Feuille d'exercices n°4 — Dérivabilité

Exercice 1 - En utilisant la définition de la dérivée en un point, calculer $f'(x_0)$ pour $x_0 = 2$ et f la fonction définie par $f(x) = x^2 - 4x + 5$.

Exercice 2 - Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par

$$f(x) = \begin{cases} x^2 & \text{si } x < 1, \\ 1 - |x - 2| & \text{si } 1 \le x \le 5, \\ x^2 - 27 & \text{si } x > 5. \end{cases}$$

- 1. Déterminer ses points de continuité et ses points de dérivabilité.
- 2. Existe-t-il un minimum global et/ou un maximum global ? Les déterminer le cas échéant.

Exercice 3 - Déterminer les nombres réels a et b tels que la fonction suivante soit dérivable en 0:

$$f(x) = \begin{cases} 3x^2 + x + a & \text{si } x \ge 0, \\ bx + 2 & \text{si } x < 0. \end{cases}$$

Exercice 4 - Donner le domaine de définition, prolonger par continuité en 0 puis étudier la dérivabilité de

$$f(x) = e^{-\frac{1}{x^2}}, \qquad g(x) = \sin \sqrt{x}, \qquad h(x) = \cos \sqrt{x}.$$

Exercice 5 - À l'aide du théorème des accroissements finis, calculer la limite de $x^2 \left(e^{\frac{1}{x+1}} - e^{\frac{1}{x}} \right)$ quand x tend vers $+\infty$.

Exercice 6 - Montrer les inégalités ci-dessous.

- **1.** Pour tous réels a et b, $|\sin a \sin b| \le |a b|$.
- **2.** Pour tous réels x et h, $|\cos(x+h) \cos x| \le |h|$.

Exercice 7 - Construire les tableaux de variations des fonctions suivantes :

$$f(x) = x^{2}(x-5)^{4}$$
, $g(x) = \frac{x^{2}}{\sqrt{x+7}}$, $h(x) = \frac{x}{2} - \sin x$.

Exercice 8 - On considère la fonction $f: \mathbb{R} \to \mathbb{R}$ donnée par $f(x) = 2x - \arctan x$.

- 1. Montrer que f est bijective.
- 2. Montrer que sa réciproque est (continue et) dérivable.
- **3.** Retrouver la formule donnant $(f^{-1})'$ en fonction de f' et de f^{-1} . Calculer $(f^{-1})'(2-\frac{\pi}{4})$.
- **4.** En étudiant f', déterminer son image. En déduire l'image de $(f^{-1})'$.

$Exercices\ compl\'ementaires$

Exercice 9 - Soit f la fonction définie par la formule $f(x) = 1 + x - \frac{2x \ln x}{x-1}$.

- 1. Donner l'ensemble de définition naturel de f.
- **2.** Montrer que f est prolongeable par continuité en 0.
- 3. Ce prolongement est-il dérivable en 0 ?
- **4.** Montrer que pour tout h > 0, $h \frac{h^2}{2} \le \ln(h+1) \le h$ (on pourra par exemple étudier les fonctions obtenues en prenant, pour chacune des deux inégalités, la différence entre les deux termes).
- 5. En déduire que f est prolongeable par continuité en 1.

Exercice 10 - Montrer que pour tout réel $x, |e^{2x} - e^x| \le |x|e^{2|x|}$.

Exercice 11 - Construisez les tableaux de variations des fonctions suivantes :

$$f(x) = \cos x + \sin x$$
, $g(x) = x + 2\cos x$, $h(x) = x^{\frac{2}{3}}(x - 7)^2 + 2$.

Exercice 12 - Déterminer les extrema (locaux et globaux) de la fonction $f:[-2,\frac{1}{2}]\to\mathbb{R}$ donnée par la formule $f(x)=x^3+|x|$ ainsi que les points où ils sont atteints.