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Abstract

We provide asymptotics for the range Rn of a random walk on the d-dimensional lattice
indexed by a random tree with n vertices. Using Kingman’s subadditive ergodic theorem, we
prove under general assumptions that n−1Rn converges to a constant, and we give conditions
ensuring that the limiting constant is strictly positive. On the other hand, in dimension 4
and in the case of a symmetric random walk with exponential moments, we prove that Rn

grows like n/ logn. We apply our results to asymptotics for the range of branching random
walk when the initial size of the population tends to infinity.
Keywords. Tree-indexed random walk, range, discrete snake, branching random walk,
subadditive ergodic theorem.
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1 Introduction
The main goal of this work is to derive asymptotics for the number of distinct sites of the
lattice visited by a tree-indexed random walk. Asymptotics for the range of an ordinary random
walk on the d-dimensional lattice Zd have been studied extensively since the pioneering work of
Dvoretzky and Erdös [4]. Consider for simplicity the case of a simple random walk on Zd, and,
for every integer n ≥ 1, let Rn be the number of distinct sites of Zd visited by the random walk
up to time n. When d ≥ 3, let qd > 0 be the probability that the random walk never returns to
its starting point. Then,

• if d ≥ 3,
1
n

Rn
a.s.−→
n→∞

qd ,

• if d = 2,
logn
n

Rn
a.s.−→
n→∞

π ,

• if d = 1,
n−1/2 Rn

(d)−→
n→∞

sup
0≤t≤1

Bt − inf
0≤t≤1

Bt ,

where (d)−→ indicates convergence in distribution and (Bt)t≥0 is a standard linear Brownian
motion. The cases d ≥ 3 and d = 2 were obtained in [4], whereas the case d = 1 is a very
easy consequence of Donsker’s invariance theorem (see e.g. [6]). The preceding asymptotics have
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been extended to much more general random walks. In particular, for any random walk in Zd,
an application of Kingman’s subadditive ergodic theorem [10] shows that the quantity Rn/n
converges a.s. to the probability that the random walk does not return to its starting point
(which is positive if the random walk is transient). See also [6] for the almost sure convergence
of the (suitably normalized) range of an arbitrary recurrent random walk in the plane, [5] for
a central limit theorem for the range of transient random walk, [15] for a non-Gaussian central
limit theorem in the plane and [19] for a general study of the range of random walks in the
domain of attraction of a stable distribution.

In the present work, we discuss similar asymptotics for tree-indexed random walk. We
consider (discrete) plane trees, which are rooted ordered trees that can be viewed as describing
the genealogy of a population starting with one ancestor or root, which is usually denoted by
the symbol ∅. Given such a tree T and a probability measure θ on Zd, we can consider the
random walk with jump distribution θ indexed by the tree T . This means that we assign a
(random) spatial location ZT (u) ∈ Zd to every vertex u of T , in the following way. First, the
spatial location ZT (∅) of the root is the origin of Zd. Then, we assign independently to every
edge e of the tree T a random variable Xe distributed according to θ, and we let the spatial
location ZT (u) of the vertex u be the sum of the quantities Xe over all edges e belonging to the
simple path from ∅ to u in the tree. The number of distinct spatial locations is called the range
of the tree-indexed random walk ZT .

Let us state a particular case of our results.

Theorem 1. Let θ be a probability distribution on Zd, which is symmetric and has finite support.
Assume that θ is not supported on a strict subgroup of Zd. For every integer n ≥ 1, let Tn be a
random tree uniformly distributed over all plane trees with n vertices. Conditionally given Tn,
let ZTn be a random walk with jump distribution θ indexed by Tn, and let Rn stand for the range
of ZTn. Then,

• if d ≥ 5,
1
n
Rn

(P)−→
n→∞

cθ ,

where cθ > 0 is a constant depending on θ, and (P)−→ indicates convergence in probability;

• if d = 4,
logn
n
Rn

L2
−→
n→∞

8π2 σ4 ,

where σ2 = (detMθ)1/4, with Mθ denoting the covariance matrix of θ;

• if d ≤ 3,
n−d/4Rn

(d)−→
n→∞

aθ λd(supp(I)) ,

where aθ = 2d/4(detMθ)1/2 is a constant depending on θ, and λd(supp(I)) stands for the
Lebesgue measure of the support of the random measure on Rd known as ISE (Integrated
Super-Brownian Excursion).

Notice the obvious analogy with the results for the range of (ordinary) random walk that
were recalled above. At an intuitive level, Rn is likely to be smaller than the range Rn of
ordinary random walk, because one expects many more self-intersections in the tree-indexed
case. This is reflected in the fact that the “critical dimension” is now d = 4 instead of d = 2.
In the same way as d = 2 is critical for the recurrence of random walk on Zd, one may say that
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d = 4 is critical for the recurrence of tree-indexed random walk, in the sense that for random
walk indexed by a “typical” large tree of size n, the number of returns to the origin will grow
logarithmically with n. Furthermore, one may notice that the set of all spatial locations of Tn is
contained in the ball of radius Cn1/4 centered at the origin, with a probability close to 1 if the
constant C is sufficiently large (see Janson and Marckert [8] or Kesten [9] in a slightly different
setting), so that the range Rn is at most of order nd/4 in dimension d ≤ 3. We finally mention
that the limiting constant cθ in dimension d ≥ 5 can again be interpreted as a probability of no
return to the origin for random walk indexed by a certain infinite random tree: See Section 2
below for more details.

Let us emphasize that asymptotics of the type of Theorem 1 hold in a much more general
setting. Firstly, it is enough to assume that the jump distribution θ is centered and has suf-
ficiently high moments (a little more is needed when d = 4). Our argument to get the case
d ≥ 5 of Theorem 1 relies on an application of Kingman’s subadditive ergodic theorem, which
gives the convergence of 1

nRn to a (possibly vanishing) constant in any dimension d, without
any moment assumption on θ. Secondly, in all cases except the critical dimension d = 4, we
can handle more general random trees. Our methods apply to Galton-Watson trees with an
offspring distribution having mean one and finite variance, which are conditioned to have ex-
actly n vertices. In the special case where the offspring distribution is geometric with parameter
1/2, we recover uniformly distributed plane trees, but the setting of conditioned Galton-Watson
trees includes other important “combinatorial trees” such as binary trees or Cayley trees (see
e.g. [16]). Some of our results even hold for an offspring distribution with infinite variance in
the domain of attraction of a stable distribution.

In the present work, we deal with the cases d ≥ 5 and d = 4 of Theorem 1, and the extensions
that have just been described. The companion paper [18] addresses the “subcritical” case d ≤ 3,
which involves different methods and is closely related to the invariance principles connecting
branching random walk with super-Brownian motion.

Let us turn to a more precise description of our main results and of our methods. In
Section 2 below, we discuss the convergence of 1

nRn in a general setting. The basic ingredient
of the proof is the introduction of a suitable probability measure on a certain set of infinite
trees. Roughly speaking, for any offspring distribution µ with mean one, we construct a random
infinite tree consisting of an infinite “spine” and, for each node of the spine, of a random number
of Galton-Watson trees with offspring distribution µ that branch off the spine at this node. This
construction is related to the infinite size-biased Galton-Watson tree (see [21] and references
therein), with the difference that we consider only subtrees branching off the right side of the
spine. For a more precise description, see subsection 2.3. The law of our infinite tree turns out
to be invariant under a shift transformation, which basically involves re-rooting the tree at the
first vertex (in lexicographical order) that does not belong to the spine. If we consider a random
walk (with an arbitrary jump distribution θ) indexed by this infinite tree, the number of distinct
locations of the random walk at the first n vertices of the infinite tree yields a subadditive process
Rn, to which we can apply Kingman’s theorem in order to get the almost sure convergence of
1
nRn to a constant (Theorem 4). One then needs to discuss the positivity of the limiting constant,
and this leads to conditions depending both on the offspring distribution µ and on the jump
distribution θ. More precisely, we give a criterion (Proposition 5) involving the Green function
of the random walk and the generating function of µ, which ensures that the limiting constant is
positive. In the case when µ has finite variance and if the jump distribution θ is centered (with
sufficiently high moments), this criterion is satisfied if d ≥ 5. The preceding line of reasoning is
of course very similar to the classical application of Kingman’s theorem to the range of ordinary
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random walk. In the present setting however, additional ingredients are needed to transfer the
asymptotics from the case of the infinite random tree to a single Galton-Watson tree conditioned
to have n vertices. At this point, we need to assume that the offspring distribution µ has finite
variance or is in the domain of attraction of a stable distribution, so that we can use known
results [3] on the scaling limit of the height process associated with a sequence of Galton-Watson
trees with offspring distribution µ: Applying these results to the sequence of trees that branch
off the spine of the infinite tree yields information about the “large” trees in the sequence, which
is essentially what we need to cover the case of a single Galton-Watson tree conditioned to be
large (Theorem 7). The case d ≥ 5 of Theorem 1 follows as a special case of the results in
Section 2.

Section 3, which is the most technical part of the paper, is devoted to the proof of a general-
ized version of the case d = 4 of Theorem 1 (Theorem 14). We restrict our attention to the case
when the offspring distribution is geometric with parameter 1/2, and we assume that the jump
distribution θ is symmetric with small exponential moments. While the symmetry assumption
can presumably be weakened without too much additional work, the existence of exponential
moments is used at a crucial point of our proof where we rely on the multidimensional extension
of the celebrated Komlós-Major-Tusnády strong invariance principle. Our approach is based on
the path-valued Markov chain called the discrete snake. In our setting, this process, which we
denote by (Wn)n≥0, takes values in the space of all infinite paths w : (−∞, ζ]∩Z −→ Z4, where
ζ = ζ(w) ∈ Z is called the lifetime of w. If ζn denotes the lifetime of Wn, the process (ζn)n≥0
evolves like simple random walk on Z. Furthermore, if ζn+1 = ζn−1, the path Wn+1 is obtained
by restricting Wn to the interval (−∞, ζn − 1] ∩ Z, whereas if ζn+1 = ζn + 1, the path Wn+1
is obtained by adding to Wn one step distributed according to θ. We assume that the initial
value W0 is just a path (indexed by negative times) of the random walk with jump distribution
θ started from the origin. Then the values of the discrete snake generate a random walk indexed
by an infinite random tree, which corresponds, in the particular case of the geometric offspring
distribution, to the construction developed in Section 2. Note however that, in contrast with
Section 2, the Markovian properties of the discrete snake play a very important role in Section
3. A key estimate (Proposition 8) states that the probability that the “head of the discrete
snake” (that is the process (Wk(ζk))k≥0) does not return to the origin before time n behaves
like c/ logn for a certain constant c. This is analogous to the well-known asymptotics for the
probability that simple random walk in Z2 does not come back to its starting point before time
n, but the proof, which is developed in subsection 3.2, turns out to be much more involved in
our setting. The main result of Section 3 (Theorem 14) gives the case d = 4 of Theorem 1 under
slightly more general assumptions. It would be of interest to extend this result to more general
offspring distributions, but this would require a different approach.

Section 4 applies the preceding results to asymptotics for the range of a branching random
walk in Zd, d ≥ 4, when the size of the initial population tends to infinity. This study is related
to the recent work of Lalley and Zheng [12], who discuss the number of distinct sites occupied
by a nearest neighbor branching random walk in Zd at a fixed time. Note that the genealogical
structures of descendants of the different initial particles are described by independent Galton-
Watson trees, which makes it possible to apply our results about the range of tree-indexed
random walk. Still one needs to verify that points that are visited by the descendants of two
distinct initial particles give a negligible contribution in the limit. The analogous problem for
low dimensions d ≤ 3 is addressed in [18].

Let us finally mention that there are certain analogs of our results in a continuous setting. In
particular, Delmas [2] considers the Lebesgue measure of the tubular neighborhood of radius ε of
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the range of a super-Brownian measure in Rd, d ≥ 4, and proves that this measure behaves like
εd−4 when d ≥ 5 and like | log ε|−1 when d = 4. This is analogous to our results for branching
random walk in Section 4. An exact analog of the cases d ≥ 4 in Theorem 1 is obtained by
considering the Lebesgue measure of the tubular neighborhood of radius ε of the support of
the so-called integrated super-Brownian excursion (ISE). Asymptotics for this quantity when
ε → 0 are derived in [2, Corollary 2.4]. We do not know of any analog of Proposition 8 in the
continuous setting. Abraham and Werner [1] discuss a very similar problem for the Brownian
snake and super-Brownian motion in Rd, but only when d ≤ 3.

Notation. We use the notation Ja, bK := [a, b]∩Z for a, b ∈ Z, with a ≤ b. Similarly, K−∞, aK :=
(−∞, a] ∩ Z for a ∈ Z. For any finite set A, #A denotes the cardinality of A.

2 Linear growth of the range

2.1 Finite trees

We use the standard formalism for plane trees. We set

U :=
∞⋃
n=0

Nn,

where N = {1, 2, . . .} and N0 = {∅}. If u = (u1, . . . , un) ∈ U , we set |u| = n (in particular
|∅| = 0). We write ≺ for the lexicographical order on U , so that ∅ ≺ 1 ≺ (1, 1) ≺ 2 for instance.

If u, v ∈ U , uv stands for the concatenation of u and v. In particular ∅u = u∅ = u. The
genealogical (partial) order � is then defined by saying that u � v if and only if v = uw for
some w ∈ U .

A plane tree (also called rooted ordered tree) T is a finite subset of U such that the following
holds:

(i) ∅ ∈ T .

(ii) If u = (u1, . . . , un) ∈ T \{∅} then û := (u1, . . . , un−1) ∈ T .

(iii) For every u = (u1, . . . , un) ∈ T , there exists an integer ku(T ) ≥ 0 such that, for every
j ∈ N, (u1, . . . , un, j) ∈ T if and only if 1 ≤ j ≤ ku(T ).

The notions of a child and a parent of a vertex of T are defined in an obvious way. The
quantity ku(T ) in (iii) is the number of children of u in T . If u ∈ T , we write [T ]u = {v ∈ U :
uv ∈ T }, which corresponds to the subtree of descendants of u in T . We denote the set of all
plane trees by Tf .

Throughout this work, we consider a probability measure µ on Z+, which is critical in the
sense that ∞∑

k=0
k µ(k) = 1.

We exclude the degenerate case where µ(1) = 1. The law of the Galton-Watson tree with
offspring distribution µ is a probability measure on the space Tf , which we denote by Πµ (see
e.g. [16, Section 1]).

We also let θ be a probability measure on Zd, which is adapted in the sense that it is not
supported on a strict subgroup of Zd.
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A (d-dimensional) spatial tree is a pair (T , (zu)u∈T ) where T ∈ Tf and zu ∈ Zd for every
u ∈ T . Let T∗f be the set of all spatial trees. We write Π∗µ,θ for the probability distribution on T∗f
under which T is distributed according to Πµ and, conditionally on T , the “spatial locations”
(zu)u∈T are distributed as random walk indexed by T , with jump distribution θ, and started
from 0 at the root ∅ (see the definition given in Section 1). We then set

aµ,θ := Π∗µ,θ(zu 6= 0, ∀u ∈ T \{∅}),

and, for every y ∈ Zd,
hµ,θ(y) := Π∗µ,θ(zu 6= −y, ∀u ∈ T ).

Notice that aµ,θ > 0, simply because with positive probability a tree distributed according to
Πµ consists only of the root.

2.2 Infinite trees

We now introduce a certain class of infinite trees. Each tree in this class will consist of an infinite
ray or spine starting from the root, and finite subtrees branching off every node of this infinite
ray. We label the vertices of the infinite ray by nonpositive integers 0,−1,−2, . . .. The reason
for labelling the vertices of the spine by negative integers comes from the fact that −1 is viewed
as the parent of 0, −2 as the parent of −1, and so on.

More precisely, we consider the set

V := Z− × U

where Z− = {0,−1,−2, . . .}. For every j ∈ Z−, we identify the element (j,∅) of V with the
integer j, and we thus view Z− as a subset of V. We define the lexicographical order on V as
follows. If j, j′ ∈ Z−, we have j ≺ j′ if and only if j ≤ j′. If u ∈ U\{∅}, we have always
j′ ≺ (j, u). If u, u′ ∈ U\{∅}, we have (j, u) ≺ (j′, u′) if either j > j′, or j = j′ and u ≺ u′.
The genealogical (partial) order � on V is defined in an obvious way: in agreement with the
preceding heuristic interpretation, the property j � j′ for j, j′ ∈ Z− holds if and only if j ≤ j′.

Let T be a subset of V such that Z− ⊂ T . For every j ∈ Z−, we set

Tj := {u ∈ U : (j, u) ∈ T }.

We say that T is an infinite tree if, for every j ∈ Z−, Tj is a (finite) plane tree, and furthermore
T \Z− is infinite. We write T for the set of all infinite trees. By convention, the root of an
infinite tree T is the vertex 0. Clearly, T is determined by the collection (Tj)j∈Z− . Note that
the lexicographical order of vertices corresponds to the order of visit when one “moves around”
the tree in clockwise order, starting from the “bottom” of the spine and assuming that the
“subtrees” Tj are drawn on the right side of the spine, as in Fig. 1.

We next define a shift transformation τ on the space T. Starting from an infinite tree T , its
image τ(T ) = T ′ is obtained informally as follows. We look for the first vertex (in lexicographical
order) of T \Z−. Call this vertex v. We then “re-root” the tree T at v and, in the case when
v is not a child of 0 (or equivalently if T0 = {∅}), we remove the vertices of the spine that are
strict descendants of the parent of v.

For a more formal definition, let k ∈ Z− be the unique integer such that v ∈ Tk (necessarily,
v = (k, 1)). Then, T ′ is determined by requiring that:

• T ′j = Tj+k+1 if j ≤ −2;
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• T ′0 = [Tk]1;

• T ′−1 is the unique plane tree such that there exists a bijection from Tk\{u ∈ Tk : 1 � u}
onto T ′−1 that preserves both the lexicographical order and the genealogical order.

0

−1

−2

−3

0

−1

−2

−3

−4

0

−1

−2

−3

−4

0

−1

−2

−3

(0, 1)
(−1, 1)

(−2, 1)

(0, 1)

T T ′ = τ(T ) τ ◦ τ(T ) τ3(T )

Figure 1: The first 3 iterations of the shift transformation on an infinite tree T . At
each step, the marked vertex will become the new root after the shift.

Fig. 1 explains the construction of T ′ better than the formal definition.

2.3 The invariant measure on infinite trees

Let Pµ be the probability measure on T that is determined by the following conditions. Under
Pµ(dT ),

• the trees T0, T−1, T−2, . . . are independent;

• T0 is distributed according to Πµ;

• for every integer j ≤ −1,

Pµ(k∅(Tj) = n) = µ([n+ 1,∞)),

for every n ≥ 0; furthermore, conditionally on k∅(Tj) = n, the trees [Tj ]1, [Tj ]2, . . . , [Tj ]n
are independent and distributed according to Πµ.

Notice that ∑n≥0 µ([n + 1,∞)) = 1 due to the criticality of the probability measure µ. The
reason for introducing the probability measure Pµ comes from the next proposition.

Proposition 2. The probability measure Pµ is invariant under the shift τ .

Proof. Suppose that T is distributed according to Pµ and set T ′ = τ(T ) as above. We need
to verify that T ′ is also distributed according to Pµ, or equivalently that the trees T ′0 , T ′−1, . . .
satisfy the same properties as T0, T−1, . . . above. The key point is to calculate the distribution
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of (k∅(T ′j ), j ≤ 0). Fix an integer p ≥ 1, and let n0, n1, . . . , np ∈ Z+. Also let k be the element
of Z− determined as in the definition of T ′ = τ(T ) at the end of subsection 2.2. The event

{k = 0} ∩
{
k∅(T ′0 ) = n0, k∅(T ′−1) = n1, . . . , k∅(T ′−p) = np

}
holds if and only if we have

k∅(T0) = n1 + 1, k1(T0) = n0, k∅(T−1) = n2, . . . , k∅(T−p+1) = np,

which occurs with probability

µ(n1 + 1)µ(n0)µ([n2 + 1,∞)) . . . µ([np + 1,∞)).

Let ` ∈ Z−\{0}. Similarly, the event

{k = `} ∩
{
k∅(T ′0 ) = n0, k∅(T ′−1) = n1, . . . , k∅(T ′−p) = np

}
holds if and only if we have

k∅(T0) = 0, . . . , k∅(T`+1) = 0, k∅(T`) = n1+1, k1(T`) = n0, k∅(T`−1) = n2, . . . , k∅(T`−p+1) = np,

which occurs with probability

µ(0)µ([1,∞))−`−1µ([n1 + 2,∞))µ(n0)µ([n2 + 1,∞)) . . . µ([np + 1,∞)).

Summarizing, we see that the event{
k∅(T ′0 ) = n0, k∅(T ′−1) = n1, . . . , k∅(T ′−p) = np

}
has probability

µ(n0)µ(n1 + 1)µ([n2 + 1,∞)) . . . µ([np + 1,∞))

+ µ(n0)µ(0)
( −∞∑
`=−1

µ([1,∞))−`−1
)
µ([n1 + 2,∞))µ([n2 + 1,∞)) . . . µ([np + 1,∞))

= µ(n0)µ([n1 + 1,∞))µ([n2 + 1,∞)) . . . µ([np + 1,∞))

as desired. An immediate generalization of the preceding argument shows that, if t0 and tj,i,
1 ≤ j ≤ p, 1 ≤ i ≤ nj are given plane trees, the event

{
k∅(T ′−1) = n1, . . . , k∅(T ′−p) = np

}
∩
{
T ′0 = t0

}
∩
( p⋂
j=1

( nj⋂
i=1
{[T ′−j ]i = tj,i}

))

has probability

µ([n1 + 1,∞))µ([n2 + 1,∞)) . . . µ([np + 1,∞))×Πµ(t0)×
p∏
j=1

( nj∏
i=1

Πµ(tj,i)
)
.

This completes the proof.
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2.4 Random walk indexed by the infinite tree

Let T ∈ T. The definition of random walk indexed by T requires some extra care because we
need to specify the orientation of edges: The (oriented) edges of T are all pairs (x, y) of elements
of T such that there exists j ∈ Z− such that

• either x = (j, u), y = (j, v), where u, v ∈ Tj and u is the parent of v;

• or x = j − 1, y = j.

See Fig. 2. We write E(T ) for the collection of all oriented edges of T . The random walk indexed
by T is a collection (ZT (u))u∈T of random variables with values in Zd, such that ZT (0) = 0 and
the random variables (ZT (y)−ZT (x))(x,y)∈E(T ) are independent and distributed according to θ.
Let P(T ) stand for the distribution of the collection (ZT (u))u∈T .

Let T∗ be the set of all pairs (T , (zu)u∈T ) where T ∈ T and zu ∈ Zd for every u ∈ T . We
define a probability measure P∗µ,θ on T∗ by declaring that P∗µ,θ is the law of the random pair
(T , (Zu)u∈T ) where T is distributed according to Pµ and conditionally on T = T , (Zu)u∈T

is distributed according to P(T ).
We next define a shift transformation τ∗ on T∗. For (T , (zu)u∈T ) ∈ T∗, we set τ∗(T , (zu)u∈T ) =

(T ′, (z′u)u∈T ′), where T ′ = τ(T ) and the spatial locations of vertices of T ′ (which may be viewed
as a subset of T ) are obtained by shifting all original locations zu so that the location of the root
of T ′ is again 0. More precisely, if k ∈ Z− is defined as above in the definition of T ′ = τ(T ),
there is a unique bijection φT from T ′ onto T \{k + 1, k + 2, . . . , 0} that maps 0 to (k, 1) and
preserves both the lexicographical order and the genealogical order, and we set

z′u = zφT (u) − zφT (0)

for every u ∈ T ′.

Proposition 3. The probability measure P∗µ,θ is invariant under τ∗.

This is an easy consequence of Proposition 2 and the way the spatial positions are con-
structed. We leave the details to the reader.

u0(T ) = 0

−1

−2

−3

T

u1(T )

u2(T )

u3(T ) u4(T )

u5(T )

u6(T )

u7(T )
u8(T )

Figure 2: The orientation of edges of T , and the sequence u0(T ), u1(T ), u2(T ), . . .
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Let T ∗ = (T , (zu)u∈T ) ∈ T∗. We define a sequence (ui(T ))i≥0 of elements of T as follows.
First, u0(T ) = 0 is the root of T . Then u1(T ), u2(T ), . . . are all elements of T \Z− listed in
lexicographical order (see Fig. 2). We set, for every integer n ≥ 1,

Rn(T ∗) := #{zu0(T ), zu1(T ), . . . , zun−1(T )}.

We let S = (Sk)k≥0 be a random walk in Zd with jump distribution θ, which starts from x
under the probability measure Px, for every x ∈ Zd.

Recall the notation aµ,θ and hµ,θ introduced at the end of subsection 2.1.

Theorem 4. We have
Rn
n
−→
n→∞

cµ,θ, P∗µ,θ-a.s.

where the limiting constant cµ,θ ∈ [0, 1] may be defined as

cµ,θ = aµ,θ E0

[ ∞∏
j=1

Φµ,θ(−Sj)
]
,

with
Φµ,θ(x) =

∞∑
k=0

µ([k + 1,∞))
( ∑
y∈Zd

θ(y)hµ,θ(x+ y)
)k
,

for every x ∈ Zd.

Proof. Set τ∗n = (τ∗)n for every integer n ≥ 1. We claim that, for every n,m ≥ 1,

Rn+m ≤ Rn +Rm ◦ τ∗n.

Indeed, Rn(T ∗) is the number of distinct elements among zu0(T ), zu1(T ), . . . , zun−1(T ), and simi-
larly Rn+m(T ∗) is the number of distinct elements among zu0(T ), zu1(T ), . . . , zun+m−1(T ). On the
other hand, from the construction of the shift transformation, it is fairly easy to verify that
Rm ◦ τ∗n(T ∗) is the number of distinct elements among zun(T ), zun+1(T ), . . . , zun+m−1(T ). The
bound of the preceding display follows immediately.

Since 1 ≤ Rn ≤ n, we can then apply Kingman’s subadditive ergodic theorem to the sequence
(Rn)n≥1, and we get that Rn/n converges almost surely. The fact that the limit is constant
is immediate from a simple zero-one law argument (we could also verify that τ∗ is ergodic).
Furthermore, the limiting constant cµ,θ is recovered by

cµ,θ = lim
n→∞

1
n

E∗µ,θ[Rn].

However, with the preceding notation,

E∗µ,θ[Rn] = E∗µ,θ

[
n−1∑
i=0

1{zuj 6=zui ,∀j∈Ji+1,n−1K}

]

=
n−1∑
i=0

P∗µ,θ(zuj 6= zui , ∀j ∈ Ji+ 1, n− 1K)

=
n−1∑
i=0

P∗µ,θ(zuj 6= 0, ∀j ∈ J1, n− i− 1K)

10



using the shift invariance in the last equality. It now follows that

cµ,θ = lim
n→∞

1
n

E∗µ,θ[Rn] = P∗µ,θ(zuj 6= 0, ∀j ≥ 1),

and the right-hand side is easily computed in the form given in the theorem, using the definition
of P∗µ,θ.

Theorem 4 does not give much information when the limiting constant cµ,θ is equal to 0. In
the next proposition, we give sufficient conditions that ensure cµ,θ > 0. We let gµ denote the
generating function of µ,

gµ(r) :=
∞∑
k=0

µ(k) rk , 0 ≤ r ≤ 1.

In the remaining part of this subsection, we assume that the random walk S is transient (it is
not hard to see that cµ,θ = 0 if S is recurrent). We denote the Green function of S by Gθ, that
is

Gθ(x) := E0
[ ∞∑
k=0

1{Sk=x}
]
, x ∈ Zd.

Proposition 5. (i) The property cµ,θ > 0 holds if
∞∏
j=1

(1− gµ((1−Gθ(Sj))+)
Gθ(Sj)

)
> 0 , P0-a.s.

(ii) Suppose that the random walk S is centered and has finite moments of order (d − 1) ∨ 2.
Then,

• if µ has finite variance, then cµ,θ > 0 if d ≥ 5.

• if µ is in the domain of attraction of a stable distribution with index α ∈ (1, 2), then
cµ,θ > 0 if d > 2α

α−1 .

Proof. (i) We have already noticed that aµ,θ > 0. We then observe that, for every r ∈ [0, 1),
∞∑
k=0

µ([k + 1,∞)) rk = 1− gµ(r)
1− r . (1)

Next we can get a lower bound on the function hµ,θ(y) by saying that the probability for tree-
indexed random walk to visit the point −y is bounded above by the expected value of the number
of vertices at which the random walk sits at −y. Since µ is critical, it follows that

hµ,θ(y) ≥ 1−Gθ(−y)

for every y ∈ Zd. Hence, for every x ∈ Zd,∑
y∈Zd

θ(y)hµ,θ(x+ y) ≥ 1−
∑
y∈Zd

θ(y)Gθ(−x− y).

However,

∑
y∈Zd

θ(y)Gθ(−x− y) =
∑
y∈Zd

θ(y)Ex+y
[ ∞∑
k=0

1{Sk=0}
]

= Ex
[ ∞∑
k=1

1{Sk=0}
]
≤ Gθ(−x).

11



Consequently, using (1), we have, for all x such that Gθ(−x) > 0,

Φµ,θ(x) ≥ 1− gµ((1−Gθ(−x))+)
Gθ(−x) .

The assertion in (i) follows, noting that Gθ(Sj) > 0 for every j ≥ 0, P0-a.s.
(ii) If S is centered with finite moments of order (d − 1) ∨ 2, then a standard bound for the
Green function (see e.g. [15, Théorème 3.5]) gives the existence of a constant Cθ such that, for
every x ∈ Zd,

Gθ(x) ≤ Cθ |x|2−d (2)

(recall that we assume that S is transient, so that necessarily d ≥ 3 here).
Suppose first that µ has a finite variance σ2

µ. Then,

gµ(1− s) = 1− s+
σ2
µ

2 s2 + o(s2)

as s→ 0. Consequently,
1− gµ(1− s)

s
= 1−

σ2
µ

2 s+ o(s)

as s→ 0. By taking s = Gθ(Sj), we see that the condition in (i) will be satisfied if

∞∑
j=1

Gθ(Sj) <∞ , P0-a.s.

However, using the local limit theorem and the preceding bound for Gθ, it is an easy matter to
verify that the property

E0
[ ∞∑
j=1

Gθ(Sj)
]
<∞

holds if d ≥ 5. This gives the desired result when µ has a finite variance.
Suppose now that µ is in the domain of attraction of a stable distribution with index α ∈

(1, 2). Then the generating function of µ must satisfy the property

gµ(1− s) = 1− s+ sα L(s)

where L is slowly varying as s ↓ 0 (see e.g. the discussion in [3, p.60]). By the same argument
as above, we see that the condition in (i) will be satisfied if

∞∑
j=1

Gθ(Sj)α−1 L(Gθ(Sj)) <∞ , P0-a.s.

and this holds if
(α− 1)(d− 2)/2 > 1,

which completes the proof.

Remarks. 1. The moment assumption in (ii) can be weakened a little: According to [13], the
bound (2) holds provided the random walk S (is centered and) has moments of order (d−2+ε)∨2
for some ε > 0. However moments of order d− 2 would not be sufficient for this bound.
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2. Suppose that the random walk S satisfies the conditions in part (ii) of the proposition. If
µ has finite variance, it is not hard to verify that cµ,θ = 0 if d ≤ 4. Let us briefly sketch the
argument. It is enough to consider the case d = 4. Under the probability measure Π∗µ,θ, write
Nx for the number of vertices whose spatial location is equal to x. Then, if x 6= 0,

Π∗µ,θ[Nx] = Gθ(x) ≥ C ′θ|x|−2

for some constant C ′θ > 0. On the other hand, standard arguments for Galton-Watson trees
show that there exists a constant Kµ such that

Π∗µ,θ[(Nx)2] ≤ Kµ

∑
z∈Z4

Gθ(z)Gθ(x− z)2.

Using (2) and simple calculations, we obtain the existence of a constant K ′µ,θ such that, for every
x ∈ Z4 with |x| ≥ 2,

Π∗µ,θ[(Nx)2] ≤ K ′µ,θ |x|−2 log |x|.

Hence, for every x ∈ Z4 with |x| ≥ 2,

1− hµ,θ(x) = Π∗µ,θ(N−x ≥ 1) ≥
(Π∗µ,θ[N−x)])2

Π∗µ,θ[(N−x)2] ≥ (C ′θ)2(K ′µ,θ)−1 |x|−2 (log |x|)−1.

The property cµ,θ = 0 now follows easily. In the next section, we will see (in a particular case)
that the proper normalization factor for Rn is (logn)/n when d = 4.

3. The paper [20] considers certain random walks with drift on Zd, for which the property
cµ,θ > 0 holds if d ≥ 4 although the bound (2) no longer holds.

4. It is an interesting question whether the condition d > 2α
α−1 is also sharp when µ is in the

domain of attraction of a stable distribution of index α. We will not discuss this problem here
as our main interest lies in the case when µ has finite variance.

2.5 Conditioned trees

Our goal is now to obtain an analog of the convergence of Theorem 4 for random walk indexed
by a single Galton-Watson tree conditioned to be large. Recall from subsection 2.1 the nota-
tion T∗f for the set of all spatial trees. If T ∗ = (T , (zu)u∈T ) is a spatial tree with at least n
vertices, we keep the same notation Rn(T ∗) for the number of distinct points in the sequence
zu0 , zu1 , . . . , zun−1 , where u0, u1, . . . u#T −1 are the vertices of T listed in lexicographical order.
Also recall from subsection 2.1 the definition of the probability measure Π∗µ,θ on T∗f .

Proposition 6. Assume that µ has finite variance σ2
µ, or that µ is in the domain of attraction

of a stable distribution with index α ∈ (1, 2). For every n ≥ 1, let T ∗(>n) be a random spatial tree
distributed according to the probability measure Π∗µ,θ(· | #T > n). Then, for every a ∈ (0, 1],

1
n
Rbanc(T ∗(>n)) −→n→∞ cµ,θ a

in probability.
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Proof. We first consider the case when µ has finite variance σ2
µ. Let T ∗ = (T , (Zu)u∈T ) be a T∗-

valued random variable distributed according to P∗µ,θ under the probability measure P . Recall
the notation Tj , for j ∈ Z−, introduced in subsection 2.2. By construction, the “subtrees”

T0, [T−1]1, [T−1]2, . . . , [T−1]k∅(T−1), [T−2]1, [T−2]2, . . . , [T−2]k∅(T−2), [T−3]1, . . .

then form an infinite sequence of independent random trees distributed according to Πµ. To
simplify notation we denote this sequence by T(0),T(1),T(2), . . .. We then introduce the height
process (Hk)k≥0 associated with this sequence of trees (see [16, Section 1]). This means that, for
every j ≥ 0, we first enumerate the vertices of T(j) in lexicographical order, then we concatenate
the finite sequences obtained in this way to get an infinite sequence (vk)k≥0 of elements in U ,
and we finally set Hk := |vk| for every k ≥ 0. Note that the infinite sequence of vertices (vk)k≥0
thus obtained is essentially the same as the sequence (uk(T ))k≥0 introduced in subsection 2.4.

Then (see e.g. [16, Theorem 1.8]), we have the convergence in distribution( 1√
n
Hbntc

)
t≥0

(d)−→
n→∞

( 2
σµ
|βt|

)
t≥0

, (3)

where (βt)t≥0 denotes a standard linear Brownian motion. Next, for every integer n ≥ 1, set

kn := inf
{
k ≥ 0 : #T(k) > n

}
.

Clearly, the tree T(kn) is distributed according to Πµ(· | #T > n). Also set

dkn :=
∑

0≤j<kn
#T(j).

Using the convergence (3), it is not hard to prove (see e.g. the proof of Theorem 5.1 in [17]) that

1
n
dkn

(d)−→
n→∞

D1 , (4)

where D1 denotes the initial time of the first excursion of β away from 0 with duration greater
than 1.

By Theorem 4 and an obvious monotonicity argument, we have for every integer K > 0,

lim
n→∞

sup
0≤t≤K

∣∣∣ 1
n
Rbntc(T ∗)− cµ,θ t

∣∣∣ = 0 , a.s.

and it follows that

lim
n→∞

∣∣∣ 1
n
R(dkn+banc)∧Kn(T ∗)− 1

n
Rdkn∧Kn(T ∗)− cµ,θ

(
(dkn
n

+ a) ∧K − dkn
n
∧K

)∣∣∣ = 0 , a.s.

Since K can be chosen arbitrarily large, we deduce from the last convergence and (4) that we
have

lim
n→∞

1
n

(
Rdkn+banc(T ∗)−Rdkn (T ∗)

)
= cµ,θ a

in probability.
Let T ∗(kn) stand for the spatial tree obtained from T(kn) by keeping the spatial positions

induced by T ∗. Then, by construction, we have

Rbanc(T ∗(kn)) ≥ Rdkn+banc(T ∗)−Rdkn (T ∗).

14



Therefore, using the preceding convergence in probability, we obtain that, for every fixed ε > 0,

P
(
Rbanc(T ∗(kn)) ≥ (cµ,θa− ε)n

)
−→
n→∞

1. (5)

We claim that we have also

P
(
Rbanc(T ∗(kn)) ≤ (cµ,θa+ ε)n

)
−→
n→∞

1. (6)

To see this, we argue by contradiction and suppose that for all n belonging to a sequence (nj)j≥1
converging to infinity, we have

P
(
Rbanc(T ∗(kn)) > (cµ,θa+ ε)n

)
≥ δ

for some δ > 0 independent of n. We suppose that cµ,θ > 0 (the case when cµ,θ = 0 is easier).
We observe that, for every fixed n, the tree T(kn) and the quantity Rbanc(T ∗(kn)) are independent
of the random variable dkn . Notice that T ∗(kn) is not independent of dkn , because the value of
dkn clearly influences the distribution of the spatial location of the root of T(kn). However, if we
simultaneously translate all spatial locations of T ∗(kn) so that the new location of the root is 0,
the new locations become independent of dkn , and the translation does not affect Rbanc(T ∗(kn)).
On the other hand, from the convergence in distribution (4), we can find δ′ > 0 such that, for
every sufficiently large n,

P
(
dkn ≤

ε

2cµ,θ
n
)
≥ δ′.

Using the preceding independence property, we conclude that, for every sufficiently large n in
the sequence (nj)j≥1,

P
(
Rb(εn/2cµ,θ)+anc(T ∗) ≥ (cµ,θa+ε)n

)
≥ P

(
dkn ≤

ε

2cµ,θ
n
)
P
(
Rbanc(T ∗(kn)) > (cµ,θa+ε)n

)
≥ δδ′.

However Theorem 4 implies that

1
n
Rb(εn/2cµ,θ)+anc(T ∗) −→n→∞ cµ,θ a+ ε

2 , a.s.

and so we arrive at a contradiction, which completes the proof of (6).
By construction, the tree T(kn) is distributed according to Πµ(· | #T > n), and if we shift

all spatial locations of T ∗(kn) so that the new location of the root is 0, we get a random spatial
tree distributed according to Π∗µ,θ(· | #T > n). The convergence of the proposition thus follows
from (5) and (6).

The proof in the case when µ is in the domain of attraction of a stable distribution with index
α ∈ (1, 2) is essentially the same, noting that Theorems 2.3.1 and 2.3.2 in [3] give an analog
of the convergence (3), where the role of reflected Brownian motion is played by the so-called
height process associated with the stable Lévy process with index α. We omit the details.

We now would like to get a statement analogous to Proposition 6 for a tree conditioned to
have a fixed number of vertices. This will follow from Proposition 6 by an absolute continuity
argument. Before stating the result, we need to introduce some notation. Let G be the smallest
subgroup of Z that contains the support of µ. Plainly, the cardinality of the vertex set of a tree
distributed according to Πµ belongs to 1 + G. On the other hand, for every sufficiently large
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integer p ∈ 1 + G, we have Πµ(#T = p) > 0, so that the definition of Πµ(· | #T = p) makes
sense.

If T ∗ = (T , (zu)u∈T ) is a spatial tree, we write R(T ∗) for the number of distinct elements in
{zu : u ∈ T }.

Theorem 7. Assume that µ has finite variance σ2
µ, or that µ is in the domain of attraction of a

stable distribution with index α ∈ (1, 2). For every sufficiently large integer n ∈ G, let T ∗(n) be a
random spatial tree distributed according to the probability measure Π∗µ,θ(· | #T = n+ 1). Then,

1
n
R(T ∗(n)) −→

n→∞, n∈G
cµ,θ

in probability.

Proof. We assume in the proof that G = Z. Only minor modifications are needed to deal with
the general case.

We first consider the case when µ has finite variance σ2
µ. The arguments needed to derive

Theorem 7 from Proposition 6 are then similar to the proof of Theorem 6.1 in [17]. The basic
idea is as follows. For every a ∈ (0, 1), the law under Πµ(· | #T = n+1) of the subtree obtained
by keeping only the first banc vertices of T is absolutely continuous with respect to the law under
Πµ(· | #T > n) of the same subtree, with a density that is bounded independently of n. A
similar property holds for spatial trees, and so we can use the convergence of Proposition 6, for a
tree distributed according to Π∗µ,θ(· | #T > n), to get a similar convergence for a tree distributed
according to Π∗µ,θ(· | #T = n+ 1). Let us give some details for the sake of completeness.

As previously, we write u0(T ), u1(T ), . . . , u#T −1(T ) for the vertices of a plane tree T listed
in lexicographical order. The Lukasiewisz path of T is then the finite sequence (X`(T ), 0 ≤ ` ≤
#T ), which is defined inductively by

X0(T ) = 0 , X`+1(T )−X`(T ) = ku`(T )(T )− 1 , for every 0 ≤ ` < #T ,

where we recall that, for every u ∈ T , ku(T ) is the number of children of u in T . The tree T
is determined by its Lukasiewisz path. A key result (see e.g. [16, Section 1]) states that under
Πµ(dT ), the Lukasiewisz path is distributed as a random walk on Z with jump distribution ν
determined by ν(j) = µ(j + 1) for every j ≥ −1, which starts from 0 and is stopped at the first
time when it hits −1 (in particular, the law of #T under Πµ(dT ) coincides with the law of the
latter hitting time). For notational convenience, we let (Yk)k≥0 be a random walk on Z with
jump distribution ν, which starts from j under the probability measure P(j), and we set

T := inf{k ≥ 0 : Yk = −1}.

Next take n large enough so that Πµ(#T = n + 1) > 0. Fix a ∈ (0, 1), and consider a tree
T such that #T > n. Then, the collection of vertices u0(T ), . . . , ubanc(T ) forms a subtree of T
(because in the lexicographical order the parent of a vertex comes before this vertex), and we
denote this subtree by ρbanc(T ). It is elementary to verify that ρbanc(T ) is determined by the
sequence (X`(T ), 0 ≤ ` ≤ banc). Let f be a bounded function on Zbanc+1. Using the Markov
property at time banc for the random walk with jump distribution ν, one verifies that

Πµ

[
f((Xk)0≤k≤banc)

∣∣∣#T = n+ 1
]

=
P(0)(T > n)

P(0)(T = n+ 1) Πµ

[
f((Xk)0≤k≤banc)

ψn(Xbanc)
ψ′n(Xbanc)

∣∣∣∣∣#T > n

]
(7)
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where, for every integer j ≥ 0,

ψn(j) = P(j)(T = n+ 1− banc) , ψ′n(j) = P(j)(T > n− banc).

See [17, pp.742-743] for details of the derivation of (7). We now let n tend to infinity. Using
Kemperman’s formula (see e.g. Pitman [24, p.122]) and a standard local limit theorem, one
easily checks that, for every c > 0,

lim
n→∞

(
sup
j≥c
√
n

∣∣∣∣∣ P(0)(T > n)
P(0)(T = n+ 1)

ψn(j)
ψ′n(j) − Γa

( j

σµ
√
n

)∣∣∣∣∣
)

= 0, (8)

where for every x ≥ 0,

Γa(x) = 2(2π(1− a)3)−1/2 exp(−x2/2(1− a))∫∞
1−a ds (2πs3)−1/2 exp(−x2/2s)

.

See again [17, pp.742-743] for details. Note that the function Γa is bounded over R+. Further-
more, from the local limit theorem again, it is easy to verify that

lim
c↓0

lim sup
n→∞

Πµ(Xbanc ≤ c
√
n |#T = n+ 1) = 0 , lim

c↓0
lim sup
n→∞

Πµ(Xbanc ≤ c
√
n |#T > n) = 0.

(9)
(We take this opportunity to point out that the analogous statement in [17, p.743] is written
incorrectly.) By combining (7), (8) and (9), we obtain that, for any uniformly bounded sequence
of functions (fn)n≥1 on Zbanc+1, we have

lim
n→∞

∣∣∣Πµ

[
fn((Xk)0≤k≤banc)

∣∣∣#T = n+ 1
]
−Πµ

[
fn((Xk)0≤k≤banc) Γa(

Xbanc
σµ
√
n

)
∣∣∣#T > n

]∣∣∣ = 0.

(10)
This convergence applies in particular to the case when, for every n, fn((Xk)0≤k≤banc) is a
function of the tree ρbanc(T ). If we now replace Πµ by Π∗µ,θ, the same convergence still holds,
and we can even allow the function of the tree ρbanc(T ) to depend also on the spatial locations of
the vertices of ρbanc(T ) (the point is that the conditional distribution of these spatial locations
given the tree T only depends on the subtree ρbanc(T )). Consequently, if ε > 0 is fixed, we have

lim
n→∞

∣∣∣Π∗µ,θ[1{|Rbanc−cµ,θan|>εn} ∣∣∣#T = n+1
]
−Π∗µ,θ

[
1{|Rbanc−cµ,θan|>εn} Γa(

Xbanc
σµ
√
n

)
∣∣∣#T > n

]∣∣∣ = 0.

Recalling that the function Γa is bounded, and using Proposition 6, we now obtain that

lim
n→∞

Π∗µ,θ
(
|Rbanc − cµ,θan| > εn

∣∣∣#T = n+ 1
)

= 0.

Since 0 ≤ R(T ∗) − Rbanc(T ∗) ≤ n + 1 − banc, Π∗µ,θ(· | #T = n + 1)-a.s., and a can be chosen
arbitrarily close to 1, the convergence in Theorem 7 follows.

Very similar arguments can be used in the case when µ is in the domain of attraction of a
stable distribution with index α ∈ (1, 2). We now refer to the proof of Lemma 3.3 in [11] for the
exact analogs of the properties (7) – (10) used in the finite variance case. We leave the details
to the reader.

The case d ≥ 5 of Theorem 1 follows from Theorem 7 and Proposition 5, noting that when µ
is the critical geometric distribution, a tree distributed according to Πµ(· | #T = n) is uniformly
distributed over the set of all plane trees with n vertices (see e.g. [16, Section 1.5]).
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3 The critical dimension
In this section, we discuss the dimension d = 4, which is critical in the case of random walks that
are centered and have sufficiently high moments. We restrict our attention to the case when
the offspring distribution is geometric with parameter 1/2. Our main tool is the discrete snake,
which is a path-valued Markov chain that can be used to generate the spatial positions of the
tree-indexed random walk.

3.1 Limit theorems

We now let θ be a symmetric probability distribution on Z4. We assume that θ has small
exponential moments and is not supported on a strict subgroup of Z4. As previously, we write
S = (Sk)k≥0 for the random walk in Z4 with jump distribution θ, and we now assume that
S starts from 0 under the probability measure P . We will also assume for simplicity that the
covariance matrix Mθ of θ is of the form σ2 Id, where Id is the four-dimensional identity matrix
and σ > 0. This isotropy condition can be removed, and the reader will easily check that all
subsequent arguments remain valid for a non-isotropic random walk: the role of σ2 is then played
by (detMθ)1/4.

We first introduce the free discrete snake associated with θ. This is a Markov chain with
values in the space W that we now define. The space W is the set of all semi-infinite discrete
paths w = (w(k))k∈K−∞,ζK with values in Z4. Here ζ = ζ(w) ∈ Z is called the lifetime of w. We
often write ŵ = w(ζ(w)) for the endpoint of w.

If w ∈ W, we let w stand for the new path obtained by “erasing” the endpoint of w, namely
ζ(w) = ζ(w) − 1 and w(k) = w(k) for every k ∈K − ∞, ζ(w) − 1K. If x ∈ Z4, we let w ⊕ x
be the path obtained from w by “adding” the point x to w, namely ζ(w ⊕ x) = ζ(w) + 1,
(w ⊕ x)(k) = w(k) for every k ∈K−∞, ζ(w)K and (w ⊕ x)(ζ(w) + 1) = x.

The free discrete snake is the Markov chain (Wn)n≥0 inW whose transition kernel is defined
by

Q(w,dw′) = 1
2 δw(dw′) + 1

2
∑
x∈Z4

θ(x) δw⊕(ŵ+x)(dw
′).

We will write ζn = ζ(Wn) to simplify notation. It will also be convenient to write W ∗n for the
path Wn shifted so that its endpoint is 0: W ∗n(k) = Wn(k)− Ŵn for every k ∈K−∞, ζnK.

If w ∈ W, P(w) will denote the probability measure under which the discrete snake W starts
from w. For every integer m ∈ Z, we also write Pm for a probability measure under which
ζ0 = m a.s. and the initial value W0 of the discrete snake is distributed as (−Sm−k)k∈K−∞,mK
(since S is symmetric we could omit the minus sign here). We write P for P0. As usual, the
expectation under Pm, resp. under P, is denoted by Em, resp. by E. Note that (ζn)n≥0 is a
simple random walk on Z started from m under Pm. We will use the notation

τp := inf{n ≥ 0 : ζn = ζ0 − p}

for every integer p ≥ 0.
Furthermore, from the form of the transition kernel of the discrete snake, it is easy to verify

that for every n ≥ 0, for every integer ` ∈ Z such that Pm(ζn = `) > 0, the conditional
distribution of W ∗n under Pm( · | ζn = `), coincides with the distribution of W0 under P`.

Proposition 8. We have

lim
n→∞

(logn)P(Ŵk 6= 0, ∀k ∈ J1, nK) = 4π2σ4.
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Figure 3: The discrete snake under Pm. In this illustration, S′1 is an independent copy
of S1.

Furthermore,
lim
p→∞

(log p)P(Ŵk 6= 0,∀k ∈ J1, τpK) = 2π2σ4.

The proof of Proposition 8 is given in subsection 3.2 below. Our first theorem is concerned
with the range of the free snake.

Theorem 9. Set Rn := #
{
Ŵ0, Ŵ1, . . . , Ŵn

}
for every integer n ≥ 0. We have

logn
n

Rn
L2(P)−→
n→∞

4π2σ4.

Proof. We first observe that

E[Rn] = E
[ n∑
i=0

1{Ŵj 6=Ŵi ,∀j∈Ji+1,nK}

]
=

n∑
i=0

P
(
Ŵj 6= Ŵi ,∀j ∈ Ji+ 1, nK

)
.

Then, by applying the Markov property of the free snake, we have

E[Rn] =
n∑
i=0

E
[
P(Wi)(Ŵj 6= Ŵ0 ,∀j ∈ J1, n− iK)

]
=

n∑
i=0

E
[
P(W ∗i )(Ŵj 6= Ŵ0 , ∀j ∈ J1, n− iK)

]
=

n∑
i=0

P(Ŵj 6= 0,∀j ∈ J1, n− iK),
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where the second equality is easy by translation invariance, and the last one is a simple conse-
quence of the remark before the statement of Proposition 8. Using now the result of Proposi-
tion 8, we get

lim
n→∞

logn
n

E[Rn] = 4π2σ4. (11)

Let us turn to the second moment. We have similarly

E
[
(Rn)2] = E

[ n∑
i=0

n∑
j=0

1{Ŵk 6=Ŵi ,∀k∈Ji+1,nK;Ŵ` 6=Ŵj ,∀`∈Jj+1,nK}

]
= 2

∑
0≤i<j≤n

P
(
Ŵk 6= Ŵi ,∀k ∈ Ji+ 1, nK; Ŵ` 6= Ŵj ,∀` ∈ Jj + 1, nK

)
+ E[Rn]

= 2
∑

0≤i<j≤n
E
[
P(Wi)(Ŵk 6= Ŵ0 ,∀k ∈ J1, n− iK; Ŵ` 6= Ŵj−i , ∀` ∈ Jj − i+ 1, n− iK)

]
+ E[Rn]

= 2
∑

0≤i<j≤n
P
(
Ŵk 6= 0 , ∀k ∈ J1, n− iK; Ŵ` 6= Ŵj−i , ∀` ∈ Jj − i+ 1, n− iK

)
+ E[Rn],

where the last equality again follows from the observation preceding Proposition 8. Let us fix
α ∈ (0, 1/4) and define

σn := inf
{
k ≥ 0 : ζk ≤ −n

1
2−α

}
.

By standard estimates, we have

lim
n→∞

(logn)2 P
(
σn ≤ n1−3α or σn ≥ n1−α) = 0.

Thus, using also (11),

lim sup
n→∞

( logn
n

)2
E[(Rn)2] = lim sup

n→∞
2
( logn

n

)2 ∑
0≤i<j≤n

P
(
Ŵk 6= 0 ,∀k ∈ J1, n− iK;

Ŵ` 6= Ŵj−i , ∀` ∈ Jj − i+ 1, n− iK;n1−3α ≤ σn ≤ n1−α
)
.

Clearly, in order to study the limsup in the right-hand side, we may restrict the sum to indices
i and j such that j − i > n1−α. However, if 0 ≤ i < j ≤ n are fixed such that j − i > n1−α,

P
(
Ŵk 6= 0 ,∀k ∈ J1, n− iK; Ŵ` 6= Ŵj−i , ∀` ∈ Jj − i+ 1, n− iK;n1−3α ≤ σn ≤ n1−α

)
≤ P

(
Ŵk 6= 0 , ∀k ∈ J1, σnK; Ŵ` 6= Ŵj−i ,∀` ∈ Jj − i+ 1, n− iK;n1−3α ≤ σn ≤ n1−α

)
= P

(
Ŵk 6= 0 ,∀k ∈ J1, σnK;n1−3α ≤ σn ≤ n1−α

)
P
(
Ŵ` 6= 0 ,∀` ∈ J1, n− jK

)
.

To derive the last equality, we use the strong Markov property at time σn and then, after
conditioning on σn = m, the Markov property at time j − i −m for the free snake shifted at
time σn and the observation preceding Proposition 8. Now obviously,

P
(
Ŵk 6= 0 ,∀k ∈ J1, σnK;n1−3α ≤ σn ≤ n1−α

)
≤ P

(
Ŵk 6= 0 , ∀k ∈ J1, bn1−3αcK

)
,
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and it follows that

lim sup
n→∞

( logn
n

)2
E
[
(Rn)2]

≤ lim sup
n→∞

2
( logn

n

)2 ∑
0≤i<j≤n
j−i>n1−α

P
(
Ŵk 6= 0 , ∀k ∈ J1, bn1−3αcK

)
P
(
Ŵ` 6= 0 , ∀` ∈ J1, n− jK

)

= 1
1− 3α(4π2σ4)2

by Proposition 8. Since α can be chosen arbitrarily small, we get

lim sup
n→∞

( logn
n

)2
E
[
(Rn)2] ≤ (4π2σ4)2. (12)

Theorem 9 is an immediate consequence of (11) and (12).

We now aim to prove a result similar to Theorem 9 for the “excursion” of the discrete snake.
We set

T := inf{k ≥ 0 : ζk = −1}.

For every integer n ≥ 1, we let W (n) = (W (n)
k )0≤k≤2n be a process defined under P, whose

distribution coincides with the conditional distribution of (Wk)0≤k≤2n knowing that T = 2n+ 1.
To simplify notation, we write ζ(n)

k = ζ(W (n)
k ). Note that (ζ(n)

k )0≤k≤2n is the contour function,
also called depth-first walk, of a Galton-Watson tree with geometric offspring distribution of
parameter 1/2, conditioned to have n + 1 vertices (see e.g. [24, Chapter 6]). We have already
noticed that the latter tree is uniformly distributed over plane trees with n+1 vertices. From the
form of the transition mechanism of the discrete snake, it then follows that {Ŵ (n)

k , 0 ≤ k ≤ 2n}
is distributed as the set of all spatial locations of a random walk with jump distribution θ indexed
by a uniform random plane tree with n+ 1 vertices.

We will need two simple estimates that we gather in the next lemma.

Lemma 10. (i) Let r ≥ 1 be an integer. There exists a constant C(r) such that, for every
integers n ≥ 1 and m ≥ 0,

E
[
(#{k ∈ J0, 2nK : ζ(n)

k = m})r
]
≤ C(r) (m+ 1)r.

(ii) Let ε > 0. Then, for every r > 0,

P
(

sup
0≤k≤2n

ζ
(n)
k > n

1
2 +ε

)
= O(n−r)

as n→∞.

Part (i) of the lemma can be deduced from Theorem 1.13 in Janson [7] using the connection
between ζ(n) and the critical geometric Galton-Watson tree (it is also possible to give a direct
argument), while Part (ii) is standard. Notice that Part (i) of Lemma 10 implies

E
[
(#{k ∈ J0, 2nK : ζ(n)

k ≤ n
1
2−

α
2 })2

]
= o

(( n

logn
)2)

as n→∞.

21



We will make a repeated use of Kemperman’s formula for simple random walk (see [24, p.122]
for a more general version): For every choice of the integers m, k such that k > m ≥ 0,

Pm(T = k) = m+ 1
k

Pm(ζk = −1) = m+ 1
k

P0(ζk = m+ 1). (13)

Together with this formula, we will use the local limit theorem for simple random walk on Z,
which we state in the form found in Lawler and Limic [14, Proposition 2.5.3, Corollary 2.5.4]:
As k →∞,

P0(ζk = m) =
√

2
πk

exp
(
− m2

2k
)

exp
(
O
(1
k

+ m4

k3
))

(14)

uniformly over integers m such that |m| ≤ k and k +m is even.
We fix α ∈ (0, 1/4) and to simplify notation, we write pn = bn 1

2−αc for every integer n ≥ 1.
Recall the notation τp = inf{n ≥ 0 : ζn = ζ0 − p}.

Lemma 11. If η > 0 is sufficiently small, we have

lim
n→∞

(
sup

n1−η≤k≤2n
n

1
2−

α
2 ≤m≤n

1
2 +η

∣∣∣(logn)Pm
(
Ŵj 6= Ŵ0 , ∀j ∈ J1, τpnK

∣∣∣T = k
)
− 4π2σ4

1− 2α
∣∣∣ ) = 0,

where in the supremum we consider only integers m and k such that k +m is odd.

Proof. We first explain how to choose η. We set qn = bn1− 3α
2 c and note that

P0
(
ζqn > n

1
2−

α
2
)
≤ P0

(
ζqn > q

1
2 +c(α)
n

)
where c(α) = α

4−6α > 0. By a standard bound, the latter probability is bounded (for n large) by
exp(−nγ), where the constant γ = γ(α) > 0 only depends on α. We fix η > 0 such that 3η < γ
and η ∈ (0, α/8).

To simplify notation, we then set

∆n :=
{
(m, k) : n

1
2−

α
2 ≤ m ≤ n

1
2 +η, n1−η ≤ k ≤ 2n and k +m is odd

}
.

Since pn ∼ n−α/4
√
qn, standard estimates give, for every δ ∈ (0, α4 ),

lim
n→∞

nδ P0(τpn ≥ qn) = 0. (15)

We claim that we have also, for every δ ∈ (0, α4 ),

lim
n→∞

nδ sup
(m,k)∈∆n

Pm(τpn ≥ qn | T = k) = 0. (16)

Let us postpone the proof of (16) and derive the estimate of the lemma.
Let us consider (m, k) ∈ ∆n. We have

Pm
(
{Ŵj 6= Ŵ0 , ∀j ∈ J1, τpnK} ∩ {τpn ≤ qn} ∩ {T = k}

)
= Em

[
1{τpn≤qn} 1{Ŵj 6=Ŵ0 ,∀j∈J1,τpnK}Pm−pn(T = k − `)`=τpn

]
, (17)

where we have used the strong Markov property at τpn . We now would like to say that the
quantity Pm−pn(T = k − `), evaluated at ` = τpn , does not differ too much from Pm(T = k)
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Figure 4: Illustration of the proof of Lemma 11

under our conditions on m, k and τpn (see Fig. 4 for an illustration). Let k′ be an integer such
that k − qn ≤ k′ ≤ k and k′ +m− pn is odd. By Kemperman’s formula,

Pm−pn(T = k′) = m− pn + 1
k′

P0(ζk′ = m− pn + 1) (18)

and by (14),

P0(ζk′ = m− pn + 1) =
√

2
πk′

exp
(
− (m− pn + 1)2

2k′
)

exp
(
O( 1
k′

+ (m− pn + 1)4

k′3
)
)
. (19)

Next observe that∣∣∣(m− pn + 1)2

2k′ − (m+ 1)2

2k
∣∣∣ ≤ (m+ 1)2

2
( 1
k′
− 1
k

)
+ (m+ 1)2 − (m− pn + 1)2

2k′

≤ qn(m+ 1)2

kk′
+ pn(m+ 1)

k′
,

which tends to 0 as n → ∞, uniformly in m, k, k′. Comparing the estimate for Pm−pn(T = k′)
that follows from (18) and (19) with the similar estimate for Pm(T = k) that follows from (13)
and (14), we get

lim
n→∞

(
sup
m,k,k′

∣∣∣∣Pm−qn(T = k′)
Pm(T = k) − 1

∣∣∣∣
)

= 0,

where the supremum is over all choices of (m, k, k′) such that (m, k) ∈ ∆n and k′ satisfies the
preceding conditions. Using (17), we obtain that, for any fixed δ > 0, we have for all sufficiently
large n, for every (m, k) ∈ ∆n,

(1− δ)Pm
(
{τpn ≤ qn} ∩ {Ŵj 6= Ŵ0 , ∀j ∈ J1, τpnK}

)
≤ Pm

(
{τpn ≤ qn} ∩ {Ŵj 6= Ŵ0 , ∀j ∈ J1, τpnK} | T = k

)
≤ (1 + δ)Pm

(
{τpn ≤ qn} ∩ {Ŵj 6= Ŵ0 ,∀j ∈ J1, τpnK}

)
.

The quantity Pm
(
{τpn ≤ qn} ∩ {Ŵj 6= Ŵ0 ,∀j ∈ J1, τpnK}

)
does not depend on m ∈ Z, and

(logn)P0(τpn > qn) tends to 0 by (15). Using Proposition 8, we have thus

lim
n→∞

(logn)P0
(
{τpn ≤ qn} ∩ {Ŵj 6= Ŵ0 ,∀j ∈ J1, τpnK}

)
= 4π2σ4

1− 2α.
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The estimate of the lemma follows from the preceding considerations and (16).
It remains to prove (16). If (m, k) ∈ ∆n, we have

Pm(τpn ≥ qn | T = k) = Pm({τpn ≥ qn} ∩ {T = k})
Pm(T = k) .

Recall formula (13) for Pm(T = k) and also note that by (14),

P0(ζk = m+ 1) =
√

2
πk

exp
(
− (m+ 1)2

2k
)

exp
(
O( 1
k

+ m4

k3 )
)
, (20)

when n → ∞, uniformly in (m, k) ∈ ∆n. Notice that 1
k + m4

k3 −→ 0 as n → ∞, uniformly in
(m, k) ∈ ∆n, and that m2

2k ≤ n
3η if (m, k) ∈ ∆n. By our choice of η, it follows that

Pm(ζqn > m+ n
1
2−

α
2 | T = k) ≤ Pm(ζqn > m+ n

1
2−

α
2 )

Pm(T = k) = k

m+ 1
P0(ζqn > n

1
2−

α
2 )

P0(ζk = m+ 1) = O
( 1
n

)
(21)

as n→∞, uniformly in m and k.
On the other hand, by applying the Markov property at time qn, we have

Pm
(
{τpn ≥ qn}∩{ζqn ≤ m+n

1
2−

α
2 }∩{T = k}

)
= Em

[
1
{τpn≥qn}∩{ζqn≤m+n

1
2−

α
2 }

Pζqn (T = k−qn)
]
.

On the event {τpn ≥ qn} ∩ {ζqn ≤ m + n
1
2−

α
2 } we have m − pn ≤ ζqn ≤ m + n

1
2−

α
2 , Pm a.s. If

m− pn ≤ m′ ≤ m+ n
1
2−

α
2 and m′ + k − qn is odd, using again Kemperman’s formula, we have

Pm′(T = k − qn) = m′ + 1
k − qn

Pm′(ζk−qn = −1) = m′ + 1
k − qn

P0(ζk−qn = m′ + 1).

Furthermore, from (14),

P0(ζk−qn = m′ + 1) =
√

2
π(k − qn) exp

(
− (m′ + 1)2

2(k − qn)
)

exp
(
O( 1
k

+ m′4

k3 )
)
. (22)

Now observe that

−(m′ + 1)2

2(k − qn) + (m+ 1)2

2k ≤ −(m′ + 1)2 − (m+ 1)2

2k = −(m′ −m)(m′ +m+ 2)
2k

and the right-hand side tends to 0 as n → ∞, uniformly in (m, k) ∈ ∆n and m′ such that
m − pn ≤ m′ ≤ m + n

1
2−

α
2 . By comparing (20) and (22), noting that m′ ≤ 2m under our

assumptions, we get

lim sup
n→∞

(
sup
m,k,m′

Pm′(T = k − qn)
Pm(T = k)

)
≤ 2.

It follows that, for all n sufficiently large, we have, for every (m, k) ∈ ∆n,

Pm
(
{τpn ≥ qn} ∩ {ζqn ≤ m+ n

1
2−

α
2 } ∩ {T = k}

)
Pm(T = k) ≤ 3Pm(τpn ≥ qn) = 3P0(τpn ≥ qn).

Recalling (15), we have thus proved that, for every δ ∈ (0, α4 ),

lim
n→∞

nδ sup
(m,k)∈∆n

Pm
(
{τpn ≥ qn} ∩ {ζqn ≤ m+ n

1
2−

α
2 } | T = k

)
= 0,

and by combining this with (21), we get the desired estimate (16).
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We set, for every n ≥ 1,

R•n := #
{
Ŵ

(n)
0 , Ŵ

(n)
1 , . . . , Ŵ

(n)
2n
}
.

Proposition 12. We have

lim sup
n→∞

( logn
n

)2
E
[
(R•n)2] ≤ (8π2σ4)2.

Proof. We note that

R•n =
2n∑
i=1

1{Ŵ (n)
`
6=Ŵ (n)

i ,∀`∈Ji+1,2nK}

and therefore

E
[
(R•n)2] =

2n∑
i,j=1

P(An(i, j)), (23)

where An(i, j) is defined by

An(i, j) :=
{
Ŵ

(n)
` 6= Ŵ

(n)
i ,∀` ∈ Ji+ 1, 2nK

}
∩
{
Ŵ

(n)
` 6= Ŵ

(n)
j ,∀` ∈ Jj + 1, 2nK

}
.

We fix α ∈ (0, 1/4), and define pn and qn for every n ≥ 1 as above. We also fix η > 0 so that
the conclusion of Lemma 11 holds.

In view of proving the proposition, we will use formula (23). In this formula, we can restrict
our attention to values of i and j such that j− i > n1−α2 and j < 2n−n1−η (or the same with i
and j interchanged). Also, when bounding P(An(i, j)), we may impose the additional constraint
that n 1

2−
α
2 ≤ ζ

(n)
i ≤ n

1
2 +η and n 1

2−
α
2 ≤ ζ

(n)
j ≤ n

1
2 +η: Indeed, Lemma 10 readily shows that the

event where either of these constraints is not satisfied will give a negligible contribution to the
sum in (23).

Let us fix i, j ∈ J1, 2nK such that j − i > n1−α2 and j < 2n − n1−η. By using the definition
of W (n) as a conditioned process and applying the Markov property at time i, we have

P
(
An(i, j) ∩ {n

1
2−

α
2 ≤ ζ(n)

i ≤ n
1
2 +η} ∩ {n

1
2−

α
2 ≤ ζ(n)

j ≤ n
1
2 +η}

)
=

E
[
1
{n

1
2−

α
2 ≤ζi≤n

1
2 +η}

1{T>i} Eζi
[
1
{n

1
2−

α
2 ≤ζj−i≤n

1
2 +η}

1A′n(i,j)1{T=2n+1−i}
]]

P(T = 2n+ 1) , (24)

where

A′n(i, j) :=
{
Ŵ` 6= Ŵ0 , ∀` ∈ J1, 2n− iK

}
∩
{
Ŵ` 6= Ŵj−i ,∀` ∈ Jj − i+ 1, 2n− iK

}
.

Setting r = j − i, we are thus led to bound

Em
[
1{Ŵ` 6=Ŵ0 ,∀`∈J1,k−1K} 1{Ŵ` 6=Ŵr ,∀`∈Jr+1,k−1K} 1

{n
1
2−

α
2 ≤ζr≤n

1
2 +η}

1{T=k}
]
, (25)

where n 1
2−

α
2 ≤ m ≤ n

1
2 +η, r > n1−α2 and r + n1−η < k ≤ 2n (and moreover k +m needs to be

odd). Recall the notation τpn , and set

τ (r)
pn

:= inf{` ≥ r : ζ` = ζr − pn}.
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Thanks to (16), we can also introduce the constraint τpn ≤ qn inside the expectation in (25), up
to an error that is bounded above by Pm(T = k) o(n−δ) for some δ > 0 (here the term o(n−δ) is
uniform in m, r, k satisfying the preceding conditions). Furthermore, we get an upper bound by
replacing the interval J1, k − 1K, resp. Jr + 1, k − 1K, by J1, τpnK, resp. Jr + 1, τ (r)

pn K. Next, using
the Markov property at time r, and noting that r > qn, we have

Em
[
1{Ŵ` 6=Ŵ0 ,∀`∈J1,τpnK} 1{τpn≤qn} 1{Ŵ` 6=Ŵr ,∀`∈Jr+1,τ (r)

pn K} 1
{n

1
2−

α
2 ≤ζr≤n

1
2 +η}

1{T=k}
]

= Em
[
1{Ŵ` 6=Ŵ0 ,∀`∈J1,τpnK} 1{τpn≤qn} 1{T>r} 1

{n
1
2−

α
2 ≤ζr≤n

1
2 +η}

× E(Wr)
[
1{Ŵ` 6=Ŵ0 ,∀`∈J1,τpnK} 1{T=k−r}

]]
.

See Fig. 5 for an illustration.

m

ζ

0
T

τpn

bn 1
2
−αc

qn = bn1− 3α
2 c
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Figure 5: Illustration of the proof of Proposition 12

Then the key observation is the following. Let z0 = m, z1, . . . , zr be a simple random walk
trajectory over J0, rK such that 0 ≤ min{z` : 0 ≤ ` ≤ r} ≤ m−pn. Then under Pm, conditionally
on the event {ζ1 = z1, . . . , ζr = zr}, the path (Wr(zr) −Wr(zr − `))`≥0 is independent of the
event {Ŵ` 6= Ŵ0 , ∀` ∈ J1, τpnK}, and distributed as (S`)`≥0. This property easily follows from
the construction of the discrete snake.

Thanks to the latter observation, we may rewrite the right-hand side of the last display, after
conditioning with respect to ζ1, . . . , ζr, in the form

Em
[
1{Ŵ` 6=Ŵ0 ,∀`∈J1,τpnK} 1{τpn≤qn} 1{T>r} 1

{n
1
2−

α
2 ≤ζr≤n

1
2 +η}

Eζr
[
1{Ŵ` 6=Ŵ0 ,∀`∈J1,τpnK} 1{T=k−r}

]]
.

(26)
Recall that k − r > n1−η, and let ε > 0. It follows from Lemma 11 that, for n large enough, on
the event {n 1

2−
α
2 ≤ ζr ≤ n

1
2 +η}, the quantity

Eζr
[
1{Ŵ` 6=Ŵ0 ,∀`∈J1,τpnK} 1{T=k−r}

]
is bounded above by ( 4π2σ4

1− 2α + ε
)
(logn)−1 Pζr(T = k − r).
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Hence the quantity (26) is also bounded by

( 4π2σ4

1− 2α + ε
)
(logn)−1 Em

[
1{Ŵ` 6=Ŵ0 ,∀`∈J1,τpnK} 1{τpn≤qn} 1{T>r} 1

{n
1
2−

α
2 ≤ζr≤n

1
2 +η}

Pζr(T = k − r)
]

=
( 4π2σ4

1− 2α + ε
)
(logn)−1 Em

[
1{Ŵ` 6=Ŵ0 ,∀`∈J1,τpnK} 1{τpn≤qn} 1

{n
1
2−

α
2 ≤ζr≤n

1
2 +η}

1{T=k}
]
,

again by the Markov property at time r. Finally, another application of Lemma 11 shows that
the quantity in the last display is bounded above for n large by

( 4π2σ4

1− 2α + ε
)2

(logn)−2 Pm(T = k).

Summarizing, we see that the quantity (25) is bounded above for n large by

(( 4π2σ4

1− 2α + ε
)2

(logn)−2 + o(n−δ)
)
Pm(T = k).

Finally, from (24), we have for n large

P
(
An(i, j) ∩ {n

1
2−

α
2 ≤ ζ(n)

i ≤ n
1
2 +η} ∩ {n

1
2−

α
2 ≤ ζ(n)

j ≤ n
1
2 +η}

)
≤
(( 4π2σ4

1− 2α + ε
)2

(logn)−2 + o(n−δ)
) E

[
1{T>i} Pζi(T = 2n+ 1− i)

]
P(T = 2n+ 1)

=
( 4π2σ4

1− 2α + ε
)2

(logn)−2 + o(n−δ),

where the term o(n−δ) is uniform in i and j satisfying the preceding conditions. The statement
of the proposition follows by summing this bound over i and j.

Lemma 13. We have
lim inf
n→∞

logn
n

E
[
R•n
]
≥ 8π2σ4.

Proof. Let δ > 0 and ε ∈ (0, 1
2). To simplify notation we write n(ε) = b2(1−2ε)nc in this proof.

We fix 0 < a < b such that, if (et)0≤t≤1 denotes a normalized Brownian excursion defined under
the probability measure P , we have

P (eε /∈ (a, b)
)

= P (e1−ε /∈ (a, b)
)
< δ.

Since we know that the sequence of processes ((2n)−1/2ζ
(n)
b2ntc)0≤t≤1 converges in distribution to

(et)0≤t≤1, it follows that, for every sufficiently large n,

P
(
ζ

(n)
b2nεc /∈ [a

√
2n, b
√

2n] or ζ(n)
b2nεc+n(ε) /∈ [a

√
2n, b
√

2n]
)
≤ δ. (27)

Let µ(n)
ε denote the law of ζ(n)

b2nεc. If Fn is a nonnegative function on Zn(ε)+1, the Markov property
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gives

E
[
1{a√2n≤ζ(n)

b2nεc≤b
√

2n} 1{a√2n≤ζ(n)
b2nεc+n(ε)≤b

√
2n} Fn

(
(ζ(n)
b2nεc+k)0≤k≤n(ε)

)]
= E

[
1{a√2n≤ζ(n)

b2nεc≤b
√

2n} Eζ(n)
b2nεc

[
1{a√2n≤ζn(ε)≤b

√
2n}Fn

(
(ζk)0≤k≤n(ε)

) ∣∣∣T = 2n+ 1− b2nεc
]]

=
∑

a
√

2n≤m≤b
√

2n

µ(n)
ε (m)

Em
[
1{a√2n≤ζn(ε)≤b

√
2n}Fn

(
(ζk)0≤k≤n(ε)

)
1{T=2n+1−b2nεc}

]
Pm(T = 2n+ 1− b2nεc)

=
∑

a
√

2n≤m≤b
√

2n

µ(n)
ε (m)

Em
[
1{a√2n≤ζn(ε)≤b

√
2n}Fn

(
(ζk)0≤k≤n(ε)

)
1{T>n(ε)} Pζn(ε)(T = ñ(ε))

]
Pm(T = 2n+ 1− b2nεc)

where ñ(ε) := 2n+ 1− b2nεc − n(ε).
Let m,m′ ∈ [a

√
2n, b
√

2n] be such that m + b2nεc and m′ + b2nεc + n(ε) are even. By
Kemperman’s formula (13),

Pm′(T = ñ(ε))
Pm(T = 2n+ 1− b2nεc) = 2n+ 1− b2nεc

ñ(ε)
m′ + 1
m+ 1

P0(ζñ(ε) = m′ + 1)
P0(ζ2n+1−b2nεc = m+ 1)

and using (14), we easily obtain that there exists a finite constant C(ε, a, b) such that, for every
sufficiently large n, and every m,m′ satisfying the above conditions,

Pm′(T = ñ(ε))
Pm(T = 2n+ 1− b2nεc) ≤ C(ε, a, b).

We thus obtain that, for every large enough n,

E
[
1{a√2n≤ζ(n)

b2nεc≤b
√

2n} 1{a√2n≤ζ(n)
b2nεc+n(ε)≤b

√
2n} Fn

(
(ζ(n)
b2nεc+k)0≤k≤n(ε)

)]
≤ C(ε, a, b)

∑
a
√

2n≤m≤b
√

2n

µ(n)
ε (m)Em

[
1{a√2n≤ζn(ε)≤b

√
2n}Fn

(
(ζk)0≤k≤n(ε)

)
1{T>n(ε)}

]
≤ C(ε, a, b)

∑
a
√

2n≤m≤b
√

2n

µ(n)
ε (m)Em

[
Fn
(
(ζk)0≤k≤n(ε)

)]
.

Let Gn be a nonnegative measurable function on Wn(ε)+1. The preceding bound remains
valid if we replace Fn((ζ(n)

b2nεc+k)0≤k≤n(ε)) by Gn((W (n)
b2nεc+k)0≤k≤n(ε)) in the left-hand side and

Fn((ζk)0≤k≤n(ε)) by Gn((Wk)0≤k≤n(ε)) in the right-hand side (just use the fact that the condi-
tional distribution of W (n) given ζ(n) is the same as the conditional distribution of W given ζ).
In particular, if we let Gn(w0, w1, . . . , wn(ε)) be the indicator function of the set where

∣∣∣ logn(ε)
n(ε) #

{
ŵ0, ŵ1, . . . , ŵn(ε)

}
− 4π2σ4

∣∣∣ > δ,

we obtain that

P
(
ζ

(n)
b2nεc ∈ [a

√
2n, b
√

2n], ζ(n)
b2nεc+n(ε) ∈ [a

√
2n, b
√

2n],
∣∣∣ logn(ε)
n(ε) R•,εn − 4π2σ4

∣∣∣ > δ
)

≤ C(ε, a, b)P
(∣∣∣ logn(ε)

n(ε) Rn(ε) − 4π2σ4
∣∣∣ > δ

)
, (28)
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where
R•,εn := #

{
Ŵ

(n)
b2nεc, Ŵ

(n)
b2nεc+1, . . . , Ŵ

(n)
b2nεc+n(ε)

}
.

Here we used the (obvious) fact that the distribution of Rn under Pm does not depend on m.
By Theorem 9, the right-hand side of (28) tends to 0 as n→∞. Using also (27), we obtain

that
lim sup
n→∞

P
(∣∣∣ logn(ε)

n(ε) R•,εn − 4π2σ4
∣∣∣ > δ

)
≤ δ.

Since R•n ≥ R•,εn and since both δ and ε can be chosen arbitrarily small, the statement of the
lemma follows.

Theorem 14. We have
logn
n

R•n
L2(P)−→
n→∞

8π2σ4.

Proof. By combining Proposition 12 and Lemma 13, we get that

lim sup
n→∞

E
[
( logn
n

R•n − 8π2σ4)2
]

≤
(

lim sup
n→∞

E
[
( logn
n

R•n)2])− 16π2σ4
(

lim inf
n→∞

E
[ logn
n

R•n
])

+ (8π2σ4)2 ≤ 0 ,

which gives the desired result.

Theorem 14 and the remarks before Lemma 10 give the case d = 4 of Theorem 1.

3.2 Proof of the main estimate

In this subsection, we prove Proposition 8, which was a key ingredient of the results of the
previous subsection. We first recall some basic facts. For every x ∈ Z4 and k ≥ 0, we set

pk(x) = P (Sk = x)

and we now denote the Green function of the random walk S by

G(x) =
∞∑
k=0

pk(x)

(G = Gθ in the notation of Section 2). A standard estimate (see e.g. [14, Chapter 4]) states that

lim
x→∞

|x|2G(x) = 1
2π2σ2 . (29)

Let p be the period of the random walk S. Since S is assumed to be symmetric, we have p = 1
or 2. Then from the local limit theorem (see e.g. [14, Chapter 2]), we have

lim
j→∞,j∈pZ

j2 pj(0) = p
4π2σ4 . (30)

We state our first lemma.

Lemma 15. We have P(Ŵk = 0) = 0 if k /∈ pZ, and

lim
k→∞,k∈pZ

k P(Ŵk = 0) = p
4π2σ4 .
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Proof. The first assertion is clear since ζk is odd when k is odd, P a.s. Then, for every integer
k ≥ 0, set

ζ
k

= min
0≤j≤k

ζj ,

and
Xk = ζk − 2ζ

k
.

From the construction of the discrete snake, and the fact that S is symmetric, the conditional
distribution of Ŵk knowing that Xk = m is the law of Sm. Consequently,

P(Ŵk = 0) =
∞∑
m=0

P(Xk = m) pm(0). (31)

Asymptotics for P (Sm = 0) = pm(0) are given by (30). We then need to evaluate P(Xk = m).
Set X̃k = 1 + Xk for every k ≥ 0. The discrete version of Pitman’s theorem (see [23, Lemma
3.1]) shows that, under the probability measure P, (X̃k)k≥0 is a Markov chain on {1, 2, . . .} with
transition kernel Q given by Q(1, 2) = 1 and for every j ≥ 2,

Q(j, j + 1) = 1
2
j + 1
j

, Q(j, j − 1) = 1
2
j − 1
j

.

This Markov chain is also the discrete h-transform of simple random walk on Z+ (killed upon
hitting 0) corresponding to h(j) = j. Let (Yk)k≥0 stand for a simple random walk on Z that
starts from ` under the probability measure P`, and letH0 = inf{n ≥ 0 : Yn = 0}. It follows from
the preceding observations that, for every integer k ≥ 1 and everym ≥ 1 such that 1 ≤ m ≤ k+1
and k +m is odd,

P(X̃k = m) = mP1(Yk = m,H0 > k)

= m
(
P0(Yk = m− 1)− P0(Yk = m+ 1)

)
= m× 2−k

((
k

k+m−1
2

)
−
(

k
k+m+1

2

))

= 2m2

k +m+ 1 P0(Yk = m− 1)

Hence, for every m ≥ 0,

P(Xk = m) = 2(m+ 1)2

k +m+ 2 P0(Yk = m). (32)

From (31) and (32), we get

P(Ŵk = 0) =
k∑

m=0

2
k +m+ 2

(
(m+ 1)2pm(0)

)
P0(Yk = m),

and the second assertion of the lemma follows using (30).

In the next lemma, for every integer k ≥ 0, we use the notation W̃k for the time-shifted path
W̃k = (W̃k(j))j≤0, where W̃k(j) := Wk(ζk + j), for every j ≤ 0.

Lemma 16. Let k ≥ 1 such that P(Ŵk = 0) > 0. Under the conditional probability measure
P(· | Ŵk = 0), the two pairs (W0, W̃k) and (W̃k,W0) have the same distribution.
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Proof. Write πk(i, j), i, j ≥ 0 for the joint distribution under P of the pair(
− min

0≤`≤k
ζ`, ζk − min

0≤`≤k
ζ`
)
.

By an easy time-reversal argument, we have πk(i, j) = πk(j, i) for every i, j ≥ 0. On the other
hand, under P, conditionally on(

− min
0≤`≤k

ζ`, ζk − min
0≤`≤k

ζ`
)

= (i, j)

we have W0(−i− `) = Wk(−i− `) = W̃k(−j − `) for every ` ≥ 0, and the two random paths(
W0(−i+ `)−W0(−i)

)
0≤`≤i

and (
W̃k(−j + `)− W̃k(−j)

)
0≤`≤j =

(
Wk(−i+ `)−W0(−i)

)
0≤`≤j

are independent and distributed as the random walk S stopped respectively at time i and at
time j. Note that the event {Ŵk = 0} occurs if and only if the latter two paths have the same
endpoint. The statement of the lemma easily follows from the preceding observations and the
property πk(i, j) = πk(j, i).

Let us fix η ∈ (0, 1/4). Thanks to Lemma 15, we may choose δ > 0 small enough so that,
for every sufficiently large n,

n∑
k=b(1−δ)nc

P(Ŵk = 0) < η.

We then observe that

1 =
n∑
k=0

P
(
Ŵk = 0; Ŵ` 6= 0,∀` ∈ Jk + 1, nK

)
=

n∑
k=0

E
[
1{Ŵk=0} P(Wk)

(
Ŵ` 6= 0,∀` ∈ J1, n− kK

)]
=

n∑
k=0

E
[
1{Ŵk=0} P(W0)

(
Ŵ` 6= 0,∀` ∈ J1, n− kK

)]
.

In the second equality, we applied the Markov property of the discrete snake at time k, and in
the third one we used Lemma 16.

From the last equalities and our choice of δ, it follows that, for n large,

E
[( b(1−δ)nc∑

k=0
1{Ŵk=0}

)
P(W0)

(
Ŵ` 6= 0, ∀` ∈ J1, bδncK

)]
≥ 1− η.

Next fix ε ∈ (0, 1/2) and write n(ε) = bn 1
2 +εc to simplify notation. For every integer p ≥ 1,

there exists a constant Cp,ε such that, for every n ≥ 1,

P(τn(ε) ≤ n) ≤ Cp,εn−p.
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Hence, we also get, for every sufficiently large n,

E
[( τn(ε)−1∑

k=0
1{Ŵk=0}

)
P(W0)

(
Ŵ` 6= 0,∀` ∈ J1, bδncK

)]
≥ 1− 2η.

By conditioning with respect to W0, we see that the left-hand side of the preceding display is
equal to

E
[
E(W0)

[ τn(ε)−1∑
k=0

1{Ŵk=0}

]
P(W0)

(
Ŵ` 6= 0,∀` ∈ J1, bδncK

)]
.

We now note that, for every integer m ≥ 1,

E(W0)

[
τm−1∑
k=0

1{Ŵk=0}

]
= 2

m−1∑
j=0

G(−W0(−j)) (33)

(we could write G(W0(−j)) instead of G(−W0(−j)) because S is symmetric, but the preceding
formula would hold also in the non-symmetric case). To derive formula (33), first consider the
case m = 1. By a standard property of simple random walk, we have for every integer i ≥ 0,

E(W0)

[
τ1−1∑
k=0

1{ζk=i}

]
= 2.

Then using the conditional distribution of W given the lifetime process ζ, we obtain

E(W0)

[
τ1−1∑
k=0

1{Ŵk=0}

]
=
∞∑
i=0

E(W0)

[
τ1−1∑
k=0

1{ζk=i} 1{Ŵk=0}

]

=
∞∑
i=0

E(W0)

[
τ1−1∑
k=0

1{ζk=i}

]
pi(−W0(0))

= 2G(−W0(0)).

(Of course here W0(0) = 0, but the previous calculation holds independently of the value of
W0(0).) The same argument shows that, for every j ∈ J1,m− 1K,

E(W0)

[ τj+1−1∑
k=τj

1{Ŵk=0}

]
= 2G(−W0(−j))

and formula (33) follows.
From (33) and the preceding considerations, we get that, for all sufficiently large n,

2E
[( n(ε)−1∑

j=0
G(−W0(−j))

)
P(W0)

(
Ŵ` 6= 0, ∀` ∈ J1, bδncK

)]
≥ 1− 2η. (34)

Now recall that, under the probability measure P, (−W0(−j))j≥0 has the same distribution as
(Sj)j≥0. At this point we need two other lemmas.

Lemma 17. For every integer p ≥ 1, there exists a constant C(p) such that, for every n ≥ 2,

E
[( n∑

j=0
G(Sj)

)p]
≤ C(p) (logn)p.
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Proof. We first observe that

E
[( n∑

j=0
G(Sj)

)p]
= E

[( n∑
j=0

G(Sj) 1{|Sj |≤n}
)p]

+ o(1)

as n→∞, because the event where sup{|Sj | : 0 ≤ j ≤ n} > n has a probability which decreases
to 0 faster than any negative power of n. For every integer k ≥ 1 and x ∈ Z4, set

Gk(x) =
k∑
i=0

pi(x).

Using (29) and the standard local limit theorem (see e.g. [14, Chapter 2]) one easily verifies
that, for every sufficiently large n, for all x ∈ Z4 such that |x| ≤ n, the bound Gn3(x) ≥ 1

2G(x)
holds. Thanks to this observation, it is enough to bound

E
[( n∑

j=0
Gn3(Sj) 1{|Si|≤n}

)p]
.

However, if S′ stands for another random walk with the same distribution as S but independent
of S, we have

n∑
j=0

Gn3(Sj) = E
[ n∑
j=0

n3∑
i=0

1{Sj=S′i}
∣∣∣S],

and by Lemma 1 in Marcus and Rosen [22], we know that there exists a constant C ′(p) such
that, for every n ≥ 2,

E
[( n∑

j=0

n3∑
i=0

1{Sj=S′i}
)p]
≤ C ′(p) (logn)p.

The desired bound follows since the conditional expectation is a contraction in Lp.

Lemma 18. For every α > 0, there exists a constant Cα such that, for every integer m ≥ 2,
we have

P
(∣∣∣ m∑

k=0
G(Sk)−

1
4π2σ4 logm

∣∣∣ ≥ α logm
)
≤ Cα(logm)−3/2.

We postpone the proof of Lemma 18 and complete the proof of Proposition 8. An application
of Hölder’s inequality gives for p ≥ 2,

E

[( m∑
j=0

G(Sj)
)

1{∑m

j=0 G(Sj)≥( 1
4π2σ4 +α) logm}

]

≤ E
[( m∑

j=0
G(Sj)

)p]1/p
P
( m∑
j=0

G(Sj) ≥ ( 1
4π2σ4 + α) logm

)1/q

≤ C(p)1/p logm× P
(∣∣∣ m∑

j=0
G(Sj)−

1
4π2σ4 logm

∣∣∣ ≥ α logm
)1/q

where 1
p + 1

q = 1 and we used Lemma 17. Choosing p ≥ 4 and using Lemma 18, we obtain that

lim
m→∞

E

[( m∑
j=0

G(Sj)
)

1{∑m

j=0 G(Sj)≥( 1
4π2σ4 +α) logm}

]
= 0.
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From (34) and the fact that (−W0(−j))j≥0 has the same distribution as (Sj)j≥0, we then get,
for every sufficiently large n,

2 ( 1
4π2σ4 + α)(logn(ε)) P

(
Ŵ` 6= 0,∀` ∈ J1, bδncK

)
≥ 1− 2η − 2E

[( n(ε)−1∑
j=0

G(−W0(−j))
)

1{∑n(ε)−1
j=0 G(−W0(−j)))≥( 1

4π2σ4 +α) logn(ε)}

]
≥ 1− 3η.

Since logn(ε) ≤ (1
2 + ε) logn, the preceding bound implies that

lim inf
n→∞

(logn)P
(
Ŵ` 6= 0, ∀` ∈ J1, bδncK

)
≥ 1− 3η

1 + 2ε ( 1
4π2σ4 + α)−1.

Now note that the ratio logbδnc/ logn tends to 1 as n→∞, and that η, ε and α can be chosen
arbitrarily small. We conclude that

lim inf
n→∞

(logn)P
(
Ŵ` 6= 0,∀` ∈ J1, nK

)
≥ 4π2σ4.

The proof of the analogous result for the limsup behavior is similar. In the same way as we
proceeded above, we arrive at the bound

E
[(

n∑
k=0

1{Ŵk=0}

)
P(W0)

(
Ŵ` 6= 0,∀` ∈ J1, nK

)]
≤ 1.

At this point, we would like to replace the sum from k = 0 to n by a sum from k = 0 to τn′(ε)−1,
where n′(ε) = bn 1

2−εc for some fixed ε ∈ (0, 1/2). Simple arguments give the existence of a
constant C ′ε such that, for every integer n ≥ 1,

P(τn′(ε) ≥ n) ≤ C ′ε n−ε/2.

We can then write

1 ≥ E
[( τn′(ε)−1∑

k=0
1{Ŵk=0}

)
P(W0)

(
Ŵ` 6= 0, ∀` ∈ J1, nK

)]
− E

[
1{τn′(ε)≥n}

( τn′(ε)−1∑
k=0

1{Ŵk=0}

)]
,

and by the Cauchy-Schwarz inequality, we have

E
[
1{τn′(ε)≥n}

( τn′(ε)−1∑
k=0

1{Ŵk=0}

)]
≤ (C ′ε n−ε/2)1/2 × E

[( τn′(ε)−1∑
k=0

1{Ŵk=0}

)2
]1/2

. (35)

To bound the expectation in the right-hand side, one can verify that, for every integer m ≥ 1,

E
[( τm−1∑

k=0
1{Ŵk=0}

)2
∣∣∣∣∣W0

]
≤ 4

(
m−1∑
j=0

G(−W0(−j))
)2

+ 4
m−1∑
j=0

Φ(−W0(−j))

where, for every x ∈ Z4,
Φ(x) :=

∑
y∈Z4

G(y)G(x− y)2.
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The proof of the latter bound is similar to that of (33) above, and we leave the details to the
reader. One then checks from (29) that there exists a constant C̃ such that

Φ(x) ≤ C̃ (|x| ∨ 1)−2 (1 + log(|x| ∨ 1)), for every x ∈ Z4.

It easily follows that

E
[(

τm−1∑
k=0

1{Ŵk=0}

)2]
= O((logm)2)

as m→∞. Consequently the right-hand side of (35) tends to 0 as n→∞ and if η > 0 is fixed,
we have, for all n sufficiently large,

E
[( τn′(ε)−1∑

k=0
1{Ŵk=0}

)
P(W0)

(
Ŵ` 6= 0, ∀` ∈ J1, nK

)]
≤ 1 + η.

Just as we obtained (34), we deduce from the latter bound that

2E
[( n′(ε)−1∑

j=0
G(−W0(−j))

)
P(W0)

(
Ŵ` 6= 0,∀` ∈ J1, nK

)]
≤ 1 + η. (36)

Then fix α ∈ (0, (4π2σ4)−1). It follows from (36) that

2( 1
4π2σ4 − α)(logn′(ε))E

[
1
{
∑n′(ε)−1

j=0 G(−W0(−j))≥( 1
4π2σ4−α) logn′(ε)}

P(W0)
(
Ŵ` 6= 0, ∀` ∈ J1, nK

)]

≤ 2E
[( n′(ε)−1∑

j=0
G(−W0(−j))

)
P(W0)

(
Ŵ` 6= 0,∀` ∈ J1, nK

)]
≤ 1 + η.

On the other hand,

(logn′(ε))P
( n′(ε)−1∑

j=0
G(−W0(−j)) < ( 1

4π2σ4 − α) logn′(ε)
)
−→
n→∞

0

by Lemma 18. By combining the last two displays, we get

lim sup
n→∞

2( 1
4π2σ4 − α)(logn′(ε))P

(
Ŵ` 6= 0,∀` ∈ J1, nK

)
≤ 1 + η.

Since η, ε and α can be chosen arbitrarily small, we get

lim sup
n→∞

(logn)P
(
Ŵ` 6= 0,∀` ∈ J1, nK

)
≤ 4π2σ4,

which completes the proof of the first assertion of Proposition 8. The second assertion is an easy
consequence of the first one, noting that, for every ε > 0, both P(τp ≥ p2+ε) and P(τp ≤ p2−ε)
are o((log p)−1) as p→∞. �

Proof of Lemma 18. The general strategy of the proof is to derive an analogous result for
Brownian motion in R4, and then to use a strong invariance principle to transfer this result to
the random walk S.

We let B = (Bt)t≥0 be a four-dimensional Brownian motion started from 0 and set ρt = |Bt|
for every t ≥ 0, so that (ρt)t≥0 is a four-dimensional Bessel process started from 0. Here is the
Brownian motion version of Lemma 18.
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Lemma 19. Let ε > 0. There exist two constants C(ε) and β(ε) > 0 such that, for every
t > r ≥ 1,

P

(∣∣∣∣ ∫ t

r

ds
ρ2
s

− 1
2 log( t

r
)
∣∣∣∣ > ε log( t

r
)
)
≤ C(ε) ( t

r
)−β(ε).

Let us postpone the proof of Lemma 19. We fix α > 0 and consider an integer n ≥ 1.
By an extension due to Zaitsev [26] of the celebrated Komlós-Major-Tusnády strong invariance
principle, we can construct on the same probability space the finite sequence (S1, . . . , Sn) and
the Brownian motion (Bt)t≥0, in such a way that, for some constants c > 0, c′ > 0 and K > 0
that do not depend on n, we have

E
[

exp
(
c max

1≤k≤n
|Sk − σBk|

)]
≤ K exp(c′ logn).

It readily follows that we can find constants C > 0 and a > 0 (again independent of n) such
that

P
(

max
1≤k≤n

|Sk − σBk| > C logn
)
≤ Kn−a.

Let A > 2 be a constant. Then

P
(

inf
t≥(logn)4

σ|Bt| ≤ AC logn
)

= P
(

inf
t≥1

σ|Bt| ≤
AC

logn
)

= O((logn)−2)

by an easy estimate. On the event

En :=
{

max
1≤k≤n

|Sk − σBk| ≤ C logn
}
∩
{

inf
t≥(logn)4

σ|Bt| > AC logn
}

we have, for every integer k such that (logn)4 ≤ k ≤ n,

|Sk| ≥ σ|Bk| − C logn ≥ (1− η)σ|Bk|

and
|Sk| ≤ σ|Bk|+ C logn ≤ (1 + η)σ|Bk|

where η = 1/A. We now fix A so that η ∈ (0, 1
5) and 5η < π2σ4α/2.

Recalling our estimate (29), we also see that (provided n is large enough) we have on the
event En, for every integer k such that (logn)4 ≤ k ≤ n,

(1− 3η) 1
2π2σ4 |Bk|

−2 ≤ G(Sk) ≤ (1 + 3η) 1
2π2σ4 |Bk|

−2.

Consequently, we have on the event En,

(1− 3η) 1
2π2σ4

n∑
k=d(logn)4e

|Bk|−2 ≤
n∑

k=d(logn)4e
G(Sk) ≤ (1 + 3η) 1

2π2σ4

n∑
k=d(logn)4e

|Bk|−2.

The next step is to observe that
n∑

k=d(logn)4e
|Bk|−2

is close to ∫ n+1

d(logn)4e

ds
|Bs|2
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up to a set of small probability. Indeed simple estimates show that, for any choice of κ > 0, we
have

sup
0≤k≤n

sup
k≤s≤k+1

|Bs −Bk| ≤ κ logn

outside of a set of probability O(n−1). By choosing κ suitably, we then see that on the event

Ẽn := En ∩
{

sup
0≤k≤n

sup
k≤s≤k+1

|Bs −Bk| ≤ κ logn
}

we have
(1− η)

∫ n+1

d(logn)4e

ds
|Bs|2

≤
n∑

k=d(logn)4e
|Bk|−2 ≤ (1 + η)

∫ n+1

d(logn)4e

ds
|Bs|2

,

and consequently

(1− 5η) 1
2π2σ4

∫ n+1

d(logn)4e

ds
|Bs|2

≤
n∑

k=d(logn)4e
G(Sk) ≤ (1 + 5η) 1

2π2σ4

∫ n+1

d(logn)4e

ds
|Bs|2

. (37)

We also need to bound the quantity

d(logn)4e−1∑
k=0

G(Sk).

However, from Lemma 17 with p = 2, we immediately get that, for every integer m ≥ 2 and
every h > 0,

P
( m∑
k=0

G(Sk) ≥ h
)
≤ C(2)(logm)2

h2 . (38)

Finally,

P
(∣∣∣ n∑

k=0
G(Sk)−

1
4π2σ4 logn

∣∣∣ ≥ α logn
)

≤ P
( d(logn)4e∑

k=0
G(Sk) ≥

α

2 logn
)

+ P
(∣∣∣ n∑

k=d(logn)4e
G(Sk)−

1
4π2σ4 logn

∣∣∣ ≥ α

2 logn
)
.

The first term in the right-hand side is O((logn)−3/2) by (38). On the other hand, by (37), the
second term is bounded by

P (Ẽcn) + P
(∣∣∣ ∫ n+1

d(logn)4e

ds
|Bs|2

− 1
2 logn

∣∣∣ ≥ α′ logn
)

where α′ = (1
2π

2σ4α) ∧ 1
4 is a constant independent of n, which satisfies

(1 + 5η)(1
2 + α′) 1

2π2σ4 <
1

4π2σ4 + α

2 and (1− 5η)(1
2 − α

′) 1
2π2σ4 >

1
4π2σ4 −

α

2 .

(Here we use our choice of η such that 5η < π2σ4α/2.) From preceding estimates, we have
P (Ẽcn) = O((logn)−2). On the other hand, Lemma 19 implies that

P
(∣∣∣ ∫ n+1

d(logn)4e

ds
|Bs|2

− 1
2 logn

∣∣∣ ≥ α′ logn
)

= O(n−b)
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for some b > 0. This completes the proof of Lemma 18. �

Proof of Lemma 19. By a scaling argument, it is enough to consider the case r = 1, and we
consider only that case. For every integer k ≥ 0, set

γk := inf
{
t ≥ 0 : ρt = ek

}
and

Xk :=
∫ γk+1

γk

ds
ρ2
s

.

A scaling argument shows that the variables Xk, k ≥ 0 are identically distributed. Moreover,
the strong Markov property of the Bessel process implies that the variables Xk, k ≥ 0 are
independent. Furthermore, the absolute continuity relations between Bessel processes can be
used to verify that these variables have small exponential moments. More precisely, using the
explicit form of the density of the law over the time interval [0, t] of the four-dimensional Bessel
process started at 1 with respect to Wiener measure (see question 3 in Exercise XI.1.22 of Revuz
and Yor [25]), it is an easy exercise of martingale theory to verify that

E
[
e3X0/8] = E

[
exp 3

8

∫ γ1

γ0

ds
ρ2
s

]
=
√
e <∞.

Set
c0 = E[X0] = E[Xk]

for every k ≥ 0. We can apply Cramér’s large deviation theorem to the sequence (Xk)k≥0. It
follows that, for every δ > 0, there exists a constant b(δ) > 0 such that for every sufficiently
large n,

P
(∣∣∣ ∫ γn

γ0

ds
ρ2
s

− c0n
∣∣∣ > δn

)
≤ exp(−b(δ)n). (39)

On the other hand, it is easy to verify that the variable∫ γ0

1

ds
ρ2
s

has exponential moments. Just use the above-mentioned argument involving the density of the
law of the Bessel process to verify that

E
[

exp
(3

8

∫ γ0

1

ds
ρ2
s

)]
<∞

(deal separately with the cases 1 < γ0 and γ0 < 1). It then follows that, for every δ > 0, and
for all sufficiently large n,

P
( ∫ γ0

1

ds
ρ2
s

> δn
)
≤ exp(−b′(δ)n)

with some constant b′(δ) > 0. The same bound holds for the variable∫ γm

e2m

ds
ρ2
s

,

for any integer m ≥ 0, since this variable has the same law as∫ γ0

1

ds
ρ2
s
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by scaling.
By combining the latter facts with (39), we obtain that, for every δ > 0, there exists a

constant b̃(δ) > 0 such that, for every sufficiently large n,

P
(∣∣∣ ∫ e2n

1

ds
ρ2
s

− c0n
∣∣∣ > δn

)
≤ exp(−b̃(δ)n). (40)

At this stage, we can identify the constant c0, since the preceding arguments also show that

c0 = lim
n→∞

1
n
E
[ ∫ e2n

1

ds
ρ2
s

]
= 1

by a direct calculation of E[(ρs)−2] = (2s)−1. Once we know that c0 = 1, the statement of
Lemma 19 follows from (40) by elementary considerations: For every t ≥ 1, choose n such that
e2n ≤ t < e2(n+1) and observe that

{∫ t

1

ds
ρ2
s

− 1
2 log t > ε log t

}
⊆
{∫ e2(n+1)

1

ds
ρ2
s

− n > 2εn
}
,

whereas {∫ t

1

ds
ρ2
s

− 1
2 log t < −ε log t

}
⊆
{∫ e2n

1

ds
ρ2
s

− n− 1 < −2εn
}
.

This completes the proof. �

4 The range of branching random walk
In this last section, we apply the preceding results to asymptotics for the range of branching
random walk in Zd, d ≥ 4. We assume that the offspring distribution µ is critical and has finite
variance σ2

µ > 0, and that the jump distribution θ is centered and has finite moments of order
d− 1 (and as usual that θ is not supported on a strict subgroup of Zd).

Let Mp(Zd) stand for the set of all finite point measures on Zd. Let Z = (Zn)n≥0 denote
the (discrete time) branching random walk with jump distribution θ and offspring distribution
µ. This is the Markov chain with values in Mp(Zd), whose transition kernel Q can be described
as follows. If

ω =
p∑
i=1

δxi ∈Mp(Zd),

Q(ω, ·) is the distribution of
p∑
i=1

ξi∑
j=1

δxi+Yi,j ,

where ξ1, . . . , ξp are independent and distributed according to µ and, conditionally on (ξ1, . . . , ξp),
the random variables Yi,j , 1 ≤ i ≤ p, 1 ≤ j ≤ ξi, are independent and distributed according to θ.
More informally, each particle alive at time n is replaced at time n+ 1 by a number of offspring
distributed according to µ, and the spatial position of each of these offspring is obtained by
adding a jump distributed according to θ to the position of its parent.

The range of Z is then defined by

R(Z) := #{x ∈ Zd : ∃n ≥ 0,Zn(x) ≥ 1}.
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We also write N(Z) for the total progeny of Z,

N(Z) :=
∞∑
n=0
〈Zn, 1〉

where 〈Zn, 1〉 is the total mass of Zn. It is well known (and easy to prove using the Lukasiewisz
path introduced in the proof of Theorem 7) that N(Z) has the distribution of the hitting time
of −〈Z0, 1〉 by a random walk on Z with jump distribution ν(k) = µ(k+ 1), for k = −1, 0, 1, . . .,
started from 0.

Proposition 20. Suppose that d ≥ 5. For every integer p ≥ 1, let Z(p) be a branching random
walk with jump distribution θ and offspring distribution µ, such that 〈Z(p)

0 , 1〉 = p. Then,

lim
p→∞

R(Z(p))
N(Z(p))

= cµ,θ in probability,

where cµ,θ > 0 is the constant in Theorem 4. Consequently,

1
p2 R(Z(p)) (d)−→

p→∞
cµ,θ
σ2
µ

J ,

where the positive random variable J has density (2πs3)−1/2 exp(− 1
2s) on (0,∞).

Proof. We may and will assume that there exists a sequence T 1, T 2, . . . of independent random
trees distributed according to Πµ, such that, for every p ≥ 1, the genealogy of Z(p) is coded by
T 1, T 2, . . . , T p, meaning that T i is the genealogical tree of the descendants of the i-th initial
particle of Z(p), for every p ≥ 1 and i ∈ {1, . . . , p}. Notice that we have then

N(Z(p)) = #T 1 + · · ·+ #T p.

For every i ∈ {1, . . . , p}, we will write S(p)
i for the set of all spatial locations occupied by the

particles of Z(p) that are descendants of the i-th initial particle. Note that the location of the
i-th initial particle may depend on p. Clearly, we have

R(Z(p)) ≤ #S(p)
1 + · · ·+ #S(p)

p . (41)

Let (Hk)k≥0 be the height process associated with the sequence T 1, T 2, . . . (see the proof
of Proposition 6). Then, as an easy consequence of (3), we have the joint convergence in
distribution (

(1
p
Hbp2tc∧N(Zp))t≥0,

1
p2 N(Z(p))

) (d)−→
p→∞

(
( 2
σµ
|βt∧J1/σµ

|)t≥0, J1/σµ

)
, (42)

where β is a standard linear Brownian motion, and for every s ≥ 0, Js = inf{t ≥ 0 : L0
t (β) > s},

where (L0
t (β))t≥0 is the local time process of β at level 0. See [16, Section 1.4] for details of the

derivation of (42).
Fix ε > 0. For α ∈ (0, 1), let ip,1, ip,2, . . . , ip,mp be all indices i ∈ {1, . . . , p} such that

#T i ≥ αp2. It follows from (42) that, if α has been chosen sufficiently small, the bound

N(Z(p))− (#T ip,1 + · · ·+ #T ip,mp ) =
∑

i∈{1,...,p}\{ip,1,...,ip,mp}
#T i < εp2 (43)
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will hold with probability arbitrarily close to 1, uniformly for all sufficiently large p. On the
other hand, it also follows from (42) that mp converges in distribution as p → ∞ to a Poisson
distribution with parameter σ−1

µ

√
2/πα (here the quantity

√
2/πα is the mass that the Itô

excursion measure assigns to excursions of length greater than α). In particular, by choosing α
even smaller if necessary, we have P (mp ≥ 1) > 1− ε for all p large enough. We now fix α > 0
so that the preceding properties hold for all p large enough.

Next we observe that, conditionally on mp, the trees T ip,1 , . . . , T ip,mp are independent and
distributed according to Πµ(· | #T ≥ αp2). From Theorem 7, we now get that

P

(∣∣∣ #S(p)
ip,1

+ · · ·+ #S(p)
ip,mp

#T ip,1 + · · ·+ #T ip,mp
− cµ,θ

∣∣∣ > ε

∣∣∣∣∣ mp ≥ 1
)
−→
p→∞

0. (44)

Then, on the one hand, we have from (41),

R(Z(p)) ≤ #S(p)
ip,1

+ · · ·+ #S(p)
ip,mp

+
∑

i∈{1,...,p}\{ip,1,...,ip,mp}
#T i,

and on the other hand,

R(Z(p)) ≥ #S(p)
ip,1

+ · · ·+ #S(p)
ip,mp

−
∑

1≤k<`≤mp
#(S(p)

ip,k
∩ S(p)

ip,`
).

Taking into account the bound (43) and the fact that p−2N(Z(p)) converges in distribution to a
positive random variable, we see that the first assertion of the proposition will follow from the
last two bounds and (44), provided we can verify that

1
p2

∑
1≤k<`≤mp

#(S(p)
ip,k
∩ S(p)

ip,`
) (P )−→
p→∞

0. (45)

Recall that mp converges in distribution to a finite random variable. In order to establish
(45), it is enough to verify that, if S(p),1, respectively S(p),2, is the set of points visited by a
random walk indexed by a tree distributed according to Πµ(· | #T ≥ αp2), with the spatial
location of the root equal to x1, resp. to x2, and if S(p),1 and S(p),2 are independent, we have

1
p2 E

[
#(S(p),1 ∩ S(p),2)

]
−→
p→∞

0.

However,

E
[
#(S(p),1 ∩ S(p),2)

]
=
∑
y∈Zd

P (y ∈ S(p),1)P (y ∈ S(p),2) ≤
∑
y∈Zd

P (y ∈ S(p),1)2,

using the Cauchy-Schwarz inequality and translation invariance, which also allows us to take
x1 = 0. By a first moment argument, we have then

P (y ∈ S(p),1) ≤ Gθ(y)
Πµ(#T ≥ αp2) ∧ 1 ≤ (c−1

(µ)
√
αpGθ(y)) ∧ 1,

where the constant c(µ) > 0 depends only on µ. Here we used the classical bound

Πµ(#T ≥ k) ≥ c(µ) k
−1/2, k ≥ 1,
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which follows from the fact that the distribution of #T under Πµ coincides with the law of the
first hitting time of −1 by a random walk on Z with jump distribution ν started from 0 (see the
proof of Theorem 7). Finally, we have

1
p2 E

[
#(S(p),1 ∩ S(p),2)] ≤

∑
y∈Zd

(c−2
(µ)αGθ(y)2) ∧ 1

p2

and the right-hand side tends to 0 as p→∞ by dominated convergence, noting that∑
y∈Zd

Gθ(y)2 <∞

by (2). This completes the proof of the first assertion of the proposition.
The second assertion follows from the first one and the convergence in distribution of

p−2N(Z(p)) to J1/σµ . Just note that J1/σµ has the same law as σ−2
µ J1 by scaling, and that

J1 is distributed as the first hitting of 1 by a standard linear Brownian motion, whose density
is as stated in the proposition.

We now state the result corresponding to Proposition 20 in the critical dimension d = 4. As
previously, we must restrict our attention to the geometric offspring distribution.

Proposition 21. Suppose that d = 4, and that µ is the critical geometric offspring distribution.
Also assume that θ is symmetric and has small exponential moments, and set σ2 = (detMθ)1/4.
For every integer p ≥ 1, let Z(p) be a branching random walk with jump distribution θ and
offspring distribution µ, such that 〈Z(p)

0 , 1〉 = p. Then,

lim
p→∞

(log p) R(Z(p))
N(Z(p))

= 8π2 σ4 in probability.

Consequently,
log p
p2 R(Z(p)) (d)−→

p→∞
4π2 σ4 J ,

where J is as in Proposition 20.

The proof of Proposition 21 goes along the same lines as that of Proposition 20, using now
Theorem 14 instead of Theorem 7. A few minor modifications are needed, but we will leave the
details to the reader.
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