogeneous group:

TiPlk, TiP; — TPk (iZk=1-n)

in the variablesry, ..., z, is imprimitive and holoedrically isomorphic to
the general projective group of gmn — 1)-fold extended manifold. <

It results from what has been said that eveiterm subgroup of oyr
G, transforms thexo! straight lines through the point = y = 0 either
as anr-term group or as afrr — 1)-term group and in fact, the first case
happens when the infinitesimal transformatign+ yq is lacking in th
subgroup, the second one when+ yq is comprised in the subgroup. The
only subgroup of th&, which transforms those straight line in the sgme




The Projective Groups of the Straight Line. 83

way as the&7, is the invariant subgroupq, xp — yq, yp. If we combine
with this the results of the preceding paragraph, accortbnghich every
subgroup of the general projective group of the once-exdndanifold
leaves invariant either one point, or two separate poimtsyo collapsing
points, we obtain the

Proposition 2. The general linear homogeneous gradp:

xrq, Tp—yYq, Yyp, Tp-+yq

of the planer, y comprises only one subgroup, which, just@g leaveq
untouched no straight line through the invariant paint y = 0, it is the
three-term invariant subgroup:

rq, xIp—yYq, Yyp

of the G4. Every other subgroup of th€, leaves at rest at least one

straight line through the point = y = 0.

If one subgroup of the~, leaves invariant onlyone straight line
through the pointr = y = 0, then it is either three-term and it belor
to the type 2 of the theorem, or it is two-term and it belongere of the

types 3 and 4. If it leaves untouched two separate straigbs lthrouglh

the point, then it is either two-term and is of type 5, or it ieeterm and i
of one of the types 7 and 8; if it leaves untouched two collagpsiraighf
lines, then it is two-term of type 6, or it is one-term of onetlo¢ types §
and 10. It only remains the one-term subgrotip+ yq, by which every
straight line through the point = y = 0 keeps its position.

gs

s

»]
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Chapter 3.

Determination of all Finite Continuous
Point Transformation Groups of the Plane.

When it is said in the title that all*) finite continuous graupf point
transformations of the plane shall be determined, this ismbe under
stood as actually writing down all these groups. It is notlada intention
to do this; rather, we shall proceed as in Vol. |, Chap. 22,34 4qg. for
the determination of alt-term transitive groups of a given compositi
We distribute the finite continuous groups of point transfations of the
plane into types, by each time recognizing two of these ggdopbe of
the same type if and only if one is equivalent to the otherughoa poin
transformation of the plane. In this way, each of the soughigs belong
to one and only one type; conversely, all groups belongingnte deter
minate type can be identified without difficulty as soon as kmawvs ong
amongst them, and this single group can be regarded as seepaéve o
the entire type. As a result, we can replace the problemrezfdp in the
title by the following:

*) As far back as 1874, Lie has sketched the determinatioit gf@ups of the plane in th
Gottinger NachrichtenHe gave a justification in great detail in 1878 in therwegische
Archivand later in theMath. Ann, vol 16. Lie has indicated the simple method use
the text for the determination of all imprimitive groups bktplane, firstly in 1884 in hi
Archiv, and since 1886 in his lectures at the university of Leipzig.

To exhibit, for each type of finite continuous group of paiahsfor-
mations of the plane one, but also only one, representative.

If this problem is solved, then we basically know all finitentou-
ous groups of point transformations of the plane, since eaehof thest
groups is equivalent, through a point transformation ofgilame, to a sin
gle of the found representatives.

According to Vol. 1, p. 220 sq., the groups of the plane areddid in
two separate categories, of which the first embraces allipviengroups
and the second all imprimitive groups; besides, it is clbat two group
of the plane belonging to the same type are always eithergyottitive, or
both imprimitive. As a consequence, we can solve the proplemwhich

vJ

[12]

d in

A4

o

treatment we have reduced the problem stated in the titleeothapter
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firstly for the primitive groups, and afterwards for the impitive groups
one case after the other. However, before we pass to that, wet yet
make clear whether it can be recognized that a given finitdirmoous
group of point transformations of the plane is primitive,imprimitive.
That is why we place in the beginning a paragraph in which weveg|
the general developments of the Vol. | about primitivity amgbrimitivity
to the groups of the plane, and in which, as far as it is necg$sathis
particular case, we complete these developments.

§ 6.
According to Vol |, p. 220 sq., anterm group:
Xif =&z, y) p+ (2, 9) q, (k=1..r)

of the planer, y is imprimitive if and only if it leaves invariant a family ¢f

oo! curvesy(z,y) = const. Hence, if the groufy; f, ..., X,.f is intran-
sitive, it is at the same time imprimitive, because an irditive group of
the plane divides the plane iw' curves:i(z,y) = const. that all remai
invariant, whence the group leaves invariant at the same tira totality
of the family of curvesu)(x, y) = const.

The indicated necessary and sufficient condition for therimigivity
of the groupX, f,..., X, f can now be given a different form. At firg
it amounts to the fact that by the concerned group, a certa@at partia
differential equation:

of af
Af = a(z,y) 90+ B(x,y) o
remains invariantl¢c. cit, p. 221). But if we bear in mind that wit

the linear partial differential equatioAf = 0 is associated the invariaht

ordinary differential equation:

(1) a(z,y) - dv — Bz, y) - dy =0,
then we recognize immediately that we may also say:
Ther-term groupX; f, ..., X, f of the planer, y is imprimitive if and

only if it leaves invariant a first order ordinary differeatiequation of the

form(1).

Next, we remember that byz : dy, a certain direction of progregs

[FORTSCHREITUNGSRICHTUNG is determined at every point, y of the
plane, and that consequently,y, dz : dy can be interpreted as the?
line-elements of the plane. Thus, if we want to know whethergroup

=)

h
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X.f,...,X,.f leaves invariant an ordinary differential equation of fthe
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form (1), we must at first examine in which way it transforms tme-

ant a family ofoo? line-elements which is represented by an equatiq
the special form (1).

To this end, as in Vol.I, p. 524 sq., we consider the variablgg
as functions of an auxiliary variable HFSVERANDERLICHEN ¢ and
we prolong ERWEITERN the infinitesimal transformation, f using the
notation of the differential quotients:

dz _ dy _
a " w
We therefore obtain the prolonged group:
Xpf=&p+nq+ &0 +npd (k=17)
in the variables:, y, 2/, v/, where the abbreviations:
o 98k (%k of _
8 _'_ 6]4;7 ax, - p?
on; @Uk af
/ / ! A

have been employed. Now, singey, ' : ¢ can obviously be used
coordinates for theo? line-elements of the plang y as well asr, y, dz :
dy, the prolonged groupXif,..., X, f indicates how the line-elemer
are transformed by the grouy, f, . . ., X, f; so now the question is yet
decide whether or not the groug f, . . ., X/ f leaves invariant an equati
of the form:

(11) a(x,y)-y’—ﬁ(x,y)-x'zo.

In the groupX. f,..., X, f, there is a certain number, say precis
r —m, of indepedent infinitesimal transformations which leaaéouched
an arbitrarily chosen point, 3, in general position; here, the number
has the value 2 or the value 1, according to the gr&yp, . . ., X,.f being
transitive or intransitive. Naturally, thegse— m infinitesimal transforma
tions engender afr — m)-term subgroup of the groufi, f, . .., X, f (see
Vol. I, p. 205, Prop. 2), and their power series developmeuits respec
to powers ofr — zq, y — yo are free of terms of zeroth order; hence t
have the form:

Yif ={ k(@ — o) + 1y — o) + - } pt
+{Vk(x—iﬂo)+0k(y—yo)+~-~}q (k=1--r—m),

elements of the plane, y, and especially find out whether it leaves invari-

n of

ely

ey
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and at the same time, under the assumptions made, the isifingttrans
formation:

aYif+-tenYnf
is the most general transformation of the groXipf, . . ., X,.f which con-
tains no term of zeroth order in—xy, y —yo. If we prolong they;, f in just
the same way as th¥, f, we then obtaim — m independent infinitesim
transformations in the variablesy, «’, ¢’ of the form:

YVif =Y +{(w+- )2’ + (e + )y} o'+
+{w+- )+ e+ )y} (k=1-r—m),
which in turn engender ar(r — m)-term subgroup of the grou
Xif,..., X/ f, namely the largest group contained in this group w
leaves invariant the system of equations= zq, y = yo.

Now, if an equation of the form (1’) remains invariant undee groug
Xif,..., X/ f, then obviously, the system of equations:

T =1x0, Y=y, alz,y)y —px,y)a"=0

remains invariant under the grodf f, ..., Y, f, or what amounts to the

same, the system of equations:

(2) r=1x0, y=2y, azo,vy0)y — B(xo,y0)2 =0,
where, in any case, the coefficientszdfand ofy’ do not both vanish, bé
causer, yo IS, indeed, a point in general position. Hence if we remer]
that a system of equations of the form (2) represents a lex@aent passin
through the point, 3y, we can therefore say: if the group, f, ..., X.,.f
is imprimitive, then aside from the point, yo, the groupYy f,..., Y/ f
also leaves invariant yet a line-element passing through it

But the converse also holds true: when the groig,...,Y, . f,
together with the pointg, yo in general position, also leaves invarian
the same time a line element, yo, agy’ — Fox’ = 0 passing throug
it, then the groupX, f, ..., X, f is imprimitive. Actually, to begin with
let the groupX. f,..., X, f be transitive, so that the number has thg
value 2. In that case, the line-element in question throbgtpbintzxg, yo
admits exactlyr — 2 independent infinitesimal transformations of the
term group X f,..., X f, so it takes exactlyo? different positions by
this group, the totality of which remains invariant undeistgroup cee
\Vol. |, p. 483, Theorem 85). Moreover, if we take into accothe fact
that the pointzg, 1y, also takes preciselyo? different positions by th

=
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group X f,..., X f, then we realize that the family et? line-elementj
that are invariant by the grouf; f,..., X|f is represented by an eqy
tion of the form (1’), and hence, under the assumptions mémegroup
X1 f,..., X, f is effectively imprimitive.

> Explanation. <

There remains the case where the grotyy, . . ., X, f is intransitive
but in this case, its imprimitivity is sure from the begingjrand thus, th
assertion stated above is completely demonstrated.

X1 f,..., X, f of the planer, y is primitive or imprimitive, then one h3
to proceed as follows: one sets up the largest subgroup gwedan the
group X f,..., X, f which leaves invariant an arbitrarily chosen point
general position, and one examines how this subgroup toamsf theco!
line-elements of the plane y passing through the pointy, yo; if the sub-

group X, f,..., X, f isimprimitive; if it leaves untouched no line-elems
then the groupX; f, ..., X, f is primitive.

Now it still remains for us to express the criterion found icanve-
nient analytic form.

Everything comes down to whether or not the graqy,...,Y, f
defined on p. 87 leaves untouched a line-element throughntlaiant
point xg, 1. In order to make this clear, we nevertheless do not g
need to determine the entire growpf,...,Y, f, but we only need t
determine how this group transforms the' line-elements through tH
pointxg, yo, and we can achieve this very easily thanks to Vol. I, pp. 3
234: namely, from thé&’ f, we leave out the terms withand withg, and
in the remaining terms, we set= x,, ¥ = yo, SO that we obtain a line
homogeneous group:

Dy = (M2’ +y') 0+ (v’ + pry’) ¢

in the variables’, ¥’ which is an Isomorph?? to the grotpf, ..., Y, f
and which transforms the line-elements through the pajng, exactly ag
this group does.

Now, it still remains to examine whether the linear homogengroud
D.f,....2,_nf leaves untouched one line-elemengy’ — Gz’ = 0, or,
what amounts to the same, whether it leaves untouched, witenpieted

If one wants to find out whether a giversterm continuous group

(D
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group leaves untouched one of the line-elements in question, then the

nt,

t all

e
32—

as a group of the plang, 3/, a straight line through the point = 3’ = 0.
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But according to p. 83, we can answer this question. We tberedbtairn
the

Theorem 4. Whether a givem-term group of the plane, y:

Xif = &, y)p+ni(2,9) g (h=1-7)
is primitive or not can be decided in the following way: Oné¢etines

at first the number — m of the mutually independent infinitesimal tra
formationse; X f + - - - + ¢, X,. f which leave invariant an arbirarily chg

tesimal transformations of this nature any- m independent ones, s
Yif,...,Y,._.f, and one writes their power series expansions with

or higher order. If these power series expansions are wriée follows:
Vief ={Xe(z — z0) + p(y — o) + "'}P+

+ {vi(z — o) + puly —vo) + - } q (k=1-r—m),

then one finally forms the infinitesimal transformationshe wariables
'y

Dif = (2" +uy") p' + (2’ + pry) ¢

(k=1--r—m)
which engender a linear homogeneous group. After that, afdroup
D.f,....2,_f has one of the two forms:

!/ !/ !/ !/ !/ ! ]
rq, rTp —yq, yp, TP +yq;
(3) !/ N ! !
rq, rp —Yyqg, yYp,
then the given grougX, f, . . ., X,.f is primitive, while in every other cas
itis imprimitive.

It follow from this theorem that in order to be able to settie prim-
itivity or the imprimitivity of the groupX, f, ..., X,.f, one even does n
at all need to know the infinitesimal transformatiokisf, . . ., X, f them-
selves, but for this, the defining equations (Vol. I, Chap. dfithe groug
are already sufficient. This is because if one knows thesaidgfequa
tions, then one can determine the terms of first order ihzy andy — yo

in the power series developments of g and hence one can also set

sen pointzg, o in general position, then one selects amongst the irjfini

spect to powers of — x, ¥ — 1o, though leaving out all terms of second

b

up

the linear homogeneous grodp f, ..., 2. nf.

> Explanation. <
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On the other hand, it follows that arterm groupX; f, . . ., X, f ofthe
planezx, y is always imprimitive when its numberof terms is smaller thah
five. Indeed, if the group in question is transitive — we olngly neeg
only prove our assertion for this case —, then= 2 and sor — m < 3,
whence the associated linear homogeneous g®ufp...,2, ..f cer-
tainly does not have any of the two forms (3).

At present, we can tackle the problem posed on p. 84. As alfead
announced, we carry it out at first for the primitive groupsd éhen for the
imprimitive groups.

I. The Primitive Groups of the Plane.

§ 7.

If an r-term groupX,f,..., X, f of the planer,y, or briefly G,., is
supposed to be primitive, then above all, it must be traresitand more}
over, the linear homogeneous grddpf, . .., Y, _..f thatwe have defingd
in the preceding paragraph must possess one of the two f@&mLEn-
versely, according to the developments of the precedinggvaph, ever
groupG, for which these two conditions are fulfilled, must be priweti

If we imagine in our mind that the infinitesimal transfornuats of
the G, are expanded, in the neighbourhood of a paifty, in genera
position, with respect to powers aof — =y, ¥ — yo, then the following
comes out:

An r-term groupG, of the planez,y is primitive if and only if, in
the neighbourhood of a poing), y, in general position, it comprises the
following infinitesimal transformations:

Firstly, two infinitesimal transformations of zeroth orderin— z,
y — yo out of which no transformation of first or higher order can lge|d
duced by linear combination, hence in other words, two itégimal trans}
formations of the form:

(4) P, g
where the left out terms are of first or higher orderin- xy, y — yo. This
demand is synonymous to the one that@heshould be transitive.

Secondlyeither four or three infinitesimal transformations of fiost
der, out of which no transformation of second or higher oider — x,

N~
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y — 1o can be deduced by linear combination, and actually, thésetes-
imal transformations of first order must in fact possessegithe form:

(—zo)g+-, (x—20)p—(y—vo)a+-, (Y—yo)p+

(x—20)p+(y—yo)qg+ -,
or the form:

(—zo)g+-, (@—z)p—(y—w)a+-, (Y—wp+---,
where in the two times, the left out terms must be of secondigén
order inz — xq, y — yo. This form of the infinitesimal transformatio
of first order follows immediately from the circumstance tthiae linear
homogeneous group, f, ..., Y, _..f discussed earlier must possess
of the two forms (3).

But now, already in Volume I, namely in the 2%hapter, we hav
determined all finite continuous groups whose zeroth anddider infin-
itesimal transformations possess just the indicated fdhmre, we mug
only give ton the value 2. Consequently, we can say:

Theorem 5. If a finite continuous group of point transformations
the planez, y is primitive, so that it leaves invariant no family of curv
e(x,y) = const., then it has either five, or six, or eight parameterd
correspondingly, it is equivalent either to the speciakbn group:

p, q, xq, Tp—yYq, Yp,
or to the general linear group:

D, ¢, xq, Tp—Yq, Yp, Tp-+yq,
or finally to the general projective group:

P, 4 QTP —yq, yp, Tp+yq, Tp+axyq, wyp+yiq.
As a result, we have found all types of primitive groups onglane,

types. As one sees, there are only three types of primitigagg in the
plane. Besides, one notices that the developments of the. @8an Vol. I,
when applied to the twice-extended manifold, yet delivetygles of prim-
itive groups of this manifold, while on the other hand, thegduce al

and at the same time, we have found a representative for ewcbfthes¢

of
bS
an

14

types of groups of the once-extended manifsiegChap. 1, p. 60).

> Comment. Belle remarque structurale. <
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[I. The Imprimitive Groups of the Plane.

§ 8.
If X:1f,...,X,.f is an imprimitiver-term group of the plane and

then there existaf. Volume I, p. 139, Prop. 1) relations of the form:

Xk = wi(y) (k=1-7).
Then by introducingr as newz, our group receives the form:

Xif =&(x)p+m(z,y)q (h=1-7),
where we have again employed the customary letfeasid . As one
sees, the variable is transformed for itself fUR sicH by the group
Xif,..., X,.f,andto be precise (Mol. I, p. 222), itis transformed by mg
of a group which is engendered by the reduced infinitesinaaistiorma
tions:

Xif =&(@)p (k=1--7).
This new group is Isomorph with the grouf’ f, . . ., X,.f, since from thg
Relations:

T

|:Xi7 Xk:| - Z Ciks Xsf (6, k=1-1),

s=1
it visibly follows:

T

[ Xi, Xi] = Z Ciks X s f (i, k=1-7)

s=1

will be meroedric, because from the independence of theiiesimal
transformationsXX; f, ..., X.. f, the independence of the transformatig
X.f,...,X,f does not at all follow.

According to Theorem 1 on p. 51, as a group of the once-exte
manifold, the groupX, f,..., X, f cannot have more than three parg
eters, hence it is either three-, or two-, or one-term, orllffaull-term,
that is to say, it reduces to the identity transformatioris thst case og
curs when all theX, f vanish identically. Correspondingly, the grol
X1 f,..., X, f transforms the curves: = const. either in three, or in tw
or in one, or finally in null terms, that it to say, not at all. Weerefors
have to distinguish four cases, that we now want to descmigeadter thg

¢(x,y) = const. is any family of curves which is invariant by this goou

-

ans

4

(cf. also Vol. I, p. 307, Prop. 4), but in general, the Isomorphism

ns:

nde
M-

—

p:

other, beginning with the last one.
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Firstly. If the curves:z = const. are transformed in null terms, tH
all the X, f vanish. In this case, the groupgt, f,..., X, f comprises
independent infinitesimal transformations of the form:

q)l(xay) q, -+, @T(I,y> q.

SecondlyThe curveszz = const. are transformed in one term. Si
the group: X, f, ..., X, f is one-term in this case, then according to
theorem stated above, one can choose the variaiblsuch a way that ey

ery X, f receives the forma,p, and consequently every, f receives th¢

form: axp + nx(z,y) g, where naturally, the constantsi,, . . ., a, should
not all vanish. From this, it comes out that, through the caoifz in ques-
tion, the group: X, f, ..., X, f comprises- infinitesimal transformation
of the form:

él(xay) q, .-, ®T(ajay) q, p+77(x>y) q.

Thirdly. The curvesz = const. are transformed in two terms. In t
case, according to the mentioned theorem we are aware otaomehoos
the variabler in such a way that every . f receives the form{a,, +b,) p,
and to be precise, not all expressiongh; — a;b;, vanish here, because t
group: X.f,...,X.f is actually two-term, and hence it must comp
two independent infinitesimal transformations. Now, onessenmedi;
ately that, through the choice afin question, the groupX; f,..., X, f
comprises independent infinitesimal transformations of the form:

él(xay) q, .-, qJT*?Q) p"‘ﬁo(iﬂay) q, xp—'_nl(way) q.
Fourthly. The curves:xz = const. are transformed in three terr

In this case, one can always choose the variabd®e that, in the group:

X.f,..., X,.f, there arer independent infinitesimal transformations of
form:
P1(2,9) ¢, -, Pra(zy) g, pHmolzy) g, zp+m(r,y)q,
2*p + (2, y) g

As a result, four categories of imprimitive groups of then@aare
found. Through an appropriate choice of the variablgg every imprim-
itive group of the plane belongs to one of these categoribss;Tin orde
to find all imprimitive groups of the plane, we only need toeatatine, for
every individual category amongst the four categoriesgedups that ar

en
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comprised in it.

The solution of the problem to which we have thus been Ied,bﬂq

substantially lightened if we bear in mind the following tscfirstly, tha
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through every transformation of the form:
(5) xy =const,  y = Q(z,y),

every group which belongs to one of our four categories,asdferred t¢
a group belonging to the same category, and secondly, tleay exterm
group amongst one of the last three categories does comigin a 1)-
term subgroup which belongs to the preceding category. \Weteefore
proceed as follows:

To begin with, we determine all groups of the form:

CI)l(ZL’, y) q, -+, q)r(‘r7y> q,
and we reduce them, through a transformation of the fornt¢3 series o
normal forms. After that, to each of the gained normal forms add in th¢
most general way an infinitesimal transformation of the fopa ) (z, v) q,
in order that again a group comes out; thus we find all groupiseo$econg
category and we bring them, through transformations of gmnf(5), to
simple normal forms. To each one of these normal forms, wenaghd in
the most general way one transformation of the form= , (z, y) ¢ and
we thefore obtain the groups of the third category; and finalke find the
groups of the fourth category by adding to the latter onedfi@mmation
2?p + a2, ) g
We now want to realize in details the program set up here.

§ 9.
The curves: xz = const. are transformed in null terms.
The question here is to determine aflerm groups of the form:

(6) Xif = (2, y) q (k=1-7).

As one sees, the grougX; f, . .., X, f transforms only the variablg,
while it does not transform at all. Thus, if we confer ta: one arbitrary
constant value:, we then get, in place of th&, f, certain infinitesimg|
transformations:

(6) Xof = D(a, y)q (k=1-1),

=K

group (6). Now, as long as the constardoes not take any special vall
it is obvious that none of the infinitesimal transformatictisf can van;
ish identically, so that the group (6’) does surely not regtecthe identity
transformation. On the other hand, according to Theorem fi. &1, this
group cannot contain more than three parameters; constyjuaihthe

—_

engendering a group in the variabjealone, which is Isomorph to the

€,
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groups (6) are distributed in three classes, and to be @reoie group of
the form (6) belongs to the first, to the second, or to the thiess, act
cording to whether the group (6’) is one-, two-, or threavtefor a general
value ofa.

We now determine one after the other the groups of each oresé§
three classes.

If the group (6’) is one-term, then according to Theorem 1 061y
it can, through an appropriate choicegfbe given the formy; in other
words, if as a newy, one introduces in the’, f, an appropriate function
Q(a, y) of y and of the constant, then all theX), f receive the form:

Xef = Fr(a) - q (k=1-7).

If one therefore introduces the functionf)(z, y) as newy in the
group (6) — this is a transformation of the form (5) —, thenstigroup
receives the form:

Xif = Fo(z) - q (k=1-7).

On the other hand, it is clear thatinfinitesimal transformations of the
form:

—+

[1] Fl(x)(L FQ(x)Q> aFr(aj)q
do always engender anterm group, whichever also theé can be as fung
tions of z, provided only that there exists no relation:

aFi(z)+ -+ F(x)=0

with constant coefficients. With this, through a transfotiom of the
form (5), we have brought to a right normal form all groups g¥hbelong
to our first class.

Secondly, let the group (6’) be two-term and hence in any,cass
> 1. Then according to the theorem stated several times, thepdi®)
can, by an appropriate choice gf be given the formyg, yq. Translated
into (6), this means: when a suitably chosen funcfin, y) is introduceq
as newy, the group (6) receives the form:

Xif = {Fk(iﬂ) + G () ?J} q (k=1--7).
But now, we find by Combination:
[Xi, Xk:] = (E Gy — Iy, Gi) q = Q(x) - q,
where in any casg;;, do not vanish all the time, since otherwisg,f and

X f would be linked by a relation of the form,, (z) X; f+ Gix () Xi. f =
0 for all values of: andk, so the group (6) would be one-term only, against
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our assumption. Next, it comes for arbitrgiy

[Qz‘k q, Xjf} = Gj Qirq
and when we put; €2, ¢ in place ofQ2;;, ¢ into the left-hand side of th
equation, it comesG? Qi1 g, and so on, briefly in generali}* - Qy ¢,
where the entire numbern can be made arbitrarily large. Form this

follows that theGG; must all be free ofr, since otherwise, the infinite
many infinitesimal transformations:

which are all mutually independent, should all belong to tgreup:

sequently, th&; are constant and our group has the form:

Xif = {Cky+Fk($)}q (k=1--7),
where naturally, the;, do not all vanish. Thus if for instance is not

X, f = ¢y q, hence our group contaimsindependent infinitesimal tran
formations of the form:

Fi(z)q, ..., Froi(x) g, yq

(r>1)

[2]

Thirdly and lastly, let the group (6’) be three-term, so ttaatcording
to Theorem 1 on p. 51, it can be given the form: yq, y?q through ar
appropriate choice af. Then it is always possible to introduce as nga/
function: Q(z, y) such that the group (6) becomes visible under the fq

Xif = {SOk )+ vy xe(2) + 92 p( }q (=17,

Combination of the two infinitesimal transformations; f and X, f, and
thatg, yq, y*q stand in the relationships:

. val =a. ¢, vd =2yq.  [ya. v’d] = v’
then one realizes that the Proposition 1 on p. 72 can be atpliny three
amongst the infinitesimal transformatios f, hence that betweeX; f,
X f andX;f, the identity:
0i Xi i
X Xi], (X Xol1 =2 wn xa ok | =200 Xef

Xi1f,..., X, f, but this is impossible, because that group is finite. ¢

equal to zero, then we introduce;y + F,.(z) as newy, and it comes:

Yy

on-

DIrm:.

If one now thinks that the variablejust plays the role of a constant by the

14

0i Xj W
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holds. If one sets in this identit}\;;; X, f in place of X, f, then ong
getsA?kj X;f, and in an analogous way, one gagj X;f, and so on
all of which are infinitesimal transformations belonging ttee group
Xif,..., X, f. Consequently, the\;,; must beconstant A;;; = Ci;,
and from the identity:

Xif wi xi s

Xl ok Xk Ui | _

Xif wi x5 ¥ ’

Xsf ps Xs ¥s
it furthermore comes out that between any four amongst theitiesimal
transformationsY, f, ..., X, f, a relation of the form:

Crjs Xif — Cijs Xpof + Cits Xjf — Cip Xof =0
holds. Now, theA;;; cannot all vanish, because otherwise the group
would not be three-term, so we can assume that, 8ay; = Cio3 IS
nonzero. But on admitting this, the latter equation showsadiately
thatX;f,..., X, f can be deduced linearly witonstantoefficients from
X, f, Xof, X5f, hence that the groul§, f, . . ., X,.f, just as the associat
group (6°), contains only three infinitesimal transfornoa$. The possibi
ity » > 3 is therefore excluded and it remains only the possibility: 3.
Thus we now have to bring to an as simple as possible normal

the three-term group:

Xif = (ou(@) +yxu(@) + v* vi(2)) ¢ (k=1,2,3)
by means of a transformation of the form (5). To this aim, waeenbel
that according to Vol. |, p. 591, Prop. 5, our group surelytears two-
term subgroups; for reasons of simplicity, we want to admt tX, f,
X, f engender such a subgroup.

Now, because, as we have seen above, the deterninatty y»13
does not vanish, then obviously the two infinitesimal transfations:

Xif = {en(a) +yxula) + y* vi(a) } (k=1,2)
will be independent of each other and will engender a tworgroup. Bulf
this groupX; f, X5 f is projective, and hence conjugate to the groupy
inside the general projective group of the once-extendeqifoid y (seq
Theorem 2 on p. 71). From this, it follows that, when one idtrces a
newy an appropriate function of the form:

a(z)y + B(x)

(6)

for

vJ

Y(@)y +d(z)



98 Volume lll, Division I, Chapter 3, 88 8, 9, 10, 11, 12, 13, 14.

the groupX; f, X, f takes the form:
X1 f = {F(x) +yGi(2)} q, Xof = {Fa(z) + yGalz)} q.

the group, by means of an appropriate choicg,afan be given the forr
Fi(x)q, yg; finally, by yet introducin% y as newy, one obtains th4
Fi(x) equals 1. In the new variables y, the groupX, f, X5 f, X3f now
has the form:

0 yq, Xaf = {o(@) +yx(z) +y*¢(2)}q,
since all the transformations employed by us possess the for
A@) y + p(z)

v(z)y + plz)’
so that only the form of the functions;, ¢35, x3 change in the initial eX
pression forX; f. Thus, one has:

g, Xaf] = [x(2) +2y¢(2)] g
[Q7 [Q7 XBfH = 2¢([L’) q,
whencey (x) andy(x) must be constant. Lastly, from the equation:
va, Xsf] = —p(x) a+y*¥(9) g,
it yet follows thaty(z) is a constant too.

As a result, it is proved that every group which belongs to thind
class can be brought to the form:

r1 =@, Y1 =

[3] 4 va, v'q
by means of a transformation (5).
§ 10.
The curves: x = const. are transformed in one term.

According to the program set up on p. 94, we now have to ad
transformatiorp + n(z, y) ¢ to each one of the groups found in the prec

group arises.
At first, we seek to bring alt-term groups of the shape:

Fi(z)q, ..., Fooa(z) g, p+n(z,y)g

Here as above (p. 96), one realizes thatand G, are constant, and thit

=]

l the
ed-

ing paragraph and to determinan the most general way in order thaf a

to a simple normal form.
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If » = 1, we introduce a solution(x, y) of the differential equation

O 0w
ox g dy
as newy, and we get the group:
[4] p

If » > 1, there must exist an equation of the form:

r—1
[p+nq, Figl =) ca Firg,
k=1

for the left hand-side is free gf. Consequently, we have:
r—1
F(z) — F; ? => e Fy,
Yy k=1

so thaty is linear iny:
n=ye(r)+x(@).

But if we set:

€ry =, Y1 :yCK([L')‘i‘ﬁ(IE),
it comes out:

pHng=pi+ (yo/(x) + 5'(x) +an) g;
hence when we choogeand in such a way that:
o' +ap =0, F+ax=0,

which is always possible, then it comes plaintyn ¢ = p;. Since in ad
dition the remaining infinitesimal transformations of thegp essentiall
keep their form through the performed change of variablesgooup ther
becomes visible in the shape:

Fl(‘r) q, -, Fr—l(‘r) q, D

Finally, the equation{p, F;q] = F/q now shows that thé; must satisfy :
system of ordinary differential equations of the form:

dF;
:ZCZka (i=1-7r—1).

Here, the constanis, are absolutely arbitrary, since the Jacobi ider
produces no relation between the.
According to known resultsty, . . ., F,._; do all satisfy a certain lin

r——4

tity

~—+

ear homogeneous differential equation(ef— 1)-th order with constar
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coefficients:
d—F d—2F dF
o - F=0;
P +Crg dor—? + + I + () 0
we hence can replack, ..., F,_; by particular integrals of this diffe

ential equation. These particular integrals can be orderesgveral, sa
[ > 0, systems of the form:

ea1z7 xecmz, ’ m1€a1$
ea2z7 l’ean, ’ mgeagw
eMNrxet .., xMeM”,
whereay, . .., oy denote constants which are all distinct one another
wherem,, ..., m; are all integers> 0, whose sum has the value- 1 — [.
Therefore, our group has the form:
(5] et g, e g, 2T q, .., ™k e g, p
(k=1,2-1; 1>0)

We now turn to the groups:

Fi(x)q, ..., F(x)q, yq p+nz,y)q,
where according to p. 96, we must assume the integebe > 0.
There exists an equation of the form:

0

/r] T
[P+ ng, yq] = (n—ya—y> q=cyq+ Y _ o Frq,
k=1

and in the same way:

a s
[p+nq, Fiql = [F{(@“) - F, a—Z} ¢=Ciyg+ > CuFrgq
k=1
The latter equation shows thatpossesses the formy(z) + y 5(z) +
y*~(z); but when this expression is inserted in the first equatiorgines
instantly:

v(z) =0, c=0, a(x) = Z cr Fr.(z).
k=1
As a result of this, we replace the infinitesimal transfoiovatp + 7 ¢ by:

T

p+<n—zcka>q=p+yﬁ(x)q;

k=1

and
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then we introduce a new. y; = vy - ¥ (), and we obtain:

y1 (Y + BY)

(8
hence when we make:’ + 51 = 0, we obtain plainly:p. But since thq
remaining infinitesimal transformations do essentially citange throug
the performed change of variables, our group has now the:form

ptyBgq=p+ a,

Fi(z)q, ..., F.(z)q, p, yg.

Here obviously, the first + 1 infinitesimal transformations engende
subgroup which, according to what precedes, possessegrthd5]; as g
result, we obtain the group:

QT mg 0T
ek k k

(6] g, ve™tq, ..., e q, yq, p
(k=1,2-1; 1>0)

Now, we turn to the groups:

4, yq. v'q, p+n(x,y)q.
It comes out:

0
¢, p+n4ql = 8_Z = (a+ 2by + 3cy®) q,

lyg, p+nq) = (yg—z - >q= (a+ By +7y%) q,
wherea, b, ¢, «, 3, v are constants. If we put in the second equatior
value:

n = p(x) +ay + by* +cy’
issued from the first one, it comes= 0, ¢(x) = const., hance our grou
is engendered by the four infinitesimal transformations:

[7] 4, Y4, v’q, p

§ 11.

The curves: x = const. are transformed in two terms
We have to add to every group of the § 10 one infinitesimal toan
mation of the formzup + n(z, a) q.
At first, we consider the group:
p. xp+n(z,y)q
and we find:

4

-

the

)

. ap g =p+ o
x = —
D, xp—n4q) =p O q,
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whence% =0, 0r:n = ¢(y). Two cases are therefore to be be digftin-

guished,; eithep = 0, which gives the group:

[8] p, xp |,

or ¢ # 0. In the latter case we introdugg = v (y) in place ofy and we
obtain:

xp+(y)g=1p+ ¢ q;
thus if we choose so thatp v’ = 1, we obtain the group:

[9] p, Tp+q
Moreover, we have to determine the groups:
e q, xe™Tq, ..., x™ e q, p, xp+n(r,y)q
(k=1,2-1; 1>0),

or, as we want to write for abbreviation, the groups:

Fi(x)q, ..., F.(x), p, ap+n(z,y)q  >0).
The relations:

on 4
2 wp+7m]=p+—axq=p+ § ar Fi. q
k=1

a s
[rp-tna, Fig) = (¢ Fi(e) = Fogl) a =37 bue Frg
k=1

give:
o _ an _
8_95 _90('1')’ ay —w(l'),
whencey'(z) = 0 and:
n=cy+e(x), Px) = ap Fi().

But if we substitute foi#'; in the transformation(z ¥ — cF}) q the expresf
sion: z™* e“x® we receive the transformation:

o 2™ T g 4 (my, — ) 2™k e g,

which can be contained in our group onlyif vanishes. The infinitesi-
mal transformation$},q have in consequence of that the simple shap¢:

D

q, xq, ¥°q, ..., 2" 'q,
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and one has:
Af+1

r—1
n=cy+ Z k—j:rl 2 4 const.,
k=0

or, because we can take away, by virtue of e, all remaining termg
simply:
n=cy+ hz".
If we now set:
T =, 1=y +az’

the totality of all infinitesimal transformations that camdbeduced linearly

from ¢, zq, ..., "¢, p remains wholly unchanged, but there will be:
xp+nqg=uxzp + {cy—i— (ozr—l—h)xr}ql
=T p + {cy1 +(h+ar —ac)a:’{}ql.

Thus ifc # r, by an appropriate choice of, we can fulfill the equatiory:

h + a(r — ¢) = 0, and we obtain the group:

[10] q, xq,....x" " 'q, p, Tp+cyq

(r>0)

If on the contrary: = r, we can in any case suppose thaloes not vanisk
because otherwise we would come back to the group just fowad;an
therefore introdudez v/h as newz, and we find the group:

[11] q, xq, ..., 'q, p, ap+(ry+a")q

(r>0)

At present, we turn to the groups:

e g yq, p, xp+n(x,y)q
(k=1,2--1; 1>0)

apT aRT
e g, xe™rq, ...,

or written in a shorter way:

Fi(z)q, ..., F(x)q, yq, p, xp+ng  (>0).
One gets:

an .
[y, xp +nq] = (ya—y—n)q:aqurZakaq
k=1

a T
[Fiq, zp+nq] = (Fa—z —xF{(x)> q:byq+z bir Fi q
k=1
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and from this without difficulty:

a=0, n:ya(x)—Zaka(x)
k=1

If one replacescp + 7 ¢ by the transformationzp + y a(x) ¢, which is
obviously allowed, one finds:

[P, xp+yaq=p+ya.q

=pteyq+ Y Fi(z)q,
k=1

therefore alk;, vanish and one has: = cx + const., where the integratio

y1 = ye “ andx; = x, then one obtains:

&

p=p1—cye “q =p—cyiq,
g=e¢“q="q, ye=uaq,
so the transformationk; ¢, y ¢ do essentially keep their form, while:
Tp+mnq=xp+cryq
is transferred tac;p;. As in the preceding case, one now yet realizes
Fiq, ..., F.q must have the formyg, zq, ..., 2" 'q, So as a result, or
arrives at the group:

12] q, xq,....,x" " 'q, yqg, p, ap

(r>0)

Finally, it remains the groups:

¢ ye v'¢, p, wp+n(z,y)q.
Considering the equations:

on
lq, zp+nq] = oy ¢ = (a4 2by + 3cy?) q
lyq, xp +nq] = ( )q—(a+ﬁy+vy)

the first one gives:

constant can just be left out. In placewtndz, if one now introduceg:

n=p(x)+ay+by*+cy’,

that
e
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and the second one:= 0, ¢ = const., SO thaty can be set equal to z¢|
and our group has the form:

[13] 4 yq¢, v’q, p, p

§ 12.
The curves: x = const. are transformed in three terms
We now have to add to every group found in § 11 a transformatig
the form: 22p + n(z,y) q.
For the group:
p, xp, ¥p+n(r,y)q
there are the equations:

on
[p, 2*p+nq] =22p+ 5, 4= 2P,

n
[zp, 2°p+ 4] =x2p+xa—xq=x2p+nq,

whenceg—z vanishes as well agitself, and it remains only the group:

[14] p, xp, =°p

For: p, xp + ¢, we can write:p, xp + yq by introducinge? as newy;
therefore, the groups of the form:

p. xp+yq, p+n(z,y)q
are to be determined. We find:

2 _ on
[p, #°p+nq] =2rp+ 54

on on
[zp + yq, 2°p+nq] = 2%p + (ﬂsa—IﬂLya—y — )q,
whence one has:
on on on
=2 ~L =9

that is to saymn must possess the formzy + ¢(y) and at the same tin
be homogeneous of second orderiand iny, namely:n = 2xy + cy?.
Now, if c vanishes, we introducg’y as newy and we find the group:

[15] p, 2zp+yq, *p+ayq

If on the contrarye does not vanish, we introduég as newy; at the sam
time, yq keeps its form ang?q is transferred tc% y2q, hence we just nee

e

U

d
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to choose& = ¢ and we obtain:
[16] p. ap+yq, p+ (2zy+y*)q

In order to find all groups of the form:

q, xq, ..., 2" q, p, xp+cyq, ¥*p+n(z,y)q (r>0),

we form the equations:

a r—1
9, *p+n4q] = a—ZQZ > watyq
k=0

an r—1
2 k
, T°p+ =2rp+ —q=2x —|—<2c+ bx),
[P 2*p+na] =2wp+ 5 q = 22p y;kq
from which it follows:
r—1
n=p)+y ) az*
k=0
r—1 b
k k41
= + 2cxy +
U(y) y kz:% T
By comparing these two expressions, it comes:
1N = agy + 2cry + Z ger",
k=0
or, sincego, g1, - - -, g-—1 €an simply be set equal to zero:

1N = apy + 2cxy + gz’
At present, one has:

[zp + cyq, 2°p+nq| = 2°p+ {Zny +g(r—c) x’"} q

r—1

=2’ p+ng+ Y haty,
k=0
whence:
ap =0, glr—c—1)=0.

But on the other hand, one has:
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whence:r — 1 = 2¢, that is to say, as soon ass > 1, r — ¢ — 1 cannot
vanish and one hags= 0. By condensing the two cases> 1 andr = 1,
g = 0, we obtain the group:

a7 | @ xq, ...,x" Vg, p, 2ap+(r—1)yq 2°p+(r—1)ayq

(r>0)

By contrast, in the case= 1, g # 0, we obtain the group:

¢ p, rp, ¥’p+grq,
or, when we introduces as newy, the group:

[18] ya, p, ap, T°p+ryq
For the determination of all groups:

¢ vq, ..., 2" g, p, ap+(ry+a’)q, ’p+n(ry)q (r>0),
we set up the equations:

0
[p. 2*p+n4q] —2wp+a—nq—2wp+2 ry +a”) Zakw q

r—1

an
g, 2*p+m4q] = —q=) bhatq
ay k=0
From these it follows:
r—1
n=p)+y Y bt
k=0
zr — Ak k41
=) +2( ) ,
1/)(y)+ rxy+r+1 +k_0 k:+1x
or by comparison of the two expressions:
IT+1
=b 2 " ,
n oY + 2rxy + ax +r+1
where for reasons of brevity, we think that the superfluousmsewith
20,2, ..., 2"~ are took away. Further, we form the equation:

[zp+ {ry+ 2"} q, 2°p+nq] =2"p + <2my + box"+

2
r+r+2 1
+7xr+> ,

r+1 e
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whose right hand side must visibly take the formp + 7 ¢, so it comes:

24
b pu— pum— 0’ p— pu—
0 a T 1 T
But this is impossible, becauseanust be> 0, and as a result, there are

general no groups of the demanded sort.

Now, we turn to the groups:

q, xq, ..., 2" q, yqg, p, xp, ¥’p+n(r,y)q (r>0).

The equations:
877 r—1
b, 2’p+ngl = 2ap+ - q=2ap+ > aptq+ayq

ox
k=0
877 r—1
g, ’p+n4q] = 1= > bt g+ Byq
k=0
an r—1
[yq,x2p+nq}=<ya—y— )q= Y adtq+yg
k=0

show thatn takes the form:n = «xy after removal of the superfluo
terms of the form_ g.2* + hy. Furthermore, one finds:

[xr_lq, *p + axy q} =(1-r)z"q+ az"q,

and this expression must vanish, because the group comaitransfor
mationz”q, whencen = r — 1. Thus, we have the groups:

r—1 2 _
g | ¢ -4 ye poap, z°p+ (r—1)zyq

(r>0)

Finally, the groups of the form:

4, vq, v’a, p, xp, °p+n(z,y)q
still have to be found. We receive:

0
lq, °p+nq] = 8—Zq= (a+2by + 3cy”) q

an
2 _ e/ _ 2
lya, ©*p+n4q] = (yay )q (a+By+7y")q.
The first one of these equations shows thatas the form:p(z) + ay +

in

by* + cy®, the second one thatvanishes and that(z) is a constant. Thu

V7
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we obtain the group:

[20] 4, yq, v’q, p, xp, T’p

As a result, all finite imprimitive transformation groups thie plane
have been reduced to certain normal forms.

§ 13.

At present, we have produced the determination of all imjtiwen
groups of the plane insofar as we can say: every imprimitreelg of the
plane is equivalent, through a point transformation of tlame, to one of
the groups found in 8 9-12. But the goal that we have set oxgsdbr
the imprimitive groups on p. 84 has not yet been reached \wih t/Whal
matters for us is to possess one and only one representatiegdry typd
of imprimitive group of the plane, and it is easy to see thagif—12,
certain types of groups are represented by more than onesemative.

For instance, through the transformation: = y, y; = z, the groug
[14] is transferred to the group [13]; hence both groupsesent the samnle
type. In the same way, through the transformation mentiptrexigroup
[4] changes to one of the groups [1], the group [8] to one oftweips [2],
and so on.

Furthermore, it can be shown that the arbitrary elementshvappe
in our groups can in part be left out, hence that the numbeistihdt typeq
of groups is smaller than what it appears to be, accordinggmtimber o
these arbitrary elements.

To begin with, we consider the groups [1] on p. 39 and we loagk fo
finding out what are the different types of groups that ard&@ioed among
them.

To this end, we must above all determine all point transfaiona:
r1 = a(x,y), y1 = P(x,y) through which the totality of all groups [!
remains invariant, hence through which everterm group of the form:

==
[T

(A) Fl(x)(L """ ) Fr(x)q
is transferred to one of the form:
(B) S1(z)qry oone . , S (2) qu.

Now, by introducing the new variables, v, the group (A) changes to the
following:

Oa

0
(A) Fi(z) 8_yp1 + Fy(x) 6_§Q1 (k=1--7),
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terms ofz; andy;. But the group (A) possesses the form (B) if and
if, firstly «,, vanishes identically and secondly is a function ofz alone,
As a result, the most general point transformation whickdsanvarian
all the groups [1] writes in the following way:

where stillz is expressed in terms aof; by means of the equation:; =
¢(x). From this, one sees that the functiofi) in the transformation (Q
has absolutely no influence on the form of the transformedigr@\’).
Consequently, we need not to consider all transformati@)s lfut only
those for whichy(z) equals zero.

At present, we imagine that two arbitraryterm groups of the forn
[1], say (A) and (B), are presented. For these two groups lkanigeto the
same type, it is necessary and sufficient that they are dguivane to thg
other through a transformation of the form:

(C) 11 = (), y1 =y x(v),

hence that the group (A”), in which naturally one has stilthok thatx
is expressed in terms;, coincides with the group (B) for an approprig
choice ofy(x) and x(x). This occurs if and only if, by virtue of (C')y
relations of the form:

Sr(x1) 1 = Z cxs Fj(2) x(x) ¢ (k=1--7)
j=1

hold identically, where the;; denote constants whose determinant ¢
not vanish. The question whether the two groups (A) and (B)rigeto the
same type therefore amounts to deciding whether thguations:

(D) Fe(r1) = x(2) Y ay Fi() (k=1--7)

j=1
can be identically satisfied, by substituting farandy certain functiong
of z and by choosing the constamis in such a way that their determing
does not vanish; here naturally, must be a true, arbitrary function of

(©) 71 = ¢(), y1 =y x(x) +¥(z),

and to be precise, through this transformation, the groyprééeives th¢
form:

(A‘”) Fl (I‘) X(‘T) qiy------ ) FT(‘T) X(I> q1,

where one has to think that the coefficientgptind ofg, are expressed In

nly
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Wherea$< can reduce to a nonzero constant.
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The settlement of the question whether the equations (Dpeasat;
isfied in the indicated way certainly presents no difficuliynh the theo
retical side, but in general rather many from the practicdé sespecially
because of the occurence of tireunknown constants,;. So it is not su
perluous to develope yet another method which enables idelahethe
the two groups (A) and (B) belong to the same type, but whielldeto
success without introducing the constants

At first, we observe that the general infinitesimal transfation:

Y enFi(x)g=F(z)q

k=1
of the group (A) can be defined by an ordinary differentialapn ofr-th
order, for F'(x) visibly is the most general solution of a linear homoge-
neous differential equation of the form:
r r—1
(E) Cfl;: + ay(x) Cflxr—]j + - F () Cfl—]; + a,(x) F = 0.
In the same way, in the general infinitesimal transformation

Z e Sk(z1) 1 = (1) @

k=1
of the group (B), the functio(x;) is the most general solution of a djf-
ferential equation of the form:

T r—1

Now, by execution of the transformation (C’), the generdinitesimal
transformationF'(x) ¢ receives the shapefF'(x) x(z) g1 and everything
amounts to whether it is the general infinitesimal transttion of the
group (B), that is to say whethef'(x) x(z), expressed as a function |of
x1, IS the general solution of the differential equation (Ghu$, the twq
groups (A) and (B) will always belong to the same type, if antyaf there
Is a transformation of the form:

(H) x1 = ¢(v), §=F-x(x),

by virtue of which the differential equation (E) goes to ((&)*As soor]
as the two groups (E) and (G) are presented, it is theoritinal diffi-
cult to decide whether there is such a transformation. Fone execute
the transformation (H) on the differential equation (E) d@nahe requires
that the resulting equation should have the form (G), thenreneives fo
¢(x) andy(x) a series of ordinary differential equations, about whickjon

d
-+ Clrfl(l’l) d—i -+ Clr(l'l) 3' = 0.

G - - ..
( ) dljl“—l +

|92

—
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always can determine whether they are mutually compatibleod and
whether they can be satistied withquteducing to a constant.

)

*) The first one who occupied himself with the question to knavder which condition
the differential equation (E) can be transferred to (G) byanseof a transformation of the
form (H) is LAGUERRE After him, several mathematicians, notablpHPHEN, treated
the theory of invariants of the linear differential equati(E) vis-a-vis all transformg
tions (H). This theory has several points of contacCERBHRUNGSPUNKTH with the
general theory of the finite and infinite transformation greu

It follows from what has been said that the search for albdéht type$
of r-term groups of the form [1] is now also reduced to anotheb|enm,
namely to the problem of looking for all invariant propesgtidat the lineaf
differential equation of-th order (E) has vis-a-vis all transformationg of
the form (H). We do not want to tackle this problem, becausewlould
lead us going too far, but we want only to observe that foretsotution
the question whether the differential equation (E) adnitsndinitesimal
transformation of the formsx = £(z)ot, 0F = F - Q(x) ot plays an
important role, in which thé is distinct from zero.

However, we want not to suppress another remark. The mostakn
r-term group of the form [1] contains arbitrary parameters, whereas|in
the transformation (C’), we in total only have two arbitrdgnctions a
our disposal in order to simplify the form of this group. Hentis cleat
from the beginning that amongst therbitrary functions of the group:

(A) Fl(w) qy.eenn ) FT('CE) q,
we can remove two, and only two functions. In fact, when weoithice

-4

ﬁ(x) y as newy, the group (A) is transferred to:
q Fy(x) F.(v) .
) F1 ([L‘) g e e s Fl (x) ,

o

and if furthermorer is > 1, we can introduc fg; which surely is no
just a constant, as new and we obtain a group of the form:

q, x4q, (1)1(1') qs--e-- ) q)r_g(l') q (r=2).
We hence can replace the groups [1] by the following ones:

[17] ¢, zq, ®1(x)q, ..., Pa(z)q @2
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Here, ther — 2 arbitrary functionsd are essential in a certain sens, that is

to say, none amongst them can be took away by the introducfioew
variables.

The gained result for the groups [1] can easily be translatedthe
groups [2] on p. 96, since the totality of these groups resais wel
invariant through all transformations of the form (C’). Tha why we
need not to halt at the question of how many different typegrofips arg

contained amongst the groups [2]. It is only to yet be obsktivat we can

replace the groups [2] by the ones standing below:

[27] 7. yq g, rq, P1(x)q, ..., Dr2(2)q, yg =2,

14

where ther — 2 arbitrary functions® are essential in the sens indicafed

above.

Also the form of the groups [6] on p. 101 is yet able of a simgdif

tion [VEREINFACHUNG FAHIG. Namely, one can always arrange that a

constanty;, vanishes. Indeed, letting all, # 0, we then can introdud
ye~ 1% as newy, and as a result:

1T Q1T VvV _ QT

e qy oo , e g, xe™ g

q, Ie

are transferred to:

(ag—ar)z

q, Tq, ...... , xve q,

while yq remains unchanged apdakes the formp — a;yyq. As a result
we can replace the groups [6] by the following ones:

M o kT

q, xq, ..., x"q, e*q, we™Tq, ..., x q, Yq, D

[6°]

(k=1,21; 1>0)

Finally, it must still be remarked that in the groups [5] orlP0 and like;
wise in the groups [67], one of the nonzero coefficieatscan always b
made equal to 1, since if for instanag # 0, one only needs to introdu
a1 as newr.

§ 14.

In the next chapter we will systematically examine what aeedif-
ferent types of groups belonging to the groups of the 88§ 9ai@ we shal
be in position to draw up a table in which for every type of grpone
and only one representative will be contained. For the mapteking

e

137

Ce

into consideration the observations made in the § 13, we teaocbnten
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ourselves with putting together all different types of qriero-, three- an
four-term groups. Here they are:

|. One-term groups. q

[I. Two-term groups.

a. transitive: Dy q D, TP+ yq

b. intransitive: q, *q q, Yq

lll. Three-term groups.

a. transitive:
e'q, €q, p — -
eq, xze®q, p q, €°q, p q, ©q, p
(a#1,0)
q, p, TP+ cyq ¢ p, xp+ (v +y)gq
p, 2xp +yq, 2°p + xyq p, xp +yq, v°p+ (2zy + y*)q

b. intransitive:

q, ¥q, F(x)q 4, x4, Yq, a4, ¥4, qu’

IV. Four-term groups.

a. transitive:

e®q, e*%q, 7%q, p || €"q, e, €*¥q, p
(o, B#0, 1; a#0) (a0, 1)

T T 2 x
€4q,req, xeq,p

q, €°q, €““q, p

q, €“q, ze"q, p || ¢, zq, "¢, p || ¢, 2q, 2%q, p

(a#0, 1)
4, €"q, yq, p 4, Tq, Yq, p 4 ya, y'q, p
4, xq, p, TP + cyq g, g, p, xp+ (2y + 2%)q
4 Y, p, Tp yq, p, Tp, £’p+ 1yq

b. intransitive:

q, zq, Fi(z)q, Fy(x)q q, vq, F'(x)q, yq
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The remaining arbitrary constants and arbitrary functistamding ir
this table cannot be took away; one can easily convince trefghat in
each individual case. As aresult, every type of one-, twwed- and fourt

term group of the plane is present as only one representativer table
in the main whole.
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Chapter 4.

Classification of the Finite Continuous Groups
of Point Transformations of the Plane.

three different types of primitive groups and we set up agsentative fo
each one of these types; however, we did not yet succeed dardeg)
how many types of imprimitive groups there are, and we onlgvkithat

It is because we have not achieved a real classification afripgmitive
groups, but only a distribution of these groups in categovidich arg
selected in such a way that one imprimitive group can veny isellong
simultaneously to two of our categories.

In fact, we started from the assumption that every imprieigroup of
the plane leaves invariant one family &f' curves in any case. Among
the families ofoo! curves invariant by the group, we then selected
family and we reckoned the group among the first, second trifourth
category according to whether it transformed the curvesiefconcerne
family in zero-, one-, two- or three-terms. But now, when arprimitive
group leaves invariant two distinct families ef' curves, it can very we
happen that for instance it transforms the curves of onelyamione-
term, and the curves of the second family in two-terms, soitmt only
belongs to the second category, but also to the third.

Consequently, we must look around for a principle of clasaiion
[NACH EINEM EINTHEILUNGSGRUNDE UMSEHEN which would enablg
us to distribute in classes the imprimitive groups in sucheg what every
imprimitive group belongs to one, but only one of these @assSuch
a principle of classification offers itself as the number arfnflies of co*
invariant curves that accompany the group. Thus, we at fask iow
many families ofxo! curves can remain invariant by an imprimitive grg
of the plane.

§ 15.
Let:
Xif =&, y)p+m(z,y)q (k=1--7)

In the preceding chapter, we at first separated the primggieeps of
the plane from the imprimitive ones. We demonstrated thexetlare only

for every type of imprimitive group, we possess at least @pegsentative.

=

st
any

A1

up
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be anr-term imprimitive group and let,, v, be a pointin general positio
We form the linear homogeneous group defined on p. 88:
Vi = " +uy) '+ (" + 1)) ¢
(k=1-r—m)
that indicates in which way theo! line-elements’ : ' passing throug

the pointz, y are transformed, as soon as one only takes those tra
mations of the groupX, f, ..., X,.f which leave untouched this point.

Since we have assumed the grodfy:f, ..., X, f as imprimitive, the

linear homogeneous grou®), f,...,Y,_..f leaves at rest at least o
line-element:’ : 3 through the point:, i, (cf. p. 87). But according t
the developments on p. 81 sq., different cases are stilipleséndeed, th

-

=)

nsfor-

group: . f,...,Y,_.f can leave untouched either one line-element, or

two separate line-elements, or lastly every line-elemieraugh the poin
T, Yo, If there is only a single invariant line-element, then ihcill spe-
cially happen the case that this line-element counts dotiglgce that i
consists of two collapsing line-elements.

By translating to the groupX, f, . . ., X, f these different conceivabje

cases for the group), f, ...,9._..f, we obtain what follows:
If the group: V. f,....,_..f fixes only one line-element throu

the pointzg, yo, then the groupX; f, ..., X, f leaves invariant only one

ordinary first order differential equation:

oz(x,y) dy - ﬁ(ZL’, y) dr = 07
and as a result also, only a single family®f' curvesy(x,y) = const.
If especially this line element counts doubly, then the irara differential
equation and the invariant family of curves must be considas doubly
counting; the groupX, f, ..., X, f then leaves at rest two coinciding,
if one want, two infinitely close families af! curves.

When the group?2). f, . .., 9, f holds fixed two and only two sep
rate line-elements through the point;, 1o, then the groupX, f, ..., X, f
leaves invariant exactly two different ordinary differeequations of firs
order and hence also exactly two different familiesof curves.

Lastly, if the group: . f,...,9,_..f leaves untouched every inq
vidual line-element that goes through the painty,, then two cases ha
to be distinguished, according to the groul; f, ..., X,.f being transi
tive or not. In the first case, each one of tke invariant line-element
takes exactlyxo? positions by the prolonged groupX; f,..., X/ f (see
p. 86), and the totality of these line elements visibly daiees a first or

£

jh

or

der differential equation«a(zx, y) dy — ((z,y) dx invariant by the group:
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X.f,..., X, f; as aresult, there are in totad! invariant first order differ
ential equations:

dy

@(m, Y, —) = const.

dx
invariant by the groupX, f,..., X, f, and in consequence of that, ajJso
exactlyoco! different invariant families obo! curves. In the second case
however, each one of the! invariant line-elements takes ondy' differ-
ent positions by the groupX; f, ..., X’ f, hence thex? line-elements
the plane are arranged in? invariant families that are represented by fwo
equations of the form:

/

X('Ta Y, y_/) = const., w<x, Y, y_/) = const.;
x T

/

here, the two functiong andt are certainly not both free cgt since oth
erwise the groupX, f, . .., X, f would leave untouched every point of re
plane. In this case, there ase™ different first order differential equations
invariant by the groupX, f, ..., X, f, and hence alsoo™ different in-
variant families of>o! curves; as one easily sees, the invariant differeptial
equations in question are represented by an equation obthe f

o (1(en 2. (e ) =0

where the functioni) is absolutely arbitrary and only chosen in such a yay
that it is not free ofi’.

With this, all the possible cases are exhausted. As a rdébale are
four different classes of imprimitive groups of the planel af these four
the first one yet decomposes in two subclasses. These am@ltvehg:

1) An individual invariant family ofoc® curves.

a. This family of curves counts once.

b. This family of curves counts twice.
I1) Two different invariant families ofo! curves.
) oo! different invariant families obo! curves.
IV) oo different invariant families ofo® curves.

However, we do not want now to turn to applying straight trasngd
classification of the imprimitive groups of the plane, to tireups found
in the preceding chapter. Rather, we want to settle, once aga in g
pure analytic way, the question whether there are familfesod curveg
which can remain invariant by a group of the plane. We do thesaust

A4
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the settlement given above of this question was based oreptral con
siderations which perhaps are ?? too shortly expressed ?? f@ numbe
of readers, and also because on the new way, we can really adawn the
first order differential equations that these families ofves satisfy, an
this is actually desirable.

§ 16.
We imagine that an-term group of the plane:

is presented, and we ask for all families &f' curves invariant by thi

group, or, what amounts to the sanse¢p. 85), for all equations of the

form: a(z,y) v’ — B(z,y) ' = 0 which remain invariant by the prolong
group:
Xif=&p+ma+&p+iq (k=1-7).
Each one of the sought equations admits, aside from thetggimal
transformationsy,_ f, still obviously also the following:

Uf — x/p/ +y/q/-
Now, as one easily convinces oneself, all the expressiofs: U] vanish
identically, but on the other hand] f surely cannot be linearly deduc
from ! f,..., X|f, since otherwise, it should arise by prolongation f

an infinitesimal point transformatiog{x, y) p+n(z, y) ¢, which is visibly|
not the case. As a result, thel- 1 infinitesimal transformations:

1) Xifoo o X0f US
are independent of each other and they engendér anl )-term group in
the variablese, y, ', 3/. But our problem of determining all equations|

the form: a(z,y) v’ — B(x,y) ' = 0 that remain invariant by the group:

Xif,...,X.f can also at this point be expressed as follows: to deter
equations in the variables, y, 2’, ¢ not all free ofz’ andy’ which ar¢g
admitted by the group (1). In this new form, our problem carsétled
without difficulty on the basis of the developments of the g:Hat in Vol. |
[here: 272].

We start by considering the case that the- 1)-term group (1) in the

variablesz, y, 2/, v is transitive. According to the rules of the mentior

=

|
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chapter, we then have to examine whether all four-by-fotemeinants o
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the matrix:
S mo & o
(2) L
& e &,
0 0 o o

can vanish, by virtue of an equation between, =, v’ which is not free o
x" andy’. Now, the four-by-four determinants in question are all pbseie

down to determining whether these complete homogeneougsidms pos

exist such a common factor, then the growg:f, ..., X, f leaves invari
ant absolutely no family ofo! curves: it is primitive. On the contrary,
there is such a common factor, then different cases are tsbeglished
Indeed, it can firstly happen that this common factor is jursdr inz’ and
y’, in which case the groupX, f, ..., X, f leaves invariant only a sing

be of second degree irf andy’; then if it is divisible by the square of
linear homogeneous function efandy’, the group:X, f, . .., X, f leaveq
invariant just one, and only one family eb! curves, counting twice;
on the other hand, it is not divisible by such a square, thengttoup
X.f,..., X, f leaves invariant two different families ob' curves.

In order to illustrate these developments by an example, et ¢
apply them to the group [15] on p. 105:

3) p, 2xp+yq, ¥*p+ayg.

For this group, the matrix (2) goes to the determinant:
1 0 0 0
20y 22 Y 2
22 ay 2aa ay 4oy | YT
0 0 2 Y

whence:z’ = 0 is the only invariant equation of the required constitut
andz = const. the only family of curves invariant by the group (3), k
this family of curves does visibly count twice.

We now come to the case where the group (1) in the vari
x,y, 2,y is intransitive, so that the+ 1 equations:

(4) Xif=0,---, X'\ f=0, Uf=0

homogeneous functions of second degreg sndy’, so everything comgs

sess one common factor which is not freexbfandy’. If there does nqt

family of co! curves, counting once. But secondly, the common factof

if

le
can
a

=3

ion
hut

hbles

possess at least one joint solution.
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Firstly, assume at the least that the grouy:f, ..., X, f in the vari-
ablesz, y is transitive; then the equations(|f = 0,..., X/ f = 0 can

be solved with respect tpandg, therefore the equations (4) are solvgble

with respect to three of the differential quotients and thegsess a joif
solution which necessarily has the formﬁx, Y, g—) and cannot be free

fj— As a result, thex! first order differential equations:

dy
X(a:, Y, —) = const.
dx

all remain invariant by the groupX f,..., X, f, and at the same timg,

they are the only such equations which remain invariant.

Secondly, assume that the groul; f, ..., X,.f in the variables:, y
itself is intransitive, but that the numbeiis larger than 1. Then there g
relations of the form:

ka = pk(‘r7y> le (k=2,3--1),
S0 it ensues:
Ipi Opr,
X/ — X, ( PR /_> / /
W =p X1 f+(x 5 TV o (&' +mdq')
(k=2,3-1).

Now, because no expression:

Opr Opi,

/ /

x r +vy 9y (k=2--7)

can vanish identically — otherwise the infinitesimal tramsiations
X1 f,..., X,.f would not at all be independent of each other —, then

r + 1 equations (4) can be replaced by the three equations:
Xif=0, &p'+md =0, 2P +yqd=0
that are independent of each other; but since the expressign- n, 2’ is
not identically zero, these equations are equivalent t@thmtions:
le:07 p/:07 q/:0

In other words: under the assumptions made, the equatigrisa one
and only one joint solutionp(z, y) free of2’ andy’, which is nothing els
but the invariant of the intransitive grougt, f, ..., X, f in x, y. It follows
from this that every equation not free of andy’ which is admitted by
the group: Xy f, ..., X f, U f must be obtained by setting equal to zerd

t
f

=

e

the
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all

three-by-three determinants of the matrix (2). If one tisifirthermore
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that under the assumptions made, there are relations obtire f

. Opr , Opy,
&= pr - &1, ﬁk—pk&"‘fl(x 0—+y 8@/)
_ Opr, , Opi,
N = Pk - T, Uk—PkU1+771<xa—+y 8y)
(k=2-7),

so one realizes that by setting equal to zero all three-Betdeterminant
of the matrix (2), the following equations come out:

/ / 0 0
(gly _771-1') (-T %er 5;) =0 (k=2,3-7);

out. As a result, one first order differential equation inaat by the grou
Xif,..., X, .fis:

§idy —mdr =0;
the oo! integral curves of this differential equation are visibgpresente
by the equationip(z,y) = const., and they all remain invariant. No
whether there still is a second invariant differential etura this depend

on the behaviour of the matrix:

9p2 ., Opr
®) i g |

Oy Oy
If not all two-by-two determinants of this matrix vanish ideally, then
& dy — m dz = 0 is the only invariant differential equation by the gro
X.f,...,X,.f, and to be precise, this differential equation has tg
counted once. If on the contrary, all the said two-by-twoed®inantg
vanish, then two cases can occur. Indeed, either there ide &®m:

namely the following one:
aﬂz Jp2
dx
ox rm oy

or the invariant differential equatiorg;dy — n;dx = 0 has to be countg
twice.

dy =0,

equations (4) have two independent solutions in common hagimas thg

x(z, y, ). Consequently, all the first order differential equatidmettarg

here, the nonzero factors which depend onlyzoandy are already Iei

Lastly, the caser = 1 still has to be dealt with. Then visibly, the

first one, we can even choose the invariaft, y) of the one-term grouy:
X f, While the second one cannot be freecbndy’, hence has the form:

=

2]

Ip:
be

&1dy — mdx = 0, yet a second, different first order differential equation,

d

of

invarlant by the one-term groupX, f/ are represented by an equation
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the form:
d

Y
X(xv Y, %) - Q((,O(I,y)),
where() denotes an arbitrary function.

With these words, all the results that we have gained in teequting
paragraph by means of conceptual considerations are dena analytig
way, and at the same time, are completed in a not inesseraial w

§ 17.

Now, we pass to the determination, for each imprimitive gréaund
in the preceding chapter, of the families®f' curves that are invariant iy
it. Here, we could employ the general method developed jost Bince
it provides all first order differential equations invaridyy a given group
and as a result also, by integration, all invariant famitiso! curves. Bu
since all the groups that we have to consider are presentedrnsimple
normal form, we prefer to take another, somehow shorter.path

If the family of curves:p(z, y) = const. admits an infinitesimal trang-
formationX f, then this can occur in essentially two different ways. &ith
every individual curve of the family remains invariant, $e@ texpressiory:
X ¢ vanishes identically, or the curves of the family are exdehone
another, so thatXy = Q(y), where the function is not identically zefo.
In the second case, by introducing:

/5
Q(p)
as newp, one can insure that ¢ has the value 1.

From this, it follows that every family of curvesy(x,y) = const.
which remains invariant by the infinitesimal transformatig, satisfies eit
ther the equationy’(y) = 0 or the equationiy’(y) = 1; consequently,
aside from admitting the familyz = const., the infinitesimal transforma-
tion ¢ also admits every family of the formy + w(x) = const., where it
is understood that(x) is an arbitrary function ofc. But as a result, a|
families of co! curves invariant by are found.

If one family of curves distinct from the familyz = const. shall
admit, apart fromy, also another transformation of the forrAix)q, then
it must have the formy + w(z) = const. and moreover, the expression:

F)- a%@ tw(z) = Fla)
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must be a function ofy + w(x) only. But since this cannot be true,
follows thatz = const. is the only family ofoo® curves which simultg
neously admits the two infinitesimal transformations#'(z)q, and morg

formations of the form#, (z)q, F5(x)q.

The two infinitesimal transformationg: andyq both leave invariarn
the family of curvesx = const. Every other family invariant by them tw
must have the formy + w(z) = const., and in addition, the expression

y~a%(y+w(w)) =y

generally, the only one which admits two independent irdsiihal trans}

—+

0]

then: z = const. andy = const. are the only families ofo! curves thal
are simultaneously invariant byandyq. In the same way, aside fro
x = const., there is yet only the family:% = const. which remaing
invariant by the two transformation#:(z)q, yq.

If the family: y + w(x) = const. shall admit the infinitesimal tran
formationp, thenw’(z) must be a function of + w(x) alone and thus b
a constant. The equation:

ax + by = const.

with the arbitrary parameter: : b therefore represents all families of!
curves invariant by andg.

Finally, there still remains a point to be taken care of. Alprimitive
groups of the preceding chapter leave invariant the fanfiljuoves:z =

x = const., there is no other family of invariant curves, then always
guestion whether the familyr = const. counts once or twice remai
open. How does one settle this?

So, let: z = const. be the only family ofoo! curves which remain
invariant by a givemr-term group:X, f, . . ., X,.f; then all transformation

transform thexo! line elements through this point in such a way that ¢
the line-element’ = 0 remains invariant, but no other one. Now es
cially, for the family of curves:zz = const. to remain doubly invariant,

is necessary and sufficient that the line-element= 0 remains doubly
invariant, but ¢f. Chap. 2, p. 83) this happens if and only if the lin
homogeneous group defined on p. 88:

const. Now, if for a given group: X, f, ..., X, f, aside from the family.

of this group which leave invariant a poing, yo in general position wil|

must be a function of +w(z) alone. Consequently,(x) is a constant an£

p

e

nly
pe-
t

ear

(A" + ) '+ (v’ + k') ¢ (k=1-r=m)
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which is associated to the groufy; f, . . ., X,. f, has one of the two form
xlq/ _'_ Oé(.r,p, _'_ qu/) ’ xlq/’ x/p/ + y/ql7
where o means a finite, arbitrary constant. Consequently, the g
Xi1f,..., X,.f will leave doubly invariant the familyx = const. if and
only if all its infinitesimal transformations, whose poweriges expansiot,
with respect to the powers af — xy andy — y,, begin with terms of firs
order, can be linearly reduced either to the single form:
(x = 20)q + a{(z —z0)p + (y — yo)g} + - --
or to one of the two forms:

(o= 0)a+ - (o= 20)p+ (y — go)a+

here, the form of the terms of second or higher order whicteapm thes¢

infinitesimal transformations is completely disregarded.

After these preliminary remarks, we want to go through, oneie,
all the groups found in the preceding chapter and to detexthia familieg
of co! curves invariant by them. On this occasion, we also make e
simplifications introduced in the § 13.

At first, for what concerns the group [1'] on p. 112, the one¥t
group:
q
leaves invarianto> different families of curves, namely aside from 1}
family: z = const., yet every family of the formy + w(z) = const.; by
contrast, the groups:

¢, xq, Fi(x)q, ..., F(2)q (r>0)

leave invariant only the single family: = const., but as one easily seq
it leaves it doubly invariant.

Amongst the groups [2°] on p. 113, the two-term one:

q, Yq
leaves invariant two families, namely:= const. andy = const.; but the|
remainding ones:
¢ xq, Fi(x)q ..., F(x)q, yq (r>0)

leave invariant only the familyr = const. and in fact, simply invariant.

For the group [3] on p. 98:

4 Y4, y’q

vJ

oup

—
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there occur only the two invariant families of curves:
x = const. and y = const.

The one-term group on p. 99 is equivalent to the groypand hencg
needs not be specially taken into consideration.
We come to the groups [5] on p. 100 which have the form:

an q, D

mi eakx

opT
e g, xe™q, ..., x

(k=1,2--1).

If such a group has more than two parameters, then it leaagiant only
the family: x = const., which, however, counts twice. On the other hag
if it has only two parameters, then things are completelfiedsint. Indeed
the group has the forme” ¢, p, wherea either vanishes or may be s
equal to 1 ¢f. p. 113). In the first case, we have the group:

b, q,

with the oo! invariant families of curvesax + by = const. In the secon
case we have the group®q, p; we firstly bring it to the form, p — yq by
introducingye~" as newy, and lastly we introduce™ as newr to obtain
the group:
q, Tp+yq.

For this new group, we have at first the invariant family ofvas: x =
const.; every other invariant family must have the forgy-w(x) = const.,
and to be be precise, the expression:
%(y + w) +ya%(y+w) =y + aw'(x)
must be a function ofy + w(x) alone, so thab(x) has the formw(z) =
ax + ¢ and hence each one of the family®f' curves:ax + by = const.
remains invariant, also here.

If the group [67] on p. 113:

X

m apT apT mg LT
4, 4, ..., r ¢ € g xe " ¢, ..., x "€ g, Yq, p

(k=1,21; 10)

has more than three parameters, then there is only the smvgleant fam-
ily: = = const., which besides counts just once; if on the contrary it
only three parameters, then it possesses the form:

a4, yq, p

U

nd,

et

has

and it leaves invariant the two families:= const., y = const.
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The group [7] on p. 101:

4, Y4, Y°q, p

leaves invariant only the two families: = const. and:y = const.
The groupsp, xp and:p, xp + ¢ ([8] on p. 102 and [9] on p. 102) c4§
be left out consideration, since the first is equivalent ®dhoup: g, yq,
the second to the group; zp + yq.
Whenr is > 0, aside from:z = const., there is no family of curve
which remains invariant by the group [10] on p. 103:

q, ¢, ..., 2" q, p, xp+cyq,
and in fact, the familyxx = const. is to be counted once whens # 1,

whereas it is to be counted twice in the case: 1. If » = 0, we have th¢

group:
4, p, Tp+cyq
for which, because of the presencep@ndgq, only some invariant familie

ot

n

174

of the form:az + by = const. can appear. Which ones are really invariant

amongst these families, this can be determined from theitondhat:

x(%(ax +by) +cy é%(ax +by) = ax + cby

must be a function odx + by only. One realizes at once that in the c§

c = 1, each one of theo! families: ax + by = const. remains invariant,

while in the casec # 1, only the two familiesz = const. andy = const.
are invariant.
For the groups [11] on p. 103:

q, vq, ...,2" " 'q, p, ap+ (ry+a")q (r>0),

|S€e:

only the family: x = const. remains invariant, and to be precise, doybly

invariant in general, but only once when= 1.
The groups [12] on p. 104:
4, ¢, ---, "¢, yq, p, Tp

leave invariant, whenis > 0, only the familyz = const., butwhen- = 0,
we then have the group:
4. Yq, p, xp,
by which, in addition, yet the familyy = const. remains invariant.
The group [13] on p. 105:

¢ Yq y°q, p, Tp
gives only the two familiesr = const. andy = const..
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The group [14]:p, xp, 2%p is equivalent to the groupy, yq, y>q and
hence is removed.
About the group [15] on p. 105:

p, 2xp+yq, ©*p+yg
we already saw on p. 120 that it leaves invariant only the fami =

const., but this family counts twice.
For the group [16] on p. 106:

p, wp+yq, 'p+ 2wy +y°)g,
only the families of curves of the formax + by = const. can remair
invariant, since the subgroup; xp + yq leaves invariant all these famili
of curves, but also only theneft p. 126). Furthermore, the expression:

0 0
xQ%(ax +by) + (2zy + 3°) a—y(am + by) = az® + 2bxy + by
must be a function ofix + by alone, which can be the case when eit
b = 0 ora = b. Consequently, the two families of curves that are invdy
by our group arexx = const. and: x + y = const. By still introducing

x + y as newy, we obtain from our group the following:

p+q, xp+yq, T’p+ 1y,

with the two invariant families of curves: = const. andy = const.
The group [17] on p. 107:

¢ xq, ..., x"q, 2xp+ryq, $2p+7’$yq

counting in the case = 2, but only once otherwise. If on the other hg
r = 0, then the group is equivalent to the groupyq, ¥%q, p and hence i
left out.

To the group [18] on p. 107:

ya, p, ap, ©’p+wyq
there belongs only the single invariant family: = const., because b
virtue of the presence g and zp, there could yet come into questi
the family: y = const., which, however, does not admit the infinitesir
transformationz?p + xyq. The single invariant familyz = const. counts
once.
The group [19] on p. 108:

¢ xq,...,2"q, yq, p, Tp, $2p+7”$yq

gives, when- > 0, only the family:x = const., and to be precise, doubjly

D
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gives, when- > 0, only the invariant family:x = const., which countd
ounce. Ifr = 0, we have the groupy, yq, p, zp, 2?p which is equiv
alent to the groupy, yq, ¢, p, xp and hence has not to be taken ipto
consideration.

Finally, to the group [20] on p. 109:

4 v¢, v’q, p, wp, ¥p
belong the two invariant families: = const. andy = const.

§ 18.

At present, we can at last turn to the drawing up of the tabigHe
individual groups of the plane. For the imprimitive groups waturally,
apply the classification stated in 8 15. Thus we obtain the

Theorem 6. Every finite continuous group of point transformationg of
the planer, y is equivalent, through a point transformation, to one angl in
general, to only one of the groups listed below:

A) Primitive groups:

D, ¢, Tq, TP —Yq, Yp, TP+Yyq, ¥’p-+ryq, TYp+Yq

P, 4, T4, TP —Yq, yp, Tp+yq

p, 4, rq, TP —1Yq, Yyp

B) Imprimitive groups:
I) Groups with a single invariant family of co! curves.
a) The invariant family counts only once.

q, xq, p, 2xp+yq, T°p+ xYq

q, rq,...,x"q, p, 2xp+T1yq, x2p+7‘xyq
(r>2)

q, vq, ..., 'q, yq, p, wp, x2p+rxyq
(r>0)

yq, p, xp, T°p+ ayq
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q, ¥q,...,x"q, yq, p, Tp
(r>0)
q, ©q, ..., x"q, p, TP+ cyq
(r>0; c#1)

T

q, ¢, ...,x" " 'q, p, ap+ (ry+a")q

(r>1)

q,

m QT QT myg QLT
xrg, ..., r (¢, € q, xe q, ..., "€ q, Y4,

(k=1,2-1; 1205 l+m+mi+-+m;>0; ar=1)

p

q, 19, Fl(x)q7”‘7F7‘(x>q7 Yyq

(r=0)

b) The invariant family counts twice.

q, xq, ¥*q, p, xp+yq, T’p+ 2xyYq

p. 2zp+yq, T°p+ xygq

q, q, ..., 2'°q, p, Tp+yq

(r>0)

g, p, xp+(r+y)q

QT QT my 0T
ettq, we*q, ..., 2" e g, p

(1 (1 —=1)=0; k=1,2-1; 1>0; l+my+-+my>1)

q, 19, F1($>Q7 ,FT(ZL’)Q

(r=0)

1) Groups with two invariant families of co® curves.
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4 ya, y’q, p, xp, L°p p+q, Tp+yq 2’p+yiq
¢ v, y'q, p, Tp ¢ ya, y’q, p 0 v, v’q
4 yq, p, Tp ¢ P, TP+ Cyq  (e#0.1)
| ¢ ve, v | | a vaq |

lI) Groups with oo! invariant families of co! curves.

P, 4, Tp+tyq 4, Tp+yq Db, q

IV) Groups with co® invariant families of co! curves.

q

In this table, the groups which leave invariant only one fgnoif
curves are ordered in such a way that the groups which tremsfothreg
terms the invariant family of curves do stand first, then thesowhich
transform this family in two terms do follow, and so on. Thelerng of
the groups which leave invariant two families of curves iaifar.

Of the arbitrary parameters which appear in our table, nare
took away, for one easily convinces oneself that in eachviddal case
already the composition of the concerned group contairssgaramete
and that it cannot be removed from the composition. In theesaay,
none of the occuring arbitrary function can be eliminateds aAresult
every type of group of the plane takes place in our table dmigugh ong
representative in the main whole.

§ 19.

=
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Theorie der Transformationsgruppen

Abschnitt |
Abschnitt [1I, Abtheilung |

Sophus LE
Unter Mitwirkung von Friedrich RGEL

Translation, writing and LATEX principles

Joél MERKER

Decomposition in parts:

I. Local Lie Transformation Groups (Abschnitt 1) ............ ... ... .. ... ... l.
IlLAbschnitt lll, Abtheilung | ... .. 1.
Il Amaldi’s imprimitive Lie Algebras ............. ... i .

GENERAL STRUCTURE OF THE TEXT

Translated parts:

e \engellie and \stopengellie are declared in the preamble. When
calling these commands, one should always put a blank liftedyeand also
a blank line after.

o \fboxrule appears twice in the preamble: genefdhoxrule=0.47pt, and
in factor for all Engel-Lie boxes)\fboxrule=1pt. In fact, one may adjust
frame widths in the macrengel | i e declared irpr eanbl e. t ex.

e Some useful commands are copied from the regularly upddeegaim-

ples.tex.

e Footnotes are located inside the Engel-Lie boxes just after they dted:a
\starnote{Lie, Christiania 1874}

¢ In order to adjust the height of the framed gained groupserttieorems:
\rule[-3pt){OptH{11pt}.
e Headings in engellie:
\HEAD{The Complete Systems.}
Volume 1,\,\,\,Chapter 5,\,\,\,88\,\,\,22,\,\,23,\,\,24.}
e However, in the environmerdgngellie, only one call (unfortunately) of

\HEAD({ } is taken account of. One should therefore gather h# ton-
cerned paragraphs in one head in factor.
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e Trick: one might update the headings as soon as a commenttyhe
environment engellie.

e The declaration of a heading always just precedes the @diclarof a
section.

e Sections in translated text (environment engellie):
\sectionengellie{\S\,\,\,123.}
\label{S-123}
\nopagebreak
Thus, we consider local transformation equations. . .

eMicrocommentsthey appear in the translated text:
\microcomment{{\em i.e.} the two values +c and —c }

“Here, one has to become aware of the fact that two equallysg
values ofc [i.e. the two values +c and —c] always produce two infinitesimal
transformations ...".

“(Vol. I, Theor. 37, p. 197 ljere: see p. 153])".

Modernized text:

¢ \modernized and\stopmodernized.
Here is an excerpt of the modernized text. ..

e Headings in modernized text:

\HEAD{First Order Scalar Partial Differential Equation}{
E.\,\,\,\,\,Complete Systems of Partial Differential Equations}

e Capital letters: always present in the headings and in the titles.
e Sections in modernized text:
\sectionmodernized{Essential parameters}
\label{A-1}
\nopagebreak
e Two lines section in modernized text:
\bigsectionmodernized{Group Composition Axiom}{
And Fundamental Differential Equations}
\label{D-2}
\nopagebreak
e Subsections in modernized text:
\subsectionmodernized{Concept of local Lie group}
e Use sometimes similar (sub)sections with a shorter prekamy spacing.
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e Never any subsection just after a section.
e Almostno numbering.
¢ Always build a short abstract after the chapter title.

Comments inserted: Usually, comment should appear just after the end of
an engellie paragraph. Sometimes the comment is antidipptst before
the very next concerned paragrapfigXmacro declared in the preamble:

\COMMENT{Translation note}{Two continuous transformation groups
which transform . . .

\stop)COMMENT}

e Never jump line before closing a comment to insure good osdf “<”.
> Translation note. Two continuous transformation groups which trans-

form one into the other by an invertible change of coordisate. . <
> Explanation. <
> Concept of local Lie group. <
> Notion of isomorphy. <

Terminology:
\terminology{independent infinitesimal transformations}

German words:
\deutsch{Zusammensetzung}.

Mathematicians’'s names:
\names{Kowalewsky}.

Footnotes:

¢ Restart at each Chapter:
\footnotetext{ baselineskip=0.37cm .}

\setcounter{footnote}{0}
e Footnotes of engellie: “*)”, “**)”,
Labels and references internal to the whole text:

e \label, \pageref, \ref: Arguments should precisely be those of the Ger-
man text, for instance: 8z-1 ; 408 ; 123.

e labels always try to include a minus sign “-".
e labels never use any capital letter, except for chapter names.

Bibliography: Incoherence with thechapter; duplication of “Bibliogra-
phy”. In 12pt: -2.823cm; 11pt: -2.36cm.

Index: Learn how to create.
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Provisory tracks:

¢ Problem of mathematical understanding:

?2? Mathematics? %’

e Problem of translation:

“[2?| DASELBST[??/".

WORKED OUT TEXTS

Complete list of KTEX files:

preambletex ........ ... begin document
engel-lietex ................... frontmatter and total document
l-prologue.tex ............. ... Prologue for Part Il
AdEX oo essentiality of paraens
BaAeX .o transformation gps
CeX o one-term gosu
DX complete sysse
EeX complete sysse
FleX complete gyss
HaexX .. invariant fdies
X the adjoinbgp
MaEX o projectiveogp
Ntex ..., rigidity ofSL,,(C), GL,,(C) andPGL,,(C).
ll-prologue.tex ...............iiiiiian. Prologue for Part 11
H-1tex ... translation of Chapter 1, Vol 11l
H-2.tex ... translation of Chapter 2, Vol 111
H-3tex ... translation of Chapter 3, Vol 11|
Hl-4tex ... translation of Chapter 4, Vol 11|
principles.tex ... o principles of writing
references.tex ... references
glossary.tex ... memory-glossary
IdIOMS.EEX .« ottt idioms
INAEX.EEX .. project of Index
boites-exemples.sty ...
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COMPILATIONS

Doubling the files: 1.tex is the worked out file, whild-compilation.tex is
the compiled file, giving rise to the viewable fllecompilation.dvi.

List of figures: Possibly to be done.
2000 Mathematics Subject Classification:

O Primary: 22E05.
[0 Secondary: 17B05, 22E10, 22E60, 34A30, 35A30, 58J90.

Title: is it suitable ?

CONVENTIONS: TYPOGRAPHY, TRANSLATION, ETC
e Attention: where to introduce majuscule conventions?
e Majuscule:ISsoMORPH MIT = Isomorph with.
e Majuscule: BOMORPHISMUS= Isomorphism.
e Majuscule: @MBINATION = Combination.
e Majuscule: RELATION = Relation.
e zeroth.

e line-element.

e n-FACH: n-times,n-fold.

e Chap. 1, Theor. 28, Prop. 1.

%),

e BEREICH = region (of a space).

e GEBIETE = domain (real or complex).
° .
e Statement of a theorem

e all thea, all them,, and them, ., without ’s.
e Theorem 1.30.

¢ Finite continuous group.

¢ Punktcoordinater- point-coordinates.

e GERADE = straight line.

e LINIE = line.

o dx:dy.

e Label: Proposition-10-p-18.
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¢ Projective space{LPP", RP", KP".
e Expand but never develope in power series.
¢ Pointin general position.

e due in the main whole toatoBI and Q. EBSCH.

¢ neighbourhood, behavioueorrect final text.
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