# Erratum to: Scaling limits for the uniform infinite quadrangulation 

by Jean-François Le Gall and Laurent Ménard

September 2013

Nicolas Curien has pointed to us that the constants in Proposition 5 of [1] are incorrect. This proposition should be replaced by the following statement, where we recall that $\mathcal{I}$ is the random measure on $\mathbb{R}_{+}$which is the limit in distribution of the (suitably rescaled) profile of distances from the root in the uniform infinite planar quadrangulation (see Theorem 6 in [1).

Proposition 1. For every nonnegative measurable function $g$ on $\mathbb{R}_{+}$,

$$
E[\langle\mathcal{I}, g\rangle]=\frac{4}{21} \int_{0}^{\infty} d r r^{3} g(r) .
$$

In particular, for every $r>0$,

$$
E[\mathcal{I}([0, r])]=\frac{1}{21} r^{4} .
$$

Proof. From the definition of $\mathcal{I}$ and the construction of the eternal conditioned Brownian snake, we get

$$
E[\langle\mathcal{I}, g\rangle]=2 E\left[\int_{0}^{\infty} \mathrm{d} t \mathbb{N}_{Z_{t}}\left(\mathbf{1}_{\{\mathcal{R} \subset] 0, \infty[ \}} \int_{0}^{\sigma} \mathrm{d} s g\left(\widehat{W}_{s}\right)\right)\right]
$$

(note that the similar formula on p. 413 of [1] incorrectly contains a factor 4 instead of 2 above). For every $z>0$, let

$$
\varphi_{g}(z)=\mathbb{N}_{z}\left(\mathbf{1}_{\{\mathcal{R} \subset] 0, \infty[ \}} \int_{0}^{\sigma} \mathrm{d} s g\left(\widehat{W}_{s}\right) .\right)
$$

Let $\left(\xi_{t}\right)_{t \geq 0}$ denote a linear Brownian motion that starts from $z$ under the probability measure $P_{z}$. Then, by the case $p=1$ of Theorem 2.2 in [2], we have

$$
\begin{aligned}
\varphi_{g}(z) & =\int_{0}^{\infty} \mathrm{d} a E_{z}\left[g\left(\xi_{a}\right) \exp \left(-4 \int_{0}^{a} \mathrm{~d} s \mathbb{N}_{\xi_{s}}(\mathcal{R} \cap] 0, \infty[\neq \emptyset)\right)\right] \\
& =\int_{0}^{\infty} \mathrm{d} a E_{z}\left[g\left(\xi_{a}\right) \exp \left(-6 \int_{0}^{a} \frac{\mathrm{~d} s}{\xi_{s}^{2}}\right)\right] \\
& =\int_{0}^{\infty} \mathrm{d} a z^{4} E_{z}\left[Z_{a}^{-4} g\left(Z_{a}\right)\right],
\end{aligned}
$$

where the nine-dimensional Bessel process $Z$ starts from $z$ under the probability measure $P_{z}$. In the second equality we used Lemma 2.1 of [2], and in the third one we applied the absolute continuity properties of laws of Bessel processes (see e.g. Proposition 2.6 in [2]).

Recall that the nine-dimensional Bessel process has the same distribution as the Euclidean norm of a nine-dimensional Brownian motion. Using the explicit form of the Green function of Brownian motion in $\mathbb{R}^{9}$, we get

$$
\varphi_{g}(z)=\frac{\Gamma\left(\frac{7}{2}\right)}{2 \pi^{9 / 2}} z^{4} \int_{\mathbb{R}^{9}} \mathrm{~d} y\left|y-x_{z}\right|^{-7}|y|^{-4} g(|y|),
$$

where $x_{z}$ is an arbitrary point of $\mathbb{R}^{9}$ such that $\left|x_{z}\right|=z$. For every $r>0$, let $\sigma_{r}(d y)$ be the uniform probability measure on the sphere of radius $r$ centered at the origin in $\mathbb{R}^{9}$. Since the function $y \mapsto\left|y-x_{z}\right|^{-7}$ is harmonic, an easy argument gives

$$
\int \sigma_{r}(d y)\left|y-x_{z}\right|^{-7}=(r \vee z)^{-7}
$$

We can then integrate in polar coordinates in the previous formula for $\varphi_{g}(z)$, and recalling that the volume of the unit sphere in $\mathbb{R}^{9}$ is $2 \pi^{9 / 2} / \Gamma\left(\frac{9}{2}\right)$, we get

$$
\varphi_{g}(z)=\frac{2}{7} z^{4} \int_{0}^{\infty} d r r^{4}(r \vee z)^{-7} g(r) .
$$

By substituting this in the first display of the proof, and arguing in a similar way as above, we obtain

$$
\begin{aligned}
E[\langle\mathcal{I}, g\rangle] & =2 E\left[\int_{0}^{\infty} \mathrm{d} t \varphi_{g}\left(Z_{t}\right)\right] \\
& =2\left(\frac{2}{7}\right)^{2} \int_{0}^{\infty} \mathrm{d} z z^{5} \int_{0}^{\infty} \mathrm{d} r r^{4}(r \vee z)^{-7} g(r) \\
& =2\left(\frac{2}{7}\right)^{2} \int_{0}^{\infty} d r r^{4} g(r)\left(r^{-7} \int_{0}^{r} \mathrm{~d} z z^{5}+\int_{r}^{\infty} \mathrm{d} z z^{-2}\right) \\
& =\frac{4}{21} \int_{0}^{\infty} \mathrm{d} r r^{3} g(r)
\end{aligned}
$$

This completes the proof of Proposition 1.

## References

[1] Le Gall, J.-F., Ménard, L. Scaling limits for the uniform infinite quadrangulation. Illinois J. Math. 54, 1163-1203 (2010)
[2] Le Gall, J.-F., Weill, M. Conditioned Brownian trees. Annales Inst. H. Poincaré Probab. Stat. 42, 455-489 (2006)

