CORRECTION DU CONTRÔLE CONTINU DE MATHÉMATIQUES N°1

du mercredi 04 octobre 2017 - Durée: 2h.

Exercice 1. Questions de cours (4 points)

(1) Attention, pour que la définition demandée ait un sens, il fallait lire : "Soit $x_0 \in \mathbb{R}$ et $f \colon \mathbb{R} \setminus \{x_0\} \to \mathbb{R}$. Donner la définition de $\lim_{x \to x_0} f(x) = -\infty$." La réponse est alors :

 $\lim_{x \to x_0} f(x) = -\infty \iff \forall A > 0, \ \exists \, \delta > 0, \ \forall x \in \mathbb{R} \setminus \{x_0\}, \ |x - x_0| < \delta \Rightarrow f(x) < -A.$

- (2) Si la fonction f est bijective, alors tout élément $y \in F$ admet un unique antécédent $x \in E$ par f. On appelle alors fonction réciproque de f, notée f^{-1} , la fonction de F dans E qui, à tout élément $y \in F$ associe son unique antécédent $x \in E$ par f.
- (3) Théorème des valeurs intermédiaires : Soit $f:[a,b]\to\mathbb{R}$ une fonction continue sur [a,b], alors tout y compris entre f(a) et f(b) admet au moins un antécédent dans [a,b] par f.
- (4) (a) On ne peut rien dire dans ce cas (si ce n'est qu'il ne contient pas $0, \frac{1}{2}, 1$).
 - (b) Si f est continue sur [0,1], alors cet ensemble contient au moins un point de $]0,\frac{1}{2}[$ et au moins un point de $\left[\frac{1}{2}, 1\right]$. En effet, f est continue sur $\left[0, \frac{1}{2}\right]$ et $f\left(\frac{1}{2}\right) < 0 < f(0)$, donc, par le théorème des valeurs intermédiaires, f s'annule au moins une fois sur $[0,\frac{1}{2}]$ (et ce n'est ni en 0, ni en $\frac{1}{2}$). De même, f étant continue sur $\left[\frac{1}{2},1\right]$ et $f\left(\frac{1}{2}\right)<0< f(1)$, par le théorème des valeurs intermédiaires, f s'annule au moins une fois sur $\left[\frac{1}{2},1\right]$ (mais ni en $\frac{1}{2}$, ni en 1).

Exercice 2. (6 points)

(1) Pour tout nombre réel x, $x^3 - 8 = (x - 2)(x^2 + 2x + 4)$, donc par opérations sur les limites

$$\frac{x^3 - 8}{x - 2} = x^2 + 2x + 4 \xrightarrow[x \to 2]{} 12.$$

(2) Soit $x \in \left[\frac{\sqrt{5}-1}{2}; 1\right] \cup \left[1; +\infty\right]$,

$$\frac{\sqrt{x^2 + x - 1} - 1}{x^2 - 1} = \frac{\sqrt{x^2 + x - 1} - 1}{x^2 - 1} \cdot \frac{\sqrt{x^2 + x - 1} + 1}{\sqrt{x^2 + x - 1} + 1} \qquad (quantité conjuguée)$$

$$= \frac{(x^2 + x - 1) - 1}{(x^2 - 1)(\sqrt{x^2 + x - 1} + 1)}$$

$$= \frac{(x - 1)(x + 2)}{(x - 1)(x + 1)(\sqrt{x^2 + x - 1} + 1)}$$

$$= \frac{x + 2}{(x + 1)(\sqrt{x^2 + x - 1} + 1)} \xrightarrow[x \to 1]{} \frac{3}{4}.$$
(opérations usuelles)

(3) La fonction tangente étant continue en 0, $\tan(x) \xrightarrow[x \to 0]{} \tan(0) = 0$. Pour tout $y \in]-\frac{\pi}{2}; 0[\cup]0; \frac{\pi}{2}[$,

$$\frac{\tan(y)}{y} = \frac{\sin(y)}{y\cos(y)} = \frac{\sin(y)}{y} \cdot \frac{1}{\cos(y)} \xrightarrow[y \to 0]{} 1,$$

par opérations usuelles (rappelons que $\xrightarrow{\sin(y)} \xrightarrow{y \to 0} 1$). Donc, par composition de limites,

$$\lim_{x \to 0} \frac{\tan(\tan(x))}{\tan(x)} = 1.$$

(4) Comme $-1 \le \cos(y) \le 1$ pour tout réel y et que $\ln(x) > 0$ dès que x > 1: $\frac{-1}{\ln x} \le \frac{\cos(e^x)}{\ln x} \le \frac{1}{\ln x}$. Puisque $\frac{\pm 1}{\ln x} \xrightarrow[x \to +\infty]{} 0$, le théorème des gendarmes donne que $\lim_{x \to +\infty} \frac{\cos(e^x)}{\ln x} = 0$.

1

Exercice 3. (10 points)

- (1) Comme $x \mapsto e^{-x}$ est continue et strictement décroissante sur \mathbb{R} à valeurs dans \mathbb{R} . Par composition, F est continue et strictement croissante sur \mathbb{R} .
- (2) La fonction $F: \mathbb{R} \to I$ est injective, car strictement croissante. Elle est surjective par construction (son ensemble d'arrivée I est son image). Donc F est une bijection. En particulier, F^{-1} est définie sur I.
- (3) $\lim_{x\to +\infty} -x = -\infty$ et $\lim_{y\to -\infty} e^y = 0$, donc par composition de limites, $\lim_{x\to +\infty} e^{-x} = 0$. Puis, comme $\lim_{z\to 0} e^{-z} = 1$ (par continuité), toujours par composition, $\lim_{x\to +\infty} F(x) = 1$. De même, $\lim_{x\to -\infty} -x = +\infty$ et $\lim_{y\to +\infty} e^y = +\infty$, donc par composition, $\lim_{x\to -\infty} e^{-x} = +\infty$ et finalement, $\lim_{x\to -\infty} F(x) = 0$.
- (4) La fonction F étant continue et strictement croissante sur \mathbb{R} , elle établit une bijection de \mathbb{R} sur son image $I = \lim_{x \to -\infty} F(x)$; $\lim_{x \to +\infty} F(x) = 0$; 1[. (Ceci donne une autre démonstration de la question (2).)
- (5) Etant donné $y \in]0;1[$, on résout F(x) = y dans \mathbb{R} :

$$F(x) = y \iff e^{-e^{-x}} = y$$

$$\iff -e^{-x} = \ln(y)$$

$$\iff e^{-x} = -\ln(y)$$

$$\iff -x = \ln(-\ln(y)) \iff x = -\ln(-\ln(y)).$$

On a donc $F^{-1}(y) = -\ln(-\ln(y))$ pour tout $y \in I =]0;1[$. (Ceci donne une autre démonstration de la question (2)).

- (6) Comme l'exponentielle de tout nombre réel est un nombre strictement positif, f est strictement positive sur \mathbb{R} .
- (7) Pour tout réel x, $f(x) = e^{-x}F(x)$. Donc, comme $\lim_{x\to +\infty} e^{-x} = 0$ et $\lim_{x\to +\infty} F(x) = 1$, on a $\lim_{x\to +\infty} f(x) = 0$ par produit de limites. Pour tout réel x, $f(x) = e^{-x}e^{-e^{-x}}$. D'une part, $\lim_{x\to -\infty} e^{-x} = +\infty$. D'autre part, par croissances comparées (de l'exponentielle et d'une fonction puissance), $\lim_{y\to +\infty} ye^{-y} = 0$. Donc, par composition de limites, $\lim_{x\to -\infty} f(x) = 0$.
- (8) Remarquons d'abord que f est continue sur \mathbb{R} , comme produit de F et de $x \mapsto e^{-x}$, toutes deux continues sur \mathbb{R} d'après la question (1). Par l'absurde, si f était injective, elle serait donc strictement monotone sur \mathbb{R} . Or ses limites en $\pm \infty$ sont égales, ce qui est contradictoire: f n'est donc pas injective.
 - D'autre part, f n'est évidemment pas surjective, puisqu'aucun nombre négatif n'a d'antécédent dans \mathbb{R} par f, comme vu à la question (6).
- (9) Pour tout réel x, $\frac{f(-x)}{f(x)} = e^{2x-e^x+e^{-x}} = e^{e^x(2xe^{-x}-1+e^{-2x})}$. Par croissances comparées (de l'exponentielle et d'une fonction puissance), $\lim_{x\to +\infty} xe^{-x} = 0$ donc $\lim_{x\to +\infty} 2xe^{-x} 1 + e^{-2x} = -1$. Il s'ensuit que $\lim_{x\to +\infty} e^x(2xe^{-x}-1+e^{-2x}) = -\infty$ par produit de limites. Puis, par composition de limites, $\lim_{x\to +\infty} \frac{f(-x)}{f(x)} = 0$.
- (10) La limite précédente nous indique que, lorsque x devient très grand, l'ordonnée du point de la courbe représentative de f à l'abscisse -x est considérablement plus petite que l'ordonnée du point de la courbe représentative de f à l'abscisse x. Cela témoigne d'un aplatissement plus rapide de la courbe représentative de f au voisinage de $-\infty$ qu'au voisinage de $+\infty$.

Exercice 4. (4 points)

- (1) Soient x et x_0 tels que $x_0 \ge x > 0$. D'une part, par croissance de f sur \mathbb{R}^{+*} , $f(x) \le f(x_0)$. D'autre part, par décroissance de g sur \mathbb{R}^{+*} , $\frac{f(x)}{x} = g(x) \ge g(x_0) = \frac{f(x_0)}{x_0}$. En multipliant par x > 0, on obtient : $f(x) \ge \frac{x}{x_0} f(x_0)$.
- (2) Comme $\lim_{x\to x_0^-} \frac{x}{x_0} f(x_0) = f(x_0)$, par le théorème des gendarmes, $\lim_{x\to x_0^-} f(x) = f(x_0)$.
- (3) Soient maintenant x et x_0 tels que $0 < x_0 \le x$. D'une part, par croissance de f sur \mathbb{R}^{+*} , $f(x_0) \le f(x)$. D'autre part, par décroissance de g sur \mathbb{R}^{+*} , $\frac{f(x)}{x} = g(x) \le g(x_0) = \frac{f(x_0)}{x_0}$. En multipliant par x > 0, on obtient : $f(x) \le \frac{x}{x_0} f(x_0)$. On a donc montré que, dans ce cas, $f(x_0) \le f(x) \le \frac{x}{x_0} f(x_0)$. On conclut comme précédemment que comme $\lim_{x \to x_0^+} \frac{x}{x_0} f(x_0) = f(x_0)$, par le théorème des gendarmes, $\lim_{x \to x_0^+} f(x) = f(x_0)$.
- (4) Il découle des deux questions précédentes que $\lim_{x\to x_0^-} f(x) = \lim_{x\to x_0^+} f(x) = f(x_0)$, ce qui signifie que f est continue en x_0 . Comme ceci est vrai pour tout $x_0 \in \mathbb{R}^{+*}$, f est bien continue sur \mathbb{R}^{+*} .