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Characteristics AtE Method for the unsteady 3n
Navier-Stokes Equations with a Free Surface
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Iabofatoife d'Analyse N unifique, tl nh)efsitl Piene et Mafie cufie, 7 5252 pafis cedex 05 , Ftvrce

( Recetued. 5 December 1994; in fnal fotm 25 Aptil lgg, )

Because of its great adaptability. the Arbitrary Lagrangian Eulerian (ALE) method is ofrer"
used to solve the Navier-Stokes equations v/itb;.fr; surface. rn,i ti".,i*tl" 

"""aiii"trelating the normal velocity to the mesh yelocity suggests a simple way to move the
domain,but it leads to uostable schemes in manycases. A method to takeiato account the
tronJinearity of the free- surface.is presented in this paper and integ."t"a hi" 

"-eirii"Method with Galerkin characteristiis. A variational form ofthe ruri"6 t"nrior ir orJ to
overcome the dimculty of estimating the main cuNature of the surface crid. A stabifit;
estimate is the! established otr thegl;bal scheme, under regularity"o"aitlil, oo G g11al

Kelwordsi Domain velocity, flee surfac€ corvectioa, surf4cc tension, ALE, Nayier-Stokes.

1. INTRODUCTION The goal of the method is to compute flows which

ALE merhods have been used bv manv authors. ffi:i;:ffiffit,:J.i,::"i,:T::"',",il::-""-l
-A generalarescntation-of the-approach-is3iven-in trowsrrnd; (wifh other pfiFiael-ropefrieoJtminat- -

' 
Donea2. See also Hughes6, where free oscillations of ing processes. Because of the CFL condition (which
a fluid in a container and wave propagation are is very restrictive in such cases, see for example
solved numerically with good accuracy and stabil- Nicholse), most explicit approaches are not applF
ity. Both authors use upwinding techniques for the cable. These flows are often computed by a fixed
convection term ofthe momentum equations. Our point algorithm on the surface, based on the
purposehereis to treat the non-linearities by a char- kinematic condition. Such algorithms have been
acteristics method. Characteristics will be used three successfully applied to many- physicat situations' times: firstly, to define ALE quantities and establish (see Zienkiewiczl2, Fleurya, scrivent, Di pietro.,
the first order ALE formulation of the Navier- d'Halewyns). A non-stationary approach is pro-
Stokes equations (4D-characteristics), secondly, to posed in this paper. Because ofihe great stability of
move the free surface (2D-characteristics), and final- the characteristics method, the alg-orithm which is
ly, to take into account the convection term in the presented here tolerates large timl steps, and the
momentum equation (3D'characteristics). stationary state, when it exists, is reached ouicklv.
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Furthermore, the method enables us to study the

non-stationary effects due to perturbations on the

boundary conditions or changes in the physical

properties, arising in practical stability studies in

industrial processes.

2. ALE FORMULATION

For illustrative purposes, the kinematic approach is

applied to a particular configuration. Nevertheless,

the method is suitable for a large class of problems.

All surfaces and functions are supposed to be suffi-

ciently regular.

2.1. Notations

In this part, the subscripts indicate the domain in

which a quantity is defined, but not the physical

time. For example, u"(x, r) is a vector field in O', but

represents the velocity at time r. The correspon-

dence between the different domains C)' and O' is

given by the mapping C(',r:r), which is introduced

in Section 2.3. u(x',r) is the velocity in the usual

sense (x'e Ot), ur(x, r) denotes u(x', r) with

x '  :  C(x, r ; t ) .

2.2. Problem I

Let us consider the 3D flow illustrated by Figure 1.

Q'is delimited by

0{2 ' :  f -  u f tu f t * ,  (1 )

where f- is the inlet (prescribed velocity), f'the free

surface (prescribed normal stress, no shear stress),

and f'* the free outlet (moving portion of the fluid

intersecting a fixed horizontal plane II). The prob-

lem is to find Ot, u(x, r), and p(x,t\ for xe C)t, re[0, T],

such that

* * u ' V u - v A u *  Y p : g
0t
V ' u  : 0

FIGURE 1 GeometrY.

in the moving domain Q', with boundary conditions

on f -

*  *r)  on f '

on ft*,

(3)

where rcr and K2 are the principal curvatures of ft,

o is the surface tension coefficient (between the fluid

and the external gas), F is a prescribed traction, and

p" is the external pressure (p":0 in the following)'

(Vu + 'Vu) is the fr) tensor:

wi th u :  (Uyuz,ut) .

2.3. Domain Velocity and ALE Variables

In this section, space-time characteristics curves are

used to introduce the ALE variables and the new

formulation. The approach is the following: for all

re[0,7], R(',r) is an arbitrary normalized vector

field on f', such that R'n > 0 on f' and, in the

I  U : l l _
I

{vNu * 'Vu)  -  pn :  -  P" t -  o (Kt
| .Yl
I r'(Vu + 'VuJ"r pn : Fn

(4)

(2)

n
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chosen configuration, R(x, r) lies in II (plane con-
taining f'*)for all xel-t* nfr. R is the "direction" of
the boundary motion. The domain velocity c,(x) at
time r is then defined by

which is equivalent to

u,(C(x,  t ; r ) , t ) :  u(X, r)  (xeQ') .  (8)

The partial derivative with respect to the time of (8)

at  t :  z gives
c,(x) : (H)-, vxe r', (5)

and inside the domain by (for example)

Au Au,  dc l
; ; : - ; *  -  |  Vu ,
ot 0t ot lt="

du,
: ^- - C,VU,.

d t

Introducing the variables u, and p,, the Navier-

Stokes equations at t :  r  become:

d^: kc^: u (ff)*,

a c , ( ' ) : 9 ,

with boundary conditions:

on f': Dirichlet condition (5),

on f-: Dirichlet condition c, :0,

on f '*: Dirichlet condition c1,:0 on the vertical
component, Neumann conditions on the
tangential components ()cll)n: 0, 7 : x, !).

The 4D field (c,(x,t),1) can be integrated in the
physical space-time domain S corresponding to the
time interval [0, T]. By (5), one can show that this
field is tangential to the "lateral" boundary of
S (boundary of S except fo x {0} and I-r x {T}). It
leads to mappings between the different Q':

C( , t , ; t r ) : {2" - '  C)"

xr€C)" t--+x2: C(Xr, tytz),

where (C(xr, t it),t) is the characteristics curver
from (xr, rr) to (xr, rr) in S:

For each r, the ALE velocity is then defined by

u,(x,  f )  :  u(C(x,  r ; t ) , t )  (xe Q' ,  C(x,r ; r )eQt) ,  (7)

t C(xr, f r; f) corresponds to the motion of a grid vertex which
is at  point  x,  at  t ime / r .

A first order form of the ALE Navier-Stokes equa-
tions, with r in the neighborhood of r, will be used to
justify the discretization (see Section 3.2).

Remarks In the Eulerian case (u'n :0 and domain
is fixed), the curve tr-C(x,z;r) would be a straight
line parallel to the time axis.

As a general rule, the curve C(x,'c;r) is not the
pathline of any particle.

2.4. Convection of the Free Surface

2.4.1. Introduction

Let us consider the time-discretized problem.

k: t^+ L - tm denotes the time step, f '  and u' the
free boundary and the velocity at time step /', R'is
the field R at time t'. Formula (5) suggests a natural
way to move the boundary:f^ and u'being known,
the displacement d'on f 'could be defined by

(au,
lE * (u, * c,)'Vu, - vAu, * Yp": g

lv .o, :o.  
(9)

( s

l frfcW, t i t),rl 
: [c, (c), 1]

l _ .  \  ( 6 )
(C(*r ,  t r t t ) :  (xr ,  / r ) .

(10)

This simple method is consistent from a kinematic
point of view, but it leads to a scheme which is
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unstable in many applications, when the velocity is

essentially tangential to the free surface. Its unrelia-

bility is illustrated by the following simple example:

consider the pure horizontal convection of a flat

rigid body which has been locally deformed. By

application of (10), the shape of the deformation will

change at each iteration but its location will not

move in the horizontal direction (an initially flat

zone remains flat, by construction). Our purpose in

this section is to establish a local motion equation

which takes into account this convection. The

approach is first applied to the fully continuous

problem.

2.4.2. Equation of the Motion

In some particular cases, it is suitable to use a "non

parametric" representation of the free surface, i.e.:

the surface is considered as a function of two vari-

ables. For example, in the case of water waves, the

upper surface is usually represented by

z  :  Q(x ,y , t ) , ( 1 1 )

where z is the vertical coordinate of a surface point.

The equation of the motion is then deduced from

(1 1).
As a general rule, it is not possible to represent the

whole surface by an equation of the type (11). Never-

theless, a regular surface can always be locally de-

scribed in this way. Our purpose is to introduce

a non-parametric representation of the surface in

the neighborhood of each of its point, in order to

establish a local equation of the motion.

For re [0, T], let us consider an arbitrary point

xo€l'. A local coordinate system with origin x, is

introduced:

Ro denotes R(xo, r),

S, and S, are such that (Ro,Sr,Sr) is orthonormal,

(xr,x2,xr) are the coordinates of a point in the

system (xo;Ro, S,, Sr) (referential with origin x, and

basis vectors R,, Sr and Sr).

As Ro'n(x,) > 0, the free surface can be locally

represented, in the referential (x,;Ro, Sr, Sr), by the

equation

Particles on the free surface at time r remain on

it, so: (Xr,Xr,XrXr) being the trajectory of such a

particle,

3t*r", o), x r(t),t) -Xr(r)) : o. (13)
D t '

Let (U r,U r,V) be the velocity in the referential

(S1, Sz, R"). The 2D-vector (U t,U t) is denoted by U.

((J y,(J z,Z), velocity of a particle on the free surface,

can be written as a function of Xy x2 and r. Equa-

tion (13) can then be written as

a@.
n$rxz , t )  

*  U(x r ,  xz , t ) 'VO(xr ,  xz , t )

:  V(xpxz , t ) .

This equation expresses simply the motion of the

surface as a convection of the displacement accord-

ing to R, convected by the "horizontal" velocity,

with a source term equal to the "vertical" velocity.

3. DISCRETIZATION IN TIME

3.1. Notations

In what follows, superscripts refer to the physical

time, and subscripts to the domain in which the

function is defined. For example, ,X*' designs the

approximated velocity at time /'* 1, but is defined in

Q'. If the domain corresponds to the real time, the

subscript is omitted:u'is the velocity at time step f'

and is defined in Q'(usual notation).

3.2. Navier-Stokes Equations

3.2.1. Discretization

0 : / o < 1 1  < . - ' < # : T : m r k  a r e  t h e  d i s c r e t i z -

ation time steps (k: sm+r - r '). The discretization

of the Eq. (9) is based on the method of characteristi-

cs (for further details about the method, see Piron-

neaul t). C)', u^, p^ and c' are supposed to be known

at a time step r'. The approximation of u,-(x, ,^* t),

ALE velocity at time sm+ L - f + k, is denoted by

u#*t (in the same way, pf,+ I is the approximated

pressure). ufr*t and pi+ t are calculated in the

(14)

x r :  O ( x r , x r , t ) . (r2)
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[ "n .1 
-  u 'oX

tV.u#* t  -  0,

u^ o X^ denoting

following way (the global scheme, involving the
Navier-Stokes equations and movement of the free
surface is presented in Section 4.3):

^ -kv \u i * t  +kVp | * ,  - kg  
(15 )

and, by construction of X^,

u,-(x, t^* L) - ur^(X^,t^)

: u,-(x, f * r) - ur-(x - (u,_ - cr^)k, t^) + O(k )

: u,- (x, f * r) - u,- (x, t^) + (u,_ - c,_) .Vur-

+ o(k2)

:  k*(x, t^*1;  + k1u,-  -  c,-) .vu,-  *  o(k ) ,

so that, f inally, e^(x): O(k).

3.3. Free Surface Convection

3,3.1. Discretization

The discretizationin time of ea)at a time step f. is
done in the same way: U : (U t,U r) and V aretaken
constant in the time interval lt^,t^+l] (explicit
scheme), and the obtained equation

a@
"  

n  Vuxz , t )  *  U(x r ,  xz , t ^ ) .V@(xr ,  xz , t )

u^(X^(x,r')), with

X^(x,r) is the representation in the domain O'of
a pathline. More precisely, lC(X^(x,t),t^;r), r] is
the pathline in the physical space-time domain of
the particle which is at point x at time t^+ r.
X^(x,r') is then the position of this particle at
time r'.

3.2.2. Consistency Error

u, and p, being the exact velocity and pressure at
time c, the consistency error at time r. is defined bv

L

e^&\ _lu,^(x, t^+ L) - u,^(X^, t^)
I K

where the X^ are the
O'- by the field

(u,-(.  , t^) _ c,_(.)).

Let us now verify the first order consistency. The
continuous eq. (9), written at t: z, is satisfied at the
first orderin lz - /1, so, for t^+ 1 in the neighborhood
of t^.

{+(l 
r): u^(x^) - c^(x^)

(x'(*,  / '*  t)  :  r .

- (u,-(x, r* r) - c,-(x)).Vu,-(x, t,,* t)l + O(k),
I

(16)

- v\ur^(x,t^ * t )+  Vp,^ (x , t ^ * \ -g l ,
I

characteristics convected in

-  V(xpxz,t- )  
07)

is solved by a method of 2D characteristics. Let us
denote by P(x,) the plane

P(x,) :  {xo *  xrS, *  xrSr,(xr ,xr)eR2}.  (1g)

The boundary displacement defined at time r. in the
neighborhood ofx,e f in the plane p(x,) is denoted
by O-(x,; x1, x22r), with (xr, xr)eR2. The local coor_
dinates of xo in the plane p(x,) are (0,0). The dis_
placement at point xo then is

kc^(x):  O,(xo;  0,0, t^* t )R.(x,) .  (19)

It is obtained by

@,(x, ;  0,0, t^+ t ) :  O,(* , ;  (Jt^) , (z! \ , t^)

+ f '  vGt(t) , (2f t ) , t^)dt ,  (20)
J t ^
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where ((r(t) ,  ( t( t))eR2 is the 2D-characterist ic of its particles and by convection. The present

method takes into account the second factor.

3.3.3. Choice of the FieldR

In many cases, the choice of R'is directly suggested

by the physical flow itself. As far as possible, it is

chosen constant in time and "nearly normal". The

simplest way is to defined R' as the trace on f' of

a constant 3D vector field. In the classical problem

of water waves, for example, it is natural to choose

a field R': R' along the vertical direction. For

a waterjet, even if the flow is not strictly axisymmet-

ric, R will be radial according to the main axis.

Nevertheless, for more complex geometries, the nor-

mal field can be chosen (see Maury8).

4. DISCRETIZATION IN SPACE

The problem corresponding to Figure 1 can be dis-

cretized in space, as illustrated in part 6. Neverthe-

less, we shall restrict our study to a less general

case in this section, in order to establish in part 5

a stability property: the domain must be globally

Lagrangian (no fluid getting in nor out of the space-

time domain).

Problem 2: water in a container

The configuration is illustrated by Figure 2. The

bottom wall and the immersed part of the lateral

walls are denoted respectively by f, and f), the

upper surface (free surface) is f". The external forces

are limited to gravity, f, and fi are considered as

sliding walls, and the free surface is submitted to

FIGURE 2 Problem 2.

B. MAURY

f '* t, approximation of ft-*', is then given by

P n + 1 : { x * k c ' ( x )

:  x *  (D,(x;0,0,  f '+ t )R'(*) ,  xef ' ) .  (22)

3.3.2. ConsistencY Error

The characteristics method is a classical way to solve

convection equations. The first order consistency

lies in the fact that, if

(Cr,  ( r ) ( t^)  :  (0,0) -  kU(0 ,0, t^)  + O(k2),  Q3)

then

: (D,'(x;0,0, r') + kU(0,0' t')'Vo + o(k')' (24)

From a kinematic point of view' the consistency
may be established by verifying that the field c' is

such that Eq.(5) holds at the first order:

ld(('- ' 
( ')(d : u(( r(t), . 're), t^)

\ 
ot (2r)

lG r, (r)(t^ * t)  :  (0, o).

"^:(! i '")*.* o(k).- 
\R' '  n/

(2s)

Finally, in a more general approach, it can be shown

that the Hausdorff distance between the exact and

the approximated surfaces is O(k2) (see Maury8 for

the 2D problem).

Remark The displacement field could be simply

defined by Eq. (10). The characteristics method

does not improve the order of the approximation,

but as it has been shown in a similar context (in the

2D case, Maury8), the approximation which is made

is more precise and stable. The motion of the free

surface is in fact accelerated by the real acceleration

r \
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external pressure and surface tension. In this case,
the field R is chosen uniform and constant in time.
equal to the vertical unit vector.

4.1. Navier-stokes Equations

4.1 J. Variutionsl Formulation

Q'and c'being known, the discretization in time of
the new problem leads to equations of the type

(26)

with the boundary conditions

on f iuf,
* rcr)n on f'.

(27)

ais llk and f is the sum of the gravity and the inertia
term uoX estimated at the previous time step. Let us
introduce the following spaces:

V^ : {u elf l (e,'), u.n : 0 on fu vff},

Q^: L,(Q^). (29)

The variational formulation of (26) -(27)(see piron-
neaulo) is: find (u,p)e V^ x e. such that

o 
[,^

q V . a : 0 ,  V q e Q .

f  'w ,YweV

(2e)

4.1.2. Discretization in Space

Let T^ be a triangulation of e-. e, is a vertex of T^,
7o is a tetrahedron of T^. Ai denotes the classical
Pl basis function associated to point e, (in each

l uilte,+ I e!,Foe*
e i ,y  Tu , l

and

Qi :

A sense has first to be given to the integral involv-
ing surface tension forces.

Notations 0T^ denotes the surface trianguration. e,
and e, are connected vertices of 0T^ (which will be
denoted by t, N e j or i - j), the length of ^S,, : ere, is
denoted by / ,r t/,, and ti, arcthe left and righi tangent
vectors along the edge S,, (see Figure 3).(iand t,u are
orthogonal to S,, and lie in the left ana right tri_
angles containing S;r, respectively.

PnoposnloN 4.1 For aII testfunctions w, piecewise
PL on AT^, the integral

is defined and its ualue is

tetrahedron containing e,, it is the barycentric co-
ordinate associated with e,, tri :0 everywhere else).
pk, caTled bubble function (see pironneauto, p. 105j,
is the normalized product of the barycentiic co_
ordinates according to the 4 vertices of the tetra-
hedron To \to:0 outside the interior of ?). We
introduce the following spaces:

Remark This proposition may be expressed as
follows: the field (rc, * rcr)n is in the dual of pl @T^)
(but not in P1@T^)), and its expression is

(rc, * rcr)n:LC,.6",,  (34)

v{  : {ue r ' lu  :

I ou -vAu*Vp : f
I  v ' u : 0 ,

f  " 'n :o
fv f fu  * 'Vu)Sp n:  -  p"-  o( rc t

t r
u'w -| 

i , Jn^F, 
*'Vu):(Vw * rVw)

f r
* 

J"- PY'w * o 
Jlr^(rc, 

* rcr)n'w: 
l-

T:X,yor r I

F,n^,r:Er'^'I

I

| (rc, * rcr)n'w e2)
J  D T M

-:l("F",/,i$|i* 'ir) w(eJ. (33)

(30)

(3 1)

I,^
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O being Lipschitz, frDlAs, is L-, so that

o(st ) .

|  , , . ,  * rcr)n'o
J  AT^

: - l, 1,o,, r #,* l, 1,,,,,
:  -t ' '  

J,, 
t,r,, - t l  'J 

, 
otr, l

, a(D
t ' . -

osz

ei

FIGURE 3 Detail of the surface grid.

where C, is the "curvature vector" at point erand 6".

is the Dirac mass at point er Ci is given by

Let us now consider wePl @T^). w can be expressed

as a sum of functions O;; associated to edges

S,, (equal to w on S,r), and Lipschitz function Yt

vanishing on the boundaries of the triangles. The

complete integral over the boundary can then be

written (as w is Lipschitz, the contribution of the

vertices is equal to 0):

(rc, * rcr)n'Y,

:  -(t ,  *g. l
J S r

(37)

(3e)

(3 5)

Proof V is the zone illustrated by Figure 4.
(tr,tr)is almost everywhere an orthonormal tangen-

tial referential of V,withtz: - t' inV',tz: tt inVl.
Let O be a Lipschitz function with support included
in V.It is possible in this case to estimate explicitly

FIGURE 4 Definition of V.

1- - : I tr + t/).(w(e,) + w(e))/ ii
' i -  j

1- -:I*(r,) - L /,i(t ' + 0. (38)
L i  i - j

Let us denote by A(w) this last expression. The

discretized variational formulation of (26)-(27) is:
find (fr, p)evf x Qf such that

1
C,: - i  I  / , i$ l , i+q j ) .

-  
€ j - e i

l'w'* rc')n o 
: l, l,:,,: ff:k)' (36)
l,(1,,", ,','E* to "l)'

I ur^r* ,* rcr) n' w - - 
,I, ,t 

+ t')'f 
,, 
t,,

+rf
Te|Tm J T

r
: - t ( t ,+ t / \ .  1  w' I

i - j  J S i l

r r
o 

)n^u.fr 
+ 1u 

Jn_ 
Ffr +'vfr):(Vfr +'vfr)

r l
* 

Jn_iv'w 
+ oA(fr):  

Jn_t '*,  
Yfievf

I

Jn_ 
4o.o: o, vTeQT.



4.2. Free Surface

The computation of <D from (17) is done by a local
projection of the grid (in the neighborhood of
a boundary vertex e), onto the plane p(e) containing
e and normal to R. Equation (17) is then solved by
a classical 2D method of characteristics. The tech-
nique is illustrated by Figure 5. For the sake of
clarity, the plane P(e) has been translated along
R(e). ((, (t^), (r(t^)) is denoted by ((t-) in the figure.
The two-headed arrow represents the first term of
equation (20):

Q ̂ (e,; C r(t^), ( r(t^), t^).

is obtained
broken line

4.3. Global Scheme

fro, rto defined in Oo, are given. R is equal to the
vertical unit vector.

Iterations
a) e'is defined on i' by the characteristics method
presented in Section 4.2.8^ is then defined in 0'bv

(40)

FIGURE 5 Characteristics in the plane P(e).

ALE METHOD FOR 3D FREE SURFACE FLOWS

b) frf * 1 and F#*' are solutions of

qV. f i l * t  -0 ,  Vdeeo,

where fr^: fr^(*,r') is such that

c) The new domain fr'* 1 is

f ln r+ t : {x*  k l ^ ,xed^} .

183

P P

I  t ; *1 ' f r , - l  i ^ "X^ . f i
Jfi^ Jd^

F

+tkv |  ryn#*1 +'vfr;* l ; :1vfr +rvfr)
J Q M

Io^

f r
* /, | _ FI* lv.fr * ko\(m): /, I g.fr, vfrev^

Jri- J o-

(41)

(42)

(43)

The second term,

f t ^ * t

),^ 
v(trft), (r(t),t^)dt,

by integrating Z(R-velocity) along the
represented in bold (Figure 5).

f Ae': o in CI.
t -
le' : e' lp on f '
I
\ aE^
l .  : g  o n  f l
l o n
\e ' :0  on  f r .

d) fr-* 1 is defined in 0'* 1 by

in+1(x* ke') : f r f r*1(x),  VxeO'.  @4)

5. STABILITY

In Pironneaul l, a stability property for the charac-
teristics method applied to advection-diffusion
problems is established. In Boukirl, the stability is
demonstrated for the Navier-Stokes equations with
a fixed domain. The demonstration involves the
error between the estimated and the exact solution,
about which suitable regularity hypotheses are
made. In our case, exact and approximated sol-
utions are not defined a priori in the same domain,
which is why such error estimations have not been
established at this time. For this reason, new condi-
tions have to be verified.

As this section deals only with space-time dis-
cretized quantities, the symbols - are suppressed.



184 B. MAURY

5.1. Introduction

5.1.1. A New Time Discretization

Previously, the iterative process was based on a cal-
culation of variables at time t^+ | in the domain O'.
It is the most natural way. Nevertheless, a similar
approach can be done by calculating in g2n+ 1:c' is
replaced by cfr* r, defined in Q'* 1, and the new time
discretization is

fu 'n+ t  -u f r *  t 'X I * r  - kvAu ' * r  +kYp^+r  -kg

i  V ' u ' + t  - 0 ,

(45)

XI* r(x) denotin1 XI*, (x, r'), with

l A l r m

l"n+*' (x, r) : (uI*, - cI*rXXl* r)
\  _ - : t  .  *4  ' r  g6 )

l x \ *  r (x , t ^ *  
t )  :  * .

It leads to a first order scheme as well as the

discretization (15). For technical reasons (the proof

of proposition 5.1 is more natural), this second

approach is chosen in this part.

5.1.2. Hypotheses

A few assumptions need to be made about the family

of surface triangulations dT'. Let us first introduce:

h> 0, ae]0, Il,qt > 0 and M > 0, fixed numbers,

t'u and t!,,the tangent vectors associated to edge e,e,

(see Fig.3).

The hypotheses are the following:

Hl For all edges e,e, of 0T^,the length lererl is in

fah,h).
H2 For all triangles f of 0T^, l{l being the

measure of { and ho its diameter,

VIm
Similarly, for all tetrahedra ff in

eter hy,

(47)

T'with diam-

H3 For all edges erei, t/,i and ti, being tangent vec-

tors associated to €i€i,

l(,i + tijl < Mh. (49)

H4 kc^ being the displacement from Q' to O'*t,

the time step k must be chosen such that

lIo* kc^l>0. It imposes the following restric-

tion: the time step k is such that

klc^l*,.. { ez. (50)

Remark h is the diameter of the triangula-

tion, a measures the uniformity of the mesh, q, its

quality. M is related to the "curvature" of the surface

mesh (in fact angles between faces). Finally, q2 con'

trols the distortion of the mesh between two time

steps.

5.2. Stability Estimate

As the triangulation of the domain after a few time

steps is a priori unknown, proposition 5.1 must be

read in the following way: initial data, a time inter-

val [0, T], and a field R (direction of the displace-

ment) having been given, a computation may be

associated to any initial triangulation To and time

step k. If Hl, H2, H3 and H4 are verified at each time

step, then the inequality (51) holds true. The field u'

used for the characteristics method is supposed to be

projected on a space of fields with exactly vanishing

divergence (it may be done in practice by using

a stream function method). The volume and the area

of the surface of the approximated domains are

si.rpposed to be bounded.

PnoposlrroN 5.1 mr being the number of steps

(mrk: T), there exist constants Cr, C2 and C, such

that

- /c,M ^ \
lu"lo ( exp (qrc tT)l u,L + r\ffi * oc, 

),
(s 1)

where g is the modulus of the grauity uector (g : lgl).Wr^. 
(48)
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*, (, *1. lu-*' (r,)l'. l, e. o-*'*rl')
: '(,e, b^*'(,,)t'

+ 2  I  u m * 1 k ) . u ^ . t ( r ) )
1 < j < j < 3  "  

/

|  -  \ 2
( . I ^ lu ' * ' ( t , ) l )  <3  I  l u^ * r ( r , )1 ,
\ 1 < i < 3  /  1 < r < 3

: tu 
I r(u'*'(x))' dxll,r I

. ,  
u#*  t "  X I *  r 'w

+'Vu'+ 1) : (Vw * 'Vw)

F
I

k o A ( w ) : k l  g . w , y w e V o .
J g1m* ,

(s2)

om

+ 1

)ne has

F

I* 1 . w -  
|
t

J {

(vu"
O m + 1

p^* 'v 'w

o

um-

,r
JN

m +  |

v

Proof

I
I F

tl
l 'n - . '
* )o

*ol
JC,

(56)

:

gives

I

|  (u#+ ,"  XI* , ) '
J A m * 1

n

I
:  |  (u^" X^)2(1

Ja^

w: u '*  1 leads to

f r
Jn- . ,  

f  u 'n+ t , '  :  
Jn-_ ,  

u I *  r "  x I * , 'u ' *  t

1, r- ,  k u  
I  l V u ' +  1  +  t v u n +  1 1 2

J a ^ "

- koA(u'* t)  * k l  B.un+ r
J  g 2 m ' t

(  l u#*  r .X I * , l o lu . * t l o  *  / co lA(u '+1) f

+ kglum+ 1 lolcl^* t1rrz. 
(53)

lA(u'*1)l can be majorated:

lA (u ' * ' ) l

r l: 
il f r ti((i+ tir)'(u' *' (r,)* u'+ t1";))l
L  

l e i - e j  
I

* 
;  I  Mh2 ( lu^* '(r) l  +Ju- * 1 (er) l)-  e i _  e j

1 _
<t_ I  MhrL  lu . * r (e , ) | ,  64 )L  g e d T ^ -  r  1  < i <  3

where the e, are the three vertices of triangle {.
Conditions ft < hula and l,f llh? 2 q, imply

lA(u'* ' ) l  < # _ E_..( , r ,  I  lun+rtrJ l) ,l Q t &  g r a r - * r \  1 < j < 3  /

(55)

(the last equation comes from the exact integration
of a P1-field on {). Finally, we get

lA(u' *')l < #,,I^.,,rr,,11,(u'n+ 
r @y, a*l t

.# (,,1^.,t u ) (1,,,"., 1*''n, a*)'''
: # | ,,r^ *, r,, ([,(u. *, (*)), a*)''

*941u.*  11,
Q $ '  

' r

=#lu.*,1o.

Let us now bound the term Jn_., (ufr* ,.XI*)r.The change of variables

(s7)

(58)

xi_ryee.,

with Jacobian

l I o - k Y c i * , 1 - t ( x ) :

y :x  -kc f , *p (5e)

|  + kV.c^(v) + O (k1lc^lt,*

7 + kY.c^(y) + O(k)qr, (60)

+ kV.c'(y) +o(k)q2). (61)
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(62)

-  1 -  kY 'c^  +  O(k l  l c -1 , , .o

-  1-  kY'c^ + O(k)qt .

Finally, it holds

A second change of variables is made along the

characteristics yt-X^. The Jacobian "I is

condition). The calculations were done in two cases'

The initial geometry for both cases consists in two

coaxial cylinders (see Figure 6). The initial velocity is

taken equal to 0. The topology of the mesh remains

unchanged during the iterations. r being the dis-

tance to the vertical axis and z the vertical coordi-

nate, R is radial for z > 2, vertical for r > 2' and it

points at the circle defined by z :2 and r :2 other-

wise. R is represented in a half cross section in

Figure 7. R is axisymmetric and constant in time'

The surface tension coefficient o is 0.01 for the first

case, and 0.005 for the second one'

FIGURE 6 Initial domatn.

t - _ _ _

I
I

I
I

I
I

I
I

2.0 t-----

2.0

FIGURE 7 Field R.

J:  exp ( [  V ' (u ' - . ' ) . " ' )

- exp (- f 

. 'o'. ' .x')

i ru#. rxl.,)'< i
J  o - * '  J  Q m

(u ' ) ' (1 *  kqrCr).

(63)

Equations (53), (58) and (63) lead to the inequality

(constants have been modified)

,  lu ' * '1 ,  < lu '1 , (1 t  kqrCr)  *  ko# *  kgC r ,

(64)

so that, by summing from 0 to m, and using classical

majorations,

- /c ,M ^  \
lu"lo ( exp (qrCrT)lu' | ,  * r \A7',0ct 

).
(65)

6. NUMERICAL APPLICATIONS

6.1. Impinging of a Jet on a Plane

The geometry illustrated in Figure 1 can be easily

treated by this method, by choosing a radial field R'

To illustrate the robustness of the method, a more

complicated case has been chosen. The physical

conditions are similar, but the fluid is now falling on

a horizontal plane. The fluid is supposed to slip on

the plane and to get out freely through the vertical

cylindrical slab delimiting the domain. The stress

coefficient of the horizontal plane is 0 (perfect slip

5.0
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FIGURE 8 Final grid.

FIGURE 10 Moving grid, case 2.

6.1.1. Coating Flow

In this case the Reynolds number Re is 1, and
a stationary state is obtained after a few steps.
Figures 8 and 9 represent respectively the gria anO
the velocity fierd (seen from the side) when ihe state
is stationary (the grid does not move any more).

6.1.2. Unstable Flow

In the second case, Re : 100. The flowis not station-
ary, but the circular "wave" which is observed in the
real flow is found in the model. Figure 10, 11 and,12
show the flow at time 1.5 (after 200 time iterations).

FIGURE 11 Detail of the erid.

FIGURE 9 Velocity, stationary state.
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FIGURE 12 Side view, grid and velocity.

7. CONCLUSION

Particular attention has been paid in this paper to

convection phenomena. The characteristics method

confirms its stability in the domain of free surface

flows. An important point is that, even in the case of

very low Reynolds numbers (usually considered as

Stokes flows), the non-linearity of the momentum

equation and the non-linearity of the free surface

have to be taken into account. This remark particu-

larly concerns flows which are characterized by

a predominating tangential velocity.

The second important feature is the control of the

surface grid. It lacks at this time estimates relating

the calculated velocity to the "regularity" of the

resulting new surface grid. Such estimations would

provide a stability property based only on hypothe-

ses about the initial configuration.
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