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Abstract

We explain how Itô’s excursion theory can be used to understand the asymptotic behavior
of large random trees. We provide precise statements showing that the rescaled contour of a
large Galton-Watson tree is asymptotically distributed according to the Itô excursion measure.
As an application, we provide a simple derivation of Aldous’ theorem stating that the rescaled
contour function of a Galton-Watson tree conditioned to have a fixed large progeny converges
to a normalized Brownian excursion. We also establish a similar result for a Galton-Watson
tree conditioned to have a fixed large height.
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1 Introduction

In his celebrated papers [14, 15], Kiyosi Itô introduced the Poisson point process of excursions of
a Markov process from a regular point. The idea of considering excursions away from a point had
appeared earlier, in particular in the case of linear Brownian motion (see e.g. Chapter VI in Lévy
[20]), but Itô’s major breakthrough was to observe that the full collection of excursions could be
represented as a single Poisson point process on an appropriate space. In the discrete setting, it is
very easy to verify that the successive excursions of a Markov chain away from a recurrent point
are independent and identically distributed, and this property plays a major role in the analysis
of discrete-time Markov chains. In the continuous setting, it is no longer possible to enumerate
the successive excursions from a regular point in chronological order (even though, as we shall see
in Section 2 below, excursions can be labelled by the value of the local time at their initial time).
Therefore, one cannot immediately make sense of the assertion that the different excursions are
independent. The correct point of view, which turns out to be extremely powerful, is to consider
Itô’s point process of excursions.

Itô’s excursion theory has many important applications. It can be used to derive lots of explicit
distributions for Brownian motion, and often it sheds light on formulas that were initially proved by
different methods. See in particular [24] for a recent account of these applications. More generally,
Itô’s excursion theory is a fundamental tool in the analysis of Lévy processes on the line: See the
monograph [5]. Itô’s initial motivation was to understand the sample path behaviour of linear
diffusions satisfying general Feller’s boundary conditions. This approach can in fact be extended
to multidimensional diffusion processes in a domain: See [29]. Excursions of multidimensional
Brownian motion in a domain are discussed in the monograph [7] in particular.

In the present work, we discuss a perhaps more unexpected application of Itô’s excursion theory
to the asymptotic properties of large random trees. Connections between branching processes or
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trees and random walks have been studied for a long time: See in particular Pitman’s monograph
[23] for extensive references about these connections. Around 1990, both from Aldous’ construction
of the CRT as the tree coded by a normalized Brownian excursion [1, 2] and from the Brownian
snake approach to superprocesses [17], it became clear that Brownian excursions could be used to
define and study the continuous random trees that arise as scaling limits of large Galton-Watson
trees.

Our main purpose here is to demonstrate that the Itô excursion measure, which corresponds
to the intensity of the Poisson point process of excursions, is indeed the fundamental object if one
wants to understand asymptotics of (critical, finite variance) Galton-Watson trees conditioned to
be large in some sense. We deal only with the case where the offspring distribution is critical with
finite variance, although our techniques can be adapted to more general cases (see Chapter 2 of the
monograph [9]). Note that there are many different ways of conditioning a Galton-Watson tree to
be large, and that the resulting scaling limits will typically be different. Still Theorem 5.1 below
strongly suggests that these scaling limits can always be described by a suitable conditioning of the
Itô excursion measure.

As a key tool for establishing Theorem 5.1 and the subsequent results, we start by studying
scaling limits for a sequence of independent Galton-Watson trees. This sequence is conveniently
coded by a contour, or depth-first search process (see Fig.1 in Section 3 below). Under Brownian
rescaling, the contour process of the sequence converges in distribution towards reflected Brownian
motion (Theorem 4.1). One can then observe that a Galton-Watson tree conditioned to be large
(for instance to have height, or total progeny, greater than some large integer p) can be obtained as
the first tree in our sequence that satisfies the desired constraint. In terms of the contour process,
or rather of the variant of the contour process called the height process, this tree will correspond to
the first excursion away from zero that satisfies an appropriate property (for instance having height,
or length, greater than p). Under rescaling, this excursion will converge towards the first excursion
of reflected Brownian motion satisfying a corresponding property, and Itô’s theory tells us that the
law of the latter excursion is a certain conditioning of the Itô measure. The preceding arguments
are made rigorous in the proof of Theorem 5.1. Note that, although we formulate our limit theorems
in terms of contour processes, these results immediately imply analogous limit theorems for the
trees viewed as compact metric spaces, in the sense of the Gromov-Hausdorff distance: The point
is that a (discrete or continuous) tree can be viewed as a function of its contour process, with a
function that is continuous, and even Lipschitz, for the Gromov-Hausdorff distance (see Section 2
of [19], and the discussion at the end of Section 5 of the present work).

Theorem 5.1 can be applied to handle various conditionings of Galton-Watson trees, but it
cannot immediately be used to understand “degenerate conditionings”, for which the condition
imposed on the contour process excursion will lead to a set that is negligible for the Itô excursion
measure. In Sections 6 and 7, we show that such cases can still be treated by a more careful
analysis. Section 6 is devoted to a new proof of Aldous’ theorem [2] concerning the case of Galton-
Watson trees conditioned to have a fixed large progeny (then the limit is a normalized Brownian
excursion). Section 7 deals with the case of Galton-Watson trees conditioned to have a fixed large
height. In that case the scaling limit of the contour process is a Brownian excursion conditioned
to have a given height (Theorem 7.1). In both cases, the idea is to study the absolute continuity
properties of the law of the tree under the given degenerate conditioning, with respect to its law
under a suitable non-degenerate conditioning, and then to use Theorem 5.1 to handle the latter.

Let us briefly discuss the connections of the present article with earlier work. Theorem 4.1 can
be viewed as a special case of the more general results presented in Chapter 2 of [9], with certain
simplifications in particular in the proof of tightness. Theorem 5.1 is new, even though similar
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ideas have appeared earlier in [9] and [19]. As mentioned above, Theorem 6.1 is due to Aldous
[2]. Our proof is close in spirit to the one provided by Marckert and Mokkadem [21] under the
assumption that the offspring distribution has exponential moments (see also Section 1.5 in [19]).
To the best of our knowledge, Theorem 7.1 is new, but certain specific aspects of Galton-Watson
trees conditioned to have a fixed large height can be found in [13] and [16]. As a general remark,
Marc Yor has pointed out that our strategy of understanding the scaling limits of random trees
under various conditionings in terms of a single σ-finite measure (namely the Itô measure) is closely
related to certain aspects of the study of penalizations of Brownian motion: See in particular the
monograph [26].

To conclude this introduction, let us mention that there are other significant applications of Itô’s
excursion theory in the setting of spatial branching processes. In particular, the excursion measure
of the Brownian snake plays a crucial role in the study of this path-valued Markov process and of
its connections with semilinear partial differential equations (see [18] and the references therein). In
a related direction, the so-called Integrated Super-Brownian Excursion or ISE [3], which has found
striking applications in asymptotics of models of statistical physics, is constructed by combining
the tree structure of a Brownian excursion with Brownian displacements in space.

The paper is organized as follows. In Section 2, we recall some key results from Itô’s excursion
theory in the special case of reflected Brownian motion, which is relevant for our applications. In
Section 3, we discuss random trees and their coding functions. In particular, we introduce the
height function of a tree, which is often more tractable than the contour function thanks to its
simple connection with the so-called Lukasiewicz path (formula (3) below). Section 4 is devoted
to the proof of Theorem 4.1 describing the scaling limit of the contour and height processes of a
sequence of independent Galton-Watson trees. In Section 5 we establish our main result (Theorem
5.1) connecting the asymptotic behavior of large Galton-Watson trees with conditionings of the
Itô excursion measure. Section 6 is devoted to the proof of Aldous’ theorem, and Section 7 treats
Galton-Watson trees conditioned to have a fixed height.
Notation. If I is a closed subinterval of R+, C(I,R+) stands for the space of all continuous functions
from I into R+, which is equipped with the topology of uniform convergence on every compact
subset of I. Similarly, D(I,R+) denotes the space of all càdlàg functions from I into R+, which is
equipped with the Skorokhod topology.

Acknowledgements. I thank David Aldous and Jean-François Marckert for useful comments and
references. I am also indebted to Marc Yor, Maria Eulalia Vares and Igor Kortchemski for their
remarks on the first version of this work.

2 Excursion theory of Brownian motion

In this section, we briefly recall the key facts of Itô’s excursion theory in the particular case of
reflected Brownian motion. We especially collect those facts that will be needed in our applications
to random trees. A much more detailed account of the theory can be found in the paper [29]. The
results that are recalled below can also be found in Chapter XII of the book [25].

We consider a standard linear Brownian motion B = (Bt)t≥0 starting from the origin. The
process βt = |Bt| is called reflected Brownian motion. We denote by (L0

t )t≥0 the local time process
of B (or of β) at level 0, which can be defined by the approximation

L0
t = lim

ε→0

1
2ε

∫ t

0
ds1[−ε,ε](Bs) = lim

ε→0

1
2ε

∫ t

0
ds1[0,ε](βs),
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for every t ≥ 0, a.s.
Then (L0

t )t≥0 is a continuous increasing process, and the set of increase points of the function
t→ L0

t coincides with the set
Z = {t ≥ 0 : βt = 0}

of all zeros of β. Consequently, if we introduce the right-continuous inverse of the local time process,

τ` := inf{t ≥ 0 : L0
t > `} , for every ` ≥ 0,

we have
Z = {τ` : ` ≥ 0} ∪ {τ`− : ` ∈ D}

where D denotes the countable set of all discontinuity times of the mapping `→ τ`.
We call excursion interval of β (away from 0) any connected component of the open set R+\Z.

Excursion intervals for more general continuous random functions will be defined in a similar way.
The preceding discussion shows that, with probability one, the excursion intervals of β away from
0 are exactly the intervals ]τ`−, τ`[ for ` ∈ D. Then, for every ` ∈ D, we define the excursion
e` = (e`(t))t≥0 associated with the interval ]τ`−, τ`[ by setting

e`(t) =
{
βτ`−+t if 0 ≤ t ≤ τ` − τ`− ,
0 if t > τ` − τ`− .

We view e` as an element of the excursion space E, which is defined by

E = {e ∈ C(R+,R+) : e(0) = 0 and ζ(e) := sup{s > 0 : e(s) > 0}∈ ]0,∞[},

where sup ∅ = 0 by convention. Note that we require ζ(e) > 0, so that the zero function does not
belong to E. For technical reasons, we do not require that e(t) > 0 for t ∈ ]0, ζ(e)[, although of
course the measure n(de) is suppported on the functions that satisfy this property. The space E is
equipped with the metric d defined by

d(e, e′) = sup
t≥0
|e(t)− e′(t)|+ |ζ(e)− ζ(e′)|

and with the associated Borel σ-field. Notice that ζ(e`) = τ` − τ`− for every ` ∈ D.
We can now state the basic theorem of excursion theory in our particular setting. This is a

special case of Itô’s results in [14, 15] (see also [22]).

Theorem 2.1 The point measure ∑
`∈D

δ(`,e`)(ds de)

is a Poisson measure on R+ × E, with intensity

ds⊗ n(de)

where n(de) is a σ-finite measure on E.

The measure n(de) is called the Itô measure of positive excursions of linear Brownian motion,
or simply the Itô excursion measure. Notice that we restrict our attention to positive excursions:
The measure n is denoted by n+ in Chapter XII of [25].

The next corollary, which follows from standard properties of Poisson measures, will be one of
our main tools.
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Corollary 2.2 Let A be a measurable subset of E such that 0 < n(A) <∞, and let TA = inf{` ∈
D : e` ∈ A}. Then, TA is exponentially distributed with parameter n(A), and the distribution of
eTA is the conditional measure

n(· |A) =
n(· ∩A)

n(A)
.

Moreover, TA and eTA are independent.

This corollary can be used to calculate various distributions under the Itô excursion measure.
We will use the distribution of the height and the length of the excursion, which are given as follows:
For every ε > 0,

n
(

max
t≥0

e(t) > ε
)

=
1
2ε

and
n(ζ(e) > ε) =

1√
2πε

.

The Itô excursion measure enjoys the following scaling property. For every λ > 0, define a mapping
Φλ : E −→ E by setting Φλ(e)(t) =

√
λ e(t/λ), for every e ∈ E and t ≥ 0. Then we have

Φλ(n) =
√
λn.

This scaling property makes it possible to define conditional versions of the Itô excursion mea-
sure. We discuss the conditioning of n(de) with respect to the length ζ(e). There exists a unique
collection of probability measures (n(s), s > 0) on E such that the following properties hold:

(i) For every s > 0, n(s)(ζ = s) = 1.

(ii) For every λ > 0 and s > 0, we have Φλ(n(s)) = n(λs).

(iii) For every measurable subset A of E,

n(A) =
∫ ∞

0
n(s)(A)

ds

2
√

2πs3
.

We may and will write n(s) = n(· | ζ = s). The measure n(1) = n(· | ζ = 1) is called the law
of the normalized Brownian excursion. Similarly, one can define conditionings with respect to the
height of the excursion, and make sense of n(de |max(e) = x) for every x > 0.

There are many different descriptions of the Itô excursion measure: See in particular [25,
Chapter XII]. We state the following proposition, which emphasizes the Markovian properties of
n. For every t > 0 and x > 0, we set

qt(x) =
x√
2πt3

exp(−x
2

2t
).

Note that the function t→ qt(x) is the density of the first hitting time of x by B.

Proposition 2.3 The Itô excursion measure n is the only σ-finite measure on E that satisfies the
following two properties.

(i) For every t > 0, and every f ∈ C(R+,R+),

n(f(e(t)) 1{ζ>t}) =
∫ ∞

0
f(x) qt(x) dx.
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(ii) Let t > 0. Under the conditional probability measure n(· | ζ > t), the process (e(t + r))r≥0 is
Markov with the transition kernels of Brownian motion stopped upon hitting 0.

This proposition can be used to establish absolute continuity properties of the conditional
measures n(s) with respect to n. We will need the following fact. For every t ≥ 0, let Ft denote the
σ-field on E generated by the mappings r −→ e(r), for 0 ≤ r ≤ t. Then, if 0 < t < 1, the measure
n(1) is absolutely continuous with respect to n on the σ-field Ft, with Radon-Nikodym density

dn(1)

dn

∣∣∣
Ft

(e) = 2
√

2π q1−t(e(t)). (1)

This formula is indeed similar to the classical formula relating the law up to time t < 1 of a “bridge”
of duration 1 (associated with a Markov process) to the law of the unconditioned process.

In the same way, we can compute the Radon-Nikodym derivative of the conditional measure
n(· |ζ > 1) with respect to n on the same σ-field:

dn(· |ζ > 1)
dn

∣∣∣
Ft

(e) =
√

2π
∫ ∞

1−t
qr(e(t)) dr. (2)

These formulas will be useful in Section 6 below.

3 Random trees

3.1 Rooted ordered trees

We will primarily be interested in rooted ordered trees, also called plane trees, although our results
have applications to other classes of trees. Let us start with some definitions.

We first introduce the set of labels

U =
∞⋃
n=0

Nn

where N = {1, 2, . . .} and by convention N0 = {∅}. An element of U is thus a finite sequence
u = (u1, . . . , un) of positive integers, and we set |u| = n. We say that |u| is the generation of u.
Thus Nn consists of all elements at the nth generation.

A (finite) rooted ordered tree t is a finite subset of U such that:

(i) ∅ ∈ t.

(ii) If u = (u1, . . . , un) ∈ t\{∅} then (u1, . . . , un−1) ∈ t.

(iii) For every u = (u1, . . . , un) ∈ t, there exists an integer ku(t) ≥ 0 such that, for every j ∈ N,
(u1, . . . , un, j) ∈ t if and only if 1 ≤ j ≤ ku(t)

The number ku(t) is interpreted as the “number of children” of u in t.
We denote the set of all rooted ordered trees by T. In what follows, we see each element of the

tree t as an individual of a population whose t is the family tree. By definition, the cardinality #t
of t is the total progeny of #t.

We now explain how trees can be coded by discrete functions (see Fig.1 below). We start by
introducing the contour function, or Dyck path in the terminology of [28].
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Figure 1

Suppose that the tree t is embedded in the half-plane as shown on Fig.1, in such a way that
edges have length one. Informally, we imagine the motion of a particle that starts at time s = 0
from the root of the tree and then explores the tree from the left to the right, moving continuously
along the edges at unit speed (in the way explained by the arrows of Fig.1), until all edges have
been explored and the particle has come back to the root. Since it is clear that each edge will
be crossed twice in this evolution, the total time needed to explore the tree is γ(t) := 2(#t − 1).
The contour function of t is the function (ct(s))0≤s≤γ(t) whose value at time s ∈ [0, γ(t)] is the
distance (on the tree) between the position of the particle at time s and the root. Fig.1 explains
the construction of the contour function better than a formal definition. Clearly, t is determined by
its contour function. It will often be convenient to define ct(s) for every s ≥ 0, by setting ct(s) = 0
for s > γ(t). Then ct becomes an element of E and ζ(ct) = γ(t).

The height function gives another way of coding the tree t. We denote the elements of t listed
in lexicographical order by u0 = ∅, u1, u2, . . . , u#t−1. The height function (ht(n); 0 ≤ n < #t) is
defined by

ht(n) = |un|, 0 ≤ n < #t.

The height function is thus the sequence of the generations of the individuals of t, when these
individuals are listed in lexicographical order (see Fig.1 for an example). It is again easy to check
that ht characterizes the tree t.

We finally introduce the Lukasiewicz path of the tree t. This is the finite sequence of integers
(x0, x1, . . . , x#t) determined by the relations x0 = 0 and xj+1 − xj = kuj (t) − 1 for every j =
0, 1, . . . ,#t−1. An easy combinatorial argument shows that xj ≥ 0 for 0 ≤ j < #t and x#t = −1.
The height function ht of the tree t is related to its Lukasiewicz path by the formula

ht(n) = #{j ∈ {0, 1, . . . , n− 1} : xj = min
j≤`≤n

x`}, (3)

for every n = 0, 1, . . . ,#t− 1. See e.g. [19, Proposition 1.2] for a proof.

3.2 Galton-Watson trees

Let µ be an offspring distribution, that is a probability measure (µ(k), k = 0, 1, . . .) on the nonneg-
ative integers. Throughout this work, we make the following two basic assumptions:
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(i) (critical branching)
∞∑
k=0

k µ(k) = 1.

(ii) (finite variance)
∞∑
k=0

k2 µ(k) <∞.

The variance of µ is denoted by σ2 =
∑∞

k=0 k
2 µ(k)− 1. We exclude the trivial case where µ is

the Dirac measure at 1, and thus σ > 0. We also introduce the probability measure ν on Z defined
by

ν(k) = µ(k + 1)

for every k = −1, 0, 1, . . ., and ν(k) = 0 if k < −1. Notice that ν has zero mean.
The µ-Galton-Watson tree is the genealogical tree of a Galton-Watson branching process with

offspring distribution µ starting with a single individual called the ancestor. It thus corresponds
to the evolution of a population where each individual has, independently of the others, a random
number of children distributed according to µ. Under our assumptions on µ, the population becomes
extinct after a finite number of generations, and so the genealogical tree is finite a.s.

More rigorously, a µ-Galton-Watson tree is a random variable T with values in T, whose dis-
tribution is given by

P [T = t] =
∏
u∈t

µ(ku(t)) (4)

for every t ∈ T.
It turns out that the Lukasiewicz path of a µ-Galton-Watson has a simple probabilistic structure.

Lemma 3.1 Let (Sn, n ≥ 0) be a random walk on Z with initial value S0 = 0 and jump distribution
ν. Set

T = inf{n ≥ 0 : Sn = −1}.

Then the Lukasiewicz path of a µ-Galton-Watson tree T has the same distribution as (S0, S1, . . . , ST ).
In particular, #T and T have the same distribution.

The statement of the lemma is intuitively “obvious”: If u0, u1, . . . are the individuals of T
listed in lexicographical order, just use the fact that the numbers of children ku0(T ), ku1(T ), . . . are
independent and distributed according to µ. See e.g. [19, Corollary 1.6] for a detailed proof.

We denote the height of the tree T by ht(T ) = sup{|u| : u ∈ T }. Then a classical result of the
theory of branching processes (see Theorem 1 in [4, p.19]) states that

P [ht(T ) ≥ p] ∼
p→∞

2
σ2p

, (5)

where we use the notation ap ∼
p→∞

bp to mean that the ratio ap/bp tends to 1 as p→∞.

Notice that the function p→ P [ht(T ) = p] is nonincreasing: To see this, note that for the tree
T to have height p+ 1, it is necessary that the subtree of descendants of one of the children of the
ancestor has height p, and use the criticality of the offspring distribution. It follows that we have

P [ht(T ) = p] ∼
p→∞

2
σ2p2

. (6)

This estimate also follows from Corollary 1 in [4, p.23].
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Remark. In the next sections, we discuss asymptotics for Galton-Watson trees conditioned to be
large. Up to some point, our results can be extended to offspring distributions that do not satisfy
(i) and (ii). Infinite variance offspring distributions are discussed in Chapter 2 of the monograph
[9]. In the case of non-critical offspring distributions, if one is interested in the tree conditioned to
have a fixed large progeny, it is often possible to apply the results of the critical case, by replacing
µ with µa(k) = Ca a

k µ(k), where Ca is a normalizing constant and the parameter a > 0 is chosen
so that µa becomes critical.

4 Limit theorems for sequences of independent Galton-Watson
trees

Consider a sequence T0, T1, T2, . . . of independent µ-Galton-Watson trees. The contour process
(Ct)t∈R+ of this sequence is the random process obtained by concatenating the contour functions
(cT0(s))0≤s≤γ(T0), (cT1(s))0≤s≤γ(T1),... of the trees T0, T1,... (we may in fact consider only those
trees Tj such that #Tj > 1, since otherwise the contour function is trivial). Similarly, the height
process (Hn)n∈Z+ of the sequence is obtained by concatenating the (discrete) height functions
(hT0(n))0≤n≤#T0−1, (hT1(n))0≤n≤#T1−1,... of the trees T0, T1,... Notice that Hn+1 − Hn ≤ 1 for
every n ≥ 0.

We can now state the main result of this section. If x ∈ R+, [x] denotes the integer part of x.

Theorem 4.1 Let T0, T1, T2, . . . be a sequence of independent µ-Galton-Watson trees. Let (Hn)n≥0

be the associated height process and let (Ct)t≥0 be the associated contour process. Then

(
1
√
p
H[pt])t≥0

(d)−→
p→∞

(
2
σ
βt)t≥0 (7)

where β is a reflected Brownian motion started from 0. The convergence holds in the sense of weak
convergence of the laws on D(R+,R+). Moreover, we have for every K > 0,

1
√
p

sup
0≤t≤K

|C2pt −H[pt]|
(P)−→
p→∞

0 , (8)

where the notation
(P)→ refers to convergence in probability. In particular, we have also

(
1
√
p
C2pt)t≥0

(d)−→
p→∞

(
2
σ
βt)t≥0, (9)

in the sense of weak convergence of the laws on C(R+,R+).

Before we proceed to the proof of Theorem 4.1, we state a couple of lemmas. We first need to
introduce an important auxiliary process, which can be viewed as the Lukasiewicz path of the forest
T0, T1, . . . and which we denote by (Sn, n ≥ 0). For every j = 0, 1, . . ., let (Xj

n, 0 ≤ n ≤ #Tj − 1) be
the Lukasiewicz path of the tree Tj , and set Y j

n = −j +Xj
n. Then the random path (Sn, n ≥ 0) is

just the concatenation of the paths (Y j
n , 0 ≤ n ≤ #Tj − 1) for j = 0, 1, . . .

The following simple lemma is a straightforward consequence of the results recalled in the
previous section.
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Lemma 4.2 The process (Sn)n≥0 is a random walk with jump distribution ν and initial value
S0 = 0. Moreover, for every n ≥ 0,

Hn = #{k ∈ {0, 1, . . . , n− 1} : Sk = min
k≤j≤n

Sj}. (10)

The fact that S is a random walk with jump distribution ν follows from Lemma 3.1, and formula
(10) is an immediate consequence of (3).

As an easy consequence of the representation (10) and the strong Markov property of the
random walk S, we get the following lemma, whose proof is left as an exercise for the reader (see
[9, Lemma 2.3.5]).

Lemma 4.3 Let τ be a stopping time of the filtration (Gn) generated by the random walk S. Then
the process (

Hτ+n − min
τ≤k≤τ+n

Hk

)
n≥0

is independent of Gτ and has the same distribution as (Hn)n≥0.

Proof of Theorem 4.1. The proof of Theorem 4.1 consists of three separate steps. In the first one,
we obtain the weak convergence of finite-dimensional marginals of the processes ( 1√

pH[pt])t≥0. In
the second one, we prove tightness of the laws of these processes, thus establishing the convergence
(7). In the last step, we prove the convergence (8).
First step. Let S = (Sn)n≥0 be as before the Lukasiewicz path of the forest T0, T1, . . . Note that the
jump distribution ν has mean 0 and finite variance σ2, and thus the random walk S is recurrent.
We also introduce the notation

Mn = max
0≤k≤n

Sk , In = min
0≤k≤n

Sk .

Donsker’s invariance theorem gives

(
1
√
p
S[pt])t≥0

(d)−→
p→∞

(σ Bt)t≥0 (11)

where B is as in Section 2 a standard linear Brownian motion started at the origin.
For every fixed n ≥ 0, introduce the time-reversed random walk Ŝn defined by Ŝnk = Sn−Sn−k,

for 0 ≤ k ≤ n. Note that (Ŝnk , 0 ≤ k ≤ n) has the same distribution as (Sk, 0 ≤ k ≤ n). From
formula (10), we have

Hn = #{k ∈ {0, 1, . . . , n− 1} : Sk = min
k≤j≤n

Sj} = Ψn(Ŝn0 , Ŝ
(n)
1 , . . . , Ŝ(n)

n ),

where for any integer sequence (x0, x1, . . . , xn), we have set

Ψn(x0, x1, . . . , xn) = #{k ∈ {1, . . . , n} : xk = max
0≤j≤k

xj}.

We also set Rn = Ψn(S0, S1, . . . , Sn) = #{k ∈ {1, . . . , n} : Sk = Mk}.
The following lemma is standard (see e.g. Lemma 1.9 in [19, p.255] for a simple derivation of

the law of ST1).
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Lemma 4.4 Define a sequence of stopping times Tj, j = 0, 1, . . . inductively by setting T0 = 0 and
for every j ≥ 1,

Tj = inf{n > Tj−1 : Sn = Mn}.

Then the random variables STj − STj−1, j = 1, 2, . . . are independent and identically distributed,
with distribution P [ST1 = k] = ν([k,∞[) for every k ≥ 0.

Note that the distribution of ST1 has a finite first moment:

E[ST1 ] =
∞∑
k=0

k ν([k,∞[) =
∞∑
j=0

j(j + 1)
2

ν(j) =
σ2

2
.

The next lemma is the key to the first part of the proof.

Lemma 4.5 We have
Hn

Sn − In
(P)−→
n→∞

2
σ2
.

Proof. From our definitions, we have

Mn =
∑
Tk≤n

(STk − STk−1
) =

Rn∑
k=1

(STk − STk−1
).

Using Lemma 4.4 and the law of large numbers, we get

Mn

Rn

(a.s.)−→
n→∞

E[ST1 ] =
σ2

2
.

By replacing S with the time-reversed walk Ŝn we see that for every n, the pair (Mn, Rn) has the
same distribution as (Sn − In, Hn). Hence the previous convergence entails

Sn − In
Hn

(P)−→
n→∞

σ2

2
,

and the lemma follows. �
From (11), we have for every choice of 0 ≤ t1 ≤ t2 ≤ · · · ≤ tm,

1
√
p

(
S[pt1] − I[pt1], . . . , S[ptm] − I[ptm]

)
(d)−→
p→∞

σ
(
Bt1 − inf

0≤s≤t1
Bs, . . . , Btm − inf

0≤s≤tm
Bs

)
.

Therefore it follows from Lemma 4.5 that

1
√
p

(
H[pt1], . . . ,H[ptm]

)
(d)−→
p→∞

2
σ

(
Bt1 − inf

0≤s≤t1
Bs, . . . , Btm − inf

0≤s≤tm
Bs

)
.

A famous theorem of Lévy states that the process Bt := Bt − inf0≤s≤tBs is a reflected Brownian
motion. This completes the proof of the convergence of finite-dimensional marginals in (7).
Second step. To simplify notation, set

H
(p)
t =

1
√
p
H[pt].

11



We need to prove the tightness of the laws of the processes H(p) in the set of all probability
measures on the Skorokhod space D(R+,R+). By standard results (see e.g. Corollary 3.7.4 in [10]),
it is enough to verify that, for every fixed T > 0 and δ > 0,

lim
n→∞

(
lim sup
p→∞

P
[

sup
1≤i≤2n

sup
t∈[(i−1)2−nT,i2−nT ]

|H(p)
t −H

(p)
(i−1)2−nT | > δ

])
= 0. (12)

We fix δ > 0 and T > 0 and first observe that

P
[

sup
1≤i≤2n

sup
t∈[(i−1)2−nT,i2−nT ]

|H(p)
t −H

(p)
(i−1)2−nT | > δ

]
≤ A1(n, p) +A2(n, p) +A3(n, p) , (13)

where

A1(n, p) = P
[

sup
1≤i≤2n

|H(p)
i2−nT −H

(p)
(i−1)2−nT | >

δ

5

]
,

A2(n, p) = P
[

sup
t∈[(i−1)2−nT,i2−nT ]

H
(p)
t > H

(p)
(i−1)2−nT +

4δ
5
, for some 1 ≤ i ≤ 2n

]
,

A3(n, p) = P
[

inf
t∈[(i−1)2−nT,i2−nT ]

H
(p)
t < H

(p)
i2−nT −

4δ
5
, for some 1 ≤ i ≤ 2n

]
.

The term A1 is easy to bound. By the convergence of finite-dimensional marginals, we have

lim sup
p→∞

A1(n, p) ≤ P
[

sup
1≤i≤2n

2
σ
|βi2−nT − β(i−1)2−nT | ≥

δ

5

]
and the path continuity of the process β ensures that the right-hand side tends to 0 as n→∞.

To bound the terms A2 and A3, we fix p ≥ 1 and we introduce the stopping times τ (p)
k , k ≥ 0

defined by induction by τ (p)
0 = 0 and

τ
(p)
k+1 = inf{t ≥ τ (p)

k : H(p)
t > inf

τ
(p)
k ≤r≤t

H(p)
r +

δ

5
}.

Let i ∈ {1, . . . , 2n} be such that

sup
t∈[(i−1)2−nT,i2−nT ]

H
(p)
t > H

(p)
(i−1)2−nT +

4δ
5
. (14)

Then at least one of the random times τ (p)
k , k ≥ 0 must lie in the interval [(i− 1)2−nT, i2−nT ]. Let

τ
(p)
j be the first such time. By construction we have

sup
t∈[(i−1)2−nT,τ

(p)
j [

H
(p)
t ≤ H(p)

(i−1)2−nT +
δ

5
,

and since the positive jumps of H(p) are of size 1√
p , we get also

H
(p)

τ
(p)
j

≤ H(p)
(i−1)2−nT +

δ

5
+

1
√
p
< H

(p)
(i−1)2−nT +

2δ
5

12



provided that p > (5/δ)2, which we assume from now on. From (14), we have then

sup
t∈[τ

(p)
j ,i2−nT ]

H
(p)
t > H

(p)

τ
(p)
j

+
δ

5
,

which implies that τ (p)
j+1 ≤ i2−nT . Summarizing, we get

A2(n, p) ≤ P
[
τ

(p)
k < T and τ

(p)
k+1 − τ

(p)
k < 2−nT , for some k ≥ 0

]
. (15)

A similar argument gives exactly the same bound for the quantity A3(n, p).
In order to bound the right-hand side of (15), we will use the next lemma.

Lemma 4.6 The random variables τ (p)
k+1 − τ

(p)
k are independent and identically distributed. Fur-

thermore, for every x > 0,
lim
x↓0

(
lim sup
p→∞

P [τ (p)
1 < x]

)
= 0.

Proof. The first assertion is a straightforward consequence of Lemma 4.3. Let us turn to the
second assertion. To simplify notation, we write δ′ = δ/5. For every η > 0, set

T (p)
η = inf{t ≥ 0 :

1
√
p
S[pt] < −η}.

Then, from the definition of τ (p)
1 , we get

P [τ (p)
1 < x] = P

[
sup
s<x

H(p)
s > δ′

]
≤ P

[
sup
s≤T (p)

η

H(p)
s > δ′

]
+ P [T (p)

η < x].

On one hand, by (11)

lim sup
p→∞

P [T (p)
η < x] ≤ lim sup

p→∞
P
[

inf
t≤x

1
√
p
S[pt] ≤ −η

]
≤ P

[
inf
t≤x

Bt ≤ −η/σ
]
,

and the right-hand side goes to zero as x ↓ 0, for any choice of η > 0.
On the other hand, we first note that Hn = 0 if and only if there exists an integer j ≥ 0 such

that n = γj := inf{k ≥ 0 : Sk = −j} (this is immediate from (10)). It follows that the time interval
[γj , γj+1[ exactly corresponds in the time scale of the height process to the visits of the individuals
of the tree Tj . Consequently,

√
p sup
s≤T (p)

η

H(p)
s = max(ht(T0),ht(T1), . . . ,ht(T[η√p])),

and therefore,
P
[

sup
s≤T (p)

η

H(p)
s > δ′

]
= 1− (1− P [ht(T0) > δ′

√
p])[η

√
p].

From this identity and (5), we get

lim
η→0

(
lim sup
p→∞

P
[

sup
s≤T (p)

η

H(p)
s > δ′

])
= 0.

13



The second assertion of the lemma now follows. �

We can now complete the proof of tightness. From (15) and the first assertion of Lemma 4.6,
we have, for every integer L ≥ 1,

A2(n, p) ≤
L−1∑
k=0

P [τ (p)
k+1 − τ

(p)
k < 2−nT ] + P [τ (p)

L < T ]

≤ LP [τ (p)
1 < 2−nT ] + eT E[e−τ

(p)
L ]

= LP [τ (p)
1 < 2−nT ] + eT (E[e−τ

(p)
1 ])L.

The second assertion of the lemma implies that

lim sup
p→∞

E[e−τ
(p)
1 ] = a < 1.

It follows that, for every integer L ≥ 1,

lim sup
p→∞

A2(n, p) ≤ L lim sup
p→∞

P [τ (p)
1 < 2−nT ] + eT aL.

By choosing L large and then letting n→∞, we deduce from this bound and the second assertion
of Lemma 4.6 that

lim
n→∞

(
lim sup
p→∞

A2(n, p)
)

= 0.

The same result holds for A3(n, p). This completes the proof of (12) and of the convergence (7).
Third step. It remains to establish the convergence (8). We let v0, v1, . . . denote the vertices of
the trees T0, T1, . . . enumerated one tree after another and in lexicographical order for each tree.
Note that we have Hn = |vn|, by the definition of the height function of a tree. By preceding
observations, the interval corresponding to the tree Tj in the enumeration v0, v1, . . . is [γj , γj+1[,
where γj = inf{k ≥ 0 : Sk = −j}. Thus the individual vn belongs to Tj if j = −In. We then set,
for every n ≥ 0,

Kn = 2n−Hn + 2In.

From the convergences (7) and (11), it is immediate that

Kn

n

(P)−→
n→∞

2.

As in Section 3, we can define a contour exploration of the sequence of trees T0, T1, . . ., in such
a way that, for every integer n ≥ 0, Cn is the generation of the individual visited at time n in
this exploration (when completing the visit of a tree, the contour exploration immediately jumps
to the root of the next tree, and so there may be several individuals visited at the same time n,
but of course Cn = 0 in that case). It is easily checked by induction on n that Kn is the time at
which the contour exploration first visits the individual vn, and in particular CKn = Hn. From this
observation, we get

sup
t∈[Kn,Kn+1]

|Ct −Hn| ≤ |Hn+1 −Hn|+ 1.

Define a random function ϕ : R+ −→ N by setting ϕ(t) = n iff t ∈ [Kn,Kn+1[. Fix an integer
m ≥ 1 in the remaining part of the proof. From the previous bound, we get

sup
t∈[0,Km]

|Ct −Hϕ(t)| ≤ 1 + sup
n≤m
|Hn+1 −Hn|. (16)
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Similarly, it follows from the definition of Kn that

sup
t∈[0,Km]

|ϕ(t)− t

2
| ≤ 1

2
sup
n≤m

Hn − Im + 1. (17)

For every p ≥ 1, set ϕp(t) = p−1ϕ(pt). By (16), we have

sup
t≤p−1Kmp

∣∣∣ 1
√
p
Cpt −

1
√
p
Hpϕp(t)

∣∣∣ ≤ 1
√
p

+
1
√
p

sup
n≤mp

|Hn+1 −Hn|
(P)−→
p→∞

0 (18)

by the convergence (7).
On the other hand, we get from (17) that

sup
t≤p−1Kmp

|ϕp(t)−
t

2
| ≤ 1

2p
sup
k≤mp

Hk −
1
p
Imp +

1
p

(P)−→
p→∞

0 (19)

by (7) and (11).
The convergence (8) now follows from (18) and (19), using also the fact that p−1Kmp converges

in probability to 2m as p→∞. �

Remark. There is one special case where the convergence (9) is easy. This is the case where µ is
the geometric distribution µ(k) = 2−k−1, which satisfies our assumptions with σ2 = 2. In that case,
it is not hard to see that the restriction to integers of the contour process is distributed as a simple
random walk reflected at the origin. Thus the convergence (9) follows from Donsker’s invariance
theorem.

To conclude this section, we note that the convergence (7) can be reinforced in the following
way. Set Jn = −In, so that Jn corresponds to the index j such that Tj contains the individual vn.
Then we have ( σ

2
√
p
H[pt],

1
σ
√
p
J[pt]

)
t≥0

(d)−→
p→∞

(βt, L0
t )t≥0, (20)

where L0
t is the local time at 0 at time t of the reflected Brownian motion β (defined as in Section 2).

Indeed, it readily follows from the proof of Theorem 4.1 and (11) that we have the joint convergence( σ

2
√
p
H[pt],

1
σ
√
p
J[pt]

)
t≥0

(d)−→
p→∞

(
Bt − inf

0≤s≤t
Bs,− inf

0≤s≤t
Bs

)
t≥0

.

However, by an already mentioned famous theorem of Lévy,(
Bt − inf

0≤s≤t
Bs,− inf

0≤s≤t
Bs

)
t≥0

(d)
= (βt, L0

t )t≥0.

5 Convergence towards the Itô measure

Recall our notation E for the set of excursions, and d for the distance on E. If A is a nonempty
subset of E and e ∈ E, we set

d(e,A) = inf
e′∈A

d(e, e′).

A nonempty open subset A of E is called regular if n(A) <∞ and if

n({e ∈ E : d(e,A) < ε}) −→
ε→0

n(A).
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Let (hn)0≤n≤#T −1 be the height function of a µ-Galton-Watson tree T . By convention we set
hn = 0 for n ≥ #T . The function n → hn is extended to R+ by linear interpolation over each
interval [i − 1, i], i ∈ N. If the tree T is nontrivial, meaning that #T > 1, (ht)t≥0 is a random
element of E (of course if #T = 1, (ht)t≥0 is just the zero function). We rescale the random
function (ht)t≥0 by setting, for every integer p ≥ 1,

h
(p)
t =

σ

2
√
p
hpt , t ≥ 0 .

Similarly, we let (ct)t≥0 be the contour function of T and we rescale this function by setting,
for every integer p ≥ 1,

c
(p)
t =

σ

2
√
p
c2pt , t ≥ 0 .

Theorem 5.1 Let A be a regular open subset of E. Then,

P [h(p) ∈ A] ∼
p→∞

n(A)
σ
√
p
. (21)

Furthermore, the law of h(p) under the conditional probability measure P [· |h(p) ∈ A] converges to
n(· |A) as p→∞. Similarly, the law of c(p) under P [· |h(p) ∈ A] converges to n(· |A) as p→∞.

Proof. We start by proving the second assertion of the theorem. As in the preceding section,
we consider the height process (Hn)n≥0 associated with a sequence T0, T1, . . . of independent µ-
Galton-Watson trees. We extend the function n → Hn to R+ using linear interpolation as above.
By Theorem 4.1, we have ( σ

2
√
p
Hpt

)
t≥0

(d)−→
p→∞

(βt)t≥0 (22)

where (βt)t≥0 is a reflected Brownian motion. We now observe that the successive excursions of
(Ht)t≥0 from 0 correspond to the height processes associated with the trees T0, T1, . . . (in fact only
with those nontrivial trees in the sequence). It follows that the law of h(p) under the conditional
probability measure P [· | h(p) ∈ A] coincides with the law of the first excursion of the process
( σ
2
√
pHpt)t≥0 away from 0 that falls in the set A. We write h(p),A for this excursion.

On the other hand, let eA = (eAt )t≥0 be the first excursion of β away from 0 that falls in A.
By Corollary 2.2, the law of eA is n(· |A). Thus the proof of the second assertion of the theorem
reduces to checking that

h(p),A (d)−→
p→∞

eA . (23)

To this end, it will be convenient to use the Skorokhod representation theorem in order to
replace the convergence in distribution in (22) by an almost sure convergence. Let the process
(Jn)n≥0 be defined as in the previous section, and recall the convergence (20). From the Skorokhod
representation theorem, we can then find for every integer p ≥ 1 a pair (H̃(p)

t , J̃
(p)
t )t≥0 such that

(H̃(p)
t , J̃

(p)
t )t≥0

(d)
=
( σ

2
√
p
Hpt,

1
σ
√
p
J[pt]

)
t≥0

and
(H̃(p)

t , J̃
(p)
t )t≥0 −→

p→∞
(βt, L0

t )t≥0, (24)
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uniformly on every compact subset of R+, almost surely. We write h̃(p),A for the first excursion of

H̃(p) away from 0 that falls in A. Then h̃(p),A (d)
= h(p),A, and thus (23) will follow if we can verify

that
h̃(p),A (a.s.)−→

p→∞
eA . (25)

To this end, write ]gA, dA[ for the time interval associated with the excursion eA, and mA =
1
2(gA + dA). By (24), we have H̃(p)

mA
> 0 for p large enough, and thus we can consider the excursion

interval of H̃(p) that straddles mA. Denote this interval by ]g(p),A, d(p),A[. It is now easy to see that
we have the almost sure convergences

lim
p→∞

d(p),A = dA , (26)

and
lim
p→∞

g(p),A = gA . (27)

Let us verify (26) for instance. From the convergence of H̃(p)
t towards βt in (24), it immediately

follows that
lim inf
p→∞

d(p),A ≥ dA.

On the other hand, by the results recalled in Section 2, we know that, for every fixed ε > 0,
L0
dA+ε

> L0
dA

a.s., and thus the convergence of J̃ (p)
t towards L0

t in (24) ensures that J̃ (p)

dA+ε
> J̃

(p)

dA

for all p large enough, a.s. Now note that Jn only increases when Hn vanishes, and thus a similar
property holds for J̃ (p) and H̃(p). It follows that H(p) vanishes somewhere between dA and dA + ε,
and therefore d(p),A ≤ dA + ε, for all p large enough, a.s. This completes the proof of (26), and a
similar argument applies to (27).

From (26), (27) and the convergence (24), we deduce that the excursion of H̃(p),A that straddles
mA, which we denote by h

(p),A, converges a.s. to eA as p → ∞. Since eA ∈ A and A is open,
we have h(p),A ∈ A for all p large enough, a.s. In order to establish (25), and thus to complete
the proof of the second assertion of the theorem, it remains to establish that h̃(p),A = h

(p),A for all
p large enough, a.s. Equivalently, we need to check that no excursion of H̃(p) before time g(p),A

belongs to A.
To this end, we set Aε = {e ∈ E : d(e,A) < ε} and we use the fact that n(Aε) tends to n(A)

as ε → 0. It follows that almost surely there exists a (random) value ε0 > 0 such that the first
excursion of β that belongs to A is also the first excursion of β that belongs to Aε0 . On the other
hand, the convergence (24) implies that for every t ≥ 0, the zero set of the random function H̃(p)

before time t converges a.s. as p→∞ to the zero set of β before time t, in the sense of the Hausdorff
distance between compact subsets of R+ (use the fact that the points of increase of the local time
process L0 are exactly the zeros of β). Using (24) once more, it follows that if p is large enough,
any excursion of H̃(p) before time dA lies within distance less than ε0 from an excursion of β before
time dA. Since no excursion of β before gA belongs to Aε0 , it follows that for p large enough no
excursion of H̃(p) before time g(p),A belongs to A. This completes the proof of the second assertion
of the theorem.

The proof of the first assertion is then easy. For every p ≥ 1, set

Ñ
(p)
A = σ

√
p J̃

(p)

gA,(p)
.
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From (24) and (27), we have
1

σ
√
p
Ñ

(p)
A

a.s.−→
p→∞

L0
gA .

Notice that L0
gA

is exponentially distributed with parameter n(A), by Corollary 2.2. On the other

hand, Ñ (p)
A has the same distribution as the index of the first tree in the sequence T0, T1, . . . whose

rescaled height process belongs to A. Hence Ñ (p)
A has a geometric distribution,

P [Ñ (p)
A = k] = α

(p)
A (1− α(p)

A )k

with α
(p)
A = P [h(p) ∈ A]. Consequently, for every x > 0,

(1− α(p)
A )[xσ

√
p] = P [Ñ (p)

A ≥ xσ√p] −→
p→∞

e−xn(A).

The estimate (21) follows.
Finally, the last assertion is obtained by verifying that, for every ε > 0,

lim
p→∞

P [d(h(p), c(p)) > ε |h(p) ∈ A] = 0,

where d is the distance on E. This can be derived from the second assertion of the theorem, by
arguments very similar to the third step of the proof of Theorem 4.1. We omit details. �

In the next section, we will need a minor strengthening of the second assertion of Theorem 4.1.
Denote the Lukasiewicz path (up to time #T − 1) of the tree T by (Σk)0≤k<#T , and set Σk = 0
for k ≥ #T . Use linear interpolation to define Σt for every real t ≥ 0, and set

Σ(p)
t =

1
σ
√
p

Σpt

for every t ≥ 0 and p ≥ 1. Then the law of the pair (h(p),Σ(p)) under P [· |h(p) ∈ A] converges as
p → ∞ to the law of (e, e) under n(de |A). To see this, first note that the limiting result (7) can
be combined with (11) to give the joint convergence( σ

2
√
p
Hpt,

1
σ
√
p

(Spt − Ipt)
)
t≥0

(d)−→
p→∞

(
βt, βt

)
t≥0

(28)

where (St)t≥0 denotes the Lukasiewicz path of the forest T0, T1, . . . (extended to real values of t by
linear interpolation) and It := inf{Sr : 0 ≤ r ≤ t}. This joint convergence is indeed immediate from
the method we used to prove Theorem 4.1. Then, if h(p),A is as in the previous proof, the interval
associated with the excursion h(p),A is also an excursion interval of the process 1

σ
√
p(Spt−Ipt) (this is

so because the integer times at which H vanishes are precisely those at which S−I vanishes). Write
Σ(p),A for the excursion of the process 1

σ
√
p(Spt − Ipt) corresponding to the interval associated with

h(p),A. Then the law of (h(p),A,Σ(p),A) coincides with the law of (h(p),Σ(p)) under P [· | h(p) ∈ A].
The remaining part of the argument is exactly the same as in the above proof, using (28) instead
of (7).

Examples. Let us discuss a few examples of application of Theorem 5.1, which will be useful in
the next sections.
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(a) Let A = {e ∈ E : ζ(e) > 1}. Then it is easy to verify that A is a regular open subset of
E. Theorem 5.1 implies that the rescaled height function (or contour function) of a µ-Galton-
Watson tree conditioned to have total progeny greater than p converges to a Brownian excursion
conditioned to have duration greater than 1.
(b) Let A = {e ∈ E : max(e) > σ/2}. Again, A is regular. Theorem 5.1 implies that the rescaled
height function (or contour function) of a µ-Galton-Watson tree conditioned to have height greater
than

√
p converges in distribution to a Brownian excursion conditioned to have height greater than

σ/2. For ε > 0, we can also take A = {e ∈ E : σ/2 < max(e) < (1 + ε)σ/2} and obtain the
scaling limit of the height or contour process of a µ-Galton-Watson tree conditioned to have height
between

√
p and (1 + ε)

√
p. This last case will be relevant in Section 7 below.

Convergence of rescaled trees in the Gromov-Hausdorff topology.

Theorem 5.1 immediately implies a result of convergence of (conditioned) rescaled random trees
in the sense of the Gromov-Hausdorff topology. To state this precisely, we need to define the real
tree coded by an excursion. So let e ∈ E, and for every s, t ∈ [0, ζ(e)] set

de(s, t) = e(s) + e(t)− 2 inf
s∧t≤r≤s∨t

e(r).

Then de is a pseudo-distance on [0, ζ(e)], and we can consider the associated equivalence relation

s ∼e t iff de(s, t) = 0.

The quotient space Te := [0, ζ(e)]/ ∼e equipped with the distance de is a compact metric space,
and is in fact a real tree (see e.g. Section 2 of [19], and [11] for a general overview of real trees in
probability theory). Furthermore the mapping e −→ Te is continuous in the following sense. Let
DGH denote the Gromov-Hausdorff distance between (isometry classes of) compact metric spaces.
Then, if e, e′ ∈ E,

DGH(Te,Te′) ≤ 2 d(e, e′) (29)

(see Lemma 2.4 in [19]).
Write dgr for the usual graph distance on the tree T , so that (T , dgr) is a random compact metric

space. Then Theorem 5.1 implies that the law of the rescaled space (T , σ
2
√
pdgr) under P [· |h(p) ∈ A]

converges as p→∞ to the law of Te under n(de |A), in the sense of the Gromov-Hausdorff topology.
To see this, note that the Gromov-Hausdorff distance between (T , dgr) and the space (Tc, dc)

is easily bounded above by 1 (here c is the contour function of T ). It follows that

DGH

(
(T , σ

2
√
p
dgr), (Tc(p) , dc(p))

)
≤ σ

2
√
p
.

However, Theorem 5.1 and (29) immediately imply that the law of Tc(p) under P [· | h(p) ∈ A]
converges as p→∞ to the law of Te under n(de |A).

6 Aldous’ theorem

In this section, we show how our methods can be used to recover a famous theorem of Aldous [2,
Theorem 23] about the scaling limit of the contour function of a Galton-Watson tree conditioned
to have a fixed total progeny.

We consider an offspring distribution µ satisfying the assumptions of the previous sections, and
ν(k) = µ(k+ 1) for every k = −1, 0, 1, . . ., as previously. Let G be the smallest subgroup of Z that
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contains the support of µ. Clearly, the total progeny of a µ-Galton-Watson tree belongs to 1 +G,
and conversely, for every sufficiently large integer p ∈ G, the probability that the total progeny
is equal to 1 + p is nonzero (this can be seen by combining the last assertion of Lemma 3.1 with
Kemperman’s formula recalled below and a suitable local limit theorem).

Theorem 6.1 For every sufficiently large integer p ∈ G, let C〈p〉 = (C〈p〉t )0≤t≤2p be the contour
function of a µ-Galton-Watson tree conditioned to have exactly p+ 1 vertices. Then,( 1

√
p
C
〈p〉
2pt

)
0≤t≤1

(d)−→
p→∞, p∈G

( 2
σ

et
)

0≤t≤1

where (et)0≤t≤1 is a normalized Brownian excursion (i.e., e is distributed according to n(· |ζ = 1))
and the convergence is in the sense of weak convergence of the laws on C([0, 1],R+).

To avoid technicalities, we will concentrate on the aperiodic case where G = Z. We let S =
(Sn)n≥0 be a random walk with jump distribution ν started from 0 under P . For k 6= 0, we also
use the notation Pk for the probability measure under which the random walk S starts from k, but
unless otherwise indicated we argue under the probability measure P .

We will make use of a classical local limit theorem (see e.g. [27], pp.77-79). We have

lim
`→∞

sup
x∈Z

(1 ∨ x
2

`
)
∣∣∣√` P [S` = x]− gσ2(

x√
`
)
∣∣∣ = 0, (30)

where

gt(y) =
1√
2πt

exp(−y
2

2t
)

for t > 0 and y ∈ R, is the standard Brownian transition density.
We also recall Kemperman’s formula (see e.g. [23], p.122). Set T = inf{n ≥ 0 : Sn = −1}.

Then, for every integers k ≥ 0 and n ≥ 1,

Pk[T = n] =
k + 1
n

Pk[Sn = −1] =
k + 1
n

P [Sn = −k − 1].

Proof of Theorem 6.1. The random walk S is (under the probability measure P ) the Lukasiewicz
path of a forest T0, T1, . . . of independent µ-Galton-Watson trees. We denote by (Hn)n≥0 the
height process of this forest and by (Ct)t≥0 the corresponding contour process. Then the process
(Ct)0≤t≤2(T−1) is the contour function of T0, and #T0 = T . Consequently, the law of (C(p)

t )0≤t≤2p

coincides with the law of (Ct)0≤t≤2p under P [· |T = p+ 1].
Also note that, by Kemperman’s formula, we have for every integer p ≥ 0

P [T = p+ 1] =
1

p+ 1
P [Sp+1 = −1] (31)

which is positive for p large enough by (30).
For every (sufficiently large) integer p, let us consider the conditional probability measures

Qp = P [· |T = p+ 1] , Q∗p = P [· |T > p] .

Theorem 5.1 yields information about the scaling limit of the process (Hn)0≤n≤T−1 under Q∗p when
p→∞. Precisely, if we set

hn =
{
Hn if 0 ≤ n ≤ T − 1
0 if n ≥ T,
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Theorem 5.1 (cf Example (a) in Section 5) implies that the law under Q∗p of the rescaled process

h
(p)
t :=

σ

2
√
p
h[pt], t ≥ 0

converges as p→∞ towards n(· |ζ > 1).
The next step is to compare Q∗p and Qp when p is large. We fix a∈ ]0, 1[. For every p ≥ 1, let fp

be a nonnegative function on Z[ap]+1. An easy application of the Markov property of the random
walk S shows that

Qp[fp((Sk)0≤k≤[ap])] = E
[
fp((Sk)0≤k≤[ap]) 1{T>[ap]}

φp(S[ap])
P [T = p+ 1]

]
(32)

where, for every integer k ≥ 0,

φp(k) = Pk[T = p+ 1− [ap] ].

Similarly,

Q∗p[fp((Sk)0≤k≤[ap])] = E
[
fp((Sk)0≤k≤[ap]) 1{T>[ap]}

φ∗p(S[ap])
P [T > p]

]
(33)

where
φ∗p(k) = Pk[T > p− [ap] ].

As a simple consequence of (31) and (30), we have

lim
p→∞

p3/2 P [T = p+ 1] =
1

σ
√

2π
(34)

and
lim
p→∞

p1/2 P [T > p] =
2

σ
√

2π
. (35)

Let us then consider φp(k) and φ∗p(k). By Kemperman’s formula again, we have

φp(k) = Pk[T = p+ 1− [ap] ] =
k + 1

p+ 1− [ap]
P [Sp+1−[ap] = −k − 1].

It then follows from (30) that

lim
p→∞

(
sup
k≥0

∣∣∣pφp(k)− (1− a)−3/2 k + 1
√
p
gσ2

( k + 1√
p+ 1− [ap]

)∣∣∣) = 0.

Furthermore,

φ∗p(k) =
∑

`>p−[ap]

Pk[T = `] =
∑

`>p−[ap]

k + 1
`

P [S` = −k − 1]

and from (30) again we have

lim
p→∞

(
sup
k≥0

∣∣∣φ∗p(k)−
∑

`>p−[ap]

k + 1
`3/2

gσ2

(k + 1√
`

)∣∣∣) = 0
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(note that we use the precise form of the estimate (30), and in particular the presence of the factor
1∨ x2

k in this estimate). Recall the notation qt(x) from Section 2, and note that qt(x) = x
t gt(x) for

every t > 0 and x > 0. Elementary analysis shows that

lim
p→∞

(
sup
k≥0

∣∣∣ ∑
`>p−[ap]

k + 1
`3/2

gσ2

(k + 1√
`

)
−
∫ ∞

1−a
ds qs

(k + 1
σ
√
p

)∣∣∣) = 0.

Summarizing, we have

lim
p→∞

(
sup
k≥0

∣∣∣pφp(k)− q1−a(
k + 1
σ
√
p

)
∣∣∣) = 0

and
lim
p→∞

(
sup
k≥0

∣∣∣φ∗p(k)−
∫ ∞

1−a
ds qs

(k + 1
σ
√
p

)∣∣∣) = 0.

From (32) and (33) we have

Qp[fp((Sk)0≤k≤[ap])] = Q∗p
[
fp((Sk)0≤k≤[ap])

φp(S[ap])
φ∗p(S[ap])

P [T > p]
P [T = p+ 1]

]
.

From the preceding estimates, we have for every c > 0,

lim
p→∞

(
sup
k≥c√p

∣∣∣φp(k)
φ∗p(k)

P [T > p]
P [T = p+ 1]

− Γa(
k

σ
√
p

)
∣∣∣) = 0,

where, for every x > 0,

Γa(x) =
2q1−a(x)∫∞

1−a ds qs(x)
.

On the other hand, using (30) once again, it is easy to verify that,

lim
p→∞

Qp[S[ap] ≤ c
√
p ] = 0 , lim

p→∞
Q∗p[S[ap] ≤ c

√
p ] = 0.

Assume that the functions fp are uniformly bounded. From the previous discussion, we now get
that

lim
p→∞

∣∣∣Qp[fp((Sk)0≤k≤[ap])]−Q∗p
[
fp((Sk)0≤k≤[ap]) Γa(

S[ap]

σ
√
p

)
]∣∣∣ = 0.

We apply this convergence to

fp((Sk)0≤k≤[ap]) = F ((h(p)
t )0≤t≤a),

where F is a bounded continuous function on D([0, a],R). By the remarks following the proof of
Theorem 5.1, we know that the law under Q∗p of(

h
(p)
t ,

S[pt]

σ
√
p

)
0≤t≤1

converges to the law of (et, et)0≤t≤1 under n(· |ζ > 1), and thus we have

lim
p→∞

Q∗p
[
F ((h(p)

t )0≤t≤a) Γa(
S[ap]

σ
√
p

)
]

= n
(
F ((et)0≤t≤a) Γa(ea)

∣∣∣ ζ > 1
)
.
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It follows that we have also

lim
p→∞

Qp

[
F ((h(p)

t )0≤t≤a)
]

= n
(
F ((et)0≤t≤a) Γa(ea)

∣∣∣ ζ > 1
)

= n
(
F ((et)0≤t≤a

∣∣∣ ζ = 1
)
,

by (1) and (2). In other words, the law of (h(p)
t )0≤t≤a under Qp converges to the law of (et)0≤t≤a

under n(· |ζ = 1).
Then, by the very same arguments as in the third step of the proof of Theorem 4.1, we can

verify that, for every ε > 0,

lim
p→∞

Qp

[
sup

0≤t≤a

1
√
p
|H[pt] − C2pt| > ε

]
= 0.

Hence, we also get that the law under Qp of(σC2pt

2
√
p

)
0≤t≤a

converges to the law of (et)0≤t≤a under n(· | ζ = 1). Since this holds for every a∈ ]0, 1[, and since
Qp[C2p = 0] = 1, the finite-dimensional marginals of the processes(σC2pt

2
√
p

)
0≤t≤1

under Qp converge to the finite-dimensional marginals of (et)0≤t≤1 under n(· | ζ = 1). On the
other hand, tightness of this sequence of processes is immediate from the convergence over the
time interval [0, a] and the fact that the processes (C2pt)0≤t≤1 and (C2p(1−t))0≤t≤1 have the same
distribution under Qp. This completes the proof of the theorem. �

Remark. Here again, Theorem 6.1 can be formulated as a convergence of rescaled random trees in
the Gromov-Hausdorff topology. For every p ≥ 1, let T 〈p〉 be a µ-Galton-Watson tree conditioned
to have exactly p vertices, and let dgr be the usual graph distance on T 〈p〉. Then Theorem 6.1 and
the arguments discussed at the end of the previous section entail that

(T 〈p〉, σ

2
√
p
dgr)

(d)−→
p→∞

(Te, de)

in the sense of the Gromov-Hausdorff topology. The limiting space (Te, de), which is the tree coded
by a normalized Brownian excursion e, coincides with Aldous’ Continuum Random Tree [1, 2], up
to an unimportant scaling factor 2. A similar remark will apply to Theorem 7.1 in the next section.

An application. Let us mention a typical application of Theorem 6.1, which was already discussed
by Aldous [1]. Let T 〈p〉 be a µ-Galton-Watson tree conditioned to have exactly p vertices. As an
immediate application of Theorem 6.1, we have

σ

2
√
p

ht(T 〈p〉) (d)−→
p→∞

max
0≤t≤1

et .

Thus, for every x > 0,

lim
p→∞

P
[
ht(T 〈p〉) >

2
√
p

σ
x
]

= P
[

max
0≤t≤1

et > x
]
.
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The right-hand side is known (see e.g. Chung [8]) in the form of a series,

P
[

max
0≤t≤1

et > x
]

= 2
∞∑
k=1

(4k2x2 − 1) exp(−2k2x2). (36)

In the case of the geometric distribution µ(k) = 2−k−1, the tree T 〈p〉 is uniformly distributed over
the set of all rooted ordered trees with p vertices (this follows from (4)). Thus the preceding
considerations give the asymptotic behavior of the proportion of those trees with p vertices which
have height greater than y

√
p, for any y > 0. By letting µ be the binary distribution µ = 1

2(δ0 +δ2),
respectively the Poisson distribution with parameter 1, we get a similar result for binary trees, resp.
rooted Cayley trees on p vertices. Interestingly, the limiting distribution for the height of random
trees in the right-hand side of (36) had been derived by Flajolet and Odlyzko [12] using analytic
methods, before Aldous’ theorem was proved. Obviously the interpretation in terms of Brownian
excursions provides a very satisfactory explanation for the appearance of this distribution.

7 Conditioning the tree to have a fixed height

Recall that ht(T ) denotes the height of the tree T . The next result is an analogue of Theorem 6.1.

Theorem 7.1 For every integer p ≥ 1, let C{p} = (C{p}t )t≥0 be the contour function of a µ-Galton-
Watson tree conditioned to have height equal to p. Then, the law of( σ

2p
C
{p}
2p2t

)
t≥0

converges to n(de |max(e) = σ
2 ) as p→∞, in the sense of weak convergence of probability measures

on E.

Proof. Let T be a µ-Galton-Watson tree. We denote the contour function of the tree T by
(CTt )t≥0, and we set

C
(p)
t =

1
p
CT2p2t.

For every integer k ≥ 0, we denote the contour function of T “truncated at the kth generation” by
(Ckt )t≥0. This is simply the contour function of the truncated tree T k := {u ∈ T : |u| ≤ k}. We fix
a∈ ]0, 1[ and we set

C
[ap],(p)
t =

1
p
C

[ap]
2p2t

.

Let ε > 0. As a consequence of Theorem 5.1 (cf Example (b) in Section 5), we know that the
law of (C(p)

t )t≥0 under the conditional measure P [· | p < ht(T ) < (1 + ε)p] converges towards the
law of 2

σ e under n(de | σ2 < max(e) < (1 + ε)σ2 ) as p→∞.
If f ∈ E and b ≥ 0, define the truncation of f at level b to be the function

Trb(f) = f ◦ ηfb

where for every t ≥ 0,

ηfb (t) = inf{s ≥ 0 :
∫ s

0
dr 1[0,b](f(r)) > t}.
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Note that Trb(f) ∈ E. Furthermore, if fn is a sequence in E converging to f , and if bn is a sequence
of nonnegative reals converging to b, then the condition

∫∞
0 1{f(t)=b}dt = 0 ensures that Trbn(fn)

converges to Trb(f) in E.
By definition

C [ap],(p) = Tr[ap]/p(C
(p)).

Thus the preceding considerations imply that the law of (C [ap],(p)
t )t≥0 under the conditional prob-

ability measure P [· |p < ht(T ) < (1 + ε)p] converges as p → ∞ towards the law of Tra( 2
σ e) under

n(de | σ2 < max(e) < (1 + ε)σ2 ). Notice that when ε is small, the latter law is close to the law of
Tra( 2

σ e) under n(de |max(e) = σ
2 ) (this can be seen for instance by using the scaling properties of

the Itô measure).
We next need to compare the law of the process (C [ap],(p)

t )t≥0 under P [· |p < ht(T ) < (1 + ε)p]
with the law of the same process under P [· |ht(T ) = p].

Lemma 7.2 Let F be a bounded measurable function on E. Then,

lim
ε→0

(
lim sup
p→∞

∣∣∣E[F ((C [ap],(p)
t )t≥0) |p < ht(T ) < (1 + ε)p]− E[F ((C [ap],(p)

t )t≥0) |ht(T ) = p]
∣∣∣) = 0.

Proof. Recall our notation T [ap] for the tree T truncated at generation [ap]. We will prove that,
for any uniformly bounded sequence (fp)p≥1 of functions defined on the set T,

lim
ε→0

(
lim sup
p→∞

∣∣∣E[fp(T [ap]) |p < ht(T ) < (1 + ε)p]− E[fp(T [ap]) |ht(T ) = p]
∣∣∣) = 0. (37)

Since C [ap] is a function of the tree T [ap], the result of the lemma will immediately follow. Without
loss of generality, we assume that all functions |fp| are bounded by 1. We denote by Z[ap] the
number of individuals of the tree T at generation [ap]. We first observe that for every δ > 0 we
can choose a constant K large enough so that, for every ε ∈ (0, 1),

lim sup
p→∞

P [Z[ap] > Kp |p < ht(T ) < (1 + ε)p] ≤ δ

and
lim sup
p→∞

P [Z[ap] > Kp |ht(T ) = p] ≤ δ.

These estimates are easily obtained by using the branching property of the tree T at generation
[ap] together with our estimates (5) and (6). We leave details to the reader.

Thanks to the preceding considerations, it is enough to prove that, for every fixed K > 0,

lim
ε→0

(
lim sup
p→∞

∣∣∣E[fp(T [ap]) 1{Z[ap]≤Kp} |p < ht(T ) < (1+ε)p]−E[fp(T [ap]) 1{Z[ap]≤Kp} |ht(T ) = p]
∣∣∣) = 0.

(38)
To simplify notation, we set

γ(`) = P [ht(T ) > `]

for every integer ` ≥ 0. We also write T1, T2, . . . for a sequence of independent µ-Galton-Watson
trees. By applying the branching property at generation [ap], we have

E[fp(T [ap]) 1{ht(T )=p}] = E[fp(T [ap]) ∆p(Z[ap])]
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where, for every integer k ≥ 0,

∆p(k) = P [max(ht(T1), . . . ,ht(Tk)) = p− [ap] ] = (1− γ(p− [ap]))k − (1− γ(p− [ap]− 1))k.

Similarly,
E[fp(T [ap]) 1{p<ht(T )<(1+ε)p}] = E[fp(T [ap]) ∆ε

p(Z[ap])],

where
∆ε
p(k) = (1− γ(p− [ap] + [εp]))k − (1− γ(p− [ap]))k.

Hence, we have, for every p ≥ 1,

E[fp(T [ap]) 1{Z[ap]≤Kp} |p < ht(T ) < (1 + ε)p]− E[fp(T [ap]) 1{Z[ap]≤Kp} |ht(T ) = p]

= E
[
fp(T [ap]) 1{0<Z[ap]≤Kp}

( ∆p(Z[ap])
P [ht(T ) = p]

−
∆ε
p(Z[ap])

P [p < ht(T ) < (1 + ε)p]

)]
.

Now recall our estimates (5) and (6), and also note that

P [p < ht(T ) < (1 + ε)p] ∼
p→∞

2
σ2p
− 2
σ2(1 + ε)p

=
2ε

σ2(1 + ε)p
.

Elementary calculations show that

sup
1≤k≤Kp

∣∣∣ ∆p(k)
P [ht(T ) = p]

− k

(1− a)2
exp

(
− 2k
σ2(1− a)p

)∣∣∣ = o(p)

as p→∞, and similarly,

sup
1≤k≤Kp

∣∣∣ ∆ε
p(k)

P [p < ht(T ) < (1 + ε)p]
−σ

2(1 + ε)p
2ε

(
exp

( 2kε
σ2(1− a)2p

)
−1
)

exp
(
− 2k
σ2(1− a)p

)∣∣∣ = o(p)

as p→∞. Noting that

E[fp(T [ap]) 1{Z[ap]>0}] = O(
1
p

)

(by (5)), we get that

lim sup
p→∞

∣∣∣E[fp(T [ap]) 1{Z[ap]≤Kp} |p < ht(T ) < (1 + ε)p]− E[fp(T [ap]) 1{Z[ap]≤Kp} |ht(T ) = p]
∣∣∣

≤ lim sup
p→∞

(
P [Z[ap] > 0]× sup

1≤k≤Kp

∣∣∣ k

(1− a)2
− σ2(1 + ε)p

2ε

(
exp

( 2kε
σ2(1− a)2p

)
− 1
)∣∣∣).

Using once again the fact that P [Z[ap] > 0] = P [ht(T ) ≥ [ap] ] = O(1/p), we see that the right-hand
side of the last display can be made arbitrarily small by choosing ε > 0 small. This completes the
proof of (38) and of the lemma. �

From Lemma 7.2 and the considerations preceding the statement of this lemma, we get that,
for every fixed a ∈ (0, 1), the law of the process (C [ap],(p)

t )t≥0 under P [· | ht(T ) = p] converges as
p → ∞ towards the law of Tra( 2

σ e) under n(de |max(e) = σ
2 ). Clearly, the latter law is close to

the law of 2
σ e under n(de |max(e) = σ

2 ) when a is close to 1. So in order to complete the proof of
Theorem 7.1, we only need to verify that the law of (C(p)

t )t≥0 under P [· |ht(T ) = p] is close to the
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law of (C [ap],(p)
t )t≥0 under the same probability measure, when a is close to 1 and p is large. More

precisely, recalling our notation d for the distance on E, it suffices to verify that, for every δ > 0,

lim
a↑1

(
lim sup
p→∞

P
[
d((C [ap],(p)

t )t≥0), (C(p)
t )t≥0) > δ

∣∣∣ht(T ) = p
])

= 0. (39)

From the relations between C(p) and the truncated function C [ap],(p), we see that (39) will follow if
we can prove that

lim
a↑1

(
lim sup
p→∞

P
[ ∫ ∞

0
dt1{a≤C(p)

t ≤1} > δ
∣∣∣ ht(T ) = p

])
= 0. (40)

However, by arguments that we already used in the proof of Lemma 7.2, it is easy to verify that,
for every fixed η > 0, we can choose a constant M large enough so that, for every p ≥ 1,

P
[
∃k ∈ {[ap], [ap] + 1, . . . , p} : Zk ≥Mp

∣∣∣ht(T ) = p
]
≤ η,

where Zk denotes the number of vertices of T at generation k. The estimate (40) readily follows.
This completes the proof of Theorem 7.1. �

An application. Let T {p} be a µ-Galton-Watson tree conditioned to have height equal to p. As
a consequence of Theorem 7.1, we get

1
p2

#T {p} (d)−→
p→∞

ζ(e{σ/2})

where e{x} stands for a Brownian excursion conditioned to have height x, and ζ(e) denotes the
duration of e as in Section 2. The Laplace transform of the limiting distribution can be computed
from the Williams decomposition of the Brownian excursion with a fixed height (see e.g. [25,
Chapter XII]): For every x > 0, and λ > 0,

E[exp(−λζ(e{x}))] =
( x

√
2λ

sinh(x
√

2λ)

)2
.

The distribution of ζ(e{x}) is closely related to that of the maximum of a normalized excursion,
which appears in (36). See [6] (in particular formula (3k) in [6, Théorème 3.4]) and the references
therein for more information about these distributions.
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