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Abstract. Quasimodular forms of mixed weights up to six are
not determined by their Fourier coefficients at ranks 0, 1 and
primes. This note explains this fact and some generalizations, and
a link to the problem of counting torus coverings of genus 2.
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1. Quasimodular forms

Quasimodular forms are holomorphic functions defined on the up-
per half-plane and satisfying a quasimodularity property, i.e. a certain
behaviour under composition with modular transformations (Möbius
transformations with integer coefficients). We refer to [MR] for a pre-
cise definition along these lines, and will use a simpler one here.

For the purposes of this note, we consider for each even integer k > 2,
the Eisenstein series of weight k, defined for Im z > 0 and q = e2iπz by

Ek(z) = 1−
2k

Bk

∑
n>1

σk−1(n)qn,

where Bk denotes the k-th Bernoulli number, k-th derivative in 0 of
t 7→ t/(et − 1), and where for all integers m > 0 and n > 1, σm(n) =∑

d|n dm.
We then define for each even integer k > 0 the quasimodular forms

of weight k as linear combinations of the products Ea
2Eb

4E
c
6 such that

2a + 4b + 6c = k. Note that

E2 = 1− 24
∑
n>1

σ1(n)qn, E4 = 1 + 240
∑
n>1

σ3(n)qn,

and E6 = 1− 504
∑
n>1

σ5(n)qn.

We decide to call quasimodular form any element of the algebra
generated by E2, E4 and E6 (which are algebraically independent).
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This algebra is graded by weights. Only pure weight quasimodular
forms have the quasimodularity property mentioned above.

We call Fourier coefficients of a quasimodular form f the coefficients

of its development in powers of q = e2iπz, and denote them by f̂(n).
The observation at the base of this paper is that in order to determine

a quasimodular form of maximal weight at most 6, it is not enough to
know its Fourier coefficients at ranks 0, 1 and primes. This comes from
a linear dependence relation between the Fourier coefficients at these
ranks of the basis elements 1, E2, E

2
2 , E4, E

3
2 , E2E4, E6 of quasimodular

forms of weights up to six.

Lemma 1. The quasimodular form (of mixed weights 0, 2, 4, 6)

f = −396 + 360E2 − 30E2
2 + 66E4 + 5E3

2 − 15E2E4 + 10E6

has all its Fourier coefficients zero at 0, 1 and primes (and positive at
all other ranks).

This is a consequence of the following Lemma.

Lemma 2. For any distinct nonnegative integers k and `, the function

gk,` :
N∗ → N
n 7→ (n` + 1)σk(n)− (nk + 1)σ`(n)

is zero exactly at primes and in 1 (and has constant sign elsewhere).

A corollary is, denoting by D the differential operator q
d

dq
=

1

2iπ

d

dz
and setting

Gk(z) = −
Bk

2k
+

∑
n>1

σk−1(n)qn = −
Bk

2k
Ek :

Corollary 1. For any two distinct nonnegative odd integers k and `,
the quasimodular form

fk,` = (D` + 1)Gk+1 − (Dk + 1)G`+1

has its Fourier coefficients zero exactly at 1 and at primes.

Remark. The operator D preserves the property

(f̂(n) = 0 and n 6= 0) ⇐⇒ (n = 1 or n is prime).

Question. What can be said of the set of quasimodular forms which
satisfy this property?

Remark. The Fourier coefficient at 0 can be adjusted independently of
others by adding a constant term (i.e. a weight 0 component).
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Proof of Lemma 1. The quasimodular form f can be linearized: using

E2
2 − E4 = 12DE2 and E3

2 − 3E2E4 + 2E6 = 72D2E2,

one can write f = −36h, where h = 11− E4 − 10(D2 −D + 1)E2.

Then ĥ(0) = 0 and for n > 1

ĥ(n) = 240[(n2 − n + 1)σ1(n)− σ3(n)].

Lemma 1 is then seen to follow from Lemma 2 by multiplying by
n + 1.

We could also see it as a corollary of Corollary 1 by applying the
operator D + 1 to h. �

Proof of Lemma 2. That gk,`(n) is zero for n = 1 or n prime is obvious,
because σk(1) = 1 and σk(p) = pk + 1 for p prime.

Let us show that gk,` is nonzero (and constant sign) at other integers.
We use the notation

∑∗
d|n to denote

∑
d|n

d6=1,n

; this sum contains at

least one term as soon as n 6= 1 and n is nonprime.
For such an n:

gk,`(n) = (1 + n`)(
∑
d|n

dk)− (1 + nk)(
∑
d|n

d`)

= (1 + n`)(nk + 1 +
∑
d|n

∗
dk)− (1 + nk)(1 + n` +

∑
d|n

∗
d`)

= (1 + n`)(
∑
d|n

∗
dk)− (1 + nk)(

∑
d|n

∗
d`)

=
∑
d|n

∗
[(1 + n`)dk − (1 + nk)d`]

Assume k < `. Then:

gk,`(n) =
∑
d|n

∗
dk[(1 + n`)− (1 + nk)d`−k]

=
∑
d|n

∗
dk[1 + n` − d`−k − nkd`−k]

Now if d|n and d 6= n, we have d 6 n/2, so

1 + n` − d`−k − nkd`−k > 1 + n` − (n/2)`−k − nk(n/2)`−k

> 1 + n` −
n`−k

2`−k
−

n`

2`−k
> 1 + n` −

n`

2`−k
−

n`

2`−k

> 1 + n` −
n`

2`−k−1
> 1
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The terms of the sum
∑∗ are all positive, and the sum contains at

least one term. This ends the proof. �

2. Link with the Hurwitz problem.

The Hurwitz problem consists in counting branched coverings of Rie-
mann surfaces, fixing a base surface and a ramification type. Note that
the ramification type determines the genus of the covering surface. It
is convenient to weight the countings by the inverse of the number of
automorphisms of each covering.

Case of the torus. In the particular case when the base surface is
a torus (i.e. has genus 1), this degree-by-degree counting involves for
each ramification type a quasimodular form as a generating function.
This was proved by Dijkgraaf [Di] and Kaneko–Zagier [KaZa] for the
case of coverings with simple ramifications over distinct points and by
Eskin–Okounkov [EsOk] in full generality.

Simple ramifications. In the case of simple ramifications over dis-
tinct points, the generating function is a quasimodular form of pure
weight 6g − 6 where g is the genus of the covering surfaces. In ad-
dition, these quasimodular forms are generated by a series in several
variables that can be related to a generalized Jacobi Theta function.
See [Di], [KaZa].

Other ramification types. For other ramification types, the gener-
ating function is still a quasimodular form, but of mixed weights with
maximal weight 6 6g − 6. See [EsOk].

Interpolation. Knowing the countings are generated by a quasimod-
ular form of maximal weight 6 6g − 6, one way to obtain this form in
the basis of the Ea

2Eb
4E

c
6, 2a + 4b + 6c 6 6g− 6, is, knowing the count-

ings for a sufficient number of degrees, to interpolate with the Fourier
coefficients of the basis elements. However, not any choice of degrees
allows for interpolation.

In particular, one has to use degree 0 (for which the number of
coverings is zero whatever the ramification type) in order to find the
coefficient of 1 (= E0

2E
0
4E

0
6), i.e. of weight 0.

One can also use degree 1, for which the number of coverings is zero
as well if g > 1.

Furthermore, the countings being often easier for prime degrees, one
would like to use degrees 0, 1 and a convenient number of prime degrees
to perform the interpolation. Unfortunately, this turns out to never
allow for interpolation in maximal weight 6 6g − 6, even for genus 2.
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