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C h a p t e r H

Invariant Families of Infinitesimal Transformations

A Priori Linear Dependence Relations
We study in this chapter the general linear combination:

e1X1 + · · ·+ eq Xq

of q > 1 given arbitrary local infinitesimal transformations:

Xk =
n∑

i=1

ξki(x)
∂

∂xi

(k = 1 ··· q)

having analytic coefficientsξki(x) and which we assume to be independent
of each other. When one introduces new variablesx′i = ϕi(x1, . . . , xn) in
place of thexl, every transformationXk of our family receives another form,
but it may sometimes happen under certain circumstances that the complete
family in its wholeness remains unchanged, namely that there are functions
e′k = e′k(e1, . . . , eq) such that:

ϕ∗

(
e1X1 + · · ·+ eq Xq

)
= e′1(e)X

′
1 + · · ·+ e′q(e)X

′
q,

where, as usual, theX ′
k =

∑n

i=1 ξki(x
′) ∂

∂x′

i
denote the same vector fields,

viewed in the target spacex′1, . . . , x
′
n. Without loss of generality because we

work locally, it is assumed implicitly that the diffeomorphismϕ is close to
the identity map.

Definition. The familye1X1+· · ·+eq Xq of infinitesimal transformations is
said toremain invariant after the introduction of the new variablesx′ = ϕ(x)
if there are functionse′k = e′k(e1, . . . , eq) depending onϕ such that:

(1) ϕ∗

(
e1X1 + · · ·+ eq Xq

)
= e′1(e)X

′
1 + · · ·+ e′q(e)X

′
q;

alternately, one says that the familyadmitsthe transformation which is rep-
resented by the concerned change of variables.

Proposition. Then the functionse′k(e) in question necessarily are linear:

e′k =

q∑

j=1

ρkj · ej (k = 1 ··· q),

with the constant matrix
(
ρkj

)16j6q

16k6q
being invertible:ek =

∑q

j=1 ρ̃kj · e′j .
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PROOF. Indeed, through the change of coordinatesx′ = ϕ(x), if we
write that the vector fieldsXk are transferred to:

ϕ∗(Xk) =

n∑

i=1

Xk(x
′
i)

∂

∂x′i
=:

n∑

i=1

ηki(x
′
1, . . . , x

′
n)

∂

∂x′i
(k = 1 ··· q),

with their coefficientsηki = ηki(x
′) being expressed in terms of the target

coordinates, and if we substitute the resulting expressioninto (1), we get the
following linear relations:

(1’)
q∑

k=1

e′k · ξki(x
′) =

q∑

k=1

ek · ηki(x
′) (i = 1 ···n).

The idea is to substitute here forx′ exactly the same numberq of different
systems of fixed values:

x
(1)
1 , . . . , x(1)

n , x
(2)
1 , . . . , x(2)

n , . . . . . . , x
(q)
1 , . . . , x(q)

n

that are mutually in general position and considered will beconsidered as
constant. In fact, according to the proposition on p.??, or equivalently,
according to the assertion formulated just below the long matrix located on
p. ??, the linear independence ofX1, . . . , Xq insures that for most suchq
points, the longq × qn matrix in question:




ξ
(1)
11 · · · ξ

(1)
1n ξ

(2)
11 · · · ξ

(2)
1n · · · · · · ξ

(q)
11 · · · ξ

(q)
1n

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
ξ

(1)
q1 · · · ξ

(1)
qn ξ

(2)
q1 · · · ξ

(2)
qn · · · · · · ξ

(q)
q1 · · · ξ

(q)
qn




has rank equal toq, where we have setξ(ν)
ki := ξxi

(
x(ν)

)
. Consequently,

while considering the values ofξki

(
x(ν)

)
and ofηki

(
x(ν)

)
asconstant, the

linear system above is solvable with respect to the unknownse′k and we
obtain:

e′k =

q∑

j=1

ρkj · ej (k = 1 ··· q),

for some constantsρkj. In addition, we claim that the determinant of the
matrix

(
ρkj

)16j6q

16k6q
is in fact nonzero. Indeed, the linear independence

of X1, . . . , Xq being obviously equivalent to the linear independence of
ϕ∗(X1), . . . , ϕ∗(Xq), the other corresponding long matrix:




η
(1)
11 · · · η

(1)
1n η

(2)
11 · · · η

(2)
1n · · · · · · η

(q)
11 · · · η

(q)
1n

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
η

(1)
q1 · · · η

(1)
qn η

(2)
q1 · · · η

(2)
qn · · · · · · η

(q)
q1 · · · η

(q)
qn



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then also has rank equal toq and we therefore can also solve symmetrically:

ek =

q∑

j=1

ρ̃kj · e′j (k = 1 ··· q),

with coefficientsρ̃kj which necessarily coincide with the elements of the
inverse matrix. �

Families Invariant through One-Term Subgroups

For an important application to the study of the adjoint group in Chap. L,
we now want to study familiese1X1 + · · · + eq Xq that are invariant when
the transition fromx to a new variablex′ is performed by an arbitrary trans-
formation of some one-term groupx′ = exp(tY )(x), whereY is any (local,
analytic) vector field. Here, we can just translate the presentation of [25],
pp. 249–253, since it does not demand any adaptation.

Under which conditions does the family
∑

ek Xkf remain invariant
through every transformationx′i = fi(x1, . . . , xn, t) of the one-term group
Y f , that is to say, under which conditions does a relation:

q∑

k=1

ek ·Xkf =

q∑

k=1

e′k ·X ′
kf,

hold for all systems of valuese1, . . . eq, t, in which thee′k, aside from the
ej, yet only depend upont?

When, in order to introduce new variables inXkf , we apply the gen-
eral transformation:

x′i = xi + t · Y xi + · · · (i = 1 ···n)

of the one-term groupY f , we obtain according to Chap. 8, p. 141, for-
mula (5) [here: lemma on p. ??]:

Xkf = X ′
kf + t

(
X ′

kY
′f − Y ′X ′

kf
)

+ · · · ;
hence also inversely:

(3) X ′
kf = Xkf + t

[
Y, Xk

]
+ · · · ,

which is convenient for what follows.
Now, if every infinitesimal transformationXkf+ t

[
Y, Xk

]
+ · · · shall

belong to the familye1X1f + · · ·+ eqXqf , and in fact so for every value
of t, then obviously every infinitesimal transformation

[
Y, Xk

]
must also

be contained in this family. As a result, certain necessary conditions for
the invariance of our family would be found, conditions which amount to
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the fact thatq relations of the form:

(4)
[
Y, Xk

]
=

q∑

j=1

gkj ·Xjf (k = 1 ··· q)

should hold, in which thegkj denote absolute constants.
If the family of the infinitesimal transformations:

e1 ·X1f + · · ·+ eq ·Xqf

is constituted so that for everyk, a relation of the form (4) holds true,
then we want to say thatthe family admits the infinitesimal transformation
Y f . By this fixing of terminology, we can state as follows the result just
obtained:

If the family of the infinitesimal transformations:

e1 ·X1f + · · ·+ eq ·Xqf

admits all transformations of the one-term groupY f , then it also admits
the infinitesimal transformationY f .

But the converse too holds true, as we will now show.
We want to suppose that the family of the transformations

∑
ek Xkf

admits the infinitesimal transformationY f , hence that relations of the
form (4) hold true. If now the family

∑
ek Xkf shall simultaneously ad-

mit all finite transformations of the one-term groupY f , then it must be
possible to determinee′1, . . . , e

′
q as functions ofe1, . . . , eq in such a way

that the equation:
q∑

k=1

e′k ·X ′
kf =

q∑

k=1

ek ·Xkf

is identically satisfied, as soon as one introduces the variablex in place of
x′ in theX ′

kf . Consequently, ifX ′
kf takes the form:

X ′
kf =

n∑

i=1

ζki(x1, . . . , xn, t)
∂

∂xi

after the introduction of thex, then thee′k must be determined so that the
expression:

q∑

k=1

e′k ·X ′
kf =

q∑

k=1

n∑

i=1

e′k · ζki(x1, . . . , xn, t)
∂f

∂xi
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is free oft, hence so that the differential quotient:

∂

∂t

q∑

k=1

e′k ·X ′
kf =

n∑

i=1

∂f

∂xi

· ∂
∂t

q∑

k=1

e′k ζki(x1, . . . , xn, t)

vanishes [indeed, differentiation with respect to t of e1X1 + · · · + er Xr yields

0 ≡ ∂
∂t

∑q

k=1
ek Xk]; but at the same time, thee must still also satisfy the

initial condition:e′k = ek for t = 0.
In order to be able to show that under the assumptions made there

really are functionse′ of the required constitution, we must at first calculate
the differential quotient:

∂

∂t
X ′

kf =
n∑

i=1

∂ζki(x1, . . . , xn, t)

∂t

∂f

∂xi

;

for this, we shall take an indirect route.
Above, we saw thatX ′

kf can be expressed in the following way in
terms ofx1, . . . , xn andt:

X ′
kf = Xkf + t

[
Y, Xk

]
+ · · · ,

when the independent variablesx′ entering theX ′
k are determined by the

equationsx′i = fi(x1, . . . , xn, t) of the one-term groupY f . So the de-
sired differential quotient obtains by differentiation ofthe infinite power
series int lying in the right-hand side, or differently enunciated: itis the
coefficient ofτ1 in the expansion of the expression:

Xkf + (t+ τ)
[
Y, Xk

]
+ · · · =

n∑

i=1

ξki(x
′′
1, . . . , x

′′
n)

∂f

∂x′′i
= X ′′

kf

with respect to powers ofτ . Here, thex′′ mean the quantities:

x′′i = fi(x1, . . . , xn, t+ τ).

However, the expansion coefficient[Entwickelungscoefficient] dis-
cussed just above appears at first as an infinite series of powers of t; but
there is no difficulty to find a finite closed expression for it.

As we know, the transition from the variablesx to the variables
x′i = fi(x1, . . . , xn, t) occurs through a transformation of the one-term
groupY f , and to be precise, through a transformation with the parameter
t. One comes from thex to thex′′i = fi(x1, . . . , xn, t+ τ) through a trans-
formation ofthe samegroup, namely through the transformation with the
parametert+ τ . But this transformation can be substituted for the succes-
sion of two transformations, of which the first possesses theparametert,
and the second the parameterτ ; consequently, the transition from thex′ to
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thex′′ is likewise got through a transformation of the one-term groupY f ,
namely through the transformation whose paramter isτ :

x′′i = fi(x
′
1, . . . , x

′
n, τ).

From this, we conclude that the series expansion ofX ′′
kf with respect

to powers ofτ reads:

X ′′
kf = X ′

kf + τ
[
Y ′, X ′

k

]
+ · · · .

As a result, we have found a finite closed expression for the expansion
coefficient mentioned a short while ago; the sought differential quotient
∂(X′

k
f)

∂t
is hence:

(5)
∂

∂t
X ′

kf =
[
Y ′, X ′

k

]
= Y ′X ′

k f −X ′
k Y

′ f.

Naturally, this formula holds generally, whatever also onecan choose
as the two infinitesimal transformationsXkf andY f . However, in our
specific case,X1f, . . . , Xqf, Y f are not absolutely arbitrary, but they are
linked together through the relations (4). So under the assumptions made
above, we receive:

(6)
∂(X ′

kf)

∂t
=

q∑

ν=1

gkν ·X ′
νf (k = 1 ··· q).

Now, if we form the differential quotient of
∑

e′k X
′
kf with respect to

t, we obtain:

∂

∂t

q∑

k=1

e′k ·X ′
kf =

q∑

k=1

de′k
dt

X ′
kf +

q∑

k=1

e′k

q∑

ν=1

gkν ·X ′
νf

=

q∑

k=1

{de′k
dt

+

q∑

ν=1

gνk e
′
ν

}
X ′

kf.

Obviously, this expression vanishes only when thee′k satisfy the differen-
tial equations:

(7)
de′k
dt

+

q∑

ν=1

gνk e
′
ν = 0 (k =1 ··· q).

But from this thee′k can be determined as functions oft in such a way that
for t = 0, eache′k converts into the correspondingek; in addition, thee′

are linear homogeneous functions of thee.
If one puts the value in question of thee′ in the expression

∑
e′k X

′
kf

and then returns from thex′ to the initial variablesx1, . . . , xn, then∑
e′k X

′
k will be independent oft, that is to say, it will be equal to
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∑
ek Xkf . Consequently, the family of the infinitesimal transformations∑
ek Xkf effectively remains invariant by the change of variables inques-

tion.
As a result, we can state the following theorem:

Theorem 43.*) A family of∞q−1 infinitesimal transformationse1 ·
X1f + · · · + eq · Xqf remains invariant, through the introduction of new
variablesx′ which are defined by the equations of a one-term group:

x′i = xi + t · Y xi + · · · (i =1 ···n),

if and only if betweenY f and theXkf there areq relations of the form:

(4)
[
Y, Xk

]
=

q∑

ν=1

gkν ·Xνf (k = 1 ··· q),

in which the gkν denote constants. If these conditions are fulfilled,
then by the concerned change of variables,

∑
ek Xkf receives the form∑

e′k X
′
kf , wheree′1, . . . , e

′
q determine themselves from the differential

equations:
de′k
dt

+

q∑

ν=1

gνk e
′
ν = 0 (k =1 ··· q),

while taking account of the initial conditions:e′k = ek for t = 0.
——————————-
*) Lie, Archiv for Mathematik og Naturvidenskab Vol. 3, Christiania 1878.
——————————-

If one performs the integration of which the preceding theorem
speaks, hence determinese′1, . . . , e

′
r from the differential equations:

de′k
dt

= −
q∑

ν=1

gνk e
′
ν (k =1 ··· q)

taking as a basis the initial conditions:e′k = ek for t = 0, then one obtains
equations of the form:

e′k =

q∑

j=1

dkj(t) · ej (k = 1 ··· q).

It is clear that these equations represent the finite transformations of a cer-
tain one-term group, namely the one which is engendered by the infinites-
imal transformation:

q∑

k=1

{ q∑

ν=1

gνk eν

} ∂f

∂ek

(cf. Chap. 3, pages 47 and 48 [here: Chap. C]).



C h a p t e r L

The Adjoint Group

Fundamental Differential Equations
for the Inverse Transformations

According to a fundamental theorem stated on p.??, a generalr-term
continuous transformation groupx′i = fi(x; a1, . . . , ar) satisfies partial dif-
ferential equations:∂fi

∂ak
=

∑r

j=1 ψkj(a) ·ξji(f1, . . . , fn) that are used every-
where in the basic Lie theory. For the study of the adjoint group, we must
also know how to write precisely the fundamental differential equations that
are satisfied by the group ofinversetransformations:

xi = fi

(
x′; i(a)

)
(i = 1 ···n),

and this is easy. Following an already known path, we must indeed begin by
differentiating these equations with respect to the parametersak:

∂xi

∂ak

=

r∑

l=1

∂fi

∂al

(
x′; i(a)

) ∂i l
∂ak

(a) (i =1 ···n; k = 1 ··· r).

Naturally, we replace here the∂fi

∂al
by their values

∑r
j=1 ψlj · ξji given by the

fundamental differential equations, and we obtain a doublesum:

∂xi

∂ak

=
r∑

l=1

r∑

j=1

ψlj

(
i(a)

)
ξji

(
f(x′; i(a)

) ∂i l
∂ak

(a)

=:

r∑

j=1

ϑkj(a) · ξji(x) (i = 1 ···n; k = 1 ··· r),

which we contract to a single sum by simply introducing the following new
r × r auxiliary matrix of parameter functions:

ϑkj(a) :=

r∑

l=1

ψlj

(
i(a)

) ∂i l
∂ak

(a) (k, j = 1 ··· r),

whose precise expression will not matter anymore. It now remains to check
that this matrix

(
ϑkj(a)

)16j6r

16k6r
is invertible for alla in a neighborhood of the

identity elemente = (e1, . . . , er). We in fact claim that:

ϑkj(e) = δj
k,
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which will clearly assure the invertibility in question. Atfirst, we remember
from Theorem 3 on p.?? thatψlj(e) = −δj

l . Thus secondly, it remains now
only to check that∂il

∂ak
(e) = −δl

k, a rather known fact.
To check this, we differentiate with respect toak the trivial identities:

ej ≡ m j

(
a, i(a)

)
, j = 1, . . . , r, getting:

0 ≡ ∂mj

∂ak

(e, e) +

r∑

l=1

∂mj

∂bl
(e, e)

∂i l
∂ak

(e) (j = 1 ··· r).

From another side, by differentiating the two families ofr identitiesaj ≡
mj(a, e) andbj ≡ mj(e, b) with respect toak and with respect tobl, we
immediately get two expressions:

∂mj

∂ak

(e, e) = δj
k and

∂mj

∂bl
(e, e) = δj

l

which, when inserted just above, yield the announced∂ il
∂ak

(e) = −δl
k. Some-

times, we will writeg(x; a) instead off
(
x; i(a)

)
. As a result:

Lemma. The finite continuous transformation groupx′i = fi(x; a) and its
inverse transformationsxi = gi(x; a) := fi

(
x; i(a)

)
both satisfy funda-

mental partial differential equations of the form:

(1)





∂x′i
∂ak

(x; a) =

r∑

j=1

ψkj(a) · ξji
(
x′(x; a)

)
(i = 1 ···n; k = 1 ··· r),

∂xi

∂ak

(x′; a) =
r∑

j=1

ϑkj(a) · ξji
(
x(x′; a)

)
(i = 1 ···n; k =1 ··· r),

whereψ and ϑ are some twor × r matrices of analytic functions with
−ψkj(e) = ϑkj(e) = δj

k, and where the functionsξji appearing inboth
systems of equations:

ξji(x) := − ∂fi

∂xj

(x; e) (i =1 ···n; j =1 ··· r)

are, up to an overall minus sign, just the coefficients of ther infinitesimal
transformations

Xe
1 =

∂f

∂a1
(x; e), . . . . . . , Xe

r =
∂f

∂ar

(x; e)

obtained by differentiating the finite equations with respect to the parameters
at the identity element.
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Transfer of Infinitesimal Transformations by the Group
We now differentiate with respect toak the identically satisfied equa-

tions:
x′i ≡ fi

(
g(x′; a); a) (i = 1 ···n),

which just say that an arbitrary transformation of the groupfollowed by its
inverse regives the identity transformation, and we immediately get:

0 ≡
n∑

ν=1

∂fi

∂xν

∂gν

∂ak

+
∂fi

∂ak

(i =1 ···n; k = 1 ··· r).

Thanks to the above two systems of partial differential equations, we may
then replace∂gν

∂ak
by its value from(1)2 and also∂fi

∂ak
by its value from(1)1:

(2)
0 ≡

n∑

ν=1

{ r∑

j=1

ϑkj(a) ξjν(g)
} ∂fi

∂xν

+

r∑

j=1

ψkj(a) ξji(f)

(i = 1 ···n; k =1 ··· r).

In order to bring these equations to a more symmetric form, following [25]
pp. 44–45, we fixk and we multiply, fori = 1 to n, the i-th equation
by ∂

∂x′

i
, we apply the summation

∑n
i=1, we use the fact that, through the

diffeomorphismx 7→ fa(x) = x′, the coordinate vector fields transform as
∂

∂xν
=

∑n
i=1

∂fi

∂xν

∂
∂x′

i
, which just means in contemporary notation that:

(fa)∗
(

∂
∂xν

)
=

∑n
i=1

∂fi

∂xν

∂
∂x′

i
(ν =1 ···n),

and we obtain, thanks to this observation, completely symmetric equations:

0 ≡
n∑

ν=1

ϑkj(a)

n∑

ν=1

ξjν(x)
∂

∂xν

+

r∑

j=1

ψkj(a)

r∑

ν=1

ξjν(x
′)

∂

∂x′ν
(k = 1 ··· r).

in which the push-forwards(fa)∗
(

∂
∂xν

)
are now implicitly understood. It

is easy to see that exactly the same equations, but with the opposite push-
forwards(ga)∗

(
∂

∂x′
ν

)
, are obtained by subjecting to similar calculations the

reverse, identically satisfied equations:xi ≡ gi

(
f(x; a); a

)
. Consequently,

we have obtained two families of equations:

(3)



0 ≡
n∑

ν=1

ϑkj(a)

n∑

ν=1

ξjν(x)
∂

∂xν

∣∣∣∣
x 7→ga(x′)

+

r∑

j=1

ψkj(a)

r∑

ν=1

ξjν(x
′)

∂

∂x′ν
,

0 ≡
n∑

ν=1

ϑkj(a)

n∑

ν=1

ξjν(x)
∂

∂xν
+

r∑

j=1

ψkj(a)

r∑

ν=1

ξjν(x
′)

∂

∂x′ν

∣∣∣∣
x′ 7→fa(x)

(k = 1 ··· r)
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in which we represent push-forwards of vector fields by the symbol of vari-
able replacementx 7→ ga(x

′) in the first line, and similarly in the second
line, byx′ 7→ fa(x).

Synthetic, geometric counterpart of the computations.To formulate the
adequate interpretation, we must introduce the two systemsof r infinitesimal
transformations (1 6 k 6 r):

Xk :=

n∑

i=1

ξki(x)
∂

∂xi

and X ′
k :=

n∑

i=1

ξki(x
′)

∂

∂x′i
,

where the second ones are defined to beexactly the same vector fieldsas the
first ones, though considered on thex′-space. This target, auxiliary spacex′

has in fact to be considered to be thesamespace as thex-space, because the
considered transformation group acts on a single individual space. So we
can also consider thatX ′

k coincides with the value ofXk atx′ and we shall
sometimes switch to another notation:

X ′
k ≡ Xk

∣∣
x′
.

Letting nowψ̃ andϑ̃ be the inverse matrices ofψ and ofϑ, namely:
r∑

k=1

ψ̃lk(a)ψkj(a) = δj
l ,

r∑

k=1

ϑ̃lk(a)ϑkj(a) = δj
l ,

we can multiply the first (resp. the second) line of (3) byψ̃lk(a) (resp. by
ϑ̃lk(a)) and then make summation overk = 1, . . . , r in order to get resolved
equations:





0 ≡
r∑

k=1

r∑

j=1

ψ̃lk(a)ϑkj(a)Xj +X ′
l (k = 1 ··· r),

0 ≡ Xl +
r∑

k=1

r∑

j=1

ϑ̃lk(a)ψkj(a)X
′
j (k = 1 ··· r),

in which we have suppressed the push-forward symbols. We canreadily
rewrite such equations under the contracted form:

Xk =

r∑

l=1

ρjk(a)X
′
j and X ′

k =

r∑

l=1

ρ̃jk(a)Xj

(k =1 ··· r),

by introducing some two appropriate auxiliaryr × r matricesρjk(a) :=

−∑r
l=1 ϑ̃kl(a)ψlj(a) andρ̃jk(a) := −∑r

l=1 ψ̃kl(a)ϑlj(a) of analytic func-
tions (whose precise expression does not matter here) whichdepend only
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upona and which, naturally, are inverses of each other. A diagram illustrat-
ing what we have gained at that point is welcome and intuitively helpful.

(x′

1, . . . , x′

n)K
n (x1, . . . , xn) Kn

X′

1

X′

r

...X1

Xr

...

Fig. : Transfer of infinitesimal transformations by the group

fa(·) fa(x)

x′
x

f∗

a

`
X′

k) =
P

eρjk(a) Xj

ga(·) g∗

a(Xk) =
P

ρjk(a) X′

j
ga(x′)

Proposition. If, in each one of ther basic infinitesimal transformations of
the finite continuous transformation groupx′ = f(x; a) = fa(x) having the
inverse transformationsx = ga(x

′), namely if in the vector fields:

Xk =

n∑

i=1

ξki(x)
∂

∂xi

(k = 1 ··· r), ξki(x) := − ∂fi

∂ak
(x; e),

one introducesthe new variablesx′ = fa(x), that is to say: replaces
x by ga(x

′) and ∂
∂xi

by
∑n

ν=1
∂fν

∂xi
(x; a) ∂

∂x′
ν
, then one necessarily ob-

tains a linear combination of the same infinitesimal transformations
X ′

l =
∑n

i=1 ξki(x
′) ∂

∂x′

i
at the pointx′ with coefficients depending only upon

the parametersa1, . . . , ar:

(fa)∗
(
Xk

∣∣
x

)
= (ga)

∗
(
Xk

∣∣
ga(x′)

)
=

r∑

l=1

ρlk(a1, . . . , ar)·Xl

∣∣
x′

(k =1 ··· r).

Of course, through the inverse change of variablex′ 7→ fa(x), the infinites-
imal transformationsX ′

k are subjected to similar linear substitutions:

(ga)∗
(
X ′

k

∣∣
x′

)
= (fa)

∗
(
X ′

k

∣∣
fa(x)

)
=

r∑

l=1

ρ̃lk(a) ·Xl

∣∣
x

(k = 1 ··· r).

Coincidence with the Contemporary Presentation

Afterwards, thanks to the linearity of the tangent map, we deduce that
the general transformation of our group:

X := e1X1 + · · ·+ er Xr,

coordinatized in the basis
(
Xk

)
16k6r

by means of somer arbitrary constants
e1, . . . , er ∈ K, then transforms as:

(ga)
∗
(
e1X1 + · · ·+ er Xr

∣∣
ga(x′)

)
=

r∑

k=1

ek

r∑

l=1

ρlk(a)Xl

∣∣
x′

=: e′1(e; a)X1

∣∣
x′

+ · · ·+ e′r(e; a)Xr

∣∣
x′
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and hence we obtain thatthe change of variablesx′ = fa(x) performed by
a general transformation of the group then acts linearly on the space≃ Kr

of its infinitesimal transformations:

e′k(e; a) :=
r∑

l=1

ρkl(a) · el (k = 1 ··· r),

by just multiplying the coordinatesel by the matrixρkl(a).

In contemporary treatises, the action of the group on its infinitesimal
transformations coincides in substance with what Lie had devised in the
1870’s. Indeed, to bridge the Babelian-like gap, we consider the general
infinitesimal transformationX

∣∣
x′

= e1X1 + · · · + erXr

∣∣
x′

of the group as
being based at the pointx′, and we compute the adjoint actionAd fa

(
X

∣∣
x′

)

of fa onX
∣∣
x′

; this expression is nowadays defined by just differentiating at
t = 0 the compositionfa ◦ exp(tX) ◦ f−1

a which represents the action of
the interior automorphism associated tofa on the one-parameter subgroup
exp(tX)(·) generated byX:

Ad fa

(
X

∣∣
x′

)
:=

d

dt

(
fa ◦ exp(tX)(·) ◦ f−1

a (x′)
)∣∣∣

t=0

= (fa)∗
d

dt

(
exp(tX)

(
f−1

a (x′)
))∣∣∣

t=0

= (fa)∗
(
X

∣∣
f−1

a (x′)

)

= (ga)
∗
(
X

∣∣
ga(x′)

)

= (ga)
∗
(
e1X1 + · · ·+ er Xr

∣∣
ga(x′)

)

= e′1(e; a)X1

∣∣
x′

+ · · ·+ e′r(e; a)Xr

∣∣
x′
.

We thus recoverexactly the linear actione′k = e′k(e; a1, . . . , ar) boxed
above.

(ga)∗
`

X
˛

˛

ga(x′)

´

X
∣∣
x′

Tx′Kn

Fig. : Differentiating the action of an interior automorphi sm

X
˛

˛

ga(x′)

ga
ga(x′)

x′

fa

Infinitesimal Generators of the Adjoint Group

After these preliminaries devoted to survey, to modernize and to clarify
selected topics of the first chapters of [25], we can now just translate the
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very clear presentation of Lie’s theory of the adjoint groupwritten out by
Engel and Lie.

C h a p t e r 16 (V o l. I).

The adjoint group.

Let x′i = fi(x1, . . . , xn, a1, . . . , an) be anr-term group with ther
infinitesimal transformations:

Xkf =
n∑

i=1

ξki(x)
∂f

∂xi

(k = 1 ··· r).

If one introduces thex′i as new variables in the expression
∑

ek Xkf , then
as it has been already shown in Chap. 4, Prop. 4, p. 81 [reconstituted just

above], one gets for all values of theek an equation of the form:
r∑

k=1

ek ·Xkf =
r∑

k=1

e′k ·X ′
kf.

Here, thee′k are certain linear, homogeneous functions of theek with coef-
ficients that depend upona1, . . . , ar:

(1) e′k =

r∑

j=1

ρkj(a1, . . . , ar) · ej .

If one again introduces in
∑

e′k X
′
kf the new variablesx′′i = fi(x, b),

then one receives:
r∑

k=1

e′k ·X ′
kf =

r∑

k=1

e′′k ·X ′′
kf,

where:

(1’) e′′k =

r∑

j=1

ρkj(b1, . . . , br) · e′j .

But now because the equationsx′i = fi(x, a) represent a group, thex′′ are
consequently linked with thex through relations of the formx′′i = fi(x, c)

in which thec depend only upona andb:

ck = ϕk(a1, . . . , ar, b1, . . . , br).

Hence one passes directly from thex to thex′′ so one finds:
r∑

k=1

ek ·Xkf =

r∑

k=1

e′′k ·X ′′
kf,
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and to be precise, one has:

(1”) e′′k =
r∑

j=1

ρkj(c1, . . . , cr) · ej =
r∑

j=1

ρkj

(
ϕ1(a, b), . . . , ϕr(a, b)

)
· ej.

From this, it can be deduced that the totality of all transformations
e′k =

∑
ρkj(a) · ej forms a group. Indeed, by combination of the equa-

tions (1) and (1’) it comes out:

e′′k =
∑

j, ν=1...r

ρkj(b1, . . . , br) · ρjν(a1, . . . , ar) · eν ,

what must naturally coincide with the equations (1”) and in fact, for all
values of thee, thea and theb. Consequently, there are ther2 identities:

ρkν

(
ϕ1(a, b), . . . , ϕr(a, b)

)
≡

r∑

j=1

ρjν(a1, . . . , ar) · ρkj(b1, . . . , br),

from which it results that the family of the transformationse′k =
∑

ρkj(a)·
ej effectively forms a group.

To everyr-term groupx′i = fi(x, a) therefore belongs a fully deter-
mined linear homogeneous group:

(1) e′k =
r∑

j=1

ρkj(a1, . . . , ar) · ej (k =1 ··· r),

which we want to call theadjoint group*) [ ADJUNGIRTE GRUPPE] of the
groupx′i = fi(x, a).
——————————-
*) Lie, Archiv for Math., Vol. 1, Christiania 1876.
——————————-

We considerfor examplethe two-term groupx′ = ax+ b with the two
independent infinitesimal transformations:df

dx
, x df

dx
. We find:

e1
df

dx
+ e2x

df

dx
= e1a

df

dx′
+ e2(x

′ − b) df
dx′

= e′1
df

dx′
+ e′2x

′ df

dx′
,

whence we obtain for the adjoint group of the groupx′ = ax + b the
following equations:

e′1 = ae1 − be2, e′2 = e2,

which visibly really represent a group.
The adjoint group of the groupx′i = fi(x, a) contains, under the

form in which it has been found above, preciselyr arbitrary parameters:
a1, . . . , ar. But for every individual groupx′i = fi(x, a), a special research
is required to investigate whether the parametersa1, . . . , ar are all essential
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in the adjoint group. Actually, we shall shortly see that there arer-term
groups whose adjoint group does not containr essential parameters.

Besides, in all circumstances, one transformation comes inthe adjoint
group of the groupx′i = fi(x, a), namely the identity transformation; for
if one sets fora1, . . . , ar in the equations (1) the system of values which
produces the identity transformationx′i = xi in the groupx′i = fi(x, a),
then one obtains the transformation:e′1 = e1, . . . , e

′
r = er, which hence

is always present in the adjoint group. However, as we shall see, it can
happen that the adjoint group consists only of the identity transformation:
e′1 = e1, . . . , e

′
r = er.

§ 76.

In order to make accessible the study of the adjoint group, wemust
above all determine its infinitesimal transformations. We easily reach this
end by an application of the Theorem 43, Chap. 15, p. 252 [here: p. 7] ; yet
we must in the process replace the equationsx′i = fi(x, a) of our group
by the equivalentcanonicalequations:

(2) x′i = xi +
t

1

r∑

k=1

λk ·Xk xi + · · · (i = 1 ···n),

which represent the∞r−1 one-term subgroups of the groupx′i = fi(x, a).
According to Chap. 4, p. 69 [here: p. ??], theak are defined here as func-
tions oft andλ1, . . . , λr by the simultaneous system:

(3)
dak

dt
=

r∑

j=1

λj · αjk(a1, . . . , ar) (k = 1 ··· r)

By means of the equations (2), we have therefore to introducethe new
variablesx′i in

∑
ek Xkf and we must as a result obtain a relation of the

form:
r∑

k=1

ek ·Xkf =
r∑

k=1

e′k ·X ′
kf.

The infinitesimal transformation denoted byY f in Theorem 43 on p. 252
[here: p. 7] now writes:λ1X1f + · · ·+λr Xrf ; we therefore receive in our
case:

Y
(
Xk(f)

)
−Xk

(
Y (f)

)
=

r∑

ν=1

λν

[
Xν , Xk

]

=

r∑

s=1

{ r∑

ν=1

λν cνks

}
Xsf.
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Consequently, we obtain the following differential equations fore′1, . . . , e
′
r:

(4)
de′s
dt

+

r∑

ν=1

λν

r∑

k=1

cνks e
′
k = 0 (s =1 ··· r).

We consider the integration of these differential equations as an exe-
cutable operation, for it is known that it requires only the resolution of an
algebraic equation ofr-th degree. So if we perform the integration on the
basis of the initial condition:e′k = ek for t = 0, we obtainr equations of
the form:

(5) e′k =
r∑

j=1

ψkj(λ1t, . . . , λrt) · ej (k = 1 ··· r),

which are equivalent to the equations (1), as soon as theak are expressed
as functions ofλ1t, . . . , λrt in the latter.

It follows from this that the equations (5) represent the adjoint group
too. But now we have derived the equations (5) in exactly the same way as
if we would have wanted to determine all finite transformations which are
engendered by the infinitesimal transformations:

r∑

ν=1

λν

∑

k, s=1...r

ckνs ek

∂f

∂es

=

r∑

ν=1

λν · Eνf

(cf. p. 51 above).Consequently we conclude that the adjoint group(1)
consists of the totality of all one-term groups of the formλ1E1f + · · · +
λr Erf .

If amongst the family of all infinitesimal transformationsλ1E1f +

· · · + λr Erf there are exactlyρ transformations and not more which are
indepedent, sayE1f, . . . , Eρf , then all the finite transformations of the
one-term groupsλ1E1f+· · ·+λr Erf are already contained in the totality
of all finite transformations of the∞ρ−1 groupsλ1E1f + · · · + λρEρf .
The totality of these∞ρ finite transformations forms the adjoint group:
e′k =

∑
ρkj(a) · ej , which therefore contains onlyρ essential parameters

(Chap. 3, Theorem 8, p. 65 [here: p. ??]).
According to what precedes, it is to be supposed thatE1f, . . . , Eρf

are linked together through relations of the form:

[
Eµ, Eν

]
=

ρ∑

s=1

gµνs · Esf ;
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we can also confirm this by a computation. By a direct calculation, it
comes:

Eµ

(
Eν(f)

)
− Eν

(
Eµ(f)

)
=

1...r∑

σ, k, π

(
cπµk ckνσ − cπνk ckµσ

)
eπ

∂f

∂eσ

.

But between theciks, there exist the relations:
r∑

k=1

(
cπµk ckνσ + cµνk ckπσ + cνπk ckµσ

)
= 0,

which we have deduced from the Jacobi identity some time ago (cf.
Chap. 9, Theorem 27, p. 170 [here: ??]). If we yet use for this that
cνπk = −cπνk and ckπσ = −cπkσ, we can bring the right hand-side of
our equation for

[
Eµ, Eν

]
to the form:

r∑

k=1

cµνk

1...r∑

σ, π

cπkσ eπ

∂f

∂eσ

,

whence it comes:
[
Eµ, Eν

]
=

r∑

k=1

cµνk · Ekf.

Lastly, under the assumptions made above, the right hand side can be ex-
pressed by means ofE1f, . . . , Eρf alone, so that relations of the form:

[
Eµ, Eν

]
=

ρ∑

s=1

gµνs · Esf

really hold, in which thegµνs denote constants.
Before we continue, we want yet to recapitulate in cohesion [IM

ZUSAMMENHANGE WIEDERHOLEN] the results of the chapter obtained
up till now.

Theorem 48. If one introduces in the general infinitesimal transfor-
matione1 X1f + · · ·+ er Xrf of ther-term groupx′i = fi(x, a) the new
variablex′ in place ofx, then one obtains an expression of the form:

e′1 ·X ′
1f + · · ·+ e′r ·X ′

rf ;

in the process, thee′ are linked with thee through equations of the shape:

e′k =
r∑

j=1

ρkj(a1, . . . , ar) · ej (k =1 ··· r),
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which represent a group in the variablese, the so-called adjoint group of
the groupx′i = fi(x, a). This adjoint group contains the identity trans-
formation and is engendered by certain infinitesimal transformations; if,
betweenX1f, . . . , Xrf , there exist the Relations:

[
Xi, Xk

]
=

r∑

s=1

ciks ·Xsf (i, k =1 ··· r),

and if one sets:

Eµf =

1...r∑

k, j

cjµk ej

∂f

∂ek

(µ =1 ··· r),

thenλ1E1f + · · ·+ λr Erf is the general infinitesimal transformation of
the adjoint group and betweenE1f, . . . , Erf , there are at the same time
the Relations:

[
Ei, Ek

]
=

r∑

s=1

ciks · Esf (i, k =1 ··· r).

If two r-term groupsX1f, . . . , Xrf andY1f, . . . , Yrf are constituted
in such a way that one has equally:

[
Xi, Xk

]
=

r∑

s=1

ciks ·Xs,
[
Yi, Yk

]
=

r∑

s=1

ciks · Ysf,

with the same constantsciks in the two cases, then both groups obviously
have the same adjoint group. Later, we will see that in certain circum-
stances, also certain groups which do not possess an equal number of terms
can nonetheless have the same adjoint group.

Excellent Infinitesimal Transformations

§ 77.

Now, by what can one recognize how many independent infinitesismal
transformation there are amongstE1f, . . . , Erf?

If E1f, . . . , Erf are not all independent of each other, then there is at
least one infinitesimal transformation

∑
gµEµf that does vanish identi-

cally. From the identity:
r∑

µ=1

gµ

1...r∑

k, j

cjµk ej

∂f

∂ek

≡ 0,
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it comes out:
r∑

µ=1

gµ cjµk = 0

for all values ofj andk, and consequently the expression:
[
Xj,

r∑

µ=1

gµ ·Xµf
]

=
r∑

k=1

{ r∑

µ=1

gµ cjµk

}
Xkf

vanishes, that is to say: the infinitesimal transformation
∑

gµXµf is
exchangeable with all ther infinitesimal transformationsXjf . Con-
versely, if the groupX1f, . . . , Xrf comprises an infinitesimal transfor-
mation

∑
gµXµf which is exchangeable with all theXkf , then if follows

in the same way that the infinitesimal transformation
∑

gµEµf vanishes
identically.

In order to express this relationship in an as brief as possible manner,
we introduce the following naming:

An infinitesimal transformation
∑

gµXµf of the r-term group
X1f, . . . , Xrf is called andexcellentinfinitesimal transformation of this
group if it is exchangeable with all theXkf .

Incidentally, the excellent infinitesimal transformations of the group
X1f, . . . , Xrf are also characterized by the fact that they keep their form
through the introduction of the new variablesx′i = fi(x, a), whichever val-
ues the parametersa1, . . . , ar can have. Indeed, if the infinitesimal trans-
formation

∑
gµXµ f is excellent, then according to Chap. 15, p. 259,

there is a relation of the form:
∑

gµ ·Xµf =
∑

gµ ·X ′
µf.

In addition, the cited developments show that each finite transformation of
the one-term group

∑
gµXµf is exchangeable with every finite transfor-

mation of the groupX1f, . . . , Xrf .

⊲ The cited developments. ⊳



C h a p t e r M

The Projective Group

Projective SpaceKP
n and Homogeneous Coordinates

Let K = R or C. The n-dimensional (“n-fold-extended”)projective
space(over K) is the setKP

n of (vector) lines in the vector spaceKn+1.
One can seeKPn as the quotient set

(
Kn+1\{0}

)/
∼ of nonzero vectors

e ∈ Kn+1\{0}modulo the equivalence relatione′ ∼ e if and only if e′ = λ e,
for someλ ∈ K (naturally,λ 6= 0). Thus, we have a canonicalprojection
map π : Kn+1\{0} −→ KPn that associates to each vectorv the vector line
Kv it spans. Here,π(µe) = π(e) for everye ∈ K

n+1\{0} and allµ 6= 0.
When considered as a basis ofKn+1, any collection of(n + 1) linearly

independent vectors(e0, e1, . . . , en) in Kn+1\{0} is enough to determine
uniquely every nonzero vectore = x0e0 + x1e1 + · · ·+ xnen of Kn+1 by its
coordinatesx0, x1, . . . , xn, and hence also, to determine uniquely the pro-
jected pointP = π(e) = π(µe) of the projective spaceKPn.

Given a basis(e1, e1, . . . , en) of Kn+1, we can therefore associate to ev-
ery projective pointP = π(e) a certain(n + 1)-tuple of elements ofK,
calledhomogeneous coordinatesof P (relative to the basis in question) and
denoted[x0 :x1 : · · · :xn], namely the coordinates of any vectore = x0e0 +
x1e1 + · · ·+ xnen with π(e) = P . By definition, these(n + 1)-tuples have
at least one nonzero component, and for reasons of coherence, they must be
left unchanged by any homothety of nonzero ratioµ ∈ K:

[x0 :x1 : · · · :xn] ≡ [µx0 :µx1 : · · · :µxn].

Thus, each representative of any equivalence class under[x] ≡ [µx] provides
homogeneous coordinates for a well defined pointP ∈ KPn. Notice that the
(n+ 1) pointsP0 = π(e0), P1 = π(e1), . . . ,Pn = π(en) have homogeneous
coordinates[1 :0 : · · · : 0], [0 :1 : · · · :0], . . . , [0 :0 : · · · :1].

However, while thinking intrinsically inside the projective space, no
collection of (n + 1) projective points in general positionP0, P1, . . . ,
Pn can be sufficient to “coordinatize”uniquelyall points P of KPn by
means of some lifted basis(e0, e1, . . . , en), whereei ∈ π−1(Pi); indeed,
any other such basis(e′1, e

′
2, . . . , e

′
n) with Pi = π(e′i) is necessarily of the
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form (e′1, e
′
2, . . . , e

′
n) = (λ0e0, λ1e1, . . . , λnen) with arbitraryλi 6= 0, but a

variable vector

e = x0e0 + x1e1 + · · ·+ xnen = x′0e
′
0 + x′1e

′
1 + · · ·+ x′ne

′
n

which is a lift of a variable projective pointP = π(e) has homogeneous
coordinates:

[x′0 :x′1 : · · · :x′n] = [x0/λ0 :x1/λ1 : · · · :xn/λn]

6= [x0 :x1 : · · · :xn]

which are in generaldifferentin the alternative lifted basis(e′1, e
′
2, . . . , e

′
n).

The introduction of an(n + 2)-th pointPn+1 ∈ KPn shall insure here that
λ0 = λ1 = · · · = λn =: µ must all be equal, whence homogeneous coordi-
nates will be uniquely defined byP0, P1, . . . , Pn, Pn+1, as we now explain.

Projective frames. A (n + 2)-tuple of pointsP0, P1, . . . , Pn, Pn+1 of KP
n

is called aprojective frameif any (n+ 1) among the(n+ 2) linesπ−1(P0),
π−1(P1), . . . , π−1(Pn), π−1(Pn+1) spanKn+1. This is a precise sense of
being “mutually in general position”.

Lemma. For any projective frameP0, P1, . . . ,Pn, Pn+1, there exist(n+ 2)
vectorse0, e1, . . . , en, en+1 in Kn+1 with the first(n + 1) onese0, e1, . . . , en

constituting a basis ofKn+1, and with:

en+1 = e0 + e1 + · · ·+ en

such that they provide a lift of the projective frame, namely:

π(e0) = P0, π(e1) = P1, · · · · · · , π(en) = Pn, and π(en+1) = Pn+1.

Any other such lift(e′0, e
′
1, . . . , e

′
n, e

′
n+1) differs from(e0, e1, . . . , en, en+1)

just up to a homothety:e′i = µei, i = 0, 1, . . . , n, n + 1, for some nonzero
µ ∈ K.

PROOF. Lift the first (n + 1) points P0, P1, . . . , Pn to any basis
(e0, e1, . . . , en) of Kn+1, namelyπ(e0) = P0, π(e1) = P1, . . . ,π(en) = Pn

and consider the coordinates(x0, x1, . . . , xn) in this basis of some nonzero
vector en+1 = x0e0 + x1e1 + · · · + xnen chosen in the lineπ−1(Pn+1)
associated to the last point. Then all thexi here must be nonzero; otherwise,
if say x0 = 0, the(n + 1) linesKe1, . . . , Ken, Ken+1 would be contained
in the hyperplane{x0 = 0}, in contradiction to general position. So we can
replace the basis(e0, e1, . . . , en) by just(x0e0, x1e1, . . . , xnen), and we then
haveen+1 = e0 + e1 + · · ·+ en, as desired.

Next, supposingπ(e′i) = π(ei) for the(n+1) first indicesi = 0, 1, . . . , n,
there must, as already seen, exist nonzeroλi ∈ K such thate′i = λiei, but if
in addition, also for the last index, one requiresπ(e′n+1) = π(en+1), namely
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e′n+1 = µen+1, we deduce by insertinge′n+1 = e′0 + e′1 + · · · + e′n and
en+1 = e0 + e1 + · · ·+ en:

λ0e0 + λ1e1 + · · ·+ λnen = e′n+1 = µen+1 = µe0 + µe1 + · · ·+ µen,

whenceλ0 = µ = λ1 = · · · = λn, as claimed. �

Given a basis(e0, e1, . . . , en) for K
n+1, the mapping which sendsP =

π(x0e0 + x1e1 + · · · + xnen) to [x0 : x1 : · · · : xn] is called aprojective
coordinate system.
Proposition. Projective coordinate systems[x0 : x1 : · · · : xn] are in one-to-
one correspondence with projective framesP0, P1, . . . ,Pn, Pn+1, namely:

P0 ←→ [1 :0 : · · · :0], P1 ←→ [0 :1 : · · · :0], . . . ,

. . . ,Pn ←→ [0 :0 : · · · :1], Pn+1 ←→ [1 :1 : · · · :1].

PROOF. �

Projective Frames
Any linear automorphismu ∈ GLn+1(K) of Kn+1 sends lines ofKn+1 to

lines, so passing to the quotient map,u definesP(u) : KPn → KPn. The
maps obtained this way are calledprojective transformations.
Lemma. Two linear automorphismsu1, u2 ∈ GLn+1(K) yield thesame
projective transformationP(u1) = P(u2) of KP

n if and only if there exists a
nonzero constantλ ∈ K such thatu2(e) = λu1(e) for all e ∈ Kn+1.

PROOF. If u2 = λu1, obviouslyP(u2) = P(u1). Conversely, ifP(u2) =
P(u1), then for everye ∈ E\{0}, there exists a nonzero constantλe, de-
pendinga priori on e, such thatu2(e) = λeu1(e). Here,λe′ = λe at least
whene′ = µe is collinear toe. On the other hand, takinge ande′ linearly
independent and expressingu2(e+ e′) in two ways:

λeu1(e) + λe′u1(e
′) = u2(e) + u2(e

′) =

= u2(e+ e′) = λe+e′u1(e+ e′) =

= λe+e′u1(e) + λe+e′u1(e
′),

we getλe = λe+e′ = λe′ for anye ande′, soλe ≡ λ is constant. �

Given anotherv ∈ GLn+1(K), we can writeP(v◦u) = P(v)◦P(u) and we
also clearly haveP(u ◦u−1) = P(u−1 ◦u) = P

(
IdKn+1

)
= IdKPn. It follows

that the projective transformations ofKPn into itself form a group, called
theprojective groupof KP

n and denotedPGLn(K). The lemma shows that

PGLn(K) = GLn+1(K)
/
K · In+1 ≃ SLn+1(K).

Theorem. Let (P0, P1, . . . , Pn, Pn+1) and (P ′
0, P

′
1, . . . , P

′
n, P

′
n+1) be two

(n + 2)-tuples of points ofKPn which both constitute a projective frame.
Then there exists auniqueprojective transformationh = P(u) ∈ PGLn(K),
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u ∈ GLn+1(K), which maps the first frame to the second one, namely such
thath(Pi) = P ′

i for i = 0, 1, . . . , n, n+ 1.

PROOF. The lemma p. 22 enables us to liftP0, P1, . . . , Pn as a basis
(e0, e1, . . . , en) such thatπ(e0 + e1 + · · · + en) = Pn+1 and similarly, to
lift P ′

0, P
′
1, . . . , P

′
n as(e′0, e

′
1, . . . , e

′
n) with π(e′0 + e′1 + · · · + e′n) = P ′

n+1.
The mapu defined byu(e0) = e′0, u(e1) = e′1, . . . ,u(en) = e′n and simply
extended by linearity, whenceu(e0 + e1 + · · ·+ en) = e′0 + e′1 + · · ·+ e′n,
does the job: its projectivizationh := P(u) clearly satisfiesh(Pi) = P ′

i , for
i = 0, 1, . . . , n, n+ 1.

On the other hand, ifk = P(v) is another such projective transformation
performingk(Pj) = P ′

j, namelyv(ei) = λie
′
i for i = 0, 1, . . . , n and also

v(en+1) = µe′n+1, we deduce by insertingen+1 = e0 + e1 + · · · + en and
e′n+1 = e′0 + e′1 + · · ·+ e′n:

λ0e
′
0 + λ1e

′
1 + · · ·+ λne

′
n = v(en+1) = µe′n+1 = µe′0 + µe′1 + · · ·+ µe′n,

whenceλ0 = µ = λ1 = · · · = λn, so v = µu and hencek = P(v) =
P(u) = h: this shows uniqueness. �

Structural Properties

C h a p t e r 26 (V o l I).

The General Projective Group.

The equations:

(1) x′ν =
a1ν x1 + · · ·+ anν xn + an+1,ν

a1,n+1 x1 + · · ·+ an,n+1 xn + an+1,n+1
(ν = 1 ···n)

determine a group, as one easily convinces oneself, the so-calledgeneral
projective groupof the manifoldx1, . . . , xn. In the present chapter, we
want to study somehow more closely this important group, which is also
called the group of allcollineationsof the spacex1, . . . , xn, by focusing
our attention especially on its subgroups.

§ 134.

The(n + 1)2 parametersa are not all essential: there indeed appears
just their ratios; one of the parameters, bestan+1,n+1, can hence be set
equal to 1. The values of the parameters are subjected to the restric-
tion that the substitution determinant [SUBSTITUTIONSDETERMINANT]∑
± a11 · · ·an+1,n+1 should not be equal to zero; because at the same
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time with it the functional determinant [FUNCTIONALDETERMINANT]:∑
± ∂x′

1

∂x1
. . . ∂x′

n

∂xn
would also vanish.

The identical transformation is contained in our group, it corresponds
to the values of the parameters:

aνν = 1, aµν = 0 (µ, ν = 1 ···n + 1, µ 6= ν),

for which indeed it comesx′i = xi. As a consequence of that, one ob-
tains the infinitesimal transformations of the group by giving to theaµν the
values:

aνν = 1 + ωνν , an+1,n+1 = 1, aµν = ωµν ,

where theωµν mean infinitesimal quantities. Thus one finds:

x′ν =

(
xν +

∑

16µ6n

ωµν xµ + ωn+1,ν

)(
1−

∑

16µ6n

ωµ,n+1 xµ + · · ·
)
,

or by leaving out the quantities of second or higher order:

x′ν − xν =
∑

16µ6n

ωµν xµ + ωn+1,ν − xν

∑

16µ6n

ωµ,n+1 xµ.

If one sets here all theωµν with the exception of a single one equal to
zero, then one recognizes bit by bit that our group comprisesthen(n+ 2)

independent infinitesimal transformations:

(2)
∂f

∂xi

, xi

∂f

∂xk

, xi

n∑

j=1

xj

∂f

∂xj

(i, k = 1 ···n)

The general projective group of then-fold extended spacex1, . . . , xn

therefore containsn(n + 2) essential parameters and is engendered by
infinitesimal transformations. The analytic expressions of the latter behave
regularly for every point of the space.

From now on, we will as a rule writepi for ∂f

∂xi
. In addition, for reasons

of convenience, we want to introduce the abbreviations:

xi pk = Tik, xi

n∑

k=1

xk pk = Pi

in this chapter. Lastly, we still want to agree on thatεik should mean zero
every timei andk are distinct from each other, whereas by contrastεii shall
have the value 1; a terminology fixing that we have already adopted from
time to time. On such a basis, we can write as follows the relations which
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come out through Combination [bracketting] of the infinitesimal transfor-
mationspi, Tik, Pi:

[
pi, pk

]
= 0,

[
Pi, Pk

]
= 0,

[
pi, Pk

]
= Tki + εik

n∑

ν=1

Tνν ,

[
pi, Tkν

]
= εik pν ,

[
Pi, Tkν

]
= −εiν Pk,

[
Tik, Tµν

]
= εkµ Tiν − ενi Tµk.

One easily convinces oneself that these relations remain unchanged
when one substitutes in them thepi, Tik andPi by the respective expres-
sions standing under them in the pattern:

(3)
pi, Tik, Pi

Pi, −Tki, pi.

Thus in this way, the general projective group can be referred to as
holoedric Isomorph to itself.

One could presume that there is a transformation:x′i = Φi(x1, . . . , xn)
which transfers the infinitesimal transformations:

pi, xipk, xi

n∑

k=1

xkpk

respectively to:

x′i

n∑

k=1

x′kp
′
k, −x′kp′i, p′i.

But there is no such transformation,
because then infinitesimal transformationsp1, . . . , pn engender ann-term

transitivegroup, while:x′1
∑

x′kp
′
k, . . . ,x′n

∑
x′kp

′
k engender ann-term intran-

sitivegroup.
First in the next chapter we will learn to see the full signification

of this important property of the projective group, when theconcept
of contact transformation [BERÜHRUNGSTRANSFORMATION] and espe-
cially the duality will be introduced.

⊲ Duality and contact transformations. ⊳

The general infinitesimal transformation:
n∑

i=1

ai pi +
n∑

i,k=1

bik Tik +
n∑

i=1

ci Pi

of our group is [already per se] expanded in powers ofx1, . . . , xn and vis-
ibly contains only terms of zeroth, first and second order in the x. One
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easily realizes that the group comprisesn independent infinitesimal trans-
formations of zeroth order inx, out of which no infinitesimal transforma-
tion of first or second order in thex can be deduced linearly. For instance,
p1, . . . , pn aren such infinitesimal transformations. From this it follows
thatthe general projective group is transitive.

Besides, there aren2 infinitesimal transformations of first order in the
xi, for instance allxipk = Tik, out of which no one of second order can be
deduced linearly. Finally it yet arisesn transformations of second order in
thex:

xi

n∑

k=1

xkpk = Pi.

In agreement with the Proposition 9 of the Chap. 15 on p. 264 thePi are
exchangeable in pairs and in addition, theTik together with thePi engender
a subgroup in which the group of thePi is contained as invariant subgroup.

⊲ A check. A (local) Lie subgroupH of a (local) Lie groupG is invariant
in G, meaning thatgHg−1 = H for everyg ∈ G, if and only if, at the level
of the two corresponding Lie algebrash andg, on has[h, g] ⊂ h. Here, the
concerned bracket relations are:

[
Pi, Tkν

]
= −εiν Pk. ⊳

As one sees, and also as it follows from our remark above aboutthe
relationship between thepi and thePi, thepi are also exchangeable in pairs
and they engender together with theTik a subgroup in which the group of
thepi is invariant.

§ 135.

For the most important subgroups of the general projective group, it
is advisable to employ special names. If, in the general expression (1) of a
projective transformation, one lets the denominator reduce to 1, then one
gets alinear transformation:

x′ν = a1ν x1 + · · ·+ anν xn + an+1,ν (ν = 1 ···n);

all transformations of this kind constitute the so-calledgeneral linear
group. We have already indicated at the end of the previous paragraph
the infinitesimal transformations of this group; they are deduced by linear
combination from the the followingn(n + 1) ones:

pi, xipk (i, k = 1 ···n).

If one interpretsx1, . . . , xn as coordinates of ann-fold extended space
Rn and if one translates the way of expressing into the ordinaryspace, then
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one can say that the general linear group consists of all projective trans-
formations which leave invariant the infinitely far(n − 1)-fold extended
even manifold, or briefly, theinfinitely far plane[UNDENDLICH FERNE

EBENE] Mn−1.
Next, if one remembers that by execution of two finite linear transfor-

mations one after the other, the substitution determinants:
∑
±a11 · · ·ann

multiply them, then one realizes without difficulty that thetotality of all
linear transformations whose determinant equals 1 constitutes a subgroup,
and in fact, an invariant subgroup, which we want to call thespecial linear
group. One finds easily that as then(n+ 1)− 1 independent infinitesimal
transformations of this group, the following can be chosen:

pi, xipk, xipi − xkpk (i ≷k).

If, amongst all linear transformations, one restricts oneself to those ho-
mogeneous inx, then one obtains thegeneral linear homogeneous group:

x′ν = a1ν x1 + · · ·+ anν xn (ν = 1 ···n),

whose infinitesimal transformations all possess the form:
∑

bik xipk and
hence can be linearly deduced from then2 transformations:xipk. Also
this group visibly contains an invariant subgroup, thespecial linear homo-
geneous group, for which:

∑
±a11 · · ·ann has the value 1. Then2 − 1

infinitesimal transformations of this latter are:

xipk, xipi − xkpk (i ≷k);

therefore the general infinitesimal transformation of the group in question
has the form:

∑
i, k αik xipk, where then2 arbitrary constantsαik are only

subjected to the condition
∑

αii = 0.

Since the expression:
[
xipk,

∑
j xjpj

]
always vanishes, it is obvious

that the last two named groups aresystaticand consequentlyimprimitive.
Indeed, if one sets:

xi

xn

= yi,
x′i
x′n

= y′i (i = 1 ···n−1),

then one receives:

y′ν =
a1νy1 + · · ·+ an−1,νyn−1 + anν

a1,ny1 + · · ·+ an−1,nyn−1 + an,n

(i = 1 ···n−1).

It results from this that in both cases they are transformed by the(n2 −
1)-term general projective group of the(n − 1)-fold extended manifold
y1, . . . , yn−1. Consequently, this group is Isomorph with the general linear
homogeneous group of ann-fold extended manifold and with the special
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linear homogeneous group as well, though the Isomorphism isholoedric
only for the special linear homogeneous group, since this one contains
n2 − 1 parameters.

Theorem 96.The special linear homogeneous group:

xipk, xipi − xkpk (i ≷k = 1 ···n)

in the variablesx1, . . . , xn is imprimitive and holoedric Isomorph with the
general projective group of an(n− 1)-times extended manifold.

The formally simplest infinitesimal transformations of thegeneral
projective group arep1, . . . , pn; these generate, as already observed, a
group actually: the group of alltranslations:

x′i = xi + ai (i = 1 ···n),

which obviously is simply transitive.
Generally, m arbitrary infinitesimal translations, for instance

p1, . . . , pm, always generate anm-term group. For all of these groups,
the following holds:

Proposition 1. All m-term groups of translations are conjugate to
each other inside the general projective group, and even inside the general
linear group.

Indeed, them independent infinitesimal transformations of such a
group always have the form:

n∑

ν=1

bµν pν (µ = 1 ···m),

where not allm×m determinants of thebµν vanish.
But we can very easily show that by means of some linear transforma-

tion, new variablesx′1, . . . , x
′
n can be introduced for which one has:

p′µ =

n∑

ν=1

bµν pν (µ =1 ···m).

In fact, letp′µ = p1
∂x1

∂x′

µ
+ · · ·+ pn

∂xn

∂x′

µ
; then we only need to set:

∂xν

∂x′µ
= bµν (ν =1 ···n; µ =1 ···m),
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while the ∂xν

∂x′

m+1
, . . . , ∂xν

∂x′
n

remain arbitrary. We can give to these last ones

some values such that the equations:

xν =
n∑

µ=1

bµν x
′
µ +

n∑

π=m+1

cπν x
′
π (ν = 1 ···n)

determine a transformation, and this transformation transfers the given
group of translations to the groupp′1, . . . , p

′
m. From this, our proposition

follows immediately.

We want to at least indicate a second proof of the same proposition. As al-
ready observed, the general linear group leaves invariant the infinitely far plane
Mn−1, and in fact, it is even the most general projective group of this nature.
Now, every infinitesimal translation is directed by an infinitely far point and is
completely determined by this point;everym-term group of translations can
therefore be represented by anm-fold extended, infinitely far, straight manifold
Mm. But two infinitely far straightMm always can be transferred one to the other
by a linear transformation which leaves invariant the infinitely far plane. Conse-
quently, allm-term groups of translations are conjugate to each other inside the
general linear group, and in the same way, inside the generalprojective group.

The correspondence indicated earlier which takes place between the
pi and thePi yields, as we prove instantly, the

Proposition 2. All m-term groups, whose infinitesimal transforma-
tions possess the form

∑
ei Pi, are conjugate to each other inside the gen-

eral projective group.

For the proof, we start from the fact that two subgroups are conjugate
inside a groupGr when the one can be, by means of a transformation of
the adjoint group ofGr, transferred to the other; here, we have to imag-
ine the subgroups as an even manifold in the spacee1, . . . , er, which is
transformed by the adjoint group (cf. Chap. 16, p. 280; [here: ??p. ??]).
If we now write the transformations of the projective group firstly in the
sequencepi, Tik, Pi and next in the sequencePi, −Tki, pi, then in the
two cases we get the same adjoint group. But since twom-term groups
of translations can always be transferred one to the other bythe adjoint
group, this must also always be the case with twom-term groups whose
infinitesimal transformations can be deduced linearly fromthePi. Further-
more, it even immediately comes out that twom-term groups of this sort
are already conjugate to each other inside the groupPi, Tik. With that, our
proposition is proved.

⊲ Explanation. Structure is invariant by this involution. ⊳
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§ 136.

We consider now one after the other the general projective group, the
general linear group and the linear homogeneous group, and to be precise,
we want to examine whether there are invariant subgroups andwhich one
are contained in these three groups.

At first, the general projective group. Let:

S =

n∑

i=1

αi pi +

n∑

i=1

n∑

k=1

βik xipk +

n∑

i=1

γi xi

n∑

k=1

xkpk

be an infinitesimal transformation of an invariant subgroup; then necessar-
ily [pν , S] and

[
pµ, [pν , S]

]
are also tranformations of the same subgroup.

Consequently, in our invariant subgroup, there would certainly appear an
infinitesimal translation

∑
ρi pi.

⊲ A check. It is nonzero. ⊳

But because all infinitesimal translations are conjugate toeach other
inside the general projective group, they would all appear.Furthermore,
since it is invariant, the subgroup would necessarily contain all transfor-
mations:

[
pi, xi

∑
j xjpj

]
, or after computation:

xi pk (i ≷k), xi pi +

n∑

j=1

xjpj .

Adding the n transformations: xipi +
∑

j xjpj , one obtains: (n +

1)
∑

xjpj, whence xipi and therefore in general allxipk. Fi-
nally, the invariant subgroup would yet contain all transformations:[
xipi, xi

∑
k xkpk

]
, hence allxi

∑
k xkpk and thus it would be identical

to the general projective group itself. Thus, our first result is:

Theorem 97.The general projective group inn variables is simple.*)
——————————-
*) Lie, Math. Ann., Vol. XXV, p. 130.
——————————-

Correspondingly, the special linear homogeneous group:

(4) xipk, xipi − xkpk (i ≷k)

is also simple.

The general linear homogeneous group with then2 infinitesimal trans-
formationsxipk contains, as we have seen above, an invariant subgroup
with n2 − 1 parameters, namely the just named group (4).

If there is yet a second invariant subgroup, then this one obviously
cannot contain the group (4), and in the same way, it even cannot have
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an infinitesimal transformation in common with the same group, since
such transformations would constitute an invariant subgroup in the sim-
ple group (4) (cf. Prop. 10 of the Chap. 15 on p. 264).

⊲ The cited proposition. It just says that the infinitesimal transformations
that are in common between two invariant subgroups of a groupG do like-
wise form an invariant subgroup ofG. For abstract or for vector field Lie
algebras, it says:

[
h1 ∩ h2, g

]
⊂ h1 ∩ h2 whenever two Lie subalgebrash1

andh2 of a Lie algebrag are ideals in it:
[
hi, g

]
⊂ hi for i = 1, 2. ⊳

Taking the Proposition 7 of Chap. 12 on p. 211 into account, itfollows that
a possible second invariant subgroup can contain only one infinitesimal
transformation, and to be precise, one of the form:

n∑

i=1

xipi +
1...n∑

i, k

αik xipk

(
Pn

i=1 αii =0
)
.

Besides, according to Proposition 11 of Chap. 15 on p. 264, the same
transformation must be exchangeable with every transformation of the
group (4), from which it follows that the transformation:

1...r∑

i, k

αik xipk

(
Pn

i=1 αii = 0
)

must be excellent inside the group (4).

⊲ The cited propositions. The first one boils down to the dimension
formula for intersections of Lie algebras: if anr-term group contains two
subgroups withm andµ parameters, then these two have at leastm+ µ− r
independent infinitesimal transformations in common, and the ones in com-
mon do actually form a subgroup.

The second cited proposition states that if two invariant subgroups
Y1f, . . . , Ymf and Z1f, . . . , Zpf of a group G have no infinitesimal
transformations in common, then all the brackets[Yi, Zk] vanish. It is
just because, by the invariancy assumption, each bracket[Yi, Zk] must
be expressible as a linear combination of theYi and also as a linear
combination of theZk as well, but since no infinitesimal transformation is
shared, brackets must hence all be zero.

So applying this observation,
∑

i xipi +
∑

i,k αik xipk must be excellent
inside the group (4), as was

∑
i xipi for free. ⊳
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But there is no such transformation, whence all theαik vanish and it shows
up thatx1p1 + · · ·+ xnpn and (4) are the only two invariant subgroups of
the groupxipk.

Theorem 98.The general linear homogeneous groupxipk in n vari-
ables contains only two invariant subgroups, namely the special linear
homogeneous group and the one-term group:x1p1 + · · ·+ xnpn.

At present, one easily manages to set up all invariant groupsof the
general linear group. Let:

S =

n∑

i=1

αi pi +

n∑

i=1

n∑

k=1

βik xipk

be a transformation of such a subgroup. Then together withS, also[pj , S]

belongs to the invariant subgroup; hence the same certainlycontains a
translation, and because of Proposition 1, p. 29, it contains all of them.

⊲ Check. It is nonzero. ⊳

The smallest invariant subgroup therefore consists of the translations them-
selves; every other one must, aside from the translations, still contain a
series of infinitesimal transformations of the form:

∑
i

∑
k αik xipk. But

these latter ones visibly engender an invariant subgroup, the linear homo-
geneous groupxipk. So we find:

Theorem 99. The general linear group:pi, xipk contains only three
invariant subgroups*) , namely the three ones:

pi pi, x1p1 + · · ·+ xnpn pi, xipk, xipi − xkpk (i ≷k),

with respectivelyn, n + 1 andn2 + n− 1 parameters.
——————————-
*) Lie, Math. Ann., Vol. XXV, p. 130.
——————————-

If, as already done several times, we employ the terminologywhich is
common for the ordinary space, we can say: the three invariant subgroups
of the general linear group are firstly the group of all translations, secondly
the group of all similitudes [AEHNLICHKEITSTRANSFORMATIONENEN]:
(x1 − x0

1)p1 + · · ·+ (xn − x0
n)pn, and lastly the most general linear group

which leaves all volumes unchanged.

§ 137.
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Classification of Lie algebras
of holomorphic vector fields

Before launching ourselves on the classification theorems joint with Engel and
his Master Lie, we provide brief recalls of the basic fundamental theory (Part I).

Suppressing in Advance Illusory Parameters
As an example, we illustrate how do these three principles work to get

rid of redundantsak’s. Developing thefi of x′i = fi(x, a) in power series
with respect tox − x0 in some (unnamed, connected) neighbourhood of a
fixed pointx0:

fi(x, a) =
∑

α∈Nn

U i
α(a) (x− x0)

α,

we get an infinite number of analytic functionsU i
α = U i

α(a) of the parame-
ters that are defined in some uniform domain, sayU , of Kr. Then we claim
that superfluousak’s can be visible by just looking at the rank of thecoeffi-
cient mappingU∞, in its wholeness:

U∞ : K
r ∋ a 7−→

(
U i

α(a)
)16i6n

α∈Nn ∈ K
∞.

If for instance there is one parameter, saya1, upon which absolutelyno U i
α

does depend, then this mapU∞ clearly has rank6 r − 1 at every point.
Specifically, one looks at thegeneric rankρ∞ of U∞, an integer satisfying
0 6 ρ∞ 6 r, namely the maximal possible rank ofU∞, which is in fact
attained at every pointa ∈ U\D outside a certain1 proper closed analytic set
D. So, avoiding2 D, if we relocalize to a small neighbourhood of some point
a ∈ U\D, a suitable application of the constant rank theorem, followed by
an appropriate local diffeomorphisma 7→ a = a(a) of the parameter space,

enables to show ([25]; [here: see Chapter A] ) that the new coefficientsU i

α

(
a
)

become absolutely independent of ther−ρ∞ last parametersaρ∞+1, . . . , ar:
they thus have become visibly superfluous.

1 — technically defined to be the zero-set of allρ∞×ρ∞ minors of the Jacobian matrix( ∂Ui
α

∂aj

)α∈N
n, 16i6n

16j6r
.

2 Here and in the sequel, what can be said at points of the exceptional setsD would
require sophisticated tools from Singularity Theory that are beyond the scope of the present
work.
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Definition. The parameters(a1, . . . , ar) of given point transforma-
tion equationsxi = fi(x, a) are calledessential if, after developing
fi(x, a) =

∑
α∈Nn U i

α(a) (x − x0)
α in power series at somex0, the generic

rankρ∞ of the coefficient mappingU∞ : a 7−→
(
U i

α(a)
)16i6n

α∈Nn is maximal,
equal to the numberr of parameters:ρ∞ = r.

In this case, the transformation equations are calledr-term [r-
GLIEDRIG]; we adopt the translation of [1]. From now on, parameters will
always be assumed to be essential.

Concept of local Lie group

We restitute here basic definitions and theorems without emphasizing the
formal rigor about (shrunk) domains that Chap. B will fully provide.

In arbitrary dimensionn > 1, a finite continuous transformation group
onKn is a finitely parametrized family of analytic point diffeomorphic trans-
formations:

x′i = fi(x1, . . . , xn; a1, . . . , ar) (i =1 ···n)

enjoying the following three properties.

Group composition law: Whenever it is well defined, the successionx′ =
f(x; a) andx′′ = f(x′; b) of any two such transformations, namely:

x′′ = f
(
f(x; a); b

)
= f(x; c)

always identifies to an element of thesamefamily, for some new parameter:

c = m(a, b)

uniquely and precisely defined by a certain local analytic map m :
Kr × Kr → Kr, which, from its side, inherits automatically the property
m(m(a, b), c) = m(a,m(b, c)) from the associativity of diffeomorphism
composition.

Existence of an identity element: There exists a special parametere =
(e1, . . . , er) such thatf(x; e) ≡ x is just the identity mapping.

Underlying group multiplication law: The analytic map(a, b) 7−→
m(a, b), which can sometimes also be alternatively written shortly
(a, b) 7−→ a · b, is a local continuousgroup law, in the sense that:

• For alla, one should have:a · e = e · a = a, a property which follows
in fact from:

f(x; a · e) = f
(
f(x; a); e

)
= f(x; a) = f

(
f(x; e); a

)
= f(x; e · a)

thanks to the postulated uniqueness ofc = m(a, b).

• Also, the inherited associativity(a · b) · c = a · (b · c) should hold.
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• Inverse-element map: Finally, as a last axiom which isnot a con-
sequence of the group composition law, there must exist a local diffeomor-
phismi : Kr → Kr defined in a neighbourhood ofe with i(e) = e such that
a · i(a) = i(a) · a = e, namelyi(a) represents the group inverse ofa, and
moreover,a 7→ i(a) is an analytic, necessarily diffeomorphic, local map. In
particular, writing now that the composition:

f
(
f(x; a); b

)
= f(x; a · b)

is just performed by group multiplication between parameters, one then for-
mally deduces: ⊳

f
(
f(x; a); i(a)

)
≡ f(x; a · i(a)) ≡ x ≡ f(x; i(a) · a) ≡ f

(
f(x; i(a)); a

)
.

Notion of r-term continuous transformation group

It is useful for further reading to remember that in Lie’s terminology,
a “finite continous (transformation) group of a space” precisely means a
finite-dimensional, local, analytic Lie group actionx′ = f(x; a) as above;
Lie does not emphasizes the everywhere presupposed analyticity, but he
uses instead the wordcontinuous to make clear the contrast of his own
theory with the discrete Galois theory of algebraic equations that inspired
him (thorough, exciting history appears in [17]). What we nowadays call a
local Lie group, namely aKr around some identity elemente equipped with
a local analytic group multiplication(a, b) 7−→ m(a, b) = a · b together with
an analytic inverse-element mapa 7→ i(a), is called by Lie the “parameter
group of a transformation group”; pages 401–429 of Vol. I are devoted to
its general study. Finally, for Lie, the adjective “r-term” means that the
r written parameters(a1, . . . , ar) are essential, or equivalently, that the
dimension of the parameter group is exactlyr. In summary:

“r-term group of x1, . . . , xn” ⇐⇒ r-dimensional Lie group acting onK
n

Introduction of Infinitesimal Transformations

Next, lettingε denote either an infinitesimal quantity in the sense of Leib-
niz, or a small quantity subjected to Weierstrass’ rigorousepsilon-delta for-
malism, for fixedk ∈ {1, 2, . . . , r}, we consider all the points:

x′i = fi

(
x; e1, . . . , ek + ε, . . . , en

)

= xi +
∂fi

∂ak

(x; e) · ε+ · · · (i =1 ···n)

that are infinitesimally pushed from the starting pointsx = f(x; e) by
adding the tiny incrementε to only thek-th identity parameterek. One may
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reinterpret this common spatial move by introducing the vector field (and a
new notation for its coefficients):

Xe
k :=

n∑

i=1

∂fi

∂ak

(x; e)
∂

∂xi

:=

n∑

i=1

ξki(x)
∂

∂xi

,

which is either written as a derivation in modern style, or considered as a
column vector:

τ
(

∂f1

∂ak
, · · · , ∂fn

∂ak

)∣∣∣
x

= τ
(
ξk1, . . . , ξkn

)∣∣∣
x

based atx, where τ (·) denotes a transposition, yielding column vectors.
Thenx′ = x+ εXe

k + · · · , or equivalently:

x′i = xi + ε ξki + · · · (i = 1 ···n),

where the left out terms “+ · · · ” are of course anO(ε2), so that from the
geometrical viewpoint,x′ is infinitesimally pushed along the vectorXe

k

∣∣
x

up
to a lengthε.

Xe

e a1

a2

a3

e

a3

a2

a1

λ

p

p
11 x + ε Xe

1

Xe
1

Fig. : Infinitesimal displacementx′ = x+ εXe of all points

x + ε Xe

More generally, still starting from the identity parametere, when we add
to e an arbitrary infinitesimal increment:

(
e1 + ε λ1, . . . , ek + ε λk, . . . , er + ε λr

)
,

whereτ (λ1, . . . , λr)
∣∣
e

is a fixed, constant vector based ate in the parameter
space, it follows by linearity of the tangential map, or elsejust by the chain
rule in coordinates, that:

fi(x; e+ ε λ) = xi +

n∑

k=1

ε λk ·
∂fi

∂ak

(x; e) + · · ·

= xi + ε

n∑

k=1

λk · ξki(x) + · · · ,

so that all pointsx′ = x+ εX + · · · are infinitesimally and simultaneously
pushed along the vector field:

X := λ1X
e
1 + · · ·+ λr X

e
r

which is the general linear combination of ther previous basic vector fields
Xe

k, k = 1, . . . , r.
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Occasionally, Lie wrote that such a vector fieldX belongs to the group
x′ = f(x; a), to mean thatX comes itself with the infinitesimal movex′ =
x + εX it is supposed to perform (dots should now be suppressed in intu-
ition), and hence accordingly, Lie systematically called such anX an in-
finitesimal transformation, viewing indeedx′ = x + εX as just a case of
x′ = f(x, a). Another, fundamental andvery deep reason why Lie said that
X belongs to the groupx′ = f(x, a) is that he showed that local transforma-
tion group actions are in one-to-one correspondence with the purely linear
vector spaces:

VectK
(
X1, X2, . . . , Xr

)
,

of infinitesimal transformations, which in fact also inherit a crucial addi-
tionalalgebraic structure directly from the group multiplication law.

Lie’s Basic Main Theorem and Its Converse

Indeed, the major discovery that Lie made in the winter3 1873–
74 was that the infinitesimal transformationsX1, . . . , Xr are not only
closed under Jacobi bracket as in the so-called Frobenius theorem:[
Xk, Xj

]
=

∑r

s=1 ckjs(x)Xs, a condition which insures the existence
of local foliations (integrability), but also and principally: the concerned
coefficient functionsckjs(x) are in factconstant: ckjs(x) ≡ ckjs ∈ K. From
Vol. I of the Theorie der Transformationsgruppen, we translate both Lie’s
bracket statement and its converse.

Theorem I.22. If an r-term continuous transformation group in the vari-
ablesx1, . . . , xn contains ther infinitesimal transformations:

Xk(f) =
∑

16i6n

ξki(x1, . . . , xn)
∂f

∂xi

(k = 1 ··· r),

then between these infinitesimal transformations, there exist pairwise rela-
tions of the form:

Xk

(
Xi(f)

)
−Xi

(
Xk(f)

)
=

∑

16s6r

ckjsXs(f),

where theckjs designate numerical constants.

In contemporary mathematics, one callsX1, . . . , Xn aLie algebra of (lo-
cal) analytic vector fields. The assumption that the parameters are essential

3 The birth of the theory is beautifully reinscribed in its historical perspective by
T. Hawkins in [17]. There, it is explained that the Poisson-Jacobi bracket identity:
0 =

[[
X, Y

]
, Z

]
+

[[
Z, X

]
, Y

]
+

[[
Y, Z

]
, X

]
between three local vector fields has

been reconsidered by Lie, after deep reflection, to be truebecausethe totality of contact
transformations leaving a function invariant forms agroup, the mentioned identity issuing
in Lie’s views from the differentiation of a commutator relation and from group associativ-
ity.
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is shown to imply that ther infinitesimal transformationsX1, . . . , Xr are
linearly independent.

Most importantly, Lie showed conversely that the infinitesimal, linear,
algebraic datum of any local Lie algebra of vector fields on the space
x1, . . . , xn, enables one to reconstitute readily a local transformation group.

Theorem I.24. If r independent infinitesimal transformations stand pair-
wise in the relationships:

Xk

(
Xj(f)

)
−Xj

(
Xk(f)

)
=

[
Xk, Xj

]
=

∑

16s6r

ckjsXsf,

where theckjs are constants, then the collection of the∞r−1 one-term
groups4:

λ1X1f + · · ·+ λr Xrf

constitutes anr-term group which contains the identity transformation and
whose transformations organize together as inverses in pairs.

Here, one should think that what we nowadays call the local exponen-
tial map, here viewed as the integration of a (parametrized)vector field, is
implicitly applied toλ1X1f + · · ·+ λr Xrf , namely:

exp
(
λ1X1 + · · ·+ λr Xr

)
(x) =: f(x; λ)

reconstitutes thefinite equationsx′ = f(x;λ) of the group. Lie’s exponen-
tial Theorem I.11 indeed states that ther linearly independent infinitesimal
transformationsX1, . . . , Xr engender a transformation group, in the sense
that the equations:

x′i = xi +
r∑

k=1

λk ξki(x) +
r∑

k,j=1

λk λj

1 · 2 Xk(ξji) + · · · (i = 1 ···n)

deliver the finite transformationsx′i = fi(x; λ) of the group, “so that the
totality of all these finite transformations is identical with the totality of all
transformations of the groupx′i = fi(x; λ)” ([ 25], p. 75).

As exemplified by the above statement of Theorem I.24, it is typical of
Lie’s thought to identify plainly a transformation group with the correspond-
ing Lie algebra. In fact, after a Lie algebra has been classified by means
of several normalization procedures, taking the exponential to get some fi-
nite equations follows (in principle) by direct, unproblematic computations.
Here is a relevant excerpt from Vol. I, p. 55.

4 On considers[λ1 : · · · : λr] as homogeneous coordinates in the projective space of
dimensionr − 1.
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Lie’s main classification problem
For Lie, the central question of the monumental theory he erected was

to classify, up to equivalence all possible finite transformation groups, lo-
cally, generically, and principally up to the “physically meaningful” three-
dimensional space.

Classification of Lie algebras of local analytic vector fields

in dimensions 1, 2 and 3 in neighbourhoods of generic points

Naturally, two r-term transformation groupsx′ = f(x; a) and
y′ = g(y; b) acting on spaces of the same dimension with the same number
of essential parameters areequivalent [ÄHNLICH ] if there exist both a
change of parametersb = β(a), and a change of coordinatesy = ϕ(x)
of the source space which acts simultaneously asy′ = ϕ(x′) on the target
space, such that, after plugging in as one should, one has thelast following
relation:

x′ = ϕ−1(y′) = ϕ−1(g(y); b) = ϕ−1
(
g(ϕ(x)); β(a)

)
≡ f(x; a),

to be identically satisfied for anyx anda.
Accordingly, at the infinitesimal level, two Lie algebras oflocal holo-

morphic vector fieldsX1, . . . , Xr andY1, . . . , Yr of the same dimensionr
acting on two spacesx1, . . . , xn andy1, . . . , yn of the same dimensionn are
(locally) equivalentif there exists a diffeomorphismx 7→ y = y(x) which
sends5 eachXk to some linear combinationλk1 Y1 + · · · + λkr Yr of theYl

with constant coefficientsλkl.
Thus, for Lie and for us who will in this work follow his wake, the ques-

tion amounts to the following main problem that we now describe in length
for future comprehension.

1) To find all possible finite-dimensional Lie algebrasX1, . . . , Xr of lo-
cal holomorphic vector fields

Xk =
n∑

i=1

ξki(x)
∂

∂xi

(k =1 ··· r)

defined in some initial domainU ⊂ Cn, the mathematical rules of the game
allowing a finite number offree relocalizations, namely: the rules allow to
restrict a finite number of times the considerations to a smaller subdomain
in order to perform every appearing mathematical operationwhich would
necessitate that a certain analytical quantity is nondegenerate6.

5 Coordinatewise transformation rules for vector fields under a diffeomorphism will be
recalled in a while.

6 By free relocalization, one then avoids for instance the deep problem of providing a
normal form for asingleanalytic vector fieldX at a singular point (a question which is still
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2) To bring each such systemX1, . . . , Xr of vector fields to an as simple
as possible normal form,e.g. to achieve that a majority ofξki be null, and
that the remaining ones to be either monomials of small degree, or very
simple polynomials, or exponentials of linear functions, or maybe possibly
arbitrary functions, but of a number of variables that should be smaller than
n.

3) To precisely distinguish the possible systems of vector fields by devis-
ing and introducing either geometrical, coordinate-independent, or calcu-
latory, purely algebraicalconcepts, which enable one to build classification
boxes, sub-boxes, and further sub-boxes to which to drive the sought groups.

4) To draw up extensive tables of the found Lie algebras of vector fields
that arecompleteandmutually exclusive.

Finest classification theorems should indeed not only provide lists that
capture as a first step all possible objects enjoying some definite mathemat-
ical properties, but they should also, as a second step, clean up the obtained
tables, namely remove thoroughly the various overlaps which can occur be-
tween the found classes. Experience in various mathematical fields indeed
shows that quite often, the branches of a given classification tree obtained
by one, or by another means, do penetrate into each other,unavoidably.

Working principally over C Sometimes (but not in the present Chap. 1),
the algebraic closedness of the ground field appears to be needed, especially
for the classification theorems of primitive Lie algebras indimensions 2
(Chap. 3 and Chap. I.29) and 3 (Chap. 7). Although the majority of the
general statements reminded here in Vol. III by Engel and Liedo hold over
C and overR as well, it is safer to plainly understand, when nothing is said
about the field, that all the considerations are restricted to complex numbers.

Comment principles Finally, apologizing for having interrupted so
lengthily the flow of thought just when Engel and Lie do launchthe
classification achievements of Vol. III, we briefly list our comment
principles:
• Reconstitute details of proof that rely upon preliminary knowledge of

Vols. I and II;
• Do not translate the contents into abstract mathematical language;
• Insert geometrical illustrations and summarizing tables as well.

unresolved in full generality, even in dimensionn = 2), because at a generic point, such a
nonzeroX may be straightened simply to∂

∂x1
.



D i v i s i o n I.

The Finite Continuous Groups
of The Straight Line and of the Plane.

The present first Division comprises the determination [BESTIM-
MUNG] of all finite continuous groups of point transformations onthe
straight line and on the plane (Chapters 1, 3, 4). Besides, itcomprises
the determination of all projective groups on the line and onthe plane
(Chap. 2, § 4 and Chap. 5). Subsequent to these studies, all linear ho-
mogeneous groups in two and in three variables will in addition be drawn
up [AUFGESTELLT] (Chap. 2, § 5 and Chap. 6). Moreover, it is still to be
mentioned that, through the developments of Chaps. 3 and 4 inconjunction
with Chap. 23 of the Volume II, the determination of all finitecontinuous
groups of contact transformations of a plane is also accomplished.

In what has been said, the results of the first Division are broadly iden-
tified. Notably, one can underline what follows concerning the form of the
specific groups, namely: it turns out that the finite continuous groups of the
straight line are all equivalent [ÄHNLICH ] to projective groups. However,
for the plane, this is no longer valid, although in the plane,the infinitesi-
mal transformations of any finite continuous group can be also brought to
a very simple form: for the transitive groups, aside from completely ra-
tional functions, only exponential functions occur in sucha form; for the
intransitive groups, arbitrary functions appear. Lie published these impor-
tant results about the form of the groups on the line and on theplane as
early as in the year 1874, in no. 22 of the Gött. Nachr.

—————–

⊲ Translation note. Two continuous transformation groups which trans-
form one into the other by an invertible change of coordinates, and by a si-
multaneous invertible change of parameters as well, are called “ÄHNLICH ”
by Lie (vol. I, p. 24); since the adjective “similar” belongsmostly to a non-
conceptual lexical field, we translate “ÄHNLICH ” by “equivalent”, assum-
ing that contemporary readers know well of the problem ofequivalence, of
the problem of classification and of the problem of providingas simple as
possible normal forms, for transformation groups or for various other math-
ematical objects.Apud Lie notably, the word “BESTIMMUNG” denotes a
complete solution of the problem which embraces all its three aspects. Final
results are drawn up as extensive tables [TABELLE] of groups. ⊳
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C h a p t e r 1.

Determination of all Finite Continuous Transformation Gro ups
of the Once-Extended[EINFACH AUSGEDEHNTEN] Manifold.

At first, we develope two different methods which deliver us without
difficulty all transformation groups of the once-extended manifold. After
that, we show that the determination of these groups also follows already
almost immediately from the results of Chap. 29 in Vol. I.

⊲ Reminding Lie’s principles of thought.From the beginning, it will be
assumed that:

• mathematical objects are analytic;
• relocalization is freely allowed;
• open sets are small, usually unnamed, and alwaysconnected. ⊳

§ 1.

An r-term group [r-GLIEDRIGE GRUPPE] of the once-extended man-
ifold x is represented by an equation of the form:

x′ = f(x, a1, . . . , ar),

with r parametersa1, . . . , ar. It is engendered byr independent infinitesi-
mal transformations:

X1f = ξ1(x)
df

dx
, . . . , Xrf = ξr(x)

df

dx
,

which satisfy relations in pairs of the form:

[
Xi, Xk

]
=

(
ξi
dξk
dx
− ξk

dξi
dx

)
df

dx
=

r∑

s=1

ciksXsf

(i, k = 1 ··· r).

⊲ Lie algebras and local Lie groups.At this very beginning of Volume III,
Lie and Engel of course take for granted the one-to-one correspondence be-
tween finite-dimensional Lie algebras of local holomorphicvector fields and
local Lie groups that they already established in great details in Chapter 9
of Volume I. So the first goal here is to classify Lie algebras on the one-
dimensionalx-space.

Here, the symbolf in Xf shouldnot be confused with thef in x′ =
f(x, a). In fact, Lie always writes a vector field derivation asacting on a
test function which healwaysdesignates by the symbolf . ⊳
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Every transformation of the one-term group:

x′i = xi +
t

1
ξi +

t2

1 · 2 X(ξi) + · · · (i = 1 ···n)

is obtained by repeating infinitely many times[UNENDLICHMALIGE WIE-
DERHOLUNG] the infinitesimal transformation:

x′i = xi + ξi δt or X(f) = ξ1
∂f

∂x1

+ · · ·+ ξn
∂f

∂xn

.

Or yet more briefly:

The one-term group in question is engendered by its infinitesimal
transformations.

In contrast to the infinitesimal transformationX(f), we call the equa-
tions:

x′i = xi +
t

1
ξi +

t2

1 · 2 X(ξi) + · · ·
thefinite equations of the one-term group in question.

⊲ Comment. This is just a brief reminder of the general theory: expo-
nentiating an infinitesimal transformation yields the finite equationsx′i =
exp(tX)(xi), i = 1, . . . , n that are written here after expanding them with
respect tot. Intuitively, they derive from the infinitesimal movesx′i = xi +
ξiδt by means of infinite iteration, namelyintegration. ⊳

The general infinitesimal transformation of our group reads:

Xf =

r∑

k=1

ek ξk(x) ·
df

dx
= ξ(x)

df

dx
,

wheree1, . . . , er denote arbitrary constants. Now, sinceX1f, . . . , Xrf are
independent infinitesimal transformations and since as a consequence of
that,ξ1, . . . , ξr satisfy no linear relation:

a1ξ1 + · · ·+ arξr = 0

with constant coefficients, it follows that the function:

ξ = e1ξ1 + · · ·+ erξr

with r arbitrary constantse1, . . . , er is the general solution of anr-th order
linear differential equation:

drξ

dxr
+ α1(x) ·

dr−1ξ

dxr−1
+ · · ·+ αr−1(x) ·

dξ

dx
+ αr(x) · ξ = 0,

which, on its side, completely determines the general infinitesimal trans-
formation of our group and hence, the group itself. We thus see: The
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defining equations(cf. Vol. I, Chap. 11)of anr-term transformation group
of the once-extended manifold are made of anr-th order linear ordinary
differential equation.

⊲ Explanation. Let us restate and prove what is considered to be known.

Assertion. If r given arbitrary analytic functionsξ1(x), . . . , ξr(x) are lin-
early independent, then possibly after relocalization, there exists a monic
r-th order ordinary differential equation:

ξ(r) + α1(x) · ξ(r−1) + · · ·+ αr(x) · ξ = 0

whose general solution is the general linear combinationξ = e1 ξ1 + · · ·+
er ξr.

Lemma. Let ξ1(x), . . . , ξr(x) ber analytic functions. Then there exist con-
stantsa1, . . . , ar not all zero making a linear dependence relationa1ξ1(x)+
· · ·+ arξr(x) ≡ 0 between theξi, if and only if their Wronskian:

W(ξ1, . . . , ξr) :=

∣∣∣∣∣∣∣∣∣

ξ1 · · · ξr
ξ′1 · · · ξ′r
...

. . .
...

ξ
(r−1)
1 · · · ξ

(r−1)
r

∣∣∣∣∣∣∣∣∣

≡ 0

vanishes identically.

PROOF OF THE LEMMA. In one direction, the existence of constantsai

not all zero such that0 ≡ a1 ξ1 + · · ·+ ar−1 ξr−1 + ar ξr with, say:ar = −1
after renumbering and dilation, implies that the Wronskian:
(a)

W(ξ1, . . . , ξr−1, ξr) =

∣∣∣∣∣∣∣∣∣

ξ1 · · · ξr−1 a1ξ1 + · · ·+ ar−1ξr−1

ξ′1 · · · ξ′r−1 a1ξ
′
1 + · · ·+ ar−1ξ

′
r−1

...
. . .

...
...

ξ
(r−1)
1 · · · ξ

(r−1)
r−1 a1ξ

(r−1)
1 + · · · + ar−1ξ

(r−1)
r−1

∣∣∣∣∣∣∣∣∣

≡ 0

obviously vanishes, because of colum linear dependence.
Conversely, suppose that the WronskianW(ξ1, . . . , ξr−1, ξr) ≡ 0

vanishes identically and establish linear dependence of the ξi. Reasoning
by induction onr, we can assume that the subWronskianW(ξ1, . . . , ξr−1)
does not vanish identically, since otherwiseξ1, . . . , ξr−1 (and hence
ξ1, . . . , ξr−1, ξr too) would already be, without any effort, linearly depen-
dent. We then expand the determinantW(ξ1, . . . , ξr−1, ξr) along its last
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column:
(b)

0 ≡

∣∣∣∣∣∣∣

ξ1 · · · ξr−1 ξr
...

. . .
...

...
ξ

(r−1)
1 · · · ξ

(r−1)
r−1 ξ

(r−1)
r

∣∣∣∣∣∣∣

= ξ(r−1)
r ·W(ξ1, . . . , ξr−1)− · · ·+ (−1)r−1 ξr ·

∣∣∣∣∣∣∣

ξ′1 · · · ξ′r−1
...

. . .
...

ξ
(r−1)
1 · · · ξ

(r−1)
r

∣∣∣∣∣∣∣
,

we relocalize to a neighbourhood of a point where the mentioned sub-
Wronksian does not vanish and we divide the above equation bythis leading
coefficient, getting:

(c) 0 ≡ ξ(r−1)
r + α1 ξ

(r−2)
r + · · ·+ αr−1 ξ,

for some analytic functionsα1(x), . . . , αr−1(x) defined in some subdomain.
Recall ([35]) that the space of solutions of such an(r− 1)-th order ordinary
differential equation is a vector space of dimension(r − 1). But we in
fact already know thanks to (a) that the general linear combinatione1 ξ1 +
· · · + er ξr−1 constitutes trivially a solution of (c), by just replacing in the
first, big determinant of (b), and since this combination generates an(r −
1)-dimensional space, wemust haveξr = a1 ξ1 + · · · + ar ξr, form some
appropriate constantsai. Finally, we remark that thanks to the principle of
analytic continuation, the relation0 ≡ a1 ξ1(x)+ · · ·+ ar−1 ξr−1(x)− ξr(x)
propagates from the subdomain where we could divide byW(ξ1, . . . , ξr−1)
to the original domain of definition of theξi. �

PROOF OF THE ASSERTION. Again and similarly, the Wronskian of the
(r+ 1) functions linked by the relation0 ≡ e1 ξ1 + · · ·+ er ξr − ξ, vanishes
identically:

0 ≡W(ξ1, . . . , ξr, ξ) =

∣∣∣∣∣∣∣∣∣

ξ1 · · · ξr ξ
ξ′1 · · · ξ′r ξ′

...
. . .

...
...

ξ
(r)
1 · · · ξ

(r)
r ξ(r)

∣∣∣∣∣∣∣∣∣

= ξ(r) ·W(ξ1, . . . , ξr)− · · · + (−1)r ξ ·

∣∣∣∣∣∣∣

ξ′1 · · · ξ′r
... · · · ...
ξ

(r)
1 · · · ξ

(r)
r

∣∣∣∣∣∣∣
,

and by expanding it along its last column, we get an ordinaryr-th order
differential equation which we may bring to a monic form in the set where
the subWronskianW(ξ1, . . . , ξr) is different from zero. � ⊳
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We now imagine in our mind that, in the neighbourhood of a point in
general position which we choose as the origin of coordinates, the infin-
itesimal transformations of our group are expanded in powers of x. The
defining equation that is solved with respect to ther-th order differential
quotient ofξ shows (loc. cit., p. 188 sq.) that in our group no infinitesimal
transformation ofr-th or higher order inx is available, hence no infini-
tesimal transformation exists whose power series with respect tox begins
with terms ofr-th or higher order. Consequently, we can always imagine
r independent infinitesimal transformations of the group chosen in such a
way that the one of zeroth, the one of first, . . . , the one of(r− 1)-th order
in x are:

(1)






X0f = (1 + a0x+ · · · ) df
dx

X1f = (x+ a1x
2 + · · · ) df

dx
· · · · · · · · · · · · · · · · · · · · · · · ·

Xr−1f = (xr−1 + ar−1x
r + · · · ) df

dx
.

We can naturally use theser independent infinitesimal transformations in
place of the initially chosen:X1f, . . . , Xrf .

⊲ Explanation. If the coefficientξ = e1ξ1 + · · · + erξr of an arbitrary
infinitesimal transformationXf of the group satisfiesξ = O(xr), i.e. ξ(0) =
· · · = ξ(r−1)(0) = 0, then uniqueness of solutions to the aboveODE implies
ξ ≡ 0. One thus gets the invertibility of ther × r matrix

(
aj

i

)
associated to

the truncated expansionsξi(x) = a0
i + a1

ix+ · · ·+ ar−1
i xr−1 + O(xr) of the

r linearly independent coefficientsξ1, . . . , ξr, whence lastly, a triangulation
may be performed. ⊳

At present, we remember that two infinitesimal transformations ofi-
th andk-th order respectively produce by combination a transformation of
(i+ k − 1)-th or higher order (loc. cit. p. 193, Theor. 30); in our case, we
find:

(2)
[
(xi + · · · ) df

dx
, (xk + · · · ) df

dx

]
=

(
(k − i) xi+k−1 + · · ·

) df

dx
,

where on the right-hand side the term of(i+ k − 1)-th order visibly never
can vanish, wheni andk are different from each other. A short while
ago, we have seen that ourr-term group contains no infinitesimal transfor-
mation ofr-th or higher order, so we can conclude that in our group the
numbersi, k andi + k − 1 must always be smaller thanr. Hence if we
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choose fori the largest possible value:i = r − 1 and likewise fork 6= i

the largest possible value:k = r − 2, then we obtain for the numberr of
terms of our group the condition:

r − 1 + r − 2− 1 < r,

that is to say:r < 4.
Thus in the once-extended manifold there is no finite continuous group

with more than three parameters.

⊲ Vanishing order of infinitesimal transformations. In n variables
(x1, . . . , xn), an analytic functionξ(x1, . . . , xn) is said to be oforder> µ
with respect tox1 − x0

1, . . . , xn − x0
n if, in its power series expansion

ξ =
∑

α∈Nn cα1...αn
(x1 − x0

1)
α1 · · · (xn − x0

n)αn at x0, the coefficientscα
vanish for all multiindicesα with α1 + · · ·+ αn 6 µ − 1. An infinitesimal
transformationXf =

∑n
i=1 ξi(x)

∂
∂xi

is said to beof orderµ at x0 if its
n coefficientsξi are of order> µ at x0, and one of them at least isnot of
order> µ+ 1, namely it is of order= µ. ⊳

⊲ The cited theorem.Its precise statement, valuable for an arbitrary num-
bern of variables, implicitly offers a direct proof.

Theorem I.30. If Xf andY f are two infinitesimal tranformations:

Xf =
∑

16k6n

(
ξ

(µ)
k + · · ·

) ∂f

∂xk

, Y f =
∑

16j6n

(
η

(ν)
j + · · ·

) ∂f

∂xj

,

whose power series expansions with respect to powers ofx1−x0
1, . . . , xn−x0

n

begin respectively with terms ofµ-th order and with terms ofν-th order,
namely eachξ(µ)

k (resp. eachη(µ)
j ) is a homogeneous polynomial of degree

µ (resp. ν) in x − x0, then the power series expansion of the infinitesimal
transformation

XY f−Y Xf =
[
X, Y

]
f =

n∑

j=1

{ n∑

k=1

(
ξ

(µ)
k

∂η
(ν)
j

∂xk

−η(ν)
k

∂ξ
(µ)
j

∂xk

)
+· · ·

}
∂f

∂xj

begins with terms of(µ+ ν − 1)-th order which are perfectly determined by
the terms ofµ-th order ofXf and by the terms ofν-th order ofY f . If these
terms of(µ+ ν− 1)-th order vanish, then one can only say about the power
series expansion of[X, Y ] that it starts with terms of(µ+ν)-th or of higher
order. ⊳

We now treat the three possible cases one after the other:r = 1, 2, 3.
If r = 1, the group contains only one infinitesimal transformation of

the form:

X0f = (1 + · · · ) df
dx
.
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We now introduce:

x1 =

∫ x

0

dx

1 + · · ·
as a new variable in place ofx. This is allowed, sincex1 is an ordinary
power series inx which vanishes forx = 0 and in the same way,x is an
ordinary power series inx1 which vanishes forx1 = 0. In the new variable
x1,X0f becomes of the form:

X0f =
df

dx1
.

This infinitesimal transformation engenders a once-term group whose fi-
nite transformations read:x′1 = x1 + a; this is the group of all translations
of the once-extended manifold.

In caser = 2, we have two infinitesimal transformations:

X0f = (1 + · · · ) df
dx
, X1f = (x+ · · · ) df

dx
,

which give by combination [COMBINATION ]:
[
X0, X1

]
= (1 + · · · ) df

dx
,

and consequently there is a relation of the form:
[
X0, X1

]
= X0f + λ ·X1f,

or, if we introduceX0f + λX1f as a newX0f :

(3)
[
X0, X1

]
= X0f.

If we now choose as in the first case the variablex1 so thatX0f takes the
form: df

dx1
, then it becomes:X1f = ξ1

df

dx1
and because of the relation (3):

dξ1
dx1

= 1, ξ1 = x1 + Const.,

where, incidentally, the constant of integration vanishes, since the infinites-
imal transformationX1f must also be of the first order in the new variable
x1 (Vol. I, p. 197, Prop. 1).

⊲ The cited general proposition.Even in an arbitary numbern of variables,
its proof is straightforward.

Proposition. If one introduces, into an infinitesimal transformationX =∑n

i=1 ξi(x)
∂

∂xi
supposed to be ofµ-th order with respect tox1−x0

1, . . . , xn−
x0

n, new variablesy1, . . . , yn:

yk = y0
k +

∑

16i6n

aki(xi − x0
i ) +

∑

16i,j6n

akij (xi − x0
i ) (xj − x0

j ) + · · ·
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where the determinant|aij | of the first order part is nonzero, thenX trans-
forms into an infinitesimal transformation of orderµ with respect toy1 −
y0

1, . . . , yn − y0
n. ⊳

Both infinitesimal transformations:

X0f =
df

dx1
, X1f = x1

df

dx1

engender a two-term group with the finite transformations:x′1 = a1x1+a2;
this is the general linear group of the once-extended manifold.

Lastly, if r = 3, then the group comprises three infinitesimal transfor-
mations of the form:

X0f = (1 + · · · ) df
dx
, X1f = (x+ · · · ) df

dx
, X2f = (x2 + · · · ) df

dx
,

whence there exist relations of the following shape:
[
X0, X1

]
= X0f + λ1X1f + λ2X2f,[

X0, X2

]
= 2X1f + µX2f,[

X1, X2

]
= X2f.

It we set:
X0f = X0f + α1X1f + α2X2f,

then it follows:[
X0, X1

]
= X0f + (λ1 − α1)X1f + (λ2 − 2α2)X2f,[

X0, X2

]
= 2X1f + (α1 + µ)X2f,

or, when we chooseα1 = λ1 and2α2 = λ2:[
X0, X1

]
= X0f,

[
X0, X2

]
= 2X1f + (λ1 + µ)X2f.

From the Jacobian identity:
[[
X0, X1

]
, X2

]
+

[[
X1, X2

]
, X0

]
+

[
X2, X0

]
, X1

]
= 0,

it ensues finally:
[
X0, X2

]
+

[
X2, X0

]
+ (λ1 + µ)X2f = 0,

whence:λ1 + µ = 0, and we have:

(4)
[
X0, X1

]
= X0,

[
X0, X2

]
= 2X1,

[
X1, X2

]
= X2.

⊲ Comment about notation.In the original German text, a Lie “bracket”
is called a “COMBINATION” (between two infinitesimal transformations),
or sometimes named as just an “equation” [GLEICHUNG]. It is denoted
(X1X2

)
, always with parentheses, usually without comma, but with a
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comma whenX1 andX2 are explicit vector fields written in coordinates
(see below, throughout), and without the symbol of functionf , which is
traditionally almost always present to denote an individual infinitesimal
transformationXf . But remarkably in the eq. (4) just above,f has been
removed in the three right-hand sides.

As the only update of notation we allow in comparison to the German
text, we systematically translate brackets as[·, ·]. ⊳

The infinitesimal transformationsX0f andX1f obviously engender
for themselves a two-term group which falls under the previous case, and
which hence can, through an appropriate change of the variable x, be
brought to the form:

X0f =
df

dx
, X1f = x

df

dx
.

At the same time,X2f receives a certain new form:ξ2
df

dx
, whereξ2, on

account of the relation (4), must satisfy the equations:

dξ2
dx

= 2x, x
dξ2
dx
− ξ2 = ξ2,

in consequence of what it is identically equal tox2. Thus we have:

X0f =
df

dx
, X1f = x

df

dx
, X2f = x2 df

dx
.

The finite equations of the three-term group engendered by these infinites-
imal transformations write:

x′ =
a1 + a2x

1 + a3x
;

this is the general projective group of the once-extended manifold.
So we have gained the important theorem:

Theorem 1.*) Every finite continuous group of the once-extended
manifold has at most three parameters; such a group is equivalent either
to the one-term group:

x′ = x+ a

of all translations, or to the two-term general linear group:

x′ = a1 + a2x,

or finally to the three-term general projective group:

x′ =
a1 + a2x

1 + a3x
.

——————————-
*) Lie, Gött. Nachr., Dec. 1874 and Math. Ann., vol. 16, the method used in the text
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coming from the second reference.
——————————-

⊲ Lie’s discovery of Theorem 1.At the end of the his first synthetical
memoir ([24], p. 93; [1], pp. 380–381), Lie explained how the discovery
of this first classification Theorem 1 appeared spectacular and motivating
to him: “In the course of investigations on first-order partial differential
equations, I observed that the formulas that occur in this discipline become
amenable to a remarkable interpretation by means of the concept of an infin-
itesimal transformation. In particular, the so-called Poisson-Jacobi theorem
is closely connected with the composition of infinitesimal transformations.
By following up on this observation I arrived at the surprising result that all
transformation groups of a simply extended manifold can be reduced to the
linear form by a suitable choice of variables, and also thatthe determination
of all groups of ann-fold extended manifold can be achieved by the integra-
tion of ordinary differential equations. This discovery, whose first traces go
back to Abel and Helmholtz, became the starting point of my many years of
research on transformation groups.” ⊳

⊲ Historical note. Thomas Hawkins summarizes as follows the develop-
ment of Lie’s classification problem: ([17], p. 76): “Along with his efforts
to polish up his theoretical treatment of the general classification problem,
Lie expended considerable effort on the actual determination (up to equiv-
alence) of all groups for small values ofn. Judging by his brief note in the
Göttinger Nachrichten[22], by the end of 1874 he had resolved the problem
for n = 2 to his own satisfaction, using in part geometrical means. But it
was not until 1878 that he managed to translate his results into publishable,
analytical terms ([23], p. 78). At that time, he also announced that he had
solved the problem forn = 3 but restricted to groups of point transforma-
tions. However, the calculations needed to do this remainedtoo extensive to
make publication feasible ([27], p. 122), and Lie contented himself with par-
tial results ([27], pp. 122–262). As for the problem forn arbitrary, in [25],
p. 598, he expressed the view that it would probably never be resolved.”⊳

We have seen that every two-term group of the once-extended mani-
fold can be brought to the form:

(5)
df

dx
, x

df

dx
.

From this, one can conclude that two independent infinitesimal transfor-
mations:

X1f = ξ1
df

dx
, X2f = ξ2

df

dx
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of the once-extended manifold can never be interchangeable[VERT-
AUSCHBAR]; indeed, if they were so, then they would engender a two-
term group which would not be of the same composition as the group (5),
hence would also not be equivalent to it. Besides, from the condition of
interchangeability:

[
X1, X2

]
=

(
ξ1
dξ2
dx
− ξ2

dξ1
dx

) df

dx
= 0,

one also finds immediately thatξ2 andξ1 differ from each other only by
a constant factor, hence thatX1f andX2f , if they are supposed to be
interchangeable, cannot be independent from each other. Consequently,
we get the

Proposition 1. Two independent infinitesimal transformations of the
once-extended manifold are never interchangeable.

⊲ Translation note. Present-daycommutativity is called by Engel-Lie
“ VERTAUSCHBARKEIT”, a concept that we translate byinterchangeability,
so as to be faithful to the text. It just means vanishing of Liebrackets. ⊳

⊲ Transformation groups having the same composition.Two (local) Lie
algebras of linearly independent vector fields:

Xk =

n∑

i=1

ξki(x1, . . . , xn)
∂f

∂xi

(k =1 ··· r)

of the same dimension, but not necessarily acting on a space of the same
dimension:

Yk =

m∑

µ=1

ηkµ(y1, . . . , ym)
∂f

∂yµ

(k =1 ··· r)

are said to haveidentical composition[GLEICHZUSAMMENGESETZ SEIN]
by Lie if they areisomorphic [HOLOEDRISCH ISOMORPH] as plain Lie al-
gebras,i.e. if among all the infinitesimal transformationse1 Y1 + · · ·+ erYr

of the second family, there arer linearly independent linear combinations
Yk =

∑r

l=1 λkl Yl, k = 1, . . . , r, having thesamestructure constants as the
Xk, namely

[
Xk, Xl

]
=

∑r

s=1 cklsXs and
[
Yk, Yl

]
=

∑r

s=1 ckls Ys, with
identicalckls. ⊳

⊲ Vector fields and Lie brackets under change of coordinates.The text
uses the general fact that equivalence of two local Lie algebras under a
change of coordinatesx 7→ x = x(x) implies that they have the same
composition. Let us explain this (of course obvious) claim,and, on this
occasion, recall some basics about variable changes.

Under such a (local) diffeomorphismx 7→ x = x(x), a functionf(x)
transforms to the functionf(x) defined by the identityf(x) ≡ f

(
x(x)

)
, or
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by the equivalent identityf(x) ≡ f
(
x(x)

)
, with x 7→ x = x(x) simply

denoting the inverse (local) diffeomorphism. Differentiating these two iden-
tities with respect toxi and with respect toxi, we get the classical (tensorial-
like) transformation rule for coordinate vector fields:

∂

∂xi

=

n∑

j=1

∂xj

∂xi

∂

∂xj

and
∂

∂xi

=

n∑

j=1

∂xj

∂xi

∂

∂xj

.

Consequently, fork = 1, . . . , r, eachXk =
∑n

i=1 ξki(x)
∂

∂xi
transforms by

linearity to the infinitesimal transformation defined by theformula:

(a)

Xk =

n∑

i=1

n∑

j=1

ξki

(
x(x)

) ∂xj

∂xi

(
x(x)

) ∂

∂xj

=
n∑

j=1

Xk(xj(x))
∂

∂xj

=:

n∑

j=1

ξkj(x)
∂

∂xj

and having new coefficients:ξkj(x) :=
∑n

i=1 ξki

(
x(x)

) ∂xj

∂xi

(
x(x)

)
naturally

defined on the target spacex. Throughout, we shall simply writeXk = Xk

andf(x) = f(x), without any function symbol for the diffeomorphism, as
Lie usually did; contemporary formalism would write instead x = ϕ(x) and
Xk = ϕ∗(Xk). Then the canonical invariance property of the Lie bracket
says:

[
Xk, Xl

]
=

[
Xk, X l

]
, a property that may be checked calculatorily

from the coordinatewise definition:
[
Xk, Xl

]
=

[ n∑

j=1

ξkj

∂

∂xj

,

n∑

i=1

ξli
∂

∂xi

]

=

n∑

i=1

(∑
j ξkj

∂ξli
∂xj

−
∑

j ξlj
∂ξki

∂xj

)
∂

∂xi

by just inserting the transformation rule (a) in the developments of brackets.
Coming back to the claim, it is now obvious that

[
Xk, X l

]
=

[
Xk, Xl

]
=

r∑

s=1

cklsXs =
r∑

s=1

cklsXs.

Thus, the two Lie algebras
(
Xk

)
16k6r

and
(
Xk

)
16k6r

have the same struc-
ture constants, hence are trivially isomorphic.

One may argue that a conceptual, abstract and coordinate-independent
presentation of the transformation rulesX = ϕ∗(X) and

[
X, Y

]
=

ϕ∗

([
X, Y

])
would be less instructive here; indeed, because the main
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objective of Lie is to perform several normalization procedures in order to
bring systems of infinitesimal transformations to an as simple as possible
normal form, explicit computations in coordinates are, andmust be, of
central importance. ⊳

One observes that the groups of the once-extended manifold are all
transitive. If one wants, one can even say that they are primitive.

⊲ Note. Transitivity and primitivity will be dealt with and redefined in a
while, seeChap. 3. ⊳

§ 2.

In the beginning of the § 1, we saw that to eachr-term group of the
once-extended manifold belongs a linear ordinaryr-th order differential
equation:

drξ

dxr
+ α1(x)

dr−1ξ

dxr−1
+ · · ·+ αr(x)ξ = 0,

by which it is completely defined: the defining equation of thegroup in
question. One can now also determine the groups of the once-extended
manifold in the way that one seeks every differential equation which is the
defining equation of a group. This is what we now want to carry out*).
——————————-
*) Already in the years 1870, Lie has determined the groups onthe straight line in this

manner, or anyway in 1882. At that time, he occupied himself with the reduction of the

differential equationξ′′′ + 2αξ′ + α′ξ = 0 to the formξ′′′ = 0. From his general theory

of integration it follows immediately that for this to hold,a Riccati equation of order one

must be satisfied.
——————————-

If the linearr-th order differential equation:

(6) ξ(r) + α1(x)ξ
(r−1) + · · ·+ αr−1(x)ξ

′ + αr(x) ξ = 0

is supposed to be the defining equation of ar-term group, then according
to Vol. I, Theor. 28, p. 187, the following is necessary and sufficient: when-
everξ(x) andη(x) are any two solutions of the differential equation (6),
thenξη′ − ξ′η must also always be a solution of this equation.

⊲ Explanation, and the cited theorem.The general solutionξ(x) =
e1ξ1(x) + · · · + erξr(x) is a linear combination ofr fundamental, linearly
independent solutions. Thus, for ther infinitesimal transformations
Xi := ξi(x)

df

dx
, i = 1, . . . , r, to be a Lie algebra of solutions of (6), it

is necessary and sufficient that the coefficientξiξ
′
j − ξ′iξj of each bracket[

Xi, Xj

]
be also a solution of (6).
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Theorem I.28. If ξ1, . . . , ξn are functions ofx1, . . . , xn be determined by a
certain linear homogeneous partial differential equation:

n∑

ν=1

Aµν(x) · ξν +
1 ···n∑

ν,π

Bµνπ(x)
∂ξν
∂xπ

+ · · · = 0 (µ = 1,2 ... ),

then the expressionξ1
∂f

∂x1
+ · · ·+ ξn

∂f

∂xn
represents the general infinitesimal

transformation of a finite continuous group if and only if, firstly the most
general system of solutions of these differential equations depends only on
a finite number of arbitrary constants, and secondly from twoparticular
systems of solutionsξk1, . . . , ξkn andξj1, . . . , ξjn, by formation of then ex-
pressions:

n∑

ν=1

(
ξkν

∂ξji
xν

− ξjν
∂ξki

xν

)
(i = 1 ···n),

one always obtains a new system of solutions. ⊳

In order to find the condition which comes out from this for thefunc-
tionsα1(x), . . . , αr(x), we set up the equation:

(7)
dr(ξη′ − ξ′η)

dxr
+ α1 ·

dr−1(ξη′ − ξ′η)
dxr−1

+ · · ·+ αr(ξη
′ − ξ′η) = 0,

and we express in it ther-th and the(r+ 1)-th derivatives ofξ and ofη by
means of:

(8) ξ, ξ′, . . . , ξ(r−1), η, η′, . . . , η(r−1),

thanks to (6) and to:

(6’) η(r) + α1(x) η
(r−1) + · · ·+ αr−1(x) η

′ + αr(x) η = 0.

In this way, between the quantities (8), we obtain an equation of the form:

(9)
∑

06 i, k 6r−1

λik

(
ξ(i) η(k) − ξ(k) η(i)

)
= 0,

and this equation must be identically satisfied, whicheverξ andη can be, as
solutions of ther-th order differential equation (6). From this, it follows
immediately that (9) must actually hold identically for allvalues of the
quantities (8), and hence that the coefficient of every individual expression:
ξ(i)η(k) − ξ(k)η(i) must be identically zero.

At first, we consider the two cases:r = 1 andr = 2.
If r = 1, the differential equation (6) has the form:

(10) ξ′ + α(x) ξ = 0.

If ξ(x) andη(x) are any two solutions of this equation, then the expression
ξη′ − ξ′η vanishes evidently and hence is again a solution of (10). As
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a consequence of that, the functionα(x) is submitted to absolutely no
restriction.

In caser = 2, eq. (6) has the form:

(11) ξ′′ + α1(x) ξ
′ + α2(x) ξ = 0.

Now, one has:
d(ξη′ − ξ′η)

dx
= ξη′′ − ξ′′η, d2(ξη′ − ξ′η)

dx2
= ξη′′′ − ξ′′′η + ξ′η′′ − ξ′′η′,

so (7) receives the form:

ξ(η′′′ + α1η
′′ + α2η

′)− η(ξ′′′ + α1ξ
′′ + α2ξ

′) + ξ′η′′ − ξ′′η′ = 0,

hence if one expressesξ′′, η′′, ξ′′′, η′′′ by means ofξ, η, ξ′, η′, then it comes:

(−α′
1 + α2)(ξη

′ − ξ′η) = 0,

and this is for our case the equation (9) discussed above. Here, the factor
of ξη′−ξ′η must vanish, whence we find:α′

1 = α2, and we realize that the
equation (11) is always the defining equation of a two-term group if and
only if it possesses the form:

ξ′′ + α(x) ξ′ + α′(x) ξ = 0.

On its own side, the functionα(x) is subjected to no restriction.
We come to the caser > 2.
As one easily sees, one has:

dm(ξη′ − ξ′η)
dxm

= ξη(m+1) − ξ(m+1)η + (m− 1)
(
ξ′η(m) − ξ(m)η′

)
+

+
m(m− 3)

1 · 2
(
ξ′′η(m−1) − ξ(m−1)η′′

)
+ · · · ,

a series which ends up with the1
2
(m+1)-th or with the1

2
(m+2)-th term,

according to the entire numberm being odd or even. Consequently, if we
now only take into consideration all the terms in which appear derivatives
of at least(r − 1)-th order, then we can write the equation (7) as follows:

ξη(r+1) − ξ(r+1)η + (r − 1)
(
ξ′η(r) − ξ(r)η′

)
+

+
r(r − 3)

1 · 2
(
ξ′′η(r−1) − ξ(r−1)η′′

)
+

+ α1

{
ξη(r) − ξ(r)η + (r − 2)

(
ξ′η(r−1) − ξ(r−1)η′

)}
+

+ α2

(
ξη(r−1) − ξ(r−1)η

)
+ · · · = 0.
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We reshape this equation by using the relations:

ξ(r) + α1ξ
(r−1) + · · · = 0,

ξ(r+1) + α1ξ
(r) + (α′

1 + α2)ξ
(r−1) + · · · = 0,

and the corresponding relations forη as well, and we find that the equa-
tion (9) has the form:

−α′
1

(
ξη(r−1) − ξ(r−1)η

)
− α1

(
ξ′η(r−1) − ξ(r−1)η′

)
+

+
r(r − 3)

1 · 2
(
ξ′′η(r−1) − ξ(r−1)η′′

)
+ · · · = 0,

where the left out terms only contain derivatives of order lower than the
(r − 1)-th order. At present, by setting identically to zero the coefficients
of the indivivual expressionsξ(i)η(k) − ξ(k)η(i), we receive:r(r − 3) = 0

and: α1 = α′
1 = 0. It thus turns out thatr can only be larger than 2

when it is at the same time equal to 3, and that forr = 3, our differential
equation (6) must have the form:

(12) ξ′′′ + α2(x)ξ
′ + α3(x)ξ = 0.

In order to determine the functionsα2 andα3 more precisely, we form
the equation:

d3(ξη′ − ξ′η)
dx3

+ α2 ·
d(ξη′ − ξ′η)

dx
+ α3(ξη

′ − ξ′η) = 0,

and we get:

ξη(4) − ξ(4)η + 2(ξ′η′′′ − ξ′′′η′) + α2(ξη
′′ − ξ′′η) + α3(ξη

′ − ξ′η) = 0;

therefore, by taking account of the equation (12), of:

ξ(4) + α2ξ
′′ + (α′

2 + α3)ξ
′ + α′

3ξ = 0,

and of the corresponding equations forη, we find:

(−α′
2 + 2α3)

(
ξη′ − ξ′η) = 0.

Consequentlyα′
2 must be equal to2α3, but this the unique condition that

α2 andα3 have to satisfy.
If we setα2(x) = 2α(x), then the defining equation of the most gen-

eral three-term group of the once-extended manifold becomes visible in
the form:

ξ′′′ + 2α(x)ξ′ + α′(x)ξ = 0.

As a result, all the groups of the once-extended manifold aredeter-
mined and we have the
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Proposition 2. The defining equation of a finite continuous group of
the once-extended manifold always has one of the three forms:

(13)





ξ′ + α(x)ξ = 0,

ξ′′ + α(x)ξ′ + α′(x)ξ = 0,

ξ′′′ + 2α(x)ξ′ + α′(x)ξ = 0;

Here, the functionα(x) is submitted to no restriction.

Above, we have generally found all the groups of the once-extended
manifold, and among the found groups are obviously contained also the
three types of groups that we have listed in the preceding paragraph; in-
deed, if we setα = 0, we obtain the three defining equations:

(14) ξ′ = 0, ξ′′ = 0, ξ′′′ = 0,

which produce the three groups

df

dx
;

df

dx
, x

df

dx
;

df

dx
, x

df

dx
, x2 df

dx
,

one after the other. Consequently, it still remains to provethat it is possible,
by introduction of a new variable, to reshape the defining equations (13)
so that they receive the simple form (14).

In order to produce this proof, we imagine that:x1 = F (x) is intro-
duced as a new variable in place ofx. By this, the infinitesimal transfor-
mation:

Xf = ξ(x)
df

dx
takes the form:

Xf = ξ(x)
df

dx
= ξ(x) · F ′(x) · df

dx1

= ξ1(x1)
df

dx1

,

whence one has:

ξ =
ξ1
F ′
.

Furthermore:

ξ′ = ξ′1 −
ξ1F

′′

F ′2
,

ξ′′ = ξ′′1F
′ − ξ′1

F ′′

F ′
− ξ1

F ′F ′′′ − 2F ′′2

F ′3
,

ξ′′′ = ξ′′′1 F
′2 − ξ′1

2F ′F ′′′ − 3F ′′2

F ′2
− ξ1

d

dx

F ′F ′′′ − 2F ′′2

F ′3
,

where, for reasons of abbreviation,ξ(ν)
1 is written in place ofd

νξ1
dxν

1
.
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If we now introduce the new variablex1 in the equations (13), then
these receive the following form:

ξ′1 +
( α

F ′
− F ′′

F ′2

)
ξ1 = 0,

ξ′′1 +
( α

F ′
− F ′′

F ′2

)
ξ′1 +

1

F ′

d

dx

( α

F ′
− F ′′

F ′2

)
ξ1 = 0,

ξ′′′1 + 2
( α

F ′2
− F ′F ′′′ − 3

2
F ′′2

F ′4

)
ξ′1+

+
1

F ′

d

dx

( α

F ′2
− F ′F ′′′ − 3

2
F ′′2

F ′4

)
ξ1 = 0,

but if these equations are supposed to take the simple form (14), then in the
first two cases we just need to employ forF a solution of the differential
equation:

F ′′ = αF ′,

whilst in the last case, a solution of the equation:

F ′F ′′′ − 3

2
F ′′2 = αF ′2.

With that, the required proof is supplied.

§ 3.

Up to now, we have directly determined the groups of the once-
extended manifold, without using more from the theory of thefirst vol-
ume than a few general propositions of the first chapters. Butit should
not be passed over in silence that the determination of all groups of the
once-extended manifold already follows immediately from the result of
Chap. 29 in Volume I.

⊲ Note. This important rigidity Theorem I.112 (Vol. I, p. 631 [here: see
p. ??]), located at the very end of Vol. I, states that the three well known
transitive groups: projectivePGLn(C), affineAn(C) = GLn(C) ⋉ Cn and
special affineSAn(C) = SLn(C) ⋉ Cn are the only ones which can enjoy
maximal free mobility at the infinitesimal, first order level, namely the lin-
earized isotropy group of any point be equal toGLn(C) or to SLn(C). The
result is heavily used below for the classification of primitive local Lie group
actions onC2 (Chap. 3, § 7, p. 90 sq.). Chap. N?? translates and comments
its complete proof. ⊳

As we have seen in the beginning of § 1, eachr-term group of the
once-extended manifold comprises, in the neighbourhood ofa pointx = 0

in general position, one infinitesimal transformation of zeroth order inx,
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further, one of first, one of second, . . . , one of(r− 1)-th order, but not any
of r-th or higher order.

If we now consider the casesr = 1, r = 2, r > 2 somehow into more
detail, then we realize at once that they correspond exactlyto the three
cases distinguished on p. 625 (loc. cit. [here: see p. ??]), if we setn = 1

there. Indeed, ifr = 1, ourr-term group comprises in the neighbourhood
of x = 0 exactlyn = 1 infinitesimal transformation of zeroth order,n2 −
1 = 0 of first order, and not any of higher order. If secondlyr = 2, then
the group comprises exactlyn transformations of zeroth order,n2 = 1 of
first order, but not any of higher order. If finallyr > 2, then the group
comprisesn = 1 transformations of zeroth order,n2 = 1 of first order and
in addition, still some of higher order. From this, it follows that we can
apply immediately to our case the result which is obtained inthe Chap. 29
of Vol. I. If we do that, then we receive immediately the result stated in
Theorem 1 on p. 6. While doing so, it turns out in particular that the
special linear group of an-fold extended space transforms, forn = 1, to
the group of all translations of the once-extended manifold.

—————–
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C h a p t e r 2.

Determination of all Subgroups
of the General Projective Group on the Line

and of the General Linear Homogeneous Group in the Plane.

The knowledge of all subgroups of the two groups named in the title
is indispensable for later general studies about the groupsof the plane*).
While determining these subgroups, we naturally get at the same time a
determination of all subgroups of every group that has the same composi-
tion as one of the two groups referred to in the title (seeVol. I, Theor. 33,
p. 210).
——————————-
*) The continuous subgroups of the general linear homogeneous group:xp, yq, xq, yq in

two variablesx, y have been determined for the first time in the 1878 Norvegian Archiv

cf. also Math. Ann., vol. 16; on this occasion, the variablesx, y are interpreted as

Cartesian coordinates in the plane, and also as homogeneouscoordinates in a bundle of

rays [STRAHLBÜSCHEL]. Later, Stephanos has conducted interesting researchs about the

mentioned groups.
——————————-

⊲ The cited theorem. Placed at the end of Chap. 12, Theorem I.33 states
that,in principle, the determination of all subgroups of a given finite contin-
uous groupX1f, . . . , Xrf involves only algebraic operations on the struc-
ture constants appearing in the bracket relations

[
Xρ, Xσ

]
=

∑n

τ=1 Cρστ ·
Xτ , so that two isomorphic local groups (Lie algebras) obviously have iso-
morphic collections of local subgroups (Lie subalgebras).More precisely,
Lie describes the following general recipe, which dates back to 1878.

One wants to determine all possiblem-dimensional (1 6 m 6 r) Lie
subalgebras of the form:

Yµ =
∑

16ρ6r

hµρ ·Xρ

which are concretely represented by somem × r unknown constant matrix(
hµρ

)
supposed to be of rankm. Then here theYµ generate a Lie subalgebra

if and only if their brackets in pairs:
[
Yµ, Yν

]
=

∑

16ρ,σ6r

hµρ hνσ ·
[
Xρ, Xσ

]
(1 6µ < ν 6n)

are linear combinations of themselves alone, namely are of the form∑n

π=1 lµνπ · Yπ for somelµνπ ∈ K. But since by assumption we have[
Xρ, Xσ

]
=

∑n

τ=1 Cρστ · Xτ for somestructure constantsCρστ ∈ K,
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we can hence plug in these brackets in order to read more precisely the
requirement:

∑

16ρ,σ,τ6r

hµρ hνσ Cρστ ·Xτ =
[
Yµ, Yν

]
(1 6µ < ν 6r)

=
∑

16π6m

lµνπ · Yπ

=
∑

16π6m

∑

16τ6r

lµνπ hπτ ·Xτ .

Then by identifying the coefficients ofX1, ofX2, . . . , and ofXr, the sought
matrices

(
hµρ

)
should therefore be such that for every pair of indices(µ, ν)

with 1 6 µ < ν 6 r, there existm solutionslµν1, . . . , lµνm to the linear
nonhomogeneous system ofr equations:





lµν1 h11 + · · ·+ lµνm hm1 =
∑

ρ,σ hµρ hνσ Cρσ1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
lµν1 h1r + · · ·+ lµνm hmr =

∑
ρ,σ hµρ hνσ Cρσr,

whose both sides depend upon the unknownshµρ. But for every fixed pair
(µ, ν), the existence of suchlµνπ just amounts to require that the(m+1)×r
matrix:




h11 · · · hm1

∑
ρ,σ hµρ hνσ Cρσ1

· · · · · · · · · · · · · · · · · · · · · · · ·
h1r · · · hmr

∑
ρ,σ hµρ hνσ Cρσr





whose firstm 6 r columns are already supposed to be of rankm, should be
of rankm also. Equivalently, all of its(m+1)×(m+1) minors should van-
ish. Equating to zero all these minors then furnishes a finitenumber of alge-
braic equations for thehµρ, which clearly depend only on the structure con-
stants; furthermore, by reasoning backwards, one easily sees that every sys-
tem of solutionshµρ to these algebraic equations yields anm-dimensional
Lie subalgebra ofX1, . . . , Xr, provided of course that one only keeps solu-
tion matrices

(
hµρ

)
whose rank equalsm.

Nonetheless, this brute process rapidly becomes unwieldy as soon as
r > 3, and it does not take account of the natural fact that two subgroups
H1 andH2 of a (dis)continuous groupG should have equal rights [GLE-
ICHBERECHTIGT SEIN] when they are conjugate to each other by an inner
automorphism, namely whenH2 = g−1H1g for someg ∈ G. Much finer
reasonings will be developed by Lie. ⊳
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For reasons of convenience, we shall from now on shortly write:

df

dx
= p

the infinitesimal transformation in one variablex, and in the same way, we
shall make use of the abbreviations:

∂f

∂x
= p,

∂f

∂y
= q

for the infinitesimal transformations in two variablesx, y. We have in fact
used similar designations earlier on (see for instance Vol. I, p. 555).

§ 4.

The general projective group of the once-extended manifoldx is 3-
term, so it shall be shortly named “theG3” in the present paragraph.

⊲ Translation note. Today, one would write instead: “so it shall be shortly
namedG3”, without the determinate article “the”; but to be faithfulto the
text, we maintain it, throughout. ⊳

OurG3 comprises the∞3 finite transformations:

x′ =
a1 x+ a2

a3 x+ 1
,

and is engendered by the three independent infinitesimal transformations:

X1f = p, X2f = xp, X3f = x2p

(seeChap. 1 or Vol. I, p. 554 sq.). Its general infinitesimal transformation
therefore possesses the form:

Xf = (e1 + e2 x+ e3 x
2) p,

wheree1, e2, e3 indicate arbitrary constants.
TheG3 is transitive, and even threefold transitive (Vol I, p. 631 sq.

[here: see Chap. N??]), that is to say, it always comprises a transformation
by virtue of which any three distinct points of the manifoldx can be trans-
ferred to any three other points; here, the point at infinity makes absolutely
no difference.

⊲ The concept of composition (structure).In the next paragraph, the word
composition[ZUSAMMENSETZUNG] appears. Quoting [17], p. 168, it was
Killing in [ 20] (p. 163) who suggested that “Lie’s designation “composition
of groups” [Z USAMMENSETZUNG DERGRUPPEN] was not the best choice
to describe the theory he had now so greatly, albeit tentatively advanced.
He pointed out that according to Lie, a group was either simple or compos-
ite, and yet one also spoke of the composition of simple groups. On the
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basis of this inconsistency, he advocated speaking insteadof the “shape”
[GESTALTUNG] of a group rather than its composition. Unbeknownst to
Killing, E. Vessiot and W. de Tannenberg, the first two graduates of the
École Normale Supérieure to study with Lie in Leipzig, had already in a
sense met Killing’s objection. In their lengthy review of the first volume
of Lie’s Theorie der Transformationsgruppenthey expressed Lie’s idea of
the ZUSAMMESETZUNG by the French wordstructure([39], p. 137). In
his own publications, É. Cartan always referred tola structure des groupes,
thereby establishing this expression in the vocabulary of twentieth-century
mathematics.” ⊳

The composition [ZUSAMMENSETZUNG] (Vol. I, Chap. 17) of theG3

is determined by the equations:

(1)
[
X1, X2

]
= X1f,

[
X1, X3

]
= 2X2f,

[
X2, X3

]
= X3f,

and its adjoint group (loc. cit., Chap. 16) therefore reads as follows:

E1f = −e2
∂f

∂e1
− 2e3

∂f

∂e2
,

E2f = e1
∂f

∂e1
− e3

∂f

∂e3
,

E3f = 2e1
∂f

∂e2
+ e2

∂f

∂e3
.

Since theG3 contains no excellent [AUSGEZEICHNETE] infinitesimal
transformation, this adjoint group is three-term.

⊲ The adjoint group. From Vol. I, Chap. 16, we summarize the
needed prerequisites. Letxi = fi(x; a) be an arbitrary finite continu-
ous r-term group with ther independent infinitesimal transformations
Xk =

∑n
i=1 ξki(x)

∂
∂xi

, i = 1, . . . , r whose coefficients are defined by

ξki(x) = ∂fi

∂ak
(x; e).

Theorem I.48. If one introduces the general transformation of the group
x = f(x; a) itself as a change of variablex, if Xk denotes the transformed
Xk, and if one defines on the target spacex the infinitesimal transformations
X̃k :=

∑n
i=1 ξki(x)

∂
∂xi

with thesamecoefficient functionsξki of x, then the
general infinitesimal transformatione1X1 + · · ·+ er Xr of ther-term group
xi = fi(x; a) transforms to:

e1 X1 + · · ·+ er Xr = e1 X1 + · · ·+ er Xr

= e1(e; a) X̃1 + · · ·+ er(e; a) X̃r,
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and after reexpressing it in terms of thẽXk, one obtains that theek are
related to theel by linear equations of the form:

ek =

r∑

l=1

ρkl(a1, . . . , ar) · el (k =1 ··· r),

which represent the so-calledadjoint groupof the groupx = f(x; a), a
transformation group subjected to the composition law:

ρkν

(
ϕ1(a, b), . . . , ϕr(a, b)

)
≡

r∑

j=1

ρjν(a1, . . . , ar) · ρkj(b1, . . . , br),

if one denotesf
(
f(x; a); b

)
= f

(
x; ϕ(a, b)

)
. This adjoint group contains

the identity transformation and it is engendered by certaininfinitesimal
transformations as follows: letting

[
Xi, Xk

]
=

r∑

s=1

ciks ·Xsf (i, k =1 ··· r)

denote the structure of the group, if one introduces the linear homogeneous
infinitesimal transformations defined on the linear space equipped with the
coordinates(e1, . . . , er) by:

Eµ :=
r∑

k, j=1

cjµk ej

∂

∂ek

(µ = 1 ··· r),

thenλ1E1 + · · · + λr Er is the general infinitesimal transformation of the
adjoint group and theEµ have the same structure as theXk:

[
Ei, Ek

]
=

r∑

s=1

ciks · Esf (i, k = 1 ··· r).

Although theEµf have the same structure as theXkf which are inde-
pendent by essentiality of the parametersa, they neednot be likewise lin-
early independent. In fact, if a certain infinitesimal transformationXexc =∑

gµXµf commutes with all theXkf , then
For instance, the four-term linear homogeneous group:

x
∂

∂x
, y

∂

∂x
, x

∂

∂y
, y

∂

∂y

under study in the present chapter . . . ⊳

⊲ Excellent infinitesimal transformations. An infinitesimal transforma-
tion

∑r
µ=1 cµXµf of a finite continuous groupX1f, . . . , Xrf is calledex-

cellent when it commutes with all infinitesimal transformations of the ad-
joint group.
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Theorem I.49. The adjoint groupek =
∑

ρkl(a) · el of an r-term group
X1f, . . . , Xrf containsr essential parameters if and only if no one amongst
the∞r−1 infinitesimal transformations

∑
gµXµf is excellent; by contrast,

the adjoint group has less thanr, say exactlyr − m essential parameters
when the groupX1f, . . . , Xrf comprises exactlym and not more indepen-
dent excellent infinitesimal transformations. ⊳

At first, we want to study which types of one-term subgroups are con-
tained in ourG3, or, what amounts to the same, we want to determine all
types of infinitesimal transformations existing in it. For that, we make use
of the ideas and methods developed in Vol I, pp. 278–287.

⊲ Summary. ⊳

In the general infinitesimal transformationXf of ourG3, if we inter-
pret the quantitiese1, e2, e3 as homogeneous point-coordinates [PUNK-
TCOORDINATEN] of a plane, then every infinitesimal transformation and
hence also, every one-term subgroup of theG3 will be represented by a
point of this plane, and conversely each point of the plane isthe image of
an infinitesimal transformation and with that at the same time, of a one-
term subgroup of theG3.

At present, we imagine that the points of the planee1, e2, e3 are trans-
formed by the adjoint groupE1f, E2f, E3f of our G3 and we seek all
smallest invariant manifolds which appear in the plane (seeVol. I, p. 225),
that is to say, all invariant manifolds whose points are transformed by the
adjoint group in such a way that every point in general position on such
a manifold transfers to all other points of that kind. Every such smallest
invariant manifold then represents a type of infinitesimal transformation
and hence also, a type of one-term subgroup of theG3. In the indicated
way, we obtain all such types, because two one-term subgroups belong to
the same type, when they are conjugate [GLEICHBERECHTIGT] to each
other inside theG3, but this happens if and only if the image-point [BILD -
PUNKT] of the one can be transferred to the image-point of the otherby a
transformation of the adjoint group, that is to say, when theimage-points
of the two lie on the same smallest invariant manifold.

Consequently, one now searches for all manifolds of the plane
e1, e2, e3 which remain invariant by the adjoint group. Next, sincee1, e2, e3
are homogeneous point-coordinates, the manifolds in question will be rep-
resented by systems of equations homogeneous ine1, e2, e3, that is to say,
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by systems of equations which admit the infinitesimal transformation:

Ef = e1
∂f

∂e1
+ e2

∂f

∂e2
+ e3

∂f

∂e3
.

Our problem therefore amounts to determine all systems of equations in
e1, e2, e3 that remain invariant by the four-term [VIERGLIEDRIGE] group:
E1f, E2f, E3f, Ef . We undertake this determination under the guidance
of Theorem 42, Vol. I, p. 237. We thus form the matrix:

(2)




−e2 −2e3 0
e1 0 −e3
0 2e1 e2
e1 e2 e3


 .

Since the determinants in three rows [DREIREIHIG] of this matrix do not
all vanish identically, if we then set all three-row determinants equal to
zero, we receive, disregarding the meaningless system of equations:e1 =

e2 = e3 = 0, the equation:

(3) e22 − 4 e1e3 = 0,

which surely represents a manifold of the desired constitution. Further-
more, if we observe that by virtue of (3), not all two-by-two [ZWEIREI-
HIGEN] determinants of the matrix (2) vanish, and that we only receive,
by setting equal to zero all two-by-two determinants, the useless system of
equations:e1 = e2 = e3 = 0, then we recognize that except the conic sec-
tion (3), the adjoint group leaves invariant no point-figure[PUNKTFIGUR]
of the planee1, e2, e3.

With that are found all types of one-term subgroups of theG3, they
are two: the subgroups of the first type are represented by allthe points of
the plane which do not lie on the conic section (3), the subgroups of the
second type by the points of this conic section. Therefore, two one-term
subgroups of theG3 are conjugate to each other inside theG3 if and only
if their point-images lie either both outside the conic section (3), or both
on this conic-section.

If we want to have one representative for the two types of one-term
subgroups, we need only to select any two points of the plane,of which the
first does not lie on the conic section, while the other lies onit. Two such
points are:e1 = e3 = 0 ande2 = e3 = 0, whence the one-term subgroup
xp is a representative of the first type, and the one-term subgroup p is a
representative of the second type.

The two found types can be characterized in a very simple manner.
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Indeed, if one looks for all points of the once-extended manifold x

that remain invariant by the one-term group:

Xf = (e1 + e2 x+ e3 x
2) p,

then one only has to solve the second order equation:

(4) e3 x
2 + e2 x+ e1 = 0;

the roots of this equation are the abscissas of the sought invariant points.
Now, if: e22 − 4 e1e3 6= 0, thenXf belongs to the first type, so the equa-
tion (4) has two different roots, out of which however one canbe infin-
itely large, and consequently in this caseXf leaves invariant two sepa-
rate points out of which one can also lie at infinity. If on the other hand
e22 − 4 e1e3 = 0, then the equation (4) has two collapsing roots, which can
also be infinitely large, and consequently in this caseXf leaves invariant
a doubly counting [DOPPELT ZÄHLENDEN] point, which can lie either in
the Finite or in the Infinite. One sees easily that in each one of the two dis-
cussed cases, the one-term subgroupXf is fully determined by the points
that it leaves invariant.

⊲ Projective lineCP1. ⊳

Let:

Xf = e1X1f + e2X2f + e3X3f, Y f = ε1X1f + ε2X2f + ε3X3f

be any two independent infinitesimal transformations of ourG3, so that all
two-column determinants of the matrix:∣∣∣∣

e1 e2 e3
ε1 ε2 ε3

∣∣∣∣
should not vanish. By Combination ofXf with Y f , we obtain the infini-
tesimal transformation:

(5)

[
X, Y

]
= (e1 ε2 − e2 ε1)X1f + 2 (e1 ε3 − e3 ε1)X2f+

+ (e2 ε3 − e3 ε2)X3f.

Under the assumptions made,Xf andY f are represented by two dif-
ferent points in the planee1, e2, e3, and in the same way

[
X, Y

]
by a point

with the homogeneous coordinates:

η1 = e1 ε2 − e2 ε1, η2 = 2 (e1 ε3 − e3 ε1), η3 = e2 ε3 − e3 ε2.

This point can be geometrically defined in a very simple way; indeed, it
satisfies obviously the two equations:

e2 η2 − 2 e1 η3 − 2 e3 η1 = 0, ε2 η2 − 2 ε1 η3 − 2 ε3 η1 = 0,
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therefore it lies both on the polar ofe1, e2, e3 with respect to the conic
section (3) and on the polar ofε1, ε2, ε3. In other words:

If Xf and Y f are any two independent infinitesimal transforma-
tions of ourG3, one finds the image-point of the infinitesimal transfor-
mation

[
X, Y

]
by connecting the image-points ofXf and ofY f through

a straight line and by looking for the polar of this line with respect to the
conic section:e22 − 4 e1e3 = 0.

⊲ Polars and the proposed geometric construction. ⊳

This geometric construction of the image-point of
[
X, Y

]
from the

the image-points ofXf and ofY f shows clearly that two independent in-
finitesimal transformations of ourG3 are never interchangeable (cf. p. 53).
Namely, ifXf andY f are independent of each other, then their image-
points are distinct and the connection line [VERBINDUNGSLINIE] of their
image-points always possesses a completely determined polar, whence the
expression

[
X, Y

]
can never vanish identically.

At present it is very easy to indicate all two-term subgroupsof theG3.
If Xf and Y f are two independent infinitesimal transformations

of such a subgroup, then its general infinitesimal transformation writes:
λXf + µ Y f , so the subgroup is represented by a line in the plane:
e1, e2, e3. But now, in order thatXf andY f really engender a two-term
subgroup, it is yet necessary and sufficient that an equationof the form:

[
X, Y

]
= c1Xf + c2 Y f

holds — in other words: a straight line of the planee1, e2, e3 represents a
two-term subgroup of theG3 if it contains its polar with respect to the conic
section (3), that is to say, if it is a tangent to this conic section. Therefore:

The two-term subgroups of theG3 in the planee1, e2, e3 are repre-
sented by the tangents to the conic-section:e22 − 4 e1e3 = 0.

⊲ Brief explanation. ⊳

It is clear that by means of the adjoint groupE1f, E2f, E3f , every
tangent of the conic section can be transferred to any other tangent, and
consequently all the two-term subgroups of ourG3 are conjugate to each
other inside theG3: there is one single type of two-term subgroup in the
G3. As representative of this type we can select the tangent to the point
e2 = e3 = 0. The equation of this tangent writes:e3 = 0, from which
we find as subgroup representative:p, xp. This is the largest subgroup
contained in theG3 which leaves invariant the point at infinity. Next, since



The Projective Groups of the Straight Line. 71

every pointx, and the point at infinity too, can be transferred by means of
ourG3 to every other point, it turns out that each two-term subgroup of
ourG3 leaves untouched one point in the Finite or in the Infinite, and that
it is fully determined by the indication of this invariant point.

We now sum up the gained result.

Theorem 2. Every subgroup of the general projective group:p, xp,
x2 p of the once-extended manifoldx is, within this group, conjugate to
one of the three subgroups:

p, xp xp p ;

in the first of these three possible cases, it leaves one pointinvariant, in
the second, two separate points, in the third two coincidingpoints, and in
fact, it is completely determined by the indication of the points that are
invariant by it.

⊲ A diagram to summarize the theorem.We drawKP1 as an infinite line
whose two extreme points should be identified to thesinglepoint at infinity
∞ (it is the Riemann sphere in caseK = C).

∞

∞

∞

∞

∞0

0

0

0 0 0

∞∞∞

∞

p:

xp:

x2p:

p p, xp

Fig. : Subgroups ofPGL1(K) are recognized from their fixed points

p, xp, x2 p

The infinitesimal transformationx2p fixes0 twice. In the left diagram, we
therefore encircle0 twice. Similarly,p fixes∞ twice, because throughx 7→
x = 1

x
, it transfers to−x2 p. Then the right diagram shows the fixed points

of the three groups of the theorem. ⊳

It goes without saying that the preceding developments, as far as they
only depend upon the composition of the groupp, xp, x2p, find application
to every three-term groupX1f ,X2f ,X3f of the composition:

(1)
[
X1, X2

]
= X1f,

[
X1, X3

]
= 2X2f,

[
X2, X3

]
= X3f.

Especially, it comes out immediately that every subgroup ofsuch a group
is conjugate, inside the group, to one of the three subgroups:

X1f, X2f X2f X1f .
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We want now yet derive one noteworthy proposition that will be useful
later on.

Let:

Yif = αi1 X1f + αi2X2f + αi3X3f (i =1, 2, 3)

be any three infinitesimal transformations of a three-term group
X1f,X2f,X3f , of which we suppose that it has the composition (1). If
we now interpret the above∞2 infinitesimal transformationse1X1f +

e2X2f + e3X3f as points of a plane, by understandinge1, e2, e3 as ho-
mogeneous point-coordinates, thenY1f, Y2f, Y3f are represented by three
points and moreover,

[
Y1, Y2

]
is the polar of the straight line between the

pointsY1f andY2f with respect to the conic section:e22 − 4 e1e3 = 0 and[
Y1, Y3

]
is the polar of the straight line betweenY1f andY3f . From this,

it follows that Y1f is the polar of the straight line which connects with
each other the two points

[
Y1, Y2

]
and

[
Y1, Y3

]
, whence there must exist

a relation of the form:
[[
Y1, Y2

]
,
[
Y1, Y3

]]
= ρ · Y1f,

whereρ denotes a constant. By calculation, one findsρ very easily and as
a result one finds the

Proposition 1. If X1f ,X2f ,X3f is a three-term group of the compo-
sition:

(1)
[
X1, X2

]
= X1f,

[
X1, X3

]
= 2X2f,

[
X2, X3

]
= X3f,

and if:
Yif = αi1 X1f + αi2X2f + αi3X3f (i =1, 2, 3)

are any three infinitesimal transformations of this group, then there exists
a relation of the form:

(6)
[[
Y1, Y2

]
,
[
Y1, Y3

]]
= 2

∣∣∣∣∣∣

α11 α12 α13

α21 α22 α23

α31 α32 α33

∣∣∣∣∣∣
· Y1f.

§ 5.

We now turn to the general linear homogeneous group:

(7)

{
x′ = a1 x+ a2 y

y′ = a3 x+ a4 y

of the twice-extended [ZWEIFACH AUSGEDEHNTEN] manifoldx, y.
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This group is four-term, so it shall be shortly named as “theG4” in the
present paragraph; it is engendered by the four independentinfinitesimal
transformations:

(8) xp, yp, xq, yq.

⊲ The theorem cited right below. ⊳

It results from Vol. I, Theorem 98, p. 561 that ourG4 only contains
two invariant subgroups, namely the special linear homogeneous:

(9) xq, xp− yq, yp,

which is three-term, and in addition also one which is one-term, engen-
dered by the excellent infinitesimal transformation:

xp+ yq.

The three-term group (9) is particularly important, because it is (Vol. I,
Theorem 96, p. 558) holoedrically isomorphic [HOLOEDRISCH ISO-
MORPH] to the general projective group of the once-extended manifold; if
one chooses as point-coordinates of the once-extended manifold the vari-
ablex and associates the infinitesimal transformations (9), the one after the
other, to the transformations:

(10) +p, −2 xp, −x2p,

then the holoedric isomorphism between the two groups (9) and (10) im-
mediately comes to light.

⊲ A check. Consider[x : y] as homogeneous coordinates onKP1. On the
chart{x 6= 0}, setx := y

x
. Differentiating the typical functional identity

f(x, y) = f(x) = f
(

y

x

)
with respect tox and toy, one gets as usual the

transformation rules for coordinates vector fields:

∂x = − y

x2 ∂x and ∂y = 1
x
∂x,

so that, settingp := ∂x, we obtain, one after the other, the desired projec-
tivizations:

xq = p, xp− yq = −2xp, yp = −x2 p, xp+ yq = 0,

having indeed the expressions claimed in the text. ⊳

Since it is advisable to make visible the existence of the twoinvariant
subgroups of ourG4, we substitute from here on the four independent
infinitesimal transformations (8) of ourG4 for the following four:

X1f = xq, X2f = xp− yq, X3f = yp,

X4f = xp + yq.
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The composition of ourG4 is now represented by the equations:
[
X1, X2

]
= −2X1f,

[
X1, X3

]
= X2f,

[
X2, X3

]
= −2X3f[

X1, X4

]
=

[
X2, X4

]
=

[
X3, X4

]
= 0.

To begin with, we again determine all types of one-term subgroups
existing in theG4. To this purpose, in the general infinitesimal transfor-
mation:

e1 xq + e2(xp− yq) + e3 yp+ e4(xp+ yq)

of our group, we interpret the quantitiese1, . . . , e4 as homogeneous point-
coordinates of a thrice-extended [DREIFACH AUSGEDEHNTEN] space.
Then we imagine in our mind that the points of this space are transformed
by the adjoint group:

E1f = 2e2
∂f

∂e1
− e3

∂f

∂e2

E2f = −2e1
∂f

∂e1
+ 2e3

∂f

∂e3

E3f = e1
∂f

∂e2
− 2e2

∂f

∂e3
E4f = 0

of our G3, and we seek all smallest manifolds invariant by the ad-
joint group — in other words: we look for all systems of equations
in the variablese1, . . . , e4 which admit the infinitesimal transformations
E1f, . . . , E4f and in addition yet the transformation:

Ef = e1
∂f

∂e1
+ e2

∂f

∂e2
+ e3

∂f

∂e3
+ e4

∂f

∂e4
.

From the beginning, we can for all that leave out the identically vanishing
transformationE4f .

The transformationsE1f, E2f, E3f, Ef engender a four-term group
whose determinant:

(11)

∣∣∣∣∣∣∣∣

2e2 −e3 0 0
−2e1 0 2e3 0

0 e1 −2e2 0
e1 e2 e3 e4

∣∣∣∣∣∣∣∣
vanishes identically, whereas its three-by-three subdeterminants are not all
identically null. The four equations:

E1f = 0, E2f = 0, E3f = 0, Ef = 0
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therefore have one solution in common, which, set equal to anarbitrary
constant, provides a family of∞1 invariant surfaces, namely the family of
the surfaces of degree two:

(12)
e22 + e1e3

e24
= const.,

among which, as limiting cases, are comprised a cone:e22 + e1e3 = 0 and
a doubly counting plane:e24 = 0.

In order to find the remaining invariant manifolds, we must set equal
to zero the three-by-three and the two-by-two subdeterminants of (11). By
setting to zero [NULLSETZEN] the three-by-three subdeterminants, we get
firstly the system of equations:

(13) e22 + e1e3 = 0, e4 = 0,

hence an invariant conic section: the cutting-curve [SCHNITTCURVE] of
the invariant cone:e22 + e1e3 = 0 with the invariant plane:e4 = 0. Sec-
ondly, we obtain:

(14) e1 = e2 = e3 = 0,

hence an invariant point: the peak point [SPITZE] of the invariant cone:
e22+e1e3 = 0; this is the image-point of the excellent infinitesimal transfor-
mation of ourG4, the transformationxp + yq. By setting equal to zero all
two-by-two subdeterminants, we obtain only the system of equations (14),
hence nothing new.

With this, all manifolds of the spacee1, . . . , e4 invariant by the group
E1f, . . . , E4f are found1, because the conic section (13) visibly contains
no smaller invariant manifold. Besides, we could have predicted the oc-
curence of the planee4 = 0 and of the conic section (13) lying on it, since
the three-term invariant subgroup (9) of ourG4 is precisely represented by
the planee4 = 0 in the spacee1, . . . , e4; on the other hand, the points of the
planee4 = 0 are obviously transformed by the adjoint groupE1f, . . . , E4f

exactly as they are by the adjoint groupE1f, E2f, E3f of the three-term
group (9), sinceE4f leaves untouched all points of the space and hence
also all points of the planee4 = 0. From the developments of the previous
paragraph we now obtain immediately that in the planee4 = 0, there is no
other invariant manifold as a certain conic section.

⊲ Equivalent reformulation. ⊳

1 Note. This is a claim, to be argued presently; what happens in the limiting plane e4 = 0 could
have been studided before.
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One can still mention that the groupE1f, E2f, E3f is only another
form of a very well known group. Indeed, in the spacee1, . . . , e4, if one
imagines the homogeneous system of coordinates chosen in such a way
that the planee4 = 0 is transferred to the plane at infinity, and that the conic
section (13) is transferred to the imaginary circle, then our group is nothing
else than the group of all rotations around the pointe1 = e2 = e3 = 0; the
∞1 second degree surfaces (12) simply are the∞1 spheres with the center
e1 = e2 = e3 = 0.

⊲ Imaginary circle. e21 + e22 + e23 = 0 in C3. ⊳

After we have found all manifolds invariant by the group
E1f, . . . , E4f , we can immediately indicate all types of infinitesimal trans-
formations, or, what amounts to the same, all types of one-term subgroups,
of ourG4. Every such type is indeed represented in the spacee1, . . . , e4 by
a manifold invariant by the adjoint groupE1f, . . . , E4f and in fact, by a
so-called smallest invariant manifold (seep. 67). In this way, one obtains
the following:

1) Every nondegenerate surface of second degree among the∞1

ones (12) represents a type, but only at each time, all pointsof the conic
section (13) must be excluded. So these are∞1 different types.

2) The conice22 + e1e3 = 0 represents one type, when one leaves out
the peak point and the conic section (13).

The remaining types are:

3) The planee4 = 0, to the exclusion of the conic section (13).

4) The conic section (13).

5) The peak pointe1 = e2 = e3 = 0 of the conice22 + e1e3 = 0.

If we want to have one representative for each of the found types,
we must select each time one point on the concerned smallest invariant
manifold. In the first case for instance the invariant manifold is represented
by an equation of the form:

e24 = c2(e22 + e1e3),

wherec means a finite constant distinct from zero, and wheree1, . . . , e4
can take all values which do not satisfy the equation (13). Sowe can
choose:

e1 = e3 = 0, e2 = 1,
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and say:e4 = c, so that for the∞1 types of the first species, we obtain the
∞1 representatives:

1) xp− yq + c(xp + yq) (c 6= 0).

Here, one has to become aware of the fact that two equally opposed values
of c [i.e. the two values +c and −c] always produce two infinitesimal trans-
formations which lie on the same second degree surface, hence which are
conjugate to each other inside theG4. It’s because the equatione24 = c2 is
satisfied both bye4 = c and bye4 = −c as well.

In a similar way, we can choose as a representative of the remaining
types the following one-term groups:

2) xq + xp+ yq, 3) xp− yq, 4) xq, 5) xp+ yq.

Now it yet remains to determine all two-term and all three-term sub-
groups of ourG4.

Let:
Yif = αi xq + βi(xp−yq) + γi yp+ δi(xp+ yq)

(i = 1, 2)

be two independent infinitesimal transformations of ourG4. If we leave
out from them the term withxp + yq, we then obtain the two reduced
[VERKÜRZTEN] infinitesimal transformations:

Y if = αi xq+βi(xp− yq) + γi yp

(i = 1, 2).

However, these reduced transformations need not anymore beindependent
from each other, but one has in any case:

(15)
[
Y1, Y2

]
=

[
Y 1, Y 2

]
,

since indeedxp+yq is exchangeable with all infinitesimal transformations
of theG4.

The equation (15) leads us to a very simple construction of the image-
point of

[
Y1, Y2

]
from the image-points ofY1f and ofY2f .

Indeed, the reduced infinitesimal transformationsY 1f andY 2f ob-
viously belong to the special linear homogeneous group:xq, xp − yq,
yp, so they are represented by points of the planee4 = 0. One obtains
the image-points ofY 1f and ofY 2f when one connects, by means of a
straight line, the image-points ofY1f and ofY2f with the pointxp + yq,
i.e. with the peak point of the conee22 + e1e3 = 0, and when one looks at
the intersection point [SCHNITTPUNKTE] of these straight lines with the
planee4 = 0, or more briefly: when one projects the pointsY1f andY2f
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from the pointxp + yq onto the planee4 = 0. Thus one finds the point[
Y1, Y2

]
=

[
Y 1, Y 2

]
by looking for the polar, with respect to the conic

section (13), of the connection line between the two pointsY 1f , Y 2f in
the planee4 = 0.

In general, the indicated construction for the point
[
Y1, Y2

]
always

produces a completely determined point of the plane:e4 = 0, but it does
not produce any determined point, only when the connection line of the
two pointsY1f andY2f passes through the pointxp + yq, namely ei-
ther when the two pointsY 1f andY 2f coincide and one has

[
Y1, Y2

]
=[

Y 1, Y 2

]
= 0, or when one of the pointsY1f andY2f coincides with the

pointxp + yq and one has
[
Y1, Y2

]
= 0. It follows from this thattwo in-

dependent infinitesimal transformations of ourG4 are exchangeable if and
only if the connection line of their image-points passes through the point
xp+ yq.

As a result, all two-term subgroups of ourG4 whose infinitesimal
transformations are exchangeable are found; every such subgroup is rep-
resented by a straight line which contains the pointxp + yq. But now,
each straight line through the pointxp+ yq which is not a generator of the
conice22+e1e3 = 0 can visibly be transferred to every other straight line of
the same nature by means of the adjoint group of ourG4, and in the same
way, every generator of this conic can be transferred to any other. In other
words:

In ourG4, there are two types of two-term subgroups with exchange-
able infinitesimal transformations. The subgroups of the first type are rep-
resented by the straight lines of the spacee1, . . . , e4 which contain the
pointxp+ yq, but are not generators of the conice22 + e1e3 = 0 and those
of the second type are the generators of this conic. As a representative of
the two types we can choose the two-term subgroups:

xp− yq, xp + yq and xq, xp + yq.

Every still remaining two-term subgroup of theG4 is represented by
a straight line which does not touch the pointxp + yq. This straight line
lies either completely in the planee4 = 0 or it has just one point in com-
mon with that plane. In the first case, we obviously have to deal with a
subgroup of the special linear homogeneous group:xq, xp−yq, yp, so the
subgroup in question is necessarily represented by a tangent to the conic
section (13). In the second case, ifY1f andY2f are two independent infin-
itesimal transformations of the subgroup, then the point

[
Y1, Y2

]
, which is

a fully determined point of the planee4 = 0, must lie on the straight line
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betweenY1f andY2f , and consequently
[
Y1, Y2

]
must just be the point

that the connection line betweenY1f andY2f has in common with the
planee4 = 0. One then easily recognizes that the point

[
Y1, Y2

]
lies on

the conic section (13) and that the straight line betweenY1f andY2f must
be contained in a tangential plane to the conice22 + e1e3 = 0. Conversely,
every straight line which hits the conic section (13) and which lies in a
tangential plane to the conice22 + e1e3 = 0 really represents a two-term
subgroup.

⊲ Explanation. ⊳

As a result, all two-term subgroups of theG4 whose infinitesimal
transformations are not exchangeable are found. They are firstly all the
tangents to the conic section (13) in the planee4 = 0, and secondly all
tangents to the conice22 + e1e3 = 0 which hit the conic section (13), but
which neither pass through the pointxp + yq, nor lie in the planee4 = 0.

The subgroups of the first category are all conjugate with each other
inside theG4 and they form a type for itself, and as a representative of it,
we can choose the group:

xq, xp− yq.
As far as the subgroups of the second category are concerned,one

thinks over that the nondegenerate amongst the surfaces (12) of second
degree all come into contact with the conice22 + e1e3 = 0 alongside the
conic section (13), hence that the generators of these surfaces of second
degree all lie on the tangential planes to the conice22 + e1e3 = 0. The
subgroups of the second category are therefore representedin the space
e1, . . . , e4 by the generators of the surfaces of second degree (12) that are
nondegenerate. Now, every point of such a surface of second degree which
does not lie on the conic (13) is transferred by the adjoint group to every
other point, whence each generator of the surface can also betransferred
to every other generator of the same family on the surface, whereas such
a generator can never be transferred by the adjoint group to agenerator
of another surface of second degree, and also never to the other family on
the same surface; the latter follows from the fact that the adjoint group
is continuous. According to that, the two-term subgroups ofthe second
category decompose in infinitely many types. Each nondegenerate one
amongst the surfaces (12) of second degree produces two suchtypes, of
which one is represented by the first family of generators andthe other by
the second family. In order to have a representative for eachsuch type,
we only need to indicate in an arbitrary tangential plane of the conice22 +
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e1e3 = 0 all the tangents of this conic which come into contact with the
conic section (13), but which neither lie in the planee4 = 0, nor pass
through the pointxp+yq, since each tangential plane of the conic is indeed
transferred to any other one by the the adjoint group. If for example we
choose the tangential plane to the conic which contains the point xq, then
for our infinitely many types, we receive the representatives:

xq, xp− yq + c(xp + yq),

wherec means a finite constant disctinct from0.
Here, two equally opposed values ofc always furnish subgroups

which are represented by two generators of the same surface of second de-
gree, but these generators belong to different families, and consequently,
the two subgroups in question are not conjugate to each otherinside the
G4.

Finally, the three-term subgroups of ourG4 are still to be determined.
A three-term subgroupg3 of theG4 is represented by a plane in the

spacee1, . . . , e4. If this plane coincides with the planee4 = 0, then theg3

is nothing but the three-term invariant subgroup:

(9) xq, xp− yq, yp

of theG4. In every other case, the image-plane [BILDEBENE] of g3 cuts
the planee4 = 0 in a straight line which necessarily represents a two-term
subgroup of theG4 and at the same time, a subgroup of the group (9). From
this, it follows that the straight line in question is a tangent to the conic
section (13) and that the image-plane of the subgroupg3 comes into contact
with this conic section. Next, ifY1f andY2f are any two independent
infinitesimal transformations ofg3 and if Y1f has its image-point on the
mentioned tangent to the conic section, while the image-point of Y2f does
not lie on this tangent, then the infinitesimal transformation

[
Y1, Y2

]
must

either vanish identically, or have its image-point on this tangent; the first
case occurs only when the three pointsY1f , Y2f andxp+yq lie in a straight
line, the second only when the plane, which is determined byY2f and by
the tangent, also contains the pointxp+yq. Consequently, the image-plane
of g3 must pass through the pointxp+ yq, when it does not coincide with
the planee4 = 0, and it must be a tangent plane to the conice22 + e1e3 = 0.
Also, as one easily convinces oneself, every tangential plane of this conic
really represents a three-term subgroup of theG4. All these subgroups are
conjugate to each other inside theG4, because every tangential plane to
the conic is transferred, by the adjoint group, to every other.
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Thus, there are two types of three-term subgroups of ourG4. The first
type is made up of the invariant subgroup:

xq, xp− yq, yp,

alone; the groups of the second type are represented in the spacee1, . . . , e4
by the tangential planes to the conic:e22 + e1e3 = 0; a representative of
this type is the group:

xq, xp− yq, xp + yq.

We now sum up the gained results:

Theorem 3. If a subgroup of the general linear homogeneous group
G4:

xq, xp− yq, yp, xp + yq

of the planex, y is three-term, then it either is the invariant subgroup:

1 xq, xp− yq, yp ,

or it is conjugate, inside the general linear homogeneous group, to the
subgroup:

2 xq, xp− yq, xp + yq ;

everytwo-term subgroup of theG4 is, inside theG4, conjugate to one of
the subgroups:

3 xq, xp− yq + c(xp + yq) c 6=0 4 xq, xp− yq

5 xp− yq, xp + yq 6 xq, xp+ yq .

Finally, everyone-term subgroup of theG4 is conjugate either to one of
the subgroups:

7 xp− yq + c(xp + yq) c 6=0 8 xp− yq

9 xq + xp + yq 10 xq

or it is engendered by the excellent infinitesimal transformation:

11 xp + yq

of theG4. The arbitrary constantc appearing in the two cases is an esse-
nial parameter, that is to say, to different values ofc correspond subgroups
that are not conjugate inside theG4.

It goes without saying on the basis of the preceding developments, that
for every four-term group which has the same composition as the general
linear homogeneous group of the planex, y, we can immediately indicate
in general all types of subgroups, and also all subgroups.
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While, up to now, we only occupied ourselves with the composition
of theG4:

xq, xp− yq, yp, xp+ yq,

we yet want, as a conclusion, to make a few observations abouttheG4 in
its quality of group of the planex, y.

TheG4 leaves the pointx = y = 0 invariant and substitutes with each
other the∞1 straight lines passing through this point. But also, amongst
the infinitesimal transformations of theG4, there is only one which leaves
untouched every straight line through the pointx = y = 0, it is the ex-
cellent infinitesimal transformationxp + yq of the group. Consequently,
the∞1 straight lines through the pointx = y = 0 are transformed by our
G4 by means of a three-term group, which is projective and is meroedri-
cally isomorph [MEROEDRISCH ISOMORPH] to theG4. Obviously, this
three-term group is nothing but the general projective group of the once-
extended manifold; one can easily convince oneself directly of that. In-
deed, the variablesx, y can be interpreted as homogeneous coordinates of
the∞1 straight lines through the pointx = y = 0; if one now replaces
these two homogeneous coordinates by the non-homogeneous:

x1 =
x

y
,

and if one determines howx1 is transformed by the infinitesimal transfor-
mations of theG4, then one finds that it will be transformed precisely by
means of the general projective groupp1, x1p1, x2

1p1 of the once-extended
manifold. For the execution of this computation,seeVol. I, p. 579,cf. also
ibidem, p. 558, Theorem 96.

⊲ The computation. ⊳

⊲ The cited theorem.

Theorem I.96.The special linear homogeneous group:

xipk, xipi − xkpk (i ≷k =1 ···n)

in the variablesx1, . . . , xn is imprimitive and holoedrically isomorphic to
the general projective group of an(n− 1)-fold extended manifold. ⊳

It results from what has been said that everyr-term subgroup of our
G4 transforms the∞1 straight lines through the pointx = y = 0 either
as anr-term group or as an(r − 1)-term group and in fact, the first case
happens when the infinitesimal transformationxp + yq is lacking in the
subgroup, the second one whenxp+yq is comprised in the subgroup. The
only subgroup of theG4 which transforms those straight line in the same
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way as theG4 is the invariant subgroupxq, xp − yq, yp. If we combine
with this the results of the preceding paragraph, accordingto which every
subgroup of the general projective group of the once-extended manifold
leaves invariant either one point, or two separate points, or two collapsing
points, we obtain the

Proposition 2. The general linear homogeneous groupG4:

xq, xp− yq, yp, xp + yq

of the planex, y comprises only one subgroup, which, just asG4, leaves
untouched no straight line through the invariant pointx = y = 0, it is the
three-term invariant subgroup:

xq, xp− yq, yp

of theG4. Every other subgroup of theG4 leaves at rest at least one
straight line through the pointx = y = 0.

If one subgroup of theG4 leaves invariant onlyone straight line
through the pointx = y = 0, then it is either three-term and it belongs
to the type 2 of the theorem, or it is two-term and it belongs toone of the
types 3 and 4. If it leaves untouched two separate straight lines through
the point, then it is either two-term and is of type 5, or it is one-term and is
of one of the types 7 and 8; if it leaves untouched two collapsing straight
lines, then it is two-term of type 6, or it is one-term of one ofthe types 9
and 10. It only remains the one-term subgroupxp + yq, by which every
straight line through the pointx = y = 0 keeps its position.

—————–
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C h a p t e r 3.

Determination of all Finite Continuous
Point Transformation Groups of the Plane.

When it is said in the title that all*) finite continuous groups of point
transformations of the plane shall be determined, this is not to be under-
stood as actually writing down all these groups. It is not at all our intention
to do this; rather, we shall proceed as in Vol. I, Chap. 22, p. 434 sq. for
the determination of allr-term transitive groups of a given composition.
We distribute the finite continuous groups of point transformations of the
plane into types, by each time recognizing two of these groups to be of
the same type if and only if one is equivalent to the other through a point
transformation of the plane. In this way, each of the sought groups belongs
to one and only one type; conversely, all groups belonging toone deter-
minate type can be identified without difficulty as soon as oneknows one
amongst them, and this single group can be regarded as a representative of
the entire type. As a result, we can replace the problem referred to in the
title by the following:
——————————-
*) As far back as 1874, Lie has sketched the determination of all groups of the plane in the

Göttinger Nachrichten. He gave a justification in great detail in 1878 in theNorwegischer

Archiv and later in theMath. Ann., vol 16. Lie has indicated the simple method used in

the text for the determination of all imprimitive groups of the plane, firstly in 1884 in his

Archiv, and since 1886 in his lectures at the university of Leipzig.
——————————-

To exhibit, for each type of finite continuous group of point transfor-
mations of the plane one, but also only one, representative.

If this problem is solved, then we basically know all finite continu-
ous groups of point transformations of the plane, since eachone of these
groups is equivalent, through a point transformation of theplane, to a sin-
gle of the found representatives.

According to Vol. I, p. 220 sq., the groups of the plane are divided in
two separate categories, of which the first embraces all primitive groups,
and the second all imprimitive groups; besides, it is clear that two groups
of the plane belonging to the same type are always either bothprimitive, or
both imprimitive. As a consequence, we can solve the problem, to which
treatment we have reduced the problem stated in the title of the chapter,
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firstly for the primitive groups, and afterwards for the imprimitive groups,
one case after the other. However, before we pass to that, we must yet
make clear whether it can be recognized that a given finite continuous
group of point transformations of the plane is primitive, orimprimitive.
That is why we place in the beginning a paragraph in which we convey
the general developments of the Vol. I about primitivity andimprimitivity
to the groups of the plane, and in which, as far as it is necessary for this
particular case, we complete these developments.

§ 6.

According to Vol I, p. 220 sq., anr-term group:

Xkf = ξk(x, y) p+ ηk(x, y) q, (k = 1 ... r)

of the planex, y is imprimitive if and only if it leaves invariant a family of
∞1 curvesϕ(x, y) = const. Hence, if the groupX1f, . . . , Xrf is intran-
sitive, it is at the same time imprimitive, because an intransitive group of
the plane divides the plane in∞1 curves:ψ(x, y) = const. that all remain
invariant, whence the group leaves invariant at the same time the totality
of the family of curves:ψ(x, y) = const.

The indicated necessary and sufficient condition for the imprimitivity
of the groupX1f, . . . , Xrf can now be given a different form. At first,
it amounts to the fact that by the concerned group, a certain linear partial
differential equation:

Af = α(x, y)
∂f

∂x
+ β(x, y)

∂f

∂y

remains invariant (loc. cit., p. 221). But if we bear in mind that with
the linear partial differential equationAf = 0 is associated the invariant
ordinary differential equation:

(1) α(x, y) · dx− β(x, y) · dy = 0,

then we recognize immediately that we may also say:

Ther-term groupX1f, . . . , Xrf of the planex, y is imprimitive if and
only if it leaves invariant a first order ordinary differential equation of the
form (1).

Next, we remember that bydx : dy, a certain direction of progress
[FORTSCHREITUNGSRICHTUNG] is determined at every pointx, y of the
plane, and that consequently,x, y, dx : dy can be interpreted as the∞3

line-elements of the plane. Thus, if we want to know whether our group
X1f, . . . , Xrf leaves invariant an ordinary differential equation of the



86 Volume III, Division I, Chapter 3, § 6.

form (1), we must at first examine in which way it transforms the line-
elements of the planex, y, and especially find out whether it leaves invari-
ant a family of∞2 line-elements which is represented by an equation of
the special form (1).

To this end, as in Vol.I, p. 524 sq., we consider the variablesx, y

as functions of an auxiliary variable [HÜLFSVERÄNDERLICHEN] t and
we prolong [ERWEITERN] the infinitesimal transformationsXkf using the
notation of the differential quotients:

dx

dt
= x′,

dy

dt
= y′.

We therefore obtain the prolonged group:

X ′
kf = ξk p+ ηk q + ξ′k p

′ + η′k q
′

(k =1 ··· r)

in the variablesx, y, x′, y′, where the abbreviations:

x′
∂ξk
∂x

+ y′
∂ξk
∂y

= ξ′k,
∂f

∂x′
= p′,

x′
∂ηk

∂x
+ y′

∂ηk

∂y
= η′k,

∂f

∂y′
= q′

have been employed. Now, sincex, y, x′ : y′ can obviously be used as
coordinates for the∞3 line-elements of the planex, y as well asx, y, dx :

dy, the prolonged groupX ′
1f, . . . , X

′
rf indicates how the line-elements

are transformed by the groupX1f, . . . , Xrf ; so now the question is yet to
decide whether or not the groupX ′

1f, . . . , X
′
rf leaves invariant an equation

of the form:

(1’) α(x, y) · y′ − β(x, y) · x′ = 0.

In the groupX1f, . . . , Xrf , there is a certain number, say precisely
r−m, of indepedent infinitesimal transformations which leave untouched
an arbitrarily chosen pointx0, y0 in general position; here, the numberm
has the value 2 or the value 1, according to the groupX1f, . . . , Xrf being
transitive or intransitive. Naturally, theser −m infinitesimal transforma-
tions engender an(r−m)-term subgroup of the groupX1f, . . . , Xrf (see
Vol. I, p. 205, Prop. 2), and their power series developmentswith respect
to powers ofx − x0, y − y0 are free of terms of zeroth order; hence they
have the form:

Ykf =
{
λk(x− x0) + µk(y − y0) + · · ·

}
p+

+
{
νk(x− x0) + ρk(y − y0) + · · ·

}
q (k = 1 ··· r−m),
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and at the same time, under the assumptions made, the infinitesimal trans-
formation:

e1 Y1f + · · ·+ er−m Yr−mf

is the most general transformation of the groupX1f, . . . , Xrf which con-
tains no term of zeroth order inx−x0, y−y0. If we prolong theYkf in just
the same way as theXkf , we then obtainr −m independent infinitesimal
transformations in the variablesx, y, x′, y′ of the form:

Y ′
kf =Ykf +

{
(λk + · · · ) x′ + (µk + · · · ) y′

}
p′+

+
{
(νk + · · · ) x′ + (ρk + · · · ) y′

}
q′ (k = 1 ··· r−m),

which in turn engender an(r − m)-term subgroup of the group
X ′

1f, . . . , X
′
rf , namely the largest group contained in this group which

leaves invariant the system of equations:x = x0, y = y0.
Now, if an equation of the form (1’) remains invariant under the group

X ′
1f, . . . , X

′
rf , then obviously, the system of equations:

x = x0, y = y0, α(x, y) y′ − β(x, y) x′ = 0

remains invariant under the groupY ′
1f, . . . , Y

′
r−mf , or what amounts to the

same, the system of equations:

(2) x = x0, y = y0, α(x0, y0) y
′ − β(x0, y0) x

′ = 0,

where, in any case, the coefficients ofx′ and ofy′ do not both vanish, be-
causex0, y0 is, indeed, a point in general position. Hence if we remember
that a system of equations of the form (2) represents a line-element passing
through the pointx0, y0, we can therefore say: if the groupX1f, . . . , Xrf

is imprimitive, then aside from the pointx0, y0, the groupY ′
1f, . . . , Y

′
r−mf

also leaves invariant yet a line-element passing through it.
But the converse also holds true: when the groupY ′

1f, . . . , Y
′
r−mf ,

together with the pointx0, y0 in general position, also leaves invariant at
the same time a line elementx0, y0, α0y

′ − β0x
′ = 0 passing through

it, then the groupX1f, . . . , Xrf is imprimitive. Actually, to begin with,
let the groupX1f, . . . , Xrf be transitive, so that the numberm has the
value 2. In that case, the line-element in question through the pointx0, y0

admits exactlyr − 2 independent infinitesimal transformations of ther-
term groupX ′

1f, . . . , X
′
rf , so it takes exactly∞2 different positions by

this group, the totality of which remains invariant under this group (see
Vol. I, p. 483, Theorem 85). Moreover, if we take into accountthe fact
that the pointx0, y0 also takes precisely∞2 different positions by the
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groupX ′
1f, . . . , X

′
rf , then we realize that the family of∞2 line-elements

that are invariant by the groupX ′
1f, . . . , X

′
rf is represented by an equa-

tion of the form (1’), and hence, under the assumptions made,the group
X1f, . . . , Xrf is effectively imprimitive.

⊲ Explanation. ⊳

There remains the case where the groupX1f, . . . , Xrf is intransitive;
but in this case, its imprimitivity is sure from the beginning, and thus, the
assertion stated above is completely demonstrated.

If one wants to find out whether a givenr-term continuous group
X1f, . . . , Xrf of the planex, y is primitive or imprimitive, then one has
to proceed as follows: one sets up the largest subgroup contained in the
groupX1f, . . . , Xrf which leaves invariant an arbitrarily chosen point in
general position, and one examines how this subgroup transforms the∞1

line-elements of the planex, y passing through the pointx0, y0; if the sub-
group leaves untouched one of the∞1 line-elements in question, then the
groupX1f, . . . , Xrf is imprimitive; if it leaves untouched no line-element,
then the groupX1f, . . . , Xrf is primitive.

Now it still remains for us to express the criterion found in aconve-
nient analytic form.

Everything comes down to whether or not the groupY ′
1f, . . . , Y

′
r−mf

defined on p. 87 leaves untouched a line-element through the invariant
point x0, y0. In order to make this clear, we nevertheless do not at all
need to determine the entire groupY ′

1f, . . . , Y
′
r−mf , but we only need to

determine how this group transforms the∞1 line-elements through the
pointx0, y0, and we can achieve this very easily thanks to Vol. I, pp. 232–
234: namely, from theY ′

kf , we leave out the terms withp and withq, and
in the remaining terms, we setx = x0, y = y0, so that we obtain a linear
homogeneous group:

Yk = (λkx
′+µky

′) p′ + (νkx
′ + ρky

′) q′

(k = 1 ··· r−m)

in the variablesx′, y′ which is an Isomorph?? to the groupY ′
1f, . . . , Y

′
r−mf

and which transforms the line-elements through the pointx0, y0 exactly as
this group does.

Now, it still remains to examine whether the linear homogenous group
Y1f, . . . ,Yr−mf leaves untouched one line-element:α0y

′− β0x
′ = 0, or,

what amounts to the same, whether it leaves untouched, when interpreted
as a group of the planex′, y′, a straight line through the pointx′ = y′ = 0.



The Finite Groups of the Plane. 89

But according to p. 83, we can answer this question. We therefore obtain
the

Theorem 4.Whether a givenr-term group of the planex, y:

Xkf = ξk(x, y) p+ ηk(x, y) q (k =1 ··· r)

is primitive or not can be decided in the following way: One determines
at first the numberr −m of the mutually independent infinitesimal trans-
formationse1X1f + · · ·+ erXrf which leave invariant an arbirarily cho-
sen pointx0, y0 in general position, then one selects amongst the infini-
tesimal transformations of this nature anyr − m independent ones, say
Y1f, . . . , Yr−mf , and one writes their power series expansions with re-
spect to powers ofx − x0, y − y0, though leaving out all terms of second
or higher order. If these power series expansions are written as follows:

Ykf =
{
λk(x− x0) + µk(y − y0) + · · ·

}
p+

+
{
νk(x− x0) + ρk(y − y0) + · · ·

}
q (k = 1 ··· r−m),

then one finally forms the infinitesimal transformations in the variables
x′, y′:

Ykf = (λkx
′+µky

′) p′ + (νkx
′ + ρky

′) q′

(k = 1 ··· r−m)

which engender a linear homogeneous group. After that, if the group
Y1f, . . . ,Yr−mf has one of the two forms:

(3)

{
x′q′, x′p′ − y′q′, y′p′, x′p′ + y′q′;

x′q′, x′p′ − y′q′, y′p′,

then the given groupX1f, . . . , Xrf is primitive, while in every other case
it is imprimitive.

It follow from this theorem that in order to be able to settle the prim-
itivity or the imprimitivity of the groupX1f, . . . , Xrf , one even does not
at all need to know the infinitesimal transformationsX1f, . . . , Xrf them-
selves, but for this, the defining equations (Vol. I, Chap. 11) of the group
are already sufficient. This is because if one knows these defining equa-
tions, then one can determine the terms of first order inx− x0 andy − y0

in the power series developments of theYkf and hence one can also set up
the linear homogeneous groupY1f, . . . ,Yr−mf .

⊲ Explanation. ⊳
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On the other hand, it follows that anr-term groupX1f, . . . , Xrf of the
planex, y is always imprimitive when its numberr of terms is smaller than
five. Indeed, if the group in question is transitive — we obviously need
only prove our assertion for this case —, thenm = 2 and sor −m < 3,
whence the associated linear homogeneous groupY1f, . . . ,Yr−mf cer-
tainly does not have any of the two forms (3).

At present, we can tackle the problem posed on p. 84. As already
announced, we carry it out at first for the primitive groups, and then for the
imprimitive groups.

I. The Primitive Groups of the Plane.
§ 7.

If an r-term groupX1f, . . . , Xrf of the planex, y, or brieflyGr, is
supposed to be primitive, then above all, it must be transitive, and more-
over, the linear homogeneous groupY1f, . . . ,Yr−mf that we have defined
in the preceding paragraph must possess one of the two forms (3). Con-
versely, according to the developments of the preceding paragraph, every
groupGr for which these two conditions are fulfilled, must be primitive.

If we imagine in our mind that the infinitesimal transformations of
theGr are expanded, in the neighbourhood of a pointx0, y0 in general
position, with respect to powers ofx − x0, y − y0, then the following
comes out:

An r-term groupGr of the planex, y is primitive if and only if, in
the neighbourhood of a pointx0, y0 in general position, it comprises the
following infinitesimal transformations:

Firstly, two infinitesimal transformations of zeroth order inx − x0,
y − y0 out of which no transformation of first or higher order can be de-
duced by linear combination, hence in other words, two infinitesimal trans-
formations of the form:

(4) p+ · · · , q + · · · ,
where the left out terms are of first or higher order inx− x0, y − y0. This
demand is synonymous to the one that theGr should be transitive.

Secondly, either four or three infinitesimal transformations of firstor-
der, out of which no transformation of second or higher orderin x − x0,
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y− y0 can be deduced by linear combination, and actually, these infinites-
imal transformations of first order must in fact possess either the form:

(x− x0)q + · · · , (x− x0)p− (y − y0)q + · · · , (y − y0)p+ · · ·
(x− x0) p+ (y − y0) q + · · · ,

or the form:

(x− x0)q + · · · , (x− x0)p− (y − y0)q + · · · , (y − y0)p+ · · · ,
where in the two times, the left out terms must be of second or higher
order inx − x0, y − y0. This form of the infinitesimal transformations
of first order follows immediately from the circumstance that the linear
homogeneous groupY1f, . . . ,Yr−mf discussed earlier must possess one
of the two forms (3).

But now, already in Volume I, namely in the 29th Chapter, we have
determined all finite continuous groups whose zeroth and first order infin-
itesimal transformations possess just the indicated form:there, we must
only give ton the value 2. Consequently, we can say:

Theorem 5. If a finite continuous group of point transformations of
the planex, y is primitive, so that it leaves invariant no family of curves:
ϕ(x, y) = const., then it has either five, or six, or eight parameters and
correspondingly, it is equivalent either to the special linear group:

p, q, xq, xp− yq, yp,

or to the general linear group:

p, q, xq, xp− yq, yp, xp + yq,

or finally to the general projective group:

p, q, xq, xp− yq, yp, xp + yq, x2p+ xyq, xyp+ y2q.

As a result, we have found all types of primitive groups on theplane,
and at the same time, we have found a representative for each one of these
types. As one sees, there are only three types of primitive groups in the
plane. Besides, one notices that the developments of the Chap. 29 in Vol. I,
when applied to the twice-extended manifold, yet deliver all types of prim-
itive groups of this manifold, while on the other hand, they produce all
types of groups of the once-extended manifold (seeChap. 1, p. 60).

⊲ Comment. Belle remarque structurale. ⊳
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II. The Imprimitive Groups of the Plane.
§ 8.

If X1f, . . . , Xrf is an imprimitiver-term group of the plane and if:
ϕ(x, y) = const. is any family of curves which is invariant by this group,
then there exist (cf. Volume I, p. 139, Prop. 1) relations of the form:

Xkϕ = ωk(ϕ) (k =1 ··· r).

Then by introducingϕ as newx, our group receives the form:

Xkf = ξk(x) p+ ηk(x, y) q (k =1 ··· r),

where we have again employed the customary lettersξ and η. As one
sees, the variablex is transformed for itself [FÜR SICH] by the group:
X1f, . . . , Xrf , and to be precise (Vol. I, p. 222), it is transformed by means
of a group which is engendered by the reduced infinitesimal transforma-
tions:

Xkf = ξk(x) p (k = 1 ··· r).

This new group is Isomorph with the group:X1f, . . . , Xrf , since from the
Relations:

[
Xi, Xk

]
=

r∑

s=1

ciksXsf (i, k =1 ··· r),

it visibly follows:

[
X i, Xk

]
=

r∑

s=1

ciksXsf (i, k = 1 ··· r)

(cf. also Vol. I, p. 307, Prop. 4), but in general, the Isomorphism
will be meroedric, because from the independence of the infinitesimal
transformations:X1f, . . . , Xrf , the independence of the transformations:
X1f, . . . , Xrf does not at all follow.

According to Theorem 1 on p. 51, as a group of the once-extended
manifold, the group:X1f, . . . , Xrf cannot have more than three param-
eters, hence it is either three-, or two-, or one-term, or finally null-term,
that is to say, it reduces to the identity transformation; this last case oc-
curs when all theXkf vanish identically. Correspondingly, the group:
X1f, . . . , Xrf transforms the curves:x = const. either in three, or in two,
or in one, or finally in null terms, that it to say, not at all. Wetherefore
have to distinguish four cases, that we now want to describe one after the
other, beginning with the last one.
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Firstly. If the curves:x = const. are transformed in null terms, then
all theXkf vanish. In this case, the group:X1f, . . . , Xrf comprisesr
independent infinitesimal transformations of the form:

Φ1(x, y) q, . . . , Φr(x, y) q.

Secondly.The curves:x = const. are transformed in one term. Since
the group:X1f, . . . , Xrf is one-term in this case, then according to the
theorem stated above, one can choose the variablex in such a way that ev-
eryXkf receives the form:akp, and consequently everyXkf receives the
form: akp + ηk(x, y) q, where naturally, ther constantsa1, . . . , ar should
not all vanish. From this, it comes out that, through the choice ofx in ques-
tion, the group:X1f, . . . , Xrf comprisesr infinitesimal transformations
of the form:

Φ1(x, y) q, . . . , Φr(x, y) q, p+ η(x, y) q.

Thirdly. The curves:x = const. are transformed in two terms. In this
case, according to the mentioned theorem we are aware of, onecan choose
the variablex in such a way that everyXkf receives the form:(ak+bkx) p,
and to be precise, not all expressions:akbj −ajbk vanish here, because the
group: X1f, . . . , Xkf is actually two-term, and hence it must comprise
two independent infinitesimal transformations. Now, one sees immedi-
ately that, through the choice ofx in question, the group:X1f, . . . , Xrf

comprisesr independent infinitesimal transformations of the form:

Φ1(x, y) q, . . . , Φr−2 q, p+ η0(x, y) q, xp + η1(x, y) q.

Fourthly. The curves:x = const. are transformed in three terms.
In this case, one can always choose the variablex so that, in the group:
X1f, . . . , Xrf , there arer independent infinitesimal transformations of the
form:

Φ1(x, y) q, . . . , Φr−3(x, y) q, p+ η0(x, y) q, xp+ η1(x, y) q,

x2p+ η2(x, y) q.

As a result, four categories of imprimitive groups of the plane are
found. Through an appropriate choice of the variablesx, y, every imprim-
itive group of the plane belongs to one of these categories. Thus, in order
to find all imprimitive groups of the plane, we only need to determine, for
every individual category amongst the four categories, allgroups that are
comprised in it.

The solution of the problem to which we have thus been led, will be
substantially lightened if we bear in mind the following facts: firstly, that
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through every transformation of the form:

(5) x1 = const., y1 = Ω(x, y),

every group which belongs to one of our four categories, is transferred to
a group belonging to the same category, and secondly, that every r-term
group amongst one of the last three categories does contain an (r − 1)-
term subgroup which belongs to the preceding category. We can therefore
proceed as follows:

To begin with, we determine all groups of the form:

Φ1(x, y) q, . . . , Φr(x, y) q,

and we reduce them, through a transformation of the form (5),to a series of
normal forms. After that, to each of the gained normal forms,we add in the
most general way an infinitesimal transformation of the form: p+η(x, y) q,
in order that again a group comes out; thus we find all groups ofthe second
category and we bring them, through transformations of the form (5), to
simple normal forms. To each one of these normal forms, we again add in
the most general way one transformation of the form:xp + η1(x, y) q and
we thefore obtain the groups of the third category; and finally, we find the
groups of the fourth category by adding to the latter one transformation:
x2p+ η2(x, y) q.

We now want to realize in details the program set up here.

§ 9.

The curves: x = const. are transformed in null terms.

The question here is to determine allr-term groups of the form:

(6) Xkf = Φk(x, y) q (k =1 ··· r).

As one sees, the group:X1f, . . . , Xrf transforms only the variabley,
while it does not transformx at all. Thus, if we confer tox one arbitrary
constant valuea, we then get, in place of theXkf , certain infinitesimal
transformations:

(6’) Xkf = Φk(a, y) q (k = 1 ··· r),

engendering a group in the variabley alone, which is Isomorph to the
group (6). Now, as long as the constanta does not take any special value,
it is obvious that none of the infinitesimal transformationsXkf can van-
ish identically, so that the group (6’) does surely not reduce to the identity
transformation. On the other hand, according to Theorem 1 onp. 51, this
group cannot contain more than three parameters; consequently, all the
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groups (6) are distributed in three classes, and to be precise, one group of
the form (6) belongs to the first, to the second, or to the thirdclass, ac-
cording to whether the group (6’) is one-, two-, or three-term, for a general
value ofa.

We now determine one after the other the groups of each one of these
three classes.

If the group (6’) is one-term, then according to Theorem 1 on p. 51,
it can, through an appropriate choice ofy, be given the formq; in other
words, if as a newy, one introduces in theXkf , an appropriate function
Ω(a, y) of y and of the constanta, then all theXkf receive the form:

Xkf = Fk(a) · q (k = 1 ··· r).

If one therefore introduces the function:Ω(x, y) as new y in the
group (6) — this is a transformation of the form (5) —, then this group
receives the form:

Xkf = Fx(x) · q (k = 1 ··· r).

On the other hand, it is clear thatr infinitesimal transformations of the
form:

[1] F1(x) q, F2(x) q, . . . , Fr(x) q

do always engender anr-term group, whichever also theF can be as func-
tions ofx, provided only that there exists no relation:

c1 F1(x) + · · ·+ cr Fr(x) = 0

with constant coefficients. With this, through a transformation of the
form (5), we have brought to a right normal form all groups which belong
to our first class.

Secondly, let the group (6’) be two-term and hence in any case, r is
> 1. Then according to the theorem stated several times, the group (6’)
can, by an appropriate choice ofy, be given the form:q, yq. Translated
into (6), this means: when a suitably chosen functionΩ(x, y) is introduced
as newy, the group (6) receives the form:

Xkf =
{
Fk(x) +Gk(x) · y

}
q (k = 1 ··· r).

But now, we find by Combination:
[
Xi, Xk

]
=

(
FiGk − Fk Gi

)
q = Ωik(x) · q,

where in any caseΩik do not vanish all the time, since otherwise,Xif and
Xkf would be linked by a relation of the form:αik(x)Xif+βik(x)Xkf =

0 for all values ofi andk, so the group (6’) would be one-term only, against
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our assumption. Next, it comes for arbitraryj:
[
Ωik q, Xjf

]
= Gj Ωik q

and when we putGj Ωik q in place ofΩik q into the left-hand side of this
equation, it comes:G2

j Ωik q, and so on, briefly in general:Gm
j · Ωik q,

where the entire numberm can be made arbitrarily large. Form this, it
follows that theGj must all be free ofx, since otherwise, the infinitely
many infinitesimal transformations:

Ωik q, Gj Ωik q, G2
j Ωik q, · · · ,

which are all mutually independent, should all belong to thegroup:
X1f, . . . , Xrf , but this is impossible, because that group is finite. Con-
sequently, theGj are constant and our group has the form:

Xkf =
{
cky + Fk(x)

}
q (k =1 ··· r),

where naturally, theck do not all vanish. Thus if for instancecr is not
equal to zero, then we introduce:cry + Fr(x) as newy, and it comes:
Xrf = cry q, hence our group containsr independent infinitesimal trans-
formations of the form:

[2]
F1(x) q, . . . , Fr−1(x) q, yq

(r > 1)
.

Thirdly and lastly, let the group (6’) be three-term, so that, according
to Theorem 1 on p. 51, it can be given the form:q, yq, y2q through an
appropriate choice ofy. Then it is always possible to introduce as newy a
function:Ω(x, y) such that the group (6) becomes visible under the form:

Xkf =
{
ϕk(x) + y · χk(x) + y2 · ψk(x)

}
q (k = 1 ··· r).

If one now thinks that the variablex just plays the role of a constant by the
Combination of the two infinitesimal transformations:Xif andXkf , and
thatq, yq, y2q stand in the relationships:

[
q, yq

]
= q,

[
q, y2q

]
= 2yq,

[
yq, y2q

]
= y2q,

then one realizes that the Proposition 1 on p. 72 can be applied to any three
amongst the infinitesimal transformationsXkf , hence that betweenXif ,
Xkf andXjf , the identity:

[[
Xi, Xk

]
,
[
Xi, Xj

]]
= 2

∣∣∣∣∣∣

ϕi χi ψi

ϕk χk ψk

ϕj χj ψj

∣∣∣∣∣∣
= 2 ∆ikj Xif
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holds. If one sets in this identity∆ikj Xif in place ofXif , then one
gets∆2

ikj Xif , and in an analogous way, one gets∆3
ikj Xif , and so on,

all of which are infinitesimal transformations belonging tothe group:
X1f, . . . , Xrf . Consequently, the∆ikj must beconstant: ∆ikj = Cikj,
and from the identity: ∣∣∣∣∣∣∣∣

Xif ϕi χi ψi

Xkf ϕk χk ψk

Xjf ϕj χj ψj

Xsf ϕs χs ψs

∣∣∣∣∣∣∣∣
= 0,

it furthermore comes out that between any four amongst the infinitesimal
transformationsX1f, . . . , Xrf , a relation of the form:

CkjsXif − CijsXkf + CiksXjf − Cikj Xsf = 0

holds. Now, the∆ikj cannot all vanish, because otherwise the group (6’)
would not be three-term, so we can assume that, say,∆123 = C123 is
nonzero. But on admitting this, the latter equation shows immediately
thatX1f, . . . , Xrf can be deduced linearly withconstantcoefficients from
X1f ,X2f ,X3f , hence that the groupX1f, . . . , Xrf , just as the associated
group (6’), contains only three infinitesimal transformations. The possibil-
ity r > 3 is therefore excluded and it remains only the possibility:r = 3.

Thus we now have to bring to an as simple as possible normal form
the three-term group:

Xkf =
(
ϕk(x) + y χk(x) + y2 ψk(x)

)
q (k = 1, 2, 3)

by means of a transformation of the form (5). To this aim, we remember
that according to Vol. I, p. 591, Prop. 5, our group surely contains two-
term subgroups; for reasons of simplicity, we want to admit thatX1f ,
X2f engender such a subgroup.

Now, because, as we have seen above, the determinant
∑
±ϕ1χ2ψ3

does not vanish, then obviously the two infinitesimal transformations:

Xkf =
{
ϕk(a) + y χk(a) + y2 ψk(a)

}
(k =1, 2)

will be independent of each other and will engender a two-term group. But
this groupX1f , X2f is projective, and hence conjugate to the groupq, yq
inside the general projective group of the once-extended manifold y (see
Theorem 2 on p. 71). From this, it follows that, when one introduces as
newy an appropriate function of the form:

α(x) y + β(x)

γ(x) y + δ(x)
,
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the groupX1f ,X2f takes the form:

X1f =
{
F1(x) + y G1(x)

}
q, X2f =

{
F2(x) + y G2(x)

}
q.

Here as above (p. 96), one realizes thatG1 andG2 are constant, and that
the group, by means of an appropriate choice ofy, can be given the form
F1(x) q, yq; finally, by yet introducing 1

F1(x)
y as newy, one obtains that

F1(x) equals 1. In the new variablesx, y, the groupX1f , X2f , X3f now
has the form:

q, yq, X3f =
{
ϕ(x) + y χ(x) + y2 ψ(x)

}
q,

since all the transformations employed by us possess the form:

x1 = x, y1 =
λ(x) y + µ(x)

ν(x) y + ρ(x)
,

so that only the form of the functionsϕ3, ψ3, χ3 change in the initial ex-
pression forX3f . Thus, one has:

[
q, X3f

]
=

[
χ(x) + 2y ψ(x)

]
q

[
q, [q, X3f ]

]
= 2ψ(x) q,

whenceψ(x) andχ(x) must be constant. Lastly, from the equation:
[
yq, X3f

]
= −ϕ(x) q + y2 ψ(q) q,

it yet follows thatϕ(x) is a constant too.
As a result, it is proved that every group which belongs to ourthird

class can be brought to the form:

[3] q, y q, y2 q

by means of a transformation (5).

§ 10.

The curves: x = const. are transformed in one term.

According to the program set up on p. 94, we now have to add the
transformationp+ η(x, y) q to each one of the groups found in the preced-
ing paragraph and to determineη in the most general way in order that a
group arises.

At first, we seek to bring allr-term groups of the shape:

F1(x) q, . . . , Fr−1(x) q, p+ η(x, y) q

to a simple normal form.
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If r = 1, we introduce a solutionω(x, y) of the differential equation:

∂ω

∂x
+ η

∂ω

∂y
= 0

as newy, and we get the group:

[4] p .

If r > 1, there must exist an equation of the form:

[
p+ ηq, Fiq

]
=

r−1∑

k=1

cik Fk q,

for the left hand-side is free ofp. Consequently, we have:

F ′
i (x)− Fi

∂η

∂y
=

r−1∑

k=1

cik Fk,

so thatη is linear iny:
η = y ϕ(x) + χ(x).

But if we set:
x1 = x, y1 = yα(x) + β(x),

it comes out:

p + ηq = p1 +
(
yα′(x) + β ′(x) + α η) q1;

hence when we chooseα andβ in such a way that:

α′ + αϕ = 0, β ′ + αχ = 0,

which is always possible, then it comes plainly:p+ η q = p1. Since in ad-
dition the remaining infinitesimal transformations of the group essentially
keep their form through the performed change of variables, our group then
becomes visible in the shape:

F1(x) q, . . . , Fr−1(x) q, p.

Finally, the equation:
[
p, Fiq

]
= F ′

iq now shows that theFi must satisfy a
system of ordinary differential equations of the form:

dFi

dx
=

r−1∑

k=1

cik Fk (i =1 ··· r− 1).

Here, the constantscik are absolutely arbitrary, since the Jacobi identity
produces no relation between thecik.

According to known results,F1, . . . , Fr−1 do all satisfy a certain lin-
ear homogeneous differential equation of(r − 1)-th order with constant
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coefficients:
dr−1F

dxr−1
+ Cr−2

dr−2F

dxr−2
+ · · ·+ C1

dF

dx
+ C0F = 0;

we hence can replaceF1, . . . , Fr−1 by particular integrals of this differ-
ential equation. These particular integrals can be orderedin several, say
l > 0, systems of the form:

eα1x, xeα1x, . . . , xm1eα1x

eα2x, xeα2x, . . . , xm2eα2x

· · · · · ·
eαlx, xeαlx, . . . , xmleαlx,

whereα1, . . . , αl denote constants which are all distinct one another, and
wherem1, . . . , ml are all integers> 0, whose sum has the valuer− 1− l.
Therefore, our group has the form:

[5]
eαkx q, xeαkx q, x2eαkx q, . . . , xmkeαkx q, p

(k = 1, 2 ··· l; l > 0)

.

We now turn to the groups:

F1(x) q, . . . , Fr(x) q, yq, p+ η(x, y) q,

where according to p. 96, we must assume the integerr to be> 0.
There exists an equation of the form:

[p+ ηq, yq] =
(
η − y ∂η

∂y

)
q = cyq +

r∑

k=1

ck Fkq,

and in the same way:

[p + ηq, Fiq] =
[
F ′

i (x)− Fi

∂η

∂y

]
q = Ciyq +

r∑

k=1

Cik Fk q.

The latter equation shows thatη possesses the form:α(x) + y β(x) +

y2 γ(x); but when this expression is inserted in the first equation, it comes
instantly:

γ(x) = 0, c = 0, α(x) =

r∑

k=1

ck Fk(x).

As a result of this, we replace the infinitesimal transformation: p+ η q by:

p+
(
η −

r∑

k=1

ck Fk

)
q = p+ y β(x) q;
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then we introduce a newy: y1 = y · ψ(x), and we obtain:

p+ y β q = p+
y1 (ψ′ + β ψ)

ψ
q1,

hence when we make:ψ′ + β ψ = 0, we obtain plainly:p. But since the
remaining infinitesimal transformations do essentially not change through
the performed change of variables, our group has now the form:

F1(x) q, . . . , Fr(x) q, p, yq.

Here obviously, the firstr + 1 infinitesimal transformations engender a
subgroup which, according to what precedes, possesses the form [5]; as a
result, we obtain the group:

[6]
eαkx q, xeαkx q, . . . , xmkeαkx q, yq, p

(k = 1, 2 ··· l; l > 0)

.

Now, we turn to the groups:

q, yq, y2q, p+ η(x, y) q.

It comes out:

[q, p + η q] =
∂η

∂y
q = (a+ 2by + 3cy2) q,

[yq, p + η q] =
(
y
∂η

∂y
− η

)
q = (α + βy + γ y2) q,

wherea, b, c, α, β, γ are constants. If we put in the second equation the
value:

η = ϕ(x) + ay + by2 + cy3

issued from the first one, it comes:c = 0, ϕ(x) = const., hance our group
is engendered by the four infinitesimal transformations:

[7] q, yq, y2q, p .

§ 11.

The curves: x = const. are transformed in two terms

We have to add to every group of the § 10 one infinitesimal transfor-
mation of the form:xp + η(x, a) q.

At first, we consider the group:

p, xp + η(x, y) q

and we find:

[p, xp+ η q] = p+
∂η

∂x
q,
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whence∂η

∂x
= 0, or: η = ϕ(y). Two cases are therefore to be be distin-

guished; eitherϕ = 0, which gives the group:

[8] p, xp ,

or ϕ 6= 0. In the latter case we introducey1 = ψ(y) in place ofy and we
obtain:

xp + ϕ(y) q = xp + ϕψ′ q1 ;

thus if we chooseψ so thatϕψ′ = 1, we obtain the group:

[9] p, xp + q .

Moreover, we have to determine the groups:

eαkx q, xeαkx q, . . . , xmk eαk q, p, xp+ η(x, y) q

(k = 1, 2 ··· l; l > 0),

or, as we want to write for abbreviation, the groups:

F1(x) q, . . . , Fr(x), p, xp + η(x, y) q (r > 0).

The relations:

[p, xp+ η q] = p+
∂η

∂x
q = p+

r∑

k=1

ak Fk q

[xp+ η q, Fi q] =
(
xF ′

i (x)− Fi

∂η

∂y

)
q =

r∑

k=1

bik Fk q

give:
∂η

∂x
= ϕ′(x),

∂η

∂y
= ψ(x),

whenceψ′(x) = 0 and:

η = cy + ϕ(x), ϕ′(x) =
r∑

k=1

ak Fk(x).

But if we substitute forFi in the transformation:
(
xF ′

i − cFi

)
q the expres-

sion:xmk eαkx, we receive the transformation:

αk x
mk+1 eαkx q + (mk − c) xmk eαkx q,

which can be contained in our group only ifαk vanishes. Ther infinitesi-
mal transformationsFkq have in consequence of that the simple shape:

q, xq, x2q, . . . , xr−1q,
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and one has:

η = cy +

r−1∑

k=0

ak+1

k + 1
xk+1 + const.,

or, because we can take away, by virtue of theFkq, all remaining terms,
simply:

η = cy + hxr.

If we now set:
x1 = x, y1 = y + αxr,

the totality of all infinitesimal transformations that can be deduced linearly
from q, xq, . . . , xr−1q, p remains wholly unchanged, but there will be:

xp + η q = xp1 +
{
cy + (α r + h) xr

}
q1

= x1 p1 +
{
cy1 + (h + α r − α c) xr

1

}
q1.

Thus if c 6= r, by an appropriate choice ofα, we can fulfill the equation:
h+ α(r − c) = 0, and we obtain the group:

[10]
q, xq, . . . , xr−1 q, p, xp+ cyq

(r > 0)

.

If on the contraryc = r, we can in any case suppose thath does not vanish,
because otherwise we would come back to the group just found;we can
therefore introdude:x r

√
h as newx, and we find the group:

[11]
q, xq, . . . , xr−1 q, p, xp+ (r y + xr) q

(r > 0)

.

At present, we turn to the groups:

eαkx q, x eαkx q, . . . , xmk eαk x q, yq, p, xp + η(x, y) q

(k = 1, 2 ··· l; l > 0)

or written in a shorter way:

F1(x) q, . . . , Fr(x) q, yq, p, xp+ η q (r > 0).

One gets:

[yq, xp + η q] =
(
y
∂η

∂y
− η

)
q = ay q +

r∑

k=1

ak Fk q

[
Fi q, xp + η q

]
=

(
Fi

∂η

∂y
− xF ′

i (x)
)
q = byq +

r∑

k=1

bik Fk q
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and from this without difficulty:

a = 0, η = y α(x)−
r∑

k=1

ak Fk(x).

If one replacesxp + η q by the transformation:xp + y α(x) q, which is
obviously allowed, one finds:

[p, xp+ y α q] = p+ y αx q

= p+ cy q +

r∑

k=1

ck Fk(x) q,

therefore allck vanish and one has:α = cx+const., where the integration
constant can just be left out. In place ofy andx, if one now introduces:
y1 = y e−cx andx1 = x, then one obtains:

p = p1 − cy e−cx q1 = p1 − cy1 q1,

q = e−cx q1 = e−cx1 q1, y q = y1 q1,

so the transformationsFi q, y q do essentially keep their form, while:

xp+ η q = xp+ cxy q

is transferred tox1p1. As in the preceding case, one now yet realizes that
F1q, . . . , Frq must have the form:q, xq, . . . , xr−1q, so as a result, one
arrives at the group:

[12]
q, xq, . . . , xr−1 q, yq, p, xp

(r > 0)

.

Finally, it remains the groups:

q, yq, y2q, p, xp+ η(x, y) q.

Considering the equations:

[q, xp + η q] =
∂η

∂y
q = (a + 2by + 3cy2) q

[yq, xp+ η q] =
(
y
∂η

∂y
− η

)
q = (α+ β y + γ y2) q,

the first one gives:

η = ϕ(x) + a y + by2 + c y3,
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and the second one:c = 0, ϕ = const., so thatη can be set equal to zero
and our group has the form:

[13] q, yq, y2q, p, xp .

§ 12.

The curves: x = const. are transformed in three terms

We now have to add to every group found in § 11 a transformationof
the form:x2p + η(x, y) q.

For the group:
p, xp, x2p+ η(x, y) q

there are the equations:
[
p, x2p+ η q

]
= 2xp+

∂η

∂x
q = 2x p,

[
xp, x2p+ η q

]
= x2 p+ x

∂η

∂x
q = x2 p+ η q,

whence∂η

∂x
vanishes as well asη itself, and it remains only the group:

[14] p, xp, x2p .

For: p, xp + q, we can write:p, xp + yq by introducingey as newy;
therefore, the groups of the form:

p, xp + yq, x2p+ η(x, y) q

are to be determined. We find:
[
p, x2p+ η q

]
= 2x p+

∂η

∂x
q

[
xp + yq, x2p+ η q

]
= x2p+

(
x
∂η

∂x
+ y

∂η

∂y
− η

)
q,

whence one has:
∂η

∂x
= 2y, x

∂η

∂x
+ y

∂η

∂y
= 2η,

that is to say:η must possess the form:2xy + ϕ(y) and at the same time
be homogeneous of second order inx and iny, namely:η = 2xy + cy2.
Now, if c vanishes, we introduce

√
y as newy and we find the group:

[15] p, 2xp + yq, x2 p + xy q .

If on the contraryc does not vanish, we introduceby as newy; at the same
time,yq keeps its form andy2q is transferred to1

b
y2q, hence we just need
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to chooseb = c and we obtain:

[16] p, xp + yq, x2p+ (2xy + y2) q .

In order to find all groups of the form:

q, xq, . . . , xr−1 q, p, xp + cyq, x2p+ η(x, y) q (r > 0),

we form the equations:

[
q, x2p+ η q

]
=
∂η

∂y
q =

r−1∑

k=0

akx
k q

[
p, x2p+ η q

]
= 2x p+

∂η

∂x
q = 2xp+

(
2cy +

r−1∑

k=0

bkx
k
)
q,

from which it follows:

η = ϕ(x) + y
r−1∑

k=0

akx
k

= ψ(y) + 2cxy +
r−1∑

k=0

bk
k + 1

xk+1.

By comparing these two expressions, it comes:

η = a0y + 2cxy +
r∑

k=0

gkx
k,

or, sinceg0, g1, . . . , gr−1 can simply be set equal to zero:

η = a0y + 2cxy + gxr.

At present, one has:
[
xp + cyq, x2p+ η q

]
= x2p+

{
2cxy + g(r − c) xr

}
q

= x2p+ η q +
r−1∑

k=0

hkx
k q,

whence:
a0 = 0, g(r − c− 1) = 0.

But on the other hand, one has:[
xp+ cy q, x2p+ η q

]
=

{
(1− r) xr + 2cxr

}
q

=

r−1∑

k=0

lkx
k q,
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whence:r − 1 = 2c, that is to say, as soon asr is> 1, r − c − 1 cannot
vanish and one hasg = 0. By condensing the two cases:r > 1 andr = 1,
g = 0, we obtain the group:

[17] q, xq, . . . , xr−1 q, p, 2xp+ (r − 1)y q, x2p+ (r − 1)xy q

(r > 0)

.

By contrast, in the caser = 1, g 6= 0, we obtain the group:

q, p, xp, x2p+ gx q,

or, when we introducee
y
g as newy, the group:

[18] yq, p, xp, x2p+ xyq .

For the determination of all groups:

q, xq, . . . , xr−1q, p, xp+ (ry + xr) q, x2p+ η(x, y) q (r > 0),

we set up the equations:

[
p, x2p+ η q

]
= 2xp+

∂η

∂x
q = 2xp + 2(ry + xr) +

r−1∑

k=0

akx
k q

[
q, x2p+ η q

]
=

∂η

∂y
q =

r−1∑

k=0

bkx
k q.

From these it follows:

η = ϕ(x) + y

r−1∑

k=0

bkx
k

= ψ(y) + 2
(
rxy +

xr+1

r + 1

)
+

r−1∑

k=0

ak

k + 1
xk+1,

or by comparison of the two expressions:

η = b0y + 2rxy + axr +
2xr+1

r + 1
,

where for reasons of brevity, we think that the superfluous terms with
x0, x1, . . . , xr−1 are took away. Further, we form the equation:

[
xp+ {ry + xr} q, x2p+ η q

]
= x2p+

(
2rxy + b0x

r+

+
r2 + r + 2

r + 1
xr+1

)
q,
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whose right hand side must visibly take the form:x2p+ η q, so it comes:

b0 = a = 0,
r2 + r

r + 1
= r = 0.

But this is impossible, becauser must be> 0, and as a result, there are in
general no groups of the demanded sort.

Now, we turn to the groups:

q, xq, . . . , xr−1 q, yq, p, xp, x2p+ η(x, y) q (r > 0).

The equations:

[
p, x2p+ η q

]
= 2xp+

∂η

∂x
q = 2xp+

r−1∑

k=0

akx
k q + αy q

[
q, x2p+ η q

]
=

∂η

∂y
q =

r−1∑

k=0

bkx
k q + βy q

[
yq, x2p+ η q

]
=

(
y
∂η

∂y
− η

)
q =

r−1∑

k=0

ckx
k q + γy q

show thatη takes the form:η = αxy after removal of the superfluous
terms of the form:

∑
gkx

k + hy. Furthermore, one finds:
[
xr−1q, x2p+ αxy q

]
= (1− r) xr q + αxr q,

and this expression must vanish, because the group containsno transfor-
mationxrq, whenceα = r − 1. Thus, we have the groups:

[19] q, xq, . . . , xr−1 q, yq, p, xp, x2p+ (r − 1)xy q

(r > 0)

.

Finally, the groups of the form:

q, yq, y2q, p, xp, x2p + η(x, y) q

still have to be found. We receive:
[
q, x2p+ η q

]
=
∂η

∂y
q = (a+ 2by + 3cy2) q

[
yq, x2p+ η q

]
=

(
y
∂η

∂y
− η

)
q = (α + β y + γ y2) q.

The first one of these equations shows thatη has the form:ϕ(x) + ay +

by2 + cy3, the second one thatc vanishes and thatϕ(x) is a constant. Thus,
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we obtain the group:

[20] q, yq, y2q, p, xp, x2p .

As a result, all finite imprimitive transformation groups ofthe plane
have been reduced to certain normal forms.

§ 13.

At present, we have produced the determination of all imprimitive
groups of the plane insofar as we can say: every imprimitive group of the
plane is equivalent, through a point transformation of the plane, to one of
the groups found in § 9–12. But the goal that we have set ourselves for
the imprimitive groups on p. 84 has not yet been reached with that. What
matters for us is to possess one and only one representative for every type
of imprimitive group of the plane, and it is easy to see that in§ 9–12,
certain types of groups are represented by more than one representative.

For instance, through the transformation:x1 = y, y1 = x, the group
[14] is transferred to the group [13]; hence both groups represent the same
type. In the same way, through the transformation mentioned, the group
[4] changes to one of the groups [1], the group [8] to one of thegroups [2],
and so on.

Furthermore, it can be shown that the arbitrary elements which appear
in our groups can in part be left out, hence that the number of distinct types
of groups is smaller than what it appears to be, according to the number of
these arbitrary elements.

To begin with, we consider the groups [1] on p. 39 and we look for
finding out what are the different types of groups that are contained among
them.

To this end, we must above all determine all point transformations:
x1 = α(x, y), y1 = β(x, y) through which the totality of all groups [1]
remains invariant, hence through which everyr-term group of the form:

(A) F1(x) q, . . . . . . , Fr(x) q

is transferred to one of the form:

(B) F1(x) q1, . . . . . . , Fr(x) q1.

Now, by introducing the new variablesx1, y1, the group (A) changes to the
following:

(A’) Fk(x)
∂α

∂y
p1 + Fk(x)

∂β

∂y
q1 (k = 1 ··· r),
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where one has to think that the coefficients ofp1 and ofq1 are expressed in
terms ofx1 andy1. But the group (A’) possesses the form (B) if and only
if, firstly αy vanishes identically and secondlyβy is a function ofx alone.
As a result, the most general point transformation which leaves invariant
all the groups [1] writes in the following way:

(C) x1 = ϕ(x), y1 = y χ(x) + ψ(x),

and to be precise, through this transformation, the group (A) receives the
form:

(A”) F1(x)χ(x) q1, . . . . . . , Fr(x)χ(x) q1,

where stillx is expressed in terms ofx1 by means of the equation:x1 =

ϕ(x). From this, one sees that the functionψ(x) in the transformation (C)
has absolutely no influence on the form of the transformed group (A”).
Consequently, we need not to consider all transformations (C), but only
those for whichψ(x) equals zero.

At present, we imagine that two arbitraryr-term groups of the form
[1], say (A) and (B), are presented. For these two groups to belong to the
same type, it is necessary and sufficient that they are equivalent one to the
other through a transformation of the form:

(C’) x1 = ϕ(x), y1 = y χ(x),

hence that the group (A”), in which naturally one has still tothink thatx
is expressed in termsx1, coincides with the group (B) for an appropriate
choice ofϕ(x) andχ(x). This occurs if and only if, by virtue of (C’),r
relations of the form:

Fk(x1) q1 =
r∑

j=1

ckj Fj(x)χ(x) q1 (k = 1 ··· r)

hold identically, where theckj denote constants whose determinant does
not vanish. The question whether the two groups (A) and (B) belong to the
same type therefore amounts to deciding whether ther equations:

(D) Fk(x1) = χ(x)
r∑

j=1

ckj Fj(x) (k = 1 ··· r)

can be identically satisfied, by substituting forx1 andχ certain functions
of x and by choosing the constantsckj in such a way that their determinant
does not vanish; here naturally,x1 must be a true, arbitrary function ofx,
whereasχ can reduce to a nonzero constant.
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The settlement of the question whether the equations (D) canbe sat-
isfied in the indicated way certainly presents no difficulty from the theo-
retical side, but in general rather many from the practical side, especially
because of the occurence of ther2 unknown constantsckj. So it is not su-
perluous to develope yet another method which enables to decide whether
the two groups (A) and (B) belong to the same type, but which leads to
success without introducing the constantsckj.

At first, we observe that the general infinitesimal transformation:
r∑

k=1

ek Fk(x) q = F (x) q

of the group (A) can be defined by an ordinary differential equation ofr-th
order, forF (x) visibly is the most general solution of a linear homoge-
neous differential equation of the form:

(E)
drF

dxr
+ α1(x)

dr−1F

dxr−1
+ · · ·+ αr−1(x)

dF

dx
+ αr(x)F = 0.

In the same way, in the general infinitesimal transformation:
r∑

k=1

ek Fk(x1) q1 = F(x1) q1

of the group (B), the functionF(x1) is the most general solution of a dif-
ferential equation of the form:

(G)
drF

dxr
1

+ a1(x1)
dr−1F

dxr−1
1

+ · · ·+ ar−1(x1)
dF

dx1
+ ar(x1) F = 0.

Now, by execution of the transformation (C’), the general infinitesimal
transformationF (x) q receives the shape:F (x)χ(x) q1 and everything
amounts to whether it is the general infinitesimal transformation of the
group (B), that is to say whether:F (x)χ(x), expressed as a function of
x1, is the general solution of the differential equation (G). Thus, the two
groups (A) and (B) will always belong to the same type, if and only if there
is a transformation of the form:

(H) x1 = ϕ(x), F = F · χ(x),

by virtue of which the differential equation (E) goes to (G)*). As soon
as the two groups (E) and (G) are presented, it is theoretically not diffi-
cult to decide whether there is such a transformation. For, if one executes
the transformation (H) on the differential equation (E) andif one requires
that the resulting equation should have the form (G), then one receives for
ϕ(x) andχ(x) a series of ordinary differential equations, about which one



112 Volume III, Division I, Chapter 3, §§ 8, 9, 10, 11, 12, 13, 14.

always can determine whether they are mutually compatible or not and
whether they can be satistied withoutϕ reducing to a constant.
——————————-
*) The first one who occupied himself with the question to knowunder which conditions

the differential equation (E) can be transferred to (G) by means of a transformation of the

form (H) is LAGUERRE. After him, several mathematicians, notably HALPHEN, treated

the theory of invariants of the linear differential equation (E) vis-à-vis all transforma-

tions (H). This theory has several points of contact [BERÜHRUNGSPUNKTE] with the

general theory of the finite and infinite transformation groups.
——————————-

It follows from what has been said that the search for all different types
of r-term groups of the form [1] is now also reduced to another problem,
namely to the problem of looking for all invariant properties that the linear
differential equation ofr-th order (E) has vis-à-vis all transformations of
the form (H). We do not want to tackle this problem, because this would
lead us going too far, but we want only to observe that for its resolution,
the question whether the differential equation (E) admits an infinitesimal
transformation of the form:δx = ξ(x) δt, δF = F · Ω(x) δt plays an
important role, in which theξ is distinct from zero.

However, we want not to suppress another remark. The most general
r-term group of the form [1] containsr arbitrary parameters, whereas in
the transformation (C’), we in total only have two arbitraryfunctions at
our disposal in order to simplify the form of this group. Hence it is clear
from the beginning that amongst ther arbitrary functions of the group:

(A) F1(x) q, . . . . . . , Fr(x) q,

we can remove two, and only two functions. In fact, when we introduce
1

F1(x)
y as newy, the group (A) is transferred to:

q,
F2(x)

F1(x)
, . . . . . . ,

Fr(x)

F1(x)
q,

and if furthermorer is > 1, we can introduceF2(x)
F1(x)

, which surely is not
just a constant, as newx, and we obtain a group of the form:

q, xq, Φ1(x) q, . . . . . . , Φr−2(x) q (r >2).

We hence can replace the groups [1] by the following ones:

[1’] q, xq, Φ1(x) q, . . . , Φr−2(x) q (r >2) .
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Here, ther − 2 arbitrary functionsΦ are essential in a certain sens, that is
to say, none amongst them can be took away by the introductionof new
variables.

The gained result for the groups [1] can easily be translatedinto the
groups [2] on p. 96, since the totality of these groups remains as well
invariant through all transformations of the form (C’). That is why we
need not to halt at the question of how many different types ofgroups are
contained amongst the groups [2]. It is only to yet be observed that we can
replace the groups [2] by the ones standing below:

[2’] q, yq q, xq, Φ1(x) q, . . . , Φr−2(x) q, yq (r >2) ,

where ther − 2 arbitrary functionsΦ are essential in the sens indicated
above.

Also the form of the groups [6] on p. 101 is yet able of a simplifica-
tion [VEREINFACHUNG FÄHIG]. Namely, one can always arrange that a
constantαk vanishes. Indeed, letting allαk 6= 0, we then can introduce
ye−α1x as newy, and as a result:

eα1x q, xeα1x q, . . . . . . , xm1eα1x q, xνeαkx q

are transferred to:

q, xq, . . . . . . , xνe(αk−α1)x q,

while yq remains unchanged andp takes the form:p − α1yq. As a result,
we can replace the groups [6] by the following ones:

[6’]
q, xq, . . . , xmq, eαkx q, xeαkx q, . . . , xmkeαkx q, yq, p

(k =1, 2 ··· l; l > 0)

.

Finally, it must still be remarked that in the groups [5] on p.100 and like-
wise in the groups [6’], one of the nonzero coefficientsαk can always be
made equal to 1, since if for instanceα1 6= 0, one only needs to introduce
α1x as newx.

§ 14.

In the next chapter we will systematically examine what are the dif-
ferent types of groups belonging to the groups of the §§ 9–13,and we shall
be in position to draw up a table in which for every type of group, one
and only one representative will be contained. For the moment, taking
into consideration the observations made in the § 13, we wantto content
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ourselves with putting together all different types of one-, two-, three- and
four-term groups. Here they are:

I. One-term groups. q .

II. Two-term groups.

a. transitive: p, q p, xp + yq

b. intransitive: q, xq q, yq .

III. Three-term groups.

a. transitive:

exq, eαxq, p

(α 6= 1, 0)
exq, xexq, p q, exq, p q, xq, p

q, p, xp+ cyq q, p, xp+ (x+ y)q

p, 2xp + yq, x2p+ xyq p, xp+ yq, x2p+ (2xy + y2)q

b. intransitive:

q, xq, F (x) q q, xq, yq, q, yq, y2q, .

IV. Four-term groups.

a. transitive:

exq, eαxq, eβxq, p

(α, β 6=0, 1; α 6=β)

exq, xexq, eαxq, p

(α 6= 0, 1)
exq, xexq, x2exq, p

q, exq, eαxq, p

(α 6= 0, 1)
q, exq, xexq, p q, xq, exq, p q, xq, x2q, p

q, exq, yq, p q, xq, yq, p q, yq, y2q, p

q, xq, p, xp + cyq q, xq, p, xp + (2y + x2)q

q, yq, p, xp yq, p, xp, x2p+ xyq

b. intransitive:

q, xq, F1(x)q, F2(x)q q, xq, F (x)q, yq .
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The remaining arbitrary constants and arbitrary functionsstanding in
this table cannot be took away; one can easily convince oneself of that in
each individual case. As a result, every type of one-, two-, three- and four-
term group of the plane is present as only one representativein our table,
in the main whole.
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C h a p t e r 4.

Classification of the Finite Continuous Groups
of Point Transformations of the Plane.

In the preceding chapter, we at first separated the primitivegroups of
the plane from the imprimitive ones. We demonstrated that there are only
three different types of primitive groups and we set up a representative for
each one of these types; however, we did not yet succeed do determine
how many types of imprimitive groups there are, and we only know that
for every type of imprimitive group, we possess at least one representative.
It is because we have not achieved a real classification of theimprimitive
groups, but only a distribution of these groups in categories which are
selected in such a way that one imprimitive group can very well belong
simultaneously to two of our categories.

In fact, we started from the assumption that every imprimitive group of
the plane leaves invariant one family of∞1 curves in any case. Amongst
the families of∞1 curves invariant by the group, we then selected any
family and we reckoned the group among the first, second, third or fourth
category according to whether it transformed the curves of the concerned
family in zero-, one-, two- or three-terms. But now, when an imprimitive
group leaves invariant two distinct families of∞1 curves, it can very well
happen that for instance it transforms the curves of one family in one-
term, and the curves of the second family in two-terms, so that it not only
belongs to the second category, but also to the third.

Consequently, we must look around for a principle of classification
[NACH EINEM EINTHEILUNGSGRUNDE UMSEHEN] which would enable
us to distribute in classes the imprimitive groups in such a way that every
imprimitive group belongs to one, but only one of these classes. Such
a principle of classification offers itself as the number of families of∞1

invariant curves that accompany the group. Thus, we at first seek how
many families of∞1 curves can remain invariant by an imprimitive group
of the plane.

§ 15.

Let:
Xkf = ξk(x, y) p+ ηk(x, y) q (k = 1 ··· r)
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be anr-term imprimitive group and letx0, y0 be a point in general position.
We form the linear homogeneous group defined on p. 88:

Yk = (λkx
′+µky

′) p′ + (νkx
′ + ρky

′) q′

(k =1 ··· r−m)

that indicates in which way the∞1 line-elementsx′ : y′ passing through
the pointx0, y0 are transformed, as soon as one only takes those transfor-
mations of the group:X1f, . . . , Xrf which leave untouched this point.

Since we have assumed the group:X1f, . . . , Xrf as imprimitive, the
linear homogeneous group:Y1f, . . . ,Yr−mf leaves at rest at least one
line-elementx′ : y′ through the pointx0, y0 (cf. p. 87). But according to
the developments on p. 81 sq., different cases are still possible. Indeed, the
group: Y1f, . . . ,Yr−mf can leave untouched either one line-element, or
two separate line-elements, or lastly every line-element through the point
x0, y0; if there is only a single invariant line-element, then it can still spe-
cially happen the case that this line-element counts doubly, hence that it
consists of two collapsing line-elements.

By translating to the group:X1f, . . . , Xrf these different conceivable
cases for the groupY1f, . . . ,Yr−mf , we obtain what follows:

If the group: Y1f, . . . ,Yr−mf fixes only one line-element through
the pointx0, y0, then the group:X1f, . . . , Xrf leaves invariant only one
ordinary first order differential equation:

α(x, y) dy − β(x, y) dx = 0,

and as a result also, only a single family of∞1 curvesϕ(x, y) = const.

If especially this line element counts doubly, then the invariant differential
equation and the invariant family of curves must be considered as doubly
counting; the group:X1f, . . . , Xrf then leaves at rest two coinciding, or
if one want, two infinitely close families of∞1 curves.

When the group:Y1f, . . . ,Yr−mf holds fixed two and only two sepa-
rate line-elements through the point:x0, y0, then the group:X1f, . . . , Xrf

leaves invariant exactly two different ordinary differential equations of first
order and hence also exactly two different families of∞1 curves.

Lastly, if the group:Y1f, . . . ,Yr−mf leaves untouched every indi-
vidual line-element that goes through the pointx0, y0, then two cases have
to be distinguished, according to the group:X1f, . . . , Xrf being transi-
tive or not. In the first case, each one of the∞1 invariant line-elements
takes exactly∞2 positions by the prolonged group:X ′

1f, . . . , X
′
rf (see

p. 86), and the totality of these line elements visibly determines a first or-
der differential equation:α(x, y) dy − β(x, y) dx invariant by the group:
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X1f, . . . , Xrf ; as a result, there are in total∞1 invariant first order differ-
ential equations:

Φ
(
x, y,

dy

dx

)
= const.

invariant by the group:X1f, . . . , Xrf , and in consequence of that, also
exactly∞1 different invariant families of∞1 curves. In the second case
however, each one of the∞1 invariant line-elements takes only∞1 differ-
ent positions by the group:X ′

1f, . . . , X
′
rf , hence the∞3 line-elements of

the plane are arranged in∞2 invariant families that are represented by two
equations of the form:

χ
(
x, y,

y′

x′

)
= const., ψ

(
x, y,

y′

x′

)
= const.;

here, the two functionsχ andψ are certainly not both free ofy
′

x′
, since oth-

erwise the group:X1f, . . . , Xrf would leave untouched every point of the
plane. In this case, there are∞∞ different first order differential equations
invariant by the group:X1f, . . . , Xrf , and hence also∞∞ different in-
variant families of∞1 curves; as one easily sees, the invariant differential
equations in question are represented by an equation of the form:

Ω

(
χ
(
x, y,

dy

dx

)
, ψ

(
x, y,

dy

dx

))
= 0,

where the functionΩ is absolutely arbitrary and only chosen in such a way
that it is not free ofdy

dx
.

With this, all the possible cases are exhausted. As a result,there are
four different classes of imprimitive groups of the plane and of these four,
the first one yet decomposes in two subclasses. These are the following:

I) An individual invariant family of∞1 curves.
a. This family of curves counts once.
b. This family of curves counts twice.

II) Two different invariant families of∞1 curves.

III) ∞1 different invariant families of∞1 curves.

IV) ∞∞ different invariant families of∞1 curves.

However, we do not want now to turn to applying straight this gained
classification of the imprimitive groups of the plane, to thegroups found
in the preceding chapter. Rather, we want to settle, once again and in a
pure analytic way, the question whether there are families of ∞1 curves
which can remain invariant by a group of the plane. We do this,because
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the settlement given above of this question was based on conceptual con-
siderations which perhaps are ?? too shortly expressed ?? for ?? a number
of readers, and also because on the new way, we can really write down the
first order differential equations that these families of curves satisfy, and
this is actually desirable.

§ 16.

We imagine that anr-term group of the plane:

Xkf = ξk(x, y) p+ ηk(x, y) q (k = 1 ··· r)

is presented, and we ask for all families of∞1 curves invariant by this
group, or, what amounts to the same (seep. 85), for all equations of the
form: α(x, y) y′− β(x, y) x′ = 0 which remain invariant by the prolonged
group:

X ′
kf = ξk p+ ηk q + ξ′k p+ η′k q (k = 1 ··· r).

Each one of the sought equations admits, aside from the infinitesimal
transformationsX ′

kf , still obviously also the following:

Uf = x′p′ + y′q′.

Now, as one easily convinces oneself, all the expressions:[X ′
k, U ] vanish

identically, but on the other hand,Uf surely cannot be linearly deduced
from x′1f, . . . , X

′
rf , since otherwise, it should arise by prolongation from

an infinitesimal point transformation:ξ(x, y) p+η(x, y) q, which is visibly
not the case. As a result, ther + 1 infinitesimal transformations:

(1) X ′
1f, . . . , X

′
rf, Uf

are independent of each other and they engender an(r + 1)-term group in
the variablesx, y, x′, y′. But our problem of determining all equations of
the form: α(x, y) y′ − β(x, y) x′ = 0 that remain invariant by the group:
X ′

1f, . . . , X
′
rf can also at this point be expressed as follows: to determine

equations in the variablesx, y, x′, y′ not all free ofx′ and y′ which are
admitted by the group (1). In this new form, our problem can besettled
without difficulty on the basis of the developments of the Chap. 14 in Vol. I
[here: ??].

We start by considering the case that the(r+ 1)-term group (1) in the
variablesx, y, x′, y′ is transitive. According to the rules of the mentioned
chapter, we then have to examine whether all four-by-four determinants of
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the matrix:

(2)

∣∣∣∣∣∣∣∣∣∣

ξ1 η1 ξ′1 η′1
· · · ·
· · · ·
ξr ηr ξ′r η′r
0 0 x′ y′

∣∣∣∣∣∣∣∣∣∣

can vanish, by virtue of an equation betweenx, y, x′, y′ which is not free of
x′ andy′. Now, the four-by-four determinants in question are all complete
homogeneous functions of second degree inx′ andy′, so everything comes
down to determining whether these complete homogeneous functions pos-
sess one common factor which is not free ofx′ andy′. If there does not
exist such a common factor, then the group:X1f, . . . , Xrf leaves invari-
ant absolutely no family of∞1 curves: it is primitive. On the contrary, if
there is such a common factor, then different cases are to be distinguished.
Indeed, it can firstly happen that this common factor is just linear inx′ and
y′, in which case the group:X1f, . . . , Xrf leaves invariant only a single
family of∞1 curves, counting once. But secondly, the common factor can
be of second degree inx′ andy′; then if it is divisible by the square of a
linear homogeneous function ofx′ andy′, the group:X1f, . . . , Xrf leaves
invariant just one, and only one family of∞1 curves, counting twice; if
on the other hand, it is not divisible by such a square, then the group:
X1f, . . . , Xrf leaves invariant two different families of∞1 curves.

In order to illustrate these developments by an example, we want to
apply them to the group [15] on p. 105:

(3) p, 2xp + yq, x2p+ xyq.

For this group, the matrix (2) goes to the determinant:∣∣∣∣∣∣∣∣

1 0 0 0
2x y 2x′ y′

x2 xy 2xx′ xy′ + x′y
0 0 x′ y′

∣∣∣∣∣∣∣∣
= −y2x′

2
,

whence:x′ = 0 is the only invariant equation of the required constitution
andx = const. the only family of curves invariant by the group (3), but
this family of curves does visibly count twice.

We now come to the case where the group (1) in the variables
x, y, x′, y′ is intransitive, so that ther + 1 equations:

(4) X ′
1f = 0, · · · , X ′

rf = 0, Uf = 0

possess at least one joint solution.
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Firstly, assume at the least that the group:X1f, . . . , Xrf in the vari-
ablesx, y is transitive; then the equations:X ′

1f = 0, . . . , X ′
rf = 0 can

be solved with respect top andq, therefore the equations (4) are solvable
with respect to three of the differential quotients and theypossess a joint
solution which necessarily has the form:χ

(
x, y, y′

x′

)
and cannot be free of

y′

x′
. As a result, the∞1 first order differential equations:

χ
(
x, y,

dy

dx

)
= const.

all remain invariant by the group:X1f, . . . , Xrf , and at the same time,
they are the only such equations which remain invariant.

Secondly, assume that the group:X1f, . . . , Xrf in the variablesx, y
itself is intransitive, but that the numberr is larger than 1. Then there are
relations of the form:

Xkf = ρk(x, y) ·X1f (k =2, 3 ··· r),

so it ensues:

X ′
kf = ρk X

′
1f+

(
x′
∂ρk

∂x
+ y′

∂ρk

∂y

)
(ξ1p

′ + η1q
′)

(k = 2, 3 ··· r).

Now, because no expression:

x′
∂ρk

∂x
+ y′

∂ρk

∂y
(k =2 ··· r)

can vanish identically — otherwise the infinitesimal transformations:
X1f, . . . , Xrf would not at all be independent of each other —, then the
r + 1 equations (4) can be replaced by the three equations:

X ′
1f = 0, ξ1p

′ + η1q
′ = 0, x′p′ + y′q′ = 0

that are independent of each other; but since the expression: ξ1y′ − η1x
′ is

not identically zero, these equations are equivalent to theequations:

X1f = 0, p′ = 0, q′ = 0.

In other words: under the assumptions made, the equations (4) have one
and only one joint solution:ϕ(x, y) free ofx′ andy′, which is nothing else
but the invariant of the intransitive group:X1f, . . . , Xrf in x, y. It follows
from this that every equation not free ofx′ andy′ which is admitted by
the group:X ′

1f, . . . , X
′
rf, Uf must be obtained by setting equal to zero all

three-by-three determinants of the matrix (2). If one thinks furthermore
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that under the assumptions made, there are relations of the form:

ξk = ρk · ξ1, ξ′k = ρk ξ
′
1 + ξ1

(
x′
∂ρk

∂x
+ y′

∂ρk

∂y

)

ηk = ρk · η1, η′k = ρk η
′
1 + η1

(
x′
∂ρk

∂x
+ y′

∂ρk

∂y

)

(k = 2 ··· r),

so one realizes that by setting equal to zero all three-by-three determinants
of the matrix (2), the following equations come out:

(ξ1y
′ − η1x

′)
(
x′
∂ρk

∂x
+ y′

∂ρk

∂y

)
= 0 (k = 2, 3 ··· r) ;

here, the nonzero factors which depend only onx andy are already left
out. As a result, one first order differential equation invariant by the group
X1f, . . . , Xrf is:

ξ1 dy − η1 dx = 0 ;

the∞1 integral curves of this differential equation are visibly represented
by the equation:ϕ(x, y) = const., and they all remain invariant. Now,
whether there still is a second invariant differential equation, this depends
on the behaviour of the matrix:

(5)

∣∣∣∣
∂ρ2

∂x
· · ∂ρr

∂x
∂ρ2

∂y
· · ∂ρr

∂y

∣∣∣∣ .

If not all two-by-two determinants of this matrix vanish identically, then:
ξ1 dy − η1 dx = 0 is the only invariant differential equation by the group:
X1f, . . . , Xrf , and to be precise, this differential equation has to be
counted once. If on the contrary, all the said two-by-two determinants
vanish, then two cases can occur. Indeed, either there is, aside from:
ξ1dy − η1dx = 0, yet a second, different first order differential equation,
namely the following one:

∂ρ2

∂x
dx+

∂ρ2

∂y
dy = 0,

or the invariant differential equation:ξ1dy − η1dx = 0 has to be counted
twice.

Lastly, the caser = 1 still has to be dealt with. Then visibly, the
equations (4) have two independent solutions in common, of which as the
first one, we can even choose the invariantϕ(x, y) of the one-term group:
X1f , while the second one cannot be free ofx′ andy′, hence has the form:
χ
(
x, y, y′

x′

)
. Consequently, all the first order differential equations that are

invariant by the one-term group:X1f are represented by an equation of
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the form:

χ
(
x, y,

dy

dx

)
= Ω

(
ϕ(x, y)

)
,

whereΩ denotes an arbitrary function.

With these words, all the results that we have gained in the preceding
paragraph by means of conceptual considerations are derived in an analytic
way, and at the same time, are completed in a not inessential way.

§ 17.

Now, we pass to the determination, for each imprimitive group found
in the preceding chapter, of the families of∞1 curves that are invariant by
it. Here, we could employ the general method developed just now, since
it provides all first order differential equations invariant by a given group
and as a result also, by integration, all invariant familiesof∞1 curves. But
since all the groups that we have to consider are presented here in simple
normal form, we prefer to take another, somehow shorter path.

If the family of curves:ϕ(x, y) = const. admits an infinitesimal trans-
formationXf , then this can occur in essentially two different ways. Either
every individual curve of the family remains invariant, so the expression:
Xϕ vanishes identically, or the curves of the family are exchanged one
another, so that:Xϕ = Ω(ϕ), where the function is not identically zero.
In the second case, by introducing:∫

dϕ

Ω(ϕ)

as newϕ, one can insure thatXϕ has the value 1.
From this, it follows that every family of curves:ϕ(x, y) = const.

which remains invariant by the infinitesimal transformation: q, satisfies ei-
ther the equation:ϕ′(y) = 0 or the equation:ϕ′(y) = 1; consequently,
aside from admitting the family:x = const., the infinitesimal transforma-
tion q also admits every family of the form:y + ω(x) = const., where it
is understood thatω(x) is an arbitrary function ofx. But as a result, all
families of∞1 curves invariant byq are found.

If one family of curves distinct from the family:x = const. shall
admit, apart fromq, also another transformation of the form:F (x)q, then
it must have the form:y + ω(x) = const. and moreover, the expression:

F (x) · ∂
∂y

(
y + ω(x)

)
= F (x)
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must be a function of:y + ω(x) only. But since this cannot be true, it
follows thatx = const. is the only family of∞1 curves which simulta-
neously admits the two infinitesimal transformations:q, F (x)q, and more
generally, the only one which admits two independent infinitesimal trans-
formations of the form:F1(x)q, F2(x)q.

The two infinitesimal transformations:q andyq both leave invariant
the family of curves:x = const. Every other family invariant by them two
must have the form:y + ω(x) = const., and in addition, the expression:

y · ∂
∂y

(
y + ω(x)

)
= y

must be a function ofy+ω(x) alone. Consequently,ω(x) is a constant and
then:x = const. andy = const. are the only families of∞1 curves that
are simultaneously invariant byq andyq. In the same way, aside from:
x = const., there is yet only the family: y

F (x)
= const. which remains

invariant by the two transformations:F (x)q, yq.
If the family: y + ω(x) = const. shall admit the infinitesimal trans-

formationp, thenω′(x) must be a function ofy + ω(x) alone and thus be
a constant. The equation:

ax+ by = const.

with the arbitrary parameter:a : b therefore represents all families of∞1

curves invariant byp andq.
Finally, there still remains a point to be taken care of. All imprimitive

groups of the preceding chapter leave invariant the family of curves:x =

const. Now, if for a given group:X1f, . . . , Xrf , aside from the family:
x = const., there is no other family of invariant curves, then always, the
question whether the family:x = const. counts once or twice remains
open. How does one settle this?

So, let: x = const. be the only family of∞1 curves which remains
invariant by a givenr-term group:X1f, . . . , Xrf ; then all transformations
of this group which leave invariant a pointx0, y0 in general position will
transform the∞1 line elements through this point in such a way that only
the line-elementx′ = 0 remains invariant, but no other one. Now espe-
cially, for the family of curves:x = const. to remain doubly invariant, it
is necessary and sufficient that the line-element:x′ = 0 remains doubly
invariant, but (cf. Chap. 2, p. 83) this happens if and only if the linear
homogeneous group defined on p. 88:

(λkx
′ + µky

′) p′ + (νkx
′ + ρky

′) q′ (k = 1 ··· r−m)
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which is associated to the group:X1f, . . . , Xrf , has one of the two forms:

x′q′ + α(x′p′ + y′q′) ; x′q′, x′p′ + y′q′,

whereα means a finite, arbitrary constant. Consequently, the group:
X1f, . . . , Xrf will leave doubly invariant the family:x = const. if and
only if all its infinitesimal transformations, whose power series expansion,
with respect to the powers ofx − x0 andy − y0, begin with terms of first
order, can be linearly reduced either to the single form:

(x− x0)q + α
{
(x− x0)p+ (y − y0)q

}
+ · · ·

or to one of the two forms:

(x− x0)q + · · · , (x− x0)p+ (y − y0)q + · · · ;
here, the form of the terms of second or higher order which appear in these
infinitesimal transformations is completely disregarded.

After these preliminary remarks, we want to go through, one by one,
all the groups found in the preceding chapter and to determine the families
of∞1 curves invariant by them. On this occasion, we also make use of the
simplifications introduced in the § 13.

At first, for what concerns the group [1’] on p. 112, the one-term
group:

q

leaves invariant∞∞ different families of curves, namely aside from the
family: x = const., yet every family of the form:y + ω(x) = const.; by
contrast, the groups:

q, xq, F1(x) q, . . . , Fr(x) q (r >0)

leave invariant only the single family:x = const., but as one easily sees,
it leaves it doubly invariant.

Amongst the groups [2’] on p. 113, the two-term one:

q, yq

leaves invariant two families, namely:x = const. andy = const.; but the
remainding ones:

q, xq, F1(x) q, . . . , Fr(x) q, yq (r >0)

leave invariant only the family:x = const. and in fact, simply invariant.
For the group [3] on p. 98:

q, yq, y2q
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there occur only the two invariant families of curves:

x = const. and y = const.

The one-term groupp on p. 99 is equivalent to the groupq and hence
needs not be specially taken into consideration.

We come to the groups [5] on p. 100 which have the form:

eαkx q, xeαkx q, . . . , xmkeαkx q, p

(k = 1, 2 ··· l).

If such a group has more than two parameters, then it leave invariant only
the family:x = const., which, however, counts twice. On the other hand,
if it has only two parameters, then things are completely different. Indeed,
the group has the form:eαx q, p, whereα either vanishes or may be set
equal to 1 (cf. p. 113). In the first case, we have the group:

p, q,

with the∞1 invariant families of curves:ax + by = const. In the second
case we have the group:exq, p ; we firstly bring it to the form:q, p−yq by
introducingye−x as newy, and lastly we introducee−x as newx to obtain
the group:

q, xp + yq.

For this new group, we have at first the invariant family of curves: x =

const.; every other invariant family must have the form:y+ω(x) = const.,
and to be be precise, the expression:

x
∂

∂x
(y + ω) + y

∂

∂y
(y + ω) = y + xω′(x)

must be a function of:y + ω(x) alone, so thatω(x) has the form:ω(x) =

ax+ c and hence each one of the family of∞1 curves:ax+ by = const.

remains invariant, also here.
If the group [6’] on p. 113:

q, xq, . . . , xmq, eαkx q, xeαkx q, . . . , xmkeαkx q, yq, p

(k =1, 2 ··· l; l >0)

has more than three parameters, then there is only the singleinvariant fam-
ily: x = const., which besides counts just once; if on the contrary it has
only three parameters, then it possesses the form:

q, yq, p

and it leaves invariant the two families:x = const., y = const.
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The group [7] on p. 101:

q, yq, y2q, p

leaves invariant only the two families:x = const. and:y = const.
The groups:p, xp and:p, xp+ q ([8] on p. 102 and [9] on p. 102) can

be left out consideration, since the first is equivalent to the group:q, yq,
the second to the group:q, xp+ yq.

Whenr is> 0, aside from:x = const., there is no family of curves
which remains invariant by the group [10] on p. 103:

q, xq, . . . , xr q, p, xp + cyq,

and in fact, the family:x = const. is to be counted once whenc is 6= 1,
whereas it is to be counted twice in the case:c = 1. If r = 0, we have the
group:

q, p, xp+ cyq

for which, because of the presence ofp andq, only some invariant families
of the form:ax+ by = const. can appear. Which ones are really invariant
amongst these families, this can be determined from the condition that:

x
∂

∂x
(ax+ by) + cy

∂

∂y
(ax+ by) = ax+ cby

must be a function ofax + by only. One realizes at once that in the case:
c = 1, each one of the∞1 families: ax + by = const. remains invariant,
while in the case:c 6= 1, only the two families:x = const. andy = const.

are invariant.
For the groups [11] on p. 103:

q, xq, . . . , xr−1q, p, xp+ (ry + xr) q (r > 0),

only the family: x = const. remains invariant, and to be precise, doubly
invariant in general, but only once whenr = 1.

The groups [12] on p. 104:

q, xq, . . . , xrq, yq, p, xp

leave invariant, whenr is> 0, only the familyx = const., but whenr = 0,
we then have the group:

q, yq, p, xp,

by which, in addition, yet the family:y = const. remains invariant.
The group [13] on p. 105:

q, yq, y2q, p, xp

gives only the two families:x = const. andy = const..
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The group [14]:p, xp, x2p is equivalent to the group:q, yq, y2q and
hence is removed.

About the group [15] on p. 105:

p, 2xp+ yq, x2p + xyq

we already saw on p. 120 that it leaves invariant only the family: x =

const., but this family counts twice.
For the group [16] on p. 106:

p, xp+ yq, x2p+ (2xy + y2)q,

only the families of curves of the form:ax + by = const. can remain
invariant, since the subgroup:p, xp+ yq leaves invariant all these families
of curves, but also only them (cf. p. 126). Furthermore, the expression:

x2 ∂

∂x
(ax+ by) + (2xy + y2)

∂

∂y
(ax+ by) = ax2 + 2bxy + by2

must be a function ofax + by alone, which can be the case when either
b = 0 or a = b. Consequently, the two families of curves that are invariant
by our group are:x = const. and: x + y = const. By still introducing
x+ y as newy, we obtain from our group the following:

p+ q, xp + yq, x2p+ y2q,

with the two invariant families of curves:x = const. andy = const.
The group [17] on p. 107:

q, xq, . . . , xrq, 2xp+ ryq, x2p+ rxyq

gives, whenr > 0, only the family:x = const., and to be precise, doubly
counting in the caser = 2, but only once otherwise. If on the other hand
r = 0, then the group is equivalent to the group:q, yq, y2q, p and hence is
left out.

To the group [18] on p. 107:

yq, p, xp, x2p+ xyq

there belongs only the single invariant family:x = const., because by
virtue of the presence ofp and xp, there could yet come into question
the family: y = const., which, however, does not admit the infinitesimal
transformation:x2p+xyq. The single invariant family:x = const. counts
once.

The group [19] on p. 108:

q, xq, . . . , xrq, yq, p, xp, x2p + rxyq
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gives, whenr > 0, only the invariant family:x = const., which counts
ounce. Ifr = 0, we have the group:q, yq, p, xp, x2p which is equiv-
alent to the group:q, yq, y2q, p, xp and hence has not to be taken into
consideration.

Finally, to the group [20] on p. 109:

q, yq, y2q, p, xp, x2p

belong the two invariant families:x = const. andy = const.

§ 18.

At present, we can at last turn to the drawing up of the table for the
individual groups of the plane. For the imprimitive groups we naturally
apply the classification stated in § 15. Thus we obtain the

Theorem 6.Every finite continuous group of point transformations of
the planex, y is equivalent, through a point transformation, to one and in
general, to only one of the groups listed below:

A) Primitive groups:

p, q, xq, xp− yq, yp, xp+ yq, x2p + xyq, xyp+ y2q

p, q, xq, xp− yq, yp, xp + yq

p, q, xq, xp− yq, yp

B) Imprimitive groups:

I) Groups with a single invariant family of∞1 curves.

a) The invariant family counts only once.

q, xq, p, 2xp+ yq, x2p + xyq

q, xq, . . . , xrq, p, 2xp+ ryq, x2p + rxyq

(r > 2)

q, xq, . . . , xrq, yq, p, xp, x2p + rxyq

(r > 0)

yq, p, xp, x2p+ xyq
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q, xq, . . . , xrq, yq, p, xp

(r > 0)

q, xq, . . . , xrq, p, xp+ cyq

(r > 0 ; c 6= 1)

q, xq, . . . , xr−1q, p, xp+ (ry + xr)q

(r > 1)

q, xq, . . . , xmq, eαkxq, xeαkxq, . . . , xmkeαkxq, yq, p

(k = 1, 2 ··· l ; l >0 ; l + m + m1 + ···+ml > 0 ; α1 =1)

q, xq, F1(x) q, . . . , Fr(x) q, yq

(r >0)

b) The invariant family counts twice.

q, xq, x2q, p, xp + yq, x2p+ 2xyq

p, 2xp+ yq, x2p + xyq

q, xq, . . . , xrq, p, xp+ yq

(r > 0)

q, p, xp + (x+ y)q

eαkxq, xeαkxq, . . . , xmkeαkxq, p

(α1 (α1 − 1)= 0 ; k = 1, 2 ··· l ; l > 0 ; l + m1 + ···+ml > 1)

q, xq, F1(x) q, . . . , Fr(x) q

(r >0)
.

II) Groups with two invariant families of∞1 curves.
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q, yq, y2q, p, xp, x2p p+ q, xp + yq, x2p+ y2q

q, yq, y2q, p, xp q, yq, y2q, p q, yq, y2q

q, yq, p, xp q, p, xp + cyq (c 6= 0, 1)

q, yq, p q, yq

III) Groups with∞1 invariant families of∞1 curves.

p, q, xp + yq q, xp+ yq p, q

IV) Groups with∞∞ invariant families of∞1 curves.

q .

In this table, the groups which leave invariant only one family of
curves are ordered in such a way that the groups which transform in three
terms the invariant family of curves do stand first, then the ones which
transform this family in two terms do follow, and so on. The ordering of
the groups which leave invariant two families of curves is similar.

Of the arbitrary parameters which appear in our table, none can be
took away, for one easily convinces oneself that in each individual case,
already the composition of the concerned group contains this parameter
and that it cannot be removed from the composition. In the same way,
none of the occuring arbitrary function can be eliminated. As a result,
every type of group of the plane takes place in our table only through one
representative in the main whole.

§ 19.
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Theorie der Transformationsgruppen

Abschnitt I
Abschnitt III, Abtheilung I

Sophus LIE
Unter Mitwirkung von Friedrich ENGEL

Translation, writing and LATEX principles

Joël MERKER

Decomposition in parts:

I. Local Lie Transformation Groups (Abschnitt I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I.
II.Abschnitt III, Abtheilung I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II.
III. Amaldi’s imprimitive Lie Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III.

GENERAL STRUCTURE OF THE TEXT

Translated parts:

• \engellie and \stopengellie are declared in the preamble. When
calling these commands, one should always put a blank line before, and also
a blank line after.

• \fboxrule appears twice in the preamble: general:\fboxrule=0.47pt, and
in factor for all Engel-Lie boxes:\fboxrule=1pt. In fact, one may adjust
frame widths in the macroengellie declared inpreamble.tex.

• Some useful commands are copied from the regularly updated file sam-
ples.tex.

• Footnotes are located inside the Engel-Lie boxes just after they are called:
\starnote{Lie, Christiania 1874}

• In order to adjust the height of the framed gained groups in the theorems:
\rule[-3pt]{0pt}{11pt}.

• Headings in engellie:
\HEAD{The Complete Systems.}{
Volume I,\,\,\,Chapter 5,\,\,\,§§\,\,\,22,\,\,23,\,\,24.}

• However, in the environmentengellie, only one call (unfortunately) of
\HEAD{ } is taken account of. One should therefore gather all the con-
cerned paragraphs in one head in factor.
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• Trick: one might update the headings as soon as a commentary cuts the
environment engellie.

• The declaration of a heading always just precedes the declaration of a
section.

• Sections in translated text (environment engellie):

\sectionengellie{\S\,\,\,123.}
\label{S-123}

\nopagebreak
Thus, we consider local transformation equations. . .

•Microcomments:they appear in the translated text:
\microcomment{{\em i.e.} the two values +c and −c }
“Here, one has to become aware of the fact that two equally opposed

values ofc [i.e. the two values +c and −c] always produce two infinitesimal
transformations . . . ”.

“(Vol. I, Theor. 37, p. 197 [here: see p. 153])”.

Modernized text:

• \modernized and\stopmodernized.
Here is an excerpt of the modernized text. . .

• Headings in modernized text:
\HEAD{First Order Scalar Partial Differential Equation}{
E.\,\,\,\,\,Complete Systems of Partial Differential Equations}

• Capital letters: always present in the headings and in the titles.

• Sections in modernized text:

\sectionmodernized{Essential parameters}
\label{A-1}

\nopagebreak

• Two lines section in modernized text:

\bigsectionmodernized{Group Composition Axiom}{
And Fundamental Differential Equations}
\label{D-2}

\nopagebreak

• Subsections in modernized text:

\subsectionmodernized{Concept of local Lie group}

• Use sometimes similar (sub)sections with a shorter preliminary spacing.
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• Never any subsection just after a section.

• Almostno numbering.

• Always build a short abstract after the chapter title.

Comments inserted:Usually, comment should appear just after the end of
an engellie paragraph. Sometimes the comment is anticipated, just before
the very next concerned paragraph. LATEXmacro declared in the preamble:

\COMMENT{Translation note}{Two continuous transformation groups
which transform . . .
\stopCOMMENT}

• Never jump line before closing a comment to insure good position of “⊳”.

⊲ Translation note. Two continuous transformation groups which trans-
form one into the other by an invertible change of coordinates, . . . . ⊳

⊲ Explanation. ⊳

⊲ Concept of local Lie group. ⊳

⊲ Notion of isomorphy. ⊳

Terminology:
\terminology{independent infinitesimal transformations}

German words:
\deutsch{Zusammensetzung}.

Mathematicians’s names:
\names{Kowalewsky}.

Footnotes:

• Restart at each Chapter:
\footnotetext{\baselineskip=0.37cm.}

\setcounter{footnote}{0}

• Footnotes of engellie: “*)”, “**)”.

Labels and references internal to the whole text:

• \label, \pageref, \ref: Arguments should precisely be those of the Ger-
man text, for instance: SATZ-1 ; 408 ; 123.

• labels always try to include a minus sign “-”.

• labels never use any capital letter, except for chapter names.

Bibliography: Incoherence with\thechapter; duplication of “Bibliogra-
phy”. In 12pt: -2.823cm; 11pt: -2.36cm.

Index: Learn how to create.
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Provisory tracks:

• Problem of mathematical understanding:
“ ?? Mathematics??”

• Problem of translation:
“ ?? DASELBST ?? ”.

WORKED OUT TEXTS

Complete list of LATEX files:

• preamble.tex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . begin document

• engel-lie.tex . . . . . . . . . . . . . . . . . . . frontmatter and total document

• I-prologue.tex . . . . . . . . . . . . . . . . . . . . . . . . . . . . Prologue for Part II

• A.tex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . essentiality of parameters

• B.tex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . transformation groups

• C.tex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . one-term groups

• D.tex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . complete systems

• E.tex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . complete systems

• F.tex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . complete systems

• H.tex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . invariant families

• L.tex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the adjoint group

• M.tex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . projective group

• N.tex . . . . . . . . . . . . . . . . rigidity ofSLn(C), GLn(C) andPGLn(C).

• II-prologue.tex . . . . . . . . . . . . . . . . . . . . . . . . . . . Prologue for Part II

• III-1.tex . . . . . . . . . . . . . . . . . . . . . . . translation of Chapter 1, Vol III

• III-2.tex . . . . . . . . . . . . . . . . . . . . . . . translation of Chapter 2, Vol III

• III-3.tex . . . . . . . . . . . . . . . . . . . . . . . translation of Chapter 3, Vol III

• III-4.tex . . . . . . . . . . . . . . . . . . . . . . . translation of Chapter 4, Vol III

• principles.tex . . . . . . . . . . . . . . . . . . . . . . . . . . . . principles of writing

• references.tex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . references

• glossary.tex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . memory-glossary

• idioms.tex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . idioms

• index.tex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . project of Index

• boites-exemples.sty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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COMPILATIONS

Doubling the files: 1.tex is the worked out file, while1-compilation.tex is
the compiled file, giving rise to the viewable file1-compilation.dvi.

List of figures: Possibly to be done.

2000 Mathematics Subject Classification:

� Primary: 22E05.
� Secondary: 17B05, 22E10, 22E60, 34A30, 35A30, 58J90.

Title: is it suitable ?

CONVENTIONS: TYPOGRAPHY, TRANSLATION, ETC

• Attention: where to introduce majuscule conventions?

• Majuscule:ISOMORPH MIT = Isomorph with.

• Majuscule: ISOMORPHISMUS= Isomorphism.

• Majuscule: COMBINATION = Combination.

• Majuscule: RELATION = Relation.

• zeroth.
—————

• line-element.

• n-FACH: n-times,n-fold.

• Chap. 1, Theor. 28, Prop. 1.

• *) .
• BEREICH⇒ region (of a space).
• GEBIETE⇒ domain (real or complex).
• ≷.

• Statement of a theorem.

• all theα, all themν and themνπ, without ’s.

• Theorem I.30.

• Finite continuous group.

• Punktcoordinaten= point-coordinates.

• GERADE = straight line.

• L INIE = line.

• dx :dy.

• Label: Proposition-10-p-18.
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• Projective spaces:CPn, RPn, KPn.

• Expand but never develope in power series.

• Point in general position.

• due in the main whole to JACOBI and CLEBSCH.

• neighbourhood, behaviour:correct final text.
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