Test n°2 (octobre)

Calculatrices et documents interdits

Pour chacune des questions, répondre par vrai ou faux puis justifier soigneusement votre réponse.

- 1) Soit f la fonction définie sur \mathbb{R}^* par la formule $f(x) = \frac{x}{|x|}$. La fonction $g(x) = e^{f(x)} + e^{-f(x)}$ définie sur \mathbb{R}^* est prolongeable par continuité à \mathbb{R} en une fonction constante.
- 2) Si f et g sont deux fonctions continues sur [0,1], alors la fonction $\frac{f}{3+2q^2}$ est continue sur [0,1].
- 3) La fonction définie sur \mathbb{R}^* par la formule $h(x) = (e^{x^2} 1)\ln(2 + \cos\frac{5}{x})$ est prolongeable par continuité en 0.
- 4) Soit H la fonction définie sur \mathbb{R} par la formule

$$H(x) = \begin{cases} \ln(|x|) & \text{si } x < 0\\ \sin x & \text{si } x \ge 0 \end{cases}$$

et u la fonction définie sur \mathbb{R} par $u(x) = -e^x$. La fonction $H \circ u$ est continue sur \mathbb{R} .

- 5) Soit f une fonction définie sur \mathbb{R} . Si f est strictement croissante, alors f est continue sur \mathbb{R} .
- **6)** L'image de l'intervalle]-2,1[par la fonction $x\mapsto \frac{x}{-x^2-x+2}$ est \mathbb{R} .
- 7) La fonction $x \mapsto |x| \sin x$ est dérivable sur \mathbb{R} .
- 8) Soit f une fonction dérivable en 0. On a

$$\lim_{\substack{x \to 0 \\ x \neq 0}} \frac{f(x) - f(-x)}{2x} = f'(0).$$

9) Si f est une fonction continue en 0, vérifiant

$$\lim_{\substack{x \to 0 \\ x \neq 0}} \frac{f(x) - f(-x)}{2x} = \ell \in \mathbb{R},$$

alors f est dérivable en 0 et $f'(0) = \ell$.

- 10) Si f est une fonction dérivable sur [0, 4] qui atteint son maximum en 0, alors f'(0) = 0.
- 11) Si g est une fonction définie sur \mathbb{R} et vérifiant $\lim_{x\to-\infty} g(x) = \lim_{x\to+\infty} g(x) = 1$, alors g admet un maximum ou un minimum global.
- 12) La fonction définie par la formule

$$f(x) = e^x + \cos(e^x) + e^{-2x} + \sin(e^{-2x})$$

admet un minimum sur \mathbb{R} .

- 13) Il existe une fonction $f:[-1,1[\to\mathbb{R} \text{ continue et surjective.}]$
- 14) Le développement limité à l'ordre 3 en $x_0 = 0$ de la fonction

$$\sinh x = \left(\frac{e^x - e^{-x}}{2}\right)$$

est $x + \frac{x^3}{6} + x^3 \varepsilon(x)$ avec $\varepsilon(x) \to 0$ quand $x \to 0$.

15) On a la limite suivante:

$$\lim_{x \to 0} \frac{\sin(\ln(1+x)) - \ln(1+\sin x)}{x^4} = \frac{1}{12}.$$

16) On a la limite suivante:

$$\lim_{x \to +\infty} \left(x^{\frac{1}{x}} - (1+x)^{\frac{1}{x}} \right) = 0.$$

17) On a la limite suivante:

$$\lim_{x \to \frac{\pi}{4}} \frac{\sin x - \cos x}{x - \frac{\pi}{4}} = \sqrt{2}.$$

- **18)** La fonction $x \mapsto |x^2|$ est C^1 sur \mathbb{R} .
- 19) La fonction définie par la formule $f(x) = \ln\left(\frac{e^x 1}{x}\right)$ admet un prolongement de classe C^1 au voisinage de 0. Ce prolongement est localement au-dessus de sa tangente en 0.
- **20)** Le graphe de la fonction $f(x) = e^x$ est au-dessus de la courbe d'équation $y = \frac{x^2}{2} + x + 1$ localement, au voisinage de 0.