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Nicolas Curien has pointed to us that the constants in Proposition 5 of [I] are incorrect.
This proposition should be replaced by the following statement, where we recall that Z is the
random measure on R, which is the limit in distribution of the (suitably rescaled) profile of
distances from the root in the uniform infinite planar quadrangulation (see Theorem 6 in [I]).

Proposition 1. For every nonnegative measurable function g on R,
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In particular, for every r > 0, .
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Proof. From the definition of Z and the construction of the eternal conditioned Brownian snake,
we get
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(note that the similar formula on p.413 of [I] incorrectly contains a factor 4 instead of 2 above).
For every z > 0, let

pg(2) =N, (1{Rc}o,oo[} /0 dsg(VAVs).)

Let (& )i>0 denote a linear Brownian motion that starts from z under the probability measure
P,. Then, by the case p =1 of Theorem 2.2 in [2], we have
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where the nine-dimensional Bessel process Z starts from z under the probability measure P,.

In the second equality we used Lemma 2.1 of [2], and in the third one we applied the absolute
continuity properties of laws of Bessel processes (see e.g. Proposition 2.6 in [2]).



Recall that the nine-dimensional Bessel process has the same distribution as the Euclidean
norm of a nine-dimensional Brownian motion. Using the explicit form of the Green function of
Brownian motion in R?, we get
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where z, is an arbitrary point of R? such that |z,| = z. For every r > 0, let o,.(dy) be the
uniform probability measure on the sphere of radius 7 centered at the origin in R?. Since the
function y — |y — xz\_7 is harmonic, an easy argument gives

/ar(dy) ly — .| "= (rv )T,

We can then integrate in polar coordinates in the previous formula for ¢,(z), and recalling that
the volume of the unit sphere in R? is 27%2/I'($), we get

0g(2) = §z4 /OOO drr* (rvz) " g(r).

By substituting this in the first display of the proof, and arguing in a similar way as above, we
obtain
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This completes the proof of Proposition [I ]
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