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Abstract
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1 Introduction and statement of results

This paper is devoted to regularity results for the density of the exit measure of super-Brownian
motion with (1 + β)-stable branching mechanism from a smooth domain of Rd. Exit measures of
superprocesses were introduced by Dynkin in connection with applications to partial differential
equations (see in particular [5] and [6]). Here we use a stochastic integral representation of exit
measures to get precise information on their regularity or irregularity. As an application we provide
a probabilistic representation for all nonnegative solutions of ∆u = u1+β in a smooth domain, in
the so-called subcritical case where d < 1 + 2/β.

Let D be a bounded domain of class C2 in Rd (d ≥ 2 throughout this work). If x ∈ D, we write
ρ(x) = dist(x,Dc) for the distance of x to the complement of D. We denote by MD

F the space of
all finite measures on D, which is equipped with the weak topology. If µ ∈ MD

F , supp(µ) denotes
the closed support of µ, which is a subset of D̄, and we set

MD
F,c ≡ {µ ∈MD

F : supp(µ) ⊂ D}.

The integral of a function φ with respect to a measure µ will often be written as 〈µ, φ〉.
Let β ∈ (0, 1] and let X = (Xt, t ≥ 0) be a super-Brownian motion in D with (1 + β)-stable

branching mechanism. To be specific, X is a superprocess with branching mechanism ψ(u) = u1+β,
whose underlying spatial motion is Brownian motion in Rd killed when it exits D. The process X
is a strong Markov process with values in MD

F , whose distribution will be characterized in Section
2. If µ ∈ MD

F , we write Pµ for the probability measure under which X starts from µ. In the first
two theorems below, we will consider the case where the initial value µ ∈ MD

F,c (see however the
remark at the end of Section 3).

As a special case of the martingale problem recalled in subsection 2.3, we know that for every
twice continuously differentiable function φ on D, with compact support contained in D,

〈Xt , φ〉 = 〈µ, φ〉+
∫ t

0
〈Xs ,

1
2∆φ〉 ds+Mt(φ),

where Mt(φ) is a martingale under Pµ. It will be convenient to use the notation

Mt(φ) =
∫ ∞

0

∫
D

1[0,t](s)φ(x)M(ds, dx).

Standard arguments then show that the “stochastic integral”∫ ∞
0

∫
D
f(s, x)M(ds, dx)

can be defined for a wide class of integrands f (see subsection 2.3 and the beginning of Section 3).
Let XD be the exit measure of X from D. Note that the usual definition of XD involves the

associated historical process, which contains more information than (Xt, t ≥ 0). Alternatively, one
can proceed as in Dynkin [6] or [8] by defining the superprocess as the collection of all exit measures
from time-space open sets (these include the measures Xt as special cases). The measure XD is a
random finite measure supported on ∂D. We prove in Section 2 below that XD can be obtained
via the following approximation, which is of independent interest. For every ε > 0, set

Dε = {x ∈ D : ρ(x) > ε} , Fε = D \Dε ,

and
XD
ε (dy) = ε−2

∫ ∞
0

1Fε(y)Xt(dy) dt.
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Then XD
ε converges weakly to XD as ε tends to 0, in Pµ-probability (see Proposition 2.1 below).

This shows in particular that XD is a measurable function of (Xt, t ≥ 0).
It was proved in [21] and [1] that XD is almost surely absolutely continuous with respect to

Lebesgue measure on ∂D if and only if 2 ≤ d < 1 + 2/β. In the case β = 1 and d = 2, more can
be said: XD has a continuous density (see [16]). In this work we consider the “stable branching”
case, that is from now on we concentrate on the case 0 < β < 1, and we address the question of
regularity of the density of the exit measure in dimensions 2 ≤ d < 1 + 2/β.

Our first theorem provides a stochastic integral representation for the exit measure and for its
density when it exists.

Theorem 1.1 Let (PD(x, y), x ∈ D, y ∈ ∂D) denote the Poisson kernel of D, and let σ denote
Lebesgue measure on ∂D. Let µ ∈MD

F,c.
(i) For every continuous function φ on ∂D, Pµ a.s.,

〈
XD, φ

〉
= 〈µ, PDφ〉+

∫ ∞
0

∫
D
PDφ(x)M(ds, dx)(1.1)

where
PDφ(x) =

∫
∂D

PD(x, y)φ(y)σ(dy).

(ii) Suppose that d < 1 + 2/β. Then, for every y ∈ ∂D, we may define under Pµ

X̄D(y) =
∫
D
PD(x, y)µ(dx) +

∫ ∞
0

∫
D
PD(x, y)M(ds, dx).(1.2)

The mapping y → X̄D(y) is continuous in Lp(Pµ), for any p ∈ [1, 1 + β), and we have X̄D(y) ≥ 0,
Pµ a.s., for every y ∈ ∂D. Finally,

XD(dy) = X̄D(y)σ(dy) , Pµ a.s.

To be precise, we should say in the last assertion that we consider a measurable modification
of the process (X̄D(y), y ∈ ∂D).

We now come to the main result of the present work, which deals with the regularity properties
of X̄D. For any measurable function f : ∂D 7→ R, let ‖f‖B denote the essential supremum (with
respect to Lebesgue measure on ∂D) of f on the relative open set B ⊂ ∂D.

Theorem 1.2 (Regularity and irregularity of density) Let µ ∈MD
F,c .

(a) If d = 2 the process (X̄D(x), x ∈ ∂D) has a continuous modification under Pµ.

(b) Suppose that 3 ≤ d < 1 + 2/β. Then∥∥X̄D(·)
∥∥

U
=∞ whenever XD(U) > 0 , for any open set U ⊂ ∂D, Pµ-a.s.

Obviously the second part of the theorem remains valid if we replace X̄D by any version of the
Radon-Nikodym derivative of XD with respect to σ. Thus, when 3 ≤ d < 1 + 2/β, there exists no
continuous density of the exit measure.

The main motivation for studying exit measures comes from their connections with partial
differential equations. A basic result of Dynkin [5] shows that the exit measure yields a probabilistic
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solution of the nonlinear Dirichlet problem associated with 1
2∆u = u1+β. To be specific, for any

nonnegative continuous function φ on ∂D, the function

v(x) = − log Eδx

[
e−〈XD,φ〉

]
, x ∈ D ,(1.3)

is the unique nonnegative solution to the following boundary-value problem in D:

1
2

∆v = v1+β in D,(1.4)

v = φ on ∂D.

A major problem is to extend this probabilistic representation to all nonnegative solutions of
1
2∆u = u1+β in D, and to see that this representation induces a one-to-one correspondence be-
tween solutions and their traces on the boundary (defined in a proper way). This problem was
solved in [16] in the particular case β = 1, d = 2. Later, Marcus and Véron [17] generalized the
results of [16] by showing that in the so-called subcritical case d < 1 + 2/β there is a one-to-one
correspondence between nonnegative solutions and admissible traces. The next theorem gives a
probabilistic formula for this correspondence. In order to be able to use the results of [17], we
restrict our attention to the case of the unit ball.

We need one more definition. The range R of X is defined as the closure of the set⋃
t≥0

supp(Xt).

Theorem 1.3 Suppose that d < 1 + 2/β and that D is the unit ball of Rd. Let K be a compact
subset of ∂D, and let ν be a Radon measure on ∂D\K. The function

u(x) = − log Eδx

[
1{R∩K=∅} exp−

∫
X̄D(y) ν(dy)

]
, x ∈ D(1.5)

solves the equation 1
2∆u = u1+β in D. Conversely, if u is any nonnegative solution of 1

2∆u = u1+β

in D, there exists a unique pair (K, ν) such that the representation formula (1.5) holds.

As the proof will show, the pair (K, ν) can be interpreted as the trace of the solution u (defined
analytically in [17]).

Let us emphasize an important point. To make sense of the probabilistic representation stated
in Theorem 1.3, it is crucial to have chosen a specified version of the Radon-Nikodym density of
the exit measure. In dimension d = 2, we may of course choose the continuous density (as was
done in [16]), but Theorem 1.3 shows that in higher dimensions the right choice is to consider the
process X̄D(y) as defined in Theorem 1.1.

Remark In the present work, we do not discuss the quadratic branching case β = 1. However,
our results also hold in that case. Both Theorem 1.2 (a) and Theorem 1.3 are proved in [16] in the
case β = 1. Furthermore, the reader will easily check that the stochastic integral representation of
Theorem 1.1 is also valid in that case: M should then be interpreted as the usual L2-martingale
measure associated with super-Brownian motion. As a matter of fact, this stochastic representation
can be used to simplify the proof of the key technical lemma of [16].

Let us record some convenient notation for future use. In general if F is a set of functions, we
write F+ for the set of all nonnegative functions in F . We use c or C to denote a positive, finite
constant whose value may vary from place to place. A notation of the form c(a, b, . . .) means that
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this constant depends on parameters a, b, . . .. If E is a metric space let B(E) be the corresponding
Borel σ-algebra (B(E) will also serve as the set of Borel measurable functions on E). We denote
by C(E) the space of all continuous functions on E and by Cb(E) (respectively Bb(E)) the space
of bounded functions in C(E) (respectively in B(E)). We also denote by C2

0(D) the set of all twice
continuously differentiable functions on D with compact support contained in D. Finally, if x ∈ Rd

and r > 0, B(x, r) stands for the open ball of radius r centered at x.

The paper is organized as follows. Section 2 recalls basic facts about super-Brownian motion
and states some preliminary results. Theorem 1.1 is proved in Section 3, Theorem 1.2(a) is proved in
Section 4, and part (b) of Theorem 1.2 is proved in Section 5. Connections with partial differential
equations are discussed in Section 6. The Appendix gives the proof of a technical auxiliary lemma.

2 Preliminaries

2.1 Estimates for the Green function and the Poisson kernel

Let (GD(x, y);x, y ∈ D) be the Green function of D and recall that (PD(x, z);x ∈ D, z ∈ ∂D)
denotes its Poisson kernel. The functions GD and PD are continuous on D × D and D × ∂D
respectively, and they have the following probabilistic interpretation. Let (ξt, t ≥ 0; Πx, x ∈ D)
denote Brownian motion killed at its first exit time from D, and let ζ be the lifetime of this
process. Then, for any φ ∈ Bb(Rd) and x ∈ D,

Πx

[ ∫ ζ

0
φ(ξt) dt

]
=

∫
D
φ(y)GD(x, y) dy,

Πx[φ(ξζ−)] =
∫
∂D

φ(y)PD(x, y)σ(dy).

We will use the following estimates. For every x, y ∈ D and z ∈ ∂D,

GD(x, y) ≤ C(D) ρ(y) |x− y|1−d,(2.1)
GD(x, y) ≤ C(D) ρ(x)ρ(y) |x− y|−d,(2.2)

and
PD(x, z) ≤ C(D) ρ(x) |x− z|−d.(2.3)

Estimates (2.1) and (2.2) can be found in Theorem 2.3 of Widman [22] in dimension d ≥ 3. In
dimension d = 2, they both follow from the more precise bound in Theorem 6.23 of [2]. Finally,
(2.3) is a consequence of (2.2) and the interpretation of the Poisson kernel as half the normal
derivative of the Green function at the boundary (see Proposition 5.13 in [2]).

2.2 Super-Brownian motion and its exit measure

In this section we recall the basic facts about super-Brownian motion that will be used in the proofs
of our results, and we also discuss properties of the associated martingale measure. Without addi-
tional effort, the results of this section are valid in a more general setting than in the introduction,
namely for a branching mechanism function ψ of the type

ψ(u) =
∫
n(dr) (e−ur − 1 + ur) , u ≥ 0 ,

where n(dr) is a σ-finite measure on (0,∞) such that
∫

(r ∧ r2)n(dr) <∞. Note that ψ(u) ≥ 0 for
every u ≥ 0.
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Our super-Brownian motion X with branching mechanism ψ is a time-homogeneous Markov
process in MD

F , whose semigroup is characterized as follows: For every µ ∈ MD
F , φ ∈ B

+
b (D) and

t ≥ 0,
Eµ

[
e−〈Xt,φ〉

]
= exp−〈µ, ut〉,

where the function (ut(x), t ≥ 0, x ∈ D) is the unique nonnegative solution of the integral equation

ut(x) + Πx

[ ∫ t∧ζ

0
ψ(ut−s(ξs)) ds

]
= Πx[φ(ξt) 1{t<ζ}]

(see e.g. [6] or Chapter 2 of [15]). In particular, taking φ = λ > 0, we get an expression for the
Laplace transform of 〈Xt, 1〉, from which one easily sees that Eµ[〈Xt, 1〉] ≤ 〈µ, 1〉 for every t ≥ 0.

From the preceding Laplace functional, it is not hard to derive that for any µ ∈MD
F , φ ∈ B

+
b (D),

Eµ

[
exp

(
−
∫ ∞

0
〈Xt, φ〉dt

)]
= exp−〈µ, v〉,

where the function (v(x), x ∈ D) is nonnegative and solves the integral equation

v(x) + Πx

[ ∫ ζ

0
ψ(v(ξt)) dt

]
= Πx

[ ∫ ζ

0
φ(ξt) dt

]
.

In view of approximating the exit measure XD, we now write the following joint Laplace transform.
For any g ∈ B+

b (∂D) and φ ∈ B+
b (D),

Eµ

[
exp

(
−
∫ ∞

0
〈Xt, φ〉dt− 〈XD, g〉

)]
= exp−〈µ,w〉,

where the function (w(x), x ∈ D) is nonnegative and solves the integral equation

w(x) + Πx

[ ∫ ζ

0
ψ(w(ξt)) dt

]
= Πx

[ ∫ ζ

0
φ(ξt) dt+ g(ξζ−)

]
.

This statement is a special case of Theorem I.1.8 in Dynkin [6]. We can now prove the approximation
of the exit measure stated in the introduction.

Proposition 2.1 Let XD
ε be defined as in Section 1. Then XD

ε converges weakly to XD as ε ↓ 0,
in Pµ-probability.

Proof Let ϕ ∈ C+(D̄). It is enough to prove that

〈XD
ε , ϕ〉 −→ 〈XD, ϕ〉

in Pµ-probability, as ε→ 0. To this end, we need only check that, for every λ, λ′ ≥ 0,

Eµ[exp(−λ〈XD
ε , ϕ〉 − λ′〈XD, ϕ〉)] −→ Eµ[exp(−(λ+ λ′)〈XD, ϕ〉)]

as ε→ 0. We fix λ and λ′ and establish the preceding limit.
By our definition of XD

ε , and results recalled before the statement of the proposition, we have

Eµ[exp(−λ〈XD
ε , ϕ〉 − λ′〈XD, ϕ)〉)] = exp(−〈µ,wε〉),
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where

wε(x) + Πx

[ ∫ ζ

0
ψ(wε(ξt)) dt

]
= Πx

[ λ
ε2

∫ ζ

0
1Fε(ξt)ϕ(ξt) dt+ λ′ϕ(ξζ−)

]
≡ hε(x).(2.4)

Similarly,
Eµ[exp(−(λ+ λ′)〈XD, ϕ)〉)] = exp(−〈µ,w〉),

where

w(x) + Πx

[ ∫ ζ

0
ψ(w(ξt)) dt

]
= Πx[(λ+ λ′)ϕ(ξζ−)] ≡ h(x).(2.5)

By standard arguments (see e.g. the proof of Theorem 1.1 in [5]), equation (2.5) is equivalent to
the boundary value problem {

1
2∆w = ψ(w) in D ,
w = (λ+ λ′)ϕ on ∂D .

Uniqueness of the nonnegative solution for this boundary value problem is a consequence of the
maximum principle, and so we see that w is the unique nonnegative solution of (2.5).

An application of the bounds (2.1) and (2.2) shows that there exists a constant C(D) such that
for every x ∈ D and ε ∈ (0, 1],

Πx

[ ∫ ζ

0
1Fε(ξt) dt

]
=
∫
Fε

GD(x, y) dy ≤ C(D) ε2.

To get this, first note that by the strong Markov property it is enough to consider the case when
x ∈ Fε, and then use the bound (2.1) when |y − x| ≤ ε and the bound (2.2) when |y − x| > ε. The
point is to observe that the Lebesgue measure of Fε ∩B(x, δ) is bounded above by C ′(D)εδd−1 for
every δ ∈ [ε,∞).

It follows from the previous bound that the functions hε, ε ∈ (0, 1] are uniformly bounded over
D, and by (2.4) the same holds for the functions wε, ε ∈ (0, 1]. We have then

1
ε2

Πx

[ ∫ ζ

0
1Fε(ξt)ϕ(ξt) dt

]
=

1
ε2

∫
Fε

GD(x, y)ϕ(y) dy.

Using either of the bounds (2.1) or (2.2), and the fact that PD(x, z) is half the normal derivative
of the mapping y → GD(x, y) at z (in other words, GD(x, y) ∼ 2 ρ(y)PD(x, z) when y tends to z
along the normal to ∂D at z), we easily get

lim
ε→0

1
ε2

∫
Fε

GD(x, y)ϕ(y) dy =
∫
∂D

PD(x, z)ϕ(z)σ(dz) = Πx[ϕ(ξζ−)].

It follows that hε(x) −→ h(x) as ε→ 0, for every x ∈ D.
Let K be a compact subset of D, and let ε0 ∈ (0, 1] such that ρ(x) > ε0 for every x ∈ K. Denote

by ζ0 the first exit time from Dε0 . From (2.4) and the strong Markov property at time ζ0, we get
that for every x ∈ Dε0 and ε ∈ (0, ε0],

wε(x) + Πx

[ ∫ ζ0

0
ψ(wε(ξs))ds

]
= hε0(x)

where the functions hε0 are harmonic on Dε0 and uniformly bounded. As previously, this integral
equation implies that wε solves 1

2∆wε = ψ(wε) in Dε0 and since the functions wε are uniformly
bounded on D, standard analytic arguments (see e.g. Theorem 3.9 in [12]) show that the functions
wε are equicontinuous on K. At least along a subsequence, we may therefore assume that wε

converges to a limiting function w̃, uniformly on every compact subset of D. By passing to the
limit in (2.4), we see that w̃ solves (2.5) and thus w̃ = w. We conclude that wε converges to w,
which completes the proof.
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2.3 The associated martingale measure

For the results of this section, it is convenient to equip the underlying probability space Ω with the
filtration (Ft) generated by X, which is completed as usual with the class of F∞-measurable sets
which are Pµ-negligible for every µ ∈ MD

F . All martingales or local martingales will be relative to
the filtration (Ft). We will use the standard notation ∆Xs = Xs −Xs− for the jump of X at time
s (no confusion should arise from the use of ∆ also for the Laplacian).

We first recall from Dawson [3] (Section 6.1) or El Karoui and Roelly [10] that X satisfies the
following martingale problem. For every ϕ ∈ C2

0(D) and every f ∈ C2(R),

f(〈Xt, ϕ〉)− f(〈X0, ϕ〉)−
1
2

∫ t

0
f ′(〈Xs, ϕ〉)〈Xs,∆ϕ〉ds

−
∫ t

0

(∫
D

∫
(0,∞)

(
f(〈Xs, ϕ〉+ rϕ(x))− f(〈Xs, ϕ〉)− f ′(〈Xs, ϕ〉)rϕ(x)

)
n(dr)Xs(dx)

)
ds

is a local martingale.
From this martingale problem, one easily infers that the jumps of X must be of the following

type. If s > 0 is a jump time of X, then ∆Xs = rδx for some r > 0 and x ∈ Rd. More precisely, if
J denotes the set of all jump times of X, the compensator of the random measure

N :=
∑
s∈J

δ(s,∆Xs)

is given by the following formula. For any nonnegative predictable function F on R+ × Ω×MD
F ,

Eµ

[∑
s∈J

F (s, ω,∆Xs)
]

= Eµ

[ ∫
F (s, ω, µ) N̂(ds, dµ)

]
(2.6)

where N̂ is the random measure on R+ ×MD
F defined by∫

G(s, µ) N̂(ds, dµ) =
∫ ∞

0
ds

∫
n(dr)

∫
Xs(dx)G(s, r δx).

See Théorème 7 in [10], or [3], p.111.
Let F be a measurable function on R+ ×MD

F such that, for every t ≥ 0,

Eµ

[( ∑
s∈J∩[0,t]

F (s,∆Xs)2
)1/2]

<∞ .(2.7)

Following [14] (Section II.1d), we can then define the stochastic integral of F with respect to the
compensated measure N − N̂ , ∫ t

0
F (s, µ) (N − N̂)(ds, dµ),

as the unique purely discontinuous martingale (vanishing at time 0) whose jumps are indistinguish-
able of the process 1J(s)F (s,∆Xs).

We shall be interested in the special case where F (s, µ) = Fφ(s, µ) ≡
∫
φ(s, x)µ(dx) for some

measurable function φ on R+×D (some convention is needed when
∫
|φ(s, x)|µ(dx) =∞, but this
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will be irrelevant in what follows). If φ is bounded, then it is easy to see that condition (2.7) holds.
Indeed, we can bound separately

Eµ

[(∑
s≤t
〈∆Xs, 1〉2 1{〈∆Xs,1〉≤1}

)1/2]
≤ Eµ

[∑
s≤t
〈∆Xs, 1〉2 1{〈∆Xs,1〉≤1}

]1/2

=
(∫

(0,1]
r2 n(dr) Eµ

[ ∫ t

0
〈Xs, 1〉ds

])1/2
<∞,

and, using the simple inequality a2
1 + · · ·+a2

n ≤ (a1 + · · ·+an)2 for any nonnegative reals a1, . . . , an,

Eµ

[(∑
s≤t
〈∆Xs, 1〉2 1{〈∆Xs,1〉>1}

)1/2]
≤ Eµ

[∑
s≤t
〈∆Xs, 1〉 1{〈∆Xs,1〉>1}

]
=

∫
(1,∞)

r n(dr) Eµ

[ ∫ t

0
〈Xs, 1〉ds

]
<∞.

In both cases, we have used (2.6) and the fact that Eµ[〈Xt, 1〉] ≤ 〈µ, 1〉.
To simplify notation, we write

Mt(φ) =
∫ t

0

∫
D
φ(s, x)M(ds, dx) ≡

∫ t

0
Fφ(s, µ) (N − N̂)(ds, dµ),

whenever (2.7) holds for F = Fφ. This is consistent with the notation of the introduction. Indeed,
if φ(s, x) = ϕ(x) where ϕ ∈ C2

0(D), then by the very definition, Mt(φ) is a purely discontinuous
martingale with the same jumps as the process 〈Xt, ϕ〉. Since the same holds for the process

M̃t(ϕ) := 〈Xt, ϕ〉 − 〈X0, ϕ〉 −
1
2

∫ t

0
〈Xs,∆ϕ〉ds

(see Théorème 7 in [10]) we get that Mt(φ) = M̃t(ϕ).

3 The stochastic integral representation

We return to the special case where ψ(u) = u1+β and thus

n(dr) =
β(β + 1)
Γ(1− β)

r−2−β dr

for some β ∈ (0, 1).
In this section and in the next two ones, we fix the initial measure µ of our super-Brownian

motion, and we assume that µ ∈ MD
F,c. To simplify notation, we write P instead of Pµ and E

instead of Eµ.
We need to introduce some notation. Let {pDt (x, y), t > 0, x, y ∈ D} be the transition density

of Brownian motion killed on its exit from D, and let {SDt , t ≥ 0} be the corresponding semigroup.
For any measure ν ∈MD

F set

SDt ν(y) =
∫
pDt (x, y)ν(dx), y ∈ D, t > 0.

Recall that E[〈Xt, φ〉] =
∫
D φ(x)SDt µ(x) dx for every t ≥ 0 and φ ∈ B+(D) (this first-moment

formula is easy from the Laplace functional of 〈Xt, φ〉 recalled in Section 2).
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For any p ≥ 1, we define the Banach space

Lp ≡ Lp
(
R+ ×D,SDs µ(x) ds dx

)
of equivalent classes of measurable functions with finite norms

‖f‖p ≡
(∫ ∞

0

∫
D
|f(s, x)|p SDs µ(x) dx ds

)1/p

.

Note that if f does not depend on the “time” parameter s then

‖f‖p =
(∫

D
|f(x)|p GDµ(x) dx

)1/p

,

where

GDν(y) ≡
∫
D
GD(x, y) ν(dx), y ∈ D, ν ∈MD

F .

Lemma 3.1 Let φ ∈ Lp, for some p ∈ (1 + β, 2). Then the martingale

Mt(φ) =
∫ t

0

∫
D
φ(s, x)M(ds, dx), t ≥ 0

is well-defined, and bounded in Lq(P) for every q ∈ (1, 1+β). More precisely, for every q ∈ (1, 1+β),

E
[
sup
t≥0
|Mt(φ)|q

]
≤ c(β, p, q)

(
‖φ‖qp + ‖φ‖qq

)
.(3.1)

Moreover for any sequence of functions {φn , n ≥ 1} such that φn → φ in Lp, as n→∞, we have

lim
n→∞

E
[
sup
t≥0
|Mt(φn)−Mt(φ)|q

]
= 0, ∀q ∈ (1, 1 + β).(3.2)

Proof To see that the martingale Mt(φ) is well-defined, we need to verify condition (2.7) with
F = Fφ. We will in fact prove more by checking that, for every q ∈ (1, 1 + β),

E
[(∑

s∈J
F (s,∆Xs)2

)q/2]
<∞.(3.3)

First note that since p/2 ≤ 1 we have (
∑

i∈I ai)
p/2 ≤

∑
i∈I a

p/2
i whenever ai ≥ 0 for every i ∈ I.

We use this in the second inequality below:

E
[(∑

s∈J
1{〈∆Xs,1〉≤1}F (s,∆Xs)2

)q/2]
≤ E

[(∑
s∈J

1{〈∆Xs,1〉≤1}F (s,∆Xs)2
)p/2]q/p

≤ E
[∑
s∈J

1{〈∆Xs,1〉≤1}|F (s,∆Xs)|p
]q/p

= E
[ ∫ ∞

0
ds

∫
n(dr)

∫
Xs(dx) 1{r≤1}r

p|φ(s, x)|p
]q/p

=
((∫

(0,1]
rpn(dr)

)∫ ∞
0

ds

∫
D
dxSDs µ(x) |φ(s, x)|p

)q/p
= C(β, p, q) ‖φ‖qp,
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using (2.6) and the fact that
∫

(0,1] r
pn(dr) <∞ since p > 1 + β.

Similarly,

E
[(∑

s∈J
1{〈∆Xs,1〉>1}F (s,∆Xs)2

)q/2]
≤ E

[∑
s∈J

1{〈∆Xs,1〉>1}|F (s,∆Xs)|q
]

= E
[ ∫ ∞

0
ds

∫
n(dr)

∫
Xs(dx) 1{r>1}r

q|φ(s, x)|q
]

=
((∫

(1,∞)
rqn(dr)

)∫ ∞
0

ds

∫
D
SDs µ(dx) |φ(s, x)|q

)
= C(β, q) ‖φ‖qq,

using (2.6) and the fact that
∫

(1,∞) r
qn(dr) <∞ since q < 1 + β.

By combining the last two bounds, we see that (3.3) holds. Furthermore, by the Burkholder-
Davis-Gundy inequality for purely discontinuous martingales (see for instance Chapter VII of [4]),

E
[
sup
t≥0
|Mt(φ)|q

]
≤ C(q) E

[(∑
s∈J

F (s,∆Xs)2
)q/2]

and the bound (3.1) follows from the previous inequalities. The last assertion is immediate from
(3.1), observing that φn → φ in Lp implies φn → φ in Lq since the measure SDs µ(x)dxds is finite.

The next lemma is a Fubini-like theorem for our stochastic integrals.

Lemma 3.2 Let (E, E , ν) be a σ-finite measure space and φ be a measurable function on R+×D×E.
Assume that for some p ∈ (1 + β, 2),∫

E

∫ ∞
0

∫
D
|φ(s, x, y)|p SDs µ(x) dx ds ν(dy) <∞,

and for every y ∈ E, ∫ ∞
0

∫
D
|φ(s, x, y)|p SDs µ(x) dx ds <∞.

For every y ∈ E set φy(t, x) = φ(t, x, y) and

Mt(φy) =
∫ t

0

∫
D
φy(s, x)M(ds, dx).

Then, for every t ∈ [0,∞], the process (Mt(φy), y ∈ E) has a measurable modification, and∫
E
Mt(φy)ν(dy) =

∫ t

0

∫
D

(∫
E
φ(s, x, y) ν(dy)

)
M(ds, dx), P a.s.(3.4)

Proof We only sketch the arguments. First note that our integrability assumptions guarantee that
the stochastic integrals Mt(φy) are well-defined for every y ∈ E, that the function y −→ φ(s, x, y)
is ν-integrable SDs µ(x) dx ds -a.e., and that the stochastic integral in the right-hand side of (3.4) is
well-defined, independently of the value we give to

∫
E φ(s, x, y) ν(dy) when y −→ φ(s, x, y) is not

ν-integrable. By standard arguments, it suffices to prove the lemma when ν is a finite measure
and φ = 1A is an indicator function (note that the integrability assumptions of the lemma are then
automatically satisfied). In the particular case where A = A1 × A2, with A1 ∈ B(R+ × D) and
A2 ∈ E , the various assertions of the lemma are immediately verified. The general case follows from
a classical monotone class argument.
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Proof of Theorem 1.1 (i) Let φ ∈ C(∂D). We may extend φ to a continuous function on D̄,
which we still denote by φ. By standard techniques (see Proposition 2.13 in [11] or Exercise II.5.2
in [19] for the finite variance branching case) it is easy to obtain that for every t ≥ 0, P a.s.,

〈Xt , φ〉 =
〈
µ , SDt φ

〉
+
∫ t

0

∫
D
SDt−sφ(x)M(ds, dx).(3.5)

We then apply Lemma 3.2 to the (bounded) function (s, x, t) −→ 1{s≤t}SDt−sφ(x), noting that∫∞
0 1{s≤t}SDt−sφ(x)dt = GDφ(x): It follows that∫ ∞

0
〈Xt , φ〉 dt = 〈µ ,GDφ〉+

∫ ∞
0

∫
D
GDφ(x)M(ds, dx) .(3.6)

From the definition of XD
ε , we get for any ε > 0

〈
XD
ε , φ

〉
= 〈µ ,GDf ε〉+

∫ ∞
0

∫
D
GDf

ε(x)M(ds, dx) ,(3.7)

where f ε(x) = ε−21Fε(x)φ(x). As in the proof of Proposition 2.1, it is easy to verify that, for every
x ∈ D,

GDf
ε(x) −→ PDφ(x),(3.8)

as ε → 0, and furthermore, the functions GDf ε are uniformly bounded over D. By dominated
convergence, we see that GDf ε converges to PDφ in Lp, for every p ∈ (1 + β, 2). By passing to the
limit ε→ 0 (using the last assertion of Lemma 3.1), we get the desired result.

Proof of Theorem 1.1 (ii) Let p ∈ (1, d+1
d−1). From the bounds (2.1) and (2.3), it is straightfor-

ward to verify that, for any compact subset K of D,

sup
x∈K, z∈∂D

(∫
D
GD(x, y)PD(y, z)p dy

)
<∞.(3.9)

We are assuming d < 1 + 2/β, or equivalently 1 +β < d+1
d−1 . We can thus choose p ∈ (1 +β, d+1

d−1 ∧ 2)
and the preceding estimate implies that the (time-independent) function (s, y) −→ PD(y, z) is in Lp

for every z ∈ ∂D. In particular the stochastic integral appearing in the definition of X̄D(z) is well-
defined according to Lemma 3.1. Furthermore, using the fact that µ ∈MD

F,c, we can apply Lemma
3.2 to the function (y, s, z) −→ PD(y, z) and the measurable space (E, E , ν) = (∂D,B(∂D), σ). It
readily follows that the process (X̄D(z), z ∈ ∂D) has a measurable modification, and that, for any
φ ∈ C(∂D), P a.s.,

〈XD, φ〉 = 〈µ, PDφ〉+
∫ ∞

0

∫
D

(∫
∂D

PD(x, z)φ(z)σ(dz)
)
M(ds, dx)

=
∫
∂D

φ(z)
(∫

D
PD(x, z)µ(dx)

)
σ(dz) +

∫
∂D

φ(z)
(∫ ∞

0

∫
D
PD(x, z)M(ds, dx)

)
σ(dz)

=
∫
∂D

φ(z) X̄D(z)σ(dz).

This is enough to conclude that XD(dz) = X̄D(z)σ(dz), P a.s.
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In particular, we must have X̄D(z) ≥ 0, σ(dz) a.e., P a.s. From the estimate (3.9) and the last
assertion of Lemma 3.1, it is easy to see that the mapping z → X̄D(z) is continuous in Lq(P), for
every q < 1 + β, and it follows that X̄D(z) ≥ 0, P a.s., for every z ∈ ∂D.

Remark The proof of part (i) of Theorem 1.1 does not depend on the assumption µ ∈MD
F,c, and

the result is indeed true for an initial measure µ ∈ MD
F . Things go differently for part (ii): If

µ ∈ MD
F \MD

F,c, the function (s, x) → PD(x, z) may no longer be in Lp for any p > 1 + β, and
the stochastic integral appearing in (1.2) may not be defined. Still from the additivity property of
superprocesses, we can recover from the particular case µ ∈MD

F,c the fact that the exit measure is
absolutely continuous with respect to Lebesgue measure on the boundary.

4 Continuity of the density in two dimensions

In this section, we assume that d = 2 and we prove part (a) of Theorem 1.2. As we want to use
the Riemann mapping theorem, we will first assume that D is simply connected.

The first term in the right hand side of (1.2) is obviously continuous in y. So, to prove the
existence of a continuous modification of X̄D(y) it is enough to check the existence of a continuous
modification of the stochastic integral

Z(y) ≡
∫ ∞

0

∫
D
PD(x, y)M(ds, dx).

Before we continue let us introduce the following notation. Let D0 be the unit disc of the plane
and denote by σ0(dy) the Lebesgue measure on the unit circle ∂D0. The Poisson kernel in this case
can be computed explicitly:

P0(x, y) =
1

2π
1− |x|2

|y − x|2
, x ∈ D0 , y ∈ ∂D0 .(4.1)

The next lemma is crucial for estimating the moments of increments of Z(·).

Lemma 4.1 (a) Set ρ0(x) ≡ dist(x, ∂D0). Let a ≥ 0, p ∈ (0, 2 + a), and

γ =


2 + a− p, if 2+a

2 < p < 2 + a,
2+a

2 − ε if p = 2+a
2 ,

p if 0 < p < 2+a
2 ,

(4.2)

where ε ∈ (0, 2+a
2 ) is arbitrary. Then there exists a constant c = c(p, a, ε) such that∫
D0

ρ0(x)a |P0(x, y1)− P0(x, y2)|p dx ≤ c |y1 − y2|γ , ∀y1 , y2 ∈ ∂D0 .(4.3)

(b) For any B ⊂ D0 , such that dist(B, ∂D0) > 0, there exists c = c(B) such that

sup
x∈B
|P0(x, y1)− P0(x, y2)| ≤ c |y1 − y2| , ∀y1 , y2 ∈ ∂D0 .(4.4)
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Proof Appendix.

Since D is a bounded simply connected domain in R2, the Riemann mapping theorem allows
us to find a conformal mapping ψ from D0 onto D. Under our assumption that D is of class C2, ψ
extends to a one-to-one continuous mapping from D̄0 onto D̄. In fact, we can say more. According
to chapter 3 of [20], ψ′ also has a continuous extension to D̄0 and ψ′ does not vanish on D̄0. In
particular, |ψ′| is bounded below and above on D̄0 by positive constants. It is also easy to check
that, for every x, y ∈ D and z ∈ ∂D,

PD(x, z) =
∣∣ψ′(ψ−1(z))

∣∣−1
P0(ψ−1(x), ψ−1(z)),(4.5)

GD(x, y) = G0(ψ−1(x), ψ−1(y)).(4.6)

Let θ(x) =
∣∣ψ′(ψ−1(x))

∣∣, for every x ∈ D̄.

Lemma 4.2 Let p ∈ (0, 3), ε ∈ (0, 3/2) and µ ∈ MD
F,c. There exists c = c(p, ε,D, µ), such that,

for every y1, y2 ∈ ∂D,∫
D
|θ(y1)PD(x, y1)− θ(y2)PD(x, y2)|pGDµ(x) dx ≤


c |y1 − y2|p , if 0 < p < 3/2,
c |y1 − y2|3/2−ε , if p = 3/2,
c |y1 − y2|3−p , if 3/2 < p < 3 .

Proof Let µ̃ be the image of µ under ψ−1, and set E(µ̃) = supp(µ̃), ρ∗ = dist(E(µ̃), ∂D0), and
E(µ̃)ρ∗/2 = {x ∈ D0 : dist(x, E(µ̃)) < ρ∗/2}. Then, using (4.5) and (4.6),∫

D
|θ(y1)PD(x, y1)− θ(y2)PD(x, y2)|pGDµ(x) dx

=
∫
D0

∣∣P0(x′, ψ−1(y1))− P0(x′, ψ−1(y2))
∣∣p (∫

D0

G0(w, x′)µ̃(dw)
) ∣∣ψ′(x′)∣∣2 dx′ .

By an application of the Fubini theorem,∫
D0

(∫
D0

G0(w, x′)µ̃(dw)
) ∣∣ψ′(x′)∣∣2 dx′ ≤ c(µ̃, ψ),

and on the other hand, the bounds (2.1) easily imply that, for every x′ ∈ D0 \ E(µ̃)ρ∗/2,∫
D0

G0(w, x′)µ̃(dw) ≤ c(µ̃, ψ) ρ0(x′).

It readily follows that∫
D
|θ(y1)PD(x, y1)− θ(y2)PD(x, y2)|pGDµ(x) dx

≤ c(µ̃, ψ)

(
sup

x′∈E(µ̃)ρ∗/2

∣∣P0(x′, ψ−1(y1))− P0(y′, ψ−1(y2))
∣∣p

+
∫
D0\E(µ̃)ρ∗/2

∣∣P0(x′, ψ−1(y1))− P0(x′, ψ−1(y2))
∣∣p ρ0(x′) dx′

)
≤ c(µ̃, ψ)

(∣∣ψ−1(y1)− ψ−1(y2)
∣∣p +

∣∣ψ−1(y1)− ψ−1(y2)
∣∣γ)

where γ is as in Lemma 4.1 with a = 1, and we have used both assertions of this lemma to derive
the last inequality. Since ψ−1 is Lipschitz on D̄, the bounds of the lemma follow easily.
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Lemma 4.3 Let p ∈ (1 + β, 2) and q ∈ (1, 1 + β). There exists a constant c = c(β, p, q,D, µ) such
that

E [|θ(y1)Z(y1)− θ(y2)Z(y2)|q] ≤
{
c |y1 − y2|q , if 0 < β < 1/2,
c |y1 − y2|q(3−p)/p , if 1/2 ≤ β < 1 .

Proof Recall from the proof of Theorem 1.1 (ii) that the function (s, x) −→ PD(x, y) belongs to
Lr for any y ∈ ∂D and r ∈ (1, 3). From Lemma 3.1, it follows that

E [|θ(y1)Z(y1)− θ(y2)Z(y2)|q]

≤ c(β, p, q)

((∫
D
|θ(y1)PD(x, y1)− θ(y2)PD(x, y2)|pGDµ(x) dx

)q/p
+
∫
D
|θ(y1)PD(x, y1)− θ(y2)PD(x, y2)|q GDµ(x) dy

)
.

In the case 0 < β < 1/2, choose p ∈ (1 + β, 3/2) and immediately get the desired bound from
Lemma 4.2. Similarly, in the case 1/2 ≤ β < 1 the desired result follows from Lemma 4.2.

Proof of Theorem 1.2(a) We apply the Kolmogorov criterion of continuity to get the existence
of a continuous modification of the process θ(y)Z(y) (and hence also of Z(y)). The needed bounds
for moments of increments of θ(y)Z(y) are obtained from the preceding lemma: In the case 0 < β <
1/2, this is immediate since q > 1, and in the case 1/2 ≤ β < 1, we observe that we can choose p and
q sufficiently close to 1+β to ensure that q(3−p)/p > 1. The existence of a continuous modification
of the process Z(y), together with the remarks of the beginning of this section, completes the proof
of part (a) of Theorem 1.2, in the simply connected case.

The general case when D is not simply connected can be treated via a localization procedure
analogous to Section 4 of [16]. Instead of the special Markov property of the Brownian snake used
in [16], one uses the Markov property of superprocesses in the form stated in Theorem I.1.3 of
Dynkin [6]. Details are left to the reader.

5 Irregularity of the density in high dimensions

In this section, 3 ≤ d < 1 + 2/β. If z ∈ ∂D and r > 0, we denote by B∂(z, r) the open ball centered
at z and with radius r in ∂D: B∂(z, r) = {y ∈ ∂D : |y − z| < r}.

In order to prove part (b) of Theorem 1.2, it is enough to verify that the property

‖X̄D(·)‖B =∞, P a.s. on the event {XD(B) > 0}(5.1)

holds whenever B is a fixed boundary ball.
We thus fix a boundary ball B = B∂(z0, η0). For technical reasons, we also introduce a smaller

closed ball B′ = B̄∂(z0, η
′
0), with η′0 < η0. If ∂B′ denotes the relative boundary of B′, we assume

that σ(∂B′) = 0 (this is certainly true for all but countably many values of η′0). We consider a
sequence (εn) of positive numbers decreasing to 0. For definiteness we may take εn = 2−n. Then,
for every integer n ≥ 1, we set

Bn = {x ∈ D : dist(x,B′) ≤ εn}.

Lemma 5.1 We have

ε−2
n

∫ ∞
0

Xs(Bn) ds −→ XD(B′), as n→∞, in P− probability.
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Proof From formula (1.1)), we have, for every ϕ ∈ Bb(∂D),

E[〈XD, ϕ〉] = 〈µ, PDϕ〉 =
∫
µ(dx)

∫
∂D

σ(dy)PD(x, y)ϕ(y).

Taking ϕ = 1∂B′ , we see that our assumption σ(∂B′) = 0 implies XD(∂B′) = 0, a.s. The statement
of the lemma is then an easy consequence of the weak convergence of XD

ε towards XD (Proposition
2.1).

We fix α ∈ (2/(β + 1), 2). Let

τn = inf{s > 0 : ∆Xs(Bn) > εαn}.

Lemma 5.2 We have

P
(
τn =∞ | XD(B′) > 0

)
→ 0, as n→∞,(5.2)

and

lim sup
n→∞

P (τn =∞) ≤ P
(
XD(B′) = 0

)
.(5.3)

Proof (5.3) is an immediate consequence of (5.2). To verify (5.2) we will follow the lines of the
proof of Lemma 4.1 of [18]. Define

Znt = N
(
[0, t]× {µ ∈MD

F : µ(Bn) > εαn}
)
,

where N is the point measure of jumps of the process X, which was introduced in subsection 2.3.
Then

{τn =∞} = {Zn∞ = 0} .(5.4)

Recall formula (2.6) for the compensator of N . From a classical time change result for counting
processes (see e.g. Theorem 10.33 in [13]), we get that for each n there exists a standard Poisson
process An = (An(t), t ≥ 0) such that

Znt = An
(
c(β)ε−α(β+1)

n

∫ t

0
Xs(Bn) ds

)
,

where c(β) = β/Γ(1− β) > 0. Fix δ > 0 such that 2− α(β + 1) + δ < 0. Then

P
(
Zn∞ = 0, XD(B′) > 0

)
≤ P

(
An(ε−δn ) = 0, c(β) ε−α(β+1)

n

∫ ∞
0

Xs(Bn) ds > ε−δn , XD(B′) > 0
)

+ P
(
c(β) ε−α(β+1)

n

∫ ∞
0

Xs(Bn) ds ≤ ε−δn , XD(B′) > 0
)

≤ P
(
An(ε−δn ) = 0

)
(5.5)

+ P
(
c(β)ε2−α(β+1)+δ

n

(
ε−2
n

∫ ∞
0

Xs(Bn) ds
)
≤ 1, XD(B′) > 0

)
.

The first term on the right hand side of (5.5) is P
(
An(ε−δn ) = 0

)
= exp

{
−ε−δn

}
, which converges to

0 as n → ∞. Now, by Lemma 5.1, ε−2
n

∫∞
0 Xs(Bn) ds → XD(B′), in probability, as n → ∞. Since

2− α(β + 1) + δ < 0, we immediately get that

P
(
c(β)ε2−α(β+1)+δ

n

(
ε−2
n

∫ ∞
0

Xs(Bn) ds
)
≤ 1, XD(B′) > 0

)
→ 0,
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as n→∞. Hence, the result follows from (5.4) and (5.5).

In order to get a lower bound for X̄D in terms of XD, we observe that there exists a positive
constant C1 = C1(D) such that σ(B∂(x, 2εn)) ≤ C1ε

d−1
n for every n ≥ 1 and x ∈ ∂D. If n is large

enough so that 2εn < η0 − η′0, which we assume from now on, we have B∂(z, 2εn) ⊂ B for every
z ∈ B′, and so

sup
z∈B′
〈XD , 1B∂(z,2εn)〉 ≤ C1 ε

d−1
n ‖X̄D‖B.

Thus

E
[
exp

{
−C1

∥∥X̄D
∥∥

B

}]
≤ E

[
exp

{
− sup
z∈B′

ε1−dn 〈XD , 1B∂(z,2εn)〉
}]

.(5.6)

On the event {τn <∞}, denote by ζn , rn be the spatial location and the size of the jump at time
τn, meaning that ∆Xτn = rnδζn . From the strong Markov property at time τn, together with
the additivity property of superprocesses, we know that conditionally on {τn < ∞}, the process
(Xτn+t, t ≥ 0) is bounded below in distribution by (X̃n

t , t ≥ 0), where X̃n is a super-Brownian
motion with initial value rnδζn . From our approximations of the exit measure, it follows that
conditionally on {τn <∞}, XD is bounded below in distribution by the exit measure X̃n,D of X̃n

from D. Hence, from (5.6) we get

E
[
exp

{
−C1

∥∥X̄D
∥∥

B

}]
≤ E

[
1{τn<∞} exp

{
− sup
z∈B′

ε1−dn 〈XD , 1B∂(z,2εn)〉
}]

+ P(τn =∞)

≤ E
[
1{τn<∞}Ernδζn

[
exp

{
− sup
z∈B′

ε1−dn 〈XD , 1B∂(z,2εn)〉
}]]

+ P(τn =∞).(5.7)

Note that, on the event {τn <∞}, we have rn ≥ εαn and ζn ∈ Bn. We now claim that

lim
n→∞

sup
x∈Bn,r≥εαn

Erδx

[
exp

{
− sup
z∈B′

ε1−dn 〈XD , 1B∂(z,2εn)〉
}]

= 0.(5.8)

To verify (5.8), let x0 ∈ Bn and r ≥ εαn. By the definition of Bn, there exists y0 ∈ B′ such that
|y0−x0| ≤ εn. Then, using the Laplace functional of the exit measure as recalled in subsection 2.2,

Erδx0

[
exp

{
− sup
z∈B′

ε1−dn 〈XD , 1B∂(z,2εn)〉
}]

≤ Erδx0

[
exp

{
−ε1−dn 〈XD , 1B∂(y0,2εn)〉

}]
= exp(−r vny0(x0))
≤ exp(−εαn vny0(x0))(5.9)

where the nonnegative function (vny0(x), x ∈ D) solves the integral equation

vny0(x) +
∫
D
GD(x, y)vny0(y)1+β dy = ε1−dn

∫
B∂(y0,2εn)

PD(x, z)σ(dz).(5.10)

Lemma 5.3 Under the conditions 2/(β + 1) < α < 2 and 3 ≤ d < 1 + 2/β, we have

lim
n→∞

(
inf

x0∈Bn,y0∈B′,|y0−x0|≤εn
εαnv

n
y0(x0)

)
= +∞ .(5.11)

Let us postpone the proof of Lemma 5.3. Our claim (5.8) readily follows from (5.9) and (5.11).
By passing to the limit n→∞ in the right hand side of (5.7), and then using Lemma 5.2, we arrive
at

E
[
exp

{
−
∥∥X̄D

∥∥
B

}]
≤ lim sup

n→∞
P (τn =∞) ≤ P

(
XD(B′) = 0

)
.
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We can now let B′ increase to B by varying η′0 along a suitable sequence increasing to η0. Since the
event {XD(B) = 0} is the decreasing limit of the events {XD(B′) = 0} along this sequence, we get

E
[
exp

{
−
∥∥X̄D

∥∥
B

}]
≤ P

(
XD(B) = 0

)
.

Since obviously
∥∥X̄D

∥∥
B

= 0 on the event {XD(B) = 0}, the desired property (5.1) follows from
this last bound. This completes the proof of part (b) of Theorem 1.2.

Proof of Lemma 5.3 Let n ≥ 1 and x0 ∈ Bn, y0 ∈ B′ such that |x0 − y0| ≤ εn. In what follows
we will need to assume that n is sufficiently large, but our bounds will then be uniform in x0 and
y0. To simplify notation, we write vn = vny0 . Note that by (5.10), for every x ∈ D,

vn(x) ≤ ε1−dn

∫
B∂(y0,2εn)

PD(x, z)σ(dz) .

Therefore∫
D
GD(x0, y)vn(y)1+β dy ≤ ε(1−d)(1+β)

n

∫
D
GD(x0, y)

(∫
B∂(y0,2εn)

PD(y, z)σ(dz)

)1+β

dy.(5.12)

We first get a lower bound on the right hand side of (5.10) for x = x0. Since D is of class C2,
there is a number α > 0 such that, for every z ∈ ∂D, there exists an exterior sphere of radius α
tangent to ∂D at z. Suppose that n is large enough so that εn < α and for z ∈ ∂D denote by Bz

n

the closed ball with radius εn/2 tangent to ∂D at z and such that Bz
n ∩D = ∅. Then, if x ∈ D is

such that |x−z| ≤ εn, the probability that a Brownian motion started at x exits the domain D at a
point of B∂(z, 2εn) is bounded below by the probability that this Brownian motion hits Bz

n before
exiting B(z, 2εn). Clearly this probability is bounded below by a constant C0(d) > 0. Hence,∫

B∂(y0,2εn)
PD(x0, z)σ(dz) = Πx0

(
ξζ− ∈ B∂(y0, 2εn)

)
≥ C0(d).(5.13)

We then turn to an upper bound for the integral over D in the right hand side of (5.12). It will
be convenient to deal separately with the integrals over D∩B(y0, ε

γ
n) and D∩B(y0, ε

γ
n)c respectively,

where 0 < γ < 1 is chosen so that

d <
1 + γ

β
+ 1.

With obvious modifications, we can then follow the calculations of [1] (p. 81) and, using (2.1) and
(2.3) in the first inequality below, we obtain, for n large enough,

In1 ≡
∫
D∩B(y0,ε

γ
n)c

GD(x0, y)

(∫
B∂(y0,2εn)

PD(y, z)σ(dz)

)1+β

dy

≤ c(D)

(∫
B∂(y0,2εn)

σ(dz)

)1+β ∫
D∩B(y0,ε

γ
n)c
|x0 − y|1−d ρ(y)2+β sup

z∈B∂(y0,2εn)
|y − z|−d(1+β) dy

≤ c(D)ε(d−1)(1+β)
n εγ(1−d)

n

∫
D∩B(y0,ε

γ
n)c

ρ(y)2+β sup
z∈B∂(y0,2εn)

|y − z|−d(1+β) dy

≤ c(D)ε(d−1)(1+β−γ)
n

∫
D∩B(y0,ε

γ
n)c

(dist(y,B∂(y0, 2εn)))2+β−d(1+β) dy

≤ c(D)ε(d−1)(1+β−γ)
n

∫ diamD

εγn

rd−1(r − 2εn)2+β−d(1+β) dr

≤ c(D)ε(d−1)(1+β−γ)
n ,
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where the last inequality holds because d < 1 + 2/β implies 1 + β − dβ > −1.
Let us turn to the integral over D ∩B(y0, ε

γ
n), which is denoted by In2 . Notice that, for y ∈ D,∫

B∂(y0,2εn)
PD(y, z)σ(dz) = Πy

(
ξζ− ∈ B∂(y0, 2εn)

)
≤ 1.

Hence, using again (2.1) and (2.3),

In2 ≤
∫
D∩B(y0,ε

γ
n)
GD(x0, y)

(∫
B∂(y0,2εn)

PD(y, z)σ(dz)

)
dy

≤ c(D)
∫
D∩B(y0,ε

γ
n)
|x0 − y|1−d ρ(y)

(
1{ρ(y)≤4εn} + 1{ρ(y)>4εn}

∫
B∂(y0,2εn)

ρ(y) |y − z|−d σ(dz)

)
dy

≤ c(D)
∫
D∩B(y0,ε

γ
n)
|x0 − y|1−d ρ(y)

(
1{ρ(y)≤4εn} + 1{ρ(y)>4εn}ρ(y)1−dεd−1

n

)
dy

≤ c(D)εn
∫
D∩B(y0,ε

γ
n)
|x0 − y|1−d dy

≤ c(D)εnεγn.

By combining the preceding bounds, we get∫
D
GD(x, y)vn(y)1+β dy ≤ ε(1−d)(1+β)

n (In1 + In2 )

≤ cε(1−d)(1+β)
n (ε(d−1)(1+β−γ)

n + ε1+γ
n )

= c(ε(1−d)γ
n + ε2+β+γ−d−dβ

n ).(5.14)

Therefore by (5.10), (5.12), (5.13), (5.14), we have

vn(x0) ≥ C0(d)ε1−dn − c(D)(ε(1−d)γ
n + ε2+β+γ−d−dβ

n ).(5.15)

Hence

εαnv
n(x0) ≥ εα+1−d

n

(
C0(d)− c(D)(ε(d−1)(1−γ)

n + ε1+β+γ−dβ
n )

)
(5.16)

for n large enough. Since d < 1+γ
β + 1 and γ < 1 the expression in brackets converges to C0(d) > 0,

as n → ∞. Moreover, since d ≥ 3 and α < 2, we have εα+1−d
n → +∞, as n → ∞, and the desired

result follows.

6 The probabilistic representation of solutions of 1
2∆u = u1+β

In this section, we concentrate on the case when D is the unit ball of Rd, and we prove Theorem
1.3. Before starting the proof, let us observe that our definition of the range (which agrees with [6])
is slightly different from the one in Dynkin [7] or [8]. The reason is that a superprocess is defined
in [7] or [8] as the collection of its exit measures from space-time open sets. It is however not hard
to see that both definitions give rise to the same random closed set, Pµ a.s. for any µ ∈MD

F .
We first recall the definition of the trace of a solution following [17]. Let u be a nonnegative

solution of the partial differential equation

1
2

∆u = u1+β , in D.(6.1)
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We define the trace tr(u) of u on the boundary as the pair (K, ν), where K is a compact subset of
∂D and ν is a Radon measure on ∂D\K, which is determined as follows:

(i) A point y ∈ ∂D belongs to K if and only if, for every relative neighborhood U of y in ∂D,

lim
r↑1

∫
U
u(rz)σ(dz) =∞.

(ii) For every continuous function ϕ on ∂D, with compact support contained in ∂D\K,

lim
r↑1

∫
∂D

u(rz)ϕ(z)σ(dz) =
∫
∂D\K

ϕ(z) ν(dz).

Under the condition d < 1 + 2/β, Marcus and Véron [17] proved that the mapping u −→ tr(u)
induces a one-to-one correspondence between the set of all nonnegative solutions of 1

2∆u = u1+β

in D and the set of all pairs (K, ν) where K is a compact subset of ∂D and ν is a Radon measure
on ∂D\K (in the special case β = 1, this result was obtained earlier in [16]).

Let us prove the first assertion of Theorem 1.3. If u is given by (1.5), we aim at proving that
u solves (6.1). This is basically a consequence of the known connections between superprocesses
and partial differential equations. Consider first the case when ν(dy) = g(y)σ(dy), where g is a
nonnegative continuous function on ∂D, with support contained in ∂D\K. The random variable
Y such that Y = +∞ on the event {R ∩K 6= ∅} and Y = 〈XD, g〉 on {R ∩K = ∅} is a stochastic
boundary value in the sense of Dynkin [7] (see in particular Theorem 6.1 in Dynkin [7]). Therefore
the function

x −→ − log Eδx [exp−Y ] = − log Eδx

[
1{R∩K=∅} exp−

∫
g(y)XD(dy)

]
solves 1

2∆u = u1+β in D.
Coming back to the case of a general Radon measure ν on ∂D\K, we may find a sequence of

nonnegative continuous functions gn, with support contained in ∂D\K, such that

lim
n→∞

∫
ϕ(y) gn(y)σ(dy) =

∫
ϕ(y) ν(dy)

for every ϕ ∈ C(D) with compact support contained in ∂D\K.

Lemma 6.1 On the event {R ∩K = ∅}, we have

〈XD, gn〉 −→
∫
X̄D(y) ν(dy)

as n→∞, in Pδx0 -probability for every x0 ∈ D.

Proof Let ε > 0 and Kε = {y ∈ ∂D : dist(y,K) < ε}. Since R is a closed set, the event
{R∩K = ∅} is the union of the events {R∩Kε = ∅} over all ε > 0. Also, on the event {R∩Kε = ∅},
it is easy to see that XD puts no mass on Kε (use Proposition 2.1) and that X̄D(y) = 0 a.s., for
every y ∈ Kε.

Fix ε > 0 and let hε : ∂D −→ [0, 1] be a continuous function such that hε(y) = 0 if y ∈ Kε/2 and
hε(y) = 1 if y /∈ Kε. In view of the preceding remarks, the proof of the lemma reduces to checking
that

lim
n→∞

〈XD, hεgn〉 =
∫
X̄D(y)hε(y) ν(dy),
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in Pδx0 -probability, for any x0 ∈ D, ε > 0.
As a special case of (1.1), we have Pδx0 a.s.

〈XD, hεgn〉 = PD(hεgn)(x0) +
∫ ∞

0

∫
D
PD(hεgn)(x)M(ds, dx).

Now, for every x ∈ D, we have

PD(hεgn)(x) =
∫
∂D

PD(x, y)hε(y)gn(y)σ(dy) −→
∫
∂D

PD(x, y)hε(y) ν(dy),

as n → ∞. Recall from the proof of Theorem 1.1 (ii) that the (time-independent) functions
(s, x) → PD(x, z) are bounded in Lp when z varies in ∂D, for any p ∈ (1 + β, (d + 1)/(d − 1)). It
follows that the previous convergence holds in Lp for any p ∈ (1 + β, (d+ 1)/(d− 1)). By Lemma
3.1, we conclude that 〈XD, hεgn〉 converges in Lq(Pδx0 ), for every q ∈ (1, 1 + β), towards∫
∂D

PD(x0, y)hε(y) ν(dy) +
∫ ∞

0

∫
D

(∫
∂D

PD(x, y)hε(y) ν(dy)
)
M(dsdx) =

∫
∂D

X̄D(y)hε(y) ν(dy),

thanks to (1.2) and the “Fubini theorem” Lemma 3.2.

We come back to the proof of Theorem 1.3. For every n ≥ 1, let

un(x) = − log Eδx

[
1{R∩K=∅} exp−

∫
gn(y)XD(dy)

]
, x ∈ D.

We already saw that un solves (6.1), and by the lemma, un(x) converges to u(x) as n → ∞, for
every x ∈ D. Since the set of nonnegative solutions of (6.1) is closed under pointwise convergence
(see e.g. Theorem 5.3.2 in [8]), we conclude that u also solves (6.1). This completes the proof of
the first part of Theorem 1.3.

In order to prove the second half of the theorem, we keep assuming that u is given by (1.5) and
we determine the trace of u. For every n, set (Kn, νn) = tr(un). Note that

un(x) ≥ uK(x) ≡ − log Pδx(R∩K = ∅)

and that uK has trace (K, 0). Indeed, uK is the maximal nonnegative solution of (6.1) that vanishes
on ∂D\K, see [8], Theorem 10.1.3. From the definition of the trace, it follows that Kn ⊃ K. On
the other hand, set

ugn(x) = − log Eδx

[
exp−

∫
gn(y)XD(dy)

]
and recall that ugn solves (6.1) with boundary condition u|∂D = gn. From the bound∣∣∣Eδx

[
1{R∩K=∅} exp−

∫
gn(y)XD(dy)

]
− Eδx

[
exp−

∫
gn(y)XD(dy)

]∣∣∣ ≤ Pδx(R∩K 6= ∅)

and the previous observations on uK , we see that (un − ugn)(x) converges to 0 as x → y, for
every y ∈ ∂D\K. Thus un has boundary value gn on ∂D\K, and we conclude that Kn = K and
νn(dx) = gn(x)σ(dx). Furthermore, we know from Theorem 5.6 of [17] that the convergence of un
to u implies the convergence of tr(un) towards tr(u), in the sense of Definition 5.5 of [17], and we
obtain that tr(u) = (K, ν).

Finally, if v is any nonnegative solution of (6.1) and (K, ν) is its trace, the solution u defined
by (6.1) has the same trace as v, and by the uniqueness theorem of [17], we must have v = u.
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Remark. The main contribution of [16] is a direct probabilistic proof of the special case β = 1
of Theorem 1.3. Note that the probabilistic representation of solutions in [16] looks a bit different
because it is formulated in terms of excursion measures, which we did not introduce in the present
work. Very probably (at least in the case d = 2 where the density X̄D has a continuous modification)
one could give a probabilistic proof of Theorem 1.3 along the lines of [16], without any reference
to the results of [17]. On the other hand, this probabilistic approach remains restricted to the
values β ≤ 1, whereas the analytic results hold for any β > 0. For this reason, we chose to use
the full strength of the results of [17] to give a short proof of the probabilistic representation (1.5).
Also note that closely related results appear in the recent work of Dynkin and Kuznetsov: See e.g.
Theorem 1.4 in [9].

Appendix: Proof of Lemma 4.1

First we will prove part (a) of the lemma. From the explicit formula (4.1) for the Poisson kernel,
we have, for every x ∈ D0 and y1, y2 ∈ ∂D0,

|P0(x, y1)− P0(x, y2)| =
1

2π

(
1− |x|2

) 2 |x · (y1 − y2)|
|y1 − x|2 |y2 − x|2

,(A.1)

where u · v stands for the usual scalar product in R2. Clearly, 1− |x|2 ≤ 2ρ0(x), and hence,

|P0(x, y1)− P0(x, y2)|p ≤ cρ0(x)p
|x · (y1 − y2)|p

|y1 − x|2p |y2 − x|2p
.

Set

E1 ≡ {x ∈ D0 : |y1 − x| ∨ |y2 − x| ≥ 3 |y1 − y2|} ,
E2 ≡ {x ∈ D0 : |y1 − x| ∨ |y2 − x| < 3 |y1 − y2|} .

If x ∈ E1 we have plainly

|y1 − x| ∧ |y2 − x| ≥ 2 |y1 − y2|(A.2)

|y1 − x| ∧ |y2 − x| ≥
2
3

(|y1 − x| ∨ |y2 − x|).(A.3)

Also note that

|x · (y1 − y2)| =
∣∣∣∣(x− 1

2
(y1 + y2)

)
· (y1 − y2)

∣∣∣∣(A.4)

=
1
2
|(x− y1) · (y1 − y2) + (x− y2) · (y1 − y2)|

≤ (|x− y1| ∨ |x− y2|) |y1 − y2| .

By combining (A.2), (A.3), (A.4) we obtain∫
E1

ρ0(x)a |P0(x, y1)− P0(x, y2)|p dx

≤ c
∫
E1

ρ0(x)a+p |x · (y1 − y2)|p

|y1 − x|2p |y2 − x|2p
dx

≤ c

(∫
|x−y1|∧|x−y2|>2|y1−y2|

ρ0(x)a+p |y1 − x|−2p |y2 − x|−p dx

)
|y1 − y2|p
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≤ c

(∫
|x−y1|>2|y1−y2|

ρ0(x)a+p |y1 − x|−3p dx

)
|y1 − y2|p

≤ c

(∫ 2

2|y1−y2|∧2
r1+a+pr−3p dr

)
|y1 − y2|p

≤


c |y1 − y2|p , if 0 < p < 2+a

2 ,

c
(

log+
1

|y1−y2| + 1
)
|y1 − y2|p , if p = 2+a

2 ,

c |y1 − y2|2+a−p , if p > 2+a
2 .

Then consider the integral on E2 . If x ∈ E2 , we have by (A.4)

|x · (y1 − y2)| ≤ 3 |y1 − y2|2 .

Also note that
|y1 − x| ∨ |y2 − x| ≥

1
2
|y1 − y2| .

Then it follows that ∫
E2

ρ0(x)a |P0(x, y1)− P0(x, y2)|p dx

≤ c
∫
E2

ρ0(x)a+p
(
|y1 − x|−2p + |y2 − x|−2p

)
dx

≤ c
∫
|x−y1|∨|x−y2|<3|y1−y2|

ρ0(x)a+p(|y1 − x| ∧ |y2 − x|)−2p dx

≤ c
∫
|x−y1|<3|y1−y2|

ρ0(x)a+p |y1 − x|−2p dx

≤ c
∫ 3|y1−y2|

0
r1+a−p dr

≤ c |y1 − y2|2+a−p ,

provided that p < 2 + a. Hence the result of part (a) of the lemma follows by combining bounds
on E1 and E2 .

The proof of part (b) is easy. Define b = dist(B, ∂D0), and recall that b > 0. Then from (A.1)
we obtain, for every y1, y2 ∈ ∂D0,

sup
x∈B
|P0(x, y1)− P0(x, y2)| ≤ c sup

x∈B

|x| |y1 − y2|
|y1 − x|2 |y1 − x|2

≤ cb−4 |y1 − y2| ,

and the result follows.
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Département Mathématiques et Applications
Ecole Normale Supérieure
45, rue d’Ulm
75005 Paris, France
legall@dma.ens.fr

Leonid Mytnik
Faculty of Industrial Engineering and Management
Technion — Israel Institute of Technology
Haifa 32000, Israel
leonid@ie.technion.ac.il

25


