Contrôle continu de Mathématiques nº3

du lundi 18 décembre 2017 – Durée : 2h.

Documents, téléphones portables, tablettes, calculatrices et autres gadgets interdits.

Ce devoir comporte 2 pages et est constitué de 3 exercices **indépendants**. Toute réponse se doit d'être **justifiée**. Le barême est donné à titre **indicatif**.

Exercice 1. Questions de cours (8 points)

- (1) On considère la similitude directe $T: z \mapsto az + b$ où a et b sont des nombres complexes et $a \neq 0$.
 - (a) Donner l'angle et le rapport de T.
 - (b) À quelle condition T a-t-elle un centre? On en précisera l'affixe quand il existe.
 - (c) On suppose que T envoie $z_1 = 0$ sur $T(z_1) = 1 + i$ et $z_2 = 1$ sur $T(z_2) = 2 + i$. Calculer a et b dans ce cas et décrire T géométriquement.
- (2) Soit (E) l'équation différentielle linéaire d'ordre 2, y'' + 2y' + y = 1.
 - (a) Donner l'équation homogène et l'équation caractéristique associées à (E).
 - (b) Résoudre l'équation caractéristique et en déduire les solutions de l'équation homogène.
 - (c) Trouver une solution particulière puis toutes les solutions de (E).
 - (d) Donner la solution de (E) vérifiant de plus y(0) = 2 et y'(0) = 3.
- (3) Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction de deux variables définie par $f(x,y) = x^2y y^2 + 4$.
 - (a) Calculer les dérivées partielles de f au point $(x_0, y_0) \in \mathbb{R}^2$.
 - (b) Déterminer les points critiques de f.

Exercice 2. Une primitive sur \mathbb{R} de $x \mapsto |\sin x|$ (11 points)

Soit f la fonction de \mathbb{R} dans lui-même définie par $f(x) = |\sin(x)|$ pour tout réel x.

- (1) Étudier rapidement la fonction en :
 - (a) montrant que f est paire,
 - (b) montrant que pour tout $x \in \mathbb{R}$, $f(x+\pi) = f(x)$ (i.e. que f est périodique de période π),
 - (c) la représentant graphiquement sur l'intervalle $[-2\pi, 2\pi]$.

Soit F, la primitive de f qui s'annule en 0.

- (2) Quelle expression de F le théorème fondamental du calcul intégral donne-t-il?
- (3) En déduire :
 - (a) que F est croissante sur \mathbb{R} ,
 - (b) l'expression de F(x), pour tout $x \in [0, \pi]$,
 - (c) la valeur de $\lambda = \int_0^{\pi} |\sin(t)| dt$.
- (4) On rappelle, voir question (1b), que f est périodique de période π .
 - (a) Via un changement de variables, montrer que $\int_{n\pi}^{(n+1)\pi} f(t) dt = \int_0^{\pi} f(s) ds$, pour tout $n \in \mathbb{N}$.

- (b) En déduire que pour tout $N \in \mathbb{N}$ et tout $x \geq N\pi$, $F(x) \geq N\lambda$, puis déterminer la limite de F(x) quand x tend vers $+\infty$.
- (5) Soient $N \in \mathbb{N}$ et $x \in [N\pi, (N+1)\pi[$. Grâce aux questions (4a) et (3b), déterminer la valeur de F(x) en fonction de λ , N et x.

Pour tout $x \geq 0$, on appelle partie entière de x, que l'on note $\lfloor x \rfloor$, le plus grand entier naturel inférieur ou égal à x.

- (6) Soient $N \in \mathbb{N}$ et $x \in [N\pi, (N+1)\pi]$. Exprimer N en fonction de x.
- (7) En déduire l'expression de F(x) en fonction de λ et x.

Exercice 3. Une courbe de Lissajous (7 points)

Soit $\gamma: \mathbb{R} \to \mathbb{R}^2$ la courbe paramétrée définie par $\gamma(t) = (\cos(t), \sin(2t))$ pour tout t dans \mathbb{R} .

- (1) Montrer que l'on peut réduire l'étude à l'intervalle $[0, \pi]$.
- (2) Étudier γ sur $[0,\pi]$, i.e. établir le tableau des variations de x et y, en y spécifiant notamment :
 - (a) les points où la droite tangente au support est soit horizontale soit verticale,
 - (b) les points où l'une des coordonnées s'annule et préciser (par une équation ou une représentation paramétrique) la droite tangente au support en chacun de ces points.
- (3) Représenter le support de γ , sans oublier de compléter par les éventuelles symétries, et en mentionnant quelles parties de la courbe correspondent respectivement aux intervalles $[0, \frac{\pi}{2}]$, $[\frac{\pi}{2}, \pi]$, $[-\frac{\pi}{2}, 0]$ et $[-\pi, -\frac{\pi}{2}]$. (Remarque. On pourra prendre 1,4 comme approximation de $\sqrt{2}$.)
- (4) Montrer que γ n'admet aucun point singulier.
- (5) Montrer que la distance parcourue le long de la courbe entre les temps $t_0 = 0$ et $t_1 = 2\pi$ est donnée par

$$\ell(0, 2\pi) = 4 \int_0^{\frac{\pi}{2}} \sqrt{\sin^2(t) + 4\cos^2(2t)}.$$

(Remarque. On ne demande pas de calculer l'intégrale.)