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Abstract


We consider Galton-Watson trees associated with a critical offspring distribution and


conditioned to have exactly n vertices. These trees are embedded in the real line by


assigning spatial positions to the vertices, in such a way that the increments of the spatial


positions along edges of the tree are independent variables distributed according to a


symmetric probability distribution on the real line. We then condition on the event


that all spatial positions are nonnegative. Under suitable assumptions on the offspring


distribution and the spatial displacements, we prove that these conditioned spatial trees


converge as n → ∞, modulo an appropriate rescaling, towards the conditioned Brownian


tree that was studied in previous work. Applications are given to asymptotics for random


quadrangulations.


1 Introduction


The main goal of the present work is to prove an invariance principle for tree-indexed random
walks on the real line which are constrained to remain on the positive side. One major motiva-
tion for this problem came from recent asymptotic results for random quadrangulations which
have been established by Chassaing and Schaeffer [8].


The asymptotic behavior of Galton-Watson trees conditioned to have a large fixed progeny
was investigated by Aldous [1] in connection with the so-called Continuum Random Tree (CRT).
Precisely, under the assumption that the offspring distribution µ is critical and has finite vari-
ance σ2 > 0, a Galton-Watson tree conditioned to have exactly n vertices, with edges rescaled
by the factor σn−1/2/2, will converge in distribution, in a suitable sense, towards the CRT. A
convenient way of making this convergence mathematically precise is to use the contour func-
tion of the conditioned Galton-Watson tree (cf Fig.1 below). Modulo a rescaling analogous to
the classical Donsker theorem for random walks, this contour function converges in distribution
as n → ∞ towards a normalized Brownian excursion, that is a positive Brownian excursion


1Keywords: Galton-Watson tree, tree-indexed random walk, spatial tree, conditioned tree, conditioned Brow-
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conditioned to have duration 1 (cf the convergence of the first components in Theorem 2.1
below). Informally we may say that the normalized Brownian excursion is the contour function
of the CRT. See [14] for analogous contour descriptions of the more general Lévy trees, and
[13] for a recent generalization of Aldous’ theorem.


In view of various applications, and in particular in connection with the theory of super-
processes, it is interesting to combine the branching structure of the Galton-Watson tree with
spatial displacements. Here we consider the simple special case where these spatial displace-
ments are given by a one-dimensional symmetric random walk on the real line with jump
distribution γ. This means that i.i.d. random variables Ye with distribution γ are associated
with the different edges of the tree, and that the spatial position Uv of a vertex v is obtained
by summing the displacements Ye corresponding to edges e that belong to the path from the
root to the vertex v. The resulting object, called here a spatial tree, consists of a (random)
pair (T , U), where T is a discrete (plane) tree and U is a mapping from the set of vertices of T
into R. In the same way as the tree T can be coded by its contour function, a convenient way
of encoding the spatial positions is via the spatial contour function (see Section 2 for a precise
definition, and Fig.2 for an example).


From now on, we suppose that the tree T is a Galton-Watson tree with offspring distribu-
tion µ satisfying the above assumptions, and conditioned to have exactly n vertices, and that
the spatial positions Uv are generated as explained in the preceding paragraph. We assume
furthermore that µ has (small) exponential moments and that γ([x,∞)) = o(x−4) as x → ∞.
We denote by ρ2 the variance of γ. Then rescaling both the edges of T by the factor σn−1/2/2
and the spatial displacements Uv by ρ−1(σ/2)1/2n−1/4 will lead as n → ∞ to a limiting object
which is independent of µ and γ. A precise statement for this convergence is given in Theo-
rem 2.1 below, which is taken from Janson and Marckert [19] (see [8], [16] and [26] for similar
statements under different assumptions – related results have also been obtained by Kesten [20]
under other conditionings of the tree). This convergence is closely related to the approximation
of superprocesses by branching particle systems: See in particular [21]. Roughly speaking, the
limiting object combines the branching structure of the CRT with spatial displacements given
by independent linear Brownian motions along the edges of the tree. A convenient representa-
tion of this limiting object, which is used in Theorem 2.1, is provided by the Brownian snake
(see e.g. [22]). To describe this approach, let r ∈ R, which will represent the initial position
(the spatial position of the root) and let e = (e(s), 0 ≤ s ≤ 1) be a normalized Brownian
excursion. Let Zr = (Zr(s), 0 ≤ s ≤ 1) be a real-valued process such that, conditionally given
e, Zr is Gaussian with mean and covariance given by


• E[Zr(s)] = r for every s ∈ [0, 1];


• cov(Zr(s), Zr(s′)) = inf
s≤t≤s′


e(t) for every 0 ≤ s ≤ s′ ≤ 1.


Informally, each time s ∈ [0, 1] corresponds via the contour function coding to a vertex of the
CRT, and Zr(s) is the spatial position of this vertex. The formula for the conditional covariance
of Zr(s) and Zr(s′) is then justified by the fact that infs≤t≤s′ e(t) is the generation of the
“most recent common ancestor” to the vertices corresponding to s and s′ (see the introduction
to [24] for a precise version of this informal explanation). In the terminology of [22], Z r is
the terminal point process of the one-dimensional Brownian snake driven by the normalized
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Brownian excursion e and with initial point r. For simplicity, we will say here that (e, Z r) is
the Brownian snake with initial point r. The random measure known as one-dimensional ISE
(Integrated Super-Brownian Excursion) may be defined by the formula:


〈Z, f〉 =


∫ 1


0


ds f(Z0
s ) , f ∈ Cb(R).


ISE in higher dimensions has found many applications in asymptotics for models of statistical
physics: See in particular [12], [17] and [18].


Our main interest in this work is to study asymptotics for the discrete spatial trees (T , U)
conditioned on the event that spatial positions Uv remain in the positive half-line. In contrast
with the situation described above, this induces an interaction between the branching structure
and the spatial displacements, which makes the analysis of the model more delicate. We start
from a spatial tree (T , U) generated as explained above. Then our main result (Theorem 2.2)
states that this spatial tree conditioned on the event that Uv ≥ 0 for every vertex v of T and
rescaled as previously will converge in distribution as n → ∞ to a (universal) limiting object.
This limiting object corresponds to the conditioned Brownian snake that was studied in detail
in [24]. More precisely, for every r > 0, let (er, Z


r
) be distributed as the pair (e, Zr) introduced


above, under the conditioning that Zr(s) ≥ 0 for every s ∈ [0, 1]. Note that as long as r > 0,
this conditioning involves an event of positive probability. Theorem 1.1 in [24] shows that the


process (er, Z
r
) converges in distribution as r ↓ 0 towards a limiting pair (e0, Z


0
), which is our


conditioned Brownian snake with initial point 0. According to Theorem 2.2 below, the pair


(e0, Z
0
) is the scaling limit of the pair consisting of the contour function and the spatial contour


function of our spatial trees conditioned to have nonnegative spatial positions.


The preceding description of the conditioned process (e0, Z
0
) as the limit of (er, Z


r
) when


r ↓ 0 does not give much information about this process. Note in particular that the underlying
conditioning is in a sense very degenerate, since we are dealing with a continuous tree of linear
Brownian paths all started from the origin and conditioned not to hit the negative half-line.


Still Theorem 1.2 in [24] provides a useful construction of the conditioned object (e0, Z
0
) from


the unconditioned one (e, Z0). In order to present this construction, first recall that there is
a.s. a unique s∗ in (0, 1) such that


Z0(s∗) = inf
s∈[0,1]


Z0(s)


(see Lemma 16 in [27] or Proposition 2.5 in [24]). For every s ∈ [0,∞), write {s} for the


fractional part of s. According to Theorem 1.2 in [24], the conditioned snake (e0, Z
0
) may be


be constructed explicitly as follows: For every s ∈ [0, 1],


e0(s) = e(s∗) + e({s∗ + s}) − 2 inf
s∧{s∗+s}≤u≤s∨{s∗+s}


e(u)


Z
0
(s) = Z0({s∗ + s}) − Z0(s∗) .


In terms of trees, this means that the conditioned tree is obtained by re-rooting the uncon-
ditioned one at the vertex having the minimal spatial position: The above formula for e0(s)
corresponds to the contour function for the tree coded by e re-rooted at the vertex s∗ – see
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the discussion in the introduction of [24]. This construction of the conditioned snake (e0, Z
0
)


is of course reminiscent of a famous result of Vervaat [32] connecting the normalized Brownian
excursion and the Brownian bridge.


The initial motivation for the present work came from a recent paper of Chassaing and
Schaeffer [8] discussing asymptotics for rooted planar maps (see also [7] for related results).
A key result (Theorem 1 in [8] or Theorem 8.1 below) establishes a bijection between rooted
quadrangulations with n faces and the so-called well-labelled trees with n edges. In the ter-
minology of the present work, a well-labelled tree is a spatial tree (T , U) with the additional
properties that the spatial positions are positive integers, the spatial position of the root is 1
and the spatial positions of two neighboring vertices can differ by at most 1. The preceding
bijection between quadrangulations and trees has the nice feature that distances of vertices of
the quadrangulation from the root correspond to spatial positions in the associated tree. This
suggests that asymptotic properties of distances from the root in random quadrangulations
with n faces can be read from asymptotics for well-labelled trees with n edges, an idea which
was exploited in [8]. As an application of Theorem 2.2, we provide a direct proof of some of
the main results of [8]. The key idea is to observe that uniform well-labelled trees with n edges
can be obtained as conditioned spatial trees generated by letting the offspring distribution be
geometric with parameter 1/2, and the spatial distribution be uniform on {−1, 0, 1}. It then
follows from Theorem 2.2 that the scaling limit of well-labelled trees with n vertices is described
by our conditioned Brownian snake. As a consequence, several quantities such as the (suitably
rescaled) radius of the quadrangulation have a limit in distribution which can be expressed,
first in terms of the conditioned Brownian snake and then via the Vervaat-like transformation
in terms of the unconditioned snake.


Another recent paper [27] of Marckert and Mokkadem proposes a model called the Brown-
ian map for the continuous limit of rooted quadrangulations with n faces. This construction
makes a heavy use of the conditioned Brownian snake, which is defined in [27] via the Vervaat
transformation rather than as a conditioned object as here or in [24]. Theorem 2.2 readily gives
a positive answer to a conjecture of [27] (cf Remark 6 in [27]) asserting that the Brownian map
is, in some sense, the scaling limit of uniform rooted quadrangulations with n faces.


Connections between trees and planar maps are also of interest in theoretical physics: See
in particular [3], [4], [5] and [15] for discussions and various applications. In this perspective,
quadrangulations, or more general planar maps, serve as a model of random geometry. We also
mention the article [6], which extends the bijection between quadrangulations and well-labelled
trees to more general classes of planar maps. In a very recent paper [25], the bijections of [6]
are used in order to generalize the Chassaing-Schaeffer asymptotics to general planar maps.
However, in contrast with [8] and Section 8 of the present work, the article [25] deals with
planar maps that are both rooted and pointed. It is likely that our methods can be applied to
prove analogues of certain results of [25] in the context of rooted planar maps.


Outline of the paper. The following outline should help the reader to understand the main
steps of the proof of Theorem 2.2, which is quite involved.


Section 3 introduces the key technical idea of comparing the distribution of spatial trees
re-rooted at the minimal spatial position with that of conditioned trees. In the continuous
framework, the Vervaat transformation shows that the distribution of the re-rooted tree and
that of the conditioned one are identical. This is no longer true in a discrete setting, but there
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are still close relations between the two distributions (Lemmas 3.3 and 3.4), which play a major
role in our proofs. As a first application, Section 4 derives estimates for the probability that
the spatial positions are all positive: This probability is bounded above and below by constants
times n−1, where n is the number of vertices in the tree (Proposition 4.2).


Then, Section 5 briefly discusses a spatial Markov property for our spatial trees, which holds
for the subtrees originating from the “first” vertices whose spatial position exceeds a level
a > 0. This spatial Markov property is classical for unconstrained spatial trees, and it is easily
extended to our conditioned objects.


Section 6 derives some asymptotic regularity properties of conditioned trees with n vertices.
In particular, Proposition 6.1 implies that for any δ > 0, with a probability close to 1 uniformly
in n, the rescaled spatial contour function of the conditioned tree will be bounded below by a
positive constant c (independent of n), over the interval [δ, 1 − δ]. It follows that for most of
the vertices in the conditioned tree, the associated spatial position is larger than cn1/4. Such
properties are first established for unconditioned trees via Theorem 2.1. They can then be
transferred to conditioned trees thanks to Section 3.


Section 7 contains the proof of Theorem 2.2. Roughly speaking, the argument goes as follows.
Thanks to the regularity properties of Section 6 and the spatial Markov property of Section 5,
the conditioned tree is well approximated by a spatial tree (with a number of vertices of order
n) whose root is located at a point close to αn1/4 (where α is a “small” positive number) and
which is conditioned not to hit the negative half-line. The limit theorem for unconditioned
spatial trees (Theorem 2.1) then shows that the limit of this suitably rescaled spatial tree is
described by the Brownian snake (eα, Z


α
) with initial point α and conditioned not to hit the


negative half-line. Notice that the conditioning is not degenerate here since α > 0. To complete


the proof, we just have to use the fact that (eα, Z
α
) is close in distribution to (e0, Z


0
) when α


is small, as was mentioned above.


Finally, Section 8 discusses applications to random quadrangulations.


2 Basic assumptions and statement of the main result


Throughout this work, we denote by µ the underlying offspring distribution, which is a proba-
bility measure on Z+ = {0, 1, 2, . . .}. We always assume that µ(1) < 1 and


• µ is critical, that is


∞∑


k=0


kµ(k) = 1.


• µ is aperiodic, that is µ is not supported on a proper subgroup of Z.


• µ has exponential moments: There exists a constant λ > 0 such that


∞∑


k=0


µ(k) eλk < ∞.


We denote by σ2 > 0 the variance of µ.
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The law of the spatial displacement is denoted by γ. Thus γ is a probability distribution
on R. We exclude the trivial case γ = δ0 and we always assume that γ is symmetric, that is γ
is invariant under the transformation x −→ −x. Our main results also require the additional
assumption


lim
x→∞


x4 γ([x,∞)) = 0. (1)


When (1) holds, we denote by ρ2 > 0 the variance of γ.


Let us now introduce some formalism for discrete trees, which we borrow from Neveu [28].
Let


U =
∞⋃


n=0


Nn


where N = {1, 2, . . .} and by convention N0 = {∅}. If u = (u1, . . . um) and v = (v1, . . . , vn)
belong to U , we write uv = (u1, . . . um, v1, . . . , vn) for the concatenation of u and v. In particular
u∅ = ∅u = u. If p ≥ 1 is an integer, we will write 1p for the p-tuple (1, 1, . . . , 1) ∈ Np. Finally,
we set U∗ = U\{∅}.


A plane tree T is a finite subset of U such that:


(i) ∅ ∈ T .


(ii) If v ∈ T and v = uj for some u ∈ U and j ∈ N, then u ∈ T .


(iii) For every u ∈ T , there exists a number Nu(T ) ≥ 0 such that, for every j ∈ N, uj ∈ T if
and only if 1 ≤ j ≤ Nu(T ).


We denote by T the set of all plane trees.
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Figure 1. A tree and its contour function


To define now the contour function of T , consider a particle which starting from the root
traverses the tree along its edges at speed one. It moves towards that vertex which is the
smallest in lexicographical ordering among all vertices not visited so far, and from the last
vertex moves back towards the root. Since each edge will be crossed twice, the total time
needed to explore the tree is 2(|T | − 1), where |T | denotes the cardinality (number of vertices)
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of T . For every t ∈ [0, 2(|T |− 1)], we let C(t) denote the distance from the root of the position
of the particle at time t. Fig.1 explains the definition of the contour function better than a
formal definition. Clearly a tree T is uniquely determined by its contour function.


A (discrete) spatial tree is a pair (T , U), where T ∈ T and U = (Uv, v ∈ T ) is a mapping
from the set T into R. We denote by Ω the set of all spatial trees. A spatial tree (T , U) can
be coded by a pair (C, V ), where C = (C(t), 0 ≤ t ≤ 2(|T | − 1)) is the contour function of T
and the spatial contour function V = (V (t), 0 ≤ t ≤ 2(|T | − 1)) is defined as follows. First
if t is an integer, then t corresponds in the evolution of the contour to a vertex v of T , and
we put V (t) = Uv. We then complete the definition of V by interpolating linearly between
successive integers. See Fig.2 for an example: The tree on the left side of this figure is the same
as in Fig.1, but the numbers in bold attached to the different vertices now represent the spatial
positions.
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Figure 2. A spatial tree and its spatial contour function


We denote by Π(dT ) the law of the Galton-Watson tree with offspring distribution µ, which
is a probability measure on T. If T ∈ T and v0 ∈ T , let


T [v0] := {v ∈ U : v0v ∈ T }


denote the subtree of T originating from v0. The probability measure Π is characterized by the
following two properties [28]:


(i) Π(N∅ = j) = µ(j) for every j ≥ 0.


(ii) Under the conditional measure Π(· | N∅ = j), the subtrees T [1], T [2], . . . , T [j] are indepen-
dent and distributed according to Π.


The probability measure Px(dT dU) on the space Ω is then defined by


Px(dT dU) = Π(dT ) Rx(T , dU)


where, for every T ∈ T, the probability measure Rx(T , dU) is characterized as follows. Let ET


denote the set of all edges of T and let (Ye, e ∈ ET ) be i.i.d. random variables with distribution
γ. For every v ∈ T , set


Xv = x +
∑


e∈[∅,v]


Ye ,
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where the notation e ∈ [∅, v] means that the edge e belongs to the ancestral line of v. Then
Rx(T , dU) is the distribution of (Xv, v ∈ T ).


Let us a recall a well-known formula for the distribution of |T | under Π (see e.g. Section
5.2 of [29]). Let (Sn)n≥0 be a random walk on Z with jump distribution ν(k) = µ(k + 1),
k = −1, 0, 1, 2, . . ., started from the origin and defined under the probability measure P . Set
τ := inf{n ≥ 0 : Sn = −1}. Then, for every integer n ≥ 1,


Π(|T | = n) = P (τ = n) =
1


n
P (Sn = −1).


The aperiodicity of µ now implies that the latter quantity is positive for every n sufficiently
large, so that we can define


Πn(dT ) = Π(dT | |T | = n + 1)


Pn
x(dT dU) = Px(dT dU | |T | = n + 1).


Later, each time we will consider the probability measures Πn or Pn
x, it will be implicit that n


is large enough so that this definition makes sense.


The following result is a special case of Theorem 2 in [19]. Recall that (e, Z0) denotes the
(one-dimensional) Brownian snake with initial point 0, as defined in Section 1.


Theorem 2.1 Assume that (1) holds. Then the law under Pn
0 of


((σ


2


C(2nt)


n1/2


)
0≤t≤1


,
(1


ρ


(σ


2


)1/2 V (2nt)


n1/4


)
0≤t≤1


)


converges as n → ∞ to the law of (e, Z0). The convergence holds in the sense of weak conver-


gence of probability measures on C([0, 1], R)2.


We aim at proving a conditional version of Theorem 2.1. If (T , U) is a spatial tree, we set


U = inf{Uv : v ∈ T , v 6= ∅}


with the convention that U = +∞ if T = {∅}. For every x ≥ 0, we then define


P
n


x(·) := Pn
x(· | U > 0).


Recall from Section 1 the notation (e0, Z
0
) for the conditioned Brownian snake. In the


notation of [24], the distribution of (e0, Z
0
) is the law of the pair (ζ, Ŵ ) under N


(1)


0 .


We can now state our main result.


Theorem 2.2 Assume that (1) holds and let x ≥ 0. Then the law under P
n


x of
((σ


2


C(2nt)


n1/2


)
0≤t≤1


,
(1


ρ


(σ


2


)1/2 V (2nt)


n1/4


)
0≤t≤1


)


converges as n → ∞ to the law of (e0, Z
0
). The convergence holds in the sense of weak


convergence of probability measures on C([0, 1], R)2.


Remark. A trivial translation argument shows that Pn
0 in Theorem 2.1 could be replaced by


Pn
x for any x ∈ R. In the setting of Theorem 2.2 however, no obvious argument can be used to


reduce the proof to one particular value of x.
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3 Re-rooting spatial trees


Recall that


U =


∞⋃


n=0


Nn


denotes the set of all possible vertices in our discrete trees, and that U ∗ = U\{∅}.


Let v0 ∈ U∗ and let T ∈ T such that v0 ∈ T . Let k = k(v0, T ) be the time of the first visit of
v0 in the evolution of the contour of T . Also let ` = `(v0, T ) be the time of the last visit of v0.
Note that ` ≥ k and ` = k iff v0 is a leaf of T . To simplify notation, we set ζ(T ) = 2(|T | − 1).


For every t ∈ [0, ζ(T ) − (` − k)], set


Ĉ(v0)(t) = C(k) + C([[k − t]]) − 2 inf
[[k−t]]∧k≤t≤[[k−t]]∨k


C(r)


where C(·) is as above the contour function of T , and [[k − t]] stands for the unique element of


[0, ζ(T )) such that [[k− t]]− (k− t) = 0 or ζ(T ). We also set Ĉ(v0)(t) = 0 if t > ζ(T )− (`− k).


Then it is easy to verify that there exists a unique plane tree T̂ (v0) ∈ T whose contour
function is Ĉ(v0). Informally, T̂ (v0) is obtained by removing all vertices that are descendants of
v0 and then re-rooting the resulting tree at v0 (we should also specify the ordering of children in
the re-rooted tree, but we omit details in this informal description). See Fig.3 for an example.
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Figure 3. A tree T and the re-rooted tree T̂ (v0). If v is a vertex of the re-rooted tree, v denotes
the corresponding vertex in the initial tree.


We note that |T̂ (v0)| = |T | iff v0 is a leaf of T . Also, if v0 = (j1, j2, . . . , jp), then v̂0 :=


(1, jp, jp−1, . . . , j2) automatically belongs to T̂ (v0). Indeed, v̂0 is the vertex of the re-rooted tree
corresponding to the root of the initial tree. In Fig.3, v0 = (3, 2) and v̂0 = (1, 2).


By definition, ∅ has exactly one child in the re-rooted tree T̂ (v0). We define a new probability
measure Q on T by setting


Q(dT ) = Π(dT | N∅ = 1),


where N∅ is the number of children of ∅ in T . The conditioning a priori makes sense only if
µ(1) > 0. However, even when µ(1) = 0, there is an obvious way of defining Q.


If T ∈ T and w0 ∈ T , we also denote by T (w0) the new tree obtained from T by removing
those vertices which are descendants of w0 not equal to w0.
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Lemma 3.1 Let v0 ∈ U∗ of the form v0 = (1, j2, . . . , jp) for some p ≥ 1, j2, . . . , jp ∈ N.


Assume that Q(v0 ∈ T ) > 0. Then the law under Q(· | v0 ∈ T ) of the re-rooted tree T̂ (v0)


coincides with the law under Q(· | v̂0 ∈ T ) of the tree T (v̂0).


The proof is an elementary application of properties of Galton-Watson trees. We leave details
to the reader.


We shall need a spatial version of Lemma 3.1. Let Q be the probability measure on Ω defined
by


Q(dT dU) = P0(dT dU | N∅ = 1) = Q(dT ) R0(T , dU).


If (T , U) ∈ Ω and v0 ∈ T \{∅}, the re-rooted spatial tree (T̂ (v0), Û (v0)) is defined as follows: For


every vertex v of T̂ (v0), Û
(v0)
v = Uv − Uv0 , if v is the vertex of the initial tree T corresponding


to v in T̂ (v0) (see Fig.3 for an example). Alternatively, we may say that the spatial contour


function V̂ (v0) of (T̂ (v0), Û (v0)) is determined by


V̂ (v0)(t) = V ([[k − t]]) − V (k)


for 0 ≤ t ≤ ζ(T̂ (v0)) = ζ(T ) − (` − k). (Here k = k(v0, T ) and ` = `(v0, T ) are as in the
beginning of the section.)


Lemma 3.2 Let v0 ∈ U∗ be of the form v0 = (1, j2, . . . , jp) for some p ≥ 1, j2, . . . , jp ∈ N.


Assume that Q(v0 ∈ T ) > 0. Then the law under Q(· | v0 ∈ T ) of the re-rooted tree (T̂ (v0), Û (v0))
coincides with the law under Q(· | v̂0 ∈ T ) of the spatial tree (T (v̂0), U (v̂0)), where U (v̂0) denotes


the restriction of U to T (v̂0).


Lemma 3.2 is a simple consequence of Lemma 3.1 and our definitions. Note that we use the
symmetry of the spatial distribution γ.


If (T , U) is a spatial tree, we denote by ∆ = ∆(T , U) the set of all vertices with minimal
spatial position:


∆ = {v ∈ T : Uv = min
w∈T


Uw}.


We also denote by vm the first element of ∆ in lexicographical order. Finally, we use the
notation ∂T for the set of all leaves of T .


Lemma 3.3 For any nonnegative measurable functional F on Ω,


Q


(
F (T̂ (vm), Û (vm))1{|∆|=1 , vm∈∂T }


)
= Q


(
F (T , U) |∂T | 1{U>0}


)
.


This lemma provides a precise connection between the spatial tree re-rooted at the (first)
vertex with minimal spatial position, and the initial tree conditioned to have positive spatial
positions. Compare with Theorem 1.2 in [24], but notice the multiplicative factor |∂T | that
occurs in the discrete setting.


Proof: Let v0 ∈ U∗ such that Q(v0 ∈ T ) > 0. Then


Q


(
F (T̂ (v0), Û (v0))1{∆={v0}}


)
= Q


(
F (T̂ (v0), Û (v0))1{v0∈T ; Uv>Uv0 ,∀v∈T \{v0}}


)
. (2)
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Recall from Section 2 the notation T [v0] := {v ∈ U : v0v ∈ T } for the subtree of T originating
from v0. For every v ∈ T [v0], put


U [v0]
v := Uv0v − Uv0 .


Plainly, under the probability measure Q(· | v0 ∈ T ), the spatial tree (T [v0], U [v0]) is independent


of (T (v0), U (v0)) and has distribution P0. Since (T̂ (v0), Û (v0)) is by construction a function of
(T (v0), U (v0)), we can rewrite formula (2) as follows:


Q


(
F (T̂ (v0), Û (v0))1{∆={v0}}


)
= Q


(
F (T̂ (v0), Û (v0))1{v0∈T ;Uv>Uv0 ,∀v∈T (v0)\{v0}}


)
P0(U > 0). (3)


Using Lemma 3.2, we then get


Q


(
F (T̂ (v0), Û (v0))1{v0∈T ;Uv>Uv0 ,∀v∈T (v0)\{v0}}


)
= Q


(
F (T̂ (v0), Û (v0))1


{v0∈T ; Û
(v0)
v >0, ∀v∈T̂ (v0)\{∅}}


)


= Q


(
F (T (v̂0), U (v̂0))1


{v̂0∈T ;U
(v̂0)
v >0, ∀v∈T (v̂0)\{∅}}


)
.


Now notice that (T (v), U (v)) = (T , U) if v ∈ ∂T . Moreover, the event {v ∈ ∂T } is independent
of (T (v), U (v)) under Q(· | v ∈ T ), and has probability µ(0). Combining these observations, we
get


Q


(
F (T̂ (v0), Û (v0))1{v0∈T ; Uv>Uv0 ,∀v∈T (v0)\{v0}}


)
=


1


µ(0)
Q


(
F (T , U)1{v̂0∈∂T ; Uv>0, ∀v∈T \{∅}}


)
.


Using (3) and the preceding equalities, we get


Q


(
F (T̂ (v0), Û (v0))1{∆={v0}}


)
=


P0(U > 0)


µ(0)
Q


(
F (T , U)1{v̂0∈∂T ; Uv>0, ∀v∈T \{∅}}


)
. (4)


From the property stated just before (3), we easily see that under the conditional measure
Q(· | ∆ = {v0}), the spatial tree (T [v0], U [v0]) is independent of (T (v0), U (v0)) and has distribution
P0(· | U > 0). Hence,


Q


(
F (T̂ (v0), Û (v0))1{∆={v0}}


)
=


1


P0(T = {∅} | U > 0)
Q


(
F (T̂ (v0), Û (v0))1{v0∈∂T ,∆={v0}}


)
. (5)


Since


P0(T = {∅} | U > 0) =
µ(0)


P0(U > 0)
,


(4) and (5) give


Q


(
F (T̂ (v0), Û (v0))1{v0∈∂T , ∆={v0}}


)
= Q


(
F (T , U)1{v̂0∈∂T , U>0}


)
. (6)


Summing (6) over all possible choices of v0 leads to the desired result. �


We shall need a variant of Lemma 3.3.


Lemma 3.4 For any nonnegative measurable functional F on Ω,


Q


( ∑


v0∈∆∩∂T


F (T̂ (v0), Û (v0))
)


= Q


(
F (T , U) |∂T | 1{U≥0}


)
.
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Proof: By arguing as in the proof of (4), we get for every v0 ∈ U∗,


Q


(
F (T̂ (v0), Û (v0))1{v0∈∆}


)
= Q


(
F (T̂ (v0), Û (v0))1{v0∈T ;Uv≥Uv0 ,∀v∈T (v0)}


)
P0(U ≥ 0)


= Q


(
F (T (v̂0), U (v̂0))1


{v̂0∈T ;U
(v̂0)
v ≥0,∀v∈T (v̂0)}


)
P0(U ≥ 0)


=
P0(U ≥ 0)


µ(0)
Q


(
F (T , U)1{v̂0∈∂T ;Uv≥0, ∀v∈T }


)
.


On the other hand, analogously to (5),


Q


(
F (T̂ (v0), Û (v0))1{v0∈∆}


)
=


1


P0(T = {∅} | U ≥ 0)
Q


(
F (T̂ (v0), Û (v0)) 1{v0∈∆∩∂T }


)
.


The lemma follows by combining the previous two identities and then summing over all choices
of v0 ∈ U∗. �


Remark. If γ has no atoms we have |∆| = 1, Q a.s., and Lemmas 3.3 and 3.4 reduce to
the same identity. In our applications, we shall be concerned with the case when γ does have
atoms, and is even supported on a finite subset of Z.


4 Estimates for the probability of staying on the positive


side


Our goal in this section is to derive upper and lower bounds for the probability Pn
x(U > 0) when


n → ∞. Our main tools will be Lemmas 3.3 and 3.4. We also need a preliminary estimate
concerning the cardinality |∂T | of the set of leaves.


Lemma 4.1 There exists a constant α0 > 0 such that, for every n sufficiently large,


Q(||∂T | − µ(0)n| > n3/4, |T | = n + 1) ≤ e−nα0
.


Proof: We first recall some classical facts about relations between random walks and Galton-
Watson trees. As in Section 2 above, let Sn = X1 + · · ·+Xn be a random walk on Z with jump
distribution ν(k) = µ(k + 1), k = −1, 0, 1, 2, . . ., started from the origin and defined under the
probability measure P . Set τ := inf{n ≥ 0 : Sn = −1}, and for every integer n ≥ 1,


Mn = |{k ∈ {1, 2, . . . , n} : Xk = −1}|.


Then the law of the pair (|T |, |∂T |) under Q coincides with that of the pair (1 + τ, Mτ ) under
P . For a proof, see e.g. the discussion in Section 2 of [23], or Section 5.2 of [29].


It follows that


Q(||∂T |−µ(0)n| > n3/4, |T | = n+1) = P (|Mτ−µ(0)n| > n3/4, τ = n) ≤P (|Mn−µ(0)n| > n3/4).


The estimate of the lemma now follows from standard moderate deviations estimates for sums
of independent Bernoulli variables. �


We set Qn(·) = Q(· | |T | = n + 1), which makes sense for every n sufficiently large.


12







Proposition 4.2 Let K > 0. There exist positive constants c1, c2 = c2(K), c̃1, c̃2 such that, for


every x ∈ [0, K] and every n sufficiently large,


c̃1


n
≤ Qn(U > 0) ≤


c̃2


n
,


c1


n
≤ Pn


x(U > 0) ≤
c2


n
.


Remark. By an obvious comparison argument, c1 can be chosen independently of K.


Proof: We first bound Qn(U > 0). We apply Lemma 3.3 with


F (T , U) = 1{|T |=n+1},


noting that |T̂ (v)| = |T | if v ∈ ∂T . It follows that


Q(|∂T | 1{|T |=n+1 , U>0}) ≤ Q(|T | = n + 1).


On the other hand, Lemma 4.1 shows that, for n sufficiently large,


Q(|∂T | 1{|T |=n+1 , U>0}) ≥ (µ(0)n − n3/4) Q(|T | = n + 1, U > 0) − n e−nα0 .


By combining this with the preceding bound, we get


Qn(U > 0) ≤
1


µ(0)n − n3/4
+


n e−nα0


(µ(0)n − n3/4)Q(|T | = n + 1)
. (7)


With the notation of the proof of Lemma 4.1, we have also


Q(|T | = n + 1) = P (τ = n) =
1


n
P (Sn = −1) ∼


n→∞
c0 n−3/2 (8)


where c0 is a positive constant, and the last estimate follows from a standard local limit theorem.
We thus deduce from (7) that


lim sup
n→∞


n Qn(U > 0) ≤
1


µ(0)
, (9)


yielding the desired upper bound for Qn(U > 0).


Let us now discuss a lower bound for Qn(U ≥ 0). Applying Lemma 3.4 with the same
function F , we get


Q(|∂T | 1{|T |=n+1 , U≥0}) = Q(|∆ ∩ ∂T | 1{|T |=n+1}) ≥ Q(|∆ ∩ ∂T | ≥ 1 , |T | = n + 1), (10)


and we now need to show that the latter quantity is bounded below by c Q(|T | = n + 1) for
some positive constant c. To this end, we state another lemma. Recall that vm is the first
vertex in ∆ for the lexicographical order of vertices.


Lemma 4.3 There exists a constant c1 > 0 such that, for every n sufficiently large,


Qn(vm ∈ ∂T ) ≥ c1.
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We postpone the proof of Lemma 4.3 and complete that of Proposition 4.2. As a consequence
of Lemma 4.3, we have


Q(|∆ ∩ ∂T | ≥ 1 , |T | = n + 1) ≥ c1 Q(|T | = n + 1).


Using now (10), we get


n Q(|T | = n + 1 , U ≥ 0) ≥ c1 Q(|T | = n + 1),


and so


Qn(U ≥ 0) ≥
c1


n
. (11)


The bounds involving Pn
x(U > 0) are easily derived from (9) and (11). Consider first the


lower bound. Clearly, it is enough to take x = 0. Then fix k ≥ 1 with µ(k) > 0. By arguing on
an appropriate event contained in {N∅ = k, N1 = k}, we get


P0(U > 0 , |T | = n + 1) ≥ µ(k)2 γ((0,∞))2k−1 µ(0)2(k−1) Q(U ≥ 0, |T | = n + 2 − 2k).


Since P0(|T | = n+1) ∼ c0 n−3/2 ∼ Q(|T | = n+2−2k) as n → ∞, we see that the lower bound
for Pn


0 (U > 0) follows from (11).


Consider then the upper bound. It is enough to take x = K. Let k be as above, then choose
y > 0 such that γ([y,∞)) > 0 and let p ≥ 1 be an integer such that py ≥ K. Again by arguing
on an appropriate event contained in {N1 = k, N(1,1) = k, . . . , N1p−1 = k}, we get


Q(U > 0 , |T | = n + 2 + (p − 1)k)


≥ µ(k)p−1γ([y,∞))p µ(0)(p−1)(k−1) γ((0,∞))(p−1)(k−1) PK(U > 0, |T | = n + 1)


and thus the upper bound for Pn
K(U > 0) follows from (9).


Finally, the bound Pn
0(U > 0) ≥ c1/n readily implies Qn(U > 0) ≥ c̃1/n with c̃1 =


γ((0,∞)) c1. �


Proof of Lemma 4.3: We first observe that under the probability measure Q(· | vm 6= ∅), the
spatial tree (T [vm], U [vm]) is independent of (T (vm), U (vm)) and has distribution P0(· | U ≥ 0).
Indeed, if we condition on the value of vm, we see that this statement follows from basic
properties of Galton-Watson trees, similar to those that were used in the proof of Lemma 3.3.
We then get


Q(|T | = n + 1 , vm 6= ∅) =


n−1∑


k=0


Q(|T (vm)| = n − k + 1 , |T [vm]| = k + 1 , vm 6= ∅)


=


n−1∑


k=0


Q(|T (vm)| = n − k + 1 , vm 6= ∅) η(k + 1) (12)


where η(j) = P0(|T | = j | U ≥ 0), for every j ≥ 1. On the other hand, using once again the
observation of the beginning of the proof, we have for every integer ` ≥ 2,


Q(|T | = ` , vm ∈ ∂T ) = Q(|T (vm)| = ` , T [vm] = {∅} , vm 6= ∅)


= η(0) Q(|T (vm)| = ` , vm 6= ∅). (13)


14







Fix an integer p ≥ 2 such that µ(p) > 0. Under the probability measure Q(· | N1 = p), we can
consider the p trees T1, . . . , Tp defined as follows. For every 1 ≤ j ≤ p, Tj consists of the root ∅


and of the vertices of the type 1v such that 1jv ∈ T . Then, under Q(· | N1 = p), T1, . . . , Tp are
independent and distributed according to Q. Let k be an integer with p − 1 ≤ k ≤ n − 2. We
consider the event where |T1| = n − k, |T2| = k − p + 3 and |Tj| = 2 for other values of j. By
arguing on this event and imposing appropriate conditions on the spatial displacements (using
in particular the fact that γ((−∞, 0]) = γ([0,∞)) ≥ 1/2), we get the bound


Q(|T | = n + 1 , vm ∈ ∂T )


≥
µ(p)


2


n−2∑


k=p−1


Q(|T | = n − k , vm ∈ ∂T ) Q(|T | = k − p + 3 , U ≥ 0)
(µ(0)


2


)p−2


= c(p)


n−2∑


k=p−1


Q(|T | = n − k , vm ∈ ∂T ) Q(|T | = k − p + 3 , U ≥ 0)


where c(p) > 0 is a constant depending on p and µ.


Similarly, by requiring the spatial displacement along the first edge to be nonnegative, we
get for k ≥ p − 1,


Q(|T | = k − p + 3 , U ≥ 0) ≥
1


2
P0(|T | = k − p + 2 , U ≥ 0) =


1


2
P0(U ≥ 0) η(k − p + 2).


It follows that


Q(|T | = n + 1 , vm ∈ ∂T ) ≥ c′(p)


n−2∑


k=p−1


Q(|T | = n − k , vm ∈ ∂T ) η(k − p + 2)


= c′(p)


n−p−1∑


j=0


Q(|T | = (n − p) − j + 1 , vm ∈ ∂T ) η(j + 1).


Using (13) we arrive at


Q(|T | = n + 1 , vm ∈ ∂T ) ≥ c′′(p)


(n−p)−1∑


j=0


Q(|T (vm)| = (n − p) − j + 1 , vm 6= ∅) η(j + 1). (14)


We compare the last bound with (12) written with n replaced by n − p. It follows that


Q(|T | = n + 1 , vm ∈ ∂T ) ≥ c′′(p) Q(|T | = n − p + 1 , vm 6= ∅). (15)


Since Q(|T | = n+1 , vm 6= ∅) ∼ Q(|T | = n+1) ∼ c0n
−3/2 as n → ∞, Lemma 4.3 follows from


(15). �


Remark In view of Proposition 4.2, one expects the existence of a positive constant c∞ such
that


lim
n→∞


n Qn(U > 0) = c∞.


When γ has no atoms, and under some additional conditions on the offspring distribution
µ, this can indeed be proved from the lemmas of Section 3, with c∞ = P0(U > 0)−1. Similar
asymptotics for Pn


0 (U > 0) then follow easily. Since we do not need these more precise estimates,
we will not address this problem here.
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5 A spatial Markov property


In this section, we briefly discuss a Markov property for our branching trees, which will be used
in the proof of our main result. Arguments are elementary and so we omit most details.


We fix a > 0. If (T , U) is a spatial tree and v ∈ T , we say that v is an exit vertex from
(−∞, a) if Uv ≥ a and Uv′ < a for every ancestor v′ of v distinct from v. Denote by v1, v2, . . . , vM


the exit vertices from (−∞, a) listed in lexicographical order. If i, j ∈ {1, 2, . . . , M} and i 6= j,
then vi cannot be an ancestor of vj.


For v ∈ T , and for every v′ ∈ T [v], we set


U
[v]


v′ = Uvv′


(compare with the definition of U [v]). Finally, we denote by T a the subtree of T consisting of
those vertices which are not strict descendants of v1, . . . , vM . In particular, v1, . . . , vM ∈ T a.
We also denote by Ua the restriction of U to T a. Informally, (T a, Ua) corresponds to the tree
(T , U) “truncated at the first exit time” from (−∞, a).


Proposition 5.1 Let x ∈ [0, a) and p ≥ 1. Under the probability measure Px(· | M = p),


conditionally on (T a, Ua), the spatial trees (T [v1], U
[v1]


), . . . , (T [vp], U
[vp]


) are independent and


distributed respectively according to PUv1
, . . . , PUvp


.


The proof of Proposition 5.1 is an easy application of properties of Galton-Watson trees.
We leave details to the reader. See e.g. [9] for closely related statements in a slightly different
setting.


Conditional versions of Proposition 5.1 are derived in a straightforward way. Firstly, this
statement remains valid if Px is replaced by


Px(·) := Px(· | U > 0),


provided PUv1
, . . . , PUvp


in the conclusion are also replaced by PUv1
, . . . , PUvp


.


Then, by conditioning with respect to the sizes of the various trees, we arrive at the following
result.


Corollary 5.2 Let x ∈ [0, a) and p ∈ {1, . . . , n}. Let n1, . . . , np be positive integers such that


n1 + · · ·+ np ≤ n. Assume that


P
n


x(M = p, |T [v1]| = n1, . . . , |T
[vp]| = np) > 0.


Then, under the probability measure P
n


x(· | M = p, |T [v1]| = n1, . . . , |T
[vp]| = np), condition-


ally on (T a, Ua), the spatial trees (T [v1], U
[v1]


), . . . , (T [vp], U
[vp]


) are independent and distributed


respectively according to P
n1


Uv1
, . . . , P


np


Uvp
.
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6 Asymptotic properties of conditioned trees


From now on we assume that (1) holds.


In view of our main result Theorem 2.2, it is convenient to introduce a specific notation for
rescaled processes. For every integer n ≥ 1 and every t ∈ [0, 1], we set


C(n)(t) =
σ


2


C(2nt)


n1/2
,


V (n)(t) =
1


ρ


(σ


2


)1/2 V (2nt)


n1/4
.


Before proceeding to the proof of Theorem 2.2, we need to get some information about asymp-
totic properties of the pair (C(n), V (n)) under P


n


x. We will consider the conditioned measure


Q
n


:= Qn(· | U > 0).


Proposition 6.1 For every b > 0 and ε ∈ (0, 1/10), we can find δ, α ∈ (0, ε) such that, for all


n sufficiently large,


Q
n
(


inf
t∈[δ/2,1−δ/2]


V (n)(t) ≥ 2α , sup
t∈[0,4δ]∪[1−4δ,1]


(C(n)(t) + V (n)(t)) ≤ ε/2
)
≥ 1 − b.


Consequently, if K > 0, we have also for all n sufficiently large, for every x ∈ [0, K],


P
n


x


(
inf


t∈[δ,1−δ]
V (n)(t) ≥ α , sup


t∈[0,3δ]∪[1−3δ,1]


(C(n)(t) + V (n)(t)) ≤ ε
)
≥ 1 − c3b,


where the constant c3 only depends on µ, γ and K.


The second part of the proposition will follow from the first one by arguments similar to
those that were used in the proof of Proposition 4.2 above. To prove the first part of the
proposition, we will use Theorem 2.1 together with the following crucial lemma.


Lemma 6.2 Let F be a nonnegative measurable function on Ω such that 0 ≤ F ≤ 1. There


exist a finite constant c, which does not depend on F nor on n, such that


Q
n
(F (T , U)) ≤ c Qn(F (T̂ (vm), Û (vm))) + O(n5/2e−nα0


),


where α0 is as in Lemma 4.1, and the estimate O(n5/2e−nα0 ) for the remainder holds uniformly


in F .


Proof: For every n sufficiently large,


Q


(
F (T , U) 1{|T |=n+1} 1{U>0}


)
≤ Q


(
F (T , U) 1{|T |=n+1} 1{U>0}


|∂T |


µ(0)n − n3/4
1{|∂T |≥µ(0)n−n3/4}


)


+Q


(
F (T , U) 1{|T |=n+1} 1{U>0} 1{|∂T |<µ(0)n−n3/4}


)


≤
2


µ(0)n
Q


(
F (T̂ (vm), Û (vm)) 1{|T |=n+1}


)
+ e−nα0


,
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using Lemma 3.3 and Lemma 4.1 in the last bound. Dividing by Q(|T | = n+1) and using (8),
we get


Qn(F (T , U) 1{U>0}) ≤
2


µ(0)n
Qn(F (T̂ (vm), Û (vm))) + O(n3/2e−nα0 ).


By Proposition 4.2, we have Qn(U > 0) ≥ c̃1/n. The lemma now follows from the preceding
bound, with c = 2/(µ(0)c̃1). �


Proof of Proposition 6.1: First step. We first observe that Theorem 2.1 obviously remains
valid if Pn


0 is replaced by Qn. By the Skorokhod representation theorem, we can find, for every
integer n sufficiently large, a pair (Cn, Vn) such that the following holds. The processes Cn


and Vn are respectively the contour function and the spatial contour function of a spatial tree
(Tn, Un) with distribution Qn. Moreover,


((σ


2


Cn(2nt)


n1/2


)
0≤t≤1


,
(1


ρ


(σ


2


)1/2 Vn(2nt)


n1/4


)
0≤t≤1


)
−→
n→∞


(e, Z0), (16)


uniformly on [0,1], a.s., and the limiting pair (e, Z0) is the Brownian snake with initial point
0, as defined in the introduction above.


In agreement with the previous notation, write vn
m for the first vertex realizing the minimal


spatial position in Tn, and kn, respectively `n, for the first, resp. the last, time of visit of vn
m in


the evolution of the contour of Tn.


From Proposition 2.5 in [24], we know that there is a.s. a unique s∗ ∈ (0, 1) such that


Z0(s∗) = inf
0≤t≤1


Z0(t).


The convergence (16) then implies that


lim
n→∞


kn


2n
= lim


n→∞


`n


2n
= s∗ , a.s. (17)


Consider then the re-rooted tree (T̂
(vn


m)
n , Û


(vn
m)


n ). By construction, its contour function is


Ĉ(vn
m)


n (t) = Cn(kn) + Cn([[kn − t]]n) − 2 inf
[[kn−t]]n∧kn≤r≤[[kn−t]]n∨kn


Cn(r),


for 0 ≤ t ≤ 2n − (`n − kn). (Here [[kn − t]]n denotes the unique element of [0, 2n) such that
[[kn − t]]n − (kn − t) = 0 or 2n.) The corresponding spatial contour function is


V̂ (vn
m)


n (t) = Vn([[kn − t]]n) − Vn(kn).


For 2n − (`n − kn) < t ≤ 2n, we also set Ĉ
(vn


m)
n (t) = V̂


(vn
m)


n (t) = 0. From (16), (17), and the


preceding formulas for Ĉ
(vn


m)
n (t) and V̂


(vn
m)


n (t), we get


((σ


2


Ĉ
(vn


m)
n (2nt)


n1/2


)
0≤t≤1


,
(1


ρ


(σ


2


)1/2 V̂
(vn


m)
n (2nt)


n1/4


)
0≤t≤1


)
−→
n→∞


(e0, Z
0
), (18)
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uniformly on [0,1], a.s., where, as in Section 1,


e0(t) = e({s∗ − t}) + e(s∗) − 2 inf
{s∗−t}∧s∗≤r≤{s∗−t}∨s∗


e(r)


Z
0
(t) = Z0({s∗ − t}) − Z0(s∗),


where {r} denotes the fractional part of r.


Write P for the probability measure under which the processes (Cn, Vn) and (e, Z0) are
defined. From Lemma 6.2 applied with a suitable indicator function F , we have for every
choice of α, δ, ε > 0,


lim sup
n→∞


Q
n
({


inf
t∈[δ/2,1−δ/2]


V (n)(t) < 2α
}
∪
{


sup
t∈[0,4δ]∪[1−4δ,1]


(C(n)(t) + V (n)(t)) >
ε


2


})


≤ c lim sup
n→∞


Qn
({


inf
t∈[δ/2,1−δ/2]


V̂ (vm),(n)(t)<2α
}
∪
{


sup
t∈[0,4δ]∪[1−4δ,1]


(Ĉ(vm),(n)(t) + V̂ (vm),(n)(t))>
ε


2


})


≤ cP
({


inf
t∈[δ/2,1−δ/2]


Z
0
(t) ≤ 2α


}
∪
{


sup
t∈[0,4δ]∪[1−4δ,1]


(e0(t) + Z
0
(t)) ≥


ε


2


})
, (19)


where we used the notation


Ĉ(vm),(n)(t) =
σ


2


Ĉ(vm)(2nt)


n1/2
, Ĉ(vm),(n)(t) =


1


ρ


(σ


2


)1/2 V̂ (vm)(2nt)


n1/4
,


if 0 ≤ t ≤ (|T (vm)| − 1)/n, and Ĉ(vm),(n)(t) = V̂ (vm),(n)(t) = 0 if (|T (vm)| − 1)/n < t ≤ 1. In the
last inequality above, we used (18) together with the fact that Cn and Vn are respectively the
contour function and the spatial contour function of a spatial tree with distribution Qn.


Recall that Z
0
(t) > 0 for every t ∈ (0, 1), a.s. Hence, if b > 0 and ε > 0 are given, we can


first choose δ ∈ (0, ε) so small that


cP
(


sup
t∈[0,4δ]∪[1−4δ,1]


(e0(t) + Z
0
(t)) ≥


ε


2


)
<


b


2


and then find α ∈ (0, ε) small enough so that


cP
(


inf
t∈[δ/2,1−δ/2]


Z
0
(t) ≤ 2α


)
<


b


2
.


The first part of Proposition 6.1 then follows from (19).


Second step. We now explain how the desired bound under P
n


x can be deduced from the one
under Q. In a way very similar to the end of the proof of Proposition 4.2, we first choose an
integer ` ≥ 1 such that µ(`) > 0. Then let y > 0 be such that γ((y, y + 1)) > 0 and let p ≥ 1
be the first integer such that py ≥ K. Also set m = n + (p − 1)` + 1. Under an appropriate
conditioning of Q (requiring in particular that N1 = `, N(1,1) = `, . . . , N1p−1 = `), we can embed
a tree with distribution Pz, for some random z ≥ K, into a tree distributed according to Q,
and we arrive at the bound


Q


(
{|T | = m + 1} ∩ {U > 0} ∩


{
sup


t∈[0,A+p]∪[2n−A,2m]


(C(t) + V (t)) ≥ λ
})


≥ β Px


(
{|T | = n + 1} ∩ {U > 0} ∩


{
sup


t∈[0,A]∪[2n−A,2n]


(C(t) + V (t)) ≥ λ
})


, (20)
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where
β = µ(`)p−1 γ((y, y + 1))p µ(0)(p−1)(`−1) γ((0,∞))(p−1)(`−1)


and x ∈ [0, K], A ∈ (0, 2n), λ > 0 are arbitrary. Similarly, with the same constant β, we have


Q


(
{|T | = m + 1} ∩ {U > 0} ∩


{
inf


t∈[A,2m−A]
V (t) ≤ λ


})


≥ β Px


(
{|T | = n + 1} ∩ {U > 0} ∩


{
inf


t∈[A,2n−A]
V (t) ≤ λ − (K + y + 1)


})
. (21)


Also recall that the quantities Q({|T | = m + 1} ∩ {U > 0}) and Px({|T | = n + 1} ∩ {U > 0})
are bounded above and below by positive constants times n−5/2. Using this last remark, we see
that the second part of Proposition 6.1 follows from the first part, (20) and (21). �


Remark. The limiting process (e0, Z
0
) in (18) is the same as the one in Theorem 2.2. There-


fore, it seems tempting to deduce Theorem 2.2 from (18) and the relations between the con-
ditioned spatial tree and the tree re-rooted at its first minimum (Lemmas 3.3 and 3.4). This
approach would indeed be successful, maybe under additional assumptions, in the case when
the probability measure γ has no atoms, so that the minimal spatial position is attained at a
unique vertex. In our general setting however, we will have to use a different argument which
is explained in the next section.


7 Proof of the main result


In this section, we prove Theorem 2.2. We equip C([0, 1], R)2 with the norm ‖(f, g)‖ = ‖f‖u ∨
‖g‖u, where ‖f‖u stands for the uniform norm of f . For every f ∈ C([0, 1], R), and every r > 0,
we also set:


ωf(r) = sup
s,t∈[0,1],|t−s|≤r


|f(t) − f(s)|.


We fix x ≥ 0 and unless otherwise indicated, we argue under P
n


x. Let F be a bounded
Lipschitz function on C([0, 1], R)2. We have to prove that


lim
n→∞


E
n


x[F (C(n), V (n))] = E[F (e0, Z
0
)].


We may and will assume that 0 ≤ F ≤ 1 and that the Lipschitz constant of F is less than
1. As in Section 1, for every r > 0, we denote by (e, Zr) a Brownian snake with initial point r
and we let (er, Z


r
) be distributed as (e, Zr) conditioned on the event


{
inf


0≤t≤1
Zr(t) > 0} ,


which has positive probability. We know that


(er, Z
r
)


(d)
−→
r→0


(e0, Z
0
). (22)
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Lemma 7.1 Let 0 < c′ < c′′. Then,


lim
p→∞


sup
c′p1/4≤y≤c′′p1/4


|E
p


y[F (C(p), V (p))] − E[F (eκy/p1/4


, Z
κy/p1/4


)]| = 0


where κ = 1
ρ
(σ


2
)1/2.


Proof: First note that the law of the infimum of a linear Brownian snake driven by a normal-
ized Brownian excursion e has no atoms: See Lemma 2.1 in [24] for the case of an unnormalized
Brownian excursion e = (e(t), t ≥ 0) under the Itô measure, and then use the fact that, for
every ε > 0, the law of (e(t), 0 ≤ t ≤ 1 − ε) is absolutely continuous with respect to that of
(e(t), 0 ≤ t ≤ 1 − ε). It follows that the law of (er, Z


r
) depends continuously on r. It then


suffices to show that if (yp) is a sequence such that c′p1/4 ≤ yp ≤ c′′p1/4 and p−1/4yp −→ r, then,


E
p


yp
[F (C(p), V (p))] −→


p→∞
E[F (eκr, Z


κr
)]. (23)


However, Theorem 2.1 implies that


Ep
yp


[F (C(p), V (p)) 1{U>0}] −→
p→∞


E[F (e, Zκr)1{Zκr>0}]


where Zκr = inf{Zκr(t) , 0 ≤ t ≤ 1} (we use the fact that P (Zκr = 0) = 0, as noted above).
The desired result (23) readily follows. �


Let b > 0. We will prove that for n sufficiently large,


|E
n


x[F (C(n), V (n))] − E[F (e0, Z
0
)]| ≤ 12b,


which is enough to get the desired convergence.


By (22), we can choose ε ∈ (0, b ∧ 1
100


) small enough so that


|E[F (er, Z
r
)] − E[F (e0, Z


0
)]| < b (24)


for every 0 < r ≤ 2ε. By taking ε smaller if necessary, we can also assume that, for every
r ∈ (0, 1],


E[(3ε sup
0≤t≤1


er(t)) ∧ 1] ≤ b ,


E[ωe
r(6ε) ∧ 1] ≤ b ,


E[(3ε sup
0≤t≤1


Z
r
(t)) ∧ 1] ≤ b ,


E[ωZ
r(6ε) ∧ 1] ≤ b . (25)


For δ, α > 0, denote by Γn = Γε,α,δ
n the event


Γn =
{


inf
t∈[δ,1−δ]


V (n)(t) ≥ α , sup
t∈[0,3δ]∪[1−3δ,1]


(C(n)(t) + V (n)(t)) ≤ ε
}
.
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By Proposition 6.1, we can fix δ, α ∈ (0, ε) such that, for every n sufficiently large,


P
n


x(Γn) > 1 − b.


On the event Γn, we have, for every t ∈ [2nδ, 2n(1 − δ)],


V (t) ≥ ρ
( 2


σ


)1/2


α n1/4. (26)


Set α = ρ(2/σ)1/2α. The next step of the proof is to apply Corollary 5.2 with a = α n1/4,
assuming that n is large enough so that a > x. Let us introduce the relevant notation. We
denote by vn


1 , . . . , vn
Mn


the exit vertices from (−∞, α n1/4), listed in lexicographical order. As in


Section 5, we can then consider the spatial trees (T [vn
1 ], U


[vn
1 ]


), . . . , (T [vn
Mn


], U
[vn


Mn
]
). The contour


functions of these spatial trees may be obtained in the following way. Set


kn
1 = inf{k ∈ N : V (k) ≥ α n1/4}


`n
1 = inf{k ≥ kn


1 : C(k + 1) < C(kn
1 )}


and, by induction on i,


kn
i+1 = inf{k > `n


i : V (k) ≥ α n1/4}


`n
i+1 = inf{k ≥ kn


i+1 : C(k + 1) < C(kn
i+1)}.


Then kn
i ≤ `n


i < ∞ iff i ≤ Mn. The contour function of T [vn
i ] is


(C(kn
i + t) − C(kn


i ), 0 ≤ t ≤ `n
i − kn


i )


and the spatial contour function of (T [vn
i ], U


[vn
i ]


) is


(V (kn
i + t), 0 ≤ t ≤ `n


i − kn
i ).


Note in particular that Uvn
i


= V (kn
i ) = V (`n


i ), and that `n
i − kn


i = 2(|T [vn
i ]| − 1).


By construction, for every integer k ∈ [0, 2n]\∪Mn
i=1 [kn


i , `n
i ], we have V (k) < α n1/4. Also note


that `n
i + 1 < kn


i+1 for every i ∈ {1, . . . , Mn − 1}.


Using (26), we then see that on the event Γn all integer points of [2nδ, 2n(1 − δ)] must be
contained in a single interval [kn


i , `n
i ]. Hence, if


En := {∃i ∈ {1, . . . , Mn} : `n
i − kn


i > 2(1 − 3δ)n}


we have Γn ⊂ En if n is sufficiently large, and so


P
n


x(En) ≥ P
n


x(Γn) > 1 − b.


On the event En, we denote by in the unique integer i ∈ {1, . . . , Mn} such that `n
i − kn


i >
2(1 − 3δ)n. We also set


mn = |T [vn
in


]| − 1 ,


Yn = Uvn
in


.
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Then Corollary 5.2 implies that under the measure P
n


x(· | En), conditionally on the σ-field


Gn := σ
(
(T αn1/4


, Uαn1/4


), Mn, (|T [vn
i ]|, 1 ≤ i ≤ Mn)


)
,


the spatial tree (T [vn
in


], U
[vn


in
]
) has distribution P


mn


Yn
. Note that En ∈ Gn and that Yn and mn


are Gn-measurable.


Lemma 7.2 The law of n−1/4Yn under the measure P
n


x(· | En) converges as n → ∞ to the


Dirac measure at α.


Proof: For every v ∈ U ∗, write v̌ for the father of v. By construction, we have on En,


Yn = Uvn
in


≥ α n1/4


Uv̌n
in


< α n1/4.


To get the statement of the lemma, it thus suffices to verify that, for every r > 0,


P
n


x


(
sup


v∈T \{∅}


|Uv − Uv̌|


n1/4
> r
)
−→
n→∞


0. (27)


If P
n


x is replaced by Pn
x, or by Qn, (27) becomes a straightforward consequence of (1) (it can


also be read from Theorem 2.1). We can then use Lemma 6.2 once again to see that (27) also
holds when P


n


x is replaced by Q
n
. Finally, the same arguments as in the end of the proof of


Proposition 4.2 give (27) in the form stated above. �


On the event En, we define for 0 ≤ t ≤ 1,


C̃(n)(t) =
σ


2


C(kn
in + 2mnt) − C(kn


in)


m
1/2
n


Ṽ (n)(t) =
1


ρ


(σ


2


)1/2 V (kn
in + 2mnt)


m
1/4
n


. (28)


Note that C̃(n) and Ṽ (n) are rescaled versions of the contour function and the spatial contour


function of the spatial tree (T [vn
in


], U
[vn


in
]
). On the event Ec


n we take C̃(n)(t) = Ṽ (n)(t) = 0 for
every 0 ≤ t ≤ 1.


By the remarks preceding Lemma 7.2, we have, for any nonnegative measurable function F
on C([0, 1], R)2,


E
n


x[1EnF (C̃(n), Ṽ (n))] = E
n


x[1En E
n


x[F (C̃(n), Ṽ (n)) | Gn]] = E
n


x[1En E
p


Yn
[F (C(p), V (p))]p=mn]. (29)


We will be able to combine Lemma 7.1 and Lemma 7.2 in order to study the right-hand
side of (29). Still we need to explain why (C (n), V (n)) is close to (C̃(n), Ṽ (n)) under P


n


x, in a
suitable sense. Recall the definition of the event Γn ⊂ En, and the fact that P


n


x(Γc
n) < b. Simple


estimates show that for all n sufficiently large we have on Γn, for every 0 ≤ t ≤ 1,


|C̃(n)(t) − C(n)(t)| ≤ ε + (1 −
m


1/2
n


n1/2
) sup


0≤s≤1
C̃(n)(s) + ω eC(n)(6δ).
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In the previous inequality, we used the bounds


n ≥ mn ≥ (1 − 3δ)n , kn
in < 3δn


that hold on Γn for n large. Since


1 −
m


1/2
n


n1/2
≤ 1 −


mn


n
≤ 3δ ,


we finally get on Γn


sup
0≤t≤1


|C̃(n)(t) − C(n)(t)| ≤ ε + 3δ sup
0≤t≤1


C̃(n)(t) + ω eC(n)(6δ). (30)


Similarly, we have on Γn


sup
0≤t≤1


|Ṽ (n)(t) − V (n)(t)| ≤ ε + 3δ sup
0≤t≤1


Ṽ (n)(t) + ωeV (n)(6δ). (31)


Let us now complete the proof. By Lemma 7.1, if p is sufficiently large, we have


sup
α
2


p1/4≤y≤2αp1/4


|E
p


y[F (C(p), V (p))] − E[F (eκy/p1/4


, Z
κy/p1/4


)]| < b .


Since 2κα = 2α < 2ε, we can combine this with (24) to get


sup
α
2


p1/4≤y≤2αp1/4


|E
p


y[F (C(p), V (p))] − E[F (e0, Z
0
)]| < 2b .


Now recall (29), the fact that mn ≥ (1 − 3δ)n on En and Lemma 7.2. It follows that for n
sufficiently large,


|E
n


x[1EnF (C̃(n), Ṽ (n))] − P
n


x(En) E[F (e0, Z
0
)]| < 3b .


Since P
n


x(En) > 1 − b, this implies


|E
n


x[F (C̃(n), Ṽ (n))] − E[F (e0, Z
0
)]| < 4b . (32)


Furthermore, from the bounds (30) and (31), we have


E
n


x[1Γn|F (C̃(n), Ṽ (n)) − F (C(n), V (n))|] ≤ 2ε + E
n


x


[(
3δ sup


0≤t≤1
C̃(n)(t)


)
∧ 1 + ω eC(n)(6δ) ∧ 1


]


+E
n


x


[(
3δ sup


0≤t≤1
Ṽ (n)(t)


)
∧ 1 + ωeV (n)(6δ) ∧ 1


]


At this point, we can again use (29), Lemma 7.1 and Lemma 7.2 to see that the right-hand
side is bounded above for n sufficiently large by


b + 2ε + sup
0<r≤1


E
[(


3ε sup
0≤t≤1


er(t)
)
∧ 1 + ωe


r(6ε) ∧ 1
]


+ sup
0<r≤1


E
[(


3ε sup
0≤t≤1


Z
r
(t)
)
∧ 1 + ωZ


r(6ε) ∧ 1
]
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From (25), the latter quantity is bounded above by 7b. Since P
n


x(Γn) > 1 − b, this gives the
bound


E
n


x[|F (C̃(n), Ṽ (n)) − F (C(n), V (n))|] ≤ 8b.


Combining this bound with (32) leads to


|E
n


x[F (C(n), V (n))] − E[F (e0, Z
0
)]| ≤ 12b,


which completes the proof of Theorem 2.2. �


8 An application to random quadrangulations


In this section, we apply Theorem 2.2 to give a short derivation of some asymptotics for random
quadrangulations which were obtained in [8]. Let us briefly recall the main definitions, following
Section 2 of [8]. A planar map is a proper embedding, without edge crossings, of a connected
graph in the plane. Loops and multiple edges are allowed. A planar map is rooted if there
is a distinguished edge on the border of the infinite face, which is called the root edge. By
convention, the root edge is oriented counterclockwise, and its origin is called the root vertex.
The set of vertices will always be equipped with the graph distance: If a and a′ are two vertices,
d(a, a′) is the minimal number of edges on a path from a to a′. Two rooted planar maps are
said to be equivalent if there exists a homemorphism of the plane that sends one map onto the
other one and preserves the root edges.


A planar map is a quadrangulation if all faces have degree 4. A quadrangulation contains no
loop but may contain multiple edges. For every integer n ≥ 2, we denote by Qn the set of all
(equivalent classes of) quadrangulations with n faces. Then Qn is a finite set, whose cardinality
was computed by Tutte [31]:


|Qn| =
2


n + 2


3n


n + 1


(
2n
n


)
.


The relations between planar maps and the present work come from a basic result (Cori
and Vauquelin [10], Schaeffer [30]) connecting quadrangulations with the so-called well-labelled
trees. Let us call labelled tree any spatial tree (T , U) such that U∅ = 1, Uv ∈ Z for every v ∈ T
and |Uv − Uv̌| ≤ 1 for every v ∈ T \{∅} (recall that v̌ is the father of v). The tree is said to
be well-labelled if in addition Uv ≥ 1 for every v ∈ T . We denote by Tn the collection of all
labelled trees with n + 1 vertices, and by T0


n the collection of all well-labelled trees with n + 1
vertices.


Theorem 8.1 There exists a bijection Φn from Qn onto T0
n, which enjoys the following addi-


tional property. Let q ∈ Qn and (T , U) = Φn(q). Then, if Vq denotes the set of vertices of q,
and a0 ∈ Vq is the root vertex of q, we have for every integer k ≥ 1:


|{a ∈ Vq : d(a0, a) = k}| = |{v ∈ T : Uv = k}|.


See Section 3 of [8] for a detailed proof. Assume that q ∈ Qn and (T , U) ∈ T0
n are such that


(T , U) = Φn(q). Then one can construct a one-to-one correspondence between vertices a of q
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other than the root vertex, and vertices v of the tree T , in such a way that the distance d(a0, a)
from the root coincides with the spatial position Uv (see [8] for details). This explains the final
formula of the theorem.


Before stating the main asymptotic result, let us introduce the relevant notation. If q is a
rooted quadrangulation, the radius r(q) is the maximal distance between the root vertex a0


and another vertex a. The profile λq is the integer-valued measure on N defined by


λq(k) = |{a ∈ Vq : d(a0, a) = k}|.


Note that r(q) is just the supremum of the support of λq. It is also convenient to introduce the
rescaled profile. If q ∈ Qn, this is the probability measure on R+ defined by


λ(n)
q (A) =


1


n + 1
λq(n


1/4A)


for any Borel subset A of R+.


Theorem 8.2 (i) The law of n−1/4r(q) under the uniform probability measure on Qn con-


verges as n → ∞ to the law of the variable


(8


9


)1/4


( sup
0≤s≤1


Z0(s) − inf
0≤s≤1


Z0(s)).


(ii) The law of the random measure λ
(n)
q under the uniform probability measure on Qn con-


verges as n → ∞ to the law of the random probability measure I defined by


〈I, g〉 =


∫ 1


0


dr g
((8


9


)1/4


(Z0(r) − inf
0≤s≤1


Z0(s))
)
.


(iii) The law of the rescaled distance n−1/4d(a0, a) from a vertex a chosen uniformly at random


among all vertices of q to the root vertex a0, under the uniform probability measure on


Qn, converges as n → ∞ to the law of the random variable


(8


9


)1/4


( sup
0≤s≤1


Z0(s)).


Remarks. (a) Part (i) of the theorem is in Corollary 3 of [8] (which also gives the convergence
of moments). Part (ii) is Corollary 4 of [8]. Part (iii) is not stated in [8], but as we will see it
is a straightforward consequence of (ii).


(b) We could also have given the various limits in Theorem 8.2 in terms of the random
measure known as (one-dimensional) ISE. Up to the trivial multiplicative constant (8/9)1/4,
the limit in (i) is the length of the support of ISE, the limit in (iii) is the supremum of this
support, and the random measure I appearing in (ii) is ISE itself shifted by the minimum of its
support. As it is justified in [24], this shifting is equivalent to conditioning ISE to be supported
on the positive half-line.


(c) Detailed information about the limiting laws in (i) and (iii) can be found in Delmas [11]
and in the recent preprint Bousquet-Mélou [2].
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Proof. We apply the results of the preceding sections taking µ(k) = 2−k−1 for k ∈ Z+ and
letting γ be the uniform probability measure on {−1, 0, 1}: γ(−1) = γ(0) = γ(1) = 1


3
. Note


that we have then σ2 = 2, ρ2 = 2/3 and thus κ = 1
ρ
(σ


2
)1/2 = (9


8
)1/4.


With the preceding choice of µ and γ, one immediately verifies that Pn
1 is the uniform


probability measure on Tn, and P
n


1 is the uniform probability measure on T0
n. The various


assertions of Theorem 8.2 can then be obtained by combining Theorem 8.1 with Theorem 2.2.


To begin with, Theorem 8.1 entails that the law of r(q) under the uniform probability
measure on Qn coincides with the law of sup{Uv : v ∈ T } under P


n


1 . Since by construction, if
(T , U) ∈ Tn,


sup{Uv : v ∈ T } = sup{V (t) : t ∈ [0, 2n]}


Theorem 2.2 readily implies that the law of n−1/4 sup{Uv : v ∈ T } under Qn converges to the
law of (8


9


)1/4


( sup
0≤s≤1


Z
0
(s)).


From the “Vervaat transformation” connecting the conditioned Brownian snake and the un-
conditioned one (cf Section 1), this is the same as the limit in (i).


Let us turn to (ii). By Theorem 8.1, the law of λ
(n)
q under the uniform probability measure


on Qn coincides with the law under P
n


1 of the random measure In defined by


〈In, g〉 =
1


n + 1


∑


v∈T


g(n−1/4Uv).


In view of our asymptotics, we may replace In by I ′
n defined by


〈I ′
n, g〉 =


1


n


∑


v∈T \{∅}


g(n−1/4Uv).


Now, from the definition of the contour function C and of the spatial contour function V , it is
elementary to verify that we have also


〈I ′
n, g〉 =


1


2n


∫ 2n


0


dt g
(V ([t]C)


n1/4


)


where if t ∈ [k, k + 1) we set [t]C = k if C(k) ≥ C(t) and [t]C = k + 1 otherwise. In this form,
and using the fact that |[t]C − t| ≤ 1, we deduce from Theorem 2.2 that the law of I ′


n under P
n


1


converges to the law of the random measure I ′ defined by


〈I ′, g〉 =


∫ 1


0


dr g
((8


9


)1/4


Z
0
(r)
)
.


Again the Vervaat transformation shows that this is the same as the limit in (ii).


Finally, let Xn be distributed as n−1/4d(a0, a) when the quadrangulation q is uniform over
Qn and a is uniform over the set of vertices of q other than the root vertex a0, and let g be
bounded and continuous on R+. Then,


E[g(Xn)] =
1


|Qn|


∑


q∈Qn


∫
λ(n)


q (dx) g(x).
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From (ii), this converges towards


E


(∫ 1


0


dr g
((8


9


)1/4


(Z0(r) − inf
0≤s≤1


Z0(s))
))


.


Now, by the invariance property of the Brownian snake under uniform re-rooting (see e.g.
Theorem 2.3 in [24]), the latter quantity is equal to


E


(
g
(
−
(8


9


)1/4


inf
0≤s≤1


Z0(s)
))


= E


(
g
((8


9


)1/4


sup
0≤s≤1


Z0(s)
))


,


by symmetry. This completes the proof. �


Let us conclude with some remarks. The cardinality of Tn is 3n times the cardinality of the
set of rooted ordered trees with n + 1 vertices, which is the Catalan number of order n:


|Tn| =
3n


n + 1


(
2n
n


)
.


Comparing with the formula for |Qn| = |T0
n|, we see that


Pn
1 (U > 0) =


|T0
n|


|Tn|
=


2


n + 2


(cf Theorem 2 in [8] for a combinatorial explanation). This is of course consistent with the
estimates of Proposition 4.2.


The proofs in [8] are based on a form of Theorem 2.1 (which allows one to deal with labelled
trees) and some delicate combinatorial arguments that are needed to relate well-labelled trees
with labelled trees (the latter are called embedded trees in [8]). The originality of our approach
is thus to apply asymptotics for well-labelled trees, viewed here as conditioned trees, rather
than to use a combinatorial method to get rid of the conditioning. We expect that this method
will have applications to other types of planar maps, which are also known to be in one-to-one
correspondence with various classes of discrete trees (see [6] and [25]).
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