Test n°1 (Fonctions, limites)

Calculatrices et documents interdits

Pour chacune des questions, répondre par vrai ou faux puis justifier soigneusement la réponse.

- 1) La fonction définie par la formule $f(x) = \sqrt{5x 3(1+x^2)}$ est bien définie sur \mathbb{R} .
- 2) La fonction définie par la formule $f(x) = \ln(x^2 + 4x + 4) = 2\ln(x+2)$ est bien définie sur \mathbb{R}^+ .
- 3) Le domaine de définition naturel de la fonction $f(x) = \sqrt{\frac{2-4x}{(3+x)^2}}$ est $]-\infty, -3[\cup]-3, \frac{1}{2}]$.
- **4)** Soit $u, v : \mathbb{R} \to \mathbb{R}$ deux fonctions impaires telles que $u \circ v$ est bien définie. Alors u + v est impaire, $u \cdot v$ est paire, et $u \circ v$ est impaire.
- **5)** Soit $f: E \to \mathbb{R}$ (avec $E \subset \mathbb{R}$) une fonction impaire. Si $f|_{E \cap \mathbb{R}^-}$ est croissante alors $f|_{E \cap \mathbb{R}^+}$ est croissante.
- **6)** L'image du sous-ensemble de \mathbb{R} , $A =]-3,-1] \cup]3,7[$, par la fonction valeur absolue, $x \mapsto |x|$, est l'intervalle [1,7[. (Une justification graphique suffit.)
- 7) L'image de la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = 1 2\cos(3x)$ est l'intervalle [-1, 3].
- 8) L'image réciproque de l'intervalle [0,1] par la fonction cosinus est l'intervalle $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$.
- 9) Soit $f: \mathbb{R} \to \mathbb{R}^+$ la fonction définie pour tout x de \mathbb{R} par $f(x) = x^6$. La restriction de f à $]-\frac{1}{2},+\infty[$ n'est pas injective mais elle est surjective.
- **10)** La fonction $f: \left] \sqrt[3]{-\frac{\pi}{2}}, \sqrt[3]{\frac{\pi}{2}} \right[\to \mathbb{R}$, définie par l'expression $f(x) = \sqrt[3]{\tan(x^3)}$ n'est ni injective ni surjective.
- 11) La restriction de la fonction sinus, sin : $\mathbb{R} \to [-1,1]$, à l'intervalle $[-\pi,\pi[$ est bijective.
- **12)** La fonction réciproque de la fonction $f: \mathbb{R}^+ \setminus \{0\} \to \mathbb{R}$ définie pour tout x > 0 par $f(x) = \ln(2x)$ est la fonction $g: \mathbb{R} \to \mathbb{R}^+ \setminus \{0\}$ définie par $g(x) = e^{2x}$ pour tout x de \mathbb{R} .
- 13) Soit $f: E \to \mathbb{R}$ une fonction injective. Soit $A \subset E$. La restriction de f à A est une fonction injective.
- 14) La fonction f, définie sur $]0,+\infty[$ par la formule $f(x)=\frac{1}{\sqrt{x}}\ln(x^2+2x),$ satisfait

$$\lim_{x \to 0^+} f(x) = -\infty \quad \text{et} \quad \lim_{x \to +\infty} f(x) = 0.$$

- **15)** La limite en 0 de la fonction $f(x) = \frac{\sqrt{3x^2+7x+4}-2}{x}$ existe et vaut $\frac{7}{4}$.
- **16)** La limite en $+\infty$ de la fonction définie sur \mathbb{R}^* par la formule $f(x) = \frac{1}{x}(\sin(x) + 2\sqrt{x}\cos^2(3x))$ existe et vaut 0.

17) La fonction $f: \mathbb{R}^* \to \mathbb{R}$, définie pour tout $x \neq 0$ par la formule

$$f(x) = \frac{e^{\frac{1}{x}} + 1}{e^{\frac{1}{x}} - 1},$$

est prolongeable par continuité en 0.

18) On considère la fonction $f: \mathbb{R}_+^* \to \mathbb{R}$, définie pour tout x > 0 par la formule

$$f(x) = \frac{\sin x}{x} + x \sin \frac{1}{x}.$$

Les deux limites suivantes existent et sont égales:

$$\lim_{\substack{x \to 0 \\ x > 0}} f(x) \quad \text{et} \quad \lim_{x \to +\infty} f(x).$$

- **19)** Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction paire. Si f(x) tend vers $-\infty$ quand x tend vers $+\infty$, alors f(x) tend vers $-\infty$ quand x tend vers $-\infty$.
- **20)** Soit $f:]-\infty, 0[\to \mathbb{R}$ une fonction strictement décroissante. La limite de f(x) lorsque x tend vers $-\infty$ est $+\infty$.