Feuille d'exercices n°11 — Fonctions de plusieurs variables

Exercice 1 - On définit les fonctions suivantes sur \mathbb{R}^2 :

$$f_1(x,y) = x^3 + y^3$$
, $f_2(x,y) = \frac{yx^2}{2}$, $f_3(x,y) = y e^{xy^2}$.

- 1. Calculer leurs dérivées partielles en (x_0, y_0) et déterminer leurs points critiques.
- **2.** Quelle est l'équation du plan tangent au graphe de f_2 au point de \mathbb{R}^3 de coordonnées (2,1,2).

Exercice 2 - On cherche les triangles de périmètre fixé dont la surface est maximale. On rappelle la formule de Héron d'Alexandrie donnant l'aire d'un triangle A en fonction de la longueur de ses côtés a, b et c et de son demi-périmètre $p = \frac{a+b+c}{2}$:

$$A = \sqrt{p(p-a)(p-b)(p-c)}.$$

Pour simplifier le problème on s'intéresse aux triangles de périmètre 2.

- **1.** Exprimer A en fonction de a et b, A = f(a, b).
- **2.** Représenter graphiquement le domaine de définition de la fonction f.
- 3. Pourquoi les côtés d'un triangle de périmètre 2 sont-ils tous de longueur inférieure à 1 ?
- 4. Pourquoi chercher à maximiser A est-il équivalent à chercher à maximiser A^2 ?
- **5.** Déterminer les points critiques de f^2 .
- **6.** On veut vérifier que ce point critique est bien le maximum de la fonction f^2 . Fixer y ($0 \le y \le 1$) et déterminer le maximum, m(y), de la fonction $x \mapsto f^2(x,y)$. Déterminer la valeur maximale de la fonction m sur [0,1]. Conclure.

Exercice 3 - On considère toutes les boites qui sont des parallélépipèdes rectangles, de volume 1, sans couvercle. On cherche celles dont la surface des cloisons est minimale.

- 1. Exprimer la surface totale des cloisons en fonction de la largeur ℓ et de la profondeur p d'une telle boite, $S = f(\ell, p)$.
- 2. Montrer que f a un unique point critique (ℓ_0, p_0) et calculer la valeur de f en ce point.
- **3.** On fixe $\ell > 0$. Étudier la fonction d'une variable $g(p) = f(\ell, p)$ et déterminer son minimum absolu en fonction de la valeur de ℓ , $m(\ell)$.
- **4.** Étudier la fonction $m(\ell)$ et en déduire que $f(\ell_0, p_0)$ est le minimum absolu de f.

Exercice 4 - Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = x^4 + y^4 - (x-y)^2$.

- 1. Déterminer les points critiques de f et les valeurs de la fonction en ces points.
- **2.** En considérant les droites x = y et x = -y, montrer que (0,0) n'est pas un extremum local.
- **3.** Déterminer le minimum global de f sur $\{(x,y) \in \mathbb{R}^2 : \sqrt{x^2 + y^2} \le 3\}$.
- **4.** Montrer qu'il s'agit en fait du minimum de f sur \mathbb{R}^2 .

Exercices complémentaires.

Exercice 5 - Déterminer les domaines de définition respectifs, $D_i \subset \mathbb{R}^3$ (i = 1, 2, 3), et les points critiques des fonctions:

$$f_1(x, y, z) = xyz + x + y - z$$
, $f_2(x, y, z) = xy \ln(z)$ et $f_3(x, y, z) = x \ln(yz)$.

Exercice 6 - Soit $\mathcal{G} \subset \mathbb{R}^3$, le graphe de la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = x^2 + 4y^2$.

- 1. Déterminer et tracer les courbes de niveau de f pour les niveaux $z_0 = 0$, 4 et -3.
- **2.** Déterminer et tracer l'intersection de \mathcal{G} avec le plan d'équation x=0.
- 3. Reprendre les questions 1. et 2. pour f définie par $f(x,y) = y^2 x^2$.

Exercice 7 - Soit f et g deux fonctions de \mathbb{R} dans \mathbb{R} . On définit $h: \mathbb{R}^2 \to \mathbb{R}$ par la formule h(x,y) = f(x) + g(y). Montrer que si f est continue en x_0 et g en y_0 , alors h est continue en (x_0,y_0) . La réciproque est-elle vraie ?

Exercice 8 - On définit $f: \mathbb{R}^2 \setminus \{(x,x) : x \in \mathbb{R}\} \to \mathbb{R}$ par la formule $f(x,y) = \frac{\sin x - \sin y}{x - y}$. Montrer que l'on peut prolonger f par continuité sur \mathbb{R}^2 tout entier.